
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Exploiting Linguistic Data for
Modeling Players’ Behaviour in

Strategic Board Games
Diploma Thesis

Maria Apostolidou

COMMITTEE
Advisor: Georgios Chalkiadakis, Associate Professor

Member: Stergos Afantenos, Associate Professor (IRIT CNRS,
Université Paul Sabatier, Toulouse, France)

Member: Michail G. Lagoudakis, Associate Professor

Chania, August 2020

‘I checked it very thoroughly’ said the computer, ‘and that quite definitely is
the answer. I think the problem, to be quite honest with you, is that you’ve

never actually known what the question is.’

–Deep Thought

from The Hitchhiker’s Guide to the Galaxy,
written by Douglas Adams

Abstract

Many multi-agent strategic games entail social aspects realized often via
natural language exchanges. Unfortunately few attempts have been made
to take into account both actions and linguistic information for modeling
agents. In this thesis the goal is to leverage both types of information in
order to create a model that is capable of emulating players’ actions taking
into account actions performed by all players in the past as well as their
previous linguistic exchanges. Recent advances in neural network architec-
tures and more precisely recurrent models allow one to sequentially update
representations of the game state or linguistic data, as well as the sharing of
parameters between disparate representations. Thus, in this thesis we pro-
duced and employed combined representations for the game state and for
the linguistic exchanges, in order to model players’ actions and enable the
prediction of their moves.

We demonstrate our approach in the "Settlers of Catan" multi-agent
strategic game domain. As a first step the raw data was processed to form
a Dataset suitable for use in machine learning projects. This step entailed
a novel modeling of the way in which information about a game of "Settlers
of Catan" is represented. Then linguistic and gameplay information from
the created Dataset was exploited by neural networks to predict the players’
actions. Architectures of Feed Forward Neural Networks, Recurrent Neural
Networks (such as Long Short-term Memory Networks) as well as combined
architectures of the two were investigated in the context of this thesis. We
note that data collected in the context of the ERC Advanced Grant project
STAC was used for this work, as well as the GloVe vectors for word repre-
sentation.

ii

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αξιοποίηση Γλωσσολογικών

Δεδομένων για τη Μοντελοποίηση

Στρατηγικής Συμπεριφοράς σε

Παίγνια Πολλών Παικτών

Διπλωματική Εργασία

Μαρία Αποστολίδου

ΕΠΙΤΡΟΠΗ

Επιβλέπων: Γεώργιος Χαλκιαδάκης, Αναπληρωτής Καθηγητής

Μέλος: Στέργος Αφαντενός, Αναπληρωτής Καθηγητής (IRIT
CNRS, Université Paul Sabatier, Toulouse, France)

Μέλος: Μιχαήλ Γ. Λαγουδάκης, Αναπληρωτής Καθηγητής

Χανιά, Αύγουστος 2020

Περίληψη

Πολλά πολυπρακτορικά επιτραπέζια ή ψηφιακά στρατηγικά παιχνίδια απαιτούν

κοινωνικές αλληλεπιδράσεις μεταξύ των παικτών μέσω της συνομιλίας σε φυσική

γλώσσα. Δυστυχώς λίγες απόπειρες έχουν γίνει ώστε να ληφθούν υπόψιν

τόσο οι ενέργειες των παικτών όσο και η γλωσσική πληροφορία για την μοντε-

λοποίηση πρακτόρων. Σε αυτή την εργασία ο στόχος είναι να εξισορροπή-

σουμε και τα δύο είδη πληροφορίας με σκοπό να δημιουργήσουμε ένα μοντέλο

που να είναι ικανό να μιμηθεί τις ενέργειες των παικτών λαμβάνοντας υπόψιν

τις ενέργειες που έκαναν πρωτύτερα οι παίκτες καθώς και τις προηγούμενες

γλωσσικές συνομιλίες τους. Η πρόοδος που έχει σημειωθεί πρόσφατα στο

χώρο των νευρωνικών δικτύων και ειδικότερα στα αναδρομικά νευρωνικά δίκτυα

επιτρέπει την ακολουθιακή ενημέρωση των αναπαραστάσεων των καταστάσεων

του παιχνιδιού ή και των γλωσσικών δεδομένων καθώς και την κοινή χρήση

παρα-μέτρων μεταξύ διαφορετικών αναπαραστάσεων. Ως εκ τούτου σε αυτή την

εργασία παράγαμε και χρησιμοποιήσαμε συνδυαστικές αναπαραστάσεις τόσο

των καταστάσεων του παιχνιδιού όσο και των γλωσσικών συνομιλιών, ώστε να

μοντελοποιηθούν οι ενέργειες των παικτών και να γίνει δυνατή η πρόβλεψη των

κινήσεών τους.

Η προσέγγισή μας εφαρμόστηκε στο στρατηγικό παιχνίδι «΄Αποικοι του

Κατάν». Σαν πρώτο βήμα, τα ανεπεξέργαστα δεδομένα επεξεργάστηκαν για

να σχηματιστεί ένα Σύνολο Δεδομένων κατάλληλο για χρήση σε διεργασίες

μηχανικής μάθησης. Αυτό συμπεριέλαβε μια πρωτότυπη μοντελλοποίηση του

τρόπου με τον οποίο αναπαρίσταται η πληροφορία αναφορικά με το παιχνίδι

«΄Αποικοι του Κατάν». Εν συνεχεία, γλωσσική πληροφορία και πληροφορία

αναφορικά με το παιχνίδι από το δημιουργηθέν Σύνολο Δεδομένων αξιοποιήθηκε

από νευρωνικά δίκτυα για να προβλεφθούν οι ενέργειες των παικτών. Αρχιτεκ-

τονικές όπως Νευρωνικά Δίκτυα ΄Εμπροσθεν Τροφοδότησης και Αναδρομικά

Νευρωνικά Δίκτυα (όπως Δίκτυα Μακροπρόθεσμης Μνήμης) καθώς και συνδυ-

αστικές αρχιτεκτονικές των δύο ερευνήθηκαν στο πλαίσιο αυτής της εργασίας.

Για την εργασία αυτή αξιοποιήθηκαν τα δεδομένα που έχουν συλλεχθεί στο

πλαίσιο του ERC Advanced Grant project STAC, καθώς και τα GloVe δι-
ανύσματα για αναπαράσταση λέξεων.

iv

Contents

Abstract ii

Abstract in greek iv

Contents v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

1.2.1 Agent oriented approaches 2
1.2.2 Human-oriented approaches 3

1.3 Thesis Contribution . 4
1.4 Thesis Outline . 5

2 Settlers of Catan 6
2.1 Rules of the game . 6

2.1.1 General objective . 6
2.1.2 Game board . 7
2.1.3 Resources . 9
2.1.4 Actions . 9

2.2 Game Phases . 13
2.2.1 Game Setup . 13
2.2.2 Turn Overview . 13
2.2.3 Game Over . 13

2.3 The jSettlers framework . 14

v

CONTENTS vi

3 Theoretical Background 19
3.1 Overview and Applications . 19
3.2 Feed Forward Neural Networks 21

3.2.1 From the Perceptron to Neural Networks 21
3.2.2 Training Neural Networks 25
3.2.3 Loss Metrics . 26
3.2.4 Evaluating the Performance 27
3.2.5 The Bias vs Variance Problem 27

3.3 Input encoding for Neural Networks 30
3.3.1 One-hot encoding of categorical features 30
3.3.2 Dense encodings (Feature Embeddings) 31

3.4 Recurent Neural Networks . 35
3.4.1 Long Short-Term Memory networks 39

4 Data Set Creation 41
4.1 Problem modeling . 41
4.2 Original soclog files . 45
4.3 Extended soclog files . 46
4.4 Reduced soclog files . 47
4.5 Final Dataset . 55

5 Neural Network architecture 64
5.1 One Hot Vector Encoding . 64
5.2 Text Data Preprocessing . 65
5.3 Network Configuration . 66

5.3.1 Multi Label Learning 66
5.3.2 Gamestates only Architecture 70
5.3.3 Chat only Architecture 71
5.3.4 Combined Architecture 71

6 Results 72
6.1 Performance . 72
6.2 Further discussion . 76

7 Conclusions 79

Bibliography 81

Appendices 90

A Game Board Generation in jSettlers 91

CONTENTS vii

B Network Configurations 93
B.1 Combined Architecture FF-LSTM 99
B.2 Combined Architecture LSTM-LSTM 101
B.3 Result plots from running on a different platform 104

C Code Documentation 106

List of Figures

2.1 Board of the SoC . 8
2.2 The jSettlers interface . 14
2.3 A Settlers of Catan game in jSettlers 15
2.4 The coordinate system of jSettlers 17
2.5 Game options menu in jSettlers 18

3.1 Diagram Of A Neuron . 21
3.2 Diagram of a single neuron. 22
3.3 Diagram of a feed-forward neural network 23
3.4 Common activation functions of neural networks 24
3.5 Bias vs Variance Problem . 29
3.6 One-Hot Vector Encoding Example 31
3.7 Dense Vector Encoding Example 31
3.8 Word2Vec Example - Word Context 33
3.9 Glove vectors visualizations 34
3.10 Glove co-occurance probabilities 35
3.11 Comparison of Glove to Word2Vec 35
3.12 Graphical representation of an RNN 37
3.13 Graphical representation of an unrolled RNN 37
3.14 Chronophotography as a metaphor for RNN unrolling 38

4.1 Basic Neural Network architecture 42
4.2 Features for a SoC gamestate 43
4.3 SoC game log file processing pipeline schematic 45
4.4 The jSettlers game board encoding 50
4.5 Gamestates Datatable example 56
4.6 Chats Datatable example . 57
4.7 Labels Datatable example . 58
4.8 Dataset Statistics - Player Participation 59
4.9 Dataset Statistics - Label occurances 60

viii

LIST OF FIGURES ix

5.1 Dataset Chats - Wordcloud 65
5.2 Transformation Methods for Multi-label Classification problems 67
5.3 Multi-class Classification with Neural Networks 68
5.4 Multi-label Classification with Neural Networks 69

6.1 Results from Gamestates model with Feed Forward Network . 73
6.2 Results from Gamestates model with LSTM Network 74
6.3 Results from Chats model with LSTM Network 75
6.4 Results from Gamestates and Chats model with FF-LSTM

Network . 76
6.5 Results from Gamestates and Chats model with LSTM-LSTM

Network . 77

A.1 Board generation in jSettlers 91
A.2 Final board layout in jSettlers 92

B.1 Network Configurations for Gamestates model with Feed For-
ward Network . 94

B.2 Network Configurations for Gamestates model with LSTM
network . 94

B.3 Network Configurations for Chats model with LSTM Network 95
B.4 Network Configurations for Gamestates and Chats Network

with FF-LSTM . 95
B.5 Network Configurations for Gamestates and Chats Network

with LSTM-LSTM . 95
B.6 Result plots for run 1 of Combined FF-LSTM architecture. . . 99
B.7 Result plots for run 2 of Combined FF-LSTM architecture. . . 99
B.8 Result plots for run 3 of Combined FF-LSTM architecture. . . 99
B.9 Result plots for run 4 of Combined FF-LSTM architecture. . . 100
B.10 Result plots for run 5 of Combined FF-LSTM architecture. . . 100
B.11 Result plots for run 1 of Combined LSTM-LSTM architecture. 101
B.12 Result plots for run 2 of Combined LSTM-LSTM architecture. 101
B.13 Result plots for run 3 of Combined LSTM-LSTM architecture. 101
B.14 Result plots for run 4 of Combined LSTM-LSTM architecture. 102
B.15 Result plots for run 5 of Combined LSTM-LSTM architecture. 102
B.16 Result plots for run 6 of Combined LSTM-LSTM architecture. 102
B.17 Result plots for run 7 of Combined LSTM-LSTM architecture. 103
B.18 Result plots from Gamestates model with FF network. 104
B.19 Result plots from Gamestates model with LSTM network. . . 104
B.20 Result plots from Chats model with LSTM network. 105
B.21 Result plots from Combined model with FF-LSTM network. . 105

List of Tables

2.1 Land tiles in the Settlers of Catan 7
2.2 Sea tiles in the Settlers of Catan 8

3.1 Troubleshooting bias or variance problems 28

4.1 Explanation of a message from a raw soclog file 46
4.2 SoC state signals . 48
4.3 The jSettlers encoding of board tiles 49
4.4 The jSettlers encoding of the dice tiles 51
4.5 Encoding of piece types in jSettlers 51
4.6 Action types for development cards in jSettlers 52
4.7 Development card types encoding in JSettlers 52
4.8 Element types encoding in jSettlers 53
4.9 Action types for elements in jSettlers 54
4.10 Gamestates Datatable . 61
4.11 Chats Datatable . 62
4.12 Labels Datatable . 63

x

Chapter 1

Introduction

1.1 Motivation
Games have played a central role in the development of Artificial Intel-

ligence (AI) and Machine Learning (ML) techniques, since the inception of
the idea of AI. Games form a very convenient and efficient way for mea-
suring the capacity of AI techniques, since the restricted set of rules that
accompany them leads very often (if not always) to very well defined met-
rics of performance and thus allow straightforward quantitative results that
lead to comparisons and operation evaluation of different models and ap-
proaches. More precisely, strategic games, which are ubiquitous, provide
an ideal testbed to study human strategic decision making and interactions.
With that in mind, the aim of this thesis is to study whether the exploitation
of natural language as well as previous behavior of players in strategic games
can help with understanding the decisions that the players do or do not take
during the course of a game.

In order to do so, the present work will focus on the Settlers of Catan
(SoC) game, more specifically making use of its online sibling jSettlers, which
is a faithful replica of the original board game. The added bonus of jSettlers
is that conversations between the players is implemented through a chat
system, hence there is a corpus of natural language data available that could
be of potential use for building and testing different architectures. SoC (and
thus jSettlers) is a strategy board game in which players try to settle upon the
deserted island of Catan. In order to colonize the island they need to gather
and trade resources so that they can build cities and connect them with roads.
The game has gained the interest of the public recently and is increasingly
examined in research projects. The main reason for the latter is that SoC
is an excellent candidate, and in fact a very challenging framework, to test

1

CHAPTER 1. INTRODUCTION 2

the performance of algorithms, artificial agents or computational systems
because it combines a complex set of game rules, non deterministic elements
due to the use of dice and player interaction due to trading between players.

The goal is to create a testbed for studying human behavior in the context
of strategic games. The term human behavior for the purposes of this work
will be defined as “the decisions that the players make at each step (turn) of
the game”. The model that we look to develop and examine should on the
one hand be informed by previous decisions that the players made during
the game, on the other hand by natural language data collected from the
dialogues of the players during the game and eventually will look to combine
these two aspects. The investigation of the different approaches will allow
us to have some initial indications as to whether models informed by natural
language data could potentially outperform models that are based solely on
previous actions data.

To that end, we employed the data collected in the context of the ERC
Advanced Grant project STAC [1]. We exploited this data to develop an
informative data set of both the players’ actions and dialogues throughout the
various SoC games. Finally we designed neural network architectures (with
feed forward and recurrent components) to model the players’ behaviour and
discern whether language informed models provide useful insights.

1.2 Related Work

1.2.1 Agent oriented approaches

It should be emphasized from the beginning that to the best of our knowl-
edge no previous efforts have been made in order to study the play between
language and prior game behavior of a player. A lot of the work concerning
the SoC is focused on developing artificial intelligence (AI) agents to play the
game. Thomas [2], along with a Java open source platform of the SoC game,
implemented an agent that adopts a strategy structured upon three funda-
mental pillars. The first has to do with the determination of the available
options the agent has, the second is involved in building decisions and the
third concerns the negotiation and trading behaviour of the agent. Pfeifer
[3] as well built a reinforcement learning agent with the use of hand-coded
high-level heuristics and low-level model trees.

SoC has often been used as a test-bed for Monte Carlo Tree Search
(MCTS) methods. Szita et al. [4] implemented an agent that selects actions
based on MCTS methods, but with the aid of a priori domain knowledge
and hand-coded evaluations. A similar approach was adopted by the agent

CHAPTER 1. INTRODUCTION 3

of Panousis [5]. However both of these implementations have excluded some
actions, mainly those of negotiating and trading, along with other elements
of the game for the sake of simplicity

Due to the complexity of the Settlers of Catan, only a few implementa-
tions take into account the full game rules. One that does so is the MCTS
agent of Karamalegkos [6]. Trading, being a vital feature of SoC, is included
in this implementation as well as other complex elements of the game (e.g.
development cards) that are overseen and omitted in most other works.

Finally Cuayáhuitl et al. [7] and Xenou et al. [8] incorporated deep rein-
forcement learning to improve upon the trading decisions taken by an agent.
The former uses a fully-connected multi-layer neural network to decide upon
a trading action. The later exploited the advantages of RNNs and specifi-
cally LSTMs along with the concept of Q-decomposition [9] to estimate the
Q-functions of possible values. The training in this case is done online, during
game play and the action with the maximum estimated Q-function is chosen
by the agent as the trading action. For reasons of simplicity both works
constrained the action set to 72 specific trading actions out of the numerous
possible trading actions that are available to the agents. All other actions
are decided in the same way as in [2]. The fact that there was improvement
in the performance demonstrates how crucial trading is in SoC and provides
evidence to argue that deep reinforcement learning is a promising approach
for training agents in strategic environments.

1.2.2 Human-oriented approaches

All of the aforementioned approaches are agent-oriented, i.e. they concern
the case where AI agents compete against other agents and do not take into
consideration aspects that involve human players’ behaviour and interaction.
Work focused on the human players is mostly concerned with the language
task since players interact via dialogue in order to negotiate about trading.

Within the scope of the ERC Advanced Grant project Strategic Conver-
sation (STAC), the online version of the SoC developed by Thomas in [2]
was used to collect a corpus of strategic conversation. Unlike most models
of conversation, that are governed by a strong notion of cooperation because
interlocutors try to achieve the common goal of effective communication, in
strategic conversation their motives don’t align as each is trying to achieve a
personal goal. SoC is a multi-player game with considerable players interac-
tion via dialogue and trading, hence it makes a very good example to study
this type of conversational model. For this aim the dialogue between players
during games of SoC was collected as chat history along with all the game
history which details all of the extra-linguistic events (e.g., dice rolls, card

CHAPTER 1. INTRODUCTION 4

plays etc) from the game. The chat references of the corpus were annotated
as described in [1].

The central goal of the STAC project, in general, is to understand the
linguistic strategies adopted by interlocutors to achieve their conversational
goals, especially when these goals are opposed. This is pursued mainly by
studying the discourse structure of multi-party dialogues, as done by Afan-
tenos et al. in [10].

1.3 Thesis Contribution
Although the STAC project has a particularly linguistic nuance, the cor-

pus is so rich and the game history so detailed that information to replay a
whole game is stored in it. Despite that fact, there is a profound scarcity of
work in that direction in the literature.

The current thesis attempts for the first time to combine information of
both linguistic references and actions of the players during game play in a
machine learning scheme aiming to model the human agents’ behaviour. In
particular, the goal pursued here is to model the players’ actions by predicting
the next action in a game of SoC taking into account previous actions by all
players in the past as well as their linguistic exchange. The first and very
cumbersome step to achieving that aim was the modelling of the game so
as to represent the concept of players’ actions, given the format of the data
and the game. We addressed this by denoting gamestates that illustrate the
game course and predicting action labels, detailed in Section 4.1.

Following that, we exploited the information stored in the STAC corpus
concerning the actions of the players so that it could be effectively trans-
formed into a data set suitable for training, as described in Sections 4.2 - 4.5.
Although this process was long and arduous it did result in a formalization
of the game and an accompanying code base that can be used again in the
future to transform new additional SoC data collected from the jSettlers plat-
form into appropriate datasets to be used in other machine learning projects.
In Appendix C we provide the API to this code.

The next step is that of designing the architecture. The challenge that
we had to overcome here was that the game data is mixed and hence their
processing is not a straightforward process. Indeed, that is also the reason
why neural networks were chosen as the modeling method, as they alleviate
some of these data problems through autonomous learning. The model that
was tested in this thesis employs various components and combinations of
feed forward neural networks and LSTM components to represent the input
and make the label predictions.

CHAPTER 1. INTRODUCTION 5

At this point, we acknowledge that our research is restricted by a sub-
stantial limitation: a lack of huge amounts of SoC data in order to study
such a complex system as SoC and produce conclusive results about human
behaviour. That said, we wish to emphasize that the main scope of this the-
sis was to examine whether the linguistic data and game data could be for
the first time combined in a conducive way, and not to necessarily create a
perfect predictor of players’ actions. Apart from that, the API and problem
modeling that we developed here can be used to easily transform future SoC
game data into a pertinent data set and, although the time line exceeds the
purpose of this thesis, new data can be collected from building an online
community in jSettlers.

1.4 Thesis Outline
The remainder of this thesis is structured as follows: Chapter 2 outlines

the game rules of Settlers of Catan and describes the jSettlers framework,
using which the data was collected; Chapter 3 provides a theoretical back-
ground of the basic concepts and machine learning methods used in this
project; Chapter 4 elaborates on how the data of the STAC project was pro-
cessed to create a dataset appropriate for machine learning; in Chapter 5
the NN architecture that was implemented in this thesis is described; the re-
sults are presented and examined in Chapter 6; final conclusions and remarks
are included in Chapter 7. Some additional details concerning the jSettlers
framework can be found in Appendix A. Appendix B contains a complete
list of all the network configurations tested in this thesis and their resulting
scores. In Appendix C the documentation of the API for the SoC DataSet
creation is included.

