
A High Performance Open API

platform for Disaster Management,

integrating UAVs, Mobile and IOT

devices

Sarantis Kyritsis

Advisory Committee

Assoc. Prof. Panagiotis Partsinevelos (Supervisor)

Prof. Stylianos Mertikas

Prof. Dionissios Hristopoulos

Mineral Resources Engineering

Technical University of Crete

This dissertation is submitted for the degree of

Master of Science
July 2020

I would like to dedicate this thesis to my loving parents . . .

Acknowledgements

This thesis has been a long and sometimes difficult journey.

I would like to express ...

my gratitude to my parents, grandparents, brother and sisters for supporting my every en-

deavor

my unconditional love to my brother and sisters

my respect to my teachers for the guidance and patience

my support to SenseLab Research Group, this team has been the foundation of myself as a

researcher

my sincerest admiration to my mentor Dr. Partsinevelos, for all the knowledge and support

throughout these years

and last but not least my unconditional love and gratitude to Vicky for the emotional support

during this journey.

The end of a journey, is always the beginning of a new one...

Abstract

Search and rescue (SAR) constitutes a crucial, recurrent and integral challenge for civil

protection entities. With the use of current technology, multiple parts of a SAR mission can

be inter-connected in real-time, by using multiple aspects from the world of GIS systems, as

well as leveraging the capabilities of embedded systems for on the fly application deployment.

Multiple approaches have been undertaken so far towards bridging these fields, but the

proposed system is utilizing the advantageous elements of primary memory databases, as

well as the performance of statically typed compiled languages, such as Golang.

The goal of this thesis is the creation of an Open API, real time and highly performant

disaster management system. The key elements of this system are that it is easily deployable,

easily configurable and implements a variety of different communication protocols. The

drive for this implementation is that the resulting system can be deployed on any Linux-based

embedded system, works with a variety of messaging protocols and is completely agnostic

of the underlying network infrastructure. For the creation of this platform, a variety of

technologies have been used. The deployment system is based on docker containerization,

the programming language is Golang, while the main database used is Redis.

The resulting platform has been thoroughly stress tested in handling loads of transactions,

simulating high load real world scenarios. Through this platform, multiple field agents

(i.e. drones, rescuers, volunteers, teams of people) can coordinate their actions by utilizing

whatever available network infrastructure is still operating, or can be easily deployed on

the spot. Moreover, people that are facing problems (i.e. cannot move, are injured, or are

trapped) can directly send their position, as well as their status through this platform, so that

the responding rescuers can approach them efficiently. Performance tests indicate that the

viii

system can handle 33269 concurrent requests per second regarding creations and updates of

data in the system and 57543 concurrent requests per second fetching data from the platform.

To put things into perspective an ArcGIS Server REST 2D Vector mapping services supports

up to 79,710 requests per hour, and a heavily optimized PostGIS installation can reach up to

7432 requests per second.

The final system offers a real-time disaster management platform, heavily optimized for fast

messaging performance between the users of the platform, and mainly oriented towards team

coordination in SAR operations.

Περίληψη

Η έρευνα και η διάσωση (SAR) αποτελούν μια κρίσιμη, επαναλαμβανόμενη και αναπόσ-

παστη πρόκληση για τις οντότητες πολιτικής προστασίας. Με τη χρήση της τρέχουσας

τεχνολογίας, πολλαπλά τμήματα μιας αποστολής SAR μπορούν να επικοινωνήσουν σε

πραγματικό χρόνο, χρησιμοποιώντας πολλαπλές πτυχές από τον κόσμο των συστημάτων

GIS, καθώς και αξιοποιώντας τις δυνατότητες των ενσωματωμένων συστημάτων για την

ανάπτυξη της εφαρμογής σε πολύ σύντομο χρονικό διάστημα.

Μέχρι σήμερα έχουν υπάρξει πολλαπλές προσεγγίσεις για τη γεφύρωση αυτών των

πεδίων, αλλά το προτεινόμενο σύστημα χρησιμοποιεί τα πλεονεκτήματα των βάσεων

δεδομένων πρωτογενούς μνήμης, καθώς και τις επιδόσεις μεταγλωττισμένων γλωσσών

στατικών τύπων, όπως η Golang.

Σκοπός αυτής της διπλωματικής εργασίας είναι η δημιουργία ενός συστήματος Ανοιχτού

API, πραγματικού χρόνου και υψηλής απόδοσης για την διαχείριση καταστροφών. Τα

βασικά στοιχεία αυτού του συστήματος είναι ότι είναι εύκολα αναπτυσσόμενο, διαμορ-

φώσιμο και υλοποιεί μια ποικιλία διαφορετικών πρωτοκόλλων επικοινωνίας. Ο στόχος για

αυτήν την εφαρμογή είναι το προκύπτον σύστημα να μπορεί να αναπτυχθεί σε οποιοδήποτε

ενσωματωμένο σύστημα που βασίζεται στο Linux, να λειτουργεί με πολλαπλά πρωτόκολλα

ανταλλαγής μηνυμάτων και είναι απόλυτα ανεξάρτητο της υποκείμενης υποδομής δικτύου.

Για τη δημιουργία αυτής της πλατφόρμας, χρησιμοποιήθηκαν διάφορες τεχνολογίες. Το

σύστημα ανάπτυξης βασίζεται στο σύστημα Docker, η γλώσσα προγραμματισμού είναι η

Golang, ενώ η κύρια βάση δεδομένων που χρησιμοποιείται είναι η Redis.

Η πλατφόρμα που προέκυψε έχει δοκιμαστεί εκτενώς στο χειρισμό φορτίων συναλ-

λαγών, που προσομοιώνουν σενάρια που πλησιάζουν τις πραγματικές απαιτήσεις και εσ-

x

τιάζουν στον υψηλό φόρτο πακέτων. Μέσω αυτής της πλατφόρμας, πολλοί πράκτορες

(π.χ. αεροσκάφη, διασώστες, εθελοντές, ομάδες ανθρώπων) μπορούν να συντονίσουν

τις ενέργειές τους με τη χρήση οποιασδήποτε διαθέσιμης υποδομής δικτύου εξακολουθεί

να λειτουργεί ή μπορεί να αναπτυχθεί εύκολα επί τόπου. Επιπλέον, τα άτομα που αν-

τιμετωπίζουν προβλήματα (δηλαδή δεν μπορούν να κινηθούν, τραυματίστηκαν ή βρίσκον-

ται παγιδευμένα) μπορούν να στείλουν απευθείας τη θέση τους καθώς και την κατάστασή

τους μέσω αυτής της πλατφόρμας, έτσι ώστε οι διασώστες να μπορούν να τα προσεγ-

γίσουν αποτελεσματικά. Οι δοκιμές απόδοσης υποδεικνύουν ότι το σύστημα μπορεί να

χειριστεί 33269 ταυτόχρονες αιτήσεις ανά δευτερόλεπτο για δημιουργίες και ενημερώσεις

δεδομένων στο σύστημα και 57543 ταυτόχρονες αιτήσεις ανά δευτερόλεπτο για την εξ-

αγωγή δεδομένων από την πλατφόρμα. Συγκριτικά, οι υπηρεσίες χαρτογράφησης του

ArcGIS Server REST 2D Vector υποστηρίζουν έως και 79710 αιτήσεις ανά ώρα και μια

εξαιρετικά παραμετροποιημένη εγκατάσταση PostGIS μπορεί να φτάσει έως και 7432 αιτή-

ματα ανά δευτερόλεπτο.

Το τελικό σύστημα προσφέρει μια πλατφόρμα διαχείρισης καταστροφών πραγματικού

χρόνου, βελτιστοποιημένη για γρήγορη απόδοση μηνυμάτων μεταξύ των χρηστών της

πλατφόρμας και κυρίως προσανατολισμένη προς τον συντονισμό των ομάδων σε επιχειρή-

σεις SAR.

Contents

List of Figures xiii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 1

1.3 Motivation . 2

1.4 Goal and Hypothesis Objectives . 2

1.5 Research Approach . 3

1.6 Applications . 3

1.7 Organization of the Remaining Chapters 3

2 Relevant Work 5

2.1 Background . 5

2.1.1 A dive into the Geographic Information System 5

2.1.2 Explaining the response to disasters 5

2.1.3 Geographic Information System for disaster management 7

2.2 The Current State of Geographic Information System for Disaster Response 10

2.2.1 Geographic Information System Disaster Response in Literature . . 11

2.2.2 Spatial Data . 13

2.2.3 GIS Users, Producers, and Specialists 15

3 Implementation 19

3.1 Introduction . 19

xii Contents

3.1.1 The DBMS (Redis) . 19

3.1.2 The API (Golang) . 21

3.1.3 Messaging Systems . 21

3.2 Architecture . 23

3.3 Optimization . 25

3.4 Replication . 26

4 Use Case Scenarios / Results 29

4.1 Use Cases . 29

4.1.1 Use Case 1 : Simple Scenario . 29

4.1.2 Use Case 2 : Medium Size Scenario 30

4.1.3 Use Case 3 : Large Scale Scenario 31

4.2 Performance Benchmarks . 32

5 Conclusions / Future Work 39

5.1 Conclusions . 39

5.2 Future Work . 40

References 41

Appendix A Full System Benchmark Log 49

List of Figures

3.1 Redis Primary Memory Caching . 20

4.1 Graphical Representation of the Data for Use Case 1 Scenario 30

4.2 Graphical Representation of the Data for Use Case 2 Scenario 31

4.3 Graphical Representation of the Data for Use Case 3 Scenario 32

Chapter 1

Introduction

1.1 Background

In the modern age, the acquisition of data from multiple sources has surpassed all expectations.

The rapid growth of the Internet of Things (IoT) is disrupting virtually every industry as

innovative companies create new business models that exploit the wealth of data these

networks generate. At the same time, the reduction in the costs of acquiring and using small

versatile Unmanned Aerial Vehicles (UAVs) has created new and innovative ways to quickly

survey dangerous areas, minimizing the risk of human life. Those technologies, in accord

with the help of firefighters, civil protection agencies and volunteers seem to create a vast

human and machine network, which could work as a unified protection system against natural

disasters.

1.2 Problem Statement

Although, the sources of data have become richer, the processing of them is still based on tra-

ditional GIS systems, thus creating huge limitations in terms of time and space complexities.

This means, that even if we have an ever expanding availability of different and complex

information, those data take a long time to be processed and finally lead to actionable de-

cisions. Furthermore, traditional GIS systems are not equipped to handle real-time events.

2 Introduction

This means that with today’s means, the way to handle events caused by the movements of

different objects would need complex middlware solutions, communicating with a traditional

GIS platform to somehow handle event driven messages.

1.3 Motivation

Natural disasters have always been one of humanity’s biggest problems. That’s why many

steps have been taken towards minimizing the danger of human life, regarding the manage-

ment and resolution of those disasters. But in the last years, and even more this past year, it

seems that there is still much room for improvement. Especially in this past year, we have

seen multiple disasters done by wildfires in Greece, Brazil and Siberia. Those disasters all

account to the further declination of the already unstable climate around the planet Earth.

Moreover, through my exposure to real-time data sources, such as drones, IoT devices and

wearable devices, I have come to the conclusion that all those data streams could be used in a

unified platform to provide us with better means of resolving more efficiently such disasters,

and further help the protection and preservation of our planet, as well as minimize the risk of

human life in the process.

1.4 Goal and Hypothesis Objectives

The realization of the aforementioned limitations in actual real-life scenarios led me to

the idea of creating a new platform that would solve the problems of modern real-time,

cooperative disaster management applications. In order to do that, the new platform should

be able to handle and process geospatial data in real-time. This means that all the storage,

recovery and spatial functions should be done with really strong time restrictions. At the

same time, the platform should be able to handle multiple bidirectional communication

channels between all the users that take part in a disaster management operation. Finally,

since a large scale natural disaster might cause large network infrastructure problems, the

platform must be completely network infrastructure agnostic.

1.5 Research Approach 3

1.5 Research Approach

In order to conclude on the final architecture and supported functions of the system, multiple

things must be researched. For starters, an evaluation of already existing systems and

approaches must be taken into account. Furthermore, multiple real-life scenarios must be

examined in order to find possible weak spots in the scenario resolutions. As an overall, this

platform’s goal is to make all relevant information readily available to all the parties that need

that kind of information in order to act as efficiently as possible. Moreover, the platform’s

performance is of great importance as all the supported functions must perform as efficiently

as possible in order to provide real-time functionality and easy on the go deployment.

1.6 Applications

This platform’s primary focus is the management of multiple agents in a disaster management

scenario. But, taking into account the functions from which it consists it could be used for

multiple applications. It could be used to help self-driving cars, acquire data about other cars

on the road, and get messages in time for traffic jams, accidents or special events. It could

also be used by air-traffic control systems as a lightweight and fast alternative that would

automate the process of accident avoidance.

1.7 Organization of the Remaining Chapters

In this chapter we focused on the problems that exist on the field of real-time data handling

in traditional GIS systems, and how these can be solved with the proposed solution. In

Chapter 2 we are going to investigate what has been done in the field by previous works.

Moreover, we are going to examine multiple tools and techniques that will prove useful in

the creation and optimization of our system. In Chapter 3 our main objective will be to

present the system’s components and architecture. Specifically, we are going to focus on the

technical structural components of the system, and how those components are connected in

order to synthesize our final solution. Chapter 4 will present some characteristic use-case

4 Introduction

scenarios that will help in better understanding the intended use and capabilities of the system.

Furthermore, in this chapter some characteristic benchmarks will be presented which will

help better understand the performance of the system under stress. We will conclude with

Chapter 5, which will act as a summary of what has been presented and what was achieved.

In this chapter, some ideas for future work will also be presented.

Chapter 2

Relevant Work

2.1 Background

2.1.1 A dive into the Geographic Information System

Geographic Information System (GIS) standards have previously been described by variations

in the definition of an IS (information system) or an integration of hardware, software and

telecommunications networks that have developed and used to gather, produce and propagate

relevant knowledge in an organizational context. The difference between the "IS" and the

"Geographic Information System" is that the latter integrates the concept of space into

the system. (Schneider & Valacich, 2010). For instance, software and hardware made to

accomplish map development, perform geographic analysis, create mapping applications

(Longley et al. 2010), and examine statistical analysis with spatial constructions.

2.1.2 Explaining the response to disasters

Disaster Management consists of a series of actions to react to and mitigate an ongoing crisis.

Additional information on the evolution from response to direct restoration is elaborated

by Anthopoulos et al. (2013). "Disaster Response" involves a range of concepts suggested

by different government policies and institutional frameworks. It is focused on adjustable,

expandable, and evolving practises. For example, the NIMS (National Incident Management

6 Relevant Work

System) aligns key duties and responsibilities throughout the US region. This system defines

details for warnings and industry requirements for crisis responses ranging from serious but

local emergencies to severe acts of violence or major natural disasters (U.S. Department of

Homeland Security 2013: p. I). Under this context, the GIS is explicitly referred to as a

system that integrates both the National Response Framework (NRF) and Emergency Support

Function Annexes or ESFs (United States Department of Homeland Security 2013). For

instance, the ESF 5 "Emergency Management Officers" states that "The design development

personnel focus on providing, managing and modifying location information (Federal Emer-

gency Management Agency (FEMA) 2008: p. 5-1)."

Furthermore, in other areas such as in Germany, “Disaster Response” is incorporated in the

overall disaster management process. Disaster management can be described as all efforts

to mitigate, track, avoid, respond to, and recover from further disasters. To increase its

efficiency, Germany has merged regions, and has separated responsibilities between national

and state governance. As a consequence, there are often so many definitions of disaster

response within the different laws. These laws can be summed up as tools for tracking

individual, environmental, and other natural or man-made disasters and providing help in

the event of a crisis. Disaster Response situations involve a concerted effort to interpret

GIS data, and make sure that those data are properly communicated throughout all the units

taking part in the response effort. The primary responsibility for disaster mitigation lies in

countries where the federal government has a duty to protect them. During major accidents,

national resources (e.g. an Associate Assistance Department / Police Service or a National

Information and Communication Centre) are allocated by the Federal State.

Based on the global scale, the UNISDR (UN Office for Disaster Risk Reduction) identified

and responded to disaster management by defining it as : ’The urgent protection and govern-

ment assistance provision during a crisis to save many human lives, minimize health effects,

protect citizens and meet the needs of people directly affected.

Common issues in the aforementioned examples are the welfare of rapidly changing societies

and the delivery of essential human needs and facilities. In the next section, we will include

2.1 Background 7

examples which illustrate the huge role of the GIS in disaster response.

2.1.3 Geographic Information System for disaster management

Catastrophic events still expose the conceptual and long-term need for the GIS in disaster

management. For instance, the initial reaction to the 9/11 attacks demonstrates a list of

fundamental GIS actual examples to integrate reaction organizational activities, but also

highlights the need for relevant information exchanging of pre-event action plans (Kevany

2003).

During the Haiti quake in 2010, it was at the very first instance, when non GIS Personnel

got involved in Disaster and Emergency Mapping Activities. This involvement stressed the

significance of consolidating structured disaster information with available data, identifying

disaster areas and evaluating catastrophic damage from a variety of different information

sources.

During that year, a massive oil spill occurred as a result of the Deep-Water Horizon oil spill

in the Gulf of Mexico. Such an event has a surprising environmental effect that cannot be

resolved without local temporal data on the location of the explosion, its potential escape,

and reliable geospatial data.

In addition, in some publications on the use of the GIS systems in disaster management, there

is a large amount of knowledge that is used to identify where GIS information has been used.

In the broader field of Disaster Response, GIS systems can provide information regarding

the peace and safety of an area, as well as point out possible dispute threats by analyzing

geospatial data. Disaster risk management and dispute resolution have some important factors

in common and have a similar purpose. The most significant aspect is that the objective is to

improve the living conditions of people affected by and after a natural disaster or civil conflict

(Kobayashi 2012). Security studies are highly dependent on space and spatial analysis,

including the vital positions of violent commencement or sectarian violence and post-disaster

circumstances. By linking space and conflict, both numerically and factually, peace and

conflict researchers aim to develop a better understanding of danger circumstances as well as

8 Relevant Work

to provide decision-makers with greater tools to prevent or, at least, reduce danger.

