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Abstract

This thesis focuses on the analysis of data from a hydrocarbon reserve located in
Burbank, Oklahoma. The study is based on the analysis of porosity, thickness and
permeability data of a reservoir. Parameters were calculated for empirical models
which relate the porosity and the permeability in porous media. Spatial analysis was
also performed, based on two methods of linear spatial interpolation. One method
belongs to the Kriging family and the other was the inverse distance weighting
(IDW) method. These were applied with a view to estimating oil supplies in the
reserve under normal conditions (OOIP) for specific flow units of the reservoir. In
this thesis, the following units were examined: FU3, FU5, FU8, FU9 and FU10. The
FU5 flow unit is extensively analysed and the others are presented in the Annex.
Understanding of the spatial sequence is expected to improve plans for oil field
development. It can provide a better picture of the financial risks at an early stage,
and is therefore able to be of use when making investment decisions.

The first part of the thesis concerns the investigation of empirical formulae, namely
the Kozeny-Carman, Timur and Coates models. Comparison of the models was per-
formed on the basis of their adaptation to existing data. As performance criteria,
the root mean square error (RMSE) and the Spearman’s rank correlation coeffi-
cient were used. Based on these measures, the Timur model demonstrated better
adaptation to porosity - permeability data.

In the second part, geostatistical analysis of the reservoir thickness in a flow unit
was undertaken. Thickness combined with porosity make a contribution to the cal-
culation of reserves and optimal exploitation planning. Different variogram models
were examined and it was found that the spherical model was optimal. Point inter-
polation was applied to the data and the ordinary kriging stochastic interpolation
algorithm was used. This methodology is the most reliable method of linear esti-
mation when enough data is available. At the other extreme, there is the inverse
distance weighting (IDW) method which uses an empirical exponent for the distance
(it usually takes arbitrary values between 1 and 3). The IDW method is a quicker
way of estimating specific drillings in the same flow unit.



The results of the spatial interpolation were evaluated using statistical validation
measures. The IDW method resulted in better spatial estimation than the kriging
based on the RMSE. Lastly, the OOIP was determined on the basis of an empir-
ical formula that relates porosity to thickness and the technical characteristics of
the reservoir (e.g : porosity, water saturation ”Sw” or oil formation volume fac-
tor ”Bo”). Using both the Kriging and the IDW methods, volumetric calculations
showed 10,484,000 barrels for the first method and 9,565,300 barrels for the other
method, respectively. The comparison of the methods was based on the (RMSE)
between kriging and IDW total Oil in place (OOIP) results. Unlike IDW, Kriging
provides the ability to construct uncertainty maps of point estimates.Under suitable
assumptions on the priors, kriging gives the best linear unbiased prediction of the
intermediate values. In future projects with a similar theme, it is recommended that
simulation also be used, to ensure better control of spatial variations.
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Περίληψη

Η παρούσα εργασία επικεντρώθηκε στην ανάλυση δεδομένων από κοίτασμα υδρογο-

νανθράκων που βρίσκεται στην πολιτεία της Οκλαχόμα των Ηνωμένων Πολιτειών και

συγκεκριμένα στο Burbank . Η μελέτη βασίζεται στην ανάλυση δεδομένων πορώδους,
πάχους και διαπερατότητας ενός ταμιευτήρα. Οι ιδιότητες αυτές είναι βασικές παράμε-

τροι στην μηχανική του πετρελαίου και μπορούν να διερευνηθούν με την επιστήμη της

γεωστατιστικής. Υπολογίστηκαν εμπειρικές εξισώσεις άλλα και συγκεκριμένα μοντέλα

τα οποία συσχετίζουν το πορώδες και την διαπερατότητα σε πορώδη μέσα. Επίσης χρη-

σιμοποιήθηκαν αλλά και αναλύθηκαν δύο οικογένειες μεθόδων χωρικής παρεμβολής. Η

μία ανήκει στην οικογένεια Kriging και η άλλη είναι μέθοδος αντίστροφης απόστασης
(IDW) . Κατόπιν, παρουσιάστηκαν εφαρμογές εκτίμησης αποθεμάτων πετρελαίου στο
κοίτασμα σε κανονικές συνθήκες (OOIP) σε συγκεκριμένες ρεολογικές μονάδες του
ταμιευτήρα.

Ο ταμιευτήρας καθορίζεται από 79 χερσαίες γεωτρήσεις μικρού βάθους. Οι ρεολογικές

μονάδες είναι γνωστές στην πετρελαϊκή βιομηχανία ως �flow units�. Μία γεώτρηση

μπορεί να διέρχεται από περισσότερες από μία ρεολογικές μονάδες. Στην διπλωματική

εξετάστηκαν οι μονάδες: FU3 με 94 δεδομένα, FU5 με 103 δεδομένα, FU8 με 110
δεδομένα, FU9 με 110 δεδομένα, FU10 με 104 δεδομένα. Η παρούσα διπλωματική
χρησιμοποιεί τα δεδομένα της ρεολογικής μονάδας FU5 και οι υπόλοιπες έχουν αναλυθεί
στο παράρτημα.

Στις γεωεπιστήμες συχνά είναι διαθέσιμο μόνο ένα δείγμα χωρικά άτακτων δεδομένων,

όπως για παράδειγμα ένα σύνολο μετρήσεων συγκέντρωσης ενός ρύπου στην ατμόσφαι-

ρα. Οι σημαντικότερες αιτίες που περιορίζουν τη λήψη μετρήσεων ως επί το πλείστον,

είναι το κόστος, αλλά και το ενδεχόμενο τα σημεία δειγματοληψίας να είναι δυσπρόσιτα.

Παρόμοιοι περιορισμοί υπάρχουν και σε αλλά επιστημονικά πεδία, όπως στην επεξερ-

γασία σήματος, ή σε ιατρικές εφαρμογές. Η εκτίμηση των τιμών της υπολογίσιμης

ιδιότητας στα σημεία που δεν υπάρχουν μετρήσεις, πραγματοποιείται με χωρική πα-

ρεμβολή. Η κατανόηση της χωρικής αλληλουχίας αναμένεται να βελτιώσει τα σχέδια

αξιοποίησης πετρελαϊκών κοιτασμάτων. Δίνει μια καλύτερη εικόνα του οικονομικού

κινδύνου σε πρώιμο στάδιο, έτσι ώστε να χρησιμοποιηθεί για να ληφθούν επενδυτικές

αποφάσεις.

Το πρώτο σκέλος της διπλωματικής αφορά στη διερεύνηση εμπειρικών εξισώσεων και

συγκεκριμένα στα μοντέλα Kozeny - Carman, Timur και Coates , τα οποία συσχε-
τίζουν το πορώδες και την διαπερατότητα σε πορώδη μέσα. Αξίζει να σημειωθεί ότι τα

συγκεκριμένα μοντέλα χρησιμοποιούνται ευρέως για τον ποσοτικό προσδιορισμό της

διαπερατότητας σε σημεία που είναι ανέφικτος ο υπολογισμός κορεσμού σε νερό (Sw)
.Ωστόσο, αυτά τα εμπειρικά μοντέλα δεν περιλαμβάνουν την δομή των πετρωμάτων,



την χωρική κατανομή υγρών στο χώρο των πόρων του πετρώματος ή την επίδραση της

κατανομής ορυκτών αργίλου στην διαπερατότητα. Η σύγκριση των μοντέλων έγινε με

βάση την προσαρμογή τους στα υπάρχοντα δεδομένα. Χρησιμοποιήθηκε η ρίζα μέσης

τετραγωνικής απόκλισης (RMSE) ως κριτήριο επίδοσης και ο συντελεστή συσχέτισης
Spearman . Με βάση τα μέτρα αυτά, το μοντέλο Timur επέδειξε καλύτερη προσαρμογή
στα δεδομένα πορώδους - διαπερατότητας.

Στο δεύτερο σκέλος αυτής της διπλωματικής εργασίας εκπονήθηκε γεωστατιστική α-

νάλυση του πάχους του πετρώματος σε μια ρεολογική μονάδα (flow unit). Το πάχος
σε συνδυασμό με το πορώδες συμβάλλουν στον υπολογισμό των αποθεμάτων και στην

επιλογή του κατάλληλου σχεδιασμού για την εκμετάλλευση. Πραγματοποιήθηκε κα-

θορισμός της ρεολογικής μονάδας με υπολογισμό διαφορετικών μοντέλων βαριογραμ-

μάτων. Βρέθηκε ότι το σφαιρικό μοντέλο ήταν το βέλτιστο μοντέλο βαριογράμματος.

Η ανάλυση ενός βαριογράμματος χαρακτηρίζει τη χωρική συνέχεια ενός συνόλου δε-

δομένων. Τα μονοδιάστατα στατιστικά στοιχεία για δύο σύνολα δεδομένων όπως το

πορώδες και το πάχος, μπορεί να είναι σχεδόν ίδια, αλλά η χωρική συνέχεια μπορεί να

είναι αρκετά διαφορετική.

Στα πλαίσια της γεωστατιστικής ανάλυσης διεξήχθη σημειακή παρεμβολή στα δεδομένα

και χρησιμοποιήθηκε ο στοχαστικός αλγόριθμος παρεμβολής του κανονικού kriging.
Η μεθοδολογία αυτή είναι ο πιο αξιόπιστος γραμμικός τρόπος εκτίμησης όταν υπάρχουν

αρκετά δεδομένα. Στον αντίποδα, υπάρχει η μέθοδος αντίστροφης απόστασης (IDW)
που χρησιμοποιεί ένα εμπειρικό εκθέτη (συνήθως παίρνει τιμές αυθαίρετα μεταξύ 1 και

3). Η μέθοδος IDW αποτελεί ταχύτερο τρόπο εκτίμησης για τις συγκεκριμένες γεω-

τρήσεις στην ίδια ρεολογική μονάδα. Τα αποτελέσματα της χωρικής παρεμβολής αξιολο-

γήθηκαν χρησιμοποιώντας στατιστικά μέτρα επικύρωσης (Validation Measures).Αυτές
οι συγκρίσεις έδειξαν ότι με εκθέτη 1,5 για το πορώδες και 2,5 για το πάχος η μέθοδος

αντίστροφης απόστασης (IDW) οδήγησε σε καλύτερη χωρική εκτίμηση από το krig-
ing , σύμφωνα με μέτρο επίδοσης την ρίζα μέσης τετραγωνικής απόκλισης (RMSE) .
Προσδιορίστηκε το OOIP(συνολική ποσότητα πετρελαίου στο κοίτασμα σε κανονικές
συνθήκες) βάση εμπειρικής εξίσωσης που συνδέει το πορώδες με το πάχος και τεχνικά

τα χαρακτηριστικά του ταμιευτήρα. Κάνοντας χρήση τόσο της μεθόδου του Krig-
ingόσο και του IDW, οι ογκομετρικοί υπολογισμοί έδειξαν 10,484,000 για την μία και
9,565,300 βαρέλια για την άλλη αντίστοιχα. Η διαφορά είναι 9.6 ή 918,700 βαρέλια. Η

σύγκριση των μεθόδων έγινε με βάση τα στατιστικά μέτρα απόδοσης και συγκεκριμένα

την ρίζα μέσης τετραγωνικής απόκλισης (RMSE).Σε αντίθεση με την IDW, το Krig-
ing παρέχει την δυνατότητα να κατασκευαστούν χάρτες αβεβαιότητας των σημειακών
εκτιμήσεων. Σε μελλοντικές εργασίες με παρόμοια θεματολογία προτείνεται επιπλέον

χρήση προσομοίωσης για καλύτερο έλεγχο των χωρικών διακυμάνσεων.
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Η εργασία αυτή ακολουθεί την εξής δομή: Στο πρώτο κεφάλαιο γίνεται ανάλυση των

στόχων και του κινήτρου αυτής της διπλωματικής εργασίας. Ακόμα, γίνεται η εισα-

γωγή σε βασικά χαρακτηριστικά των γεωτρήσεων πετρελαίου. Στο δεύτερο κεφάλαιο

παρουσιάζεται η θεωρία που απαιτείται για την κατανόηση ενός ταμιευτήρα πετρελαίου

και σχετικοί όροι. Στο τρίτο κεφάλαιο εισάγονται τα τυχαία πεδία, ο ορισμός τους αλλά

και το θεωρητικό υπόβαθρο το οποίο χρησιμοποιείται στην διπλωματική. Στο τέταρτο

κεφάλαιο εισάγονται εμπειρικά μοντέλα για την συσχέτιση της διαπερατότητας και του

πορώδους. Γίνεται εκτίμηση των παραμέτρων τους από τα δεδομένα και αξιολόγηση των

μοντέλων. Το πέμπτο κεφάλαιο παρουσιάζει στοχαστικές και αιτιοκρατικές μεθόδους

χωρικής παρεμβολής και συγκρίνει την εφαρμογή τους στην εκτίμηση της συνολικής

ποσότητας πετρελαίου στο κοίτασμα σε κανονικές συνθήκες (ΟΟΙΡ).
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Chapter 1

Motivation and Drilling
Engineering

I know nothing except the fact
of my ignorance.

Socrates

1.1 Motivation

Envision an amazing source of energy whose location is known but not easily acces-
sible. Now imagine that this energy will be used to provide means of transportation
for every person living on Earth. In addition, envision that this incredible energy
will also allow every product, natural or industrialized, to be transported from or
into virtually any place on the face of our planet. As a consequence of that, this
energy will somehow be an important part of every venture in every country of the
world.

During the last decades, geostatistical approaches have been successfully applied in
different environmental and earth sciences disciplines. Geostatistics methods that
can be applied in difficult situations, such as sparse measurements, is able to provide
space time predictions for variables with reserves estimation and provides evaluation
of the uncertainty of the results.

Nowadays, geostatitstical methods are at the core of new research methodologies
that are being proposed. Because of the uncertainties involved, probability ap-
proaches are required to enable oil resources managers to undertake analyses of risk
under scenarios of oil production. Mathematical techniques are being developed to
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construct probability distributions for specified outcomes. Most studies of oil esti-
mation methods they provide uncertainty. The combination of different techniques -
methods gives a high level of trust. And lastly increased or decreased the availability
of oil stocks.

Many interpolation and approximation methods were developed in order to predict
values of spatial phenomena at unsampled locations. For a review of the interpola-
tion methods utilized in Geosciences. In general, the methods can be classified into
two classes depending whether randomness is taken into account:

Deterministic spatial interpolation methods Randomness is not taken into
account. There is no assessment of prediction errors. Examples of such interpolation
methods are: nearest neighbors, triangular irregular network related interpolations,
natural neighbors3, inverse distance weighting, regression models, several spline-
based models and Fourier series interpolation models.

Stochastic spatial interpolation methods Randomness is taken into ac- count.
Assuming random errors, these methods provide an assessment of prediction errors.
This is the key advantage of the stochastic methods. Examples of stochastic (or geo-
statistical) interpolation methods are the several flavors of kriging and its extensions:
Simple, Ordinary, Universal, Block, Indicator etc.

This thesis is motivated by the need for accurate interpolation methodologies that
can help to determine the spatiotemporal variability of well logs data. Thus, below
we introduce spatiotemporal methodologies applied on field data from Burbank oil
field.It is necessary to understand quantitatively the variations in the spatial distri-
bution in order to optimize exploitation plans, correctly assess investment risks, and
timely compensate for spatial variations in the quality of the energy product.

Geostatistical analysis is commonly used for reserves estimation. However, the ex-
ploitation lasts for several years. The price of the product, the oil exploration costs,
the environmental reclamation cost, the cost to expropriate the land and other costs
usually fluctuate significantly during the duration of the exploitation. For example,
the price of grude oil was nearly halved between 5 years now almost 40$ per bar-
rel [17]. Changes in costs or product price could render unprofitable the exploitation
of certain parts of the oil that were considered profitable based on previous economic
estimates thus changing the reserves.

At this point, this chapter introduces the fundamentals aspects of the drilling.Its
covers the basic definitions related to drilling engineers , importance and the proce-
dure for drilling operations.The applications and history of drilling are also outlined.
The systematic approach and the introduction to casing sets are discussed. Finally
, the aspects of sustainable drilling operation will be introduced.

2
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1.2 History of Drilling

Oil and gas drilling are not new, in fact, they have already been occurring for many
centuries. The first evidence of wells purposely drilled for production of hydrocar-
bons, was in China during the 4th century, as well as wells purposely drilled for oil
production in Japan during the 7 th Century. In Europe, the first oil well drilled
activity was found in Pechelbronn, France, in 1745, where petroleum mining from oil
sands had, in fact been taking place since 1498. After that, many wells were drilled,
mostly using rudimentary hand tools, in Europe, North America, and Asia where an
oil well was drilled in 1848 on the Aspheron Peninsula northeast of Baku. Follow-
ing the Baku well, various shallow oil wells were drilled in Europe during the next
decade. Obviously, in this thesis, we are going to describe methods that are com-
pletely different from those prehistoric ones, more modern techniques and equipment
are used nowadays, however it is important to highlight where it all started.

There are many different versions about where the first well of the modern oil indus-
try was drilled. Depending on the historian, locations and dates will vary widely.
Also, there are many different depictions about what should be considered a modern
well and what would differentiate it from a well that, even though it has produced
oil, was not actually drilled having that as a primary goal.

Generally, without dueling about whom, where, and when, which would be rather
ineffectual, we will mention some important milestones and pioneers that have con-
tributed to the advancement of the modern oil industry in those early days. In
1858, in Oil Springs (then part of the township of Enniskillen), Ontario, Canada, a
rudimentary 49-ft (14.93-m) well was dug by James Miller Williams with the inten-
tion to produce “kerosene” for lamps. Even though this is considered to be one of
the pioneer ventures of the North American oil industry, the Williams well did not
represent any significant advance as far as drilling technology is concerned. A true
milestone for the drilling industry and probably the world’s most widely recognized
drilling milestone occurred in 1859. In that year, in Titusville, Pennsylvania, USA,
Edwin L. Drake 1.1 drilled what is, so far as known or documented, the first well
purposely planned for oil in the United States. Even though there is evidence of oil
and gas wells that had been drilled in the United States for as long as 40 years prior
to the Drake well, most of those early wells were actually originally drilled in search
of potable water or brine [23].

1.3 The Drilling Team

Modern well drilling is an activity that involves many specialists and usually var-
ious companies. The expertise and number of engineers and technicians involved

3
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Figure 1.1: Edwin L. Drake (Giddens 1975). Used with permission from the Penn-
sylvania Historical and Museum Commission Drake Well Museum Collection, Ti-
tusville, Pennsylvania. Adapted from [23].

in the planning and execution of a drilling operation will depend on the type of
well being drilled, its purpose, the well location, its depth, and the complexity of
the operation.A well drilled with the purpose of discovering a new petroleum reser-
voir is called an exploration (or wildcat) well. Wildcat wells are the very first ones
drilled in a certain unexplored area. After a wildcat well has shown the potential
of a reservoir to be productive, appraisal wells may be drilled to obtain more infor-
mation about the reservoir and its extension. Once a newly discovered reservoir is
considered economically viable, a development plan is established and development
wells are drilled to produce the oil and gas present in the reservoir. Besides the
most common exploration and development wells, special wells may be drilled for
a variety of purposes including stratigraphic tests and blowout relief presents an
overall classification of wells according to their purpose.

The rights for a company to explore a certain area must be secured before any
activity is carried out. Due to the high risk involved in the business, it is not
uncommon to have two or more companies forming a consortium for the venture.
Normally in that case, one company—the operating partner—will lead the operation
while the other partners, who will have proportional participation in all expenses
and profits, may or may not have a say on the operational procedures depending
on the clauses accorded in the joint operating agreement (often referred to as the
JOA) [23].

Prior to any drilling activity, seismic and geologic studies are carried out in or-
der to determine the best location for the first exploration well. Those studies are
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Figure 1.2: Cable-tool rig schematic. After Brantley (1940).Figure retrieved from
Adapted from [23].
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Figure 1.3: Well classification.Figure retrieved from [23].

performed by a company’s geological team, which usually is responsible for recom-
mending locations for wildcat wells, while the reservoir team will be responsible,
on a later phase, for locating development wells. In either situation, the drilling
team will be responsible for the planning and execution of the operation including
its budget (cost estimation) and contingency plans. Leading a drilling operation
is not an easy task. Normally, the oil company that owns the exploration rights
for the area, or the operating partner in case of a consortium, assembles a drilling
team that in turn will prepare the detailed well design and the drilling program and
establish operational procedures according to local regulations and the company’s
own health, safety, and environment (HSE) policy. This is done in order to conduct
drilling operations in the most safe, clean, and economical way. The drilling oper-
ation itself generally will be carried out by a drilling contractor that may be hired
specifically for a certain well or on a long-term contract. The contractor will be
responsible for performing the operations according to the well program using the
equipment and procedures specified in the contract 1.4, shows an offshore location
in the North Sea, an operation in western Canada, and another in Brazil’s Amazon
jungle [23].