Chapter 2

Settlers of Catan

Settlers of Catan is a multi-player strategy board game played between 2
to 4 players. The objective of the game is to become the first player to obtain
10 Victory Points (VP). This can be achieved by building roads, settlements,
and cities. The players can also gain VP through buying Development Cards,
building the longest road, or amassing the largest army. In order to build
something or buy a Development Card, the players have to spend resources.
These resources are obtained from their settlements and cities as well as
through maritime trading and/or trading with other players.

This chapter explains the rules of the game and describes the jSettlers
framework.

2.1 Rules of the game

2.1.1 General objective

Catan is a small island formed by 19 hexagons of land and surrounded
by sea. There are 6 different types of land on the island of Catan, 5 of which
produce different types of resources and one producing no resource, being a
desert. The fertile types of land are The Forest, that produces lumber, The
Hills, producing brick, The Mountains that give ore, The Fields producing
grain and The Pasture that produces wool. The purpose of the game is for one
player to colonise the island of Catan. This can happen by collecting Victory
Points, which are awarded when building a road, building a settlement or
upgrading one to a city and some other conditions discussed in the following.

Players start the game with two settlements and two roads each. They
can spend their resources to build further roads and new settlements or up-
grade their settlements to cities. The necessary resources are accumulated by

6

CHAPTER 2. SETTLERS OF CATAN 7

building settlements and cities on the appropriate resource-producing land
types and resources can be also exchanged between the players (by trading)
or with the stash using the special port tiles (maritime trade).

2.1.2 Game board

The board consists of three different types of tiles; in particular 19 terrain
hexagonal tiles, 18 sea hexagonal tiles and 18 numbered tiles. The terrain
tiles are further categorised in six (6) distinct types with different proper-
ties (summarized in Table 2.1) while the sea tiles are categorised in two (2)
distinct types (see Table 2.2). The numbered tiles (∈ [2, 12]) represent all
possible dice outcomes. With the exception of 2 and 12, which are the least
probable outcomes to get with two dices, there are two tile copies for each of
the other numbers.

To set up the board the land tiles are shuffled and placed randomly in
columns of 3-4-5-4-3 tiles, forming a large hexagonal island (see Fig. 2.1). The
sea tiles are placed all around, surrounding the island. Lastly, the numbered
tiles are placed on top of the land tiles, skipping the desert tile. In this way
every land tile is associated with a dice result number. When the dice are
rolled the land tile or tiles that corresponds to the dice outcome are activated,
i.e. they produce resources for the settlements that are built adjacent to
them.

LAND TILES
Type Property

Forest Produces lumber (wood)
Hill Produces brick (clay)
Mountain Produces ore (iron)
Field Produces grain (wheat)
Pasture Produces wool

Desert Home of the robber
Does not produce any resources

Table 2.1: Description of the land tiles in SoC. Every settlement can pay
off 3 different resource types to its owner, as nodes are adjacent to three
hexagons. Exception are nodes neighbouring to the sea and the desert tile.
Players who build settlements adjacent to these tiles will receive resources
only from the other two adjacent, fertile tiles.

CHAPTER 2. SETTLERS OF CATAN 8

Figure 2.1: SoC game board.

SEA TILES
Type Property

Plain sea None

Harbour

Miscellaneous port (3:1) : three units of any type re-
sources can be exchanged here for 1 desired resource
unit, as long as all three are of the same type.
Non miscellaneous port (2:1) : two units of one spec-
ified type of resource can be exchanged here for 1 de-
sired resource unit. Dedicated to one type of resource.

Table 2.2: Description of the sea tiles in SoC. Players that build settlements
adjacent to a sea tile will receive resources only from the other two fertile
land tiles when the dice results correspond to their number. However, if the
sea tile hosts a harbour, they will have the extra benefit of trading resources
with a more profitable, fixed ratio (at least better than trading with the
bank).

CHAPTER 2. SETTLERS OF CATAN 9

2.1.3 Resources

Players gain resources by having settlements or cities built on the ver-
tices of resource producing terrain tiles. After the dice are rolled, the terrain
tiles associated with the numbered tiles corresponding to the sum of the dice
numbers produce the respective resources. All players gain the appropri-
ate resources corresponding to their settlements and cities in every round.
Settlements provide the players with one (1) resource unit per each of their
adjacent fertile terrain tiles, while cities provide two (2) resource units. For
every round, the player who rolled the dice can make further actions that
include trading, constructing and developing, using the special Development
Cards. After receiving resources the player who rolled the dice may trade
resources and build as much as they want until they are done.

2.1.4 Actions

Trading

The player who rolled the dice can trade their resources during their round
with the bank/stash, via their ports or by negotiating with other players
through. More specifically, 4 trading options are available to the players:

a) Trading with other players

The player who rolled the dice can negotiate with the other players
to exchange resources at a rate they discuss and decide between them.
Trading transactions must always include resources to be exchanged by
both parties, i.e. giving away resources for free is not permitted. Other
than that, any type of arrangement between players is allowed.

Important note: players may only trade with the player whose turn it
is, i.e. the other players may not trade among themselves.

b) Sea trading via a miscellaneous harbour

If a player has built a settlement adjacent to a sea tile with a harbour,
they can exchange goods with the stash with a fixed rate of 3:1. All 3
resources offered by the player must be of the same type, i.e. 3 woods
or 3 ores can be exchange for 1 desired resource unit but not 2 ores and
1 wood.

c) Sea trading via a non-miscellaneous harbour

If a player has built a settlement adjacent to a sea tile with this partic-
ular type of harbour, they can exchange goods with the stash with an

CHAPTER 2. SETTLERS OF CATAN 10

even better fixed rate of 2:1. These ports however are dedicated to one
specific type of resource (that is denoted on the tile), meaning that in
a wood harbour the player can exchange 2 woods for 1 desired resource
unit but nothing else.

d) Trading with the bank

The players can always trade with a ratio of 4:1 with the stash, even
if they have not built in port location. The 4 resource units offered
by the player must be again of the same type. Negotiating with other
players, however, is advised as it can yield a more profitable exchange
ratio.

Constructing

During their round players can construct new roads and settlements or
upgrade their existing settlements to cities. Each of the aforementioned
construction actions will cost the players specific resources, while at the same
time there are certain rules that the actions must abide by. The cost and
rules are described in detail below. As a general rule, the maximum number
of constructions that the players can have is dictated by the number of pieces
they have in their inventory (a total of 5 settlements, 4 cities and 15 roads
per player).

a) Road construction rules (Cost: 1x Clay + 1x Wood)

• New roads can be constructed on the edges of the terrain tiles,
each edge supporting one and only one road.

• New roads must be adjacent to another road, settlement or city
belonging to the same player.

• The player that has constructed the longest (with at least 5 pieces)
continuous (there are no interrupting settlements or cities owned
by other players) line of roads gains the special card The Longest
Road, that grants the owner with two (2) Victory Points.

b) Settlement construction rules (Cost: 1x Clay + 1x Wood + 1x Wheat
+ 1x Wool)

• New settlements can be constructed on the vertices of terrain tiles
only if the neighbouring vertices are unoccupied (by settlements
or cities).

CHAPTER 2. SETTLERS OF CATAN 11

• New settlements must be adjacent to at least one of the player’s
roads.

• Settlements award one (1) Victory Point to the player.

c) City upgrade rules (Cost: 3x Iron + 2x Wheat)

• New cities can be constructed only as upgrades to existing settle-
ments.

• After the upgrade, the settlement becomes available to the player
to use again.

• Cities award two (2) Victory Points to the player.

Special Cases

a) Activating the Robber

• When a player rolls seven (7) on the dice, the Robber is activated
and no player receives any resources.

• Players with more than seven (7) resource cards must select half
of them, rounded down, and return them to the bank.

• The player that rolled the seven then moves the Robber to any
other terrain hexagon (including returning the Robber to the desert).

• The player steals one (1) random resource card from an opponent
player who has a settlement or city adjacent to the terrain hexagon
that the Robber was moved to.

• If there are more than one player’s settlements or cities adjacent
to the terrain hexagon that the Robber was moved to, the player
who moved the Robber chooses which player to steal from.

• The terrain hexagon that the Robber is occupying will stop pro-
ducing resources for the duration of time that the Robber is oc-
cupying it.

• After that the player continues with his turn (to build roads, set-
tlements, trade etc)

b) Playing Development Cards

• A player can play (reveal) only one (1) of their Development Cards
during their round.

CHAPTER 2. SETTLERS OF CATAN 12

• Development Cards cannot be played during the same round they
were bought (except for a Victory Point card).
• A Development Card can be played at any point during a player’s

turn, even before rolling the dice, as long as it has been bought at
a previous game round.
• In total there are 25 Development Cards in the deck, of which

14 are knight cards, 6 are progress cards and 5 are Victory Point
cards.
i) Knight cards

– When a player plays a Knight card the Robber is acti-
vated. The players do not discard half of their resources
but the one that played the Knight card moves the Rob-
ber to a new hexagon location and steals a resource from a
player that has built a settlement adjacent to this hexagon.

– The player that has played (revealed) the most Knight
cards (and more than three (3) in total) receives the spe-
cial card Largest Army, which is worth two (2) Victory
Points.

– In the case that another player exceeds the number of
Knights of the largest amassed army of the game until
that point, he takes the special card from its previous
proprietor, along with the two (2) Victory Points that
accompany it.

ii) Progress cards
– A player can play (reveal) one of their progress cards,

which instructions should be followed. The particular
card is then removed from the game.

– The Road Building card allows a player to immediately
place two (2) free roads on the board (according to the
normal building rules).

– The Year of Plenty or Discovery card allows a player to
immediately take any two (2) resource cards from the
stash (and these cards can be used immediately for build-
ing in the same round).

– The Monopoly card allows the player to name one (1) re-
source and all the other players must give the player all of
their resource cards of that specific type (opponent play-
ers that have no such resource cards do not give anything
to the player).

CHAPTER 2. SETTLERS OF CATAN 13

– In total there are 2 road building cards, 2 discovery cards
and 2 monopoly cards in the deck.

iii) Victory Point cards
– Victory Point cards are hidden from the rest of the players

and are only revealed by a player during their round when
they have accumulated in total ten (10) Victory Points,
making them the winner of the game.

2.2 Game Phases

2.2.1 Game Setup

At the start of the game each player has five (5) settlements, four (4) cities
and fifteen (15) road pieces in their inventory. The first player is randomly
selected and then the other players follow in a clockwise order. During the
setup phase, following the play order, each player in turn puts a settlement
and a road piece on the board. The procedure is then repeated in reverse or-
der. Right after the placement of their second settlement, each player receives
from the bank/stash their initial resources, i.e. for every adjacent hexagon to
their second settlement they receive one (1) resource unit accordingly. When
all players have placed their second settlement the game can begin and the
player who placed last their second settlement rolls the dice to begin the first
game turn.

2.2.2 Turn Overview

During a turn:

• the player rolls the dice for resource production

• the player may trade resource cards with other players and/or use mar-
itime trading, build roads and settlements, upgrade settlements to cities
and/or buy Development Cards

• the player may play one Development Card at any time during their
turn, even before rolling the dice

2.2.3 Game Over

The game will end when one of the players has gathered ten (10) Victory
Points and they announce it during their turn.

CHAPTER 2. SETTLERS OF CATAN 14

2.3 The jSettlers framework
Many software platforms are available for one to play Settlers of Catan.

One of the most notable is that of Robert S. Thomas [2] which is an open
source, Java version of the game that is the basis of many SoC servers online.
This framework includes also various heuristic-based AI players.

The data used in this thesis comes from the jSettlers framework, hence it
is important to present it to some extent.

The interface

Upon entering a game, the player is presented with the jSettlers interface,
consisting of four (4) player regions (for the four different players), the game
board region and the messages region. Initially, all player regions are empty

Figure 2.2: The jSettlers interface. The view of the interface’s regions a
player initially sees before the game is ready to begin. The player chooses
where to sit and when everyone is seated the game can start.

CHAPTER 2. SETTLERS OF CATAN 15

and the game board hexagons are all sea tiles (see Fig. 2.2).
After the players are seated the game board is generated at random (see

Appendix A) and the game starts. A player is selected at random to start
placing their initial settlement and road. When the initial set up of 2 set-
tlements and 2 roads is completed as dictated by the SoC rules (see Sec-
tion 2.2.1), the aforementioned player starts the first turn of the game by
rolling the dice. When the game will have progressed for a few turns the
jSettlers interface will look something like Fig. 2.3.

Figure 2.3: View of the jSettlers interface during gameplay.

On the left and right of the game board the four colored regions of the
players contain information about their resources, development cards, knights
etc. and the trading tools, i.e. a set of buttons and numeric boxes that allow
the player to initiate and control the maritime trading and trading with the
other players.

On the bottom part of the screen, below the game board, is a green box
with information and buttons for constructing roads and settlements, up-
grading to cities and buying Development Cards. This information includes

CHAPTER 2. SETTLERS OF CATAN 16

the costs for each building action, the cost to buy a Development Card, the
number of available Development Cards in the deck, as well as buttons that
provide information on the game statistics and the game settings.

Above the game board, the messages region is split into three parts. The
small one at the bottom, in white color, is the chat input window, prompting
the players to type a message. Above that, in light yellow, all the chat
history from the beginning of the game is displayed. At the very top there
is a light yellow box displaying the sever messages from the beginning of
the game. The server messages describe the actions of the players, the dice
results, the allocation of resources, prompts to the players when they need
to take specific actions (e.g. move the Robber, discard cards in case a 7
was rolled, monopolize a resource when they have played the corresponding
Development Card etc) and announcement to the players for the progression
of the game (e.g. whose turn it is to roll the dice, place a settlement etc); in
essence, a game history.

The hexagonal coordinates system

One of the main contributions in Thomas’s PhD dissertation [2] was the
game board coordinate system. All the locations on the board are encoded
using a hexadecimal number, so that the symmetry of the hexagonal board is
deployed. The coordinates are such that it’s easy to compute a tile, node, or
edge’s neighbours by adding and subtracting. The coordinates of hexagonal
tiles, nodes and edges of the board are shown in Fig. 2.4.

CHAPTER 2. SETTLERS OF CATAN 17

Figure 2.4: The coordinate system of jSettlers for tiles, nodes and edges of
the board. Symmetrical points on the board, with respect to the central
green line, have mirrored hexadecimal coordinates.

CHAPTER 2. SETTLERS OF CATAN 18

Other game options of jSettlers

The most recent versions of the jSettlers feature some additional game
options, e.g. specified game board settings, trading options, Victory Points
necessary to win a game etc (see Fig. 2.5). Also extra features have been
added in accordance with the game boards extension versions. These versions
allow more than four players to play the game and include a bigger game
board, additional building options (e.g. towers, ships) and other trading
caveats (e.g. pirates).

Figure 2.5: Game options menu in jSettlers

Chapter 3

Theoretical Background

This chapter provides an overview of the fundamental workings and the
mathematical foundation of neural networks and other machine learning tech-
niques and methods used in this thesis. This chapter follows the approach
presented in [11].

3.1 Overview and Applications
With the advance of modern technology two fundamental factors have

changed the way information is handled; data is stored easily and computers
have become faster. These two premises, i.e. the access to large data sets and
high computational power, have rekindled the interest in Machine Learning,
a field that grew out of Artificial Intelligence in the 1950s but is now more
relevant than ever. Machine Learning pertains a subset of algorithms that
learn from data or experience and build mathematical models in order to
make predictions or decisions without being explicitly programmed to per-
form the task. Such methods that were up until recently too demanding in
data and hardware resources, with these obstacles removed, are now in the
spotlight and thriving.

Artificial Neural Networks (NNs) are computational models of machine
learning that have gained immense popularity recently, both within the scope
of machine learning research as well as industrial applications, due to many
breakthrough results that they exhibit in performing difficult tasks. Inspired
by the way the human brain processes information, NNs have the ability to
discover intricate relationships and patterns in data, without prior knowledge
of the domain of the task at hand.

The most straightforward form of a neural network is the multi-layer per-
ceptron (MLP), i.e. a fully connected feed-forward neural network. The main

19

CHAPTER 3. THEORETICAL BACKGROUND 20

advantage MLPs offer is that they include non-linear elements, hence they
can be used to approximate complex functions [12]. They are used with in-
creasing frequency to solve classification problems and predictions problems,
with successful applications spanning over a vast variety of scientific fields,
including Economics [13, 14] , Medicine and Biology [15], Environmental sci-
ences [16] and many others. Additionally, the exploitation of NNs has been
proven very fruitful for tasks of signal processing [17], speech recognition [18]
and many linguistic applications, namely syntactic parsing [19], language
modeling [20], machine translation [21], sentiment classification [22] etc.

Another prolific class of neural networks is that of convolutional neural
networks (CNNs). These networks exploit the hierarchical patterns of data
by assembling more complex patterns from smaller and simpler patterns.
Applications of CNNs are mainly found in image related tasks and computer
vision [23–25] but go as far as music recommender systems [26], seizure pre-
diction systems [27] and speech recognition [28].

CNNs excel at extracting local patterns in the data, a task very useful in
Natural Language Processing (NLP). As a matter of fact, they are capable of
extracting meaningful local patterns that are sensitive to word order, regard-
less of where they appear in the input and for that reason have been used in
various language related tasks including sentence classification [29], text cat-
egorization [30, 31], sentiment classification [32], semantic role labeling [33],
question answering [34] and others.

However, in the field of NLP, the type of NNs that has caused the
most excitement, and for very good reasons, is that of recurrent neural net-
works (RNNs) and in particular Long Short-Term Memory neural networks
(LSTMs). These models are specialized for dealing with sequential data,
which is exactly the case in arguably every language task. On top of that,
they allow abandoning the Markov assumption that was prevalent in NLP for
decades and in that view they have revolutionized the field and established
new ways of handling language related problems. LSTMs have produced
state of the art results in many NLP tasks and are actively becoming the
prominent approach, replacing the long dominating methods in the field. A
plethora of work in NLP using LSTMs includes language modelling [35–38],
sequence tagging [39, 40], machine translation [41–43], response and dialogue
generation [44–46], text summarization [47, 48], sentence simplification [49],
question answering [50] and many others.

CHAPTER 3. THEORETICAL BACKGROUND 21

3.2 Feed Forward Neural Networks

3.2.1 From the Perceptron to Neural Networks

The origins of neural computational models date back to 1958, when
Frank Rosenblatt invented the perceptron algorithm [51]. The inspiration
was drawn by the way the brain makes use of the various neural cells that
are accordingly activated and combined in networks in order to execute com-
plicated actions.

Indeed, a neural cell alone is just an electrically excitable cell with a
seemingly simple operation. A neural cell consists of three main parts as
seen in Fig. 3.2. The cell body that contains the cell’s nucleus is called
Soma and is the part of the neuron that receives information. The Dendrites
are thin filaments that carry information from other neurons to the soma
and are the "input" part of the cell. The Axon is a long projection that
carries information from the soma and sends it off to other cells. This is the
"output" part of the cell. If a neuron receives a large number of inputs from

Figure 3.1: Diagram of a Neuron (source: "Anatomy and Physiology" by the
US National Cancer Institute’s Surveillance, Epidemiology and End Results
(SEER) Program)

other neurons, these signals add up until they exceed a particular threshold.
Once this threshold is exceeded, the neuron is triggered to send an impulse
along its axon which is called an Action potential. Such a mechanism does
not seem to hold a lot of computational power; yet by combining the action
of many neural cells the brain and central nervous system are capable of
executing tremendously complicated operations.

Hence the perceptron, as a metaphor of a neural cell, is a small inde-
pendent computational unit. It functions as a simple binary classifier and

CHAPTER 3. THEORETICAL BACKGROUND 22

computes a simple threshold function that maps its input x (a real-valued
vector) to an output value f(x) (a single binary value):

f(x) =

{
1 if w · x + b > 0,

0 otherwise
(3.1)

where w is a vector of real-valued weights and w · x is the dot product
m∑
i=1

wixi, where m is the number of inputs to the perceptron, and b is the

bias.
Rosenblatt’s ambition was that by combining many perceptrons in net-

works called Multi Layer Perceptrons (MLPs) a much more powerful classi-
fier would emerge. This was shown to be true, however, the linear nature of
the perceptron set limitations to the computational potential of MLPs. On
top of that, computers at the time lacked sufficient power to process useful
neural networks. Therefore the research on MLPs stagnated for more than a
decade.

In the 1980’s the interest in computational networks resurged as the de-
velopment of metal–oxide–semiconductor (MOS) very-large-scale integration
(VLSI), in the form of complementary MOS (CMOS) technology, enabled
the development of practical artificial neural networks. Additionally, the lin-
earity obstacle was overcome with the inclusion of a non-linear function in
the model.

A single neuron, as the one depicted in Fig. 3.2, can be seen as a compu-
tational unit with scalar inputs and outputs. Each input is associated to a
weight. The function of the neuron is to multiply each input by its weight,
sum all of the weighted inputs, apply a nonlinear function to the result and
send it to its output.