At the start of the 21st century, conflict and security researchers have examined the ap-

propriate boundaries and procedures of various conflicts (Ross, 2004). The assessment of

conceptual factors such as topography, geographic position and dispersion of land, facilities

and credibility of national borders as well as the effect on mental struggles is described in

Baechler et al., 2002. Other areas of expertise play a vital role in government systems and

sustainable development and their significance to sectarian violence. The link among changes

in the environment and dispute has been already established in the scientific community

(Vandergeest and Peluso 1995). As we progress, and more data are gathered, climate change

and conflict tend to show strong signs of correlation.

As a result, of the plethora of gathered GIS data the conflict and security research focus has

shifted from a nation-wide scope to a sub-provincial level (Theisen, 2012). This shift resulted

in the growing use of GIS systems as a data analysis and visualisation method. The list of

risk zones with high conflict probability is rising. Most of the examples show three similar

traits in the management of disaster while using Geographic Information Systems:

Situation Perception improved by Geographic Information System

Situational awareness (or SA) is a term used in both the army and disaster management

teams. It is done so, because these formations show similarities in terms of organisation and

operational tactics. Another phrase akin to SA is "common operating picture" or COP. Within

the army COP, was precisely defined as "the shared visual representation of the pertinent data

provided by a unified program that enables close coordination and helps all units realize the

orientation of the situation" (Endsley 1995; Endsley and Garland 2000). Spatial-based COP

representations enable the accomplishment and preservation of SA for groups of individuals,

during a disaster response, via the use of spatial systems and GIS in general. For instance,

maps and fundamental location data may provide a range of services, such as visual disaster

management in earthquake situations or national emergency situations (Green and Parrish

2013), and enable disaster emergency workers to make choices and undertake the appropriate

actions as reaction circumstances become time critical.

2.1 Background 9

Time Sensitive Data Geographic Information Systems for Disaster Management

Use of GIS in disaster management has a number of special hurdles. In the event of a disaster,

there is the urgent need for data regarding the afflicted areas and communities which might

be in high risk. The initial reaction to a disaster is associated with a loss of information,

particularly during a huge crisis. A huge proportion of the time is utilized to gather actionable

data and incorporate them into a comprehensive spatial representation. GIS can assist in this

task by providing the infrastructure to import all this data for a particular geographical area.

However, setting up a GIS database (e.g. defining a set of data structures) or researching an

appropriate way to analyze when a catastrophic event occurs takes a significant amount of

time. Disaster management entities can only use what is currently in place at the time of

disaster on the basis of technology, infrastructure and organizational interpretations. Paddy et

al. (2014) report that, especially during a sudden occurrence of a disaster, any circumstantial

information becomes invalid or irrelevant within a short period of time. It was found that

just after 3-4 days, the emergency management personnel found the information regarding

critical infrastructure completely useless. Unfortunately, the same conclusion was drawn for

digital images that were just 3-4 days old. The geographical information used (and needed)

for disaster management are identified as follows:

-Spatial data (e.g., basic position information)

-Sensitivity-specific data for the location and/or type of disaster (e.g., location information,

key infrastructure, confined spaces, land use, etc.)

-Real-time status data (e.g., location of services and units, actual injuries, traffic status, etc.)

The general approach is to set up a local database containing the above-mentioned data and to

gain access to real-time data feeds prior to a disaster. In addition, it is important to ensure that

geographical information is available during the event (Zerger and Smith, 2003). Challenges

can arise as a result of data availability, scale constraints, and access to information. Kevany

(2005) summarizes the numerous lessons learned since the 9/11 incident on the use and

application of GIS and spatial data during the New York disaster management period (Diehl

and van der Heide 2005; Kevany 2005; National Economic Council 2007a, b).

10 Relevant Work

Cross-disciplinary data sharing, coordination, and collaboration

Shared among all disaster relief activities is that they require collaboration between various

agencies both directly and indirectly. Theoretically, all stakeholders as well as the public and

affected industries have similar information requirements: incident outcomes, stakeholder

expectations, and infrastructure or restoration status. As a result, massive quantities of data

are produced and accessed during reaction efforts; however, the larger part of that data is

presented as official statements, PowerPoint slides or inconsistent data tables. In certain

cases, however, the key data include a spatial attribute, to a certain extent and accuracy, that

can be used as a connection to the aforementioned information and provide a better response

to spatial related questions. The main goal in the field of disaster response is to achieve a

personalised view of the relevant data for each different respondent, depending on his needs

and demands. But this can only be accomplished via internet-based data acquisition and

inter-system data sharing (Neuvel et al. 2012). The first solitary system for the direct sharing

of geographic information was launched after hurricane katrina (Mills et al. 2008). Around

the same time, efforts were made to establish GIS based in the Netherlands and Germany

to address obstacles in distributing spatial data to various companies (Diehl and van der

Heide 2005; Köhler 2005). The rapid proliferation of web-based technologies to promote

collaboration, data sharing, and interoperability would only exacerbate this phenomenon

(examples such as GeoPlatform.gov and subsequently FEMA GeoPlatform).

2.2 The Current State of Geographic Information System

for Disaster Response

In the subsequent section, we explain the latest state of GIS for disaster management and how

much we have managed to improve since the initial reviewed literature. We are intending to

discuss using a future framework, such as the involvement of GIS in disaster management.

First, we will iterate over how GIS disaster response is seen in related articles or status

reports. After that, we will test GIS for disaster management within the information of the

2.2 The Current State of Geographic Information System for Disaster Response 11

two system components, users who create and concentrate on GIS and data. We will pay

particular attention to these two aspects of the general GIS approach, as we will argue that

the range of information and the range of actors involved in GIS driven disaster response, is

an excellent example of how the involvement of GIS in disaster response is increasing.

2.2.1 Geographic Information System Disaster Response in Literature

As described in Tomaszewski et al., 2015 the creation of the term "geographic data system"

is often directly linked to Geographer Roger Tomlinson and his determination to include it,

in the 1960s, in the Canadian GIS. Over the years, GIS software has surfaced in its modern

incarnation, from a combination of theoretical perspectives such as geography, architectural

design, computers, and information technology. The specific definition of space and ana-

lytical capacity provided by GIS in the area of disaster management has a long history of

disaster risk work, leading to simple GIS disaster management papers (or related words such

as "emergency management") appearing in the GIS literature. GIS emergency management

involves a 20-year discourse in research journals depending on specific research. For our

evaluation, we concentrated on critical articles in geographic informatics journals, and also

on the affirmation of peer-reviewed articles in risk management journals. The research in

most well-known disaster management articles shows a significant number of publications on

GIS topics. The vast majority of disaster management journals (including accident studies)

are available only from 2000 onwards. The search shows that GIS play an important role in

scientific discussions in the field of risk management and risk research.

Over the next section, we present significant educational papers that access the GIS disaster

relief efforts.

Reports dealing only with the role of GIS in disaster management are most often traced back

to 1992, just before GIS software had become accessible to many viewers for the first time

thanks to the advances in Technological innovation (Johnson 1992). Coppock (1995) was the

first Geographic Information System and Environmental Threat Analysis study to highlight

a range of problems that continue to exist today in data shortages, GIS availability, user

requirements, and network failures.

12 Relevant Work

In reality, GIS emergency management has never been a trivial issue in Geography related

research and has originally gained attention from many other perspectives such as safety

research (Johnson 1995: p. 133). GIS can be a national emergency management system that

can be used completely in the stages of the crisis cycle. Moreover, Dash (1997) was the first

study to look at the use of GIS in scientific qualitative studies.

Cova (1999) was the first GIS user to be a multidisciplinary expert at all stages of disaster

mitigation (which include, but are not confined to, disaster response) and identified unique

GIS experiments with risk assessment models that still relate to the migration design pro-

cess. Cutter, 2003 was among the main papers in the 9/11 era who proposed constructs

that would merge GIS and disaster response principles. The events of 9/11 and Hurricane

Katrina intrigued a great deal of attention to the concerns of disaster risk management in

GIS related sciences and triggered progress in GIS scientific research on subjects as diverse

as 3D GIS simulation in urban rescue operations (Lee and Zlatanova, 2008), demographic

map representations on financing group work (MacEachren and Cai, 2006) and the forest fire

suppression model (Cova et al., 2005).

Breakthroughs in web 2.0 technology, data infrastructure building, local voluntary work,

mainstream press, and data analytics that started in the early 2000s have led to numerous

research topics focusing on disaster management actors, visual analytics, and in general GIS

disaster management awareness. Garb et al. (2007) presented research on realistic ways to

assess human risk in the ability to forecast disasters. The research on data infrastructure

development and data models explicitly for disaster management was addressed by Neuvel

et al. (2012), Zlatanova and Dilo (2010) and Frigerio et al. (2013). Goodchild and Glen-

non (2010) were also the first ones to reach the audience and use GIS strategies to fill the

information gap, but stumbled upon data quality problems. Tomaszewski (2011) explored

the use of digital maps with random sources of data, and evaluated the benefits and caveats

of such a practise being used in disaster management scenarios. Also, at the time, Liu and

Palen (2010) identified new ways to "use the map" to help disaster response by combining

various web features such as Google Maps, timelines, and YouTube broadcasts. Robinson et

al. (2011) presented a study to fully map the characteristics of the map symbols to specific

2.2 The Current State of Geographic Information System for Disaster Response 13

interactions. MacEachren et al. (2011) identified work on the distribution, and portrayal of

Twitter updates in support of emergency preparedness. Twitter feed can be an alternative

sensor design which would distribute information regarding the time and location (Crooks et

al. 2013). Community information systems could also facilitate interaction between camp

counselors and staging areas, as suggested by the studies by Annunziato et al. (2010), Frassl

et al. (2010) and Kiltz and Smith (2011).

The review in Tomaszewski et al., 2015 -supported by GIS variability in disaster response-

has demonstrated distinct scientific papers circulating three GIS related pillars: the people,

the data and the usage. Cutter (2003) considered that future research activities should be

mostly focused on the needs of users. The risk management process and recommended

solutions for it can be traced back to a large number of publications. There are currently a lot

of user interfaces online, though the actual emergency situations that GIS were properly used

are scarce.

2.2.2 Spatial Data

Spatial data are the most significant and vital characteristics of the GIS. Expenditures around

the spatial data include money and time needed to obtain, process, and maintain a wide range

of geographical information. In addition, expenses include IS facilities, training for GIS

employees and other advancements used to guide GIS, backup and restore systems, computer

technology, and other information and communication Technology (ICT) (desktops, servers,

radios, tablets, GPS linebackers) (National Council 2007a, b).

A main pattern over the last 5 years is the availability of public open source spatial data. This

significant contribution is driven by the community and it is enhancing our understanding of

disaster management circumstances. In order to have access, many of this publicly available

information and data have been generated by non-specialist producers who are often referred

to as VGI or " volunteered geographic information” (Goodchild, 2007). Maybe the most

substantial VGI effort identified in the framework of the disaster management was the Open

Street Map (OSM) 3 project (Haklay and Weber, 2008). The concept behind OSM would be

14 Relevant Work

that in the "wiki" map, anybody can make a contribution and edit a map of the world, which

is very comparable to the Wikipedia page. OSM attracted particular attention in 2010 for

its capacity to use its wiki-map method to generate adequate sets of data to fill data gaps

during the 2010 Haiti earthquake (OpenStreetMap Team Zook et al. 2010). Humanistic

OpenStreetMap Team 4 (H.O.T.) was established as a particularly unique OSM team, which

supports humanitarian actions and provides data on all significant events (mostly international

and European). Use of VGI to acquire disaster management data continues to grow with

the use of disaster response-management of circumstances where local data don’t actually

exist (such as in developing nations) or are inaccessible (due to security or government

reasons). For instance, the observer project began focusing on "tragedy mapping" via the use

of web-based layouts and a crowd-sourcing platform to regulate violent conflicts in Kenya

(Okolloh 2009). Tragedy mapping appears to be a big way to fill in the gaps in information

produced by the Libyan disaster of 2011, the continuing Syrian war, Hurricane Haiyan 2013

and the continuing Ebola pandemic of 2014 (Meier 2012; Hodson 2014; Zastrow 2014).

But those approaches have their drawbacks. The literature indicates that mapping natural

hazards and VGI information obtained by the public cannot be considered reliable, accurate

or consistent and corporate governance should be regarded when assessing the use of VGI in

evaluating rescue efforts.

Satellites, Space Technology and Unmanned Air Vehicles (UAVs)

Satellites offer fast and stable data transmission, positioning and surveillance tools, which is

of great value in cases when the land based infrastructure has suffered damage (Mandl et al.

2013). Risk analysis, disaster risk reduction, and preventative measures also greatly benefit

from space driven data. As an overview, the use of space technologies supports disaster

response in its different fields. This is achieved via the use of satellites for the purposes of

analysis and image processing, telecommunications, positioning and path planning. Remote

sensing data are used to map disaster zones for damage assessment as well as for the

generation of relevant GIS information.

For instance, as mentioned above, remote sensing techniques have been shown to provide

2.2 The Current State of Geographic Information System for Disaster Response 15

significant data and solve challenges in helping and organizing search and rescue operations

during the Indian Ocean tsunami (Kelmelis et al. 2006). Google maps has been identified

in publications as a method to provide visual imagery to support disaster relief efforts

(Nourbakhsh et al. 2006).

Satellite systems are used to keep the relief teams connected to the status of the disaster

areas (Robert Backhaus et al. 2011) as well as provide an early warning to secluded areas,

for a possible incoming disaster (Ravan et al., 2011; Szarzynski and Stevens, 2009). The

availability of GNSS is also really important to relief teams that approach (or are already in)

a disaster area.

Among the newest developments for disaster response real-time data acquisition is the use of

Unmanned Aerial Vehicles (UAVs) which support or even incorporate conventional remote

sensing technology, like satellite imagery. The literature representing this domain, points

to issues with system effectiveness and cooperation of multiple UAVs for better monitoring

(Quaritsch et al. 2011) and uses UAVs for real-time flood forecasting (Abdelkader et al.

2013).

2.2.3 GIS Users, Producers, and Specialists

GIS products are empowered and/or used by different categories of people. The first category

of people associated with GIS systems are the producers. The producers can be a single

person, or a group of people, that do not necessarily use a GIS system, but assist in the

creation, management and removal of GIS data, that could in turn be used to assist in disaster

management activities. The GIS specialists are connoisseurs of GIS with deep knowledge

in the use cases and benefits of GIS related products and data. The GIS users use GIS

related products, data and technologies to perform mission tasks without the need for deeper

understanding of the principles of the systems.

Producers

The producers are a diverse, global group that has received a significant amount of attention

in recent days for the ability to incorporate GIS data that can be used to predict, visualize

16 Relevant Work

and simulate disaster scenarios and its appropriate responses. They often function without

structured disaster management procedures. Even so, the significance of community access

to disaster map data as supplementary disaster response is evident and "disaster maps" are

now much more common, especially in the case of global disasters with big data gaps due to

media and/or legal restrictions like in the 2011 Libyan Crisis (Lohr 2011).

GIS Specialists

GIS Specialists can be individuals or institutions able to judge and evolve the status of GIS,

and in this specific case their uses in disaster management. Specialists are able to leverage

the data gathered at the location to provide better insight regarding the status of the ongoing

situation. One such example of a GIS Specialists institution, is the UK based NGO Map

Action. Map Action is available to immediately respond to a crisis with a volunteer team of

GIS professionals qualified in disaster management. Their plan involves a very well-designed,

fast response which must be incorporated with the efficient method of other current disaster

response institutions (e.g., UNDAC) in order to be effective. The different phases of the

response plan are as follows: - Mobilization: in this phase, a small agile team is assembled

and in parallel, the central organisation is creating data sources for the disaster area, and

prepares them for the team.

- Base Station: the team is deployed to the disaster area and sets up its base station. Some

members of the team then spread on the field to gather real-time data, while others analyze

the data gathered from the central organization.

- Data collection status: reviews are obtained from a variety of sources. These reviews then

are published, analyzed and plotted to provide answers to mission related crucial questions.

- Map Distribution: the spatial data that are gathered and evaluated are added into GIS so that

they can be readily available to various field agents. These GIS data are constantly being

kept up to date with the purpose of having time sensitive information in real-time.

In disaster responders, Map Action plays a crucial role in emergency preparedness, for

instance, by educating social workers or offering educational material particularly to non-GIS

professionals (Map Action 2011a, b).

2.2 The Current State of Geographic Information System for Disaster Response 17

GIS Users

The most recognisable group of GIS Users is those who battle the disaster with the purpose

of saving human lives. These people can be firemen, healthcare or social welfare units.

They rely on information regarding the current overview of the situation as well as potential

outcomes of the situation. Researchers often study this team of GIS Users (Diehl et al.

2006; Annunziato et al. 2010; Kiltz and Smith 2011). The knowledge requirements for this

community of users is very time-critical, but it is mostly centered on their specific objectives.

Severe and/or long-term disasters, where many relief groups are implicated and the effects

are considerable, require great communication. As the scale of the disaster grows, and the

results affect various sites, the information propagation between the different relief groups

must be more detailed but at the same time, fast enough. One of the very few researches done

by Paddy et al. (2014) studied the use of geographical data within the period of Emergency

Control Offices in the United States. Already in 2011, 90% of ECOs had at least part-time

employees with GIS skills, and GIS was recognized as a very important subject.

Chapter 3

Implementation

3.1 Introduction

Having identified the existing needs in the management of real-time mission critical data, and

taking into account the already implemented solutions and approaches to the needs of Search

and Rescue platforms, we conclude to the following architectural approach. This approach

consists of three basic pillars : the DBMS (Redis), the API (Golang) and the Messaging

Systems. Following is a bottom up overview of the implementation, structured in such a way

as to make the inter connectivity between the underlying components more profound to the

reader.

3.1.1 The DBMS (Redis)

Redis is an in-memory data structure project implementing a distributed, in-memory key-

value database with optional durability. Redis supports different kinds of abstract data

structures, such as strings, lists, maps, sets, sorted sets, HyperLogLogs, bitmaps, streams,

and spatial indexes. Redis made popular the idea of a system that can be considered at the

same time a store and a cache, using a design where data is always modified and read from

the main computer memory, but also stored on disk in a format that is unsuitable for random

access of data, but only to reconstruct the data back in memory once the system restarts.