1.4 Drilling Rigs

Currently, rotary drilling is the standard oil well drilling method for the drilling
industry, with almost all operations being performed by rotary-drilling rigs. Rigs
will vary widely in size, drilling capability, level of automation, and environment in
which they can operate. Nevertheless, the basic rotary-drilling process is the same for
all types of rigs as shown in 1.5, the well is drilled using a bit that, under a downward
force and rotation, breaks the rock into small pieces. The force is provided by the
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Figure 1.4: Drilling operations in the Chinook Field, Gulf of Mexico (courtesy of
Petrobras), Alaska (courtesy of Minerals Management Service), and Brazil’s Amazon
jungle (courtesy of Petrobras).Figure retrieved from [23].
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weight of pipes placed above the drilling bit, while rotation generally is provided at
surface by equipment that rotates the drill string, which in turn transmits rotation
to the bit. As the bit drives into the ground, deepening the well, new pipes are
added to the drill string. The small pieces of rock (cuttings), resulting from the bit
action, are transported to surface by a fluid (drilling fl uid or mud) that is constantly
pumped into the hollow drill string all the way to the bottom of the hole, where
it passes through small orifices placed at the bit, and returns to surface carrying
the cuttings through the annular space formed between the well and the drill string.
Once reaching the surface, the cuttings are separated from the fluid, which is treated
for reuse. Generally, rotary rigs are classified as either land rigs or marine rigs 1.3,
shows rig classification under those categories.

1.4.1 Land Rigs

Land rigs, in a broad sense, can be categorized as conventional and mobile. Mobile
rigs tend to be more easily transported, while the conventional rigs will take longer
to be moved from one location to another 1.6. Conventional rigs normally use a
standard derrick that needs to be built on location before drilling the well and is
usually dismantled before moving to the next location. In the past, quite often the
derrick was left standing above the well after it began production in case workovers
became necessary however, today’s modern rigs are usually built so that the derrick
can be easily disassembled and moved to the next wellsite. There also are special
rigs that are built in a way that rig pieces, when disassembled, will never exceed a
certain weight, allowing transportation by helicopter. Those rigs, also called heli-
transportable rigs, are used in remote areas with no road infrastructure and also on
jungle operations.

Mobile rigs have a cantilever derrick or a portable mast that is raised and lowered as
a whole rather than being constructed piecemeal. The rig-up and rig-down operation
is less time-consuming than on conventional rigs [23].

1.5 Burbank Region

The first oil produced in Osage County was on its eastern line, near Bartlesville,
Oklahoma.This was found at a depth of 1,600 feet, near the base of the Pennsylvanian
series. It is the most widespread and prolific of any oil sand in the county. The
western limit of this sand, as now known, may be shown by a northeast- southwest
line nearly through the center of the county. Because developments started in the
eastern part of the county and worked west, operators, after drilling many dry
holes west of the center of the county, became reluctant to drill even on well-known
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Figure 1.5: The rotary drilling process (Bourgoyne et al. 1991).Figure retrieved
from [23].
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Figure 1.6: Rig with cantilever derrick (Derrick Engineering Company 2010) and
Mobile rig with portable mast (GEFCO 2007),Courtesy of GEFCO .Figure retrieved
from [23]).
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Figure 1.7: Burbank oil Field.Figure retrieved from [36].

anticlines in the western Osage, in which the Burbank field is located. It was not
until the Marland Oil Company drilled in its first well in the Burbank field in May,
1920 [26].

An incorporated town in western Osage County, Burbank is situated just north of
U.S. Highway 60, twenty-two miles west of the Osage County seat of Pawhuska and
122 miles northeast of Oklahoma City 1.7. Burbank was established on the Eastern
Oklahoma Railway in 1903 and evolved as a farming and ranching community. The
town had approximately two hundred residents when oilman Ernest W. Marland
discovered the Burbank oil field north and east of town on May 14, 1920. As a
result, Burbank became a ’boom’ town and a center of oil-field activity [36].

The Burbank Field produced more than thirty-one million barrels of oil in 1923.
The Phillips Petroleum Company and the Sinclair Oil and Gas Company built large
refineries near town 1.8. Burbank declined with the oil boom during the Great
Depression. Agriculture subsequently supported the local economy.Burbank was a
community of 155 citizens in 2000 [36].

1.5.1 Burbank Stratigraphy

The stratigraphy of Osage County has been so thoroughly studied by all of the
oil companies operating in that district, and also has been described so completely
in several publications, particularly those of the United States Geological Survey,
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Figure 1.8: Oklahoma oil Field.Figure retrieved from [36]

that space will not be taken here to describe the different members in detail ??.
The surface rocks of the entire county, with the exception of a small area in the
northwest part, are of Pennsylvanian age Permian rocks overlie the Pennsylvanian
conformable in that area. The contact of the Permian and Pennsylvanian extends
northeast and southwest, through the eastern side of the Burbank field, so that
most of the limestones used in working the surface structure are of Permian age.
The total thickness of the Pennsylvanian series in Osage County is about 2,900 feet.
It contains several different producing horizons in different parts of the county, be
one field producing from several horizons at the same time [26], [36].
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Chapter 2

Reservoir Characterization

Omnia bona quoad perfora
”All prospects look good until
drilled”

Motto used by Anadarko in
1994 following their sub-salt

drilling in the Gulf of Mexico

2.1 Preliminaries

As reservoir is defined as a porous, permeable and sedimentary rock which contains
an economically exploitable concentration of hydrocarbons. It is surrounded by
impenetrable rock (cap rock) and usually by a aquifer. Most reservoir rocks are
sandstones and carbonates. These consist of a solid structure (matrix) and a pore
space that include both fissures and fractures of the rock. When filling the reservoir,
oil or gas migrating from the parent rock displaces some of the pre-existing water
in the pores. However, some of the water remains in the porous space in contact
with the hydrocarbon phase. Therefore, the part of the rock whose porous space is
occupied by hydrocarbons and residual water can be defined as a reservoir. The main
properties of the permeable rock that make the amount of hydrocarbons exploitable
are the high permeability and the high porosity of the rock as well as the saturation
in fluids.
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Figure 2.1: Stages of hydrocarbon creation with total a oil and Gas geological back-
ground Figure retrieved from [28].

2.1.1 Creation of liquid hydrocarbons

Organic residues of plants and marine organisms have been maintained without
contact with oxygen in sedimentary layers 2.1. During the first stage of their
transformation, microorganisms convert part of the organic material into methane.
As the depth of the layer increases, the temperature increases at the same time,
resulting in the inhibition of the microbial activity corresponding to the end of the
transgenesis. At that time the thermal transformations become significant and the
formed kerogenes degraded in the early stages of degeneration into smaller and more
volatile molecules the bitumens which in turn are converted into smaller molecules
of liquid and gaseous phase [34].

2.1.2 Immigration of hydrocarbons

The formation of hydrocarbon molecules in the sedimentary rocks creates an in-
crease in the pressure in the formation which, when it exceeds the strength of the
rock, forms cracks through which quantities of hydrocarbons are discharged into
the surrounding space. These cycles, that is to say an increase in the pressure of
the parent rock-cracking-discharge of hydrocarbons, can be repeated many times
during maturation. Primary migration is very slow and occurs through a porous
medium usually poorly permeable until the hydrocarbons encounter more favorable
flow conditions, so that secondary migration becomes much faster [34].

The flow of hydrocarbons into the permeable layers during secondary migration
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Figure 2.2: Schematic Integration’s of all relevant data that create a reservoir inter-
polation Figure retrieved from [20]

is mainly regulated by gravity forces because hydrocarbons having a lower water
density than formation water displace them downward while they move upward.

2.1.3 Classification of hydrocarbon reservoirs

The classification of hydrocarbon reservoirs is based on the fluid contained inside
them. Oil reservoir: In oil reservoirs, the temperature of the reservoir is lower than
the critical temperature of the liquid contained in it. Gas reservoir: In gas reservoirs,
the temperature of the reservoir is higher than the critical temperature of the fluid
contained in it.

Near-Critical Reservoir: In reservoirs at the critical point, the temperature of the
reservoir is close to the critical temperature of the fluid contained in it. At the
critical point, the phases of the phases disappear.

2.1.4 Storage conditions

The prerequisites for the creation of a commercially exploitable hydrocarbon concen-
tration are: a mature parent rock, a rock / reservoir, an migration channel between
the parent rock and the reservoir as well as an impenetrable cap-rock superstructure.
Finally, it is necessary to create conditions for trapping hydrocarbons 2.2.

Reservoir pressure: the fluid pressure contained in the porous medium is divided
into normal , Abnormal Pressure and Subnormal Pressure.

15
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Normal pressure : at a given depth is the hydrostatic pressure of a water column
from the surface to the formation. It can be considered that the normal pressure is
equal to the hydrostatic pressure of the water in the pores of the formation.

The concentration of salt in the water affects the hydrostatic pressure as the value
of the pressure level depends on the density of the water and the temperature. This
price for clean water is 9.79 kPa / m (0.433) while the usual price range for reservoir
water is from 10 kPa / m (0.442) to 10.59 kPa / m (0.478). Excessive pressure at
a given depth means that the pressure is greater than the hydrostatic pressure of a
water column (normal pressure). These pressures are dangerous when the drilling
pressure of the formation is higher than the pressure inside the well. Then, the extra
pressure (kick) will be channeled into the drilling system and can cause complete
loss of the well as well as losses in human resources. One mechanism responsible
for the overpressure observed in many reservoirs is the rapid compression of slate,
the bound water of which does not manage to escape in order to restore hydrostatic
equilibrium. There have also been reports of hypertension due to the weight of ice
from glaciers buried above the deposit. Deep pressure at a given depth means that
the pressure is lower than normal pressure and may potentially cause loss-circulation
problems of drilling mud.

Trapping

The upward movement of the hydrocarbons migrating continues until the flow en-
counters impermeable rock where the capillary inlet pressures in the pores can not
be overcome by the buoyancy forces.

The traps of hydrocarbon fluids are either structural, such as antigens, transitions,
salt blocks, etc., or stratigraphic. In order for a deposit to be exploitable, the
formation of the rock should create traps in which large quantities of oil have accu-
mulated [34].

Detection

The detection of hydrocarbon reservoirs is carried out in various stages and by
various research methods distinguished in :

• Surface research

• Geological research

• Geophysical research

Surface research can only provide clues, while geological research is the first phase
of the systematic search for oil. Of particular importance is the correlation of the
geological formations of the area under investigation with the corresponding forma-
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tions of neighboring oil producers, which have therefore been studied intensively.
Finally, geophysical research, with its three basic methods (magnetic, gravitometric
and seismic), gives extraordinarily interesting information on the geological struc-
ture of the subsoil before even the extremely expensive exploration drills are carried
out.

Research drilling - test

After the results of the above research efforts have been taken into account and
evaluated, and if no obvious evidence arises, the point at which the first drilling will
take place is chosen. The drill rig with all the auxiliary equipment is installed in the
correct position and the preparations are completed.

The four basic functions that take place during the drilling are [34]:

• Hoisting,

• Rotating,

• Circulating,

• Controlling,

2.1.5 Well logs

Drilling evaluation techniques are beneficial and allow a real-time characterization
of the drilled formations. These techniques require expensive high-technology sen-
sors to be inserted in the bottomhole assembly, while performing high resolution
records [1], [31], [40]. For this reason, a brief introduction of the main types of logs
will be presented.

Wireline Logging

This mechanism is a continuous measurement of formation properties with elec-
trically powered instruments to infer properties and make decisions about drilling
and production operations. The record of the measurements, typically a long strip
of paper, is also called a log. Measurements include electrical properties (resistiv-
ity and conductivity at various frequencies), sonic properties, active and passive
nuclear measurements, dimensional measurements of the wellbore, formation fluid
sampling, formation pressure measurement, wireline-conveyed sidewall coring tools,
and others.

For wireline measurements, the logging tool (or sonde) is lowered into the open well-
bore on a multiple conductor, contra-helically armored wireline cable. Once the tool
string has reached the bottom of the interval of interest, measurements are taken
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on the way out of the wellbore. This is done in an attempt to maintain tension on
the cable (which stretches) as constant as possible for depth correlation purposes.
(The exception to this practice is in certain hostile environments in which the tool
electronics might not survive the downhole temperatures for long enough to allow
the tool to be lowered to the bottom of the hole and measurements to be recorded
while pulling the tool up the hole. In this case, ”down log” measurements might be
conducted on the way into the well, and repeated on the way out if possible.) Most
wireline measurements are recorded continuously while the sonde is moving. Cer-
tain fluid sampling and pressure-measuring tools require that the sonde be stopped,
increasing the chance that the sonde or the cable might become stuck.[7]

Logging While Drilling (LWD)

The Logging-While-Drilling (LWD) formation evaluation sensors acquire downhole
data while drilling, collecting mainly petrophysical data. The measuring elements
are part of the instrumented Bottom Hole Assembly, also called BHA, the drilling
collars; pulses of the signals are transmitted to the surface via the mud column. 2.3

The advantages of LWD are:

1. Access to real time information.

2. Mud invasion does not have an effect on measurements.

3. The LWD tools is more serviceable for collecting data from tough structural
envi- ronments, such as deviated wells, horizontal wells or an unstable borehole.

4. The LWD sensor provides information about the well’s placement and stability
while minimizing the risk of a stuck pipe, thus a safer and more efficient hole
is drilled.

However, there are factors restricting the LWD tool’s efficiency and those are men-
tioned below:

1. Data transmission/recording may be affected by the speed’s telemetry or by
the existence of pumped mud into the drill string.

2. Limited memory size.

3. Most LWD tools are powered by batteries with limited battery life that fluc-
tuates from 40 to 90 hours depending on the tool.

4. LWD tool’s placement in the bit have to be taken into consideration due to
some technical limitations. For instance, ROP’s productiveness and sufficiency
can possible be influenced by the location of the tool in the drill string.

Measurements While Drilling (MWD)
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Figure 2.3: Well logging records the events, subsurface formations, and depth mea-
surements of geologic formations during drilling. Adapted from [38].

The Measurement While-drilling formation evaluation technique measures data which
is near the bit, without interrupting the standard drilling operations. The recorded
information reaches the surface by the exact mechanism of transmission of the LWD
tool (mud pressure pulses) 2.3.

The advantages of MWD are:

1. Real time directional drilling operations monitoring.

2. Advantageous use in wellbore completion.

3. Estimation of drilling formation properties and drilling parameters, such as
the bottom hole pressure, the torque and the weight on the bit, in the interest
of optimizing the drilling process.

2.2 Reservoir Heterogeneity

Reservoir is defined as a variation in reservoir properties as a function of space. 2.5
Ideally, if reservoirs were homogeneous, measuring a reservoir property at any lo-
cation would allow a full description of the reservoir. The properties may include
permeability, porosity, thickness. saturation faults , and fractures, rock and rock
characteristics. For a proper description, these reservoir properties as a function of
spatial location must be predicted. [10]
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Figure 2.4: Burbank well Logs Example. Adapted from [36].

Macroscopic heterogeneities are those measured at a core level. Hence, they
are also called core-level heterogeneities. They include core measurements (such as
relative permeability, porosity, saturation and wettability of the rock), petrophysical
properties (such as permeability and capilary pressure), and some log data.

Microscopic heterogeneities are that measured at a micro. They can also be
called pore-level hecterogeneities. These heterogeneities include pore and grain-size
distributions, openings, and rock lithology and mineralogy.

Megascopic Heterogeneities are the heterogeneities at have the same order of
magnitude as a reservoir simulator gridblock, which is typically several feet in
breadth and the properties measured on this scale include some log data; pressure-
transient data, such as repeat formation tests (RFTs); and residual-oil-saturation
measurements with single well-tracer tests. Some seismic data can also be considered
to be on this scale.

Gigascopic heterogeneities are those measure data and inter-well reservoir scale
.The properties measured on this scale include permeability measurements from well-
test and inter-well tracer tests. In addition, surface seismic data and major fault
locations also can be considered of gigascopic heterogeneities.

Effect on Reservoir Performance

The scales of heterogeneities are also important because different heterogeneities af-
fect reservoir performance differently. Microscale heterogeneities create preferential-
flow-path channels. These are pore-level heterogeneities. Because of pore-level het-
erogeneities, displacing fluids may take preferential paths and by pass some hydro-
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2. Reservoir Characterization

Figure 2.5: Scales of Reservoir Heterogeneities.Figure retrieved from [37].
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Reservoir Heterogeneity

Figure 2.6: Vertical heterogeneities. a)top-view, b)front-view. Figure retrieved
from [21]

carbons. Figure 2.6 shows the impact of vertical heterogeneities. The hydrocarbons
left behind result in a reduced displacement efficiency: the higher the amount the
lower the displacement.

The displacement efficiency directly impacts the the reservoir. The oil behind is
called trapped or residual oil. For a typical water-wet reservoir in a dual-pore system.
Waterenters the smaller pore, displaces the oil from it. and leaves oil behind in the
larger pore.Once water forms a continuous path, the discontinuous oil left behind
can be displaced only by modifying the capillary forces between oil and displacing
fluid

Microscale and megascale heterogeneities results in preferential paths for displac-
ing fluids on a larger scale. Owing to stratification in the vertical direction, oil in
preferentially displaced by the displacing fluid. 2.7 The displacing fluids moves pref-
erentially throught hight permeability regions, leaving behind significant amounts of
oil in the lower-permeability strata. Because of the proferential flow paths, the dis-
placing fluids reaches the producing well without reaching all parts of the reservoir.
Once preferential paths are established, the displacing fluid short-circuits throught
these paths, leaving behind bypassed oil [10].

Gigascopic heterogeneities cause some oil sources to remain uncontacted 2.9. These
sand lenses are not connected with each other. If a drilled well intersects any of
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2. Reservoir Characterization

Figure 2.7: Effect of gigascopic Heterogeneities on Performace.Figure retrieved
from [10].

these lenses, the hydrocarbons can be produced from these lenses. However, if the
lens is not in contact with any of the drilled wells, the oil in that lens cannot be
extracted unless an infill well is drilled. The oil left behind in the isolated parts of
the reservoir is called untapped oil. Extraction efficiency of these reservoirs can be
improved by drilling infill wells [10].

2.3 Oil Terminology

2.3.1 Net pay zone

Net pay (net productive) is thickness of those intervals in which porosity and per-
meability are known or supposed to be high enough for the interval to be able to
produce oil or gas.2.8 Water and gas is not included to the net pay thickness [3].

2.3.2 Gross thickness zone

Gross thickness (also referred to reservoir thickness) its thickness of stratigraphically
space in which the reservoir beds occur. In other words, it’s thickness of the whole
reservoir. Also its common another terminal Net oil bearing thickness, it includes
those intervals in which oil is present in such saturation that the interval may be
expected to produce oil, if penetrated by a properly completed well [3].

2.3.3 Porosity

Porosity is defined as a measure of the capacity of reservoir rocks to contain or store
fluids. The fluids stored in the pore spaces within the reservoir rocks could be gas,
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Figure 2.8: Gross thickness and net thickness.Figure retrieved from [3].

oil, and water. High porosity values indicate high capacities of the reservoir rocks to
contain these fluids, while low porosity values indicate the opposite. Consequently,
porosity data are routinely used qualitatively and quantitatively to assess and esti-
mate the potential volume of hydrocarbons contained in a reservoir. For instance, in
a discovery well that shows the presence of hydrocarbons in the reservoir rocks, the
set of data that is reviewed at least qualitatively to evaluate reservoir potential is
porosity data acquired with either logging-while-drilling (LWD) tools or by running
wireline tools. Porosity data are obtained from direct measurements on core samples
and/or indirectly from well logs. In most cases, porosity data from core samples are
used to validate or calibrate porosity data from well logs. Porosity data are also
used in reservoir characterization for the classification of lithological facies, and the
assignment of permeabilities using porosity-permeability transforms. Since porosity
data are very important in many reservoir engineering calculations, this book begins
by reviewing basic concepts in the determination of rock porosities. This review is
concise and serves to refresh the reader with the many sources of porosity data that
exist through applications of different formation evaluation tools. [10]
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Figure 2.9: Heterogeneities can be measured from small-scale measurement of grain-
size distribution at a microscopic level to large-scale geological at a basin level.Figure
retrieved from [10].

2.3.4 Determining permeability

Point-by-point permeability values are needed over the reservoir interval at the well-
bores for several purposes. First, the distribution and variation of the permeabilities
are needed by the engineers to develop completion strategies. Second, this same in-
formation is needed as input to the geocellular model and dynamic-flow calculations
(e.g., numerical reservoir-simulation models). For both of these, the first consid-
eration is the location of shales and other low-permeability layers that can act as
barriers or baffles to vertical flow. A second consideration is the nature of the
permeability variation (i.e., whether the high - permeability rock intervals occur in
specific layers and the low - permeability intervals occur in other layers, or that there
is so much heterogeneity that the high and low-permeability intervals are intimately
interbedded with each other). [10]

2.3.5 Oil formation volume factor

The volumetric coefficient of formation of a liquid phase (Oil Formation Volume Fac-
tor or Bo or FVF) is defined as the ratio of the volume occupied by a liquid mixture
(including dissolved gases) in the conditions of formation (Vo in reservoir conditions
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) to the volume of liquid that will remains after the mixture has normalized on the
surface (Vo in standard barrels) (when dissolved gases have been released). [34]

V0
RES

V0
STB

(
bbl

STB
) (2.1)

The rate takes values greater than the unit. For pressures above the saturation point
it increases decreasing pressure while below the boiling point it decreases.