Figure 3.2: A single neuron with four inputs. (source: [11])

A network, like the one depicted in Fig. 3.3, is formed when multiple

CHAPTER 3. THEORETICAL BACKGROUND 23

neurons are connected to each other. Such networks can function as strong
computational devices that are able to approximate a wide range of math-
ematical functions, provided that the weights, number of neurons and the
nonlinear activation function are configured properly.

Figure 3.3: Feed-forward neural network with two hidden layers. The sigmoid
shape inside the neurons in the middle layers represent a nonlinear function
(e.g. the logistic function 1/(1 + e−x)) that is applied to the neuron’s value
before passing it to the output. (source: [11])

The neurons in a network are arranged in layers, reflecting the flow of
information. The bottom and top layers are called input and output layer
respectively. All the intermediate layers are called hidden layers. A fully
connected or affine layer is one where all neurons are connected to every
neuron of the next layer.

In essence, a feed-forward network is simply a stack of linear models
separated by nonlinear functions. The values of each row of neurons in the
network can be thought of as a vector. Using the same mathematical notation
as in chapter 4 of [11] a fully connected layer implements a vector-matrix
multiplication, h = xW where the weight of the connection from the ith
neuron in the input row to the jth neuron in the output row is W[i,j]. The
values of h are then transformed by a nonlinear function g that is applied
to each value before being passed on as input to the next layer. Ignoring
the bias terms, the whole computation from input to output can be written
as: (g(xW1)W2) where W1 are the weights of the first layer and W2 are
the weights of the second one. If we now consider the network in Fig. 3.3

CHAPTER 3. THEORETICAL BACKGROUND 24

Figure 3.4: Common activation functions of neural networks (top) and their
derivatives (bottom) (source: [11]).

including the bias terms that are implied we can write the equivalent equation
of the network as:

NN(x) = (g2(g1(xW1 + b1)W2 + b2))W3 (3.2)

When dealing with deeper networks, it becomes more clear if we write the
network equation using intermediary variables. The equation of the network
depicted in Fig. 3.3 is equivalently written as:

NN(x) = y

h1 = g1(xW1 + b1)

h2 = g2(h1W2 + b2)

y = h2W3

(3.3)

The network’s ability to represent complex functions is highly dependent
on the nonlinear activation function. In the absence of a nonlinear activation
function only linear transformations of the input can be represented. As
mentioned in [11] “there is currently no good theory as to which nonlinearity
to apply in which conditions, and choosing the correct nonlinearity for a
given task is for the most part an empirical question” adding that “as a rule
of thumb, both ReLU and tanh units work well, and significantly outperform
the sigmoid.” In Fig. 3.4 we summarize some commonly used non linear
activation functions.

CHAPTER 3. THEORETICAL BACKGROUND 25

3.2.2 Training Neural Networks

The problem of training neural networks is fundamentally an optimization
problem. As in any supervised learning algorithm, the input consists of a
training set of n training examples x1:n = x1, x2, ..., xn along with a set of
corresponding labels y1:n = y1, y2, ..., yn. The objective is for the training
algorithm to find a function f() that maps the inputs to the correct labels.
In other words a function that will make predictions ŷ = f(x) such that ŷ
will approximate y. To quantify the deviation of the predicted labels ŷ from
the true labels y we use a loss function L(ŷ,y) that assigns a numerical score
to the network’s output. The loss function is bounded from below and the
minimum is obtained when the prediction of the network is correct.

The learned function f() is defined by its parameters, i.e. the matrix
W and the biases vector b. In mathematical notation we can write this
as f(x; Θ). The loss function can hence be expressed with respect to the
parameters Θ as:

L(Θ) =
1

n

n∑
i=1

L(f(xi; Θ),yi) (3.4)

where L is the per-instance loss function and L is the mean value of the
loss over all the samples. The optimization objective is to minimize the loss
over these parameters Θ):

Θ̂ = arg min
Θ
L(Θ) = arg min

Θ

1

n

n∑
i=1

L(f(xi; Θ),yi) (3.5)

In this view, training the model is equivalent to solving the optimization
problem of Eq. 3.5. The solution to this optimization problem can be found
using gradient-based methods, that repeatedly compute an estimate of the
loss L over the training set and then compute the gradients of the parameters
Θ with respect to the loss estimate, in order to move the parameters in
the opposite directions of the gradient. Among the most commonly used
optimization algorithms are the stochastic gradient descent (SGD) and the
Adam optimization algorithm [11]. The various optimization methods differ
in how they estimate the error and how they update the parameters Θ.

As we mentioned earlier, neural networks can be expressed as differen-
tiable parameterized functions and as such they are trained using gradient-
based optimization methods. The non-linearity of the activation function
however introduces a predicament that impedes the gradient calculation.
Therefore for neural networks the backpropagation algorithm is used. Basi-
cally the backpropagation algorithm uses the chain rule, while caching inter-
mediary results to efficiently calculate the gradients [52, 53].

CHAPTER 3. THEORETICAL BACKGROUND 26

3.2.3 Loss Metrics

It would be wise at this point to get into a little bit more detail regarding
the loss functions used in neural networks and other machine learning training
algorithms. In theory, the loss can be an arbitrary function mapping two
vectors to a scalar, but for the purposes of optimization, functions for which
the gradient can be easily computed are preferred. The most commonly
used in neural networks are the Hinge loss (binary or multi class), the log
loss (a "softer" variation of the Hinge loss) and the binary or categorical
cross-entropy loss [11].

The binary cross-entropy loss, also referred to as logistic loss is used
in binary classification with conditional probability outputs. We assume a
set of two target classes labeled 0 and 1, with a correct label y ∈ {0, 1}.
The classifier’s output ŷ is transformed using the sigmoid (also called the
logistic) function σ(x) = 1/(1 + e−x) to the range [0, 1], and is interpreted as
the conditional probability ŷ = σ(ŷ) = P (y = 1|x). The prediction rule is:

prediction =

{
0 ŷ < 0.5

1 ŷ ≥ 0.5
(3.6)

The network is trained to maximize the log conditional probability logP (y =
1|x) for each training example (x, y). The logistic loss is defined as:

Llogistic(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ) (3.7)

The logistic loss is useful the aim is for a model to produces class condi-
tional probability for a binary classification problem. When using the logistic
loss, it is assumed that the output layer is transformed using the sigmoid
function [11].

When a probabilistic interpretation of the scores is desired, the categorical
cross-entropy loss (also referred to as negative log likelihood) is used. Let
y = y[1], ...,y[n] be a vector representing the true multinomial distribution
over the labels 1, ..., n, and let ŷ = ŷ[1], ..., ŷ[n] be the linear classifier’s output,
which was transformed by the softmax function and represents the class
membership conditional distribution ŷ[i] = P (y = i|x). The categorical cross
entropy loss measures the dissimilarity between the true label distribution y
and the predicted label distribution ŷ, and is defined as cross entropy:

Lcross−entropy(ŷ,y) = −
∑
i

y[i] log(ŷ[i]) (3.8)

The cross-entropy loss produces a multi-class classifier that not only pre-
dicts the one-best class label but also outputs a distribution over the possible

CHAPTER 3. THEORETICAL BACKGROUND 27

labels. When using the cross-entropy loss, it is assumed that the classifier’s
output is transformed using the softmax transformation [11].

3.2.4 Evaluating the Performance

One of the key concepts of training a model is that we seek for a function
f() that can generalize well to unseen examples, i.e. it can make correct
predictions even for examples it has not specifically seen during the training
process. Therefore it becomes evident that the accuracy of model must be
assessed over a set of examples that have been introduced to the model
during training. There exist several approaches, according to the way that
one separates the examples that will be seen during a training process, i.e.
the training set of examples and those that will be examined only to evaluate
the accuracy of the learned model, i.e. the test set or held-out set of examples.
Some of the most known methods is the leave-one out cross-validation and
the k-fold cross validation. A more efficient solution in terms of computation
time is to split the training set into two subsets (e.g. 80% to 20%) and then
train the model on the larger subset and test its accuracy on the smaller
subset.

3.2.5 The Bias vs Variance Problem

It has been established by this point that the objective of the training
process in machine learning is to minimize the loss. This approach however
is not always the best as it presents caveats, i.e. it may result in overfitting of
the training data. Overfitting is encountered when the training error is small
but the error of unseen examples is large. This means that the algorithm
mimics the specific data it was given during training and does not learn the
general pattern of the data, therefore lacks generalization. This is also known
as a high-variance problem. To avoid this, although it may sound counter-
intuitive, it is actually advisable to allow for some error in the training process
in order to achieve better generalization.

Techniques to avoid overfitting in machine learning involve some pre-
processing of the data e.g. to extract outliers from the dataset, normalize
numerical values etc. Another very efficient technique is using a regularization
term, especially when working with multi-layer networks that involve a lot
of parameters, thus making them prone to overfitting. The regularization
term R can be added to the optimization objective in order to control the
complexity of the parameter value. Eq. 3.5 then becomes:

CHAPTER 3. THEORETICAL BACKGROUND 28

Θ̂ = arg min
Θ
L(Θ) + λR(Θ)

= arg min
Θ

1

n

n∑
i=1

L(f(xi; Θ),yi) + λR(Θ)
(3.9)

The regularization term considers the parameter values, and scores their
complexity. The aim is to find parameter values that provide both low loss
scores and are low in terms of complexity. A hyperparameter λ is used
to control the amount of regularization. For ensuring low complexity, the
regularizers R measure the norms of the parameter matrices, and favor the
learning process toward solutions that have low norms. Common choices
for R are the L2 norm, the L1 norm, and the elastic-net. Additionally, in
neural networks another effective way to avoid overfitting is the use of dropout
training. The dropout method prevents the network from relying on specific
weights by randomly dropping (setting to 0) some neurons in the network
during training.

On the other end of the spectrum, there may be the case that the error is
large when assessing both the training examples and the validation ones. This
is the case of high bias or underfitting of the data. To put it in an illustrative
way, it is as if the model is biased towards an original assumption and, even
though the data that it sees during the training process seems to disagree
with that, it remains stubbornly fixed in that original idea. Fixing a high-bias
problem involves adding more complexity to the model, i.e. a bigger/deeper
neural network, more parameters or more features in the modeling of the
problem we are trying to solve.

Table 3.1 presents a list of common corrective steps one can try when
troubleshooting a machine learning problem with high bias or variance and
Fig. 3.5 provides a visual example of the bias vs variance problem.

High Bias High Variance
add polynomial features/ try a get more training examplesmore complex neural network

get additional features try a smaller set of features
decrease the regularization increase the regularization

hyperparameter λ hyperparameter λ

Table 3.1: Troubleshooting bias or variance problems.

CHAPTER 3. THEORETICAL BACKGROUND 29

Figure 3.5: The Bias vs Variance problem. On the leftmost example we see
that when we try to fit the data with a straight line (linear classifier) both
the training error and the validation error are high. That is because the
complexity of a straight line model is not sufficient to represent the problem
we are trying to solve and the data is underfitted. On the rightmost example,
although the training error approaches zero, the model is far from optimal.
This model lacks generalization as the data has been overfitted and for that
reason the validation error in that case is again high. When faced with an
unseen example (red dot) both these models produce significant error. The
optimal model is the one in the middle, when we see that the training error
has decreased and validation error does not start to increase.

CHAPTER 3. THEORETICAL BACKGROUND 30

3.3 Input encoding for Neural Networks
When dealing with a scheme that concerns numerical data (e.g. prices

and square feet of apartments when trying to predict the value of properties
with a linear regression model or height, weight and hormonal levels when
trying to predict the likelihood that a patient develops diabetes with a binary
classification model) handling the input is fairly simple; there just needs to
be some pre-processing of the input data to remove outliers and perhaps
a normalization of the inputs to [0, 1] in order to avoid vanishing gradient
problems.

But when dealing with an NLP problem the input is textual data, that
means that we might be dealing with words, letters or part-of-speech tags.
All these instances fall into the more general class of categorical data. So the
question that naturally arises is how do we go from textual data or categorical
data to numerical representations that neural networks and other machine
learning methods can process?

3.3.1 One-hot encoding of categorical features

One way to numerically represent categorical inputs is to assign a unique
dimension for each possible feature. To illustrate this, let us borrow an
example from chapter 8 of [11]. “If we need to represent as input a word
from a vocabulary of 40,000 items, x will be a 40,000 dimensional vector,
where dimension number 23,257 for instance corresponds to the word dog
and dimension number 12,725 corresponds to the word cat. This is called
one-hot encoding as the resulting feature vector x for a word will have a single
dimension with value 1 and all other dimensions will have a value of 0.” In
this way each feature has its own dimension. Consequently the dimensionality
of the one-hot input vector is the same as the number of distinct features.
That raises the first caveat of working with one-hot encoded data; namely,
for high cardinality variables (i.e. variables with many unique categories) the
dimensionality of the transformed vector may be overbearing.

However, the main disadvantage of one-hot encoding is that it lacks in
generalization properties. If some features provide similar clues, it is worth-
while to provide a feature representation that is able to maintain these simi-
larities. To demonstrate this let us consider a frivolous yet illustrative exam-
ple. Suppose there is a groceries store that sells apples, oranges and, oddly
enough, octopi(!) and we want to model the customers’ buying preferences
to better accommodate their shopping needs. Using one-hot encoding we
denote each selling item to one dimension and represent our input x with a
tree-dimensional feature vector as shown in Fig. 3.6.

CHAPTER 3. THEORETICAL BACKGROUND 31

Figure 3.6: Example of one-hot vector encoding

The features here are completely independent from one another. The
feature “item is apple” is as dissimilar to “item is orange” as it is to “item
is octopus”. Indeed, the cosine similarity of these vectors is 0, seeing that
the vector are orthogonal. Semantically though we could argue that apples
are closer to oranges, both being fruits, than they are to octopi. With the
one-hot encoding this connection was lost, but if instead we had encoded the
data with two dimensions we could have assigned the features to values that
conserve this property. Even by arbitrarily encoding them as demonstrated
in Fig. 3.7 we can ensure that apples will be closer to oranges in the vector
space than they would be to octopi.

Figure 3.7: Example of dense vector encoding

3.3.2 Dense encodings (Feature Embeddings)

In the previous example we moved from sparse inputs of representing each
feature as a unique dimension, to representing the input more densly in a
space of lower dimensions. That is indeed the basic idea behind dense vector
representations, where the core features are embedded into a d dimensional
space, i.e. they are represented as a d dimensional vector. The dimension d is
usually much smaller than the number of features. For the case of the previ-
ous example from [11] “each item in a vocabulary of 40,000 items (previously
encoded as 40,000-dimensional one-hot vectors) can be represented as 100

CHAPTER 3. THEORETICAL BACKGROUND 32

or 200 dimensional vectors”. These vector representations called embeddings,
are treated as parameters of the network and can be trained like any other
parameter of the function f .

Apart from reducing the dimensionality of the input, the dense represen-
tations offer another great benefit, which is the generalization power. Dense
vectors provide a representation that is able to capture similarities in fea-
tures that provide similar clues. When enough training data is available, the
feature embeddings can be treated as any other model parameter i.e. they
can be initialized to random values and then get updated during the training
process to be converted to “good” vectors. If not enough training data is
available “good vectors” must be somehow provided to the model. Indeed,
there are a handful of algorithms available in the literature that provide us
with “good” vectors, called pre-trained word embeddings.

In the sections below we briefly illustrate the workings of the algorithms
that are used to extract the vectors of the two most widely used pre-trained
embeddings packages in the literature; Word2Vec and Glove. Embedding
vectors created using these algorithms have many advantages compared to
earlier algorithms, such as latent semantic analysis and other matrix factor-
ization variant methods.

Word2Vec

The widely popular Word2Vec algorithm was developed by Tomáš Mikolov
and colleagues over a series of papers [54–58]. Mikolov et al. managed
to reduce the computational complexity of learning word representations
and hence made it possible to learn high dimensional word vectors on large
amounts of data.

Unsupervised approaches, like Word2Vec, are based on the key concept
that embedding vectors of similar words should have similar vectors. In
principle, word similarity is hard to define and is strongly dependent to the
specific task at hand. The current approaches, however, derive from the
distributional hypothesis, which (contrary to the Chomsky tradition) claims
that contextual information alone constitutes a viable representation of lin-
guistic items. In other words, words are similar if they appear in similar
contexts, with context being defined as neighboring words (Fig. 3.8).

The Word2Vec model is shown to perform well in many language tasks,
including answering analogy questions, i.e. questions of the form «a is to b as
c is to ?». As Mikolov et al. mention “Somewhat surprisingly, it was found
that similarity of word representations goes beyond simple syntactic regu-
larities. Using a word offset technique where simple algebraic operations are
performed on the word vectors, it was shown for example that vector(“King”)

CHAPTER 3. THEORETICAL BACKGROUND 33

Figure 3.8: Example of the word context and focus word as used in Word2Vec

– vector(“Man”) + vector(“Woman”) results in a vector that is closest to the
vector representation of the word Queen.”

Glove

Another popular algorithm for word embeddings is GloVe. The name
stands for global vectors for word representation, since the global corpus
statistics are captured by the model. Glove is an unsupervised learning algo-
rithm for obtaining word embeddings by aggregating the word co-occurrence
matrix from a corpus. The resulting embeddings show interesting linear sub-
structures of the words in vector space, as showcased in Fig. 3.9.

The work in GloVe is based on the argument of Pennington et al. [59]
that the relationship of words can be examined by studying the ratio of their
co-occurrence probabilities with various probe words, k. An example of this
is illustrated in Fig. 3.10.

This argument suggests that word vector learning should be concerned
with ratios of co-occurrence probabilities rather than the probabilities them-
selves. Therefore, the training objective of GloVe is to learn word vectors
such that their dot product equals the logarithm of the words’ probability
of co-occurrence. Given that the logarithm of a ratio equals the difference
of logarithms, this training objective associates the logarithm of ratios of
co-occurrence probabilities with vector differences in the word vector space.
Hence the information that these ratios of co-occurrence probabilities contain
is also transferred to the vector differences.

The Glove model was trained over many corpora to produce word em-
beddings, including a Wikipedia and Gigaword corpus of 6 billion tokens,
a Common Crawl web data corpus of 42 billion tokens, another Common
Crawl corpus of 840 billion tokens and a Twitter corpus of 27 billion tokens1.

The GloVe word vectors, similarly to word2vec, perform very well on word
analogy tasks. Compared to word2vec, for the same amount of training time
GloVe shows improved accuracy on the word analogy task (Fig. 3.11). Apart
from that, the Glove model produces state of the art results in other tasks

1The GloVe pre-trained word vectors are available to download at
https://nlp.stanford.edu/projects/glove/

CHAPTER 3. THEORETICAL BACKGROUND 34

Figure 3.9: Glove vectors visualizations: The underlying concept that dis-
tinguishes man from woman, i.e. sex or gender, may be equivalently
specified by various other word pairs, such as king and queen or brother
and sister. To state this observation mathematically, we might expect
that the vector differences man - woman, king - queen, and brother -
sister might all be roughly equal. This property and other interesting
patterns can be observed in the above set of visualizations. (source:
https://nlp.stanford.edu/projects/glove/)

such as word similarity and named entity recognition 2.
2Named-entity recognition (NER) is a subtask of information extraction that seeks to

locate and classify named entity mentioned in unstructured text into pre-defined categories
such as person names, organizations, locations, medical codes, time expressions, quantities,
monetary values, percentages, etc.

CHAPTER 3. THEORETICAL BACKGROUND 35

Figure 3.10: Co-occurrence probabilities for target words ice and steam with
selected context words from a 6 billion token corpus. Only in the ratio does
noise from non-discriminative words like water and fashion cancel out, so that
large values (much greater than 1) correlate well with properties specific to
ice, and small values (much less than 1) correlate well with properties specific
of steam (source: [59])

Figure 3.11: Comparison of Glove to Word2Vec: Overall accuracy on the
word analogy task as a function of training time, which is governed by the
number of iterations for GloVe and by the number of negative samples for
CBOW (a) and skip-gram (b) (source [59])

3.4 Recurent Neural Networks
In the previous sections, we covered the topics of supervised learning and

described feed-forward neural networks. Apart from the feed-forward net-
works, there exist other architectures, e.g. convolutional-and-pooling archi-
tectures (CNNs), and recurrent neural networks (RNNs) that are more spe-
cialized for dealing with language data. We will maintain our focus around
the RNNs that were the networks investigated in this thesis.

RNNs are neural architectures designed to capture patterns and regular-
ities in sequences. The main advantage that they offer is that they can look

CHAPTER 3. THEORETICAL BACKGROUND 36

at “infinite windows” around a focus word and pinpoint informative sequen-
tial patterns in those windows, thus allowing the modeling of non-markovian
dependencies.

The RNN architectures are primarily used as feature extractors, meaning
that they are not used as a standalone component, but rather produce a
vector (or a sequence of vectors) that are given as input to other parts of the
network that will eventually make the predictions. The network is trained
end-to-end, i.e. the predicting component and the recurrent component are
trained jointly, and the recurrent component of the network will capture
those elements of the input that are useful for the prediction task.