20 Implementation

At the same time, Redis provides a data model that is very unusual compared to relational

database management system (RDBMS), as user commands do not describe a query to be

executed by the database engine, but specific operations that are performed on given abstract

data types, hence data must be stored in a way which is suitable later for fast retrieval, without

help from the database system in form of secondary indexes, aggregations or other common

features of traditional RDBMS. The Redis implementation makes heavy use of the Fork

(system call), to duplicate the process holding the data, so that the parent process continues to

serve clients, while the child process creates a copy of the data on disk. Something that is of

great importance to our specific implementation, is that Redis was configured to never store

data on disk, in order to reduce the number of I/O cycles used by the data storage, which in

return means that those CPU cycles would be used in the other components of the system

such as the messaging mechanisms, as well as the facilitation of the API calls.

Figure 3.1 Performance upgrade of MySQL while using Redis as primary memory caching

3.1 Introduction 21

3.1.2 The API (Golang)

Golang (Go), is a statically typed, compiled programming language designed at Google. It

is syntactically similar to C, but with memory safety, garbage collection, structural typing,

and CSP-style concurrency. In order to facilitate the needs for the API, multiple compo-

nents where used along with Go to achieve real-time performance and reasonable resource

management.

Echo

Echo is a high performance, extensible, minimalist Go web framework. It is used as the

primary API router and Logger.

Paho MQTT

A Go client library for the Eclipse Paho MQTT broker

Protobuf

A Go library which adds support for Protocol Buffers, implementing Google’s data inter-

change format

Redigo

A Go client library for the Redis database

gRPC

The Go implementation of gRPC: A high performance, open source, general RPC framework

that puts mobile and HTTP/2 first.

3.1.3 Messaging Systems

The application messaging systems, are divided into two types : event based and request

based. The event based messages, are triggered when a mission critical notification needs

22 Implementation

to be delivered to all subscribed members. The request based messages are transmitted,

whenever a member actively requests a specific piece of information.

Event Based Messages

MQTT

MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and

lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-

latency or unreliable networks. The design principles are to minimise network bandwidth and

device resource requirements whilst also attempting to ensure reliability and some degree

of assurance of delivery. These principles also turn out to make the protocol ideal of the

emerging “machine-to-machine” (M2M) or “Internet of Things” world of connected devices,

and for mobile applications where bandwidth and battery power are at a premium. To be able

to use the MQTT protocol, a broker needs to be set up, to facilitate as the messaging router.

This implementation has used the opensource Eclipse Mosquitto, as a message broker.

WebSocket

WebSocket is a computer communications protocol, providing full-duplex communication

channels over a single TCP connection. The main Golang application acts as a websocket

server. For each member that opens up a new websocket connection, a websocket client

is created server-side, in order to keep the connection between the member and the server.

Websocket connections are used to facilitate end to end data transmissions, and are not

preferred in cases of multiple member notifications, due to the iteration overhead.

gRPC

gRPC (gRPC Remote Procedure Calls) is an open source remote procedure call system

initially developed at Google. It uses HTTP/2 for transport, Protocol Buffers as the interface

description language, and provides features such as authentication, bidirectional streaming

3.2 Architecture 23

and flow control, blocking or nonblocking bindings, and cancellation and timeouts. It

generates cross-platform client and server bindings.

Request Based Messages

RESTful API

RESTful API is an application program interface (API) that uses HTTP requests to GET,

PUT, POST and DELETE data. A RESTful API, also referred to as a RESTful web service,

is based on representational state transfer (REST) technology, an architectural style and

approach to communications often used in web services development.

3.2 Architecture

Now that the underlying components have been established, we should elaborate on the ar-

chitectural dependencies between them. The main data storage of the system is implemented

using a Redis dbms. To store the individual member Ids, simple key - value storage facilities

are used. Member Collection Ids are indexed and indexes are stored in B-trees. Individual

member Ids, are also indexed in B-trees (child trees of Collection indexes). For the geospatial

data R-trees are used for indexing, in order to speed up the queries involving intersections

and joins between polygons and or points.

After the setup of the database and the choice of the specific data structures that will be

used for storage and indexing purposes, Golang comes into play. The first component, is the

establishment of connection between Goland and Redis. Something accomplished with the

use of Redigo. After the database connection, the RESTful API is built.

The system incorporates three item classes to model the input data for the API and the

database. Those three classes are the Collection class, the Actor class and the Area class.

The Collection class is a generic model that is used in order to form groups of underlying

models (in this case Actors). So in a way they are used in order to provide an abstraction

24 Implementation

layer to retrieve groups of relative information.

The Collection class supports the following API actions :

• Collection

– Create a new Collection

– Retrieve a Collection

– Retrieve all Actors of a Collection

– Retrieve all Collections

– Update an existing Collection

– Remove an existing Collection

– Remove all Actors of a Collection

– Remove all Collections

– Set Action Notifications for Specific Collection

The Actor class is the model that contains the information for a specific system actor.

As actors, we consider all the moving components in the field (i.e. Drones, IoT devices,

Survivors, Rescuers).

The Actor class supports the following API actions :

• Actor

– Create a new Actor and add him to a collection

– Retrieve an Actor from a Collection

– Update an existing Actor

– Delete an existing Actor from a collection

– Set Action Notifications for Specific Actor

Finally, the Area class is used to model areas of interest. Those areas are usually accompanied

by relative events. For example, an area of interest could be a "no fly zone", which would be

3.3 Optimization 25

accompanied by a relative event that would inform all the subscribed users in case a flying

object enters the aformentioned area.

The Area class supports the following API actions :

• Area

– Create a new Area and add it to a collection

– Retrieve an Area from a Collection

– Update an existing Area

– Delete an existing Area from a collection

– Set Action Notifications for Specific Area

The messaging systems described in 3.1.3 are used after a user has subscribed to a

notification event. That way, a user can be notified in real time about all the relevant mission

critical information that he has shown interest to. It is really important to point out that a

user can some times be a non-human agent. For example, a drone can have a specific area

assigned to it, and thus be notified whenever a victim appears inside its assigned area. In

such a case, the drone would receive the event and perform the allocated actions, such as

surveillance of the victim or even implementation of an actual rescue routine.

It should be pointed out, that though the system is oriented towards the real-time data acqui-

sition and distribution between all the associated parties, at the same time it implements all

the basic functionality that is usually found in traditional GIS systems.

3.3 Optimization

In the previous chapter, we discussed the way the data are saved in the system and distributed

throughout the different end-clients, but in order to provide better filtering and search times

for relevant results, certain optimizations must be taken into account.

For a single object to be retrieved from the database (anyone of Collection, Actor or Area),

26 Implementation

taking into account that its unique identifier is known, the time complexity is O(1), since

it’s retrieved from a dictionary like database construct. The problem arises when we want to

retrieve a set of objects based on a regular expression over the id. In such a case, without the

use of any indexes, the time complexity is O(N) where N is the number of components saved

in the system. Now, in order to improve this, we use Btree indexes on the unique ids of all

the components in the system. That way, the previous example performs much better with a

time complexity that amounts to O(logN).

Apart from the simple id queries, the system also allows geospatial queries. In order to better

facilitate those kinds of results, rtree indexes are used over the spatial data, thus bringing the

time complexity of spatial data retrieval to O(logMn)

Finally, the system allows the user to perform ranged queries on Actor properties. In order to

better understand this, the following user scenario is proposed.

“A system coordinator, needs to find all the drones that are flying at a speed between 1m/s

and 5 m/s.”

In order to fetch the results for this the time complexity is O(N), where N is all the number

of drones. To mitigate this time complexity problem btree indexes where used on all the

properties accompanying an Actor. This way, the information regarding the previous example

can now be retrieved with a time complexity of O(logN).

3.4 Replication

Due to the volatile nature of primary memory storage, the system needed some kind of

redundancy to avoid failures. This redundancy was added through the means of real-time

replication. The replication function allows for multiple nodes of the platform to run simulta-

neously, and all of them keep concurrent copies of the data on the system. The coordination

between them is done by a simple governor, whose authority is to designate the main node

of the system which acts as the primary server, and all others act as concurrent backups. In

case the primary server fails, then the governor assigns one of the secondary server as the

3.4 Replication 27

new primary, and all the other secondary servers, replicate the data of the new primary server

from this point on. This gives the advantage of having multiple interchangeable instances up

and running at the same time, to guarantee a far more redundant architecture opposing to the

single server architecture.

Chapter 4

Use Case Scenarios / Results

In order to better understand the usage of the system described in Chapter 3, some use case

scenarios will be presented. After that, some benchmarking results will be demonstrated

focusing mostly on the usage around the use case scenarios. More on benchmarking can be

found on Appendix A.

4.1 Use Cases

In this section three use case scenarios will be presented. These scenarios will have escalating

demands in order to elaborate on the capabilities of the system. All the scenarios are loosely

based on events that have already happened in the past, though the place and exact conditions

have been altered in order to maintain anonymity.

4.1.1 Use Case 1 : Simple Scenario

For our first scenario, we are going to test the following hypothesis.

“A small team of rescuers is trying to locate a lost person in a park.”

In such a scenario, the system needs to have a real-time location on all the rescuers. Apart

from that, the specified search area needs to be set in the system, so that the rescuers can be

notified in case they venture outside of that specified area. When the lost person is found, a

notification is sent towards all the system users about the location of the rescued person.

30 Use Case Scenarios / Results

Figure 4.1 Graphical Representation of the Data for Use Case 1 Scenario

4.1.2 Use Case 2 : Medium Size Scenario

For our second scenario, we are going to test the following hypothesis.

“A fire broke out in an area with dense vegetation. Around the danger area, multiple populated

areas exist that need to be evacuated and may contain people in need.”

In order to mitigate such a crisis several different layers of data need to be in place for the

better coordination of the rescuing services. First of all, a no flight zone fence is created

around the center of the fire. This is needed so that drones won’t meddle with the fire fighting

airplanes that will be dropping water over the fire zone. Secondly, two evacuation zones need

to be fenced. These serve the purpose of indicating to the rescuers and the service drones

where they should be headed in order to locate and help any people in need evacuate the

surrounding area. After that, the positions of the service drones and the rescuer teams are

constantly updated in order to provide real time tracking of the situation until it is resolved.

4.1 Use Cases 31

Figure 4.2 Graphical Representation of the Data for Use Case 2 Scenario

4.1.3 Use Case 3 : Large Scale Scenario

For our third scenario, we are going to test a larger example, imagining a much bigger crisis.

“After an earthquake near a populated area, multiple disasters have happened. Building have

collapsed, and so there are people trapped on injured. As a result of the earthquake, multiple

fires have started and have merged into one big wildfire. This wildfire is progressing and is

closing on the populated area. A plan for extinguishing the fire, finding possible victims and

evacuating the area needs to be concocted.”

This scenario is designed to demonstrate the full fledged capabilities of the system. Multiple

evacuated boats are positioned along the coastline, and are subscribed to the channel indi-

cating the location changes of the groups of survivors. These boats are there to receive the

survivors. At the same time, multiple groups of surveillance drones are positioned over the

populated area to locate any new survivors and indicate their positions to the rescue groups

that are deployed there. Those drones are subscribed to the channel of the survivors, as well

as the no fly zones. These no fly zones, indicate the places where the fire fighter planes are

32 Use Case Scenarios / Results

going to be deploying water for the raging fire. Around the populated area, multiple fire

fighter units are positioned in order to fight the fire on the ground. At the same time, the

ground rescuer teams are searching for trapped people in the aftermath of the earthquake,

and are subscribed to the channel reporting trapped people reports, generated either by the

drones or by the people themselves.

Figure 4.3 Graphical Representation of the Data for Use Case 3 Scenario

4.2 Performance Benchmarks

In the previous chapter, multiple use cases were presented. In this chapter, we are going to

examine how the system reacts when in strenuous activity. In order to do that, we are going

to present some important system benchmarks, that show the performance of the system on

the most requested actions. All the system benchmarks can be found in Appendix A.

4.2 Performance Benchmarks 33

Actor Creation / Update / Retrieval

One of the most common uses of the system, is the creation, update and retrieval handling of

an Actor.

====== SET (point) ======

100000 requests completed in 2.90 seconds

50 parallel clients

82 bytes payload

keep alive: 1

44.79% <= 0 milliseconds

62.61% <= 1 milliseconds

89.99% <= 2 milliseconds

96.98% <= 3 milliseconds

98.90% <= 4 milliseconds

99.41% <= 5 milliseconds

99.68% <= 6 milliseconds

99.81% <= 7 milliseconds

99.83% <= 8 milliseconds

99.84% <= 9 milliseconds

99.86% <= 13 milliseconds

99.90% <= 14 milliseconds

99.91% <= 15 milliseconds

99.91% <= 16 milliseconds

99.92% <= 17 milliseconds

99.94% <= 18 milliseconds

99.95% <= 19 milliseconds

99.96% <= 22 milliseconds

99.97% <= 34 milliseconds

99.99% <= 35 milliseconds

34 Use Case Scenarios / Results

100.00% <= 39 milliseconds

34505.36 requests per second

====== GET (point) ======

100000 requests completed in 1.38 seconds

50 parallel clients

52 bytes payload

keep alive: 1

83.84% <= 0 milliseconds

97.73% <= 1 milliseconds

99.01% <= 2 milliseconds

99.43% <= 3 milliseconds

99.67% <= 4 milliseconds

99.76% <= 5 milliseconds

99.86% <= 6 milliseconds

99.89% <= 7 milliseconds

99.94% <= 8 milliseconds

99.96% <= 9 milliseconds

99.97% <= 10 milliseconds

99.97% <= 12 milliseconds

99.98% <= 13 milliseconds

99.99% <= 20 milliseconds

100.00% <= 25 milliseconds

72687.47 requests per second

In this case, we can see that our system has a throughput of 34505.36 requests per second

for creation and update requests. That means, that with an update interval of 1 second, the

system can handle 34505 subscribed Actors. Moreover, the system has a throughput of

72687.47 requests per second for retrieval requests.

4.2 Performance Benchmarks 35

Area Creation / Update / Retrieval

Another important use of the system, is the creation, update and retrieval handling of an

Area.

====== SET (rect) ======

100000 requests completed in 3.01 seconds

50 parallel clients

114 bytes payload

keep alive: 1

44.89% <= 0 milliseconds

63.24% <= 1 milliseconds

89.45% <= 2 milliseconds

96.50% <= 3 milliseconds

98.46% <= 4 milliseconds

99.11% <= 5 milliseconds

99.48% <= 6 milliseconds

99.62% <= 7 milliseconds

99.68% <= 8 milliseconds

99.72% <= 9 milliseconds

99.73% <= 10 milliseconds

99.75% <= 11 milliseconds

99.77% <= 14 milliseconds

99.81% <= 15 milliseconds

99.83% <= 16 milliseconds

99.88% <= 19 milliseconds

99.90% <= 20 milliseconds

99.90% <= 21 milliseconds

99.92% <= 25 milliseconds

99.94% <= 26 milliseconds

36 Use Case Scenarios / Results

99.95% <= 27 milliseconds

99.98% <= 35 milliseconds

100.00% <= 36 milliseconds

100.00% <= 37 milliseconds

33269.42 requests per second

====== GET (rect) ======

100000 requests completed in 1.74 seconds

50 parallel clients

55 bytes payload

keep alive: 1

73.59% <= 0 milliseconds

94.20% <= 1 milliseconds

97.50% <= 2 milliseconds

98.59% <= 3 milliseconds

99.30% <= 4 milliseconds

99.59% <= 5 milliseconds

99.71% <= 6 milliseconds

99.83% <= 7 milliseconds

99.88% <= 8 milliseconds

99.92% <= 9 milliseconds

99.93% <= 10 milliseconds

99.95% <= 12 milliseconds

99.96% <= 14 milliseconds

99.98% <= 15 milliseconds

99.99% <= 16 milliseconds

99.99% <= 17 milliseconds

100.00% <= 18 milliseconds

4.2 Performance Benchmarks 37

57543.51 requests per second

In this case, we can see that our system has a throughput of 33269.42 requests per second

for creation and update requests. That means, that with an update interval of 1 second, the

system can handle 33269 Areas. Moreover, the system has a throughput of 57543.51 requests

per second for retrieval requests.

Chapter 5

Conclusions / Future Work

5.1 Conclusions

As we saw in the previous chapter, even the most extensive of scenarios are really far from

proving to be an actual stress for the system. The chosen technologies, make sure that the

system always compiles to a binary, and thus can always have the best possible resource

management on every platform that it is deployed. This makes the system easily deployable

even to cheap embedded systems, such as a RaspberryPi, meaning that the main node of the

system can be deployed on the fly on the field. Moreover, since the system does not depend

on any specific network infrastructure, it can be used on any circumstance provided that the

administrator provides some kind of networking. For example, in case where there is no

landline internet connectivity, mobile networking can be used. Even in a case where none of

the previous mentioned networks is available, networks such as bluetooth low energy (ble)

or even lora can be used to achieve network connectivity. This makes the system reliable,

portable and more than able to handle thousands of requests per second, even on cheap

hardware.

40 Conclusions / Future Work

5.2 Future Work

The system at the moment is a self sustainable platform that can handle multiple data sources

at the same time. The main concept that it was built around was real-time performance. For

this reason, one of the main sacrifices that was made, was to use the primary memory of

the system as the only data storage facility. In the future, it would be really interesting to

pursue a somewhat different approach,where a hybrid storage would be used, with some

level of concurrency and caching between the primary and secondary memory of the system.

Moreover, it would be interesting to see the performance of the systems on world wide events

where the possible actors and areas would scale up to billions. If that was to be achieved,

then this system could be a viable alternative to even the basic functionality of all traditional

GIS systems.

References

- Valacich, Joe and Christoph Schneider (2010) Information Systems Today: Managing in the

Digital World: Prentice Hall.

- Longley, P, Michael F. Goodchild, David J. Maguire and David W. Rhind (2010) Geographic

Information Systems and Science. 3rd ed: Wiley.

- Anthopoulos, Leonidas G, Efrosini Kostavara and John-Paris Pantouvakis (2013) “An Effec-

tive Disaster Recovery Model for Construction Projects,” Procedia-Social and Behavioral

Sciences, 74:21 – 30.