2.3.6 Water saturation

The fraction of water in a given pore space. It is expressed in volume/volume,
percent or saturation units. Unless otherwise stated, water saturation is the fraction
of formation water in the undisturbed zone. The saturation is known as the total
water saturation if the pore space is the total porosity, but is known as effective water
saturation if the pore space is the effective porosity. If used without qualification,
the term usually refers to the effective water saturation.

Water saturation (Sw) estimates are of prime importance for reserves estimation,
reservoir development and reservoir management. Traditionally, Sw has been de-
rived from the Archie equation with formation resistivity or thermal neutron capture
cross-section (Sigma, S) in stand-alone mode. Either the resistivity or S approach
requires good knowledge of formation water salinity which can be difficult, particu-
larly in instances of unknown and/or mixed salinities. When resistivity and S-logs
are unaffected by fluid invasion, one can simultaneously compute Sw and salinity
from the two measurements as has been done recently using wireline logs acquired
in flowing wells.[25]

Most oil and gas reservoirs are water wet; water coats the surface of each rock grain.
A few reservoirs are oil wet, with oil on the rock surface and water contained in the
pores, surrounded by oil. Some reservoirs are partially oil wet. Oil wet reservoirs
are very poor producers as it is difficult to get the oil to detach itself from the rock
surface. It is fairly easy to take a core sample, clean it and dry it, then make the
rock oil wet. However, reservoir rocks are seldom clean and dry, so that same rock
in situ will often be water wet.

2.4 Original Oil In Place (OOIP)

The volume of hydrocarbon contained in a reservoir is a function of pore volume
and water saturation (Sw). Reservoir size and porosity determine pore volume.
Pore throat size (see Pore and pore throat sizes) distribution, pore geometry, and
hydrocarbon column height determine Sw. Estimating hydrocarbon volume in place
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Figure 2.10: Volumetrics is an integration of geological fluid and the modeled rela-
tionships.Figure retrieved from [39].

before drilling a well is a matter of predicting pore volume and Sw. Recovery of
hydrocarbons depends on the efficiency of the reservoir drive mechanism. Predicting
recovery depends on predicting reservoir quality and reservoir drive. 2.10

OOIP =
7.758 · A · h · ng · (φ/100)(1− Sw)

Bo

(2.2)

1. A= is surface area of a block

2. h =gross thickness (m),

3. ng= net to gross ratio

4. φ= porosity (%)

5. Sw= water saturation

6. Bo=formation volume factor

7. 7.758 = conversion factor from acre-ft to bbl

27



Flow unit

2.5 Flow unit

A rock volume with identifiable fluid flow characteristics that can be modeled, in-
cluding heterogeneity or anisotropy as shown in figure 2.11.

Flow units are popular means of characterizing or zoning a reservoir. A flow unit
is defined as a mappable portion of the total reservoir, within which geologic and
petrophysical properties that effect the flow of fluids are consistent and predictably
different from the properties of other reservoir rock volumes. Flow units have the
following characteristics in common:

• A flow unit is a specific volume of a reservoir. It is composed of one or more
reservoir - quality lithologies and any nonreservoir - quality rocks types within
that same volume , as well as the fluids they contain.

• A flow unit is correlative and mappable at the interwell scale.

• A flow unit zonation is recognizable on wireline logs.

• A flow unit may be in communication with other flow units. (However, flow
units based on lithostratigraphic characteristics are not always in pressure
communication.
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Figure 2.11: Four possible conditions for isotropy/anisotropy and homogene-
ity/heterogeneity. Note that what is apparent at one scale may not be apparent
at another. For example, when viewed close up, a sample may appear homogeneous
and isotropic (lower left), yet from afar it may be heterogeneous and isotropic (lower
right). Here, heterogeneity is expressed as bed boundaries.Figure retrieved from [7]
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Chapter 3

Random Fields

G. de Marsily started the defense of his hydrogeology thesis by showing the audi-
ence a jar filled with fine sand and announced “here is a porous medium.” Then he
shook the jar and announced “and here is another,” shook it again and said “and yet
another.” Indeed, at the microscopic scale the geometry is defined by the arrange-
ment of thousands of individual grains with different shapes and dimensions, and
it changes as the grains settle differently each time. Yet at the macroscopic scale
we tend to regard it as the same porous medium because its physical properties do
not change. This is an ingenious illustration of the notion of a random function in
three-dimensional space

3.1 Geostatistics

Geostatistics is a class of statistics used to analyze and predict the values associ-
ated with spatial or spatiotemporal phenomena. It incorporates the spatial (and
in some cases temporal) coordinates of the data within the analyses. Many geo-
statistical tools were originally developed as a practical means to describe spatial
patterns and interpolate values for locations where samples were not taken. Those
tools and methods have since evolved to not only provide interpolated values, but
also measures of uncertainty for those values. The measurement of uncertainty is
critical to informed decision making, as it provides information on the possible values
(outcomes) for each location rather than just one interpolated value. Geostatisti-
cal analysis offers mechanisms to incorporate secondary datasets that complement
a (possibly sparse) primary variable of interest, thus allowing the construction of
more accurate interpolation and uncertainty models [4], [14].

Geostatistics is widely used in many areas of science and engineering, for example
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in climate [2],reserves estimation [12] , Renewable energy studies [11].

The mining industry uses geostatistics for several aspects of a project: initially to
quantify mineral resources and evaluate the project’s economic feasibility, then on
a daily basis in order to decide which material is routed to the plant and which is
waste, using updated information as it becomes available [12].

In the environmental sciences, geostatistics is used to estimate pollutant levels in
order to decide if they pose a threat to environmental or human health and warrant
remediation.

Relatively new applications in the field of soil science focus on mapping soil nutri-
ent levels (nitrogen, phosphorus, potassium, and so on) and other indicators (such
as electrical conductivity) in order to study their relationships to crop yield and
prescribe precise amounts of fertilizer for each location in the field [22].

Meteorological applications include prediction of temperatures, rainfall, and associ-
ated variables (such as acid rain). Most recently, there have been several applications
of geostatistics in the area of public health, for example, the prediction of environ-
mental contaminant levels and their relation to the incidence rates of cancer,[2].

In all of these examples, the general context is that there is some phenomenon of
interest occurring in the landscape (the level of contamination of soil, water, or air
by a pollutant; the content of gold or some other metal in a mine; and so forth).

Exhaustive studies are expensive and time consuming, so the phenomenon is usually
characterized by taking samples at different locations. Geostatistics is then used to
produce predictions (and related measures of uncertainty of the predictions) for the
unsampled locations[15],[14],[4].

3.2 Random field

A random field (RF) is characterized by its finite-dimensional distributions (also
called here spatial distribution for short), namely the set of all multidimensional
distributions of k-tuples (X(s1), X(s2), ..., X(sk)) for all values of k and all con-
figurations of the points s1, s2, ..., sk. Even if a very large number of realizations
of a random function were available, the combinatorial possibilities are such that,
in practice, one could calculate sample multidimensional distributions only for the
simplest k-tuples. When a single realization is available, which is the common case,
these distributions cannot be determined, except under an assumption of station-
arity which introduces repetition in space: Two configurations of points that are
identical up to a translation are considered as statistically equivalent. Since the
sample points are unevenly distributed, the only (nearly) identical configurations
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that can be found are pairs of sample points. A large part of the book is therefore
dedicated to methods involving only the knowledge of two point statistics [4].

The complete knowledge of the multivariate distributions, required for the nonlinear
techniques. For linear methods, which are the most widely used, it suffices to know
the second-order moments. These are the focus of the present chapter [4].

The main tool is the variogram. We will distinguish three main definitions:

• The variogram of the random function, or theoretical variogram, whose knowl-
edge is required for further analysis

• The variogram of the regionalized variable, or regional variogram, which could
be calculated if we knew the value of the regionalized variable at every point
of its domain of study and

• The sample variogram, which can be calculated from the data.

Our task can therefore be split into two phases:

• Compute a sample variogram that best approximates the regional variogram
and

• Fit a theoretical model to this sample variogram.

In applications, a sample is usually not a point but a volume such as a core, that is,
a piece of rock characterized by its shape, size, and location. Shape and size define
the support of the sample. If it is very small and the same for all the data we can
assume it as a point. We will adopt that point of view throughout this thesis [4].

3.3 Randomness

Randomness characterizes phenomena in which the knowledge of a situation with ab-
solute precision its impossible due to various constraints. Some of these constraints
are intrinsic due to the intense spatial and temporal variability of the phenomenon
or imposed by the experimental process (limited resolution, accidental errors), or
caused by fluctuations in environmental factors (eg. temperature and humidity).
In these cases, the value of the measured property at various points in the space is
determined by a probability distribution function, which determines the probability
of occurrence for each possible result [15].
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3.4 Spatial interpolation

Its usual to estimate the values of a regionalized variable at places where it has not
been measured. Typically, these places are the nodes of a regular grid laid out on
the studied domain, the interpolation process being then sometimes known as “grid-
ding.” Once grids are established, they are often used as the representation of reality,
without reference to the original data. They are the basis for new grids obtained
by algebraic or Boolean operations, contour maps, volumetric calculations, and the
like. Thus the computation of grids deserves care and cannot rely on simplistic in-
terpolation methods. The estimated quantity is not necessarily the value at a point,
in many cases a grid node is meant to represent the grid cell surrounding it. This
is typical for inventory estimation or for numerical modeling. Then we estimate the
mean value over a cell, or a block, and more generally some weighted average [4].

In all cases the goal is for the estimates to be “accurate.” This means, firstly, that
on the average our estimates are correct, they are not systematically too high or too
low.

This property is captured statistically by the notion of unbiasedness. It is especially
critical for inventory estimation and was the original motivation for the invention of
kriging. The other objective is precision, and it is quantified by the notion of error
variance, or its square root the standard deviation, which is expressed in the same
units as the data. The geostatistical interpolation family of kriging is composed by
different methods, such as: simple kriging, ordinary kriging, universal kriging, in-
trinsic kriging, and so on, depending on the underlying model. The general approach
is to consider a class of unbiased estimators, usually linear in the observations, and
to find the one with minimum uncertainty, as measured by the error variance. This
optimization involves the statistical model established during the structural anal-
ysis phase, and there lies the fundamental difference with standard interpolation
methods: These focus on modeling the interpolating surface, whereas geostatistics
focuses on modeling the phenomenon itself [4].

3.5 Covariance

The Covariance function, or simply covariance cx(s1, s2) of a random field X is a
measure of how much the fluctuation of the field at point s1 influences the fluctuation
of the field at the point s2 [18], [41].
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Cx(s1, s2) = E[(X(s1)− E[X(s1)])(X(s2)− E[(X(s2)])] =

E[X(s1)X(s2)]− E[X(s1)]E[(X(s2)] (3.1)

in the above E[·] denotes the expectation over the ensemble of the random field
states. If follows from equation (3.1) that c(0) = σ2 , where σ2 is the variance of the
random field X. For two random vectors X1,X2, the covariance matrix is [18][41]

C(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])
T ] = E[X1X

T
2 ] − E[X1]E[X2]

T , (3.2)

where XT is the transpose of vector X. The element Ci,j of the covariance matrix is
equal to the covariance C(Xi, Xj) as defined in equation [18], [41].

3.5.1 Covariance Versus Variogram

We will consider two classes of random functions: stationary random functions and
intrinsic random functions. Throughout thesis, unless stated otherwise, stationar-
ity means second order stationarity. Covariance of a Stationary Random Function
[15], [4].

A stationary random function (SRF) Z(x) is characterized by its mean

m = E[Z(x)] (3.3)

and its covariance function (or covariance for short)

C(r) = E[Z(x)−m][Z(x+ r)−m] (3.4)

3.6 Statistical homogeneity

A random field X(s) is statistically homogeneous in the weak sense if the mean
value (expectation) is constant, meaning that mX(s) = mX and the covariance
function depends only on the distance vector r = s1 − s2 between two points i.e.,
cX(s1, s2) = cX(r). The second condition guarantees that the variance of a statisti-
cally homogeneous field is constant. Hence, the dependance of the value of random
field X(s) on other locations si, is determined only by the distance between si and
s and not by the actual coordinates of these locations [35], [4], [14], [16].
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These above conditions define statistical homogeneity in the weak sense. A random
field is statistically homogeneous in the strong sense if the multidimensional for N
points, where N is any positive integer, remains unchanged by transformations that
change the location of the points without changing the distances between them.
Practically, statistical homogeneity implies that there are no spatial trends, so that
the spatial variability of the field can be attributed to fluctuations around a constant
level equal to the mean value. In practice it is difficult [8], [4].

3.6.1 Statistical isotropy

Isotropy implies uniformity in all directions. A field is statistically isotropic if it is
statistically homogeneous and its covariance function depends only on the distance
r, but not on the direction of the distance vector r. Therefore, if the covariance
function is isotropic, the field is by definition statistically homogeneous, but not
vice versa [14], [15].

3.6.2 Statistical anisotropy

Anisotropy On the contrary, implies that the spatial variability depends on the di-
rection. The covariance of an anisotropic random field depends on both the distance
r and the direction of vector r. A random field is considered anisotropic if the
directional covariances have different sill or correlation length values [14], [15].

3.6.3 Trend model

Random fields can be represented as X(s) = mX(s) + X ′(s). The function mX(s)
is the trend function that represents the deterministic spatial correlations between
the data, which are usually of long range. X ′(s) is a random field that corresponds
to the fluctuations of X(s) around the trend. The expectation of the fluctuation is
E[X′(s)] = 0.

In many applications there is no theoretical evidence to suggest a particular type
of analytic trend model. Because the concept of trend mX(s) is usually associated
with a smoothly varying component of the variability of X(s) in space, it is typically
modeled with low-order polynomials [14], [15].
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3.6.4 Trend removal

Sometime its common to take into consideration that the data gathered through
logging is liable to sampling or measurement error. That is, real data often exhibit
more complicated trend models. By means of simplicity, the trend function ux will
be modelled by low-order polynomials of the coordinators of the series data points
in order to ensure consistency of interpretation of the spatial direction in the data.
On the other hand, to examine under which possible circumstances the effect of a
trend on a variogram might be by-passed to allow a sufficient analysis of the data.
In following figure some common 1D trend models are shown. The selection of the
best trend model is done by means of Least Squares Errors (LSE).

Model Equation

Mean ux = a0
Linear ux = a0 + a1x

Quadratic ux = a0 + a1x+ a2x
2

Cubic ux = a0 + a1x+ a2x
2 + a3x

3

Quartic ux = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

Table 3.1: Common models of trend functions (1D)

3.6.5 Variogram models

Geostatistical analysis is based on the variogram function γ(s, s+ r), where s is the
position vector and r the lag (distance) vector. The variogram describes the spatial
correlations of the spatial random field X(s). It is defined by means of the following
equation in which E[·] denotes the expectation over the ensemble of the random field
states [14], [15], [4].

γ(r) =
1

2
E[{X(s)−X(s+ r)}2] (3.5)

In equation it is assumed that the random field is either statistically stationary or
that it has stationary increments, so that the variogram depends only on r and not
on s. For the quality parameters of coal this assumption is generally true. If the
random field is stationary, the variogram function is connected to the covariance
C(r) as follows [14], [15], [4].

γ(r) = C(0)− C(r) (3.6)
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It follows from equation that γ(0) = 0. As explained in section 2.1.2, C(0) = σ2,
where σ2 is the variance of the random field. As |r|→ ∞, C(r) → 0, hence the
variogram of a stationary random field has a sill equal to the variance σ2 of the
random field. In practice, the experimental variogram, which is estimated from
the data, may show a discontinuity at the origin equal to C0. This represents
unresolvable fluctuations or measurement errors and is known as the nugget effect,
where C0 is the nugget variance. The correlation length or characteristic length is
a normalization parameter of the distance r thus defining the interval within which
the field value at one point significantly affects the value at another point [35],
[15], [4], [14], [5].

Nugget

The existence of nugget effect (or nugget) (as referred in figure: 3.1) is related to
the fluctuation of the short range variability in the data. The nugget is equal to the
intersection of the variogram with the y-axis of the graph. If the nugget is larger in
comparison with the sill then that indicates too much noise and really small spatial
correlation. Notice that below the intersection point no information can be obtained
for interpretation [40].

Sill

The sill (as referred in figure: 3.1) of a variogram is the inflection point of the
curve at which levels off and represents the variance of the variables. Positive or
negative spatial correlation occurs when the data points are below or above the sill,
respectively. The existence of trends in the data can be indicated by the behavior
of the variogram curve based on the sill. In that case, the trends have to be proceed
accordingly [40].

Range

The distance (as referred in figure: 3.1) at which the variogram’s value points level
off to the sill is known as the range and is a maximum correlation length estimation
between two sampling points at separation distance h. One remark is that spatial
correlation can be calculated if the point distances are greater than the range, but
is practically zero [40].

3.6.6 Theoretical variogram model

To emulate the variogram at any distance, theoretical variogram models are fit on the
experimental variogram.Some commonly used theoretical variogram models include
the exponential, gaussian and spherical models.
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Figure 3.1: The three principal parameters of the variogram [40]

Their respective equations are listed below. The symbol σ2 denotes the variance,
‖r‖ is the Euclidean norm of the lag vector r, and ξ is the correlation length [15], [4],
[5], [14], [8].

Exponential
γ(r) = σ2[1− exp [(−||r||/ξ)] (3.7)

Gaussian
γ(r) = σ2[1− exp [(−||r||2/ξ2)] (3.8)

Spherical

γ(r) =

{
σ2[1.5(||r||/ξ)− 0.5(||r||/ξ)3], if ||r||≤ ξ

σ2, if‖r‖≥ ξ
(3.9)

3.6.7 Kriging

Kriging involves a family of stochastic spatial interpolation methods that can be used
to estimate the value of a random field X(u) at an unmeasured point u by means
of a linear combination of the measurements at n nearby points s1, ...sn. These
points ideally involve all the sampling locations. If this choice leads to too-heavy
computational load, the neighboring points are restricted to those found within a
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kriging neighborhood which is defined by the user. The estimation process is usually
repeated at every node of a grid suitably defined for the particular application. This
allows the creation of maps representing the isolevel contours of the random field.
For example, if the yearly precipitation is measured in a few stations distributed
in an area, kriging methods can be used to create a map of precipitation in a grid
that encompasses the entire area. These maps can be accompanied by an estimate
of reliability, which determines the uncertainty of the estimation at each point. The
predicted value of the field at the estimation point is expressed according to the
following linear combination: [4], [14], [29], [35], [6].

X̂(u) =
∑n

i=1
λiX(si). (3.10)

In equation ...., X̂(u) is the estimation at the unmeasured point u, and λi are linear
weights that correspond to each of the n points in the kriging neighborhood. The
prediction error is ε(u) = (X(u) − X̂(u)). In kriging methods, the linear weights
λ(i) are calculated by minimizing the error variance of equation

σ2(u) = V ar[X(u)−X ′(u)]. (3.11)

The variance may be minimized under constraints as in the case of ordinary kriging.
This leads to a linear system of equations which is expressed in terms of the co-
variance or the variogram. In contrast with deterministic methods, such as inverse
distance weights, Kriging provides a measure of prediction uncertainty based on the
kriging variance σ2(u)

3.6.8 Simple kriging

Simple kriging(SK) is applied if the mean mX is known and constant throughout
the random field, i.e. (E[X(s)] = mX). If X ′(s) = X(s)−mX , the kriging estimator
is defined by the following equation: [15], [35], [5]

X̂(u) = mx +
∑n(u)

i=1
λiX

′(si). (3.12)

Since E[X ′(s)]=0 by definition the error variance of equation becomes

σ2(u) = E[{X(u)−X ′(u)}2] (3.13)
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After minimization over the weights, the system of n(u) linear equations used to
calculate the linear kriging weights λi is expressed by the system of equations shown
in ∑n(u)

j=1
λjcx(si − sj) = cx(si − u), i = 1, ..., n(u). (3.14)

The above system of linear equations may also be expressed as the matrix.

Ci,jλi = Ci,u (3.15)

The matrix Ci,j , represents the covariance matrix between the data points.

The vector Ci,j represents the values of the covariance function between the

sample points si and the estimation point u. Since cx(0) = σ2
x, the linear system is

equivalent to


σ2 . . . cx(s1 − sn)

cx(s1 − sn) . . . cx(s1 − sn)
...

...
cx(s1 − sn) . . . σ2

x

 ·

λ1
λ2
...
λn

 =


cx(s1 − u)
cx(s2 − u)

...
cx(sn − u)

 (3.16)

The reliability of the prediction is determined by the square root of the variance of
the estimation error σ2 (u). The quantity σE,SK(u) is the standard deviation of the

Gaussian distribution that describes the random variable X̂(u) .