Thus RNNs allow representing arbitrarily sized sequential inputs in fixed-
size vectors, while paying attention to the structured properties of the in-
puts [60]. In particular, those with gated architectures, such as the LSTM
and the Gated Recurrent Unit (GRU), perform very well at capturing the
statistical patterns of sequential inputs.

To describe the RNN architecture in mathematical terms, we follow chap-
ter 14 of [11]. Let us use xi:j to denote the sequence of vectors xi, ...,xj. The
RNN is a function that takes as input an arbitrary length ordered sequence
of n din-dimensional vectors x1:n = x1,x2, ...,xn, (xi ∈ Rdin) and returns a
single dout dimensional vector yn ∈ Rdout :

yn = RNN(x1:n)

xi ∈ Rdin ,yn ∈ Rdout
(3.10)

We can further define a function RNN∗ that will be returning the se-
quence:

y1:n = RNN∗(x1:n)

yi = RNN(x1:i)

xi ∈ Rdin ,yi ∈ Rdout

(3.11)

The output vector yn is then used for further prediction and we also see
how the RNN function provides a framework for conditioning on the entire
history x1, ...,xi without resorting to the Markov assumption.

The RNN can also be defined recursively, using a function R that takes
a state vector si−1 and a vector xi as inputs and returns a new state vector
si. The state vector si is then mapped to an output vector yi (usually the
state vector is identical to the output and only in rare cases a deterministic
function O() is used to do the mapping). The base of the recursion is an
initial state vector, s0, which is also an input to the RNN.

CHAPTER 3. THEORETICAL BACKGROUND 37

RNN∗(x1:n; s0) = y1:n

yi = si (rarely yi = O(si))

si = R(si−1,xi)

xi ∈ Rdin ,yi ∈ Rdout , si ∈ Rdout (rarely si ∈ Rf(dout))

(3.12)

The fact that function R remains the same means that the parameters θ
are shared across all time steps. The computation of the RNN changes only
through the state vector si. Graphically, the RNN has been traditionally
presented as in Fig. 3.12.

Figure 3.12: Graphical representation of an RNN (recursive). The parame-
ters θ are shared across all time steps.

The illustration in Fig. 3.12 adheres to the recursive definition and is
theoreticaly valid for arbitrarily long sequences. However in practise all input
sequences, no matter how long, are finite sequences. Hence one can unroll the
recursion and end up with an illustration like the one in Fig. 3.13. Intuitively,
the process of unrolling an RNN can be thought of as a chronophotography
of the network in motion (see Fig. 3.14).

Figure 3.13: Graphical representation of an RNN (unrolled). The parameters
θ are shared across all time steps.

CHAPTER 3. THEORETICAL BACKGROUND 38

Figure 3.14: Chronophotography as a metaphor for RNN unrolling:
Chronophotography is a photographic technique from the Victorian era,
which captures multiple phases of movements. The unrolled RNN schematic
can be thought of as chronophotography which captures the phases of a se-
quence encoding instead of a movement. (source: The Horse in Motion,
Eadweard Muybridge (1878))

CHAPTER 3. THEORETICAL BACKGROUND 39

The function R is the factor that differentiates the various RNN architec-
tures, e.g. an LSTM network from a GRU network. Different instantiations
of the R function will result in different network structures, that will exhibit
different properties. However, the same abstract interface represents any
kind of RNN.

Finally we note that sn and yn are in fact encoding the entire input
sequence. This can be easily demonstrated by expanding the recursion in
Eq. 3.12. For example, assuming i = 4 we get:

s4 = R(s3,x4)

= R(

s3︷ ︸︸ ︷
R(s2,x3),x4)

= R(R(

s2︷ ︸︸ ︷
R(s1,x2),x3),x4)

= R(R(R(

s1︷ ︸︸ ︷
R(s0,x1),x2),x3),x4)

(3.13)

Thus training the network is equivalent to setting the parameters of R in
a way that the states convey useful information for the prediction task that
follows.

3.4.1 Long Short-Term Memory networks

The Long Short-Term Memory (LSTM) architecture [61] was designed to
solve the vanishing gradients problem, and is the first to introduce the gating
mechanism. The LSTM architecture, inspired by the function of human
memory, splits the state vector si into two halves, the first one functioning as
“memory cells” and the other functioning as working memory. The memory
cells are designed to preserve the memory and the error gradients across time.
They are controlled through differentiable gating components, i.e. smooth
mathematical functions that simulate logical gates. For every input state
encountered during the training process, a gate is used to decide how much
of the new input should be written to the memory cell, and how much of the
current content of the memory cell should be forgotten. Mathematically, the
LSTM architecture is defined as:

CHAPTER 3. THEORETICAL BACKGROUND 40

sj = RLSTM(sj−1,xj) = [cj;hj]

cj = f � cj−1 + i� z

hj = o� tanh(cj)

i = σ(xjW
xi + hj−1W

hi)

f = σ(xjW
xf + hj−1W

hf)

o = σ(xjW
xo + hj−1W

ho)

z = tanh(xjW
xz + hj−1W

hz)

yj = OLSTM(sj) = hj

sj ∈ R2dh ,xi ∈ Rdx , cj,hj, i, f , o, z ∈ Rdh ,Wxo ∈ Rdx×dh ,Who ∈ Rdh×dh

(3.14)
The state at time j is composed of two vectors, cj which is the memory

component and hj that is the hidden state component. There are three gates,
i , f , and o , controlling for input, forget, and output. The computation
of those gates is done by linearly combining the current input xj and the
previous state hj−1, and then passing it through a sigmoid activation func-
tion. The z vector is a potential candidate for update. It is computed by
linearly combining xj and hj−1, and then passing it through a tanh activation
function. The forget gate controls how much of the previous memory to keep
(f � cj−1)3, and the input gate controls how much of the proposed update
to keep (i� z) when updating the memory cj. The value of hj is computed
by passing the memory content cj through a tanh activation function and
then through the output gate. The output yj is the same as hj. The gating
mechanisms allow for gradients related to the memory part cj to stay high
across very long time ranges, giving the network the ability to “remember”.

3The symbol � is the Hadamard product, i.e the elementwise multiplication

Chapter 4

Data Set Creation

In every machine learning project the first and often very tedious task is
to find or create a data set on which to work on. Regarding the task at hand,
the STAC corpus provides a dataset that holds information collected from
players participating in SoC games on the jSettlers platform. This dataset
incorporates annotated chat conversations that took place between players
during gameplay along with all the extra-linguistic events, concerning game
outcomes and players’ actions.

The annotated corpus of the chat data has been extensively used in re-
search that has yielded interesting results. The data regarding the game
actions, on the other hand, has been neglected so far, despite the fact that
merging this information is very often mentioned as a future step to the re-
search. One plausible reason that hampers the investigation of a combined
chat and game action setup, may be attributed simply to inconvenience. In
other words, the problem may lie in the fact that, in contrast to the an-
notated STAC dialogue corpus, that is explicit to use and user-friendly, no
effort has been made to develop and organise the game information to an
equivalently easy to use dataset.

This chapter elaborates on how the game log files from the STAC corpus
were processed to create a clear and informative data set, suitable for training
in machine learning projects.

4.1 Problem modeling
In this thesis the endeavor was to develop an architecture that would

emulate players’ behaviour, in the sense that it would predict actions in a
SoC game, taking into account the progress of the game, specifically all the
game actions and chat discussions that have taken place during gameplay.

41

CHAPTER 4. DATA SET CREATION 42

Given the complexity of the game, neural networks were considered as the
most appropriate approach for this prediction task. In particular a combined
architecture, that would concatenate a representation of the state in the
game (board layout, actions, etc.) and a representation of the chat dialogues
between players to produce a prediction of the next move in a SoC game (see
Fig. 4.1).

Figure 4.1: Schematic of the basic neural network architecture for combining
the chat dialogue data and the gameplay data to predict the next move in a
SoC game.

In the context of SoC, neural networks have been employed for Deep
Reinforcement Learning (DRL) in [7, 8]. In both these implementations the
task was to improve the negotiation skills of a jSettlers agent, examining
different network architectures. The DRL agents’ objective is to learn to
choose the most profitable action from a manually restricted set of 72 trading
actions, given as input the state in a SoC game. The input to the neural
network is therefore given as a description of the game board, namely the
type of resource each hexagon tile on the board produces, the location where
settlements,cities and roads have been placed by the agent and his opponents,
information about the robber’s position and information the agent privately
holds about his resources.

Following the same notion that the state in a SoC game can be represented
by the description of the board of the game, the features in this thesis were
selected to depict the board and the players’ states. In the features that
represent the gamestate the information is divided in three main categories:
turn, board and players. More precisely, the turn feature signifies how far
the game has progressed, the board feature set holds information for the
board layout, e.g. the initial setup of the hexagonal tiles, the position of the
robber on the board etc, and the players feature set represents the relevant

CHAPTER 4. DATA SET CREATION 43

information for each of the 4 players that can participate in a SoC game.
Each player has a corresponding playerstate, containing their identification
information i.e. number id and nickname, their constructions information i.e.
roads, settlements and cities coordinates on the board and their development
cards information.

The caveat here is that initially all players place two settlements and two
roads on the board but as the game progresses the number of pieces they place
on the board is not strictly defined by the game rules. That means that one
player may choose a "building strategy" and focus on placing many pieces on
the board while another one may remain on his initial two constructions and
instead focus on buying development cards in order to reach the 10 victory
points needed to win the game. In order to restrict the playerstate vector to
a fixed length its size is predefined by the max number of pieces the player
has in his inventory and the total number of development cards forming the
deck. Naturally it is a rare case that some player will manage to place all of
his building block on the board or buy all of the development cards of the
deck but this sets an upper bound for the playerstate representation. The
representation of the gamestate features can be seen schematically in Fig. 4.2

Figure 4.2: Gamestate features - representation of the board and players’
state in the game. In the first layer we see the main feature sets, distinguished
by color (gray for turn, blue for board, yellow for players). Each player is
represented by his playerstate feature set shown in the levels below.

As far as the chat between the players is concerned its representation
holds the discourse/sentence emitted along with information of the turn of
the game during which this sentence was written in the chat dialogue box
and the nickname of the player that wrote it.

A main challenge regarding the modelling of the game becomes obvious
from the following quote taken from the SoC game rules: "after receiving

CHAPTER 4. DATA SET CREATION 44

resources the player who rolled the dice may trade resources and build as
much as they want until they are done". In essence, during each turn of the
game the player who rolled the dice has the freedom to perform as many
actions as they please without restrictions explicitly imposed by the game
rules. For example, the player during their round may perform multiple times
the same action (e.g. build roads) and/or perform many different types of
actions (e.g. build a road and buy a development card etc). In practice,
the number of such actions is rather limited, due to a plethora of conditions
stemming from the rules that need to be satisfied.

Since a fixed length of input features and output labels are required for
the NNs that will model the game, some restrictions needed to be set for
the creation of the labels in order to address the first part of the challenge,
i.e. multiple actions of the same type. Specifically, the restriction employed
here is that labels show if some action was or was not performed but not
how many times it was performed. For example if a player builds 2 roads the
ground truth label for the prediction task is an indication that roads were
built during this round and the number of roads is ignored.

Furthermore, and in order to address the second part of the challenge, i.e.
multiple types of action, the problem was modeled as a multi-label classifi-
cation task instead of the more common multi-class classification task. The
notion of labels1 or tags is preferred instead of classes to make the distinction
that labels are not mutually exclusive in contrast to the definition of classes,
demanding mutual exclusiveness. A primary example of multi-label classi-
fication type problems is that of text categorisation, where each text may
belong to several predefined topics simultaneously e.g. a newspaper article
may need to simultaneously be assigned to labels/tags indicating foreign af-
fairs, economy and 2019. In a similar fashion for the case of a SoC game, a
player during his round may not just build roads per se, but may perform
further different actions as well. In such cases the output is not a one-hot
vector that indicates to which class an example belongs to, rather a vector of
ones and zeros that indicates which labels hold true for that given example.

The features and prediction labels described above are retrieved from the
game log files of the STAC corpus after some processing in the steps shown
in Fig. 4.3 and described in the following sections of the chapter. After the
log file processing, 3 data tables are assigned to each game containing the
gamestate features, the chat discourses and the prediction labels respectively.

1In order to avoid confusion the reader should pay some attention to the different
definitions of the term label in the literature, used both to define the ground truth outcome
of a prediction task as well as to provide an alternative to the definition of the term class.

CHAPTER 4. DATA SET CREATION 45

Figure 4.3: SoC game log file processing pipeline schematic. Each log file
undergoes the different stages shown above, resulting in the final three tables
that contain the features and labels of the prediction task.

4.2 Original soclog files
The data used in this thesis is part of the STAC corpus, a corpus of

strategic chat conversations manually annotated with negotiation-related in-
formation, dialogue acts and discourse structures. This corpus was collected
from the jSettlers framework and consists of 60 log files. These log files
contain the information of the Server messages, Chat history (as described
in section [ref section jSettlers of chapter SOC (2)]) as well as various log
entries from different classes of the jSettlers code. These log files, with the
extension .soclog (from now on refered as soclog files) allow the replay of
an entire game. Of the 60 soclog files, 45 are segmented into Elementary
Discourse Units (EDUs) and are annotated and available online2.

In this thesis there is no need for the annotated version and the original
soclog files are used to process and develop the dataset used for this work.
Of the 60 original soclog files, 2 files (pilot18 and pilot19) were ignored due
to errors that forced the players to reset the board at some point during the
game. Notice that all of our data come from version 1 of the jSettlers code.
In later versions of the game changes have been made to this code. These
modifications will need to be taken into account in case the data processing
code developed in this work needs to be used for expanding the existing
dataset in the future, using soclog files of these later version of the game.
These attention points are listed throughout the following sections.

Below is an example of a log entry taken from pilot01 soclog file.

2012:06:06:20:12:10:230:+0100:GAME-TEXT-MESSAGE:[game=3|
player=inca|speaking-queue=[]|clay=0|ore=1|sheep=1|
wheat=0|wood=0|unknown=0|knights=0|roads=[99,152,82]|
settlements=[116,152]|cities=[]|dev-cards=1|
text=not me, sorry]

The various fields are distinguished by : and | delimiters. The translation
2https://www.irit.fr/STAC/corpus.html

CHAPTER 4. DATA SET CREATION 46

of this log entry is detailed in Table 4.1.

Field Description
2012:06:06:20:12:10:230:+0100 Timestamp
GAME-TEXT-MESSAGE type of message
game=3 code number of the game
player=inca nickname of the player that took action
speaking-queue=[] speaking queue of the chat server is empty
clay=0|ore=1|sheep=1|wheat=0|
wood=0|unknown=0

resources of the player "inca"

knights=0 number of knights player "inca" has
played

roads=[99,152,82] hex encoded coordinates of the roads that
player "inca" has built

settlements=[116,152] hex encoded coordinates of the settle-
ments that player "inca" has built

cities=[] player "inca" has not upgraded settle-
ments to cities

dev-cards=1 player "inca" possesses one development
card

text=not me, sorry player "inca" writes the text message "not
me, sorry" to the chat box

Table 4.1: Explanation of a message from a raw soclog file

4.3 Extended soclog files
The first step of the processing is to clear the timestamp and instead

segment the entries according to game turns. The notion adopted for this
task was to name the initial setup phase of the game when players place
the first two roads and settlements as turn 0. From then onward turns are
counted whenever a player rolls the dice.

In the jSettlers code there are some signals, that are used to coordinate
the running of different classes of the code. These signals are saved in the
log entries with a message of SOCGameState type. An example of such a
message is shown below.

2011:10:10:16:26:20:741:+0100:SOCGameState:game=pilot01|
state=10

CHAPTER 4. DATA SET CREATION 47

These signals are encoded by an integer number ∈ [0, 1000] that is saved
in the log entry and a signal name that is used through the jSettlers code. A
listing of these signals, together with their explanations according to the v.1
of the jSettlers code can be seen in Table 4.2. In future versions of the game
the signal list has been expanded as new game options have been added.

Using these code signals the soclog files are extended to include the infor-
mation of the turn number as discussed earlier. The timestamp is replaced by
the appropriate turn number that is incremented every time a game state=15
signal is encountered in the log entries.

4.4 Reduced soclog files
In this step of the file processing the soclog files are reduced in size as

specific entries are selected. The selected entries are those of message types
that contain information that can be useful and the rest of the entries that
carry redundant or insufficient information are ignored. After this selection
process the useful messages are parsed to extract the necessary information
and form the concise representation of the game state (see Fig. 4.2), the labels
and chat messages. The message types of the selected entries are listed and
explained below.

SOCSitDown

0:SOCSitDown:game=pilot01|nickname=rennoc1|playerNumber=0|
robotFlag=false

This message appears in the soclogs when the players hit the Sit Down
button and hold the information needed to collect players’ nicknames and
their corresponding number ids. Since some message refer to the players with
their ids and others (including the chat references) refer to them only by their
nickname, a connection/corelation of the two was considered necessary. The
players’ nickname are initialised as ’dummy’ and when/if someone sits he
changes the nickname.

The nickname information can also be found at the SOCJoinGame mes-
sages, however these also include the nicknames of people that join the game
just to watch, like for example Markus in pilot01, who hosts the game and
does not play but talks to the chat to help the players with the game rules,
their moves and the interface of jSettlers.

CHAPTER 4. DATA SET CREATION 48

Code Name Explanation
1 READY game is ready to begin
5 START1A players place their 1st settlement
6 START1B players place their 1st road
10 START2A players place their 2nd settlement
11 START2B players place their 2nd road

15 PLAY start a normal turn, time to roll
the dice or play a card

20 PLAY1 done rolling / moving the robber on
rolled 7 case

30 PLACING ROAD player is placing a road piece on
the board

31 PLACING SETM player is placing a settlement piece
on the board

32 PLACING CITY player is placing a city piece on
the board

33 PLACING ROBBER the robber is being moved on
a new land hexagon

50 WAITING FOR waiting for players to discard
DISCARDS resources when 7 was rolled

51 WAITING FOR
CHOICE

waiting for a player to choose
a rival from which to steal a card after
he rolled 7 or played a Knight card.
(renamed since v.2)

52 WAITING FOR after discovery card, waiting for
DISCOVERY the player to choose 2 resources

53 WAITING FOR after monopoly card, waiting for
MONOPOLY the player to choose a resource

1000 OVER someone won or all players have
left the game

Table 4.2: SoC state signals explanation. Described here are the most im-
portant state signals, integer code number, signal name in jSettlers code and
brief explanation of the meaning of this signal. (updated in later versions of
the game)

SOCBoardLayout

0:SOCBoardLayout:game=pilot01|hexLayout={ 9 6 67 6 6 2 5 1
66 8 2 3 1 2 6 6 5 3 4 1 4 11 36 5 4 0 5 6 6 4 3 3 97 21
6 12 6 }| numberLayout={ -1 -1 -1 -1 -1 8 9 6 -1 -1 2 4 3
7 -1 -1 5 1 8 2 5 -1 -1 7 6 -1 1 -1 -1 3 0 4 -1 -1 -1 -1
-1}|robberHex=0x97

CHAPTER 4. DATA SET CREATION 49

The hexLayout field of this message holds the information of the numerical
representation of the hexagonal board tiles that make up the board. The
encoded numbers that run from 0 to 5 are used to represent the assorted
land tiles while the encoded numbers that run from 6 and higher are used
to represent the different sea tile types, as described in Table 4.3. In a
similar fashion the numberLayout field holds the information of the dice tiles
that correspond to each hexagonal tile on the board. For the land tiles
the encoding number represents the appropriate dice result as described in
Table 4.4. The sea and desert tiles, that are not associated with a dice tile,
are encoded with -1. Finally, the robberHex field holds a hexadecimal number
that refers to the coordinate of the robbers location on the board, initially
being the desert tile.

It is useful to mention that in future version of jSettlers the code for sea
tile encoding number (6) and the desert tile encoding number (0) have been
interchanged. An example of a board tile encoding from pilot01 can be seen
in Fig. 4.4.

Number Tile Description
6 Water
0 Desert
1 Clay
2 Ore
3 Sheep
4 Wheat
5 Wood
7 Miscellaneous port (3:1) facing direction 1
8 Miscellaneous port (3:1) facing direction 2
9 Miscellaneous port (3:1) facing direction 3
10 Miscellaneous port (3:1) facing direction 4
11 Miscellaneous port (3:1) facing direction 5
12 Miscellaneous port (3:1) facing direction 6

16+ Non-miscellaneous ports (2:1) of various
resources and directions

Table 4.3: The jSettlers encoding of the board tiles. The hexLayout field of
the SOCBoardLayout messages uses these numbers to describe the different
land and sea tiles that make up the game board. Attention: in later versions
of the game the water and desert encoding numbers have been interchanged.

CHAPTER 4. DATA SET CREATION 50

Figure 4.4: The jSettlers numbered encoding of the game board. The differ-
ent types of land and sea tiles are identified by a hexLayout number (marked
in blue) that indicates the resource that is produced or the tile’s properties.
The dice results that will activate each tile are encoded by the numLayout
numbers (marked in orange). Also depicted are the placements of the first
two roads and settlements for rennoc1 (in green) and Dave (in red). Atten-
tion: in later version of the game the water and desert encoding numbers
have been interchanged.