- United States Department of Homeland Security (2013) National Response Framework 2nd

edition

- Federal Emergency Management Agency (FEMA) (2008) Emergency Support Function #5

– Emergency Management Annex.

- Kevany, M. J. (2003) “GIS in the World Trade Center Attack – Trial by Fire,” Computers,

Environment and Urban Systems, 27(6):571 – 583.

- Kobayashi, Audrey (2012) Geographies of Peace and Armed Conflict. New York: Rout-

ledge.

- Ross, Michael L (2004) “What Do We Know about Natural Resources and Civil War ?”

Journal of peace research 41(3):337 – 356.

- Baechler, Günther, Kurt R Spillmann and Mohamed Suliman (2002) Transformation of

Resource Conflicts: Approach and Instruments. Bern, Berlin, Bruxelles, Frankfurt/M., New

York, Oxford, Wien: Peter Lang.

- Vandergeest, Peter and Nancy Lee Peluso (1995) “Territorialization and State Power in

Thailand,” Theory and society, 24(3):385 – 426.

42 Conclusions / Future Work

- Theisen, Ole Magnus (2012) “Climate Clashes ? Weather Variability, Land Pressure, and

Organized Violence in Kenya, 1989 – 2004,” Journal of peace research, 49(1):81 – 96.

- Endsley, M. R. (1995) “Toward a Theory of Situation Awareness in Dynamic Systems,”

Human Factors, 37(1):32 – 64.

- Endsley, M. R. and Garland D. J. (Eds.) (2000) “Situation Awareness Analysis and Mea-

surement,” Mahwah, NJ: Lawrence Erlbaum Associates.

- Breen, Joseph J. and David R Parrish (2013) “GIS in Emergency Management Cultures:

An Empirical Approach to Understanding Inter-and Intra-Agency Communication During

Emergencies,” Journal of Homeland Security and Emergency Management, 10(2):477 – 495.

- Zerger, A. and DI Smith (2003) “Impediments to Using GIS for Real-Time Disaster Decision

Support,” Computers, Environment and Urban Systems, 27(2):123 – 141.

- Kevany, Michael J. (2005) “Geo-Information for Disaster Management: Lessons From

9/11.” In Geo-information for disaster management : Springer.

- Diehl, Stefan and Jene van der Heide (2005) “Geo Information Breaks through Sector

Think.” In: Geo-Information for Disaster Management. Springer.

- National Research Council (2007a) Improving Disaster Management: The Role of IT in

Mitigation, Preparedness, Response, and Recovery. In: (Committee on Using Information

Technology to Enhance Disaster Management, ed.) Washington, DC: National Academies

Press.

- National Research Council (2007b) Successful Response Starts With a Map: Improving

Geospatial Support for Disaster Management. In: (Committee on Planning for Catastrophe:

A Blueprint for Improving Geospatial Data Tools and Infrastructure, ed.) Washington, DC:

National Academies Press.

- Neuvel, JeroenM M., HenkJ Scholten and Adri van den Brink (2012) “From Spatial Data to

Synchronised Actions: The Network-centric Organisation of Spatial Decision Support for

Risk and Emergency Management,” Applied Spatial Analysis and Policy, 5(1):51 – 72.

- Mills, Jacqueline, Andrew Curtis, John C Pine and Barrett Kennedy (2008) “The Clearing-

house Concept: A Model for Geospatial Data Centralization and Dissemination in a Disaster,”

Disasters, 32(3):467 – 479.

5.2 Future Work 43

- Köhler, Petra (2005) “User-Oriented Provision of Geo-Information in Disaster Management:

Potentials of Spatial Data Infrastructures Considering Brandenburg/Germany as an Example.”

In: Geo-information for Disaster Management. Springer.

- Tomaszweski, Brian & Judex, Michael & Szarzynski, Jörg & Radestock, Christine & Wirkus,

Lars. (2015). Geographic Information Systems for Disaster Response: A Review. Journal

of Homeland Security and Emergency Management. Volume 12. 571-602. 10.1515/jhsem-

2014-0082.

- Johnson, G. O. (1992) “GIS Applications in Emergency Management,” URISA Journal,

4:66 – 72.

- Coppock, J Terry (1995) “GIS and Natural Hazards: An Overview from a GIS Perspective.”

In: Geographical information systems in assessing natural hazards, Springer.

- Johnson, Glenn O (1995) “GIS applications in emergency management.” In: Computer

Supported Risk Management: Topics in Safety, Risk, Reliability and Quality. Springer.

- Dash, Nicole (1997) “The Use of Geographical Information Systems in Disaster Research,”

International Journal of Mass Emergencies and Disasters, 15(1):135 – 146.

- Cova, Thomas J (1999) “GIS in Emergency Management,” Geographical information sys-

tems, 2:845 – 858.

- Cutter, Susan L (2003) “GI Science, Disasters, and Emergency Management,” Transactions

in GIS, 7(4):439 – 446.

- Lee, J. and Sisi Zlatanova (2008) “A 3D Data Model and Topological Analyses for Emer-

gency Response in Urban Areas.” In: (Z. L. eds.) Geospatial information technology for

emergency response (ISPRS book series). London, UK: Taylor & Francis Group.

- MacEachren, Alan M and Guoray Cai (2006) “Supporting Group Work in Crisis Man-

agement: Visually Mediated Human-GIS-Human Dialogue,” Environment and Planning B

Planning and Design, 33(3):435.

- Cova, Thomas J, Philip E Dennison, Tae H Kim and Max A Moritz (2005) “Setting Wild-

fire Evacuation Trigger Points using Fire Spread Modeling and GIS,” Transactions in GIS,

9(4):603 – 617.

- Garb, Jane L, Robert G Cromley and Richard B Wait (2007) “Estimating Populations at

44 Conclusions / Future Work

Risk for Disaster Preparedness and Response,” Journal of Homeland Security and Emergency

Management, 4(1).

- Zlatanova, Sisi and Arta Dilo (2010) “A Data Model for Operational and Situational Infom-

ration in Emergency Response: The Dutch Case.” In: Proceedings of the Gi4DM Conference

– Geomatics for Disaster Management, February 2010, Torino.

- Frigerio, Ivan, Stefano Roverato and Amttia Amicis (2013) “A Proposal for a Geospatial

Database to Support Emergency Management,” Journal of Geographic Information System,

5(4):396 – 403.

- Goodchild, Michael F and J Alan Glennon (2010) “Crowdsourcing Geographic Information

for Disaster Response: A Research Frontier,” International Journal of Digital Earth, 3(3):231

– 241.

- Tomaszewski, Brian (2011) “Situation Awareness and Virtual Globes: Applications for

Disaster Management,” Computers and Geosciences, 37:86 – 92.

- Liu, S. B. and L. Palen (2010) “The New Cartographers: Crisis Map Mashups and the

Emergence of Neogeographic Practice,” Cartography and Geographic Information Science,

37(1):69 – 90.

- Robinson, Anthony C, Robert E Roth and Alan M MacEachren (2011) “Understanding

User Needs for Map Symbol Standards in Emergency Management,”Journal of Homeland

Security and Emergency Management, 8(1).

- MacEachren, A. M., A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, X.

Zhang and J. Blanford (2011) SensePlace2: GeoTwitter Analytics Support for Situational

Awareness. Paper read at IEEE Conference on Visual Analytics Science and Technology

(IEEE VAST), at Providence, RI.

- Crooks, Andrew, Arie Croitoru, Anthony Stefanidis and Jacek Radzikowski (2013) “#Earth-

quake: Twitter as a Distributed Sensor System,” Transactions in GIS, 17(1):124 – 147.

- Annunziato, Alessandro, Simone Gadez, Daniele Al Galliano, Roberto Guana and Francisco

Igualada (2010) “Field Tracking Tool: A Collaborative Framwork from the Field to the

Decision Makers.” In: (M. Konecny, S. Zlatanova and T. L. Bandrova, eds.) Geographic

Information and Cartography for Risk and Crisis Management. Towards Better Solutions.

5.2 Future Work 45

Beidelberg, Dortrecht, London, New York: Springer. - Frassl, Martin, Michael Lichtenstern,

Mohammed Khider and Michael Angermann (2010) “Developing a System for Information

Management in Disaster Relief – Methodology and Requirements.” In: Proceedings of the

7th International ISCRAM Conference – Seattle USA, May 2010.

- Kiltz, Linda and Richard Smith (2011) “Experimenting with GIS in Doing Damage As-

sessments: A Trial Run at Disaster City,” Journal of Homeland Security and Emergency

Management, 8(1).

- Goodchild, Michael F (2007) “Citizens as Sensors: The World of Volunteered Geography,”

Geo Journal, 69(4):211 – 221.

- Haklay, Mordechai and Patrick Weber (2008) “Openstreetmap: User-Generated Street

Maps,” Pervasive Computing, IEEE, 7(4):12 – 18.

- Humanitarian OpenStreetMap Team (n.d.). Haiti. Available at: http://hot.openstreetmap.org/projects/haiti-

2 .

- Okolloh, Ory (2009) “Ushahidi, or ‘Testimony’ : Web 2.0 Tools for Crowdsourcing Crisis

Information,” Participatory learning and action, 59(1):65 – 70.

- Meier, Patrick (2012) “Crisis Mapping in Action: How Open Source Software and Global

Volunteer Networks are Changing the World, One Map at a Time,” Journal of Map & Geog-

raphy Libraries, 8(2):89 – 100.

- Hodson, Hal (2014) “Mapping in a Crisis,” New Scientist, 222(2964):19.

- Zastrow, Mark (2014) “Crisis mappers turn to citizen scientists,” Nature, 515(7527):321.

- Mandl, Daniel, Stuart Frye, Pat Cappelaere, Matthew Handy, Fritz Policelli, M Katjizeu,

Guido Van Langenhove, Guy Aube, J Saulnier, Rob Sohlberg, Julie Silva, Nataliia Kussul,

Sergii Skakun, Stephen Ungar, Robert Grossman and Joerg Szarzynski (2013) “Use of the

Earth Observing One (EO-1) Satellite for the Namibia SensorWeb flood Early Warning Pilot,”

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – Ten

Years in Space, 6(2):298 – 308.

- Kelmelis, John A., Lee Schwartz, Carol Christian, Melba Crawford and Dennis King (2006)

“Use of Geographic Information in Response to the Sumatra-Andaman Response to the

Sumatra-Andaman Earthquake and Indian Ocean Earthquake and Indian Ocean Tsunami of

46 Conclusions / Future Work

December 26, 2004,” Photogrammetric Engineering and Remote Sensing, 72(8):862 – 877.

- Nourbakhsh, I, R Sargent, A Wright, K Cramer, B McClendon and M Jones (2006) “Map-

ping Disaster Zones,” Nature, 439(7078):787 – 788.

- Robert Backhaus, Lorant Czaran, Natalie Epler, Michael Leitgab, David Stevens and Jo-

erg Szarzynski (2011) The 4C-Challenge: Communication – Coordination – Cooperation

– Capacity Development. Selected contributions to the Fourth United Nations Interna-

tional UN-SPIDER Bonn Workshop on Disaster Management and Space Technology, 2010

- 2011. Available at: http://www.un-spider.org/4c-challengecommunication-coordination-

cooperation-capacity-development.

- Ravan, S., J. Szarzynski and D. Stevens (2011) Space technology to support disaster risk

reduction and emergency medical and rescue teams. Paper read at Proceedings of the 17th

World Congress on Disaster and Emergency Medicine, at Beijing, China.

- Szarzynski, J. and D. Stevens (2009) “Space-Based Solutions for Disaster and Emergency

Medicine,” Prehosp Disasters Medicine, 24(2):79.

- Quaritsch, Markus, Robert Kuschnig, Hermann Hellwagner, Bernhard Rinner, A Adria

and U Klagenfurt (2011) Fast Aerial Image Acquisition and Mosaicking for Emergency Re-

sponse Operations by Collaborative UAVs. Paper read at Proceedings of the 8th International

ISCRAM Conference-Lisbon.

- Abdelkader, Mohamed, Mohammad Shaqura, Christian G Claudel and Wail Gueaieb (2013)

A UAV Based System for Real Time Flash Flood Monitoring in Desert Environments using

Lagrangian Microsensors . Paper read at 2013 International Conference on Unmanned

Aircraft Systems (ICUAS) at Atlanta, Georgia.

- Lohr, Steve (2011) Online Mapping Shows Potential to Transform Relief Efforts. Available

at: http://www.nytimes.com/2011/03/28/business/28map.html?_r=0.

- MapAction (2011a) Field Guide to Humanitarian Mapping. London.

- MapAction (2011b) What We Do. Available at: http://www.mapaction.org/about/about-

us.html.

- Diehl, Stefan, Jeroen Neuvel, S. Zlatanova and H. Scholten (2006) “Investigation of User

Requirements in the Emergency Response Sector: the Dutch Case.” In: Second Symposium

5.2 Future Work 47

on Geo-information for Disaster management (Gi4DM).