σ2
E,SK(u) = σ2

x −
∑n(u)

i=1

∑n(u)

j=1
Cu,iC

−1
i,j Cj,u (3.17)

3.6.9 Ordinary kriging

Ordinary kriging (OK) is applied if the mean mX(u) is constant but unknown inside
the local neighborhood of the estimation point. The mean mX(s) may vary from
neighborhood to neighborhood if the ordinary kriging is not applied over the entire
domain [5], [14], [29], [35], [6]. The unknown local mean is removed from the
linear estimator by forcing the sum of the kriging weights to be equal to one. This
constraint enforces the zero bias condition. The ordinary kriging estimator X̂(u) is
thus written as

X̂(u) =
∑n(u)

i=1
λiX(si). (3.18)
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with
∑n

i=1
λi = 1 (3.19)

In the case of ordinary kriging, the minimum mean square error should be calculated
using the constraint imposed by the zero bias condition of equation 3.21. The
minimization of the error variance under the zero bias condition makes use of the
Lagrange multiplier method for constrained optimization [18]. These conditions
lead to the linear system of equations 3.20 and 3.21 for the linear weights, where the
constant µ is the Lagrange parameter [4], [14] , [29], [35] , [6].

n(u)∑
j=1

λjcx(si − sj) + µ = cx(si − u), i = 1, ..., n(u). (3.20)

∑
i=1n(u)

λi = 1 (3.21)


σ2 . . . cx(s1 − sn) 1

cx(s1 − sn) . . . cx(s1 − sn) 1
...

...
cx(s1 − sn) σ2

x . . . 1
1 . . . 1 0

 ·

λ1
λ2
...
λn
µ

 =


cx(s1 − u)
cx(s2 − u)

...
cx(sn − u)

1

 (3.22)

σ2
E,Ok = σ2

x

∑n(u)

j=1
λjcx(si − sj)− µ = cx(si − u), i = 1, ..., n(u). (3.23)

The Lagrange parameter µ is always negative µ < 0. As such, σE,OK(u) is always
greater than σE,OK

3.7 Spatial Model Validation

Cross–validation (CV) —a popular strategy for algorithm selection— is a model
validation technique for assessing the predictive performance of a statistical spatial
model. It is mainly used in settings where the goal is prediction, and one wants
to estimate how accurately a predictive model will perform in practice. The goal
of cross–validation is to estimate the expected level of fit of a model to a data set
that is independent of the data (training sample) that were used to train the model.
It can be based on any quantitative measure of fit that is appropriate for the data
and the model. Most forms of cross–validation are straightforward to implement so
long as an implementation of the prediction method is available. In particular, the
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prediction method needs only to be available as a “black box”; there is no need to
have access to the internals of its implementation [13].

The main idea behind CV is to split data, once or several times, in order to esti-
mate the accuracy and reliability of each algorithm. In leave-p-out cross validation
(LPOCV), part of the data (the training sample) is used for training each algorithm,
while the remaining data p (the validation sample) is used to evaluate the predictive
performance of the algorithm.

Leave–one–out cross–validation (LOOCV or LVO), is a particular case of leave
– p – out cross–validation with p = 1. It can be shown that the CV error estimate
is an almost unbiased estimate of the true error expected on an independent test set
[30]. LVO cross–validation does not face the computational constrains of general
LPO cross–validation because C1

n = n [2].

3.7.1 Validation measures

The spatial model’s performance is evaluated using certain statistical measures.
These measures include the following: the mean error (bias) (ME), the mean absolute
error (MAE), the root mean square error (RMSE), Pearson’s correlation coefficient
(ρ) and Spearman’s (rank) correlation coefficient (rS).

For the following measures, x̂(si) and x(si) are the estimated (based on the N −
1 data that do not include point si) and true value of the field at point si. The
quantity x(si) denotes the spatial average of the data and x̂(si) the spatial average
of the estimates [4], [14], [29], [35], [6].

Mean error (bias) (ME)

The mean error is calculated as follows:

ME = 1/N
∑N

i=1
[x̂(si)− x(si)] (3.24)

This measure calculates the bias of the predictor. Particularly high positive or
negative values of this error imply a systematic error that leads to inaccuracy.

Mean absolute error (MAE)

The mean absolute error is calculated as follows:

MAE = 1/N
∑N

i=1
|x̂(si)− x(si)| (3.25)

This measure calculates the accuracy and precision of the predictor. All individual
differences are weighted equally by MAE.
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Root mean square error (RMSE)

The root mean square error is calculated as follows:

RMSE =

√
1/N

∑N

i=1
[x̂(si)− x(si)]2 (3.26)

RMSE also calculates the accuracy and precision of the predictor. Since the errors
are squared before they are averaged, the RMSE gives a higher weight to large
errors. As such, the RMSE is preferable to MAE when large errors are particularly
undesirable.

Pearson’s correlation coefficient (ρ)

The correlation coefficient, (ρ), is the statistic that is most commonly used to sum-
marize the relationship between two variables. The formula for Pearson’s linear
correlation coefficient (ρ) is

ρx, x̂, =

∑N
i=1[x(si)− x(si)][x̂(si)− x̂(si)]√∑N

i=1[x(si)− x(si)]2
√∑N

i=1[x̂(si)− x̂(si)]2
(3.27)

The correlation coefficient (ρ) provides a measure of the linear relationship between
two variables. This relation can best be illustrated in terms of a scatterplot. If
(ρ) = +1, the scatterplot is a straight line with a positive slope; if (ρ) = −1 , the
scatterplot is a straight line with a negative slope. For |(ρ)|< 1 the scatterplot
appears as a cloud of points that becomes more diffuse as |(ρ)| decreases from 1 to
0. The value of (ρ) is often a good indicator of how successful a linear prediction one
variable from the other with a linear equation would be [4], [14], [29], [35], [6], [41].

Spearman (rank) correlation coefficient (rS)

If the relationship between two variables is not linear, the correlation coefficient may
prove to be a poor summary statistic. Thus, it is useful to supplement the linear
correlation coefficient with another measure of the strength of the relationship, the
rank correlation coefficient. To calculate the rank correlation coefficient, equation
(2.40) is applied to the ranks of the data values rather than to the original sample
values as shown in equation 3.27.

rS = 1−
∑N

i=1(Rxi −Rx̂i)2

N(N2 − 1)
(3.28)
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where Rxi is the rank of xi among all the other x values. The rank is calculated
by sorting the x values in ascending order; the rank of a given value is equal to its
order of appearance in the sorted list. Unlike the traditional correlation coefficient,
the rank correlation coefficient is not strongly influenced by extreme pairs. Large
differences between the two may be due to the location of extreme pairs on the
scatter plot. Differences between (ρ) and (rS) may also reveal that although the
variables are correlated, their relation is not linear [12].

3.8 Inverse Distance Weight Method

A conceptually simple deterministic methods is the so called inverse distance weight-
ing (IDW). It is also known as Shepard’s method from the name of its inventor . In
spite of its simplicity, the method is recommended in the Hydrology Handbook,and
it is commonly used for the estimation of missing data in the Earth sciences [9].

The IDW methods are often applied using a neighborhood of a user-determined
radius around the prediction point u or a number of nearest neighbors to u (i.e.
3 nearest neighbors) to determine a number of N nearby data points with known
values. This simple linear method of estimation assigns the linear weights λi, i =
1, 2, ..., N according to the inverse of the distance rsi,u of si from the prediction point
u. The greater the distance of si from u, the lower the value of the linear weight i
that corresponds to the data point si as shown in equation.

X̂(u) =

∑N
i=1

x(si)

rsi,u∑N
i=1

1

rsi,u

(3.29)

Variations of the method use the inverse of the distance rsi,u raised to a power n as
shown in equation 3.29 to calculate the values of the linear weights like the inverse
distance squared weights (IDS) method that uses r2si,u

X̂(u) =

∑N
i=1

x(si)

r2si,u∑N
i=1

1

r2si,u

(3.30)

The benefit of using IDW methods is their computing simplicity. However the
assumption that dependence of the value X(u) on the values of its neighbors is
reduced with the square of the distance or some other power leads to a less effective
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predictor than the kriging predictors. IDW methods also do not give an estimate of
the uncertainty of the estimation at each point [4] [35] [14] [15].

Properties The properties described in items 1–6 below are derived from the equa-
tions 3.29 and 3.30. The property in item (7) is due to the fact that IDW has a
computational complexity that scales linearly with the sample size N [9].

1. Larger weights are assigned to data points that are closer to X than to more
distant points.

2. Higher values of r increase the relative impact of sample values near X, whereas
lower r values imply more uniform weights.

3. An ”optimal” r value can be obtained using cross validation approaches.

4. If r = 0 the IDW estimate reduces to the sample mean.

5. IDW weights are positive, i.e., rn > 0, and normalized so that their sum equals
one, i.e., Nn = 1 rn = 1.

6. IDW is an exact and convex interpolation method.

7. The computational cost of IDW scales linearly with data size. A cut off radius
may be required for larger data sets, i.e., for N > 103.

8. The method’s shortcomings involve (i) the arbitrary choice of the weighting
function (ii) relatively low accuracy (iii) the lack of an associated uncertainty
measure and (iv) directionally independent weight functions.

IDW gives you explicit control over the influence that distance has over petrophysical
properties; an advantage you don’t have with Kriging.

This method also has its shortcomings such as,

• the assumption of interpolated result quality can decrease

• no account of clustering,

• variogram parameters and scale ignored and can over predict for positively
skewed or high nugget effects.

In view of its shortcomings, Inverse Distance Weighting method is not reliable for
all kinds of deposits hence the emphasis on some aspects.
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Chapter 4

Relation Between
Permeability-Porosity

Simpler theories are preferable
to complex ones.

Occam’s razor

4.1 Introduction

Reservoir characterization can be broadly defined as the process of various reser-
voir characteristics by use of all available data. The description can be qualitative
or quantitative.For these reasons some characteristics include pore and grain-size
distribution, reservoir permeability and porosity are going to be analyzed here.

Into this chapter, we are going to analyze the behaviour in Burbank oil reservoir,
between the correlation of permeability and porosity, as its performed from data
analysis in the lab of Geostatistics in Technical University of Crete. The data
extracted from flow units have an interesting observation that have been used in
such reservoir’s like the Burbank one. It was a chance to understand how a reservoir
is working if the para-metres of oil are not in a difficult situation to use. For instance,
in a case of a reservoir with argillaceous rocks, the correlation will be completely
different because the construction of shale’s is not giving the opportunity to give
away the oil so easily. As such, different results are going to occur if we have had a
heavy oil with low API.

The analysis that follows with empirical models, has shown (based on the RMSE),
the faults are very common with each other, which is being proved by the correlation
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of porosity with the empirical models. All the parameters which are being used,
remain constant, apart from the porosity, which is being changed in every model.

4.1.1 Permeability importance for Data modeling

Permeability is one of the most important, most spatially variable, most uncertain,
and hence least predictable transport properties of porous media. Various empirical
models, such as Kozeni-Carman, Timur’s and Coates equations, are widely used
to quantify permeability from well- log calculations of porosity and irreducible wa-
ter saturation. However, these models do not explicitly include the role played by
rock structure, spatial fluid distribution in the pore space, wettability, or clay min-
eral distribution on permeability. We present a pore-scale approach to investigate
the influence of these factors on the permeability of clastic rocks for explicit pore
geometries of brine-saturated granular rocks [27].

Synthetic pore-scale models are constructed to represent granular sands with variable
grain-size distributions. These models include the structural effects of compaction,
cementation, and distribution of dispersed hydrated clay minerals. Irreducible wa-
ter is geometrically distributed on grain surfaces of the synthetic rocks. Permeabil-
ity is calculated from lattice-Boltzmann flow simulations. A nonlinear relationship
between permeability, porosity, and irreducible water saturation is established for
these computer- generated rocks. We compare calculated permeability values of
computer-generated rocks and laboratory measurements of core samples to those
estimated from different empirical approaches, such as Coates,Timur and Kozeni
Carman models. It is found that the latter models cannot be applied to general cases
of clastic rocks even if their free parameters are adjusted to fit core measurements.
Our simulations also show that spatial distributions of clay minerals and irreducible
water play a fundamental role in establishing an accurate correlation between perme-
ability, porosity, and irreducible water saturation. Specific deterministic equations
must be established for rock formations that exhibit distinct grain-size distributions,
clay types, structural clay distributions, and grain cementation [32], [27].

4.1.2 Permeability and importance of grain size

Permeability governs the displacement of fluids through the pore space of porous
media. It is one of the most important and least predictable transport properties of
porous media in reservoir characterization. Permeability is usually evaluated from
core samples and/or well tests. However, core samples and well-test data are often
only available from few wells in a reservoir while well logs are available from the
majority of wells. Therefore, accurate and reliable evaluation of permeability from
well-log data embodies a significant technical and economic advantage.
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Permeability Empirical Models

Various empirical models have been proposed to infer permeability from well-log
data, based on calculations of porosity, water saturation, capillary pressure, and for-
mation resistivity factor. Permeability is estimated via cor- relations among other
rock petrophysical properties. In many cases, there may exist deterministic relation-
ships among these properties, but such correlations usually are empirically derived
for a given formation in a given area, are often statistical in nature and, therefore,
cannot be applied to general cases [10], [27].

4.2 Permeability Empirical Models

4.2.1 Kozeny–Carman

Kozeny–Carman The unidirectional fluid flow in porous media is generally de-
scribed using Darcy’s law, which is given by

uβ,av = −Kβ

µ

∆p

L
(4.1)

where uβ,av is an average velocity in the medium, P is the pressure drop, µ is the
fluid viscosity, L is the length of the porous bead in the flow direction and Kβ is
the permeability. Darcy’s law is used in many applications ranging from petroleum
engineering to hydraulic and chemical process modeling, and its broad applicability
relies on its simplicity and dependence of only two system parameters, namely, the
fluid viscosity µ and the porous medium permeability kβ. While the determination of
the fluid viscosity is nowadays a standard procedure with well calibrated instruments,
the estimation of the permeability coefficient is still a challenging problem from both
theoretical and experimental standpoints. This is the subject of much practical
interest in medicine, chemical and environmental engineering and geology, among
many other fields and on which a vast literature is available [19], [33].

Among the possible correlations Kozeny–Carman equation (or Carman–Kozeny equa-
tion or Kozeny equation) is a relation used in the field of fluid dynamics to calculate
the pressure drop of a fluid flowing through a packed bed of solids. It is named
after Josef Kozeny and Philip C. Carman. The equation is only valid for laminar
flow. The equation was derived by Kozeny (1927) and Carman (1937, 1956) from
a starting point of (a) modelling fluid flow in a packed bed as laminar fluid flow in
a collection of curving passages/tubes crossing the packed bed and (b) Poiseuille’s
law describing laminar fluid flow in straight, circular section pipes [33].

48



4. Relation Between Permeability-Porosity

∆p

L
=

180µu
Φ2D2p

1− ε2

ε3
us (4.2)

∆p is the pressure drop; L is the total height of the bed; us is the superficial or
”empty-tower” velocity; µu is the viscosity of the fluid; ε is the porosity of the bed;
Φs is the sphericity of the particles in the packed bed; Dp is the diameter of the
volume equivalent spherical particle.

However, the Carman–Kozeny and Ergun correlations do not fit the experimental
data when the texture of the porous medium exhibits at least one of the following
characteristics:

1. very high porosity,

2. particles very far from spherical shape,

3. consolidated porous medium,

4. multi-mode or very large grain or pore size distribution.

Combining these equations gives the final Kozeny equation for absolute (single
phase) permeability.

k = a
ε3(∆p)

2

1− ε2
(4.3)

ε is the porosity of the bed (or core plug) [fraction] , ∆p is average diameter of sand
grains [mm = millimeter] , κ is absolute (i.e. single phase) permeability [mD =
millidarcy] , α is the proportionality and unity factor [mD / mm2]

4.2.2 Empirical models

Permeability has also been observed to be a strict function of porosity and residual
water saturation in certain reservoirs. A general empirical relationship proposed by
Wyllie and Rose, relates the permeability, κ, of a porous medium to its porosity φ and
irreducible water saturation, Swi, as where a, b, and c are statistically determined
model parameters. Based on this general expression, various empirical relationships
have been proposed to calculate permeability from values of porosity and irreducible
water saturation derived from well logs [27].

Laboratory studies have shown that permeability depends on a long list of param-
eters: porosity, pore size and shape, pore size distribution, clay content, fluid type,
and saturation The objective of this thesis is to investigate the influence of rock mi-
crostructure and spatial distribution of clay minerals on the permeability of clastic
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rocks for explicit pore geometries of brine-saturated granular rocks. Hydrated clay
minerals are responsible for the presence of excess irreducible water whose spatial
distribution in the pore space further conditions the geometry of pore throats.9, 10
Therefore, presence of clays in sands can substantially affect the relationship between
porosity, irreducible water saturation, and permeability in ways that depart from
standard parametric models such as those of Timur and Coates where the unit of
permeability is Darcy (D). The units of porosity and irreducible water saturation are
expressed in terms of fraction of bulk volume and pore space volume, respectively.
Despite their widespead use, existing models used to calculate permeability from
porosity and irreducible water saturation do not explicitly include the role played
by rock structure, grain geometry, grain-size distribution, wettability, and spatial
distribution of irreducible water in the pore space [27].

Wyllie and Rose, the Base Model

k = a
εb

Scwi
(4.4)

and residual (irreducible) water saturation (Sw(r))

Timur

k = 8.58
ε

S2
wi

(4.5)

Coates

k = 4.90
ε4(1− Swi

)2

S4
wi

(4.6)

4.3 Preliminary data analysis

This research project evaluates the relation between porosity and permeability that
follows an overall methodology to make conclusions for these correlation functions,
in order to work out which has the best fitting in Oil field data. The data are from
flow unit 5 (FU5) with porosity, permeability from 48 exploration wells in Burbank
oil field.

Porosity and permeability generally decrease with increasing depth (thermal expo-
sure and effective pressure). However, a significant number of deep (over 4 km,
or 13,000ft) sandstone reservoirs worldwide are characterized by anomalously high
porosity and permeability. Anomalous porosity and permeability can be defined
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Flow Unit (5) Mean Median St.Dev Min Max

Permeability (md) 737.67 528 723.85 0.04 4290
Porosity(%) 22.41 24.17 6.13 5,94 32

Table 4.1: Data statistics of flow unit 5

as being statistically higher than the porosity and permeability values occurring in
typical sandstone reservoirs of a given lithology (composition and texture), age,and
temperature history [24].

As presented in Figures 4.1 and 4.2 porosity and permeability, the data show signif-
icant divergence from the normal distribution. The statistical properties of Perme-
ability and porosity in our data is shown in 4.1. The histograms of the two variables
(porosity and permeability) are shown in Figures 4.4 and 4.3.

Pearson’s correlation coefficient between measured permeability and porosity shows
ρp a correlation of 0.6908 (69.1%). Pearson’s correlation coefficient calculates the
linear correlation. To investigate the monotonic correlation between porosity and
permeability, the non-linear Spearman’s rank correlation coefficient was estimated
and found at ρsp =92.4% (Equation: 3.28). Since there is strong linear correlation
between porosity and permeability, it is expected that the various non-linear models
detailed above would perform even better.

4.4 Results and discussion

There are several empirical models discussed in section 4.2 that attempt to predict
permeability from porosity. In this thesis, in order to investigate which model fits
better for Burbank oil field, we used the data from the exploratory drill-holes. In
those data, both permeability and porosity was measured. To validate the various
models of section 4.2, the results of the estimated permeability were compared with
the actual permeability. The results are shown in figure 4.5 and Table 4.2. In this
analysis the model coefficients like α, Sw are considered constant.

In Figures 4.5a– 4.5c the estimated theoretical values for each model are presented
along with the data. The RMSE and Pearson ρp was chosen in this investigation
as the criterion for comparisons between the different models. As can be seen from
Table 4.2, Timur’s model has lower RMSE and higher Pearson ρp from all tested
models.

Timur’s model has slightly better fit according to table 4.2. This model is charac-
terized by greater simplicity than the other two models. Thus, the results of our
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Figure 4.1: Permeability Norm Plot of Flow Unit 5

Figure 4.2: Porosity Norm Plot of Flow Unit 5
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Figure 4.3: Porosity Histogram of Flow Unit 5

Figure 4.4: Permeability Histogram of Flow Unit 5
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(a) Kozeni Carman Graph (b) Timur Graph

(c) Coates Graph

Figure 4.5: Timur,Kozeni-Carman, Coates Equation
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Flow Unit (5) RMSE (md) Pearson (ρp)

Kozeny Carman Equation 468.36 0.2521
Timur Model 456.31 0.8429

Coates Equation 460.76 0.5948

Table 4.2: Validation Measures (RMSE,Pearson) on Empirical Models

analysis indicate that for FU5 of Burbank oil field, Timur’s equation should be used
to estimate permeability from porosity.

This investigation highlights the steps and tools required in order to compare dif-
ferent models in order to correlate permeability and porosity.
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Chapter 5

Use of Geostatistics in Reservoir
Description

The man, who insists upon
seeing with perfect clearness
before he decides, never decides.