SOCMoveRobber

8:SOCMoveRobber:game=pilot01|playerNumber=1|coord=55

This type of message is registered in the soclogs whenever a player moves
the robber and is used to update the information concerning the robber’s
position. The value of the coord field is the hexadecimal number of the
coordinate on the board.

CHAPTER 4. DATA SET CREATION 51

Number Dice Outcome
0 2
1 3
2 4
3 5
4 6
5 8
6 9
7 10
8 11
9 12
-1 no dice result association

Table 4.4: The jSettlers encoding of the dice tiles. As mentioned in Chap-
ter 2, two dice are used in SOC, giving an outcome in [2, 12]. There are two
dice tiles to represent each possible outcome twice with the exception of 2
and 12, i.e. the least possible outcomes, that have only one copy and 7 that
triggers a special case. In jSettlers the dice outcomes are encoded in the
numberLayout field of the SOCBoardLayout message by an integer number
in [0, 9]. The sea and desert tiles that are not associated with a dice tile have
a value of -1.

SOCPutPiece

8:SOCPutPiece:game=pilot01|playerNumber=1|pieceType=0|
coord=aa

This message is used to update the constructions of a player. The message
appears in the soclogs when the player of number id playerNumber places
a piece on the game board. The values of the pieceType field are listed in
Table 4.5 The value of the coord field is again the hexadecimal number of
the coordinate on the board.

Number Piece
0 Road
1 Settlement
2 City

Table 4.5: Encoding of piece types in jSettlers. In later version of jSettlers
this list has been expanded to include ships, fortresses and villages.

CHAPTER 4. DATA SET CREATION 52

SOCDevCard

6:SOCDevCard:game=pilot01|playerNum=3|actionType=0|cardType=0

This message is used to acquire information of development cards usage.
Similar information can be found in SOCSetPlayedDevCard messages, but
since they appear multiple times in the log with false value and they do not
present the information as concisely, they were discarded. Explanations of
actionType and cardType are provided in Tables 4.6 and 4.7.

Action Type
player bought a development card 0
player played a development card 1

Table 4.6: Action types for development cards in jSettlers.

Development Card Type
unknown 0
road building 1
discovery (year of plenty) 2
monopoly 3
Victory Point (capital/ governor’s house) 4
Victory Point (library/ market) 5
Victory Point (university) 6
Victory Point (temple) 7
Victory Point (tower) 8
knight 9

Table 4.7: Development card types encoding in the JSettlers SOCDevCard
class. Attention: in later versions of the game the unknown development
card corresponds to card type 9 and the knight card corresponds to card
type 0.

SOCPlayerElement

10:SOCPlayerElement:game=pilot01|playerNum=3|actionType=101|
elementType=4|value=1

These types of entries appear in the soclogs every time there is a change in
the elements of a player, i.e. resources or construction blocks. The number of

CHAPTER 4. DATA SET CREATION 53

the value field denotes how many elements were involved in a specific action
of those described in Table 4.9. The codes of the various elementTypes are
described in Table 4.8.

The SOCPlayerElement messages were used to construct a dataset that
contained information about the players’ resources as well. However it was
thought that the information of the players’ resources would give an unfair
knowledge advantage to the prediction system, as some hidden exchanges
(e.g. stealing cards from another player) are recorded in the soclog, despite
the fact that this information is not available to all the players participating
in the game.3 Hence the dataset with the resources information was not used
in training, but is available upon request for future projects.

Number Element type
1 clay
2 ore
3 sheep
4 wheat
5 wood
6 unknown
10 road
11 settlement
12 city

Table 4.8: Element types encoding in jSettlers. Attention : SOCPutPiece
and SOCElementType refer to the construction blocks with different code
numbers.

SOCMakeOffer

12:SOCMakeOffer:game=pilot01|offer=game=pilot01|from=1|
to=true,false,false,false|give=clay=0|ore=1|sheep=0|wheat=0|
wood=0|unknown=0|get=clay=1|ore=0|sheep=0|wheat=0|wood=0|
unknown=0

This type of message is used to detect trading actions for the labels.
3When player x steal a resource from player y the Server informs the other players that

"x stole a resource from y" but only x and y know which specific type of resource was
stolen. Similarly, the resources gained after the dice have been rolled are announced to
everyone and the players can be sure about their rivals’ resources, but after the 7 is rolled
they can only guess which of their half resources they have secretly discarded.

CHAPTER 4. DATA SET CREATION 54

Action Code Description

SET 100 The element described by the elementType has a
number of instances that is given in the value field.

GAIN 101 The element described by the elementType has
gained as many instances as the value field dictates.

LOOSE 102
The element described by the elementType has
been reduced by as many instances as the value
field dictates.

Table 4.9: Action types for elements in jSettlers.

The SOCMakeOffer messages appear in the soclogs when a player makes a
trading offer to another player or players. It describes the players to whom
the offer is addressed, the resources that are being offered to them and the
resources that are asked in exchange.

SOCAcceptOffer

32:SOCAcceptOffer:game=pilot01|accepting=1|offering=3

This type of message is used to detect trading actions for the labels as
well. The SOCAcceptOffer is registered in the soclogs when a transaction
of resources takes place between players and states the numbers of resource
units that are being exchanged. This refers only to trading between players
and does not include resource exchanges with the bank or from a port.

SOCGameTextMsg

2011:10:10:16:24:43:002:+0100:SOCGameTextMsg:game=pilot01|
nickname=Server|text=Dave built a settlement.

2011:10:10:16:33:29:517:+0100:SOCGameTextMsg:game=pilot01|
nickname=Dave|text=does anyone have any wood they would be
willing to trade for?

This type of message is listed in the soclogs every time the server or
a player produces a text message and is predominantly used to collect the
chat references of the players in the chat. The messages produced by people
that are connected but do not participate in the game (e.g. administrator,

CHAPTER 4. DATA SET CREATION 55

server host, etc) are saved along with the players’ chat utterances as they are
essential for the dialogue (see also SOCSitDown).

Another very potent candidate to extract this type of information could
be the GAME-TEXT-MESSAGE type of message (see example at Section 4.2
and explanation at Table 4.1). Not only does it include the chat utterances
of the players but also offers a very precise summary of the players’ state.
However these messages appear only when a player decides to speak in chat,
meaning that silent players are never registered and would remain unnoticed.

2011:10:10:17:03:49:050:+0100:SOCGameTextMsg:game=pilot01|
nickname=Server|text=Tomm traded 4 sheep for 1 wood from
the bank.

2011:10:10:17:34:12:199:+0100:SOCGameTextMsg:game=pilot01|
nickname=Server|text=Tomm traded 2 sheep for 1 ore from a
port.

The text messages produced by the Server to inform the players about
the developments in the game are distinguished from the players’ chat by the
nickname field. Hence the messages registered with the Server nickname are
for the main part ignored with a few exceptions. In some cases where the
game’s code does not produce unambiguous log entries, the log entries con-
tain insufficient information and/or are written multiple times with different
values within the same game turn (e.g. there is some periodical checking of a
condition, resulting in multiple false values until some action is detected) the
server’s announcements can be employed as a reliable source of information.

Such actions during the creation of this dataset were encountered when
dealing with the bank and port trading transactions. The equivalent SOCBank-
Trade messages do not contain sufficient information as they register even
the failed attempts to exchange goods with a bank or port (e.g. when a
player tries to exchange resource with the bank but with the wrong ratio).
Therefore the only reliable indication of a successful trading transaction with
the bank or a port is the server’s message.

4.5 Final Dataset
The end result of the soclogs parsing is the formation of a comprehensive

dataset via the summarization of the information into datatables. Each of the

CHAPTER 4. DATA SET CREATION 56

Figure 4.5: An example of the first fields from the Gamestates Datatable
extracted from pilot01. The red annotations point out some interesting in-
formation that can be obtained from a first glance of the datatable. Starting
the game all players build their first roads and settlements. In the subsequent
rounds building is not that likely to occur because the necessary resources are
not gathered yet. The first thing that is built after the initial pieces is a road,
as it is needed to meet the construction rules. Also the positioning of the
robber reveals some interesting tactics of the players, as the robber is repeat-
edly placed in the same or nearby positions to target a specific settlement
with valuable resources or a strong opponent, the players may use tit-for-tat
tactics and steal from the one that stole from them in previous rounds, or
avoid stealing from a player with whom they have started collaborating to
trade goods etc.

58 game is represented in this dataset by 3 tables, containing the gamestate
features, the chat discourses and the prediction labels respectively.

The gamestate features, as it was described in Section 4.1 (see Fig. 4.2),
in a way act as a photograph of the game board at each turn of the game. A
description of the table that holds the gamestate feature values is found in
Table 4.10 below.

The number of rows of this table are as many as the number of game
rounds of the game, with each one of the rows being dedicated to the cor-
responding game turn. The number columns of these table are equal to the
number of features, i.e. 208 values that depict the state of the board and the
players. An example of this datatable from pilot01 can be seen at Fig. 4.5.

The table that contains the chat history of a game encompasses the in-
formation of the game turn and the emitters nickname. The structure of this
table is described in Table 4.11 more thoroughly.

In this table the number of rows is not equal to the number of game
rounds but to the number of chat turns instead. This means that each row
contains one chat turn, i.e. one phrase that a player wrote to the chat window

CHAPTER 4. DATA SET CREATION 57

Figure 4.6: An example of the first rows from the Chats Datatable extracted
from pilot01. It is common for players to engage in conversation unrelated
to the SoC as this game is very often seen as a means of socializing.

and then hit the enter, and many chat turns took place during a single game
turn. Following that, the turn field of this table is not unique to each row
and values of the turn column indeed are not all different. An example of
this datatable from pilot01 can be seen at Fig. 4.6.

One of the main reasons that attract people to SoC is the socializing as-
pect of the game. Factors like the effort to coordinate your actions with your
fellow players, the negotiations to exchange goods and the long duration of
the games lead to the chat being used for small talk and very often irrele-
vant conversations start taking place. Also the language used by the players
very often contains misspellings (intended or not), abbreviations (e.g. players
write 4u instead of for you), syntactic deviations and errors, etc. All these
elements add complexity to the handling of the language data but are an
omnipresent aspect of dealing with language produced by human speakers.

Last but not least, the table of the prediction labels contains the actions
that were performed in each game turn. The number of rows of this table
is equal to the number of game turns that took place in the SoC game and
the values that it holds are boolean, with the True value indicating that
the corresponding action was performed in that specific round. The actions
examined in this dataset are described in Table 4.12 below.

The values of the labels are initialized at the beginning of a game turn

CHAPTER 4. DATA SET CREATION 58

Figure 4.7: An example of the first fields from the Labels Datatable extracted
from pilot01. The red annotations point to some interesting conclusions.
During the first rounds of a game the players do not have enough resources
to actually take action, hence the no_action label is very common. It also
demonstrates the multi label classification task, described in the beginning
of this chapter, as many true values appear in a single row (in one round
multiple labels become activated).

with false everywhere. If by the end of the round no action has been made
then the no action label is set to true. The only exception to this is the
turn 0, i.e. the setup phase of the game, for which all labels have a False
value. An example of this datatable from pilot01 can be seen at Fig. 4.7.

The labels represent all types of actions the players have at their disposal.
Actions like move the robber are not actually useful for predictions because
they depend on luck, i.e. the player rolled a 7, and are therefor excluded from
this dataset. However there is a strategic aspect in choosing the position of
the robber as players tend to prefer specific tiles, etc (see also Fig. 4.5) and
this could be an interesting topic for future work.

The information about the trading actions reveals potentially useful trad-
ing patterns and could act as fruitful tool for negotiation agents. Following
the example that is set in this thesis and expanding it, future work could in-
corporate more information about the trading transactions (e.g. what type
and amount of a resource was exchanged, between which players etc) to
model more specifically the players’ trading strategies, their aptitude for col-
laboration with others and the formation of coalitions in the game, or their
revengeful tit-for-tat approaches.

Overall in this dataset of 58 games there are 4211 game turns and 11729
chat turns. Assuming that all players stick to one, identifying nickname and
do not change it when they re-enter the server, 92 different players have
participated in these games.The majority of them only play a single game.

CHAPTER 4. DATA SET CREATION 59

There are however a few players that participate in multiple games, with the
player nicknamed inca holding the maximum participation score of 11 games.
The players’ participation in games is displayed in Fig. 4.8.

Figure 4.8: Player Participation in the Dataset. The histogram displays a
distribution of the number of unique players over the total number of games
they have participated in.

As far as the labels are concerned, in 4211 game turns the most common
one is the no action, with the road building being the second most common
action of the players (see Fig. 4.9). This is indeed a logical outcome if one
accounts for the rules of the game that practically force the players to build
roads before they can expand their territory. The next most frequent label
is that of buying development cards. Hence it seems reasonable to argue that
the players follow two main strategies; one aiming at building constructions
on the board and another focused on buying and playing development cards.

As a final thought on the distribution of labels it’s worth noting that
although the no action label appears to be dominant in the dataset at first
glace, in fact it only covers 44% of the game turns. Therefore it should be
safe to regard that the dataset does not have data asymmetries.

CHAPTER 4. DATA SET CREATION 60

Figure 4.9: Label occurances in the Dataset.

CHAPTER 4. DATA SET CREATION 61

Field Type Description
Turn int the number of the game round

BoardHexLayout list
the tile type of the board in
jSettlers numerical encoding,
viewed from top left to bottom
right corner

BoardNumLayout list
the dice results of the board
in jSettlers numerical encod-
ing, viewed from top left to
bottom right corner

Robber int (hex) the hexadecimal coordinate of
the robber’s position

player0num int the numerical id of the player
sitting at position 0 (equals to
0)

player0nickname str
the player’s nickname, default
value is "dummy" if no one
plays in this position

int (hex)

the hexadecimal coordinates
of the player’s pieces on the
board, default value is None if
the structure has not been
built

pl0setm1 . . . pl0setm5
pl0city1 . . . pl0city4

pl0road1 . . . pl0road15

pl0knight1 . . . pl0knight14

bool
Development Cards section,
True for the development
cards the players has played

pl0roadbuilding1
pl0roadbuilding2
pl0monopoly1
pl0monopoly2
pl0discovery1
pl0discovery2

pl0vp1 . . . pl0vp5
player1num int (hex)/

bool
Features of player sitting at
position 1...

pl1vp5
player2num int (hex)/

bool
Features of player sitting at
position 2...

pl2vp5
player3num int (hex)/

bool
Features of player sitting at
position 3...

pl3vp5

Table 4.10: Gamestates Datatable: Description of the values each column of
this table holds.

CHAPTER 4. DATA SET CREATION 62

Field Type Description

Turn int the number of the game round when
this chat utterance took place

emitter_nickname str the nickname of the player who wrote
in the chat window

text str the message written on the chat
in that particular chat turn

Table 4.11: The Chats Datatable: Description of the values that each column
of this table holds.

CHAPTER 4. DATA SET CREATION 63

Label Type Description
Turn int Number of the game round

Played Development Card bool
The player who rolled the dice
played a development card that he
had bought in a previous round

Built Road bool The player who rolled the dice
placed a road piece on the board

Built Settlement bool
The player who rolled the dice
placed a settlement piece on the
board

Upgraded to City bool
The player who rolled the dice up-
graded an existing settlement of
theirs to a city

Bought Development Card bool The player who rolled the dice
bought a development card

Made Offer bool
Some player suggested a trading
offer to the player who rolled the
dice

Traded with another Player bool
The player who rolled the dice
exchanged resources with another
player

Traded with bank bool
The player who rolled the dice suc-
cessfully exchanged resources with
the bank

Traded with port bool
The player who rolled the dice suc-
cessfully exchanged resources via a
harbour that he has access to

No Action bool The player only rolled the dice

Table 4.12: Labels Datatable: Description of the values that each column of
this table holds. Notice that it is possible that some player might suggest
a trading offer that gets rejected, hence enabling the Made Offer but not
the Traded with another Player label. That way the trading preferences of
players can be rudimentary depicted, even with this information.

Chapter 5

Neural Network architecture

Here we explain how the data was preprocessed and how the parameters
of the neural networks were configured. For the purposes of this thesis we
used Keras, a high-level neural networks API, written in Python and capable
of running on top of TensorFlow, CNTK, or Theano. Keras is particularly
convenient in our case since it both allows for easy and fast prototyping
(through user friendliness, modularity, and extensibility) and also supports
convolutional networks and recurrent networks, as well as combinations of
the two, the later of which is the fundamental concept of this work. In
this chapter we also justify the network configuration that we employed for
modeling the problem of predicting the actions taken in SoC game rounds.

5.1 One Hot Vector Encoding
The coordinate system to describe the different board positions in the

jSettlers code and the SoC dataset consists in fact of categorical values. They
are a representation of position that helps the jSettlers calculations but in
terms of a neural network these numbers have equivalent meaning to actually
providing literal written board direction like ’on the far west end of the game
board’ or ’on the most left land tile’. As mentioned in Chapter 3, the most
straightforward approach to handling categorical values is to convert them
to one hot encoding vectors.

Not all the coordinates of jSettlers are usefull though and we save space
by including only the coordinates that are actually accessible to the players
to build upon. For example the upper left corner has coordinates that can
never appear in any SoCc dataset as nothing can happen on a sea tile corner.
The players’ constructions can be only placed on nodes or edges to which the
None value is also added for the case that a given piece it has not been place

64

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 65

in any coordinate, i.e. has not been built. These coordinates sum up to 79
categories.

Similarly the coordinates on which the robber can be placed are also
restricted, as the robber in this version of the game cannot be placed on a
sea tile. The land coordinates are only used to place the robber and these
sum up to 19 land tiles only.

The board can be fully described using only 9 tile categories, 6 land types
and 3 extra categories to denote the plain sea, non-miscellaneous harbors and
miscellaneous harbors

5.2 Text Data Preprocessing
In order to run Keras models in parallel the inputs need to have the

same number of samples. In order to have equal number of chat samples
and gamestate samples, the chats dataset is grouped by the Turn column
and the chats that took place during a gameturn are concatenated together.
However, concatenating the chat instances that took place during a gameturn
is not enough, since there are occasions where during a gameturn everyone
was silent, hence there is no chat data to be concatenated. For gameturns
where noone spoke an empty instance is added in the data.

Figure 5.1: Wordcloud of all the chat data in the given dataset.

Then the Keras tokenizer is used to create the vocabulary over the text

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 66

data. The Keras tokenizer converts all text to lower case and removes punc-
tuation from the corpus so that it can be used in conjunction with pre-trained
embeddings. The text data is then padded with zeros so that all sequences
have the same length, i.e. the length of the longest sequence in the corpus
and the embedding vectors of the words of the vocabulary are loaded to an
embedding matrix. The Keras Embeddings layer will then convert words to
embedding vectors during the training process.

In this thesis we used the Glove pre-trained embeddings on the Wikipedia
2014 + Gigaword 5 package which was retrieved from 6 billion tokens and
holds vectors for a vocabulary of 400.000 words.1. Specifically, we used 100-
dimensional word vectors and the embedding matrix was created over the
chat corpus that has a vocabulary of 3368 words and the longest text sequence
in the chats is 771 words long.

The final step of the data pre-processing is its partition to train and test
sets. The 4211 samples are split to a 80% train - 20% test ratio. The sklearn
method train_test_split that was used to do that also shuffles the data
before splitting it. In the end we have a train set of 3368 samples and a test
set of 843 samples.

5.3 Network Configuration

5.3.1 Multi Label Learning

As mentioned in Chapter 4, the problem of predicting the actions taken
at each round of a SoC game falls into the category of multi label classifi-
cation problems. Multi label classification (also referred to as multi output
classification) is a variant of the classification problem where multiple labels
may be assigned to each instance. Multi-label classification is, to put it more
precisely, a generalization of multi class classification. That stems from the
fact that multi class classification is the single-label problem of categoriz-
ing instances into precisely one of more than two classes. In the multi-label
classification however there is no constraint on how many of the classes the
instance can be assigned to. In mathematical terms, multi-label classification
is the problem of finding a model that maps inputs x to binary vectors y
(assigning a value of 0 or 1 for each element (label) in y).

Approaches to handling multi label classification problems include prob-
lem transformation schemes, the most straightforward of which is binary
relevance. In binary relevance each label is treated as a separate binary
classification and the initial multi-label problem is converted to single-label

1Visit https://nlp.stanford.edu/projects/glove for more information

https://nlp.stanford.edu/projects/glove

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 67

Figure 5.2: Transformation Methods for Multi-label Classification problems

individual problems. Binary relevance’s simplicity comes at the cost of not
taking into account labels’ correlations as each label is treated independently
of all others.

A way to incorporate label dependencies is to use classifier chains. Here,
once again, each label is treated as a separate binary classification but the
first classifier is trained just on the input data and then each consecutive
classifier is trained on the input plus all the previous classifiers in the chain.
In this way label correlation is preserved but the caveat is that in absence of
label correlation classifier chains may perform worse than binary relevance
and the order of the classifiers is crucial as a misclassification in an early
stage of the chain propagates that error to the following classifiers.