Appendix A

Full System Benchmark Log

PING: 0.00

PING: 108015.27

PING: 110948.61

PING: 111578.36

PING: 112112.49

PING: 111930.66

====== PING ======

100000 requests completed in 0.89 seconds

50 parallel clients

14 bytes payload

keep alive: 1

96.35% <= 0 milliseconds

99.33% <= 1 milliseconds

50 Full System Benchmark Log

99.82% <= 2 milliseconds

99.89% <= 3 milliseconds

99.94% <= 4 milliseconds

99.97% <= 5 milliseconds

99.98% <= 6 milliseconds

99.99% <= 8 milliseconds

100.00% <= 11 milliseconds

111930.66 requests per second

SET (point): 0.00

SET (point): 31738.46

SET (point): 34092.94

SET (point): 35111.16

SET (point): 33211.25

SET (point): 33917.75

SET (point): 33941.94

SET (point): 34179.67

SET (point): 34216.35

SET (point): 34316.59

51

SET (point): 34396.44

SET (point): 33775.62

SET (point): 34042.70

SET (point): 34359.10

SET (point): 34448.13

SET (point): 34505.36

====== SET (point) ======

100000 requests completed in 2.90 seconds

50 parallel clients

82 bytes payload

keep alive: 1

44.79% <= 0 milliseconds

62.61% <= 1 milliseconds

89.99% <= 2 milliseconds

96.98% <= 3 milliseconds

98.90% <= 4 milliseconds

99.41% <= 5 milliseconds

99.68% <= 6 milliseconds

99.81% <= 7 milliseconds

99.83% <= 8 milliseconds

99.84% <= 9 milliseconds

99.86% <= 13 milliseconds

52 Full System Benchmark Log

99.90% <= 14 milliseconds

99.91% <= 15 milliseconds

99.91% <= 16 milliseconds

99.92% <= 17 milliseconds

99.94% <= 18 milliseconds

99.95% <= 19 milliseconds

99.96% <= 22 milliseconds

99.97% <= 34 milliseconds

99.99% <= 35 milliseconds

100.00% <= 39 milliseconds

34505.36 requests per second

SET (rect): 0.00

SET (rect): 34006.02

SET (rect): 34649.42

SET (rect): 30008.48

SET (rect): 31193.48

SET (rect): 31784.46

SET (rect): 32456.64

SET (rect): 32678.28

53

SET (rect): 32978.58

SET (rect): 33199.14

SET (rect): 33524.86

SET (rect): 32932.17

SET (rect): 33137.22

SET (rect): 33141.33

SET (rect): 33224.59

SET (rect): 33272.82

SET (rect): 33269.42

====== SET (rect) ======

100000 requests completed in 3.01 seconds

50 parallel clients

114 bytes payload

keep alive: 1

44.89% <= 0 milliseconds

63.24% <= 1 milliseconds

89.45% <= 2 milliseconds

96.50% <= 3 milliseconds

98.46% <= 4 milliseconds

99.11% <= 5 milliseconds

54 Full System Benchmark Log

99.48% <= 6 milliseconds

99.62% <= 7 milliseconds

99.68% <= 8 milliseconds

99.72% <= 9 milliseconds

99.73% <= 10 milliseconds

99.75% <= 11 milliseconds

99.77% <= 14 milliseconds

99.81% <= 15 milliseconds

99.83% <= 16 milliseconds

99.88% <= 19 milliseconds

99.90% <= 20 milliseconds

99.90% <= 21 milliseconds

99.92% <= 25 milliseconds

99.94% <= 26 milliseconds

99.95% <= 27 milliseconds

99.98% <= 35 milliseconds

100.00% <= 36 milliseconds

100.00% <= 37 milliseconds

33269.42 requests per second

SET (string): 0.00

SET (string): 39329.63

SET (string): 40599.97

SET (string): 38512.84

55

SET (string): 38340.48

SET (string): 38781.69

SET (string): 39372.82

SET (string): 39715.18

SET (string): 40089.51

SET (string): 40354.17

SET (string): 40371.95

SET (string): 39818.02

SET (string): 39646.50

SET (string): 39702.54

====== SET (string) ======

100000 requests completed in 2.52 seconds

50 parallel clients

64 bytes payload

keep alive: 1

51.94% <= 0 milliseconds

69.39% <= 1 milliseconds

92.13% <= 2 milliseconds

97.65% <= 3 milliseconds

56 Full System Benchmark Log

99.06% <= 4 milliseconds

99.46% <= 5 milliseconds

99.69% <= 6 milliseconds

99.78% <= 7 milliseconds

99.80% <= 8 milliseconds

99.85% <= 10 milliseconds

99.89% <= 15 milliseconds

99.90% <= 16 milliseconds

99.90% <= 17 milliseconds

99.91% <= 21 milliseconds

99.93% <= 22 milliseconds

99.95% <= 23 milliseconds

99.95% <= 24 milliseconds

99.96% <= 38 milliseconds

99.98% <= 42 milliseconds

100.00% <= 43 milliseconds

100.00% <= 44 milliseconds

39702.54 requests per second

GET (point): 0.00

GET (point): 76506.00

GET (point): 76196.41

GET (point): 69811.44

GET (point): 69311.24

57

GET (point): 71827.93

GET (point): 72718.23

GET (point): 72687.47

====== GET (point) ======

100000 requests completed in 1.38 seconds

50 parallel clients

52 bytes payload

keep alive: 1

83.84% <= 0 milliseconds

97.73% <= 1 milliseconds

99.01% <= 2 milliseconds

99.43% <= 3 milliseconds

99.67% <= 4 milliseconds

99.76% <= 5 milliseconds

99.86% <= 6 milliseconds

99.89% <= 7 milliseconds

99.94% <= 8 milliseconds

99.96% <= 9 milliseconds

99.97% <= 10 milliseconds

99.97% <= 12 milliseconds

99.98% <= 13 milliseconds

99.99% <= 20 milliseconds

100.00% <= 25 milliseconds

72687.47 requests per second

58 Full System Benchmark Log

GET (rect): 0.00

GET (rect): 64093.71

GET (rect): 61180.11

GET (rect): 57239.77

GET (rect): 53574.60

GET (rect): 56572.00

GET (rect): 58110.01

GET (rect): 56068.14

GET (rect): 56860.98

GET (rect): 57543.51

====== GET (rect) ======

100000 requests completed in 1.74 seconds

50 parallel clients

55 bytes payload

keep alive: 1

73.59% <= 0 milliseconds

94.20% <= 1 milliseconds

97.50% <= 2 milliseconds

59

98.59% <= 3 milliseconds

99.30% <= 4 milliseconds

99.59% <= 5 milliseconds

99.71% <= 6 milliseconds

99.83% <= 7 milliseconds

99.88% <= 8 milliseconds

99.92% <= 9 milliseconds

99.93% <= 10 milliseconds

99.95% <= 12 milliseconds

99.96% <= 14 milliseconds

99.98% <= 15 milliseconds

99.99% <= 16 milliseconds

99.99% <= 17 milliseconds

100.00% <= 18 milliseconds

57543.51 requests per second

GET (string): 0.00

GET (string): 81430.20

GET (string): 77645.99

GET (string): 70778.97

GET (string): 72358.89

GET (string): 74212.30

60 Full System Benchmark Log

GET (string): 75365.90

GET (string): 75456.72

====== GET (string) ======

100000 requests completed in 1.33 seconds

50 parallel clients

55 bytes payload

keep alive: 1

85.23% <= 0 milliseconds

97.54% <= 1 milliseconds

99.00% <= 2 milliseconds

99.49% <= 3 milliseconds

99.72% <= 4 milliseconds

99.80% <= 5 milliseconds

99.86% <= 6 milliseconds

99.88% <= 7 milliseconds

99.92% <= 8 milliseconds

99.95% <= 9 milliseconds

99.95% <= 10 milliseconds

99.99% <= 11 milliseconds

99.99% <= 12 milliseconds

100.00% <= 17 milliseconds

75456.72 requests per second

INTERSECTS (intersects-circle 1km): 0.00

INTERSECTS (intersects-circle 1km): 30595.85

61

INTERSECTS (intersects-circle 1km): 36461.52

INTERSECTS (intersects-circle 1km): 37882.21

INTERSECTS (intersects-circle 1km): 38060.74

INTERSECTS (intersects-circle 1km): 39410.56

INTERSECTS (intersects-circle 1km): 39575.30

INTERSECTS (intersects-circle 1km): 39311.11

INTERSECTS (intersects-circle 1km): 40175.53

INTERSECTS (intersects-circle 1km): 40109.72

INTERSECTS (intersects-circle 1km): 40984.49

INTERSECTS (intersects-circle 1km): 39839.63

INTERSECTS (intersects-circle 1km): 40165.38

INTERSECTS (intersects-circle 1km): 40356.06

====== INTERSECTS (intersects-circle 1km) ======

100000 requests completed in 2.48 seconds

50 parallel clients

98 bytes payload

keep alive: 1

62 Full System Benchmark Log

53.22% <= 0 milliseconds

85.19% <= 1 milliseconds

93.77% <= 2 milliseconds

96.73% <= 3 milliseconds

98.09% <= 4 milliseconds

98.79% <= 5 milliseconds

99.19% <= 6 milliseconds

99.52% <= 7 milliseconds

99.69% <= 8 milliseconds

99.79% <= 9 milliseconds

99.90% <= 10 milliseconds

99.93% <= 11 milliseconds

99.97% <= 12 milliseconds

99.98% <= 13 milliseconds

99.99% <= 15 milliseconds

100.00% <= 37 milliseconds

40356.06 requests per second

INTERSECTS (intersects-circle 10km): 0.00

INTERSECTS (intersects-circle 10km): 24340.17

INTERSECTS (intersects-circle 10km): 31356.64

INTERSECTS (intersects-circle 10km): 28802.86

INTERSECTS (intersects-circle 10km): 30116.22

63

INTERSECTS (intersects-circle 10km): 28082.19

INTERSECTS (intersects-circle 10km): 29462.23

INTERSECTS (intersects-circle 10km): 28768.89

INTERSECTS (intersects-circle 10km): 29586.96

INTERSECTS (intersects-circle 10km): 29189.08

INTERSECTS (intersects-circle 10km): 29016.63

INTERSECTS (intersects-circle 10km): 29373.96

INTERSECTS (intersects-circle 10km): 28749.38

INTERSECTS (intersects-circle 10km): 29223.28

INTERSECTS (intersects-circle 10km): 28864.31

INTERSECTS (intersects-circle 10km): 29116.93

INTERSECTS (intersects-circle 10km): 29068.25

INTERSECTS (intersects-circle 10km): 29110.24

INTERSECTS (intersects-circle 10km): 29146.15

====== INTERSECTS (intersects-circle 10km) ======

64 Full System Benchmark Log

100000 requests completed in 3.43 seconds

50 parallel clients

99 bytes payload

keep alive: 1

41.24% <= 0 milliseconds

70.26% <= 1 milliseconds

85.40% <= 2 milliseconds

92.49% <= 3 milliseconds

95.98% <= 4 milliseconds

97.53% <= 5 milliseconds

98.28% <= 6 milliseconds

98.82% <= 7 milliseconds

99.10% <= 8 milliseconds

99.42% <= 9 milliseconds

99.62% <= 10 milliseconds

99.72% <= 11 milliseconds

99.80% <= 12 milliseconds

99.86% <= 13 milliseconds

99.89% <= 14 milliseconds

99.92% <= 15 milliseconds

99.94% <= 16 milliseconds

99.96% <= 17 milliseconds

99.96% <= 18 milliseconds

99.97% <= 19 milliseconds

99.98% <= 20 milliseconds

99.99% <= 22 milliseconds

100.00% <= 35 milliseconds

29146.15 requests per second

65

INTERSECTS (intersects-circle 100km): 0.00

INTERSECTS (intersects-circle 100km): 5091.95

INTERSECTS (intersects-circle 100km): 5852.11

INTERSECTS (intersects-circle 100km): 5880.37

INTERSECTS (intersects-circle 100km): 5820.82

INTERSECTS (intersects-circle 100km): 5838.70

INTERSECTS (intersects-circle 100km): 5813.94

INTERSECTS (intersects-circle 100km): 5814.14

INTERSECTS (intersects-circle 100km): 5710.52

INTERSECTS (intersects-circle 100km): 5754.45

INTERSECTS (intersects-circle 100km): 5790.19

INTERSECTS (intersects-circle 100km): 5845.09

INTERSECTS (intersects-circle 100km): 5933.63

INTERSECTS (intersects-circle 100km): 5944.90

66 Full System Benchmark Log

INTERSECTS (intersects-circle 100km): 5921.44

INTERSECTS (intersects-circle 100km): 5920.93

INTERSECTS (intersects-circle 100km): 5944.59

INTERSECTS (intersects-circle 100km): 5979.25

INTERSECTS (intersects-circle 100km): 5966.94

INTERSECTS (intersects-circle 100km): 5988.26

INTERSECTS (intersects-circle 100km): 5924.30

INTERSECTS (intersects-circle 100km): 5919.82

INTERSECTS (intersects-circle 100km): 5895.34

INTERSECTS (intersects-circle 100km): 5919.23

INTERSECTS (intersects-circle 100km): 5893.76

INTERSECTS (intersects-circle 100km): 5895.04

INTERSECTS (intersects-circle 100km): 5881.92

INTERSECTS (intersects-circle 100km): 5899.96

67

INTERSECTS (intersects-circle 100km): 5861.72

INTERSECTS (intersects-circle 100km): 5839.68

INTERSECTS (intersects-circle 100km): 5819.77

INTERSECTS (intersects-circle 100km): 5826.89

INTERSECTS (intersects-circle 100km): 5814.89

INTERSECTS (intersects-circle 100km): 5823.01

INTERSECTS (intersects-circle 100km): 5818.49

INTERSECTS (intersects-circle 100km): 5822.56

INTERSECTS (intersects-circle 100km): 5802.95

INTERSECTS (intersects-circle 100km): 5830.88

INTERSECTS (intersects-circle 100km): 5833.12

INTERSECTS (intersects-circle 100km): 5831.40

INTERSECTS (intersects-circle 100km): 5859.25

INTERSECTS (intersects-circle 100km): 5860.34

INTERSECTS (intersects-circle 100km): 5875.32

68 Full System Benchmark Log

INTERSECTS (intersects-circle 100km): 5866.85

INTERSECTS (intersects-circle 100km): 5852.82

INTERSECTS (intersects-circle 100km): 5841.43

INTERSECTS (intersects-circle 100km): 5869.62

INTERSECTS (intersects-circle 100km): 5865.83

INTERSECTS (intersects-circle 100km): 5879.18

INTERSECTS (intersects-circle 100km): 5876.45

INTERSECTS (intersects-circle 100km): 5870.40

INTERSECTS (intersects-circle 100km): 5871.35

INTERSECTS (intersects-circle 100km): 5873.35

INTERSECTS (intersects-circle 100km): 5864.91

INTERSECTS (intersects-circle 100km): 5865.74

INTERSECTS (intersects-circle 100km): 5869.35

INTERSECTS (intersects-circle 100km): 5856.90

69

INTERSECTS (intersects-circle 100km): 5862.30

INTERSECTS (intersects-circle 100km): 5855.31

INTERSECTS (intersects-circle 100km): 5863.14

INTERSECTS (intersects-circle 100km): 5858.77

INTERSECTS (intersects-circle 100km): 5859.97

INTERSECTS (intersects-circle 100km): 5864.42

INTERSECTS (intersects-circle 100km): 5872.46

INTERSECTS (intersects-circle 100km): 5868.17

INTERSECTS (intersects-circle 100km): 5882.22

INTERSECTS (intersects-circle 100km): 5883.41

INTERSECTS (intersects-circle 100km): 5888.85

INTERSECTS (intersects-circle 100km): 5882.19

INTERSECTS (intersects-circle 100km): 5880.56

INTERSECTS (intersects-circle 100km): 5879.98

INTERSECTS (intersects-circle 100km): 5877.37

70 Full System Benchmark Log

INTERSECTS (intersects-circle 100km): 5865.95

INTERSECTS (intersects-circle 100km): 5866.20

INTERSECTS (intersects-circle 100km): 5868.72

INTERSECTS (intersects-circle 100km): 5873.91

INTERSECTS (intersects-circle 100km): 5869.62

INTERSECTS (intersects-circle 100km): 5883.72

INTERSECTS (intersects-circle 100km): 5888.48

INTERSECTS (intersects-circle 100km): 5887.35

INTERSECTS (intersects-circle 100km): 5880.61

INTERSECTS (intersects-circle 100km): 5878.54

INTERSECTS (intersects-circle 100km): 5883.88

INTERSECTS (intersects-circle 100km): 5876.92

INTERSECTS (intersects-circle 100km): 5878.08

INTERSECTS (intersects-circle 100km): 5873.89

71

INTERSECTS (intersects-circle 100km): 5873.03

====== INTERSECTS (intersects-circle 100km) ======

100000 requests completed in 17.03 seconds

50 parallel clients

100 bytes payload

keep alive: 1

28.84% <= 0 milliseconds

32.04% <= 1 milliseconds

34.88% <= 2 milliseconds

38.40% <= 3 milliseconds

42.67% <= 4 milliseconds

47.34% <= 5 milliseconds

52.17% <= 6 milliseconds

57.12% <= 7 milliseconds

61.85% <= 8 milliseconds

66.41% <= 9 milliseconds

70.49% <= 10 milliseconds

74.27% <= 11 milliseconds

77.80% <= 12 milliseconds

80.99% <= 13 milliseconds

83.90% <= 14 milliseconds

86.48% <= 15 milliseconds

88.70% <= 16 milliseconds

90.58% <= 17 milliseconds

92.11% <= 18 milliseconds

93.28% <= 19 milliseconds

94.16% <= 20 milliseconds

94.85% <= 21 milliseconds

72 Full System Benchmark Log

95.42% <= 22 milliseconds

95.87% <= 23 milliseconds

96.26% <= 24 milliseconds

96.57% <= 25 milliseconds

96.83% <= 26 milliseconds

97.08% <= 27 milliseconds

97.29% <= 28 milliseconds

97.47% <= 29 milliseconds

97.63% <= 30 milliseconds

97.77% <= 31 milliseconds

97.91% <= 32 milliseconds

98.06% <= 33 milliseconds

98.20% <= 34 milliseconds

98.31% <= 35 milliseconds

98.42% <= 36 milliseconds

98.52% <= 37 milliseconds

98.61% <= 38 milliseconds

98.70% <= 39 milliseconds

98.78% <= 40 milliseconds

98.88% <= 41 milliseconds

98.94% <= 42 milliseconds

99.02% <= 43 milliseconds

99.07% <= 44 milliseconds

99.13% <= 45 milliseconds

99.19% <= 46 milliseconds

99.24% <= 47 milliseconds

99.29% <= 48 milliseconds

99.33% <= 49 milliseconds

99.37% <= 50 milliseconds

73

99.41% <= 51 milliseconds

99.45% <= 52 milliseconds

99.49% <= 53 milliseconds