Frederic Amiel

5.1 Introduction

In this chapter, Stochastic and deterministic methods will be reviewed. One of
these is Kriging, a very common and effective method in geosciences, that provides
reliability information. The same applies for the Inverse Weighted Distance (IDW)
discussed in in section 44 These methods will be applied to flow unit case studies,
their performance will be compared with each other with the total amount of oil in
place (OOIP) in a specific well in figure5.1

This case study involves a data-set of porosity and thickness in a specific reservoir
and Flow Unit (FU5). The performance of IDW will be compared with the perfor-
mance of kriging with an analysis of their respective differences. The Oil in Place
(OOIP) will be estimated for FU5. This is the basic requirement for an oil com-
pany to know for a reservoir in a potential exploitation. The procedure is shown in
figure 5.1

This chapter is divided into several sections. The first section describes the impor-
tance of the assumptions of stationarity before the estimation of spatial relationships.
These spatial relationships are based on observed sample data, and are important
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Figure 5.1: Flow Chart for Total Oil in Place (OOIP) Processing
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to calculate the values in locations which there are no samples. If our assumption
is accurate, we can estimate the values for a chosen grid. To assess the performance
of the estimation, leave-one-out cross-validation can be used.

In the second section, we will present conventional summary statistics, which are
used to describe spatial relationships. These relationships are based on the co-
variance and variogram as explained in Chapter 3. The empirical variogram and
investigated models will be discussed in this section.

5.2 Preliminary data analysis

Summary statistics of flow unit (Fu5) data set for Burbank oil field are presented in
tables 5.2 and 5.3. They include the mean value, the minimum, the maximum value,
the standard deviation as well as the values for detrended Thickness (m) as shown
in sections 5.3.2, detrended Porosity (%) 5.3.2 and the logarithm of Thickness×
Porosity as shown in section 5.3.2. As we saw from trend removal (in figures : 5.2b
5.2a) we need to prove that data porosity and thickness has clearly and reflect the
general space of flow unit, as a result predict stationary with removing of determin-
istic factors.Furthermore data are not close to the Gaussian distribution (in figures
: 5.3a 5.3b), as we say from data analysis and Norm plots illustration. At this point
its necessary to refer that this Flow unit (Fu5) coming not from the same explo-
ration well like in Chapter 4 which has been flowing the procedure with porosity
and permeability correlation.

Flow Unit (5) a 0 a 1 a 2 RMSE MAE r%

Thickness (m) 1.6428 -0.2187 0.5249 11930 0.9055 0.4946
Porosity (%) 27.5685 -1.3698 -0.9621 5.3943 4.4946 0.4628

Table 5.1: Trend Values for data statistics of flow unit 5

Flow Unit (5) Mean Median Min Max

Thickness (m) 1.2192 1.538 0.0000 8.2296
Porosity(%) 22.4144 24.1750 5.9400 32.0000

Detrened Thickness −8.12 10−12 -0.2615 -2.5015 5.1009
Detrened Porosity 3.74 10−15 1.7606 -16.4744 9.5856

log(Thickness*Porosity) 3.4357 3.4110 1.7658 5.0044

Table 5.2: Detrended data statistics of flow unit 5
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(a) Trend figure of Thickness (m) (b) Trend figure of Porosity (%)

(a) Porosity Norm Plot of Flow unit 5 (b) Thickness Norm Plot of Flow unit 5

(a) Frequency of Porosity (%) Histogram of
Flow unit 5

(b) Frequency of Thickness (m) Histogram of
Flow unit 5
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Flow Unit (5) St.Dev Kurtosis Skewness
Thickness (m) 1.379 7.5825 1.6586
Porosity(%) 6.1304 2.6243 -0.6406

Detrened Thickness 1.199 5.68 1.237
Detrened Porosity 9.5856 6.13042 -0.6486

log(Thickness · Porosity) 0.7952 2.0583 0.082

Table 5.3: Detrended data statistics of flow unit 5

5.3 Kriging

5.3.1 Ordinary kriging implementation

In Thesis, after the statistical analysis of the data, in order to use Ordinary Kriging,
we followed these four steps:

• calculating experimental isotropic variogram,

• fitting theoretical variogram models to the experimental variogram, Gaussian
or Spherical (parameter inference),

• performing cross validation to choose the best model,

• estimating the missing values with ordinary kriging, respectively

The above procedures have been implemented to the investigated data by using
software developed in the MATLAB programming environment.

5.3.2 Porosity and thickness trend analysis

In order to remove the trend from data, we performed multi-linear regression of the
response, on the predictors, which contain porosity and thickness that composed in
our flow unit. So,the result remaining after this procedure its clear and prepare for
stochastic research and calculate remaining stock evaluation.

Cross validation performance measures calculated through leave–one– out cross vali-
dation for the precipitation data of flow unit (Fu5) for annual porosity and thickness
data set. ME: Mean error (bias) (Equation 3.24, MAE: Mean absolute error (Equa-
tion.3.25), RMSE: Root mean square error (Equation 3.26,, RP (ρ): Pearson’s linear
correlation coefficient (Equation 3.27),Min:minimum prediction and minimum sam-
ple value, Max:maximum prediction and maximum sample value.
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5.3.3 Variogram analysis

The estimation of variograms 3.6.6 requires great care and caution. In this section,
we discuss several potential problems that can occur while estimating variograms
and the practical solutions that can be implemented to minimize their effects. These
problems include a number of pairs at a given lag distance. At the same time,
estimates have shown that under the influence of outlier data and biased sampling,
there are proposed solutions to all these problems. The process used to minimise
the uncertainty, is described below.

To begin with, once the variogram is estimated, the next step is modeling the var-
iogram to present it in a convenient format. Certain restrictions exist in modeling
the estimated variogram. Then, we discuss these restrictions and the type of mod-
els used. The next section deals with construction of spatial relationships between
two different variables situated at different locations in contrast with the previous
sections. Both estimation and modeling procedures for these cross relationships are
presented. The following section addresses these 2 methods for describing spatial
relationships.

Firstly geostatistical analysis shows that variograms of thickness and porosity have
some significant differences in their parameters and form. Specifically, we see that
the thickness variogram (as shown in figure 5.5) is mostly nugget. However, the
variogram for porosity as shown in figure 5.6 increases almost linearly. This is
reflected in the values for sill and range (as shown in section 3.6.5) for all tested
variogram models, as shown in table 5.5, 5.4.

To overcome those difficulties we contrast the logarithm of multiplication between
thickness and porosity, (as shown in Figures: 5.6 and 5.5).5.7) in which the geosta-
tistical analysis followed showed that the logarithm model show us better correlation
with each other. (as shown in figures 5.75.8,5.9) The initial values and the boundaries
of the parameters for each model used in the optimization/parameter are presented
in Table . The estimated σ2 ,ξ and φ for all the models (as saw in Tab 5.5 5.4,5.6
) we except from Spherical are very close to the real, while the nugget effect (c0) is
estimated with good accuracy only for flow unit 5 and after of many tries the error
its was better.

Model σ2 ξ φ

Exponential 0,58 0,29 0.45
Gaussian 0,20 0,44 0.86
Spherical 0,30 0,53 0.76

Table 5.4: Variogram Parameters Thickness
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Figure 5.5: Thickness Variograms of Flow Unit 5

Figure 5.6: Porosity Variograms of Flow Unit 5

5.3.4 Kriging maps - reserves estimation

The method of regular kriging (Ordinary Kriging) was used to calculate the oil
reserves in Burbank oil field, because as mentioned in Chapter 3.6.7 in Regular
Kriging the average value remains constant in each neighborhood. Kriging is done
with the corrected data, ie with the data that the trend has been removed. The
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Figure 5.7: Multiplication Porosity and Thickness Variogram of Flow Unit 5

Model σ2 ξ φ

Exponential 182.28 25.91 8.79
Gaussian 33.63 4.41 14.97
Spherical 66.04 5.03 9.27

Table 5.5: Variogram Parameters Porosity

grid used consists of 50 x 50 cells, with a size of 60 m x 60 m. Considering, we
adapted a empirical variogram, and next a theoretical spherical model. Also log
of multiplication porosity and thickness took a part.Parameters resulting from the
model (the length of correlation ξ, the nucleus effect),(as shown in section 3.6.5) and
the scattering , estimates are made for each thickness and porosity values adopted
to kriging method (as saw in Figures 5.11a , 5.11b, 5.10a, 5.10b) 5.9a , 5.9b). In
addition estimates that obtained, the trend that was previously removed and in the
final map that appears calculated final oil in place.Thus the final maps appears (as
shown in Figures 5.9a 5.13 ) Histograms of assessments and real values are correlate
nicely , they are close to zero and some of them leave the specified evaluation(as
shown in figures 5.8a,5.8b).

5.3.5 Total oil in place (OOIP) analysis

Knowing the amount of original oil in place 2.4 is the most important parameter for
reservoir engineers to make a quick decision whether the discovered area is profitable
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(a) Cross Validation Porosity Histogram of Flow unit 5

(b) Cross Validation Thickness Histogram of Flow unit 5
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(a) Kriging of Flow Unit 5 multiplication

(b) Kriking error of Flow Unit 5 multiplication
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(a) Kriging Simulation of Flow Unit 5 Thickness

(b) Kriging Error Simulation of Flow Unit 5 Thickness
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5. Use of Geostatistics in Reservoir Description

(a) Kriging Simulation of Flow Unit 5 Porosity

(b) Kriging Error Simulation of Flow Unit 5 Porosity
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Model σ2 ξ φ

Exponential 0.69 0.82 0.003
Gaussian 0.60 0.55 0.082
Spherical 0.67 0.65 0.006

Table 5.6: Variogram Parameters with ((log(%) · (m))

Model RMSE(m)

Spherical 0.6454
Gaussian 0.6527

Exponential 0.6652

Table 5.7: Thickness Variogram Errors (RMSE(m))

or not. This method depends on basic data of reservoir rock and reservoir fluid
properties. However, the reservoir simulation needs a lot of information starts with
geological history and ends with production history additional to reservoir rock
and fluid properties. In this endeavor we realized the description of the reserve’s.
Porosity and thickness data (as is shown in figure 5.13) , at the end we point out that
logarithm (porosity · thickness) has better correlation for (OOIP) stock estimation
method as shown in figure 5.12. Different geostatical methods that took part showed
the equation applies remarkably in both stochastic and deterministic methods.This
was confirmed by validation measures and specify from with root mean squared
method (RMSE) 5.13.

5.3.6 IDW and kriging comparison

The Inverse Distance Weighting method (IDW) is a simple at the same time effective
method of estimation, which does not require as much data in comparison with
Kriging. It has been proven to be effective and reliable in some aspects.

After defining the reservoir extent and fluvial faces, different variograms were com-
puted to adequately quantify the variations in the distribution of porosity and per-
meability due to reservoir heterogeneity. Interpolation results, estimated from de-
scriptive statistics, showed that IDW (in Figures 5.14a , 5.14b) and kriging (in tabs
5.10 5.11 5.9b), . The differences in the interpolated values were, however, insignif-
icant but IDW with power index of 2.5 in porosity 5.16 and 1.5 in thickness 5.15
indicated the least error estimation.

Volume calculations also showed a marginal difference in (Pearson (R)) 3.27 of 0.48
about porosity and 0,1 about thickness between IDW power and kriging in the
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Model RMSE(%)

Spherical 381.7371
Gaussian 514.6989

Exponential 835.0983

Table 5.8: Porosity Variogram Errors (RMSE(%))

Model RMSE(log(%) · (m))

Spherical 0.032
Gaussian 0.050

Exponential 0.048

Table 5.9: Multiplication Porosity and Thickness Variogram Variogram Errors
RMSE((log(%) · (m))

MAE R ME RMSE MaxAE

3.76 0.63 -0.19 4.86 13.08

Table 5.10: Kriging of Porosity (Validation Measures)

Figure 5.12: Total Oil in Place of Flow Unit 5 multiplication

reservoir zones. Cross validation of hydrocarbon volumes based on dividing the
reservoir into fault segments resulted in an RMSE 3.26 of 1.12 for Thickness and
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MAE R ME RMSE MaxAE

0.87 0.56 0.04 1.14 4.68

Table 5.11: Kriging of Thickness (Validation Measures)

MAE R ME RMSE MaxAE

0.53 0.59 -0.02 0.63 1.19

Table 5.12: Kriging of Multiplication ((log(%) · (m))

Figure 5.13: Total Oil in Place (bbl)
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Original Oil in Place (OOIP) (bbl)

Kriging 10, 484, 000
Kriging Multiplication 9, 483, 600

IDW 9, 567, 300

Table 5.13: Total Oil In Place in bbl for each method

5.44 for porosity. With inverse distance weight exhibiting least errors and higher
accuracy, the volumetric and statistical results confirms that when there is less well
data in a fluvial reservoir, the best porosity and permeability interpolation choice
should be inverse distance weighting method with power index of 2.5 in table 5.15
for thickness and in table 5.17 1.5 for porosity.

n MAE R ME RMSE MaxAE

1 0.94 0.52 0.07 1.25 6,09
1.5 0.90 0.55 0.08 1.18 5.39
2 0.88 0.57 0.07 1.13 4.61

2.5 0.90 0.58 0.06 1.12 4.01
3 0.92 0.58 0.06 1.14 3.64

Table 5.14: Validation Measures IDW of Thickness with Power index (1,1.5,2,2.5,3)

n MAE R ME RMSE MaxAE

2.5 0.90 0.58 0.06 1.12 4.01

Table 5.15: Best Power index (2.5) Thickness

5.4 Synopsis

Uncertainty of the total flow units estimation of the above described analysis of the
simple synthetic data set indicates that the developed codes can handle successively
such data sets and provide relatively reliable and accurate results. It is achieved with
collaboration between me and laboratory of geostaistics the comparison between two
important methods (IDW,Kriking) the total oil in place for under study flow unit.
It is found that deviation its remarkable and someone can take serious results if
working with them. We need to point out that we tried our best effort to reach the
maximum potential based on the given data. As a result, the analysis that took
place was the best possible, because the results of these two methods are so close to
each other.
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n MAE R ME RMSE MaxAE

1 4.49 0.47 -0.48 5.59 16,42
1.5 4.28 0.48 -0.78 5.44 16.01
2 4.09 0.50 -0.96 5.35 15.40

2.5 3.97 0.52 -1.04 5.31 16.02
3 3.94 0.53 -1.05 5.31 16.57

Table 5.16: Validation Measures IDW of Porosity with Power index (1,1.5,2,2.5,3)

n MAE R ME RMSE MaxAE

1.5 4.28 0.48 -0.78 5.44 16.01

Table 5.17: Best Power index (2.5) Porosity
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(a) IDW Simulation Flow Unit 5 Porosity

(b) IDW Simulation of Flow Unit 5 Thickness
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Figure 5.15: IDW OOIP of Flow Unit 5

Figure 5.16: IDW Simulations for flow units 5

74



Chapter 6

Conclusions and Suggestions for
Further Research

6.1 Conclusions

This diploma thesis was designed to geostatistically analyze oil reserves with data
from Burbank Oil Field in Oklahoma US , using the well-known programming lan-
guage ‘’Matlab”. Two methodologies were used to investigate the data. The first
one was spatial interference with the standard kriging method, where the parameters
of the phenomenon, sill, and correlation length used were evaluated by variograms.
The second deterministic method used was the inverse distance weighting (IDW).
A different task to aid the investigation was the usage of different methods that
correlate the porosity and permeability, in order to understand the behavior of the
oil field in this area.

During my thesis work, for technical reasons, boreholes with other Flow units were
rejected because the procedure was the same and it’s not necessary to be analyzed
further. From the field that emerged, the variogram for the study area was calculated
and performed in specific boreholes with specific flow unit.

Corporation with specifications of empirical models such as Kozeny - Carman, Timur
and Coates where the latter relate to terms such as porosity and permeability in
formation conditions. According to our procedure these models they illustrate the
characterization and relation with our terms.They gave us a fast brief, how our flow
unit behave. It common to estimate the correlations of such data in order to end
up at a specific standard curve with equation models defined by the literature. At
this point it is worth pointing out that such models are widely used for quantitative
determination of permeability in places where the calculation of water saturation
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(Sw) cannot be evaluated. However, these models do not explicitly include the role
played by the structure of the rocks, or the spatial distribution of liquids in the field
of rock resources, or the distribution of clay minerals in permeability.

The second part of this project includes a correlation study between the thickness
of an important qualification on behalf of the oil industry. The thickness of a spe-
cific flow unit combined with the porous contribute to calculating inventories and
selecting the appropriate action plan for the production. Additionally, the extent
and limitations factor of the reservoir was determined by calculating different var-
iograms, in order to quantify the sufficient changes in the distribution of porosity
and thickness for the heterogeneity of the reservoir. Finally, interpolation took place
to fill the missing data, using one of the most widely used kriging interference algo-
rithm, which with several drilling data is the best linear impartial assessment. That
research tried to compare the applicability and the competitiveness of the inverse
distance method (IDW), by using power indicators 1,1.5, 2, 2.5 and 3, where ac-
cording to the data for that specific well for the specified Flow Unit, followed by a
procedure that was applied and preceded by kriging for that determination of final
volumes (OOIP). In the empirical bar graph, the exponential model was adapted,
which was selected based on the square errors calculated after tests performed on the
gaussian and spherical model. The spherical model was used in the kriging method.

In order to achieve our basic goal for this thesis, the calculation of the total Oil in
Place into this flow unit reserves, the Standard method for (OOIP) and Kriging or
IDW was used. Initially, a map was created with the estimates obtained, using a
grid of 60 m x 60 m, and the total distance of 3000m. Knowing the new estimate of
each cell, inventories were calculated approximately at 9,2 million STB. After that,
it was compared with the estimates obtained using IDW. Stocks calculated at the
average amounted to 9,5 million STB. In our procedure we focused on and played
a serious task with the logarithm for our data, better validation measures appear
with logarithm process in kriging method.

Stocks calculated are not very different from the other two methods. This happen
because the average weights of all the measurements with the same weight compared
to kriging using a different weight for each measurement and also the data that take
part has not big amount.So the procedure between this method its wasn’t so much
how many its will be the Oil in Place but it’s become known how this two methods
work in Oil Field data and also with Kriging find the precisely error that kriging
method gives.
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6.1.1 Future work

A proposal for future research is to use different models than the ones already used
and to compare the results. That is, to model the empirical variogram with a
different model of a variogram, such as the Spartan, and to observe the changes that
may occur in spatial inference. Also, kriging method can be used for simulation
purposes in order to estimate confidence intervals, in order to make further work
with other deterministic methods such as IDW, Voronoi or others. Last but not
least, permeability and porosity are not able to correlate with low models, but they
can guide us with the help of geostatistic tools, for a clearer image of how a reservoir
behaves.

Another idea for this thesis deals with the comparison of models for predicting
porosity and permeability. The implementation of these formulas its worth to apply
in different formation and as a result will take more interpolation graphs. They
can illustrate a correlation between permeability and porosity with the correct law
model. These models has the same mathematical formula, but do not have the same
characteristic parameters (Sw,Bo etc.).So, significant results about reservoir behav-
ior will under estimated. Lastly do not expect that a simple correlation between
permeability, porosity, and irreducible water saturation would work well for all rock
formations with different values of porosity.
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Chapter 7

Appendix

All algorithms for statistical and spatial analysis as well as the algorithms for the
estimation of porosity ,thickness and permeability data, were developed and run in
Matlab environment.