Another way of transforming the multi label problem is to convert it into
a multiclass classification. The label powerset transformation creates one
binary classifier for every label combination of the training set. This method
can give high accuracy, especially when the number of labels is small. How-
ever the big disadvantage is that the number of classes increases exponen-
tially as the labels increase and this added complexity to the problem ends
up lowering the accuracy.

Ensemble methods can also be used along with the problem transforma-
tion. In this case multiple learning algorithms are used in order to obtain

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 68

better performance than could be obtained from any of the constituent learn-
ing algorithms alone. For example, according to binary relevance one clas-
sifier can be used for each label but the predictions can be combined by an
ensemble method, usually a voting scheme.

Working in opposite direction, multi label problems can be addressed by
adapted algorithms. In that context rather that transforming the problem
into different subsets of problems an existing algorithm is adapted to directly
perform multi-label classification. Multi label version of known algorithms
include MLkNN and decison trees adaptations such as ’Clare’. With regards
to neural networks, BP-MLL is a multi-label adaptation of the back propaga-
tion algorithm, that works on minimizing the ranking loss of labels. However,
it has been demonstrated that BP-MLL ranking loss minimization can be re-
placed by the commonly used cross entropy error function and simple NN
models equipped with advanced techniques such as ReLU activation func-
tions, dropout regularization and gradient descent algorithms like AdaGrad
perform better, rendering the algorithm obsolete [62].

The most common approach, and the one taken in this thesis, to handing
multi-label learning with neural networks is to adapt the commonplace multi-
label classification network by using a sigmoid activation on the last layer
and binary cross entropy as loss metrics. To explain this, let us consider
multi-class classification with neural networks. In this case the employed
neural network has the same number of output nodes as the number of the
individual classes. In this way each output node corresponds to a specific
class and outputs a score for that class. The scores of the last layer are
then passed through a softmax layer. The softmax layer converts the scores
into probability values. Finally, data is classified into the class that has the
highest probability value.

Figure 5.3: Multi-class Classification with Neural Networks. The last layer
in the network is a softmax activation layer that transforms the output to a
probability distribution over the possible classes. The input example is clas-
sified to the most likely class, i.e. the one that scored the highest probability.

The loss metric used for multi-class classification is categorical crossen-

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 69

tropy and the target vector is a one-hot encoded vector. For example if the
data belongs to the second class (out of a total of 4 possible classes) the
target vector would be [0 1 0 0]. The accuracy of the network is calculated
by categorical accuracy which in Keras models is calculated as follows:

1 def categorical_accuracy(y_true , y_pred):
2 return K.cast(K.equal(K.argmax(y_true , axis=-1),
3 K.argmax(y_pred , axis=-1)),
4 K.floatx ())

In this way a predicted label that does not match the true label is con-
sidered an misclassification. Only correctly classified examples, ones where
the predicted label exactly matches the true one, are taken into account.

The only difference with multi-label classification is that a data sample
can belong to multiple classes. Hence the final score for each class should be
independent of each other. That prevents us from applying a softmax activa-
tion in the final layers, because softmax converts the score into probabilities
taking other scores into consideration. By using the sigmoid activation func-
tion on the final layer instead, the score of the final node is converted to a
number between 0 and 1 independent of what the other scores are. If the
score for some class is more than 0.5, the data is classified into that class.
That allows for multiple classes to have a score of more than 0.5 indepen-
dently. Thus the data could be classified into multiple classes.

Figure 5.4: Multi-label Classification with Neural Networks. The last layer
in the network is a sigmoid activation layer that transforms each output in-
dependently to a score number between [0,1]. The input example is classified
to those labels that score higher than 0.5.

Since we are using a sigmoid activation function, we have to pair it with
binary crossentropy loss. The target vector in this case is binary but there
can be multiple 1s in it. For example, if the data belongs to class 2 and 4, our
target vector would be as following [0 1 0 1]. The accuracy of the network is
calculated in Keras by binary accuracy given as:

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 70

1 def binary_accuracy(y_true , y_pred):
2 return K.mean(K.equal(y_true , K.round(y_pred)),
3 axis=-1)

This way of calculating the accuracy gives a great benefit to this way
of modeling the problem. That is because, if out of 4 labels the classifier
for a given example has predicted two of them correctly but the other two
wrong it would be unfair to consider this example misclassified as a whole.
In this way however each label is considered separately as far as the accuracy
is concerned. For example, if y_true is [1 1 0 0] and the predicted output of
the network y_pred is [0.98 1 0 0.6] then the binary accuracy is 3/4 or 0.75;
the misclassification of the last label does not annul the other three correctly
predicted labels.

5.3.2 Gamestates only Architecture

Up to this point it has become clear that the last layer of the network
needs to be a layer with sigmoid activation function and size equal to the
number of predicting classes and the loss metric of the training needs to be
binary accuracy. In this case the classes represent a set of 10 different actions
a player can take, hence the last, predicting layer in all network architectures
is configured as a 10 node sigmoid layer.

As for the hidden layers before that, two options are examined in this
thesis. The first and most straight forward consists of a feed-forward network,
the second uses an lstm layer as a feature extractor, given that gamestate
information, much like speech, is sequence dependent due to the rules of SoC.

The particularity of the gamestates data is that after being converted
to one hot vectors,it consists of sparse positive inputs. On top of that the
default initialization of Keras layers (Glorot normal 2) takes into account the
fan in and fan out of the layer. The input of the gamestates has a large
fan in, resulting in initial weights that are close to zero. Therefore, despite
its popularity the Relu activation function is not a good choice as this kind
of data used with a Relu activation function leads to a network where all
weights get a value very close to zero and never get updated during training.

To overcome this caveat the default Keras initialization was changed to
the Random normal and the biases were initialized to zero. As for the acti-
vation function all hidden layers use a sigmoid activation function. The tanh
activation was also tested but found to perform sub-optimally. Other param-
eters examined during training include the size of the network, batch size,

2For more information on Keras initializers visit https://keras.io/api/layers/
initializers/

https://keras.io/api/layers/initializers/
https://keras.io/api/layers/initializers/

CHAPTER 5. NEURAL NETWORK ARCHITECTURE 71

epochs, learning rate of the Adam optimization algorithm (see Appendix B).
The architecture that incorporates an LSTM layer for feature extraction

over the gamestate data runs and learns faster that the feed forward network.
Again various parameters were tested for this model, including the Adam
learning rate, the number of units in the LSTM layer, batch size, training
epochs and dropout layers (see Appendix B).

5.3.3 Chat only Architecture

The model that uses information only from the chat data employs an
embedding layer and an lstm layer for feature extraction. The input to this
network is embedding vectors hence there is no problem with sparse input
data. The default tanh activation of the Keras LSTM layer works properly
in this case.The last layer, responsible for the final predictions is again a sig-
moid layer with 10 nodes. Parameters accounted for during training include
number of units, batch sizes and training epochs (see Appendix B).

5.3.4 Combined Architecture

In this architecture the two types of information are combined. One
branch of the network works over gamestate input data, another over chat
input data. The intermediate ouputs are concatenated and fed together as
input to a joined predictor branch. The network is then trained jointly over
the gamestate and chat input data.

For the gamestate branch of the network both the feed forward and the
lstm approach were examined. The parameters of each branch were chosen
taking into account observations and outcome during the training of the in-
dependent architectures and different learning rates, batch sizes and network
sizes where tested (see Appendix B).

Chapter 6

Results

In this Chapter we present a summary of the results that we obtained
from implementing the different network architectures discussed in detail in
Chapter 5. We further discuss important points that originate from the
performance of the different architectures1.

6.1 Performance
To recapitulate on the different architectures presented in the previous

chapter, we note that these fall into three distinct categories, i.e. models
concerned only with the Gamestates data, models concerned only with the
Chat data and finally models that make use of the combination of Gamestates
and Chat data. The results presented here constitute a subset of different
experiments ran during the course of this work, and correspond to models
that have achieved the highest accuracy scores. For a complete listing of all
the network configurations tested in this thesis see Appendix B.

First, results from training only on the Gamestates using a feed-forward
network are summarised in Fig. 6.1. The highest accuracy score was achieved
for a model of two hidden layers of 1000 and 10 node respectively. All the
layers of the network used a sigmoid activation function and the weights
were initialized according to the RandomNormal distribution with a standard
deviation of 10. The bias parameters were initialized to zero. The model was
trained using the Adam optimizer with the default learning rate of 0.001 and
achieved an accuracy score of 0.8535 on the 10th epoch. The training was
performed on batches of 100 samples over 10 epochs. The EarlyStopping
Keras callback was set to stop the training process if the loss of the model

1The complete code for this thesis is available at https://github.com/apostolidoum/
modeling-behaviour-of-SoC-players

72

https://github.com/apostolidoum/modeling-behaviour-of-SoC-players
https://github.com/apostolidoum/modeling-behaviour-of-SoC-players

CHAPTER 6. RESULTS 73

did not improve for 5 consecutive epochs.

(a) model summary

(b) loss (c) accuracy

Figure 6.1: Results from Gamestates model with Feed Forward Network.
The maximum accuracy achieved in the test set was 0.8535.

Fig. 6.2 shows the results from training only on the Gamestates using
an LSTM feature extractor. The LSTM contained 10 memory blocks and
a sigmoid activation function. The weights of the network were initialized
according to the RandomNormal distribution with a standard deviation of
10. The bias parameters were initialized to zero. The model was trained
using the Adam optimizer with a learning rate of 0.0001 and achieved an
accuracy score of 0.8535 on the 25th epoch. The training was performed on
batches of 100 samples over 30 epochs. The EarlyStopping Keras callback
was set to stop the training process if the loss of the model did not improve
more that 0.01 for 10 consecutive epochs.

CHAPTER 6. RESULTS 74

(a) model summary

(b) loss (c) accuracy

Figure 6.2: Results from Gamestates model with LSTM Network. The max-
imum accuracy achieved in the test set was 0.8535.

For the model that uses the Chat data as input an LSTM layer of 32
memory blocks was used after the Embedding layer that converts the text
input to embedding vectors. The LSTM layer used the default tanh acti-
vation function. The model was trained using the Adam optimizer with a
learning rate of 0.001 and achieved an accuracy score of 0.8791 on the 16th
epoch. The training was performed on batches of 100 samples over 50 epochs.
The EarlyStopping Keras callback was set to stop the training process if the
loss of the model did not improve more that 0.01 for 5 consecutive epochs.
The results are summarized in Fig. 6.3.

The configuration for the combined Gamestates and Chat architecture
was partially setup considering hints from the performance of the individual
network architectures. Fig. 6.4 shows the results of the model that combines
the result of a feed forward network over the Gamestates with the result of
an LSTM component over the Chat data. The two branches were configured
in the same way as the best performing aforementioned individual networks.

CHAPTER 6. RESULTS 75

(a) model summary

(b) loss (c) accuracy

Figure 6.3: Results from Chats model with LSTM Network. The maximum
accuracy achieved in the test set was 0.8791.

The highest achieved accuracy performed by this model was 0.8798 on the
20th epoch. The model was trained using the Adam optimizer with a learning
rate of 0.001 on batches of 100 samples.

Fig. 6.5 shows the results of the model that combines the result of an
LSTM component over the Gamestates with the result of an LSTM compo-
nent over Chat data. The two branches were configured in the same way
as the best performing aforementioned individual networks. The highest
achieved accuracy performed by this model was 0.88 on the 6th epoch. The
model was trained using the Adam optimizer with a learning rate of 0.001
on batches of 10 samples.

CHAPTER 6. RESULTS 76

(a) model summary

(b) loss (c) accuracy

Figure 6.4: Results from Gamestates and Chats model with FF-LSTM Net-
work. The maximum accuracy achieved in the test set was 0.8798.

6.2 Further discussion
The main scope of this thesis was to examine how different models per-

form and whether combination architectures would show improved perfor-
mance. Apart from implementing and testing these five different models we
also examined the impact of various other parameters to the performance of
the models. A general rule of thumb that derived from the experimentation
is that a batch size of 100 samples provides good results in most occasions
for this dataset. Also it is often a good idea to lower the default learning rate
of the Adam optimization algorithm from 10−3 to 10−4 (in some occasions

CHAPTER 6. RESULTS 77

(a) model summary

(b) loss (c) accuracy

Figure 6.5: Results from Gamestates and Chats model with LSTM-LSTM
Network. The maximum accuracy achieved in the validation set was 0.88.

even 10−5) in order to allow the network to explore more and avoid getting
stuck in local minima.

In general the use of LSTM networks speeds up the learning process and
these networks seem to provide a slight advantage over the feed forward
networks in terms of accuracy. The chat data produces a lot more stable
results. This is due to the use of embedding vectors that alleviate the prob-
lem of sparse inputs. The gamestate inputs could be improved in a similar
manner. One way could be to encode the information in some other, less
sparse way by different design. Another, more interesting approach would
be to use the existing embedding algorithms to produce embedding vectors
for the gamestates inputs, especially if more data becomes available. As was
explained in Chapter 5 the gamestates is categorical data and the embedding
approach for encoding categorical variables shows promising results [63].

CHAPTER 6. RESULTS 78

Finally, we find that the combination of gamestate and chat information
is advantageous and improves the predictive performance of the models. The
standalone chat model can approach the performance of the combination
architectures if allowed to run over many epochs, but the combination archi-
tectures get there much faster. Hence the additional gamestate information
helps speed up the learning process. Also the validation accuracy results
could very likely see an extra improvement, even with the existing data and
models, if cross validation methods would be used.

Chapter 7

Conclusions

In this thesis we formulated a dataset from SoC gameplay and discourse
between human players and explored five different architectures to try and
emulate the players’ behaviour by trying to predict the action they are going
to take. We managed to achieve an accuracy score of 0.88 for the architecture
that uses LSTM feature extractors for the gamestates and the chat inputs
and provides the combined information as a joint input to a feed-forward
network for prediction.

Apart from implementing and testing these five different models we also
examined the impact of various other parameters to the performance of the
models. The presented results are promising and suggest that with further
tuning of the networks’ parameters, accuracy of the models could improve
even further. Some of the things that could be done in the future to im-
prove the performance could be to examine other architectures (e.g. GRU
layers, bi-LSTMs), different embedding vectors (e.g. Word2Vec pre-trained
embeddings, other dimensions of Glove embeddings or even custom trained
word embeddings over the chat data), different network configurations (size
of networks, optimization with stochastic gradient descent, cross validation
etc). Additionally the fundamental issue of insufficient data could be ad-
dressed in future research. Given more resources additional data could be
collected by building an online jSettlers community where people can play
and chat more and now that there is an API to convert the game log files
to a comprehensive dataset, this data can easily be utilized for this or other
machine learning schemes.

The anticipated shortcoming regarding the scarcity of available data was
mentioned in the introduction of the thesis. Admittedly, this work relates
to studying human behaviour and decision making (an already difficult and
cumbersome research area) in the presence of imposed complex gamerules.
Normally a huge amount of data is needed in order to study such behaviors.

79

CHAPTER 7. CONCLUSIONS 80

Nonetheless, the results reported are encouraging and show that research
even with such data limitations is not futile.

The difficulty of finding corpora to work with NLP in such a restricted
and task specific project of modeling human behaviour in strategic games is
expected. First and foremost, corpora are hard to find because they are hard
to produce, since they require a lot of human involvement (for annotations,
corrections etc) and this is a laborious and time consuming task. Secondly,
there exist some datasets that are accessible online but usually appertain
to very general purposes and are not in the context of strategic games. It
was therefore compelling that the already available STAC corpus should be
utilized, despite its limited size of data.

As a final note, we point that another endeavor of this thesis was to
rekindle research in the SoC project and incorporate the STAC corpus in
order to use for the first time the actions of the players during gameplay and
the linguistic information jointly and to examine whether the combination
of these two aspects of the game was constructive. The results confirm that
this was a step in the right direction and suggest that continued research
could be indeed fruitful.

In future work, the knowledge mined in this thesis from the corpus of
human players could be used in conjunction with adversarial networks. Also,
with a larger amount of available data, specific type of players or winning
strategies of players could be studied and modeled. Such a larger pool of
available training data can pave the way to new research approaches with
potentially interesting results. As an example, it might be worth investigating
the use of entity embeddings (as described in [63]) for encoding the gamestates
inputs. Another approach could be the use of the existing word2vec or GloVe
algorithms to train embedding vectors that would encode the categorical
variables of the SoC board coordinates to dense embedding vectors, reducing
the sparsity of the one-hot encoded inputs and hopefully capturing interesting
information about the locations on the board.

Bibliography

[1] N. Asher, J. Hunter, M. Morey, B. Farah, and S. Afantenos, “Discourse
structure and dialogue acts in multiparty dialogue: the STAC corpus,”
in Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16). Portorož, Slovenia: European
Language Resources Association (ELRA), May 2016, pp. 2721–2727.
[Online]. Available: https://www.aclweb.org/anthology/L16-1432

[2] R. S. Thomas, “Real-time Decision Making for Adversarial Environments
Using a Plan-based Heuristic,” PhD Thesis, Northwestern University,
Evanston, IL, USA, 2003.

[3] M. Pfeiffer, “Reinforcement learning of strategies for Settlers of Catan,”
May 2019.

[4] I. Szita, G. Chaslot, and P. Spronck, “Monte-Carlo Tree Search in
Settlers of Catan,” in Advances in Computer Games, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, H. J.
van den Herik, and P. Spronck, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, vol. 6048, pp. 21–32. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-12993-3_3

[5] Konstantinos Panagiotis Panousis, “Real-time Planning and Learning
in the “Settlers of Catan” Strategy Game,” Diploma Thesis, Technical
University of Crete, 2014.

[6] Emmanouil Karamalegkos, “Monte Carlo Tree Search in the "Settlers of
Catan" Strategy Game,” Diploma Thesis, Technical University of Crete,
2016.

[7] H. Cuayáhuitl, S. Keizer, and O. Lemon, “Strategic Dialogue
Management via Deep Reinforcement Learning,” arXiv:1511.08099

81

https://www.aclweb.org/anthology/L16-1432
http://link.springer.com/10.1007/978-3-642-12993-3_3

BIBLIOGRAPHY 82

[cs], Nov. 2015, arXiv: 1511.08099. [Online]. Available: http:
//arxiv.org/abs/1511.08099

[8] K. Xenou, G. Chalkiadakis, and S. Afantenos, “Deep Reinforcement
Learning in Strategic Board Game Environments,” in Multi-
Agent Systems, M. Slavkovik, Ed. Cham: Springer International
Publishing, 2019, vol. 11450, pp. 233–248. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-14174-5_16

[9] S. Russell and A. L. Zimdars, “Q-Decomposition for Reinforcement
Learning Agents,” p. 8.

[10] S. Afantenos, E. Kow, N. Asher, and J. Perret, “Discourse parsing for
multi-party chat dialogues,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, 2015, pp. 928–937. [Online].
Available: http://aclweb.org/anthology/D15-1109

[11] Y. Goldberg, “Neural network methods for natural language processing,”
Synthesis Lectures on Human Language Technologies, vol. 10, no. 1,
pp. 1–309, 2017. [Online]. Available: https://doi.org/10.2200/
S00762ED1V01Y201703HLT037

[12] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, Jan. 1991.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
089360809190009T

[13] K. Y. Tam and M. Y. Kiang, “Managerial Applications of Neural
Networks: The Case of Bank Failure Predictions,” Management
Science, vol. 38, no. 7, pp. 926–947, Jul. 1992. [Online]. Available:
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.38.7.926

[14] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market pre-
diction system with modular neural networks,” in 1990 IJCNN Interna-
tional Joint Conference on Neural Networks, Jun. 1990, pp. 1–6 vol.1.

[15] J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann,
F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S.
Meltzer, “Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks,” Nature
Medicine, vol. 7, no. 6, p. 673, Jun. 2001. [Online]. Available:
https://www.nature.com/articles/nm0601_673

http://arxiv.org/abs/1511.08099
http://arxiv.org/abs/1511.08099
http://link.springer.com/10.1007/978-3-030-14174-5_16
http://aclweb.org/anthology/D15-1109
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.38.7.926
https://www.nature.com/articles/nm0601_673

BIBLIOGRAPHY 83

[16] H. R. Maier and G. C. Dandy, “Neural networks for the
prediction and forecasting of water resources variables: a review
of modelling issues and applications,” Environmental Modelling &
Software, vol. 15, no. 1, pp. 101–124, Jan. 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364815299000079

[17] A. Lapedes and R. Farber, “Nonlinear signal processing using neural
networks: Prediction and system modelling,” Jun. 1987. [Online].
Available: https://www.osti.gov/biblio/5470451

[18] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep
Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups,” IEEE Signal Processing Mag-
azine, vol. 29, no. 6, pp. 82–97, Nov. 2012.

[19] D. Chen and C. Manning, “A Fast and Accurate Dependency Parser
using Neural Networks,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, 2014, pp. 740–750.
[Online]. Available: http://aclweb.org/anthology/D14-1082

[20] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Proba-
bilistic Language Model,” p. 19.