99.52% <= 54 milliseconds

99.55% <= 55 milliseconds

99.58% <= 56 milliseconds

99.62% <= 57 milliseconds

99.64% <= 58 milliseconds

99.67% <= 59 milliseconds

99.70% <= 60 milliseconds

99.71% <= 61 milliseconds

99.73% <= 62 milliseconds

99.74% <= 63 milliseconds

99.76% <= 64 milliseconds

99.77% <= 65 milliseconds

99.80% <= 66 milliseconds

99.82% <= 67 milliseconds

99.84% <= 68 milliseconds

99.85% <= 69 milliseconds

99.86% <= 70 milliseconds

99.86% <= 71 milliseconds

99.87% <= 72 milliseconds

99.88% <= 73 milliseconds

99.89% <= 74 milliseconds

99.90% <= 76 milliseconds

99.91% <= 77 milliseconds

99.92% <= 80 milliseconds

99.93% <= 83 milliseconds

99.94% <= 87 milliseconds

74 Full System Benchmark Log

99.95% <= 88 milliseconds

99.96% <= 94 milliseconds

99.97% <= 102 milliseconds

99.98% <= 113 milliseconds

99.99% <= 160 milliseconds

100.00% <= 266 milliseconds

5873.03 requests per second

INTERSECTS (intersects-bounds 1km): 0.00

INTERSECTS (intersects-bounds 1km): 61146.91

INTERSECTS (intersects-bounds 1km): 52777.40

INTERSECTS (intersects-bounds 1km): 54825.81

INTERSECTS (intersects-bounds 1km): 56767.41

INTERSECTS (intersects-bounds 1km): 57115.82

INTERSECTS (intersects-bounds 1km): 53263.02

INTERSECTS (intersects-bounds 1km): 54580.54

INTERSECTS (intersects-bounds 1km): 55270.36

INTERSECTS (intersects-bounds 1km): 55732.83

====== INTERSECTS (intersects-bounds 1km) ======

75

100000 requests completed in 1.79 seconds

50 parallel clients

117 bytes payload

keep alive: 1

69.89% <= 0 milliseconds

94.84% <= 1 milliseconds

98.07% <= 2 milliseconds

98.95% <= 3 milliseconds

99.34% <= 4 milliseconds

99.45% <= 5 milliseconds

99.57% <= 6 milliseconds

99.77% <= 7 milliseconds

99.90% <= 8 milliseconds

99.94% <= 9 milliseconds

99.95% <= 10 milliseconds

99.97% <= 11 milliseconds

99.98% <= 12 milliseconds

99.99% <= 14 milliseconds

100.00% <= 21 milliseconds

55732.83 requests per second

INTERSECTS (intersects-bounds 10km): 0.00

INTERSECTS (intersects-bounds 10km): 41391.96

INTERSECTS (intersects-bounds 10km): 51561.56

76 Full System Benchmark Log

INTERSECTS (intersects-bounds 10km): 54916.46

INTERSECTS (intersects-bounds 10km): 57910.48

INTERSECTS (intersects-bounds 10km): 57874.81

INTERSECTS (intersects-bounds 10km): 56614.35

INTERSECTS (intersects-bounds 10km): 58344.49

INTERSECTS (intersects-bounds 10km): 59467.24

INTERSECTS (intersects-bounds 10km): 59774.44

====== INTERSECTS (intersects-bounds 10km) ======

100000 requests completed in 1.67 seconds

50 parallel clients

115 bytes payload

keep alive: 1

73.54% <= 0 milliseconds

95.31% <= 1 milliseconds

98.54% <= 2 milliseconds

99.26% <= 3 milliseconds

99.67% <= 4 milliseconds

99.80% <= 5 milliseconds

99.86% <= 6 milliseconds

99.90% <= 7 milliseconds

99.93% <= 8 milliseconds

99.93% <= 9 milliseconds

77

99.97% <= 10 milliseconds

99.98% <= 11 milliseconds

99.99% <= 12 milliseconds

100.00% <= 23 milliseconds

59774.44 requests per second

INTERSECTS (intersects-bounds 100km): 0.00

INTERSECTS (intersects-bounds 100km): 55345.37

INTERSECTS (intersects-bounds 100km): 60295.72

INTERSECTS (intersects-bounds 100km): 62168.69

INTERSECTS (intersects-bounds 100km): 63075.04

INTERSECTS (intersects-bounds 100km): 62092.87

INTERSECTS (intersects-bounds 100km): 58705.89

INTERSECTS (intersects-bounds 100km): 59787.30

INTERSECTS (intersects-bounds 100km): 60293.02

INTERSECTS (intersects-bounds 100km): 60363.65

====== INTERSECTS (intersects-bounds 100km) ======

100000 requests completed in 1.66 seconds

50 parallel clients

78 Full System Benchmark Log

119 bytes payload

keep alive: 1

75.28% <= 0 milliseconds

95.88% <= 1 milliseconds

98.66% <= 2 milliseconds

99.16% <= 3 milliseconds

99.48% <= 4 milliseconds

99.71% <= 5 milliseconds

99.81% <= 6 milliseconds

99.83% <= 7 milliseconds

99.85% <= 9 milliseconds

99.96% <= 11 milliseconds

99.98% <= 12 milliseconds

100.00% <= 16 milliseconds

60363.65 requests per second

INTERSECTS (intersects-az limit 5): 0.00

INTERSECTS (intersects-az limit 5): 57447.66

INTERSECTS (intersects-az limit 5): 49590.44

INTERSECTS (intersects-az limit 5): 51813.89

INTERSECTS (intersects-az limit 5): 53089.59

INTERSECTS (intersects-az limit 5): 53839.54

79

INTERSECTS (intersects-az limit 5): 49998.18

INTERSECTS (intersects-az limit 5): 50216.36

INTERSECTS (intersects-az limit 5): 50947.22

INTERSECTS (intersects-az limit 5): 51240.16

INTERSECTS (intersects-az limit 5): 50856.18

====== INTERSECTS (intersects-az limit 5) ======

100000 requests completed in 1.97 seconds

50 parallel clients

102 bytes payload

keep alive: 1

62.85% <= 0 milliseconds

93.36% <= 1 milliseconds

97.43% <= 2 milliseconds

98.83% <= 3 milliseconds

99.35% <= 4 milliseconds

99.55% <= 5 milliseconds

99.73% <= 6 milliseconds

99.80% <= 7 milliseconds

99.84% <= 8 milliseconds

99.90% <= 9 milliseconds

99.94% <= 10 milliseconds

99.97% <= 11 milliseconds

99.97% <= 12 milliseconds

80 Full System Benchmark Log

99.98% <= 13 milliseconds

99.99% <= 14 milliseconds

100.00% <= 19 milliseconds

50856.18 requests per second

WITHIN (within-circle 1km): 0.00

WITHIN (within-circle 1km): 47397.53

WITHIN (within-circle 1km): 40169.05

WITHIN (within-circle 1km): 39209.37

WITHIN (within-circle 1km): 39438.82

WITHIN (within-circle 1km): 38947.86

WITHIN (within-circle 1km): 38296.22

WITHIN (within-circle 1km): 38748.34

WITHIN (within-circle 1km): 38061.46

WITHIN (within-circle 1km): 38943.82

WITHIN (within-circle 1km): 38100.68

WITHIN (within-circle 1km): 38374.99

81

WITHIN (within-circle 1km): 38373.88

WITHIN (within-circle 1km): 38069.53

WITHIN (within-circle 1km): 38107.55

====== WITHIN (within-circle 1km) ======

100000 requests completed in 2.62 seconds

50 parallel clients

93 bytes payload

keep alive: 1

47.93% <= 0 milliseconds

82.62% <= 1 milliseconds

93.46% <= 2 milliseconds

97.15% <= 3 milliseconds

98.42% <= 4 milliseconds

98.99% <= 5 milliseconds

99.37% <= 6 milliseconds

99.58% <= 7 milliseconds

99.71% <= 8 milliseconds

99.81% <= 9 milliseconds

99.89% <= 10 milliseconds

99.92% <= 11 milliseconds

99.95% <= 12 milliseconds

99.96% <= 13 milliseconds

99.97% <= 14 milliseconds

99.98% <= 15 milliseconds

100.00% <= 20 milliseconds

82 Full System Benchmark Log

100.00% <= 36 milliseconds

38107.55 requests per second

WITHIN (within-circle 10km): 0.00

WITHIN (within-circle 10km): 34301.48

WITHIN (within-circle 10km): 37800.82

WITHIN (within-circle 10km): 36087.03

WITHIN (within-circle 10km): 36472.81

WITHIN (within-circle 10km): 35217.94

WITHIN (within-circle 10km): 34897.69

WITHIN (within-circle 10km): 34452.26

WITHIN (within-circle 10km): 33821.99

WITHIN (within-circle 10km): 34299.56

WITHIN (within-circle 10km): 33725.96

WITHIN (within-circle 10km): 34013.32

WITHIN (within-circle 10km): 33613.37

83

WITHIN (within-circle 10km): 33792.45

WITHIN (within-circle 10km): 33451.90

WITHIN (within-circle 10km): 33574.00

====== WITHIN (within-circle 10km) ======

100000 requests completed in 2.98 seconds

50 parallel clients

94 bytes payload

keep alive: 1

44.47% <= 0 milliseconds

76.90% <= 1 milliseconds

90.62% <= 2 milliseconds

95.88% <= 3 milliseconds

97.59% <= 4 milliseconds

98.36% <= 5 milliseconds

98.87% <= 6 milliseconds

99.16% <= 7 milliseconds

99.41% <= 8 milliseconds

99.61% <= 9 milliseconds

99.71% <= 10 milliseconds

99.77% <= 11 milliseconds

99.84% <= 12 milliseconds

99.88% <= 13 milliseconds

99.89% <= 14 milliseconds

99.91% <= 15 milliseconds

99.93% <= 16 milliseconds

84 Full System Benchmark Log

99.94% <= 17 milliseconds

99.95% <= 18 milliseconds

99.96% <= 19 milliseconds

99.99% <= 20 milliseconds

99.99% <= 21 milliseconds

100.00% <= 32 milliseconds

33574.00 requests per second

WITHIN (within-circle 100km): 0.00

WITHIN (within-circle 100km): 5054.43

WITHIN (within-circle 100km): 5209.42

WITHIN (within-circle 100km): 5459.24

WITHIN (within-circle 100km): 5405.17

WITHIN (within-circle 100km): 5508.51

WITHIN (within-circle 100km): 5450.05

WITHIN (within-circle 100km): 5557.92

WITHIN (within-circle 100km): 5629.23

WITHIN (within-circle 100km): 5413.84

85

WITHIN (within-circle 100km): 5192.99

WITHIN (within-circle 100km): 5132.60

WITHIN (within-circle 100km): 5091.97

WITHIN (within-circle 100km): 5147.74

WITHIN (within-circle 100km): 5169.75

WITHIN (within-circle 100km): 5269.04

WITHIN (within-circle 100km): 5235.59

WITHIN (within-circle 100km): 5181.82

WITHIN (within-circle 100km): 5133.31

WITHIN (within-circle 100km): 5199.20

WITHIN (within-circle 100km): 5215.82

WITHIN (within-circle 100km): 5273.95

WITHIN (within-circle 100km): 5325.43

WITHIN (within-circle 100km): 5377.26

WITHIN (within-circle 100km): 5426.89

86 Full System Benchmark Log

WITHIN (within-circle 100km): 5389.04

WITHIN (within-circle 100km): 5367.99

WITHIN (within-circle 100km): 5293.40

WITHIN (within-circle 100km): 5271.44

WITHIN (within-circle 100km): 5291.82

WITHIN (within-circle 100km): 5326.08

WITHIN (within-circle 100km): 5328.35

WITHIN (within-circle 100km): 5288.33

WITHIN (within-circle 100km): 5256.24

WITHIN (within-circle 100km): 5267.43

WITHIN (within-circle 100km): 5283.53

WITHIN (within-circle 100km): 5300.84

WITHIN (within-circle 100km): 5328.11

WITHIN (within-circle 100km): 5321.60

87

WITHIN (within-circle 100km): 5336.40

WITHIN (within-circle 100km): 5328.09

WITHIN (within-circle 100km): 5368.85

WITHIN (within-circle 100km): 5390.04

WITHIN (within-circle 100km): 5399.24

WITHIN (within-circle 100km): 5385.22

WITHIN (within-circle 100km): 5369.29

WITHIN (within-circle 100km): 5385.30

WITHIN (within-circle 100km): 5380.87

WITHIN (within-circle 100km): 5367.11

WITHIN (within-circle 100km): 5327.98

WITHIN (within-circle 100km): 5298.27

WITHIN (within-circle 100km): 5293.65

WITHIN (within-circle 100km): 5303.86

WITHIN (within-circle 100km): 5313.60

88 Full System Benchmark Log

WITHIN (within-circle 100km): 5318.93

WITHIN (within-circle 100km): 5298.74

WITHIN (within-circle 100km): 5264.71

WITHIN (within-circle 100km): 5255.30

WITHIN (within-circle 100km): 5254.06

WITHIN (within-circle 100km): 5271.33

WITHIN (within-circle 100km): 5268.66

WITHIN (within-circle 100km): 5286.32

WITHIN (within-circle 100km): 5296.02

WITHIN (within-circle 100km): 5269.62

WITHIN (within-circle 100km): 5251.56

WITHIN (within-circle 100km): 5249.34

WITHIN (within-circle 100km): 5252.15

WITHIN (within-circle 100km): 5255.51

89

WITHIN (within-circle 100km): 5244.73

WITHIN (within-circle 100km): 5252.78

WITHIN (within-circle 100km): 5246.65

WITHIN (within-circle 100km): 5261.78

WITHIN (within-circle 100km): 5262.33

WITHIN (within-circle 100km): 5271.02

WITHIN (within-circle 100km): 5284.75

WITHIN (within-circle 100km): 5277.66

WITHIN (within-circle 100km): 5266.53

WITHIN (within-circle 100km): 5262.86

WITHIN (within-circle 100km): 5266.99

WITHIN (within-circle 100km): 5275.34

WITHIN (within-circle 100km): 5287.15

WITHIN (within-circle 100km): 5285.69

WITHIN (within-circle 100km): 5299.68

90 Full System Benchmark Log

WITHIN (within-circle 100km): 5300.88

WITHIN (within-circle 100km): 5309.13

WITHIN (within-circle 100km): 5318.09

WITHIN (within-circle 100km): 5317.41

WITHIN (within-circle 100km): 5289.13

WITHIN (within-circle 100km): 5267.64

WITHIN (within-circle 100km): 5243.55

WITHIN (within-circle 100km): 5239.81

WITHIN (within-circle 100km): 5231.03

WITHIN (within-circle 100km): 5206.36

WITHIN (within-circle 100km): 5191.40

WITHIN (within-circle 100km): 5172.53

WITHIN (within-circle 100km): 5143.71

WITHIN (within-circle 100km): 5118.67

91

WITHIN (within-circle 100km): 5106.65

WITHIN (within-circle 100km): 5080.87

WITHIN (within-circle 100km): 5058.13

====== WITHIN (within-circle 100km) ======

100000 requests completed in 19.77 seconds

50 parallel clients

95 bytes payload

keep alive: 1

29.90% <= 0 milliseconds

33.08% <= 1 milliseconds

35.41% <= 2 milliseconds

38.22% <= 3 milliseconds

41.64% <= 4 milliseconds

45.50% <= 5 milliseconds

49.66% <= 6 milliseconds

53.89% <= 7 milliseconds

57.89% <= 8 milliseconds

61.96% <= 9 milliseconds

65.73% <= 10 milliseconds

69.36% <= 11 milliseconds

72.71% <= 12 milliseconds

75.84% <= 13 milliseconds

78.79% <= 14 milliseconds

81.63% <= 15 milliseconds

84.19% <= 16 milliseconds

86.37% <= 17 milliseconds

92 Full System Benchmark Log

88.15% <= 18 milliseconds

89.67% <= 19 milliseconds

90.90% <= 20 milliseconds

91.88% <= 21 milliseconds

92.74% <= 22 milliseconds

93.40% <= 23 milliseconds

93.97% <= 24 milliseconds

94.46% <= 25 milliseconds

94.91% <= 26 milliseconds

95.28% <= 27 milliseconds

95.68% <= 28 milliseconds

96.02% <= 29 milliseconds

96.32% <= 30 milliseconds

96.59% <= 31 milliseconds

96.84% <= 32 milliseconds

97.05% <= 33 milliseconds

97.25% <= 34 milliseconds

97.42% <= 35 milliseconds

97.58% <= 36 milliseconds

97.73% <= 37 milliseconds

97.84% <= 38 milliseconds

97.97% <= 39 milliseconds

98.06% <= 40 milliseconds

98.15% <= 41 milliseconds

98.24% <= 42 milliseconds

98.34% <= 43 milliseconds

98.42% <= 44 milliseconds

98.50% <= 45 milliseconds

98.57% <= 46 milliseconds

93

98.66% <= 47 milliseconds

98.73% <= 48 milliseconds

98.79% <= 49 milliseconds

98.86% <= 50 milliseconds

98.92% <= 51 milliseconds

98.98% <= 52 milliseconds

99.02% <= 53 milliseconds

99.06% <= 54 milliseconds

99.10% <= 55 milliseconds

99.14% <= 56 milliseconds

99.19% <= 57 milliseconds

99.23% <= 58 milliseconds

99.27% <= 59 milliseconds

99.30% <= 60 milliseconds

99.33% <= 61 milliseconds

99.35% <= 62 milliseconds

99.38% <= 63 milliseconds

99.41% <= 64 milliseconds

99.43% <= 65 milliseconds

99.45% <= 66 milliseconds

99.48% <= 67 milliseconds

99.50% <= 68 milliseconds

99.52% <= 69 milliseconds

99.56% <= 70 milliseconds

99.59% <= 71 milliseconds

99.62% <= 72 milliseconds

99.64% <= 73 milliseconds

99.65% <= 74 milliseconds

99.67% <= 75 milliseconds

94 Full System Benchmark Log

99.69% <= 76 milliseconds

99.70% <= 77 milliseconds

99.72% <= 78 milliseconds

99.74% <= 79 milliseconds

99.75% <= 80 milliseconds

99.76% <= 81 milliseconds

99.77% <= 82 milliseconds

99.78% <= 83 milliseconds

99.79% <= 84 milliseconds

99.80% <= 85 milliseconds

99.81% <= 86 milliseconds

99.82% <= 88 milliseconds

99.83% <= 89 milliseconds

99.84% <= 90 milliseconds

99.85% <= 91 milliseconds

99.86% <= 92 milliseconds

99.87% <= 94 milliseconds

99.88% <= 95 milliseconds

99.89% <= 96 milliseconds

99.90% <= 97 milliseconds

99.91% <= 99 milliseconds

99.92% <= 102 milliseconds

99.93% <= 104 milliseconds

99.94% <= 109 milliseconds

99.95% <= 112 milliseconds

99.96% <= 116 milliseconds

99.97% <= 121 milliseconds

99.98% <= 129 milliseconds

99.99% <= 153 milliseconds

95

100.00% <= 190 milliseconds

5058.13 requests per second

WITHIN (within-bounds 1km): 0.00

WITHIN (within-bounds 1km): 37715.16

WITHIN (within-bounds 1km): 40494.85

WITHIN (within-bounds 1km): 40662.19