1

2

3 Thickness Procedure
4

5

6 %% Thickness FU3
7

8 load ( ’ FU3thickness . mat ’ )
9 x=FU3thickness ( : , 1 ) ;

10 y=FU3thickness ( : , 2 ) ;
11 Th=FU3thickness ( : , 3 ) ;
12

13 [ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 1 ) ; % Aferesh Prwtou Vathmou
14

15 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 2 ) ; %Aferesh Defterou
Vathmou

16

17 % [ Variogram1 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (14 , p i /2 , p i /2 , x , y ,
Fluct1 , 1 , 0 . 2 1 ) ;

18 % t i t l e ( ’ prwtou ba8mou ’ )
19

20 % [ Variogram2 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Fluct2
, 1 , 0 . 2 5 ) ;

21 % t i t l e ( ’ deuterou ba8mou ’ )
22 %
23 % [ Variogram0 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Th

, 1 , 0 . 2 5 ) ;
24 % t i t l e ( ’ xwris a f a i r e s h tashs ’ )



7. Appendix

25

26 % [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 0) ;

27 % TO KALO
28

29 %[ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 21 , 0) ;% TO KALO

30

31

32 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 22 , 1) ;

33 [ Paramgau , lags , var ioz , lagsn , variom]= Vargauss ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 22 , 0 , 1) ;

34 [ Paramsp , lags , var ioz , lagsn , variom]=Varsph ( [ x , y , Fluct1 ] , 14 , 0 , 0 . 22 ,
0 , 1) ;

35

36

37 modsp=i n l i n e ( ’ betaexp1 (3 )+ betaexp1 (1 ) ( betaexp1 (1 ) betaexp1 (1 )
∗ (1 . 5∗ x/ betaexp1 (2 ) 0 .5∗ ( x/ betaexp1 (2 ) ) . ˆ3 ) ) .∗ (x<betaexp1 (2 )
) ’ , ’ betaexp1 ’ , ’ x ’ ) ;

38 ProblepshSpher=modsp( Paramsp , l a g s ) ;
39 ErrSphe=sum( ( var ioz ProblepshSpher ) . ˆ 2 )
40

41 modga=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x .ˆ2/ betaexp1 (2 ) . ˆ2 ) ) ’ ,
’ betaexp1 ’ , ’ x ’ ) ;

42 ProblepshGauss=modsp( Paramgau , l a g s ) ;
43 ErrGauss=sum( ( var ioz ProblepshGauss ) . ˆ 2 )
44

45 modexpon=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x/ betaexp1 (2 ) ) ) ’ , ’
betaexp1 ’ , ’ x ’ ) ;

46 ProblepExp=modsp( Paramexp , l a g s ) ;
47 ErrExp=sum( ( var ioz ProblepExp ) . ˆ 2 )
48

49

50 % ∗∗∗∗∗∗∗∗∗ CV ∗∗∗∗∗∗∗∗∗∗
51

52 [EKTCV]= c r o s s v a l (x , y , Fluct1 , Paramexp , 1 , 1 0 ) ;
53 A=[ ones ( length ( x ) ,1 ) x y ] ;
54 TasDe= A ∗ LinTren ;% Tash s t i s 8 e s e i s twn dedomenwn
55

56 VALCV=TasDe + EKTCV;
57

58 ThCV=VALCV;
59 save CVALRESULTS ThCV Th
60

61 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
62 disp ( ’ ∗∗∗∗ CV Thickness ∗∗∗∗ ’ )
63 Nk=length (Th) ;
64 MAECV=sum(abs (Th VALCV) ) /Nk
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65 RCV=corrcoef (Th,VALCV)
66 MECV=sum( (Th VALCV) ) /Nk
67 RMSECV=sqrt (sum( (Th VALCV) . ˆ 2 ) /Nk)
68 MaxAECV=max(abs (Th VALCV) )
69 f igure (2 )
70 hist ( (Th VALCV) , 12)
71 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Thickness Flow Unit 3 ’ )
72

73

74

75

76 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
77 %%
78 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
79 [EKT, Xk, Yk, SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1 , Paramexp , 1 , 1 1 . 2 , 2) ;
80 Kr ig r i d s ( Xk, Yk, EKT, SF ) ;
81 f igure (3 )
82 colormap ( ’ paru la ’ )
83

84 %Ypologizw tash MM gia ton kanabo
85 % VAL= EKT + MM
86 %
87 [ XI , YI ] = meshgrid (Xk, Yk) ;
88 TASKAN=LinTren (1 ) + LinTren (2 ) ∗XI + LinTren (3 ) ∗YI ;
89 f igure (3 )
90 surf (XI , YI ,TASKAN)
91 shading f l a t
92 colormap ( ’ paru la ’ )
93 colorbar
94 t i t l e ( ’ Trend f low uni t 3 Thickness ’ )
95

96 VALTH=EKT+TASKAN;
97 Kr ig r i d s ( Xk, Yk, VALTH, SF ) ;
98 f igure (4 )
99 colormap ( ’ paru la ’ )

100 colorbar
101

102 % prepe i na g i n e i c r o s s v a l i d a t i o n s to VAL afou to b g a l e i s
103

104

105

106 Poros i ty Procedure
107

108

109 %% Poros i ty FU3
110 load ( ’ FU3por . mat ’ )
111 x=FU3por ( : , 1 ) ;
112 y=FU3por ( : , 2 ) ;
113 Por=FU3por ( : , 3 ) ;
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114

115 [ Fluct1por ,Mx, LinTrenPor , QuaTren]=Detrend (x , y , Por , 1 ) ; % Aferesh Prwtou
Vathmou

116

117 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Por , 2 ) ; %Aferesh Defterou
Vathmou

118

119

120 %[ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1por ] , 13 ,
0 , 0 . 19 , 0) ;

121

122 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1por ] , 13 , 0 ,
0 . 19 , 0) ;

123

124 [ Paramgau , lags , var ioz , lagsn , variom]= Vargauss ( [ x , y , Fluct1por ] , 13 , 0 ,
0 . 19 , 0) ;

125

126 [ Paramsp , lags , var ioz , lagsn , variom]=Varsph ( [ x , y , Fluct1por ] , 13 , 0 ,
0 . 19 , 0) ;

127

128

129 modsp=i n l i n e ( ’ betaexp1 (3 )+ betaexp1 (1 ) ( betaexp1 (1 ) betaexp1 (1 )
∗ (1 . 5∗ x/ betaexp1 (2 ) 0 .5∗ ( x/ betaexp1 (2 ) ) . ˆ3 ) ) .∗ (x<betaexp1 (2 )
) ’ , ’ betaexp1 ’ , ’ x ’ ) ;

130 ProblepshSpher=modsp( Paramsp , l a g s ) ;
131 ErrSphe=sum( ( var ioz ProblepshSpher ) . ˆ 2 )
132

133 modga=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x .ˆ2/ betaexp1 (2 ) . ˆ2 ) ) ’ ,
’ betaexp1 ’ , ’ x ’ ) ;

134 ProblepshGauss=modsp( Paramgau , l a g s ) ;
135 ErrGauss=sum( ( var ioz ProblepshGauss ) . ˆ 2 )
136

137 modexpon=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x/ betaexp1 (2 ) ) ) ’ , ’
betaexp1 ’ , ’ x ’ ) ;

138 ProblepExp=modsp( Paramexp , l a g s ) ;
139 ErrExp=sum( ( var ioz ProblepExp ) . ˆ 2 )
140

141

142 [EKT, ˜ , ˜ , SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1por , Paramexp , 1 , 1 2 . 2 , 2) ;
143

144 TASKAN=LinTrenPor (1 ) + LinTrenPor (2 ) ∗XI + LinTrenPor (3 ) ∗YI ;
145 f igure
146 surf (XI , YI ,TASKAN)
147 shading f l a t
148 colormap ( ’ paru la ’ )
149 colorbar
150 t i t l e ( ’ Trend f low uni t 3 Poros i ty ’ )
151

152
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153 VALPOR=EKT+TASKAN;
154 Kr ig r i d s ( Xk, Yk, VALPOR, SF ) ;
155 colormap ( ’ paru la ’ )
156 hold o f f
157

158 SFPOR=SF ;
159 %save KriPor5 VALPOR Xk Yk SFPOR
160

161 disp ( ’ ∗∗∗∗∗∗∗∗∗POR CV ∗∗∗∗∗∗∗∗∗∗ ’ )
162 [EKTCV, ˜ , ˜ , Err ]= c r o s s v a l (x , y , Fluct1por , Paramexp , 1 , 1 0 ) ;
163

164 A=[ ones ( length ( x ) ,1 ) x y ] ;
165 TasDe= A ∗ LinTrenPor ;
166

167 VALCV=TasDe + EKTCV;
168

169 Val Err=VALCV Por ;
170 f igure
171 hist ( Val Err , 1 4 )
172 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Poros i ty Flow Unit 3 ’ )
173

174 PorCV=EKTCV;
175 %save CVALRESULTS5 ThCV Th Por PorCV % swnw kai ta dyo Th ka i Por ka i

CV
176

177 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
178 %%
179 %
180 JJJ=VALTH.∗ VALPOR/100 ;
181 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
182 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
183 A=x c e l l ∗ y c e l l ; % A cubic metra
184 NG=0.7
185 Sw=0.20
186 Bo=1.2
187 metat =6.29 % kybiko metro se bbl
188 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
189 OOIP=sum(sum( CellOOIP ) )
190

191 Kr ig r i d s ( Xk, Yk, CellOOIP ) ;
192 colormap ( ’ paru la ’ )
193 t i t l e ( ’OOIP f low uni t 3 ( bbl ) ’ )
194 hold o f f

1 c l e
2

3 %% Thickness FU5
4

5 load ( ’ FU5thickness . mat ’ )
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6 x=FU5thickness ( : , 1 ) ;
7 y=FU5thickness ( : , 2 ) ;
8 Th=FU5thickness ( : , 3 ) ;
9

10 %%%%%% Removal Tr i a l trend%%%%%%%%%
11

12 [ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 1 ) ; % Aferesh Prwtou Vathmou
13

14 %[ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 0 ) ; % Aferesh Prwtou
Vathmou

15

16

17 [MTHICK,Me,STHICK, AsymetriTHICK , kurtos i sThick , minTHICK,maxTHICK] =
GEOSTATh(Th)

18

19 %[MTHICK,Me,STHICK, AsymetriTHICK , kurtos i sThick , minTHICK,maxTHICK] =
GEOSTATh( Fluct1 )

20

21

22

23 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 2 ) ; %Aferesh Defterou
Vathmou

24

25 % [ Variogram1 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (14 , p i /2 , p i /2 , x , y ,
Fluct1 , 1 , 0 . 2 1 ) ;

26 % t i t l e ( ’ prwtou ba8mou ’ )
27

28 % [ Variogram2 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Fluct2
, 1 , 0 . 2 5 ) ;

29 % t i t l e ( ’ deuterou ba8mou ’ )
30 %
31 %[ Variogram0 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Th

, 1 , 0 . 2 5 ) ;
32 %t i t l e ( ’ Without Remove o f Trend Values ’ )
33

34 [ Paramexp , lags , var ioz , lagsn , variome ]=Varexpon ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 1) ;

35 [ Paramgau , lags , var ioz , lagsn , variomg ]= Vargauss ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 0 , 1) ;

36 [ Paramsp , lags , var ioz , lagsn , varioms ]=Varsph ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 0 , 1) ;

37

38 f igure (50)
39 hold on
40 plot ( lagsn , variome , ’ Linewidth ’ , 2 )
41 plot ( lagsn , variomg , ’ Linewidth ’ , 2 )
42 plot ( lagsn , varioms , ’ g ’ , ’ Linewidth ’ , 2 )
43 plot ( lags , var ioz , ’ ∗ ’ )
44 hold o f f
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45 % legend ( ’ Exponential ’ , ’ Gaussian ’ , ’ Spher i ca l ’ , ’ Empir ical ’ , ’ Location ’ , ’
SouthEast ’ )

46 xlabel ( ’ d i s t anc e ( r ) ’ )
47 ylabel ( ’ \gamma( r ) ’ )
48

49

50 modsp=i n l i n e ( ’ betaexp1 (3 )+ betaexp1 (1 ) ( betaexp1 (1 ) betaexp1 (1 )
∗ (1 . 5∗ x/ betaexp1 (2 ) 0 .5∗ ( x/ betaexp1 (2 ) ) . ˆ3 ) ) .∗ (x<betaexp1 (2 )
) ’ , ’ betaexp1 ’ , ’ x ’ ) ;

51 ProblepshSpher=modsp( Paramsp , l a g s ) ;
52 ErrSphe=sum( ( var ioz ProblepshSpher ) . ˆ 2 )
53

54 modga=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x .ˆ2/ betaexp1 (2 ) . ˆ2 ) ) ’ ,
’ betaexp1 ’ , ’ x ’ ) ;

55 ProblepshGauss=modsp( Paramgau , l a g s ) ;
56 ErrGauss=sum( ( var ioz ProblepshGauss ) . ˆ 2 )
57

58 modexpon=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x/ betaexp1 (2 ) ) ) ’ , ’
betaexp1 ’ , ’ x ’ ) ;

59 ProblepExp=modsp( Paramexp , l a g s ) ;
60 ErrExp=sum( ( var ioz ProblepExp ) . ˆ 2 )
61

62

63 %[ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 21 , 0 , 1) ;

64

65

66 % ∗∗∗∗∗∗∗∗∗ CV ∗∗∗∗∗∗∗∗∗∗
67

68 [EKTCV]= c r o s s v a l 2 (x , y , Fluct1 , Paramsp , 5 , 1 0 ) ;
69 A=[ ones ( length ( x ) ,1 ) x y ] ;
70 TasDe= A ∗ LinTren ; % Tash s t i s 8 e s e i s twn dedomenwn
71

72 %TasDe=Mx;
73 VALCV=TasDe + EKTCV;
74

75 ThCV=VALCV;
76 save CVALRESULTS ThCV Th
77

78 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
79

80

81 ∗∗∗∗∗∗∗∗∗Cross Va l idat i on ∗∗∗∗∗∗∗∗
82

83 disp ( ’ ∗∗∗∗ CV Thickness ∗∗∗∗ ’ )
84 Nk=length (Th) ;
85 MAECV=sum(abs (Th VALCV) ) /Nk
86 RCV=corrcoef (Th,VALCV)
87 MECV=sum( (Th VALCV) ) /Nk

88
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88 RMSECV=sqrt (sum( (Th VALCV) . ˆ 2 ) /Nk)
89 MaxAECV=max(abs (Th VALCV) )
90 f igure (99)
91 hist ( (Th VALCV) , 12)
92 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Thickness Flow Unit 5 ’ )
93

94

95

96

97 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
98

99

100 %%
101

102

103

104 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
105 %[EKT, Xk, Yk, SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1 , Paramexp , 1 , 1 1 . 2 , 2) ;
106 [EKT, Xk, Yk, SF , PLG]=OrdKrig (50 ,50 , x , y , Fluct1 , Paramsp , 5 , 31 . 9 , 2 ,

[ 5 15 ]∗0 . 3048 , [ 0 10 ]∗0 . 3048 ) ;
107 colormap ( ’ paru la ’ )
108 Kr ig r i d s ( Xk, Yk, EKT, SF ) ;
109 f igure (3 )
110 colormap ( ’ paru la ’ )
111

112 ∗∗∗∗ Trend Ca l cu l a t i on with Matrix ∗∗∗∗
113 % VAL= EKT + MM
114 %
115

116

117

118 [ XI , YI ] = meshgrid (Xk, Yk) ;
119 TASKAN=LinTren (1 ) + LinTren (2 ) ∗XI + LinTren (3 ) ∗YI ;
120 %TASKAN=Mx+0∗XI+0∗YI ;
121

122

123

124

125 f igure
126 surf (XI , YI ,TASKAN)
127 shading f l a t
128 colormap ( ’ paru la ’ )
129 colorbar
130 t i t l e ( ’ Trend Flow uni t 5 Thickness ’ )
131

132 VALTH=EKT+TASKAN;
133 Kr ig r i d s ( Xk, Yk, VALTH, SF ) ;
134 f igure
135 colormap ( ’ paru la ’ )
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136 colorbar
137

138

139

140

141

142 %%%%%%%%% Poros i ty FU5 %%%%%%%%%
143

144

145

146 load ( ’ FU5por . mat ’ )
147 x=FU5por ( : , 1 ) ;
148 y=FU5por ( : , 2 ) ;
149 Por=FU5por ( : , 3 ) ;
150

151 [ Mpor ,Me, Spor , Asymetripor , kur to s i spo r , minpor , maxpor ] = GEOSTAPor( Por )
152

153

154 %[ Fluct1por ,Mx, LinTrenPor , QuaTren]=Detrend (x , y , Por , 0 ) ; % Aferesh Mx
155 [ Fluct1por ,Mx, LinTrenPor , QuaTren]=Detrend (x , y , Por , 1 ) ; % Aferesh Prwtou

Vathmou
156

157 %[ Mpor ,Me, Spor , Asymetripor , kur to s i spo r , minpor , maxpor ] = GEOSTAPor(
Fluct1por )

158

159 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Por , 2 ) ; %Aferesh Defterou
Vathmou

160

161 [ Paramexp , lags , var ioz , lagsn , variomexp ]=Varexpon ( [ x , y , Fluct1por ] , 13 ,
0 , 0 . 19 , 0) ;

162

163 [ Paramgau , lags , var ioz , lagsn , variomgaus ]= Vargauss ( [ x , y , Fluct1por ] ,
13 , 0 , 0 . 19 , 0) ;

164

165 [ Paramsp , lags , var ioz , lagsn , variomsph ]=Varsph ( [ x , y , Fluct1por ] , 13 , 0 ,
0 . 19 , 0) ;

166

167

168 f igure (51)
169 hold on
170 plot ( lagsn , variomexp , ’ Linewidth ’ , 2 )
171 plot ( lagsn , variomgaus , ’ Linewidth ’ , 2 )
172 plot ( lagsn , variomsph , ’ g ’ , ’ Linewidth ’ , 2 )
173 plot ( lags , var ioz , ’ ∗ ’ )
174 hold o f f
175 % legend ( ’ Exponential ’ , ’ Gaussian ’ , ’ Spher i ca l ’ , ’ Empir ical ’ , ’ Location ’ , ’

SouthEast ’ )
176 xlabel ( ’ d i s t anc e ( r ) ’ )
177 ylabel ( ’ \gamma( r ) ’ )
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178

179

180 modsp=i n l i n e ( ’ betaexp1 (3 )+ betaexp1 (1 ) ( betaexp1 (1 ) betaexp1 (1 )
∗ (1 . 5∗ x/ betaexp1 (2 ) 0 .5∗ ( x/ betaexp1 (2 ) ) . ˆ3 ) ) .∗ (x<betaexp1 (2 )
) ’ , ’ betaexp1 ’ , ’ x ’ ) ;

181 ProblepshSpher=modsp( Paramsp , l a g s ) ;
182 ErrSphe=sum( ( var ioz ProblepshSpher ) . ˆ 2 )
183

184 modga=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x .ˆ2/ betaexp1 (2 ) . ˆ2 ) ) ’ ,
’ betaexp1 ’ , ’ x ’ ) ;

185 ProblepshGauss=modsp( Paramgau , l a g s ) ;
186 ErrGauss=sum( ( var ioz ProblepshGauss ) . ˆ 2 )
187

188 modexpon=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x/ betaexp1 (2 ) ) ) ’ , ’
betaexp1 ’ , ’ x ’ ) ;

189 ProblepExp=modsp( Paramexp , l a g s ) ;
190 ErrExp=sum( ( var ioz ProblepExp ) . ˆ 2 )
191

192

193

194 %[EKT, ˜ , ˜ , SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1por , Paramexp , 1 , 1 2 . 2 , 2) ;
195 [EKT, Xk, Yk, SF , PLG]=OrdKrig (50 ,50 , x , y , Fluct1por , Paramsp , 5 , 31 . 9 ,

2 , [ 5 15 ]∗0 . 3048 , [ 0 10 ]∗0 . 3048 ) ;
196

197 TASKAN=LinTrenPor (1 ) + LinTrenPor (2 ) ∗XI + LinTrenPor (3 ) ∗YI ;
198 f igure
199 surf (XI , YI ,TASKAN)
200 shading f l a t
201 colormap ( ’ paru la ’ )
202 colorbar
203 t i t l e ( ’ Trend Flow uni t 5 Poros i ty ’ )
204

205 TASKAN=Mx+0∗XI+0∗YI ; % Kanw overwr i t e thn l i n e a r me Mx
206

207 VALPOR=EKT+TASKAN;
208 Kr ig r i d s ( Xk, Yk, VALPOR, SF ) ;
209 colormap ( ’ paru la ’ )
210 hold o f f
211

212 SFPOR=SF ;
213 %save KriPor5 VALPOR Xk Yk SFPOR
214

215 [EKTCV, ˜ , ˜ , Err ]= c r o s s v a l 2 (x , y , Fluct1por , Paramsp , 5 ,10) ;
216

217 A=[ ones ( length ( x ) ,1 ) x y ] ;
218 TasDe= Mx; %A ∗ LinTrenPor ;
219 %TasDe= A ∗ LinTrenPor ;
220 VALCV=TasDe + EKTCV;
221
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222 Val Err=VALCV Por ;
223

224 f igure
225 hist ( Val Err , 1 2 )
226 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Poros i ty Flow Unit 5 ’ )
227

228 PorCV=EKTCV;
229 %save CVALRESULTS5 ThCV Th Por PorCV % swnw kai ta dyo Th ka i Por ka i

CV
230

231 ∗∗∗∗∗∗∗∗∗Cross Va l idat i on ∗∗∗∗∗∗∗∗
232

233

234 disp ( ’ ∗∗∗∗∗∗∗∗∗ Poros i ty CV ∗∗∗∗∗∗∗∗∗∗ ’ )
235 Nk=length ( Por )
236 MAECV=sum(abs ( Por VALCV) ) /Nk
237 RCV=corrcoef ( Por ,VALCV)
238 MECV=sum( ( Por VALCV) ) /Nk
239 RMSECV=sqrt (sum( ( Por VALCV) . ˆ 2 ) /Nk)
240 MaxAECV=max(abs ( Por VALCV) )
241

242

243 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
244 %%
245

246

247 %%%%%%%%%%Stocks%%%%%%%%%
248

249 JJJ=VALTH.∗ VALPOR/100 ;
250 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
251 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
252 A=x c e l l ∗ y c e l l ; % A cubic metra
253 NG=0.7
254 Sw=0.20
255 Bo=1.2
256 metat =6.29 % kybiko metro se bbl
257