[21] A. de Gispert, G. Iglesias, and B. Byrne, “Fast and Accurate
Preordering for SMT using Neural Networks,” in Proceedings of the
2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Denver,
Colorado: Association for Computational Linguistics, 2015, pp.
1012–1017. [Online]. Available: http://aclweb.org/anthology/N15-1105

[22] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III,
“Deep Unordered Composition Rivals Syntactic Methods for Text
Classification,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Beijing, China: Association for Computational Linguistics,
2015, pp. 1681–1691. [Online]. Available: http://aclweb.org/anthology/
P15-1162

[23] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-

http://www.sciencedirect.com/science/article/pii/S1364815299000079
https://www.osti.gov/biblio/5470451
http://aclweb.org/anthology/D14-1082
http://aclweb.org/anthology/N15-1105
http://aclweb.org/anthology/P15-1162
http://aclweb.org/anthology/P15-1162

BIBLIOGRAPHY 84

volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2015, pp. 1–9.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3098997.3065386

[25] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Sep. 2014,
arXiv: 1409.1556. [Online]. Available: http://arxiv.org/abs/1409.1556

[26] A. van den Oord, “Deep content-based music recommendation,” p. 9.

[27] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang,
S. Ippolito, and O. Kavehei, “Convolutional neural networks for
seizure prediction using intracranial and scalp electroencephalogram,”
Neural Networks, vol. 105, pp. 104–111, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018301485

[28] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep
convolutional neural networks for LVCSR,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2013, pp.
8614–8618.

[29] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1746–1751. [Online]. Available:
http://aclweb.org/anthology/D14-1181

[30] R. Johnson and T. Zhang, “Effective Use of Word Order for Text
Categorization with Convolutional Neural Networks,” in Proceedings of
the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Denver, Colorado: Association for Computational Linguistics, 2015, pp.
103–112. [Online]. Available: http://aclweb.org/anthology/N15-1011

[31] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang, and
H. Hao, “Semantic Clustering and Convolutional Neural Network
for Short Text Categorization,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing

http://dl.acm.org/citation.cfm?doid=3098997.3065386
http://arxiv.org/abs/1409.1556
http://www.sciencedirect.com/science/article/pii/S0893608018301485
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/N15-1011

BIBLIOGRAPHY 85

(Volume 2: Short Papers). Beijing, China: Association for
Computational Linguistics, 2015, pp. 352–357. [Online]. Available:
http://aclweb.org/anthology/P15-2058

[32] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional
Neural Network for Modelling Sentences,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Baltimore, Maryland: Association for
Computational Linguistics, 2014, pp. 655–665. [Online]. Available:
http://aclweb.org/anthology/P14-1062

[33] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural Language Processing (Almost) from Scratch,” NAT-
URAL LANGUAGE PROCESSING, p. 45.

[34] L. Dong, F. Wei, M. Zhou, and K. Xu, “Question Answering
over Freebase with Multi-Column Convolutional Neural Networks,”
in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Beijing,
China: Association for Computational Linguistics, 2015, pp. 260–269.
[Online]. Available: http://aclweb.org/anthology/P15-1026

[35] M. Auli and J. Gao, “Decoder Integration and Expected BLEU Training
for Recurrent Neural Network Language Models,” in Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Baltimore, Maryland: Association for
Computational Linguistics, 2014, pp. 136–142. [Online]. Available:
http://aclweb.org/anthology/P14-2023

[36] H. Adel, N. T. Vu, and T. Schultz, “Combination of Recurrent Neural
Networks and Factored Language Models for Code-Switching Language
Modeling,” p. 6.

[37] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent Neural Network Based Language Model,” p. 4.

[38] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2011, pp. 5528–5531.

[39] W. Xu, M. Auli, and S. Clark, “CCG Supertagging with a
Recurrent Neural Network,” in Proceedings of the 53rd Annual

http://aclweb.org/anthology/P15-2058
http://aclweb.org/anthology/P14-1062
http://aclweb.org/anthology/P15-1026
http://aclweb.org/anthology/P14-2023

BIBLIOGRAPHY 86

Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Beijing, China: Association for
Computational Linguistics, 2015, pp. 250–255. [Online]. Available:
http://aclweb.org/anthology/P15-2041

[40] O. Irsoy and C. Cardie, “Opinion Mining with Deep Recurrent Neural
Networks,” in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, 2014, pp. 720–728. [Online]. Available:
http://aclweb.org/anthology/D14-1080

[41] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1724–1734. [Online]. Available:
http://aclweb.org/anthology/D14-1179

[42] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” p. 9.

[43] M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney, “Translation
Modeling with Bidirectional Recurrent Neural Networks,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, 2014, pp. 14–25. [Online]. Available: http://aclweb.org/
anthology/D14-1003

[44] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y.
Nie, J. Gao, and B. Dolan, “A Neural Network Approach to Context-
Sensitive Generation of Conversational Responses,” in Proceedings of the
2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Denver,
Colorado: Association for Computational Linguistics, 2015, pp.
196–205. [Online]. Available: http://aclweb.org/anthology/N15-1020

[45] A. Kannan, P. Young, V. Ramavajjala, K. Kurach, S. Ravi,
T. Kaufmann, A. Tomkins, B. Miklos, G. Corrado, L. Lukacs, and
M. Ganea, “Smart Reply: Automated Response Suggestion for Email,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’16. San Francisco,

http://aclweb.org/anthology/P15-2041
http://aclweb.org/anthology/D14-1080
http://aclweb.org/anthology/D14-1179
http://aclweb.org/anthology/D14-1003
http://aclweb.org/anthology/D14-1003
http://aclweb.org/anthology/N15-1020

BIBLIOGRAPHY 87

California, USA: ACM Press, 2016, pp. 955–964. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2939672.2939801

[46] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao, “Deep
Reinforcement Learning for Dialogue Generation,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, 2016, pp.
1192–1202. [Online]. Available: http://aclweb.org/anthology/D16-1127

[47] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking Sen-
tences for Extractive Summarization with Reinforcement Learning,”
arXiv:1802.08636 [cs], Feb. 2018, arXiv: 1802.08636. [Online].
Available: http://arxiv.org/abs/1802.08636

[48] S. Chopra, M. Auli, and A. M. Rush, “Abstractive Sentence
Summarization with Attentive Recurrent Neural Networks,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational
Linguistics, 2016, pp. 93–98. [Online]. Available: http://aclweb.org/
anthology/N16-1012

[49] X. Zhang and M. Lapata, “Sentence Simplification with Deep
Reinforcement Learning,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics, 2017, pp.
584–594. [Online]. Available: http://aclweb.org/anthology/D17-1062

[50] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. Daumé III,
“A Neural Network for Factoid Question Answering over Paragraphs,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, 2014, pp. 633–644. [Online]. Available:
http://aclweb.org/anthology/D14-1070

[51] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing
Automaton Project Para, ser. Report: Cornell Aeronautical Laboratory.
Cornell Aeronautical Laboratory, 1957. [Online]. Available: https:
//books.google.gr/books?id=P_XGPgAACAAJ

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

http://dl.acm.org/citation.cfm?doid=2939672.2939801
http://aclweb.org/anthology/D16-1127
http://arxiv.org/abs/1802.08636
http://aclweb.org/anthology/N16-1012
http://aclweb.org/anthology/N16-1012
http://aclweb.org/anthology/D17-1062
http://aclweb.org/anthology/D14-1070
https://books.google.gr/books?id=P_XGPgAACAAJ
https://books.google.gr/books?id=P_XGPgAACAAJ

BIBLIOGRAPHY 88

[53] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[54] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[55] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their composition-
ality,” in Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’13. Red Hook,
NY, USA: Curran Associates Inc., 2013, p. 3111–3119.

[56] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Atlanta,
Georgia: Association for Computational Linguistics, Jun. 2013, pp. 746–
751. [Online]. Available: https://www.aclweb.org/anthology/N13-1090

[57] X. Rong, “word2vec parameter learning explained,” arXiv preprint
arXiv:1411.2738, 2014.

[58] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method,” CoRR, vol.
abs/1402.3722, 2014. [Online]. Available: http://arxiv.org/abs/1402.
3722

[59] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[60] J. L. Elman, “Finding structure in time,” Cognitive Science,
vol. 14, no. 2, pp. 179–211, 1990. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

[61] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

http://www.deeplearningbook.org
http://arxiv.org/abs/1301.3781
https://www.aclweb.org/anthology/N13-1090
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
http://www.aclweb.org/anthology/D14-1162
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY 89

[62] J. Nam, J. Kim, E. Loza Mencía, I. Gurevych, and J. Fürnkranz, “Large-
scale multi-label text classification — revisiting neural networks,” in
Machine Learning and Knowledge Discovery in Databases, T. Calders,
F. Esposito, E. Hüllermeier, and R. Meo, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 437–452.

[63] C. Guo and F. Berkhahn, “Entity embeddings of categorical
variables,” CoRR, vol. abs/1604.06737, 2016. [Online]. Available:
http://arxiv.org/abs/1604.06737

http://arxiv.org/abs/1604.06737

Appendices

90

Appendix A

Game Board Generation in
jSettlers

The process for setting up the board is schematically outlined in Fig. A.1.
After an initial shuffling of the terrain tiles, the central board column of five
tiles is set, followed by setting the four tiles columns on the right and left
side of the central column. Finally, the right and left three tiles columns are
set alongside the four tiles columns. After the terrain is completed, the port
and sea tiles are set alternating around the outermost edges of the island’s
hexagon.

The game board is completed after placing one numbered tile on each
of the terrain tiles. The process starts from a terrain tile at one of the six
corners of the outline of the island’s hexagon. Further numbered tiles are
then placed in a counter-clock spiral towards the central terrain tile. The
desert terrain tile is skipped in this process. The numbered tiles are placed

Figure A.1: Schematic representation of the board generation process in
jSettlers.

91

APPENDIX A. GAME BOARD GENERATION IN JSETTLERS 92

Figure A.2: Example of the final board layout, after the setting up process
in jSettlers.

on the terrain tiles following the pattern:
5→ 2→ 6→ 3→ 8→ 10→ 9→ 12→ 11→ 4→ 8→ 10→ 9→ 4→ 5→
6→ 3→ 11
completing the setup of the game board.

The end result is a number layout that is pseudorandom, as the selection
of the initial corner and the location of the dessert tile incorporate some non-
deterministic elements in an otherwise deterministic sequence of numbers.

Appendix B

Network Configurations

Below we provide a listing of all the network configurations tested in
this thesis. The results presented in this thesis were obtained by running
the code on an Intel(R) Core(TM) i7-8550U CPU, running Linux Mint 19
(Kernel: Linux 4.15.0-43-generic, Architecture: x86-64).

The RandomNormal() Keras initializer as well as the train_test_split()
method of sklearn, that by default shuffles the data before splitting it, result
to different outcomes every time they are computed. Also included in this
appendix is a complete list of the packages used in this thesis. Running the
architectures with different package configurations may result in different
results.

Results that show the model test loss surpassing the train loss (e.g. Chats
network architecture in Fig. 6.3) suggest a tendency towards overfitting. This
can be addressed by collecting additional data. Finally, additional runs of
the presented architectures and configurations would ensure safer results.

The result plots presented in Chapter 6 correspond to the highlighted
runs of the network configurations summarized in Figs B.1-B.5. For com-
pleteness, we also include in Section B.1 accuracy and loss plots for all the
runs of the combined FF-LSTM architecture (with network configurations
summarized in Fig. B.4) and in Section B.2 accuracy and loss plots for all
the runs of the combined LSTM-LSTM architecture (with network configu-
rations summarized in Fig. B.5).

Furthermore, we also include in Section B.3 result plots that were ob-
tained using the highlighted architectures on a different machine, which dis-
play worse performance.

93

APPENDIX B. NETWORK CONFIGURATIONS 94

F
ig
ur
e
B
.1
:
N
et
w
or
k
C
on

fig
ur
at
io
ns

fo
r
G
am

es
ta
te
s
m
od

el
w
it
h
Fe

ed
Fo

rw
ar
d
N
et
w
or
k

F
ig
ur
e
B
.2
:
N
et
w
or
k
C
on

fig
ur
at
io
ns

fo
r
G
am

es
ta
te
s
m
od

el
w
it
h
LS

T
M

ne
tw

or
k

APPENDIX B. NETWORK CONFIGURATIONS 95

F
ig
ur
e
B
.3
:
N
et
w
or
k
C
on

fig
ur
at
io
ns

fo
r
C
ha

ts
m
od

el
w
it
h
LS

T
M

N
et
w
or
k

F
ig
ur
e
B
.4
:
N
et
w
or
k
C
on

fig
ur
at
io
ns

fo
r
G
am

es
ta
te
s
an

d
C
ha

ts
N
et
w
or
k
w
it
h
F
F
-L
ST

M

F
ig
ur
e
B
.5
:
N
et
w
or
k
C
on

fig
ur
at
io
ns

fo
r
G
am

es
ta
te
s
an

d
C
ha

ts
N
et
w
or
k
w
it
h
LS

T
M
-L
ST

M

APPENDIX B. NETWORK CONFIGURATIONS 96

The results presented in the thesis were obtained using the following versions
of conda packages :

packages in environment at
Name Version Build Channel
_libgcc_mutex 0.1 main anaconda
absl-py 0.6.1 pypi_0 pypi
alabaster 0.7.12 py36_0
asn1crypto 0.24.0 py36_0
astor 0.7.1 pypi_0 pypi
astroid 2.1.0 py36_0
babel 2.6.0 py36_0
backcall 0.1.0 py36_0
blas 1.0 mkl
bleach 3.0.2 py36_0
ca-certificates 2020.4.5.1 hecc5488_0 conda-forge
cairo 1.14.12 h8948797_3 anaconda
certifi 2020.4.5.1 py36h9f0ad1d_0 conda-forge
cffi 1.11.5 py36he75722e_1
chardet 3.0.4 py36_1
cloudpickle 0.6.1 py36_0
cryptography 2.4.2 py36h1ba5d50_0
cycler 0.10.0 py36_0
dbus 1.13.2 h714fa37_1
decorator 4.3.0 py36_0
docutils 0.14 py36_0
entrypoints 0.2.3 py36_2
expat 2.2.6 he6710b0_0
fontconfig 2.13.0 h9420a91_0
freetype 2.9.1 h8a8886c_1
fribidi 1.0.5 h7b6447c_0 anaconda
gast 0.2.2 pypi_0 pypi
glib 2.56.2 hd408876_0
gmp 6.1.2 h6c8ec71_1
graphite2 1.3.13 h23475e2_0 anaconda
graphviz 2.40.1 h21bd128_2 anaconda
grpcio 1.17.1 pypi_0 pypi
gst-plugins-base 1.14.0 hbbd80ab_1
gstreamer 1.14.0 hb453b48_1
h5py 2.9.0 pypi_0 pypi
harfbuzz 1.8.8 hffaf4a1_0 anaconda
icu 58.2 h9c2bf20_1
idna 2.8 py36_0
imagesize 1.1.0 py36_0
intel-openmp 2019.1 144
ipykernel 5.1.0 py36h39e3cac_0
ipython 7.2.0 py36h39e3cac_0
ipython_genutils 0.2.0 py36_0
isort 4.3.4 py36_0
jedi 0.13.2 py36_0
jeepney 0.4 py36_0
jinja2 2.10 py36_0
jpeg 9b h024ee3a_2
jsonschema 2.6.0 py36_0
jupyter_client 5.2.4 py36_0
jupyter_core 4.4.0 py36_0
keras 2.2.4 pypi_0 pypi
keras-applications 1.0.6 pypi_0 pypi
keras-preprocessing 1.0.5 pypi_0 pypi
keyring 17.1.1 py36_0
kiwisolver 1.0.1 py36hf484d3e_0
lazy-object-proxy 1.3.1 py36h14c3975_2

APPENDIX B. NETWORK CONFIGURATIONS 97

libedit 3.1.20170329 h6b74fdf_2
libffi 3.2.1 hd88cf55_4
libgcc-ng 8.2.0 hdf63c60_1
libgfortran-ng 7.3.0 hdf63c60_0
libpng 1.6.36 hbc83047_0
libsodium 1.0.16 h1bed415_0
libstdcxx-ng 8.2.0 hdf63c60_1
libtiff 4.1.0 h2733197_0 anaconda
libuuid 1.0.3 h1bed415_2
libxcb 1.13 h1bed415_1
libxml2 2.9.8 h26e45fe_1
markdown 3.0.1 pypi_0 pypi
markupsafe 1.1.0 py36h7b6447c_0
matplotlib 3.0.2 py36h5429711_0
matplotlib-base 3.1.1 py36hfd891ef_0 conda-forge
mccabe 0.6.1 py36_1
mistune 0.8.4 py36h7b6447c_0
mkl 2019.1 144
mkl_fft 1.0.10 py36ha843d7b_0
mkl_random 1.0.2 py36hd81dba3_0
music21 5.5.0 pypi_0 pypi
nbconvert 5.3.1 py36_0
nbformat 4.4.0 py36_0
ncurses 6.1 he6710b0_1
notebook 5.7.4 py36_0
numpy 1.15.4 py36h7e9f1db_0
numpy-base 1.15.4 py36hde5b4d6_0
numpydoc 0.8.0 py36_0
olefile 0.46 py_0 conda-forge
openssl 1.1.1g h516909a_0 conda-forge
packaging 18.0 py36_0
pandas 0.24.1 py36he6710b0_0
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py36_1
pango 1.42.4 h049681c_0 anaconda
parso 0.3.1 py36_0
pcre 8.42 h439df22_0
pexpect 4.6.0 py36_0
pickleshare 0.7.5 py36_0
pillow 7.0.0 py36hb39fc2d_0
pip 18.1 py36_0
pixman 0.38.0 h7b6447c_0 anaconda
prometheus_client 0.5.0 py36_0
prompt_toolkit 2.0.7 py36_0
protobuf 3.6.1 pypi_0 pypi
psutil 5.4.8 py36h7b6447c_0
ptyprocess 0.6.0 py36_0
pycodestyle 2.4.0 py36_0
pycparser 2.19 py36_0
pydot 1.4.1 py36_0 anaconda
pyflakes 2.0.0 py36_0
pygments 2.3.1 py36_0
pylint 2.2.2 py36_0
pyopenssl 18.0.0 py36_0
pyparsing 2.3.0 py36_0
pyqt 5.9.2 py36h05f1152_2
pysocks 1.6.8 py36_0
python 3.6.8 h0371630_0
python-dateutil 2.7.5 py36_0
python_abi 3.6 1_cp36m conda-forge
pytz 2018.7 py36_0
pyyaml 3.13 pypi_0 pypi

APPENDIX B. NETWORK CONFIGURATIONS 98

pyzmq 17.1.2 py36h14c3975_0
qt 5.9.7 h5867ecd_1
qtawesome 0.5.3 py36_0
qtconsole 4.4.3 py36_0
qtpy 1.5.2 py36_0
readline 7.0 h7b6447c_5
requests 2.21.0 py36_0
rope 0.11.0 py36_0
scikit-learn 0.20.2 py36hd81dba3_0
scipy 1.1.0 py36h7c811a0_2
secretstorage 3.1.0 py36_0
send2trash 1.5.0 py36_0
setuptools 40.6.3 py36_0
sip 4.19.8 py36hf484d3e_0
six 1.12.0 py36_0
snowballstemmer 1.2.1 py36_0
sphinx 1.8.2 py36_0
sphinxcontrib 1.0 py36_1
sphinxcontrib-websupport 1.1.0 py36_1
spyder 3.3.2 py36_0
spyder-kernels 0.3.0 py36_0
sqlite 3.26.0 h7b6447c_0
tensorboard 1.12.2 pypi_0 pypi
tensorflow 1.12.0 pypi_0 pypi
termcolor 1.1.0 pypi_0 pypi
terminado 0.8.1 py36_1
testpath 0.4.2 py36_0
tk 8.6.10 hed695b0_0 conda-forge
tornado 5.1.1 py36h7b6447c_0
traitlets 4.3.2 py36_0
typed-ast 1.1.0 py36h14c3975_0
urllib3 1.24.1 py36_0
wcwidth 0.1.7 py36_0
webencodings 0.5.1 py36_1
werkzeug 0.14.1 pypi_0 pypi
wheel 0.32.3 py36_0
wordcloud 1.6.0 py36h516909a_0 conda-forge
wrapt 1.10.11 py36h14c3975_2
wurlitzer 1.0.2 py36_0
xz 5.2.4 h14c3975_4
zeromq 4.2.5 hf484d3e_1
zlib 1.2.11 h7b6447c_3
zstd 1.3.7 h0b5b093_0 anaconda

APPENDIX B. NETWORK CONFIGURATIONS 99

B.1 Combined Architecture FF-LSTM

Figure B.6: Result plots for run 1 of Combined FF-LSTM architecture.

Figure B.7: Result plots for run 2 of Combined FF-LSTM architecture.

Figure B.8: Result plots for run 3 of Combined FF-LSTM architecture.

APPENDIX B. NETWORK CONFIGURATIONS 100

Figure B.9: Result plots for run 4 of Combined FF-LSTM architecture.

Figure B.10: Result plots for run 5 of Combined FF-LSTM architecture.

APPENDIX B. NETWORK CONFIGURATIONS 101

B.2 Combined Architecture LSTM-LSTM

Figure B.11: Result plots for run 1 of Combined LSTM-LSTM architecture.

Figure B.12: Result plots for run 2 of Combined LSTM-LSTM architecture.