WITHIN (within-bounds 1km): 38074.19

WITHIN (within-bounds 1km): 37206.78

WITHIN (within-bounds 1km): 39173.96

WITHIN (within-bounds 1km): 39850.97

WITHIN (within-bounds 1km): 39044.38

WITHIN (within-bounds 1km): 38535.70

WITHIN (within-bounds 1km): 39532.98

WITHIN (within-bounds 1km): 39163.10

WITHIN (within-bounds 1km): 40316.85

96 Full System Benchmark Log

WITHIN (within-bounds 1km): 40290.67

====== WITHIN (within-bounds 1km) ======

100000 requests completed in 2.48 seconds

50 parallel clients

112 bytes payload

keep alive: 1

56.17% <= 0 milliseconds

86.15% <= 1 milliseconds

93.30% <= 2 milliseconds

96.37% <= 3 milliseconds

98.01% <= 4 milliseconds

98.91% <= 5 milliseconds

99.25% <= 6 milliseconds

99.50% <= 7 milliseconds

99.67% <= 8 milliseconds

99.77% <= 9 milliseconds

99.88% <= 10 milliseconds

99.94% <= 11 milliseconds

99.95% <= 12 milliseconds

99.97% <= 13 milliseconds

99.98% <= 14 milliseconds

99.99% <= 15 milliseconds

99.99% <= 16 milliseconds

100.00% <= 35 milliseconds

40290.67 requests per second

97

WITHIN (within-bounds 10km): 0.00

WITHIN (within-bounds 10km): 41756.85

WITHIN (within-bounds 10km): 44512.23

WITHIN (within-bounds 10km): 49184.56

WITHIN (within-bounds 10km): 51092.26

WITHIN (within-bounds 10km): 52176.82

WITHIN (within-bounds 10km): 49600.49

WITHIN (within-bounds 10km): 46916.38

WITHIN (within-bounds 10km): 48056.74

WITHIN (within-bounds 10km): 47895.78

WITHIN (within-bounds 10km): 48735.47

WITHIN (within-bounds 10km): 48822.60

====== WITHIN (within-bounds 10km) ======

100000 requests completed in 2.05 seconds

50 parallel clients

112 bytes payload

keep alive: 1

98 Full System Benchmark Log

64.77% <= 0 milliseconds

91.58% <= 1 milliseconds

96.45% <= 2 milliseconds

98.14% <= 3 milliseconds

98.90% <= 4 milliseconds

99.35% <= 5 milliseconds

99.60% <= 6 milliseconds

99.76% <= 7 milliseconds

99.81% <= 8 milliseconds

99.85% <= 9 milliseconds

99.91% <= 10 milliseconds

99.94% <= 11 milliseconds

99.95% <= 12 milliseconds

99.96% <= 13 milliseconds

99.96% <= 14 milliseconds

99.97% <= 15 milliseconds

99.99% <= 18 milliseconds

99.99% <= 21 milliseconds

100.00% <= 26 milliseconds

48822.60 requests per second

WITHIN (within-bounds 100km): 0.00

WITHIN (within-bounds 100km): 55096.61

WITHIN (within-bounds 100km): 48348.26

WITHIN (within-bounds 100km): 51320.50

99

WITHIN (within-bounds 100km): 52559.90

WITHIN (within-bounds 100km): 52811.25

WITHIN (within-bounds 100km): 52572.96

WITHIN (within-bounds 100km): 50642.49

WITHIN (within-bounds 100km): 49080.28

WITHIN (within-bounds 100km): 49915.38

WITHIN (within-bounds 100km): 50356.91

====== WITHIN (within-bounds 100km) ======

100000 requests completed in 1.99 seconds

50 parallel clients

116 bytes payload

keep alive: 1

65.13% <= 0 milliseconds

91.72% <= 1 milliseconds

96.82% <= 2 milliseconds

98.45% <= 3 milliseconds

99.34% <= 4 milliseconds

99.66% <= 5 milliseconds

99.89% <= 6 milliseconds

99.95% <= 7 milliseconds

99.97% <= 8 milliseconds

100 Full System Benchmark Log

99.98% <= 9 milliseconds

99.98% <= 10 milliseconds

99.99% <= 13 milliseconds

100.00% <= 28 milliseconds

50356.91 requests per second

NEARBY (limit 1): 0.00

NEARBY (limit 1): 17345.04

NEARBY (limit 1): 17602.57

NEARBY (limit 1): 16098.60

NEARBY (limit 1): 16395.41

NEARBY (limit 1): 18075.32

NEARBY (limit 1): 17013.66

NEARBY (limit 1): 17660.49

NEARBY (limit 1): 18326.23

NEARBY (limit 1): 17554.09

NEARBY (limit 1): 17883.79

101

NEARBY (limit 1): 17220.22

NEARBY (limit 1): 17774.81

NEARBY (limit 1): 17977.73

NEARBY (limit 1): 17801.13

NEARBY (limit 1): 18223.58

NEARBY (limit 1): 17786.06

NEARBY (limit 1): 18166.11

NEARBY (limit 1): 18430.28

NEARBY (limit 1): 18151.06

NEARBY (limit 1): 18465.54

NEARBY (limit 1): 18608.30

NEARBY (limit 1): 18400.57

NEARBY (limit 1): 18693.21

NEARBY (limit 1): 18578.95

NEARBY (limit 1): 18632.18

102 Full System Benchmark Log

NEARBY (limit 1): 18856.95

NEARBY (limit 1): 18571.51

====== NEARBY (limit 1) ======

100000 requests completed in 5.38 seconds

50 parallel clients

100 bytes payload

keep alive: 1

40.29% <= 0 milliseconds

64.54% <= 1 milliseconds

74.74% <= 2 milliseconds

80.22% <= 3 milliseconds

84.12% <= 4 milliseconds

87.44% <= 5 milliseconds

90.18% <= 6 milliseconds

92.28% <= 7 milliseconds

94.04% <= 8 milliseconds

95.36% <= 9 milliseconds

96.37% <= 10 milliseconds

97.22% <= 11 milliseconds

97.78% <= 12 milliseconds

98.25% <= 13 milliseconds

98.63% <= 14 milliseconds

98.92% <= 15 milliseconds

99.15% <= 16 milliseconds

99.31% <= 17 milliseconds

99.42% <= 18 milliseconds

103

99.50% <= 19 milliseconds

99.57% <= 20 milliseconds

99.64% <= 21 milliseconds

99.68% <= 22 milliseconds

99.72% <= 23 milliseconds

99.76% <= 24 milliseconds

99.80% <= 25 milliseconds

99.83% <= 26 milliseconds

99.85% <= 27 milliseconds

99.86% <= 28 milliseconds

99.88% <= 29 milliseconds

99.89% <= 30 milliseconds

99.91% <= 31 milliseconds

99.92% <= 32 milliseconds

99.93% <= 34 milliseconds

99.94% <= 35 milliseconds

99.95% <= 36 milliseconds

99.96% <= 37 milliseconds

99.97% <= 39 milliseconds

99.98% <= 42 milliseconds

99.99% <= 59 milliseconds

100.00% <= 75 milliseconds

18571.51 requests per second

NEARBY (limit 10): 0.00

NEARBY (limit 10): 15485.23

104 Full System Benchmark Log

NEARBY (limit 10): 16053.68

NEARBY (limit 10): 12700.89

NEARBY (limit 10): 13276.06

NEARBY (limit 10): 13359.68

NEARBY (limit 10): 13157.88

NEARBY (limit 10): 13740.29

NEARBY (limit 10): 13583.69

NEARBY (limit 10): 13502.27

NEARBY (limit 10): 13851.89

NEARBY (limit 10): 13779.46

NEARBY (limit 10): 13631.02

NEARBY (limit 10): 13790.96

NEARBY (limit 10): 13143.70

NEARBY (limit 10): 12620.29

NEARBY (limit 10): 12607.92

105

NEARBY (limit 10): 12124.76

NEARBY (limit 10): 11998.37

NEARBY (limit 10): 11772.80

NEARBY (limit 10): 11393.44

NEARBY (limit 10): 11389.94

NEARBY (limit 10): 11171.81

NEARBY (limit 10): 10851.97

NEARBY (limit 10): 10977.50

NEARBY (limit 10): 10784.57

NEARBY (limit 10): 10974.73

NEARBY (limit 10): 11211.15

NEARBY (limit 10): 11144.17

NEARBY (limit 10): 11258.44

NEARBY (limit 10): 11251.98

106 Full System Benchmark Log

NEARBY (limit 10): 11284.95

NEARBY (limit 10): 11458.79

NEARBY (limit 10): 11335.70

NEARBY (limit 10): 11405.75

NEARBY (limit 10): 11517.67

NEARBY (limit 10): 11476.46

NEARBY (limit 10): 11609.11

NEARBY (limit 10): 11714.01

NEARBY (limit 10): 11606.79

NEARBY (limit 10): 11739.74

NEARBY (limit 10): 11741.25

NEARBY (limit 10): 11775.74

NEARBY (limit 10): 11776.68

====== NEARBY (limit 10) ======

100000 requests completed in 8.49 seconds

50 parallel clients

101 bytes payload

107

keep alive: 1

32.84% <= 0 milliseconds

50.11% <= 1 milliseconds

63.18% <= 2 milliseconds

70.84% <= 3 milliseconds

75.65% <= 4 milliseconds

78.98% <= 5 milliseconds

81.86% <= 6 milliseconds

84.31% <= 7 milliseconds

86.36% <= 8 milliseconds

88.20% <= 9 milliseconds

89.82% <= 10 milliseconds

91.20% <= 11 milliseconds

92.43% <= 12 milliseconds

93.50% <= 13 milliseconds

94.46% <= 14 milliseconds

95.26% <= 15 milliseconds

95.98% <= 16 milliseconds

96.51% <= 17 milliseconds

96.94% <= 18 milliseconds

97.31% <= 19 milliseconds

97.63% <= 20 milliseconds

97.90% <= 21 milliseconds

98.14% <= 22 milliseconds

98.34% <= 23 milliseconds

98.52% <= 24 milliseconds

98.68% <= 25 milliseconds

98.81% <= 26 milliseconds

108 Full System Benchmark Log

98.94% <= 27 milliseconds

99.04% <= 28 milliseconds

99.11% <= 29 milliseconds

99.19% <= 30 milliseconds

99.27% <= 31 milliseconds

99.33% <= 32 milliseconds

99.40% <= 33 milliseconds

99.45% <= 34 milliseconds

99.49% <= 35 milliseconds

99.54% <= 36 milliseconds

99.58% <= 37 milliseconds

99.63% <= 38 milliseconds

99.66% <= 39 milliseconds

99.69% <= 40 milliseconds

99.72% <= 41 milliseconds

99.74% <= 42 milliseconds

99.77% <= 43 milliseconds

99.78% <= 44 milliseconds

99.79% <= 45 milliseconds

99.81% <= 46 milliseconds

99.82% <= 47 milliseconds

99.84% <= 48 milliseconds

99.85% <= 49 milliseconds

99.86% <= 50 milliseconds

99.88% <= 51 milliseconds

99.88% <= 52 milliseconds

99.89% <= 53 milliseconds

99.90% <= 54 milliseconds

99.92% <= 56 milliseconds

109

99.92% <= 57 milliseconds

99.94% <= 59 milliseconds

99.94% <= 60 milliseconds

99.95% <= 61 milliseconds

99.96% <= 64 milliseconds

99.97% <= 71 milliseconds

99.98% <= 79 milliseconds

99.99% <= 85 milliseconds

100.00% <= 123 milliseconds

11776.68 requests per second

NEARBY (limit 100): 0.00

NEARBY (limit 100): 5735.29

NEARBY (limit 100): 6042.82

NEARBY (limit 100): 6171.93

NEARBY (limit 100): 5342.22

NEARBY (limit 100): 5507.05

NEARBY (limit 100): 5654.64

NEARBY (limit 100): 5340.18

NEARBY (limit 100): 5363.02

110 Full System Benchmark Log

NEARBY (limit 100): 5479.74

NEARBY (limit 100): 5355.47

NEARBY (limit 100): 5292.58

NEARBY (limit 100): 5381.11

NEARBY (limit 100): 5453.28

NEARBY (limit 100): 5252.11

NEARBY (limit 100): 5328.91

NEARBY (limit 100): 5399.93

NEARBY (limit 100): 5290.49

NEARBY (limit 100): 5298.50

NEARBY (limit 100): 5305.05

NEARBY (limit 100): 5185.44

NEARBY (limit 100): 5238.50

NEARBY (limit 100): 5272.09

111

NEARBY (limit 100): 5118.20

NEARBY (limit 100): 5146.75

NEARBY (limit 100): 5076.51

NEARBY (limit 100): 5056.47

NEARBY (limit 100): 5104.44

NEARBY (limit 100): 5118.03

NEARBY (limit 100): 5050.23

NEARBY (limit 100): 5087.95

NEARBY (limit 100): 5100.87

NEARBY (limit 100): 5050.59

NEARBY (limit 100): 5070.85

NEARBY (limit 100): 5017.68

NEARBY (limit 100): 5013.90

NEARBY (limit 100): 5042.42

NEARBY (limit 100): 4964.82

112 Full System Benchmark Log

NEARBY (limit 100): 4991.50

NEARBY (limit 100): 5026.11

NEARBY (limit 100): 4952.02

NEARBY (limit 100): 4979.57

NEARBY (limit 100): 5006.97

NEARBY (limit 100): 4986.24

NEARBY (limit 100): 4980.05

NEARBY (limit 100): 5007.76

NEARBY (limit 100): 5031.37

NEARBY (limit 100): 4975.09

NEARBY (limit 100): 4991.80

NEARBY (limit 100): 4992.47

NEARBY (limit 100): 4967.00

NEARBY (limit 100): 4985.28

113

NEARBY (limit 100): 4971.99

NEARBY (limit 100): 4966.83

NEARBY (limit 100): 4978.10

NEARBY (limit 100): 4922.33

NEARBY (limit 100): 4930.11

NEARBY (limit 100): 4862.24

NEARBY (limit 100): 4834.97

NEARBY (limit 100): 4799.81

NEARBY (limit 100): 4748.95

NEARBY (limit 100): 4757.70

NEARBY (limit 100): 4698.46

NEARBY (limit 100): 4669.03

NEARBY (limit 100): 4651.35

NEARBY (limit 100): 4599.85

NEARBY (limit 100): 4590.22

114 Full System Benchmark Log

NEARBY (limit 100): 4569.63

NEARBY (limit 100): 4595.83

NEARBY (limit 100): 4618.96

NEARBY (limit 100): 4593.34

NEARBY (limit 100): 4613.94

NEARBY (limit 100): 4637.48

NEARBY (limit 100): 4617.07

NEARBY (limit 100): 4635.20

NEARBY (limit 100): 4658.61

NEARBY (limit 100): 4656.80

NEARBY (limit 100): 4645.91

NEARBY (limit 100): 4656.31

NEARBY (limit 100): 4619.07

NEARBY (limit 100): 4635.17

115

NEARBY (limit 100): 4643.94

NEARBY (limit 100): 4627.53

NEARBY (limit 100): 4644.21

NEARBY (limit 100): 4667.19

NEARBY (limit 100): 4673.37

NEARBY (limit 100): 4660.77

NEARBY (limit 100): 4678.90

NEARBY (limit 100): 4695.12

NEARBY (limit 100): 4692.05

NEARBY (limit 100): 4690.66

NEARBY (limit 100): 4707.75

NEARBY (limit 100): 4723.90

NEARBY (limit 100): 4707.84

NEARBY (limit 100): 4720.60

NEARBY (limit 100): 4739.97

116 Full System Benchmark Log

NEARBY (limit 100): 4737.54

NEARBY (limit 100): 4731.90

NEARBY (limit 100): 4739.92

NEARBY (limit 100): 4713.48

NEARBY (limit 100): 4726.16

NEARBY (limit 100): 4732.31

NEARBY (limit 100): 4717.41

NEARBY (limit 100): 4724.50

NEARBY (limit 100): 4700.83

NEARBY (limit 100): 4713.31

NEARBY (limit 100): 4705.22

NEARBY (limit 100): 4701.35

====== NEARBY (limit 100) ======

100000 requests completed in 21.27 seconds

50 parallel clients

102 bytes payload

keep alive: 1

117

22.06% <= 0 milliseconds

31.45% <= 1 milliseconds

37.99% <= 2 milliseconds

44.64% <= 3 milliseconds

50.43% <= 4 milliseconds

55.61% <= 5 milliseconds

60.49% <= 6 milliseconds

64.61% <= 7 milliseconds

67.99% <= 8 milliseconds

70.53% <= 9 milliseconds

72.49% <= 10 milliseconds

74.00% <= 11 milliseconds

75.34% <= 12 milliseconds

76.51% <= 13 milliseconds

77.52% <= 14 milliseconds

78.56% <= 15 milliseconds

79.53% <= 16 milliseconds

80.45% <= 17 milliseconds

81.39% <= 18 milliseconds

82.30% <= 19 milliseconds

83.18% <= 20 milliseconds

84.04% <= 21 milliseconds

84.92% <= 22 milliseconds

85.81% <= 23 milliseconds

86.72% <= 24 milliseconds

87.59% <= 25 milliseconds

88.45% <= 26 milliseconds

89.23% <= 27 milliseconds

118 Full System Benchmark Log

90.03% <= 28 milliseconds

90.77% <= 29 milliseconds

91.45% <= 30 milliseconds

92.17% <= 31 milliseconds

92.79% <= 32 milliseconds

93.36% <= 33 milliseconds

93.89% <= 34 milliseconds

94.36% <= 35 milliseconds

94.76% <= 36 milliseconds

95.13% <= 37 milliseconds

95.47% <= 38 milliseconds

95.75% <= 39 milliseconds

95.99% <= 40 milliseconds

96.23% <= 41 milliseconds

96.47% <= 42 milliseconds

96.66% <= 43 milliseconds

96.82% <= 44 milliseconds

97.00% <= 45 milliseconds

97.16% <= 46 milliseconds

97.31% <= 47 milliseconds

97.44% <= 48 milliseconds

97.57% <= 49 milliseconds

97.69% <= 50 milliseconds

97.81% <= 51 milliseconds

97.93% <= 52 milliseconds

98.01% <= 53 milliseconds

98.10% <= 54 milliseconds

98.17% <= 55 milliseconds

98.26% <= 56 milliseconds

119

98.33% <= 57 milliseconds

98.40% <= 58 milliseconds

98.48% <= 59 milliseconds

98.55% <= 60 milliseconds

98.62% <= 61 milliseconds

98.70% <= 62 milliseconds

98.77% <= 63 milliseconds

98.83% <= 64 milliseconds

98.88% <= 65 milliseconds

98.94% <= 66 milliseconds

98.99% <= 67 milliseconds

99.05% <= 68 milliseconds

99.09% <= 69 milliseconds

99.13% <= 70 milliseconds

99.17% <= 71 milliseconds

99.20% <= 72 milliseconds

99.23% <= 73 milliseconds

99.27% <= 74 milliseconds

99.30% <= 75 milliseconds

99.33% <= 76 milliseconds

99.36% <= 77 milliseconds

99.39% <= 78 milliseconds

99.42% <= 79 milliseconds

99.45% <= 80 milliseconds

99.47% <= 81 milliseconds

99.50% <= 82 milliseconds

99.52% <= 83 milliseconds

99.55% <= 84 milliseconds

99.56% <= 85 milliseconds

120 Full System Benchmark Log

99.58% <= 86 milliseconds

99.60% <= 87 milliseconds

99.61% <= 88 milliseconds

99.63% <= 89 milliseconds

99.64% <= 90 milliseconds

99.65% <= 91 milliseconds

99.67% <= 92 milliseconds

99.68% <= 93 milliseconds

99.69% <= 94 milliseconds

99.70% <= 95 milliseconds

99.71% <= 96 milliseconds

99.72% <= 97 milliseconds

99.73% <= 98 milliseconds

99.75% <= 99 milliseconds

99.76% <= 100 milliseconds

99.77% <= 101 milliseconds

99.78% <= 102 milliseconds

99.79% <= 104 milliseconds

99.80% <= 105 milliseconds

99.82% <= 106 milliseconds

99.82% <= 107 milliseconds

99.84% <= 109 milliseconds

99.85% <= 111 milliseconds

99.86% <= 113 milliseconds

99.87% <= 115 milliseconds

99.88% <= 118 milliseconds