258 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
259

260 OOIP=sum(sum( CellOOIP ) )
261

262 Kr ig r i d s ( Xk, Yk, CellOOIP ) ;
263 colormap ( ’ paru la ’ )
264 t i t l e ( ’OOIP Flow uni t 5 STB ’ )
265 hold o f f

1 Flow Unit 8
2

3 Thickness Procedure
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4

5 %% Thickness FU8
6

7 load ( ’ FU8thickness . mat ’ )
8 x=FU8thickness ( : , 1 ) ;
9 y=FU8thickness ( : , 2 ) ;

10 Th=FU8thickness ( : , 3 ) ;
11

12 [ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 1 ) ; % Aferesh Prwtou Vathmou
13

14 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 2 ) ; %Aferesh Defterou
Vathmou

15

16 % [ Variogram1 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (14 , p i /2 , p i /2 , x , y ,
Fluct1 , 1 , 0 . 2 1 ) ;

17 % t i t l e ( ’ prwtou ba8mou ’ )
18

19 % [ Variogram2 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Fluct2
, 1 , 0 . 2 5 ) ;

20 % t i t l e ( ’ deuterou ba8mou ’ )
21 %
22 % [ Variogram0 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Th

, 1 , 0 . 2 5 ) ;
23 % t i t l e ( ’ xwris a f a i r e s h tashs ’ )
24

25 % [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 0) ;

26 % TO KALO
27

28 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 21 , 0) ;

29

30 % ∗∗∗∗∗∗∗∗∗ CV ∗∗∗∗∗∗∗∗∗∗
31

32 [EKTCV]= c r o s s v a l (x , y , Fluct1 , Paramexp , 1 , 1 0 ) ;
33 A=[ ones ( length ( x ) ,1 ) x y ] ;
34 TasDe= A ∗ LinTren ;% Tash s t i s 8 e s e i s twn dedomenwn
35

36 VALCV=TasDe + EKTCV;
37

38 ThCV=VALCV;
39 save CVALRESULTS ThCV Th
40

41 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
42 disp ( ’ ∗∗∗∗ CV Thickness ∗∗∗∗ ’ )
43 Nk=length (Th) ;
44 MAECV=sum(abs (Th VALCV) ) /Nk
45 RCV=corrcoef (Th,VALCV)
46 MECV=sum( (Th VALCV) ) /Nk
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47 RMSECV=sqrt (sum( (Th VALCV) . ˆ 2 ) /Nk)
48 MaxAECV=max(abs (Th VALCV) )
49 f igure (2 )
50 hist ( (Th VALCV) , 12)
51 t i t l e ( ’CV e r r o r Poros i ty ’ )
52

53

54

55

56 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
57 %%
58 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
59 [EKT, Xk, Yk, SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1 , Paramexp , 1 , 1 1 . 2 , 2) ;
60 Kr ig r i d s ( Xk, Yk, EKT, SF ) ;
61 f igure (3 )
62 colormap ( ’ paru la ’ )
63

64 %Ypologizw tash MM gia ton kanabo
65 % VAL= EKT + MM
66 %
67 [ XI , YI ] = meshgrid (Xk, Yk) ;
68 TASKAN=LinTren (1 ) + LinTren (2 ) ∗XI + LinTren (3 ) ∗YI ;
69 f igure (3 )
70 surf (XI , YI ,TASKAN)
71 shading f l a t
72 colormap ( ’ paru la ’ )
73 colorbar
74 t i t l e ( ’ Tash ’ )
75

76 VALTH=EKT+TASKAN;
77 Kr ig r i d s ( Xk, Yk, VALTH, SF ) ;
78 f igure (4 )
79 colormap ( ’ paru la ’ )
80 colorbar
81

82 % prepe i na g i n e i c r o s s v a l i d a t i o n s to VAL afou to b g a l e i s
83

84

85 Poros i ty Procedure
86

87 %% Poros i ty FU8
88 load ( ’ FU8por . mat ’ )
89 x=FU8por ( : , 1 ) ;
90 y=FU8por ( : , 2 ) ;
91 Por=FU8por ( : , 3 ) ;
92

93 [ Fluct1por ,Mx, LinTrenPor , QuaTren]=Detrend (x , y , Por , 1 ) ; % Aferesh Prwtou
Vathmou

94

94
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95 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Por , 2 ) ; %Aferesh Defterou
Vathmou

96

97

98 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1por ] , 13 , 0 ,
0 . 19 , 0) ;

99

100 [EKT, ˜ , ˜ , SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1por , Paramexp , 1 , 1 2 . 2 , 2) ;
101

102 TASKAN=LinTrenPor (1 ) + LinTrenPor (2 ) ∗XI + LinTrenPor (3 ) ∗YI ;
103 f igure
104 surf (XI , YI ,TASKAN)
105 shading f l a t
106 colormap ( ’ paru la ’ )
107 colorbar
108 t i t l e ( ’ Tash Porod ’ )
109

110

111 VALPOR=EKT+TASKAN;
112 Kr ig r i d s ( Xk, Yk, VALPOR, SF ) ;
113 colormap ( ’ paru la ’ )
114 hold o f f
115

116 SFPOR=SF ;
117 %save KriPor5 VALPOR Xk Yk SFPOR
118

119 disp ( ’ ∗∗∗∗∗∗∗∗∗POR CV ∗∗∗∗∗∗∗∗∗∗ ’ )
120 [EKTCV, ˜ , ˜ , Err ]= c r o s s v a l (x , y , Fluct1por , Paramexp , 1 , 1 0 ) ;
121

122 A=[ ones ( length ( x ) ,1 ) x y ] ;
123 TasDe= A ∗ LinTrenPor ;
124

125 VALCV=TasDe + EKTCV;
126

127 Val Err=VALCV Por ;
128 f igure
129 hist ( Val Err , 1 4 )
130 t i t l e ( ’CV e r r o r Poros i ty ’ )
131

132 PorCV=EKTCV;
133 %save CVALRESULTS5 ThCV Th Por PorCV % swnw kai ta dyo Th ka i Por ka i

CV
134

135 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
136 %%
137 %
138 JJJ=VALTH.∗ VALPOR/100 ;
139 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
140 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
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141 A=x c e l l ∗ y c e l l ; % A cubic metra
142 NG=0.7
143 Sw=0.20
144 Bo=1.2
145 metat =6.29 % kybiko metro se bbl
146 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
147 OOIP=sum(sum( CellOOIP ) )
148

149 Kr ig r i d s ( Xk, Yk, CellOOIP ) ;
150 colormap ( ’ paru la ’ )
151 t i t l e ( ’OOIP ( bbl ) ’ )
152 hold o f f

1

2

3 Flow Unit 10
4

5 Thickness Procedure
6

7 %%%%%%% Thickness FU10
8

9 load ( ’ FU10thickness . mat ’ )
10 x=FU10thickness ( : , 1 ) ;
11 y=FU10thickness ( : , 2 ) ;
12 Th=FU10thickness ( : , 3 ) ;
13

14 [ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 1 ) ; % Aferesh Prwtou Vathmou
15

16 %[ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Th, 2 ) ; %Aferesh Defterou
Vathmou

17

18 % [ Variogram1 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (14 , p i /2 , p i /2 , x , y ,
Fluct1 , 1 , 0 . 2 1 ) ;

19 % t i t l e ( ’ prwtou ba8mou ’ )
20

21 % [ Variogram2 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Fluct2
, 1 , 0 . 2 5 ) ;

22 % t i t l e ( ’ deuterou ba8mou ’ )
23 %
24 % [ Variogram0 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Th

, 1 , 0 . 2 5 ) ;
25 % t i t l e ( ’ xwris a f a i r e s h tashs ’ )
26

27 % [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 15 , 0 ,
0 . 22 , 0) ;

28 % TO KALO
29

30 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1 ] , 14 , 0 ,
0 . 21 , 0) ;
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31 %[ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct2 ] , 14 , 0 ,
0 . 21 , 0) ;

32

33

34 % ∗∗∗∗∗∗∗∗∗ CV ∗∗∗∗∗∗∗∗∗∗
35

36 [EKTCV]= c r o s s v a l (x , y , Fluct1 , Paramexp , 1 , 1 0 ) ;
37 A=[ ones ( length ( x ) ,1 ) x y ] ;
38 TasDe= A ∗ LinTren ; % Tash s t i s 8 e s e i s twn dedomenwn
39

40 VALCV=TasDe + EKTCV;
41

42 ThCV=VALCV;
43 save CVALRESULTS ThCV Th
44

45 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
46 disp ( ’ ∗∗∗∗ CV Thickness ∗∗∗∗ ’ )
47 Nk=length (Th) ;
48 MAECV=sum(abs (Th VALCV) ) /Nk
49 RCV=corrcoef (Th,VALCV)
50 MECV=sum( (Th VALCV) ) /Nk
51 RMSECV=sqrt (sum( (Th VALCV) . ˆ 2 ) /Nk)
52 MaxAECV=max(abs (Th VALCV) )
53 f igure (2 )
54 hist ( (Th VALCV) , 12)
55 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Thickness Flow Unit 10 ’ )
56

57

58

59

60 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
61 %%
62 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
63 % [EKT, Xk, Yk, SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1 , Paramexp , 1 , 0 . 7 , 2) ;
64 [EKT, Xk, Yk, SF , PLG]=OrdKrig (40 ,40 , x , y , Fluct1 , Paramexp , 1 , 3 1 . 9 , 2 , [ 5

15 ]∗0 . 3048 , [ 0 10 ]∗0 . 3048 ) ;
65 Kr ig r i d s ( Xk, Yk, EKT, SF ) ;
66 f igure (3 )
67 colormap ( ’ paru la ’ )
68

69 %Ypologizw tash MM gia ton kanabo
70 % VAL= EKT + MM
71 %
72 [ XI , YI ] = meshgrid (Xk, Yk) ;
73 TASKAN=LinTren (1 ) + LinTren (2 ) ∗XI + LinTren (3 ) ∗YI ;
74 f igure (3 )
75 surf (XI , YI ,TASKAN)
76 shading f l a t
77 colormap ( ’ paru la ’ )

97



78 colorbar
79 t i t l e ( ’ Trend f low uni t 10 Thickness ’ )
80

81 VALTH=EKT+TASKAN;
82 Kr ig r i d s ( Xk, Yk, VALTH, SF ) ;
83 f igure (4 )
84 colormap ( ’ paru la ’ )
85 colorbar
86 %t i t l e ( ’ Kr ig ing Standard Deviat ion f low uni t 10 Thickness ’ )
87 % prepe i na g i n e i c r o s s v a l i d a t i o n s to VAL afou to b g a l e i s
88

89

90 Poros i ty Procedure
91

92

93 %% Poros i ty FU10
94

95 % #################################################################
96 % #################################################################
97

98

99 load ( ’ FU10por . mat ’ )
100 x=FU10por ( : , 1 ) ;
101 y=FU10por ( : , 2 ) ;
102 Por=FU10por ( : , 3 ) ;
103

104 f igure
105 [ Fluct1por ,Mx, LinTrenPor , QuaTren]=Detrend (x , y , Por , 1 ) ; % Aferesh Prwtou

Vathmou
106

107 % [ Fluct2 ,Mx, LinTren , QuaTren]=Detrend (x , y , Por , 2 ) ; %Aferesh Defterou
Vathmou

108

109

110 % [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Fluct1por ] , 13 ,
0 , 0 . 19 , 0) ;

111 % [EKT, ˜ , ˜ , SF , PLG]=OrdKrig (83 ,50 , x , y , Fluct1por , Paramexp , 1 , 1 2 . 2 , 2)
;

112

113 [ Paramexp , lags , var ioz , lagsn , variom]=Varexpon ( [ x , y , Por ] , 13 , 0 , 0 . 19 ,
0) ;

114 %[EKT, ˜ , ˜ , SF , PLG]=OrdKrig (83 ,50 , x , y , Por , Paramexp , 1 , 0 . 7 , 2) ;
115 [EKT, ˜ , ˜ , SF , PLG]=OrdKrig (40 ,40 , x , y , Por , Paramexp , 1 , 3 1 . 9 , 2 , [ 5

15 ]∗0 . 3048 , [ 0 10 ]∗0 . 3048 ) ;
116

117 TASKAN=LinTrenPor (1 ) + LinTrenPor (2 ) ∗XI + LinTrenPor (3 ) ∗YI ;
118 f igure
119 surf (XI , YI ,TASKAN)
120 shading f l a t
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121 colormap ( ’ paru la ’ )
122 colorbar
123 t i t l e ( ’ Trend f low uni t 10 Poros i ty ’ )
124

125

126 VALPOR=EKT; %+TASKAN;
127 Kr ig r i d s ( Xk, Yk, VALPOR, SF ) ;
128 colormap ( ’ paru la ’ )
129 hold o f f
130

131 SFPOR=SF ;
132 %save KriPor5 VALPOR Xk Yk SFPOR
133

134 disp ( ’ ∗∗∗∗∗∗∗∗∗POR CV ∗∗∗∗∗∗∗∗∗∗ ’ )
135 %[EKTCV, ˜ , ˜ , Err ]= c r o s s v a l (x , y , Fluct1por , Paramexp , 1 , 1 0 ) ;
136 [EKTCV, ˜ , ˜ , Err ]= c r o s s v a l (x , y , Por , Paramexp , 1 , 1 0 ) ;
137

138 A=[ ones ( length ( x ) ,1 ) x y ] ;
139 TasDe= A ∗ LinTrenPor ;
140

141 VALCV=EKTCV; % +TasDe ;
142

143 Val Err=VALCV Por ;
144 f igure
145 hist ( Val Err , 1 4 )
146 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Poros i ty Flow Unit 10 ’ )
147

148 PorCV=EKTCV;
149 %save CVALRESULTS5 ThCV Th Por PorCV % swnw kai ta dyo Th ka i Por ka i

CV
150

151 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
152 %%
153 %
154 JJJ=VALTH.∗ VALPOR/100 ;
155 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
156 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
157 A=x c e l l ∗ y c e l l ; % A cubic metra
158 NG=0.7
159 Sw=0.20
160 Bo=1.2
161 metat =6.29 % kybiko metro se bbl
162 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
163

164 OOIP=nansum(nansum( CellOOIP ) )
165

166 f igure
167 Kr ig r i d s ( Xk, Yk, CellOOIP ) ;
168 colormap ( ’ paru la ’ )
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169 t i t l e ( ’OOIP f low uni t 10 ( bbl ) ’ )
170 hold o f f
171

172 %%
173 %
174 %PorCV ; Por
175 %ThCV 91 ; Th 91
176

177 SYNTE= 1/100∗ (A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
178 Nk=min ( [ length (Th) , length ( Por ) ] ) ; % pairnoyme to e l a x i s t o mikos apo ta

dyo dianismata
179

180 GINOM=Por ( 1 : Nk, 1 ) .∗Th( 1 : Nk, 1 ) ∗SYNTE;
181 GINOMCV=PorCV ( 1 : Nk, 1 ) .∗ThCV( 1 : Nk, 1 ) ∗SYNTE;
182

183 Val Err=GINOMCV GINOM;
184

185 MAECV=sum(abs (GINOM GINOMCV) ) /Nk
186 RCV=corrcoef (GINOM,GINOMCV)
187 MECV=sum( (GINOM GINOMCV) ) /Nk
188 RMSECV=sqrt (sum( (GINOM GINOMCV) . ˆ 2 ) /Nk)
189 MaxAECV=max(abs (GINOM GINOMCV) )
190 RelEr=abs (GINOM GINOMCV) . /GINOM; % An 8 elw na dw ta r e l a t i v e e r r o r s se

ena ena shmeio
191 MARE=sum( abs (GINOM GINOMCV) . /GINOM ) /Nk
192 f igure
193 hist ( (GINOM GINOMCV) , 12)
194 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) GINOMENO Flow Unit 10 ’ )

1 c l e
2

3 load ( ’ FU5thickness . mat ’ )
4 xt=FU5thickness ( : , 1 ) ;
5 yt=FU5thickness ( : , 2 ) ;
6 Th=FU5thickness ( : , 3 ) ;
7

8 load ( ’ FU5por . mat ’ )
9 xp=FU5por ( : , 1 ) ;

10 yp=FU5por ( : , 2 ) ;
11 Por=FU5por ( : , 3 ) ;
12

13 %[MTHICK,Me,STHICK, AsymetriTHICK , kurtos i sThick , minTHICK,maxTHICK] =
GEOSTATh(Th)

14 %[ Mpor ,Me, Spor , Asymetripor , kur to s i spo r , minpor , maxpor ] = GEOSTAPor( Por )
15

16

17 LT=round ( [ xt yt ]∗1000) /1000 ;
18

19 LP=round ( [ xp yp ]∗1000) /1000 ;
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20

21 [C, ITh , IPor ] = i n t e r s e c t (LT,LP, ’ rows ’ ) ;
22

23 Porth = log ( Por ( IPor ) .∗ Th( ITh ) ) ; % Poros i ty x t h i c k n e s s koina
24 x = xt ( ITh ) ;
25 y = yt ( ITh ) ;
26

27

28 %[ Variogram0 , lagcent , P a i r s p e r c l a s s ]=Empeirvar (12 , p i /2 , pi , x , y , Th
, 1 , 0 . 2 5 ) ;

29 %t i t l e ( ’ Without Remove o f Trend Values ’ )
30

31 [ Fluct1 ,Mx, LinTren , QuaTren]=Detrend (x , y , Porth , 0 ) ; % Aferesh mhd Vathmou
32

33 [ Mpor ,Me, Spor , Asymetripor , kur to s i spo r , minpor , maxpor ] = GEOSTAPor( Porth )
34

35

36

37 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38

39 [ Paramexp , lags , var ioz , lagsn , variomexp ]=Varexpon ( [ x , y , Fluct1 ] , 12 , 0 ,
0 . 26 , 0 , 1) ;

40 [ Paramgau , lags , var ioz , lagsn , variomgaus ]= Vargauss ( [ x , y , Fluct1 ] , 12 ,
0 , 0 . 26 , 0 , 1) ;

41 [ Paramsp , lags , var ioz , lagsn , variomsph ]=Varsph ( [ x , y , Fluct1 ] , 12 , 0 ,
0 . 26 , 0 , 1) ;

42

43

44

45 f igure (51)
46 hold on
47 plot ( lagsn , variomexp , ’ Linewidth ’ , 2 )
48 plot ( lagsn , variomgaus , ’ Linewidth ’ , 2 )
49 plot ( lagsn , variomsph , ’ g ’ , ’ Linewidth ’ , 2 )
50 plot ( lags , var ioz , ’ ∗ ’ )
51 hold o f f
52 legend ( ’ Exponent ia l ’ , ’ Gaussian ’ , ’ S p h e r i c a l ’ , ’ Empir ica l ’ , ’ Locat ion ’ , ’

SouthEast ’ )
53 xlabel ( ’ d i s t anc e ( r ) ’ )
54 ylabel ( ’ \gamma( r ) ’ )
55

56

57 modsp=i n l i n e ( ’ betaexp1 (3 )+ betaexp1 (1 ) ( betaexp1 (1 ) betaexp1 (1 )
∗ (1 . 5∗ x/ betaexp1 (2 ) 0 .5∗ ( x/ betaexp1 (2 ) ) . ˆ3 ) ) .∗ (x<betaexp1 (2 )
) ’ , ’ betaexp1 ’ , ’ x ’ ) ;

58 ProblepshSpher=modsp( Paramsp , l a g s ) ;
59 ErrSphe=sum( ( var ioz ProblepshSpher ) . ˆ 2 )
60

61 modga=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x .ˆ2/ betaexp1 (2 ) . ˆ2 ) ) ’ ,
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’ betaexp1 ’ , ’ x ’ ) ;
62 ProblepshGauss=modsp( Paramgau , l a g s ) ;
63 ErrGauss=sum( ( var ioz ProblepshGauss ) . ˆ 2 )
64

65 modexpon=i n l i n e ( ’ betaexp1 (3 )+betaexp1 (1 ) ∗ ( 1 exp ( x/ betaexp1 (2 ) ) ) ’ , ’
betaexp1 ’ , ’ x ’ ) ;

66 ProblepExp=modsp( Paramexp , l a g s ) ;
67 ErrExp=sum( ( var ioz ProblepExp ) . ˆ 2 )
68

69

70

71 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72

73 [EKTCV]= c r o s s v a l 2 (x , y , Fluct1 , Paramexp , 5 , 1 0 ) ;
74 % disp ( ’ ’ )
75 % disp ( ’ gauss ’ )
76 % [EKTCV]= c r o s s v a l (x , y , Fluct1 , Paramgau , 2 , 1 0 ) ;
77 %
78

79

80 %A=[ ones ( l ength ( x ) ,1 ) x y ] ;
81 %TasDe= A ∗ LinTren ; % Tash s t i s 8 e s e i s twn dedomenwn
82