Figure B.13: Result plots for run 3 of Combined LSTM-LSTM architecture.

APPENDIX B. NETWORK CONFIGURATIONS 102

Figure B.14: Result plots for run 4 of Combined LSTM-LSTM architecture.

Figure B.15: Result plots for run 5 of Combined LSTM-LSTM architecture.

Figure B.16: Result plots for run 6 of Combined LSTM-LSTM architecture.

APPENDIX B. NETWORK CONFIGURATIONS 103

Figure B.17: Result plots for run 7 of Combined LSTM-LSTM architecture.

APPENDIX B. NETWORK CONFIGURATIONS 104

B.3 Result plots from running on a different
platform

Figure B.18: Result plots from Gamestates model with FF network.

Figure B.19: Result plots from Gamestates model with LSTM network.

APPENDIX B. NETWORK CONFIGURATIONS 105

Figure B.20: Result plots from Chats model with LSTM network.

Figure B.21: Result plots from Combined model with FF-LSTM network.

Appendix C

Code Documentation

106

jSettlers Dataset API

Maria Apostolidou

Feb 10, 2020

CONTENTS:

1 jSettlers Dataset API 1
1.1 turn.py . 1
1.2 reduced_logs.py . 1
1.3 collectfeatures.py . 2
1.4 DevCard.py . 5
1.5 GameState.py . 6
1.6 Labels.py . 6
1.7 Piece.py . 8
1.8 PlayerState.py . 8

Python Module Index 11

Index 13

i

ii

CHAPTER

ONE

JSETTLERS DATASET API

Documentation of all the scripts, classes and methods used to convert .soclog files to a jSettlers dataset.

1.1 turn.py

Inserting the turn number to soclogs

Write new soclog files where the first field is the turn number. Initial set up of the game is considered turn 0 When it is
time for a new turn the SOCGameState sends a message that the game state is state=15 state=15 (PLAY, start a normal
turn, time to roll or play card) (for more information about states, their codes and meanings see SOCGame.java)

turn.add_turns(inputfile, outputfile)
Adds the turn number to the data

Reads an original soclog file and inserts the turn number at the beggining of each log. The new, extended soclog
is saved as a new soclog file

Parameters

• inputfile (file) – The original soclog file to be modified

• outputfile (file) – The destination where the new soclogfile will be written

1.2 reduced_logs.py

Collecting the useful data from the soclogs

Selects the useful messages from the soclogs to extract the informations needed for the state features. SOCGame-
TextMsg, GAME-TEXT-MESSAGE, SOCGameState

reduced_logs.read_soclog(soclogfile)
Reads a soclog and separates basic columns

Read a soclog and separates columns by ‘:’ The first 8 columns are the timestamp, when the message was
sent The 9th column is the MessageType (for details about MessageTypes see /messages of jSettlers) The 10th
column is the Message

Parameters soclogfile (file) – The soclog .soclog file

Returns soclog – the soclog in dataframe form

Return type dataframe

1

jSettlers Dataset API

reduced_logs.reduce_log(soclog)
Creates a dataframe that contains only the useful parts of the logs

Creates a dataframe that contains only rows of MessageType SOCGameTextMsg | GAME-TEXT-MESSAGE |
SOCGameState. Deletes the timestamp from the row. Saves to a csv using the ‘|’ as delimeter

Parameters soclog (dataframe) – The dataframe of a soclog (as returned from read_soclog)

Returns data – A dataframe with the useful data (rows) collected from the soclog

Return type dataframe

reduced_logs.write_to_csv(data, filename, delimiter)
Writes a dataframe to a csv file

Parameters

• data (dataframe) – The dataframe to be written to the csv file

• filename (file) – The destination file

• delimeter (str) – The separator two put between fields in the csv (e.g. ‘|’, ‘:’)

1.3 collectfeatures.py

Creating the game state and chat features and labels

Makes a feature vector for every game turn that shows the game state #GameStates = #game turns for each log file
Makes the labels Write all the chat data to a file

collectfeatures.devCard(df)
method to call for a SOCDevCard message

This method is called when a message of type SOCDevCard is found in the log. Used to update the development
cards of a player

Parameters df (pandas dataframe) – The row of the game dataframe that holds SOCDevCard
message

Returns

• playernum (player number)

• actionType (bought or played)

• cardType (type of development card)

collectfeatures.get_board(message)
Gets the board layout from the data

Fills in the board layout part of the game state feature vector. The hexLayout refers to the resources each hexagon
on the board offers. The numLayout refers to dice number corresponding to each hexagon. Initial placement of
the robber (in the dessert hexagon) is also found here. This information is retrieved from the message of type
SOCBoardLayout, during the initial set up phase of the game (turn 0).

Parameters message (str) – A SOCBoardLayout message

Returns

• hexLayout (int list) – The resources on the board. (See jSettlers boardlayout class to map
these numbers to the coresponding resource types.)

• numLayout (int list) – The dice number on each board hexagon (See also jSettlers board-
Layout)

2 Chapter 1. jSettlers Dataset API

jSettlers Dataset API

• robberHex (hexadecimanl coordinate) – Initial position of the robber (on the dessert
hexagon)

collectfeatures.get_buildings0(df)
Returns the positions where the players placed 1st road and settlement.

During the initial setup phase all players place a settlement and a road on the board.

Parameters df (pandas dataframe) – The rows of the game dataframe that hold SOCPutPiece
messages at turn 0

Returns buildings – players’ settlements and roads at turn 0

Return type dictionary

collectfeatures.get_chat(df)
method to get a chat message of a SOCGameTextMsg

Parameters df (pandas dataframe) – The row of the game dataframe that holds a SOCGa-
meTextMsg message

Returns

• nickname (str) – The nickname of the emitter

• chat_msg (str) – The chat message emitted

collectfeatures.get_chats0(df)
method to save the chats of the initial setup phase to chatsDF

Parameters df (pandas dataframe) – The rows of the game dataframe that hold SOCGame-
TextMsg messages at turn 0

collectfeatures.get_int_value(message, base)
Converts a field from a str message to a number

From a string of the form “varname=val” returns only the value in hex

Parameters

• message (str) –

• base (str, hex or dec) –

Returns val

Return type int (hexadecimal)

collectfeatures.get_int_values(layoutmessage)
Converts a layout from a str message to a list of numbers

From a string of the form “infoname= { . . . int values. . . }” returns only the int values in a list of integers

Parameters layoutmessage (str) – A str describing the hex or num Layout (e.g. hexLayout=
{ 50 6 . . . 6})

Returns layout – The mapped list of integers

Return type int list

collectfeatures.get_players(df)
Finds players’ nicknames and number ids

From the SOCSitDown messages of the soclogs, finds the nicknames and player ids of the people participating
in the game

1.3. collectfeatures.py 3

jSettlers Dataset API

Parameters df (pandas dataframe) – The rows of the game dataframe that hold SOCSitDown
messages at turn 0

Returns nicks – players’ nicknames and numbers, key:playerid(0,1,2,3) value:nickname

Return type dictionary

collectfeatures.get_state(df, prev_state)
Creates a game state for a specific turn

For the logs of a game turn calls methods to extract the infromation from each MessageType.

Parameters

• df (pandas dataframe) – The soclogs in dataframe form, as returned from
read_soclog() for a given turn

• prev_state (game state at the previous turn) –

Returns

• game_state (GameState feature vector) – The game state feature vector of the game turn

• labels (Labels) – The prediction labels for this game turn

collectfeatures.initial_setup_state(df)
Creates the game state for the initial setup phase of the game

Creates the game state for the setup phase of the game, i.e. turn 0. During this phase each player places on board
his first 2 settlements and 2 roads. Also returns all chat messages during this phase to save to chatsDF

Parameters df (pandas dataframe) – The soclogs in dataframe form, as returned from
read_soclog() for tun 0

Returns

• turn0_game_state (GameState feature vector) – The game state feature vector from the
initial set-up phase

• chats0 (a pandas df) – The chat messages during the setup phase

collectfeatures.moveRobber(df)
method to call for a SOCMoveRobber message

This method is called when a message of type SOCMoveRobber is found in the log. Updates the position of the
robber on the board.

Parameters df (pandas dataframe) – The row of the game dataframe that holds SOCPutPiece
message

Returns coord – Hexadecimal coordinate on the board

Return type hex int

collectfeatures.playerElement(df)
method to call for a SOCPlayerElement message

This method is called when a message of type SOCPlayerElement is found in the log. Used to update the
resources of a player

Parameters df (pandas dataframe) – The row of the game dataframe that holds SOCPlay-
erElement message

Returns

• playernum (player number)

4 Chapter 1. jSettlers Dataset API

jSettlers Dataset API

• actionType (Set, Gain or Loose a resource)

• elementType (Type of the resource)

• val (int)

collectfeatures.putPiece(df)
method to call for a SOCPutPiece message

This method is called when a message of type SOCPutPiece is found in the log. Updates the state of a player.

Parameters df (pandas dataframe) – The row of the game dataframe that holds SOCPutPiece
messages

Returns building – Holds the player id, the type of piece he placed on the board and the coordinates
where he placed it

Return type dictionary

collectfeatures.read_soclog(soclog)
Reads a soclog file as a panda dataframe

Reads a soclog file from the reduced soclogfiles. These are the files that contain only the useful rows of data
from the original log files. Produces a pandas dataframe with columns Turn, MessageType and Message.

Parameters soclog (filename) – The .soclog file from the reduced soclogs (see /reduced)

Returns A pandas dataframe with the Turn, MessageType and Message columns

Return type dataframe

1.4 DevCard.py

class DevCard.DevCard(cardType)
A class used to present a development card

In the Settlers of Catan there are 25 development cards: 14 knight cards 2 Road Building cards 2 Monopoly
cards 2 Discovery cards 5 Victory Point cards

cardType
codes for the types of Dev Cards as in jSettlers

Type int

bought
Dev card bought flag

Type boolean

played
Dev card played flag

Type boolean

1.4. DevCard.py 5

jSettlers Dataset API

1.5 GameState.py

class GameState.GameState(turn, hexLayout, numLayout, robberHex, player0state, player1state,
player2state, player3state)

A class used to present a game state

A game state feature vector describes the game state at a specific turn. A collection of (#game turns) features
describes a whole game

turn
the gameturn

Type int

robber
the hex coordinates of the robber’s position

Type int

player0
playerstate of the player sitting at position 0 (player id = 0)

Type Playerstate

player1
playerstate of the player sitting at position 1 (player id = 1)

Type Playerstate

player2
playerstate of the player sitting at position 2 (player id = 2)

Type Playerstate

player3
playerstate of the player sitting at position 3 (player id = 3)

Type Playerstate

place_robber(coord)
set robber position on board

print_GameState()
prints the values of a gamestate

write_to_DF()
returns the game state in list form to write to gamestateDF

1.6 Labels.py

class Labels.Labels(turn)
A class used to present the labels of a game turn

labels that are true mean that at the given turn the player did the action indicated by the label. if no action label
is turned into True a no action label is “activated”

turn
the gameturn

Type int

played_dev_card

6 Chapter 1. jSettlers Dataset API

jSettlers Dataset API

Type boolean

built_road

Type boolean

built_setm

Type boolean

upgraded_city

Type boolean

bought_dev_card

Type boolean

made_offer
player suggested a trading offer to another player

Type boolean

traded_with_player

Type boolean

traded_with_bank

Type boolean

traded_with_port

Type boolean

no_action

Type boolean

check_no_action()
Check if no action was made during a game turn

if no action label has been turned into true during a game turn turn the no action label true. Call this
function just before you are ready to finalize and save the labels

print_labels()
Print the labels’ values

update_buildings(pieceType)
Update the labels when the player builts a road, city or settlement

Check what was built by the player when he put a piece on the board and update the labels of the turn

Parameters pieceType (str) – road, setm or city

write_to_DF()
return labels to list form to write a row at labelsDF

1.6. Labels.py 7

jSettlers Dataset API

1.7 Piece.py

class Piece.Piece(type, location)
A class used to present a piece of the game

A class that represents the settlements, roads and cities that a player can build on the board. Pieces use the same
labels as the jSettlers code (PieceTypes).

type
0 for road, 1 for settlement, 2 for city, as in jSettlers

Type int

location
the hexadecimal number indicated the board coordinate

Type int

1.8 PlayerState.py

class PlayerState.PlayerState(number, nickname='dummy')
A class used to present a player state

A game state feature vector describes a players state at a specific point during the game. A seperate dataset in-
cluding the resources information (true nubmer of resources each player holds at each game turn) was collected,
but was not used in training because it does not distinguish between resource information known to all players
and resource information that is secret (stealing cards, discarding cards etc.)

number
the player’s number id

Type int

nickname
the player’s nickname

Type str

clay
the player’s resource units of clay

Type int

wood
the player’s resource units of wood

Type int

ore
the player’s resource units of ore

Type int

wheat
the player’s resource units of wheat

Type int

sheep
the player’s resource units of sheep

Type int

8 Chapter 1. jSettlers Dataset API

jSettlers Dataset API

settlements
the coordinates of the player’s settlements

Type list

cities
the coordinates of the player’s cities

Type list

roads
the coordinates of the player’s roads

Type list

dev_cards
the development cards the player has bought and/or played

Type list

already_exists(pieceType, coord)
check if a pieceType has already been place on these coords

Parameters

• piceType (int) – 0 for road, 1 for settlement and 2 for city

• coord (int) – the hex coordinate on the board

Returns True if successful, False otherwise.

Return type bool

bought_devCard(cardType)
Updates development card list when player has bought a new card

Called from card_action method when there is a SOCDevCard message in the log of ActionType = 0

Parameters cardType (int) – DevCard types as in jSettlers (see DevCard)

built_road(location)
updates list of players roads

Parameters location (int) – the hex coordinate location on board

built_settlement(location)
updates list of players settlements

Parameters location (int) – the hex coordinate location on board

card_action(actionType, cardType)
Called when there is a SOCDevCard message in the log

Parameters

• actionType ({'BOUGHT','PLAYED'}) – player bought of played a devcard, other
actions ignored

• cardType (int) – DevCard types as in jSettlers (see DevCard)

Returns bought, played, ignore (other action type of unknown card type, i.e. 9)

Return type Str

change_in_resources(actionType, elementType, value)
called when there has been a change in the player’s resources

1.8. PlayerState.py 9

jSettlers Dataset API

get_piece_at_location(pieceType, loc)
Return the piece of piecetype at the given location

Similar to already_exists, but returns the item rather than true/false

Parameters

• pieceType (int) – 0 for road, 1 for settlement, 2 for city

• location (int) – hex coordinate location on board

Returns the piece built in that location

Return type Piece

new_build(type, coord)
player built something, disambiguation

if road, setm or city are successfully built returns a str with the type that was built (to change the labels
value accordingly)

Parameters

• type (int) – 0 for road, 1 for settlement, 2 for city

• coord (int) – the coordinate on the board

Returns road, setm of city

Return type Str

played_cards(cardType)
Number of cards the player has played

Returns a number that show how many cards of cardType the player has played

Return type int

played_devCard(cardType)
Updates development card list when player has played a dev card

Called form card_action when there is a SOCDevCard message in the log of ActionType = 1 Notice that
victory point cards are played immediately when bought

Parameters cardType (int) – DevCard types as in jSettlers (see DevCard)

print_playerState()
print the attributes of a playerState

to_list()
convert a playerstate to a list of 56 features

Returns The playerstate list

Return type list

upgraded_city(location)
updates list of players cities and settlements

From the player’s settlements list deletes the settlement built in that location and appends the city in the
list of cities

Parameters location (int) – the hex coordinate location on board

10 Chapter 1. jSettlers Dataset API

PYTHON MODULE INDEX

c
collectfeatures, 2

d
DevCard, 5

g
GameState, 6

l
Labels, 6

p
Piece, 8
PlayerState, 8

r
reduced_logs, 1

t
turn, 1

11

jSettlers Dataset API

12 Python Module Index

INDEX

A
add_turns() (in module turn), 1
already_exists() (PlayerState.PlayerState

method), 9

B
bought (DevCard.DevCard attribute), 5
bought_dev_card (Labels.Labels attribute), 7
bought_devCard() (PlayerState.PlayerState

method), 9
built_road (Labels.Labels attribute), 7
built_road() (PlayerState.PlayerState method), 9
built_setm (Labels.Labels attribute), 7
built_settlement() (PlayerState.PlayerState

method), 9

C
card_action() (PlayerState.PlayerState method), 9
cardType (DevCard.DevCard attribute), 5
change_in_resources() (PlayerState.PlayerState

method), 9
check_no_action() (Labels.Labels method), 7
cities (PlayerState.PlayerState attribute), 9
clay (PlayerState.PlayerState attribute), 8
collectfeatures (module), 2

D
dev_cards (PlayerState.PlayerState attribute), 9
DevCard (class in DevCard), 5
DevCard (module), 5
devCard() (in module collectfeatures), 2

G
GameState (class in GameState), 6
GameState (module), 6
get_board() (in module collectfeatures), 2
get_buildings0() (in module collectfeatures), 3
get_chat() (in module collectfeatures), 3
get_chats0() (in module collectfeatures), 3
get_int_value() (in module collectfeatures), 3
get_int_values() (in module collectfeatures), 3

get_piece_at_location() (Player-
State.PlayerState method), 9

get_players() (in module collectfeatures), 3
get_state() (in module collectfeatures), 4

I
initial_setup_state() (in module collectfea-

tures), 4

L
Labels (class in Labels), 6
Labels (module), 6
location (Piece.Piece attribute), 8

M
made_offer (Labels.Labels attribute), 7
moveRobber() (in module collectfeatures), 4

N
new_build() (PlayerState.PlayerState method), 10
nickname (PlayerState.PlayerState attribute), 8
no_action (Labels.Labels attribute), 7
number (PlayerState.PlayerState attribute), 8

O
ore (PlayerState.PlayerState attribute), 8

P
Piece (class in Piece), 8
Piece (module), 8
place_robber() (GameState.GameState method), 6
played (DevCard.DevCard attribute), 5
played_cards() (PlayerState.PlayerState method),

10
played_dev_card (Labels.Labels attribute), 6
played_devCard() (PlayerState.PlayerState

method), 10
player0 (GameState.GameState attribute), 6
player1 (GameState.GameState attribute), 6
player2 (GameState.GameState attribute), 6
player3 (GameState.GameState attribute), 6

13

jSettlers Dataset API

playerElement() (in module collectfeatures), 4
PlayerState (class in PlayerState), 8
PlayerState (module), 8
print_GameState() (GameState.GameState

method), 6
print_labels() (Labels.Labels method), 7
print_playerState() (PlayerState.PlayerState

method), 10
putPiece() (in module collectfeatures), 5

R
read_soclog() (in module collectfeatures), 5
read_soclog() (in module reduced_logs), 1
reduce_log() (in module reduced_logs), 1
reduced_logs (module), 1
roads (PlayerState.PlayerState attribute), 9
robber (GameState.GameState attribute), 6

S
settlements (PlayerState.PlayerState attribute), 9
sheep (PlayerState.PlayerState attribute), 8

T
to_list() (PlayerState.PlayerState method), 10
traded_with_bank (Labels.Labels attribute), 7
traded_with_player (Labels.Labels attribute), 7
traded_with_port (Labels.Labels attribute), 7
turn (GameState.GameState attribute), 6
turn (Labels.Labels attribute), 6
turn (module), 1
type (Piece.Piece attribute), 8

U
update_buildings() (Labels.Labels method), 7
upgraded_city (Labels.Labels attribute), 7
upgraded_city() (PlayerState.PlayerState method),

10

W
wheat (PlayerState.PlayerState attribute), 8
wood (PlayerState.PlayerState attribute), 8
write_to_csv() (in module reduced_logs), 2
write_to_DF() (GameState.GameState method), 6
write_to_DF() (Labels.Labels method), 7

14 Index

	Abstract
	Abstract in greek
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related Work
	Agent oriented approaches
	Human-oriented approaches

	Thesis Contribution
	Thesis Outline

	Settlers of Catan
	Rules of the game
	General objective
	Game board
	Resources
	Actions

	Game Phases
	Game Setup
	Turn Overview
	Game Over

	The jSettlers framework

	Theoretical Background
	Overview and Applications
	Feed Forward Neural Networks
	From the Perceptron to Neural Networks
	Training Neural Networks
	Loss Metrics
	Evaluating the Performance
	The Bias vs Variance Problem

	Input encoding for Neural Networks
	One-hot encoding of categorical features
	Dense encodings (Feature Embeddings)

	Recurent Neural Networks
	Long Short-Term Memory networks

	Data Set Creation
	Problem modeling
	Original soclog files
	Extended soclog files
	Reduced soclog files
	Final Dataset

	Neural Network architecture
	One Hot Vector Encoding
	Text Data Preprocessing
	Network Configuration
	Multi Label Learning
	Gamestates only Architecture
	Chat only Architecture
	Combined Architecture

	Results
	Performance
	Further discussion

	Conclusions
	Bibliography
	Appendices
	Game Board Generation in jSettlers
	Network Configurations
	Combined Architecture FF-LSTM
	Combined Architecture LSTM-LSTM
	Result plots from running on a different platform

	Code Documentation