99.89% <= 120 milliseconds

99.90% <= 122 milliseconds

99.91% <= 124 milliseconds

121

99.92% <= 127 milliseconds

99.93% <= 128 milliseconds

99.94% <= 131 milliseconds

99.95% <= 137 milliseconds

99.96% <= 140 milliseconds

99.97% <= 144 milliseconds

99.98% <= 152 milliseconds

99.99% <= 162 milliseconds

100.00% <= 191 milliseconds

4701.35 requests per second

NEARBY (point 1km): 0.00

NEARBY (point 1km): 27780.57

NEARBY (point 1km): 20947.12

NEARBY (point 1km): 19797.13

NEARBY (point 1km): 22146.81

NEARBY (point 1km): 25717.52

NEARBY (point 1km): 25451.20

NEARBY (point 1km): 26321.88

NEARBY (point 1km): 28638.12

122 Full System Benchmark Log

NEARBY (point 1km): 28745.79

NEARBY (point 1km): 28684.63

NEARBY (point 1km): 30376.14

NEARBY (point 1km): 30581.53

NEARBY (point 1km): 28972.66

NEARBY (point 1km): 27888.09

NEARBY (point 1km): 27660.20

NEARBY (point 1km): 28747.00

NEARBY (point 1km): 28750.52

NEARBY (point 1km): 28516.40

====== NEARBY (point 1km) ======

100000 requests completed in 3.51 seconds

50 parallel clients

92 bytes payload

keep alive: 1

47.54% <= 0 milliseconds

75.70% <= 1 milliseconds

85.52% <= 2 milliseconds

123

90.85% <= 3 milliseconds

93.95% <= 4 milliseconds

95.68% <= 5 milliseconds

96.79% <= 6 milliseconds

97.65% <= 7 milliseconds

98.21% <= 8 milliseconds

98.61% <= 9 milliseconds

98.94% <= 10 milliseconds

99.17% <= 11 milliseconds

99.35% <= 12 milliseconds

99.46% <= 13 milliseconds

99.57% <= 14 milliseconds

99.71% <= 15 milliseconds

99.79% <= 16 milliseconds

99.85% <= 17 milliseconds

99.88% <= 18 milliseconds

99.92% <= 19 milliseconds

99.93% <= 20 milliseconds

99.95% <= 21 milliseconds

99.96% <= 24 milliseconds

99.97% <= 26 milliseconds

99.99% <= 28 milliseconds

99.99% <= 29 milliseconds

100.00% <= 51 milliseconds

28516.40 requests per second

NEARBY (point 10km): 0.00

124 Full System Benchmark Log

NEARBY (point 10km): 40085.27

NEARBY (point 10km): 32403.98

NEARBY (point 10km): 31765.02

NEARBY (point 10km): 29598.88

NEARBY (point 10km): 28922.64

NEARBY (point 10km): 26406.27

NEARBY (point 10km): 26992.30

NEARBY (point 10km): 26223.16

NEARBY (point 10km): 25934.92

NEARBY (point 10km): 26546.15

NEARBY (point 10km): 25869.33

NEARBY (point 10km): 26792.32

NEARBY (point 10km): 25815.89

NEARBY (point 10km): 25755.93

NEARBY (point 10km): 26126.21

125

NEARBY (point 10km): 25778.13

NEARBY (point 10km): 26248.08

NEARBY (point 10km): 25486.28

NEARBY (point 10km): 26106.77

NEARBY (point 10km): 26140.04

====== NEARBY (point 10km) ======

100000 requests completed in 3.83 seconds

50 parallel clients

93 bytes payload

keep alive: 1

45.22% <= 0 milliseconds

73.34% <= 1 milliseconds

82.79% <= 2 milliseconds

88.12% <= 3 milliseconds

91.53% <= 4 milliseconds

93.93% <= 5 milliseconds

95.62% <= 6 milliseconds

96.89% <= 7 milliseconds

97.68% <= 8 milliseconds

98.25% <= 9 milliseconds

98.64% <= 10 milliseconds

98.96% <= 11 milliseconds

99.22% <= 12 milliseconds

126 Full System Benchmark Log

99.40% <= 13 milliseconds

99.52% <= 14 milliseconds

99.66% <= 15 milliseconds

99.74% <= 16 milliseconds

99.79% <= 17 milliseconds

99.82% <= 18 milliseconds

99.86% <= 19 milliseconds

99.89% <= 20 milliseconds

99.91% <= 21 milliseconds

99.92% <= 22 milliseconds

99.94% <= 23 milliseconds

99.96% <= 25 milliseconds

99.97% <= 26 milliseconds

99.98% <= 30 milliseconds

99.99% <= 32 milliseconds

100.00% <= 37 milliseconds

26140.04 requests per second

NEARBY (point 100km): 0.00

NEARBY (point 100km): 14476.87

NEARBY (point 100km): 17341.03

NEARBY (point 100km): 19672.58

NEARBY (point 100km): 17845.57

127

NEARBY (point 100km): 18505.78

NEARBY (point 100km): 19743.95

NEARBY (point 100km): 18466.47

NEARBY (point 100km): 18875.01

NEARBY (point 100km): 18469.26

NEARBY (point 100km): 18461.59

NEARBY (point 100km): 18794.42

NEARBY (point 100km): 17922.53

NEARBY (point 100km): 18093.67

NEARBY (point 100km): 17853.43

NEARBY (point 100km): 18258.92

NEARBY (point 100km): 18112.63

NEARBY (point 100km): 18200.47

NEARBY (point 100km): 18348.49

NEARBY (point 100km): 17948.26

128 Full System Benchmark Log

NEARBY (point 100km): 18141.70

NEARBY (point 100km): 17854.56

NEARBY (point 100km): 18157.78

NEARBY (point 100km): 18147.41

NEARBY (point 100km): 18118.17

NEARBY (point 100km): 18389.75

NEARBY (point 100km): 18136.75

NEARBY (point 100km): 18273.80

NEARBY (point 100km): 18236.52

====== NEARBY (point 100km) ======

100000 requests completed in 5.48 seconds

50 parallel clients

94 bytes payload

keep alive: 1

38.71% <= 0 milliseconds

62.14% <= 1 milliseconds

73.61% <= 2 milliseconds

79.75% <= 3 milliseconds

84.05% <= 4 milliseconds

129

87.39% <= 5 milliseconds

89.99% <= 6 milliseconds

92.05% <= 7 milliseconds

93.80% <= 8 milliseconds

95.19% <= 9 milliseconds

96.24% <= 10 milliseconds

97.10% <= 11 milliseconds

97.77% <= 12 milliseconds

98.31% <= 13 milliseconds

98.65% <= 14 milliseconds

98.90% <= 15 milliseconds

99.11% <= 16 milliseconds

99.26% <= 17 milliseconds

99.39% <= 18 milliseconds

99.50% <= 19 milliseconds

99.57% <= 20 milliseconds

99.64% <= 21 milliseconds

99.70% <= 22 milliseconds

99.76% <= 23 milliseconds

99.79% <= 24 milliseconds

99.83% <= 25 milliseconds

99.86% <= 26 milliseconds

99.89% <= 27 milliseconds

99.90% <= 28 milliseconds

99.92% <= 30 milliseconds

99.92% <= 32 milliseconds

99.93% <= 33 milliseconds

99.94% <= 34 milliseconds

99.95% <= 35 milliseconds

130 Full System Benchmark Log

99.96% <= 39 milliseconds

99.97% <= 42 milliseconds

99.98% <= 43 milliseconds

99.99% <= 46 milliseconds

100.00% <= 70 milliseconds

18236.52 requests per second

Scripts to run:

GET SCRIPT: return tile38.call(’GET’, KEYS[1], ARGV[1], ’point’)

GET FOUR SCRIPT: local a = tile38.call(’GET’, KEYS[1], ARGV[1], ’point’);local b = tile38.call(’GET’, KEYS[1], ARGV[2], ’point’);local c = tile38.call(’GET’, KEYS[1], ARGV[3], ’point’);local d = tile38.call(’GET’, KEYS[1], ARGV[4], ’point’);return d

SET SCRIPT: return tile38.call(’SET’, KEYS[1], ARGV[1], ’point’, ARGV[2], ARGV[3])

EVAL (set point): 0.00

EVAL (set point): 20622.39

EVAL (set point): 20269.78

EVAL (set point): 18042.89

EVAL (set point): 18251.10

EVAL (set point): 18460.00

EVAL (set point): 17497.85

EVAL (set point): 17500.00

EVAL (set point): 17827.01

131

EVAL (set point): 17762.15

EVAL (set point): 17386.05

EVAL (set point): 17366.42

EVAL (set point): 17268.36

EVAL (set point): 17162.90

EVAL (set point): 17116.40

EVAL (set point): 17234.68

EVAL (set point): 17361.81

EVAL (set point): 17121.16

EVAL (set point): 17291.41

EVAL (set point): 17420.54

EVAL (set point): 17465.19

EVAL (set point): 17207.42

EVAL (set point): 17356.07

132 Full System Benchmark Log

EVAL (set point): 17465.83

EVAL (set point): 17387.11

EVAL (set point): 17491.31

EVAL (set point): 17607.71

EVAL (set point): 17668.91

EVAL (set point): 17504.13

EVAL (set point): 17528.78

====== EVAL (set point) ======

100000 requests completed in 5.70 seconds

50 parallel clients

156 bytes payload

keep alive: 1

14.15% <= 0 milliseconds

23.47% <= 1 milliseconds

68.02% <= 2 milliseconds

85.52% <= 3 milliseconds

92.24% <= 4 milliseconds

95.44% <= 5 milliseconds

97.23% <= 6 milliseconds

98.01% <= 7 milliseconds

98.60% <= 8 milliseconds

98.86% <= 9 milliseconds

133

99.18% <= 10 milliseconds

99.27% <= 11 milliseconds

99.37% <= 12 milliseconds

99.49% <= 13 milliseconds

99.59% <= 14 milliseconds

99.65% <= 15 milliseconds

99.67% <= 16 milliseconds

99.71% <= 17 milliseconds

99.76% <= 18 milliseconds

99.83% <= 19 milliseconds

99.83% <= 20 milliseconds

99.84% <= 22 milliseconds

99.87% <= 23 milliseconds

99.90% <= 24 milliseconds

99.92% <= 25 milliseconds

99.93% <= 26 milliseconds

99.94% <= 27 milliseconds

99.94% <= 28 milliseconds

99.95% <= 30 milliseconds

99.96% <= 34 milliseconds

99.97% <= 39 milliseconds

99.99% <= 40 milliseconds

100.00% <= 49 milliseconds

17528.78 requests per second

EVALNA (set point): 0.00

EVALNA (set point): 24348.23

134 Full System Benchmark Log

EVALNA (set point): 20161.42

EVALNA (set point): 21243.14

EVALNA (set point): 21731.35

EVALNA (set point): 20206.46

EVALNA (set point): 19806.49

EVALNA (set point): 20432.03

EVALNA (set point): 20358.60

EVALNA (set point): 19825.54

EVALNA (set point): 20207.45

EVALNA (set point): 20451.87

EVALNA (set point): 20043.84

EVALNA (set point): 20198.17

EVALNA (set point): 20364.58

EVALNA (set point): 20491.18

135

EVALNA (set point): 20236.82

EVALNA (set point): 20325.39

EVALNA (set point): 20499.95

EVALNA (set point): 20183.71

EVALNA (set point): 20263.32

EVALNA (set point): 20382.29

EVALNA (set point): 20455.01

EVALNA (set point): 20229.71

EVALNA (set point): 20333.37

EVALNA (set point): 20406.52

====== EVALNA (set point) ======

100000 requests completed in 4.90 seconds

50 parallel clients

159 bytes payload

keep alive: 1

24.97% <= 0 milliseconds

41.58% <= 1 milliseconds

73.23% <= 2 milliseconds

87.06% <= 3 milliseconds

136 Full System Benchmark Log

92.61% <= 4 milliseconds

95.12% <= 5 milliseconds

96.71% <= 6 milliseconds

97.71% <= 7 milliseconds

98.42% <= 8 milliseconds

98.88% <= 9 milliseconds

99.09% <= 10 milliseconds

99.28% <= 11 milliseconds

99.44% <= 12 milliseconds

99.53% <= 13 milliseconds

99.59% <= 14 milliseconds

99.63% <= 15 milliseconds

99.66% <= 16 milliseconds

99.69% <= 17 milliseconds

99.70% <= 18 milliseconds

99.74% <= 19 milliseconds

99.77% <= 20 milliseconds

99.79% <= 21 milliseconds

99.82% <= 22 milliseconds

99.85% <= 23 milliseconds

99.85% <= 24 milliseconds

99.87% <= 25 milliseconds

99.90% <= 26 milliseconds

99.90% <= 27 milliseconds

99.92% <= 28 milliseconds

99.94% <= 29 milliseconds

99.96% <= 30 milliseconds

99.97% <= 31 milliseconds

99.97% <= 32 milliseconds

137

99.98% <= 34 milliseconds

99.99% <= 35 milliseconds

100.00% <= 38 milliseconds

20406.52 requests per second

EVALRO (get point): 0.00

EVALRO (get point): 27697.11

EVALRO (get point): 36312.69

EVALRO (get point): 34549.03

EVALRO (get point): 33900.18

EVALRO (get point): 35008.26

EVALRO (get point): 32652.77

EVALRO (get point): 33493.52

EVALRO (get point): 33928.91

EVALRO (get point): 32810.85

EVALRO (get point): 33418.72

EVALRO (get point): 33646.06

138 Full System Benchmark Log

EVALRO (get point): 32723.21

EVALRO (get point): 33309.00

EVALRO (get point): 33635.78

EVALRO (get point): 32843.44

EVALRO (get point): 32803.14

====== EVALRO (get point) ======

100000 requests completed in 3.05 seconds

50 parallel clients

112 bytes payload

keep alive: 1

46.69% <= 0 milliseconds

78.93% <= 1 milliseconds

88.82% <= 2 milliseconds

93.40% <= 3 milliseconds

96.06% <= 4 milliseconds

97.51% <= 5 milliseconds

98.40% <= 6 milliseconds

98.95% <= 7 milliseconds

99.26% <= 8 milliseconds

99.50% <= 9 milliseconds

99.63% <= 10 milliseconds

99.72% <= 11 milliseconds

99.80% <= 12 milliseconds

139

99.84% <= 13 milliseconds

99.90% <= 14 milliseconds

99.92% <= 15 milliseconds

99.94% <= 16 milliseconds

99.95% <= 17 milliseconds

99.96% <= 18 milliseconds

99.97% <= 19 milliseconds

99.98% <= 20 milliseconds

99.99% <= 24 milliseconds

100.00% <= 31 milliseconds

32803.14 requests per second

EVALRO (get 4 points): 0.00

EVALRO (get 4 points): 43153.10

EVALRO (get 4 points): 36244.48

EVALRO (get 4 points): 32513.28

EVALRO (get 4 points): 33561.42

EVALRO (get 4 points): 33472.47

EVALRO (get 4 points): 30991.88

EVALRO (get 4 points): 31847.58

140 Full System Benchmark Log

EVALRO (get 4 points): 32477.00

EVALRO (get 4 points): 31099.00

EVALRO (get 4 points): 31156.20

EVALRO (get 4 points): 31947.86

EVALRO (get 4 points): 30947.45

EVALRO (get 4 points): 31227.98

EVALRO (get 4 points): 31815.85

EVALRO (get 4 points): 31015.76

EVALRO (get 4 points): 31229.69

====== EVALRO (get 4 points) ======

100000 requests completed in 3.20 seconds

50 parallel clients

338 bytes payload

keep alive: 1

44.69% <= 0 milliseconds

75.51% <= 1 milliseconds

87.23% <= 2 milliseconds

92.75% <= 3 milliseconds

95.75% <= 4 milliseconds

97.48% <= 5 milliseconds

141

98.50% <= 6 milliseconds

99.09% <= 7 milliseconds

99.42% <= 8 milliseconds

99.62% <= 9 milliseconds

99.76% <= 10 milliseconds

99.82% <= 11 milliseconds

99.87% <= 12 milliseconds

99.92% <= 13 milliseconds

99.95% <= 14 milliseconds

99.96% <= 15 milliseconds

99.97% <= 17 milliseconds

99.98% <= 22 milliseconds

99.99% <= 24 milliseconds

100.00% <= 89 milliseconds

31229.69 requests per second

EVALNA (get point): 0.00

EVALNA (get point): 46920.46

EVALNA (get point): 35803.49

EVALNA (get point): 39153.75

EVALNA (get point): 39503.49

EVALNA (get point): 34135.96

142 Full System Benchmark Log

EVALNA (get point): 31233.01

EVALNA (get point): 30994.45

EVALNA (get point): 32712.32

EVALNA (get point): 31371.54

EVALNA (get point): 31727.37

EVALNA (get point): 31946.23

EVALNA (get point): 31672.87

EVALNA (get point): 30631.03

EVALNA (get point): 31353.06

EVALNA (get point): 32263.34

EVALNA (get point): 32085.64

====== EVALNA (get point) ======

100000 requests completed in 3.12 seconds

50 parallel clients

112 bytes payload

keep alive: 1

50.18% <= 0 milliseconds

79.17% <= 1 milliseconds

143

88.48% <= 2 milliseconds

92.84% <= 3 milliseconds

95.19% <= 4 milliseconds

96.48% <= 5 milliseconds

97.39% <= 6 milliseconds

98.16% <= 7 milliseconds

98.64% <= 8 milliseconds

99.05% <= 9 milliseconds

99.31% <= 10 milliseconds

99.52% <= 11 milliseconds

99.66% <= 12 milliseconds

99.73% <= 13 milliseconds

99.78% <= 14 milliseconds

99.83% <= 15 milliseconds

99.87% <= 16 milliseconds

99.91% <= 17 milliseconds

99.92% <= 18 milliseconds

99.94% <= 19 milliseconds

99.95% <= 20 milliseconds

99.96% <= 22 milliseconds

99.97% <= 24 milliseconds

99.98% <= 28 milliseconds

99.99% <= 30 milliseconds

100.00% <= 34 milliseconds

32085.64 requests per second

	Contents
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Motivation
	1.4 Goal and Hypothesis Objectives
	1.5 Research Approach
	1.6 Applications
	1.7 Organization of the Remaining Chapters

	2 Relevant Work
	2.1 Background
	2.1.1 A dive into the Geographic Information System
	2.1.2 Explaining the response to disasters
	2.1.3 Geographic Information System for disaster management

	2.2 The Current State of Geographic Information System for Disaster Response
	2.2.1 Geographic Information System Disaster Response in Literature
	2.2.2 Spatial Data
	2.2.3 GIS Users, Producers, and Specialists

	3 Implementation
	3.1 Introduction
	3.1.1 The DBMS (Redis)
	3.1.2 The API (Golang)
	3.1.3 Messaging Systems

	3.2 Architecture
	3.3 Optimization
	3.4 Replication

	4 Use Case Scenarios / Results
	4.1 Use Cases
	4.1.1 Use Case 1 : Simple Scenario
	4.1.2 Use Case 2 : Medium Size Scenario
	4.1.3 Use Case 3 : Large Scale Scenario

	4.2 Performance Benchmarks

	5 Conclusions / Future Work
	5.1 Conclusions
	5.2 Future Work

	References
	Appendix A Full System Benchmark Log