83 A=[ ones ( length ( x ) ,1 ) x y x .ˆ2 y .ˆ2 x .∗ y ] ;
84 TasDe= A ∗ QuaTren ; % Tash s t i s 8 e s e i s twn dedomenwn
85

86 TasDe=Mx;
87 VALCV=TasDe + EKTCV;
88

89 Err=VALCV Porth ;
90 Nk=length ( Porth ) ;
91 mean( Err )
92 MAECV=mean(abs ( Porth VALCV) )
93 RMSECV=sqrt (mean( ( Porth VALCV) . ˆ 2 ) )
94 RCV=corrcoef ( Porth ,VALCV)
95 MECV=sum( ( Porth VALCV) ) /Nk
96 %%
97

98 [EKT, Xk, Yk, SF , PLG]=OrdKrig (50 ,50 , x , y , Fluct1 , Paramsp , 5 , 15 , 2 , [ 5
15 ]∗0 . 3048 , [ 0 10 ]∗0 . 3048 ) ;

99 Kr ig r i d s ( Xk, Yk, EKT, SF ) ;
100 f igure (3 )
101 colormap ( ’ paru la ’ )
102 f igure (4 )
103 %t i t l e ( ’ k r i g i n g Variance ’ )
104

105

106 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
107 disp ( ’ ∗∗∗∗ CV Porth ∗∗∗∗ ’ )
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108 disp ( ’ apo logar ’ )
109 Nk=length ( Porth ) ;
110 Porth2=exp( Porth ) ; VALCV2=exp(VALCV) ;
111

112 MAECV=sum(abs ( Porth2 VALCV2) ) /Nk
113 RCV=corrcoef ( Porth2 ,VALCV2)
114 MECV=sum( ( Porth2 VALCV2) ) /Nk
115 RMSECV=sqrt (sum( ( Porth2 VALCV2) . ˆ 2 ) /Nk)
116 MaxAECV=max(abs ( Porth2 VALCV2) )
117 f igure (99)
118 hist ( ( Porth2 VALCV2) , 12)
119 t i t l e ( ’ Cross Va l idat i on ( e r r o r ) Thickness Flow Unit 5 ’ )
120 %%%%%%%%%%%%%%%%%%%%%
121

122

123 [ XI , YI ] = meshgrid (Xk, Yk) ;
124 TASKAN=LinTren (1 ) + LinTren (2 ) ∗XI + LinTren (3 ) ∗YI ;
125 %TASKAN=Mx+0∗XI+0∗YI ;
126 %TASKAN=QuaTren (1 ) + QuaTren (2 ) ∗XI + LinTren (3 ) ∗YI +QuaTren (4 ) ∗XI .ˆ2 +

+QuaTren (5 ) ∗YI .ˆ2 + +QuaTren (6 ) ∗XI .∗YI ;
127

128 %
129 % f i g u r e (3 )
130 % s u r f (XI , YI ,TASKAN)
131 % shading f l a t
132 % colormap ( ’ parula ’ )
133 % co lo rba r
134 % t i t l e ( ’ Trend Flow uni t 5 Thickness ’ )
135 %
136 VALTH=exp(EKT+TASKAN) ;
137 Kr ig r i d s ( Xk, Yk, VALTH, SF ) ;
138 f igure (5 )
139 colormap ( ’ paru la ’ )
140 colorbar
141

142 JJJ=VALTH/100 ;
143 %JJJ=VALTH.∗ VALPOR/100 ;
144 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
145 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
146 A=x c e l l ∗ y c e l l ; % A cubic metra
147 NG=0.7
148 Sw=0.20
149 Bo=1.2
150 metat =6.29 % kybiko metro se bbl
151 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
152 OOIP=sum(sum( CellOOIP ) )
153

154 Kr ig r i d s ( Xk, Yk, CellOOIP ) ;
155 colormap ( ’ paru la ’ )
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156 t i t l e ( ’OOIP Flow uni t 5 STB ’ )
157 hold o f f

1 c l e
2

3

4 %% Setup and cons t ruc t i n t e r p o l a t i o n g r id
5

6 % I n t e r p o l a t i o n s i z e and step
7 xint min = 5∗0 . 3048 ; %min ( x ) ;
8 xint max = 15∗0 .3048 ;%max( x ) ;
9 x i n t s t e p = ( xint max xint min ) /41 ;

10

11 %[ 5 15 ]∗0 . 3048 , [ 0 10 ]∗0 .3048 Vima
12

13 yint min = 0∗0 . 3048 ;
14 yint max = 10∗0 .3048 ;
15 y i n t s t e p = ( yint max yint min ) /41 ;
16

17 % Prepare meshgrid in which the i n t e r p o l a t i o n w i l l be computed
18 % This i s r equ i r ed by gr iddata
19 [ x int , y in t ] = meshgrid ( x int min : x i n t s t e p : xint max , . . .
20 yint min : y i n t s t e p : yint max ) ;
21

22

23

24 for CASDED=1:2
25

26

27

28

29 %% Poros i ty FU5
30

31 i f CASDED==1
32 load ( ’ FU5por . mat ’ )
33 x=FU5por ( : , 1 ) ;
34 y=FU5por ( : , 2 ) ;
35 z=FU5por ( : , 3 ) ;
36 else
37 load ( ’ FU5thickness . mat ’ )
38 x=FU5thickness ( : , 1 ) ;
39 y=FU5thickness ( : , 2 ) ;
40 z=FU5thickness ( : , 3 ) ;
41 end
42

43

44

45 %% I n t e r p o l a t e
46

104



7. Appendix

47 % IDW exponent
48

49 i f CASDED==1
50 exponent = 1 . 5 ; %Poro
51 else
52 exponent = 2 . 5 ; %Thic
53 end
54

55

56

57 % I n t e r p o l a t e us ing gr iddata and nea r e s t ne ighbors method
58 %i n t e r p o l a t i o n = gr iddata (x , y , z , x int , y int , ’ natura l ’ ) ;
59

60 % I n t e r p o l a t e us ing IDW
61 interpolat ion IDW = griddataIDW (x , y , z , x int , y int , exponent ) ;
62

63

64 %% CV
65

66 N=length ( x ) ;
67 VALCV(N, 1 ) =0;
68

69 for i =1:N
70 xt=x ; xt ( i ) = [ ] ; xs=x ( i ) ;
71 yt=y ; yt ( i ) = [ ] ; ys=y ( i ) ;
72 zt=z ; z t ( i ) = [ ] ; z s=z ( i ) ;
73

74

75 VALCV( i ) = griddataIDW ( xt , yt , zt , xs , ys , exponent ) ;
76 end
77

78 i f CASDED==1
79 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗POR CV ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ) ;
80 else
81 disp ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗THI CV ∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )
82 end
83

84

85 MAECV=sum(abs ( z VALCV) ) /N
86 RCV=corrcoef ( z ,VALCV)
87 MECV=sum( ( z VALCV) ) /N
88 RMSECV=sqrt (sum( ( z VALCV) . ˆ 2 ) /N)
89 MaxAECV=max(abs ( z VALCV) )
90

91 disp ( ’ ’ )
92

93

94

95 %%
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96

97

98 % Inve r s e Distance Weighting i n t e r p o l a t i o n
99 f igure ;

100 pcolor ( xint , y int , interpolat ion IDW ) ;
101 axis ( ’ equal ’ , ’ t i g h t ’ )
102 shading ( ’ f l a t ’ ) ;
103 hold ( ’ on ’ ) ;
104 %s c a t t e r (x , y , 20∗ abs ( z+1) , z , ’ f i l l e d ’ , ’ MarkerEdgeColor ’ , ’ k ’ ) ;
105 c o b j = colorbar ;
106 c o b j . Label . S t r ing = ’ Value ’ ;
107

108 i f CASDED==1
109 t i t l e ( [ ’ I nve r s e Distance Weighting Poros i ty f o r Flow Unit 5 ’ ] )
110 else
111 t i t l e ( [ ’ I nve r s e Distance Weighting Thickness f o r Flow Unit 5 ’ ] )
112 end
113 xlabel ( ’ x ’ ) ;
114 ylabel ( ’ y ’ ) ;
115

116 i f CASDED==1
117 InterPOR=interpolat ion IDW ; % Kanavos tou porodous
118 else
119 InterTHI=interpolat ion IDW ;% kanavos tou Thickness
120 end
121

122

123 end
124

125

126 JJJ=InterPOR .∗ InterTHI /100 ;
127 x c e l l=x i n t s t e p ∗1000 ; y c e l l=y i n t s t e p ∗1000 ;
128 A=x c e l l ∗ y c e l l ; % A cubic metra
129 NG=0.7
130 Sw=0.20
131 Bo=1.2
132 metat =6.29 % kybiko metro se bbl
133 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
134 OOIP=sum(sum( CellOOIP ) )
135

136 Kr ig r i d s ( x int min : x i n t s t e p : xint max , y int min : y i n t s t e p : yint max ,
CellOOIP ) ;

137 colormap ( ’ paru la ’ )
138 t i t l e ( ’OOIP Flow uni t 5 STB ’ )
139 hold o f f

1 function vq = griddataIDW (x , y , v , xq , yq , p)
2

3 % I n t e r p o l a t e 2 D s c a t t e r e d data us ing i n v e r s e d i s t anc e weight ing

106



7. Appendix

4

5 % Compute a l l pa i rw i s e d i s t a n c e s
6 r = pd i s t2 ( [ xq ( : ) , yq ( : ) ] , [ x , y ] ) ;
7

8 % Compute weights
9 W = 1./ r . ˆ p ;

10

11 % Set weights to one f o r d i s t a n c e s equal to zero
12 %W( r==0) = 1 ;
13

14 % I n t e r p o l a t e
15 vq = W∗v . / sum(W, 2) ;
16

17 % Reshape to match matrix dimensions
18 [ nxq , nyq ] = s ize ( xq ) ;
19 vq = reshape ( vq , nxq , nyq ) ;

1

2 c l e
3

4 %% GRID
5 % Grid apo kanabo porodous
6 load ( ’ FU5por . mat ’ )
7 x=FU5por ( : , 1 ) ;
8 y=FU5por ( : , 2 ) ;
9

10 nx=146; % g ia k e l i 60x60m
11 ny=82;
12

13 minx=min( x ) 0 . 1 5 ;
14 maxx=max( x ) +0.15;
15 miny=min( y ) 0 . 1 5 ;
16 maxy=max( y ) +0.15;
17

18 Xk=linspace ( minx , maxx , nx ) ;
19 Yk=linspace ( miny , maxy , ny ) ;
20 [ XI , YI ] = meshgrid (Xk, Yk) ;
21

22 Ax=reshape (XI , nx∗ny , 1 ) ;
23 Ay=reshape (YI , nx∗ny , 1 ) ;
24 A=[Ax,Ay ] ;
25

26 %% Thickness
27

28 load ( ’ FU5thickness . mat ’ )
29 %load Kanavos
30

31 x=FU5thickness ( : , 1 ) ;
32 y=FU5thickness ( : , 2 ) ;
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33 Th=FU5thickness ( : , 3 ) ;
34

35 [ ArWeiTh ] = Vorongrap (x , y , Th, 0 . 1 5 ) ;
36

37 c o b j = colorbar ;
38 c o b j . Label . S t r ing = ’ Thickness (m) ’ ;
39 xlabel ( ’ x (km) ’ ) ;
40 ylabel ( ’ y (km) ’ ) ;
41

42 [ idTh ] = knnsearch ( [ x y ] ,A, ’ k ’ , 1 ) ;
43 VORONKANth=Th( idTh ) ;
44 VORONKANth=reshape (VORONKANth, ny , nx ) ;
45

46

47

48 %% Poros i ty
49

50 load ( ’ FU5por . mat ’ )
51 x=FU5por ( : , 1 ) ;
52 y=FU5por ( : , 2 ) ;
53 Por=FU5por ( : , 3 ) ;
54

55 [ ArWei ] = Vorongrap (x , y , Por , 0 . 1 ) ;
56

57 c o b j = colorbar ;
58 c o b j . Label . S t r ing = ’ Poros i ty (%) ’ ;
59 xlabel ( ’ x (km) ’ ) ;
60 ylabel ( ’ y (km) ’ ) ;
61

62 [ idPor ] = knnsearch ( [ x y ] ,A, ’ k ’ , 1 ) ;
63

64 VORONKANPor=Por ( idPor ) ;
65 VORONKANPor=reshape (VORONKANPor, ny , nx ) ;
66

67 %% Sxhmata
68

69 f igure (3 )
70 surf (XI , YI ,VORONKANth)
71 shading f l a t
72 colormap ( ’ paru la ’ )
73 colorbar
74 t i t l e ( ’ Voronoi Est imation f o r Thickness ’ )
75 c o b j = colorbar ;
76 c o b j . Label . S t r ing = ’ Thickness (m) ’ ;
77 xlabel ( ’ x (km) ’ ) ;
78 ylabel ( ’ y (km) ’ ) ;
79 view (2 )
80

81 f igure (4 )
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82 surf (XI , YI ,VORONKANPor)
83 shading f l a t
84 colormap ( ’ paru la ’ )
85 colorbar
86 t i t l e ( ’ Voronoi Est imation f o r Poros i ty ’ )
87 c o b j = colorbar ;
88 c o b j . Label . S t r ing = ’ Poros i ty (%) ’ ;
89 xlabel ( ’ x (km) ’ ) ;
90 ylabel ( ’ y (km) ’ ) ;
91

92 view (2 )
93

94

95 %%
96

97 VALTH=VORONKANth;
98 VALPOR=VORONKANPor;
99

100 JJJ=VALTH.∗ VALPOR/100 ;
101 Kr ig r i d s ( Xk, Yk, JJJ ) ;
102 colormap ( ’ paru la ’ )
103 hold o f f
104 x c e l l =(Xk(2) Xk(1) ) ∗1000 ; y c e l l =(Yk(2) Yk(1) ) ∗1000 ;
105 %CUBICM=sum(sum( JJJ∗ x c e l l ∗ y c e l l ) ) ;
106 A=x c e l l ∗ y c e l l ; % A cubic metra
107 NG=0.7
108 Sw=0.20
109 Bo=1.2
110 metat =6.29 % kybiko metro se bbl
111 CellOOIP=JJJ ∗(A∗NG∗ ( 1 Sw) ) /Bo ∗ metat ;
112 OOIP=sum(sum( CellOOIP ) )
113 %t i t l e ( ’OOIP f low uni t 5 ( bbl ) ’ )
114 %hold o f f

1 % c l e
2 % load ( ’FU5PERM. mat ’ )
3 % FU5PERM( 9 5 1 , : ) = [ ] ;
4 % e=(FU5PERM( : , 3 ) ) ;
5 % e ( e <=10ˆ( 7) ) =0.0000001;
6 % K=FU5PERM( : , 4 ) ;
7 % %K(K<=10ˆ( 5) ) =0.00001;
8 %
9 % f1=f i t t y p e ( ’ a∗x.ˆ3+b ’ )

10 % [ F1 , G1, L1 ] = f i t ( e ,K, f 1 )
11 %
12 % f2=f i t t y p e ( ’ a∗x . ˆ 3 ’ )
13 % [ F2 , G2, L2 ] = f i t ( e ,K, f 2 )
14 % K=FU5PERM( : , 4 ) ;
15 % f3=f i t t y p e ( ’ ( a ∗ ( ( x . ˆ 3 ) ) ) / ( ( 1 x ) ˆ2) ’ ) % K=a ∗( e ˆ3∗Dpˆ2) / ( 1 e ) ˆ2
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16 % [ F3 , G3, L3 ] = f i t ( e ,K, f 3 )
17 % myfit = f i t ( e /100 ,K, f 3 )
18 %
19 % Kab i l iTa s i s=f3 ( 1 7 4 . 3 , e /100) ;
20 %
21 % f i g u r e ;
22 % plo t ( e /100 ,K, ’ . ’ )
23 % hold on ;
24 % plo t ( e /100 , Kab i l iTas i s , ’ . ’ )
25 % x l a b e l ( ’ Poros i ty Percent ’ )
26 % y l a b e l ( ’ Permieb i l i ty ’ )
27 %%
28 c l e
29 load ( ’FU5PERM. mat ’ )
30 %FU5PERM( 9 5 1 , : ) = [ ] ;
31 e=(FU5PERM( : , 3 ) ) ;
32 e ( e <=10ˆ( 7) ) =0.0000001;
33 K=FU5PERM( : , 2 ) ;
34

35

36 %% Coates Equation
37 f 1=f i t t y p e ( ’ a∗x .ˆ4 ’ )
38 [ F1 , G1, L1 ] = f i t ( e ,K, f 1 )
39 [ myfit1 , my f i t 1 go f ] = f i t ( e /100 ,K, f 1 )
40

41 Kab i l iTas i s 1=f1 ( myf it1 . a , e /100) ;
42 g = i n l i n e ( ’P1∗x .ˆ4 ’ , 1)
43 j=linspace ( 1 0 ˆ 5 , 0 . 2 3 , 1 0 0 ) ;
44 a=myfit1 . a
45

46 t=g ( j , a )
47

48 f igure (1 ) ;
49 plot ( e /100 ,K, ’ . ’ )
50 hold on ;
51 %plo t ( j , t )
52 t i t l e ( ’ Coates Equation ’ )
53 plot ( e /100 , Kab i l iTas i s1 , ’ x ’ )
54 xlabel ( ’ Poros i ty Percent ’ )
55 ylabel ( ’ P e r m i e b i l i t y (md) ’ )
56 hold o f f
57

58 %% Timur Equation
59

60 f 2=f i t t y p e ( ’ a∗exp ( x .∗b) ’ )
61 [ F2 , G2, L2 ] = f i t ( e ,K, f 2 )
62 [ myfit2 , my f i t 2 go f ] = f i t ( e /100 ,K, f 2 )
63

64 Kab i l iTas i s 2=f2 ( myf it2 . a , myf it2 . b , e /100) ;
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65

66 f igure (2 ) ;
67 plot ( e /100 ,K, ’ . ’ )
68 hold on ;
69 plot ( e /100 , Kab i l iTas i s2 , ’ x ’ )
70 t i t l e ( ’ Timur Equation ’ )
71 xlabel ( ’ Poros i ty Percent ’ )
72 ylabel ( ’ P e r m i e b i l i t y (md) ’ )
73 hold o f f
74

75

76

77 %% Kozeni Carman Equation
78

79 %K=FU9PERM( : , 4 ) ;
80 f 3=f i t t y p e ( ’ ( a ∗ ( ( x . ˆ 3 ) ) ) / ( ( 1 x ) ˆ2) ’ ) ; % K=a ∗( e ˆ3∗Dpˆ2) / ( 1 e ) ˆ2
81 [ F3 , G3, L3 ] = f i t ( e ,K, f 3 )
82 [ myfit3 , my f i t 3 go f ] = f i t ( e /100 ,K, f 3 )
83

84 Kab i l iTas i s 3=f3 ( myf it3 . a , e /100) ;
85

86 f igure (3 ) ;
87 plot ( e /100 ,K, ’ . ’ )
88 hold on ;
89 t i t l e ( ’ Kozeni Carman Equation ’ )
90 plot ( e /100 , Kab i l iTas i s3 , ’ x ’ )
91 xlabel ( ’ Poros i ty Percent ’ )
92 ylabel ( ’ P e r m i e b i l i t y (md) ’ )
93 hold o f f
94 % c l e
95 % load ( ’FU3PERM. mat ’ )
96 % %FU3PERM( 9 5 1 , : ) = [ ] ;
97 % e=(FU3PERM( : , 3 ) ) ;
98 % e ( e <=10ˆ( 7) ) =0.0000001;
99 % K=FU3PERM( : , 4 ) ;

100 % %K(K<=10ˆ( 5) ) =0.00001;
101 %
102 % f1=f i t t y p e ( ’ a∗x.ˆ3+b ’ )
103 % [ F1 , G1, L1 ] = f i t ( e ,K, f 1 )
104 %
105 % f2=f i t t y p e ( ’ a∗x . ˆ 3 ’ )
106 % [ F2 , G2, L2 ] = f i t ( e ,K, f 2 )
107 % K=FU3PERM( : , 4 ) ;
108 % f3=f i t t y p e ( ’ ( a ∗ ( ( x . ˆ 3 ) ) ) / ( ( 1 x ) ˆ2) ’ ) % K=a ∗( e ˆ3∗Dpˆ2) / ( 1 e ) ˆ2
109 % [ F3 , G3, L3 ] = f i t ( e ,K, f 3 )
110 % myfit = f i t ( e /100 ,K, f 3 )
111 %
112 % Kab i l iTa s i s=f3 ( 7 2 . 4 , e /100) ;
113 %

111



114 % f i g u r e ; % Rotaw andrea t i pws vazw grami tashs mesa s ta dedomena ka i
na moy e n f a n i z e t a i mazi tous s to p l o t ! ! !

115 % plo t ( e /100 ,K, ’ . ’ )
116 % hold on ;
117 % plo t ( e /100 , Kab i l iTas i s , ’ . ’ )
118 % x l a b e l ( ’ Poros i ty Percent ’ )
119 % y l a b e l ( ’ Permieb i l i ty ’ )
120 %
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