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Abstract 

During the last years, there is an increased interest in the development of models that 
intend to link cancer imaging features to the tumor genetic profile (Radiogenomics), 
in order to contribute in the diagnosis, evaluation, treatment planning and prognosis 
of lung cancer. Imaging features are extracted from the medical standard-of-care 
images and reflect the tumor phenotype. The tumor phenotype is formed by the 
rearrangement and the alterations of the genetic information. The gene mutations 
lead to cell proliferation and thus to cancer spread, which defines the cancer stage. 
There is an emerging need of valid diagnosis tools for lung cancer staging in order to 
define the proper treatment planning.  
This study aims at investigating correlations among the most significant imaging 
features and genes in lung cancer and their potential to detect the stage of the 
patients with Non-Small Cell Lung Cancer (NSCLC). The proposed analysis includes the 
identification of the differentially expressed genes between cancer and healthy 
population by the application of the Significance Analysis of Microarrays (SAM) 
algorithm and the 2-fold change technique. Subsequently, correlation of these genes 
with the Computed Tomography (CT) imaging-derived features was conducted 
through the Spearman rank correlation test, SAM for quantitative problems and False 
Discovery Rate (FDR) methods, revealing 78 significant genes correlated to imaging 
features. These genes were validated for their diagnostic character through 
classification and clustering techniques followed by the formation of clusters of co-
expressed imaging features (metafeatures). From these two procedures, 77 
homogeneous metafeatures and 73 significant genes were identified. These genes 
were analyzed with least absolute shrinkage and selection operation (LASSO) 
regression for their ability to predict the metafeatures accurately. Through the 
analysis, 51 metafeatures that are correlated and can be predicted with the genes, 
were identified. The last step was comprised of the examination of the predictive 
ability of the remaining significant genes and metafeatures in lung cancer staging 
through various classification tests using linear Support Vector Machines (SVM) 
algorithms. This study concluded that staging cancer could be predicted from a) genes, 
with an accuracy of 75.00% - 94.11%, b) metafeatures, with an accuracy of 70.83% - 
95.00% and c) the combination of metafeatures and genes, with an accuracy of 
85.24% - 100.00%. Additionally, artificial imaging features were produced from the 
linear combination of the genes that could replace the actual metafeatures and 
predict cancer staging with an accuracy of 76.47% - 83.60%. Finally, signaling and 
metabolism pathways as well as miRNA targets were revealed during the enrichment 
analysis of the derived gene signatures.  
 

 

 

 

 

 



Περίληψη 

Tα τελευταία χρόνια έχει παρατηρηθεί αυξημένο επιστημονικό ενδιαφέρον, για την 

ανάπτυξη μοντέλων, τα οποία στοχεύουν στην συσχέτιση απεικονιστικών χαρακτηριστικών 

του καρκίνου με το γενετικό του προφίλ (Ραδιο-γονιδιωματική), ώστε να συμβάλουν στην 

διάγνωση, αξιολόγηση, θεραπεία και πρόγνωση του καρκίνου του πνεύμονα. Τα 

απεικονιστικά χαρακτηριστικά εξάγονται από ιατρικές standard-of-care εικόνες και 

αντιπροσωπεύουν τον καρκινικό φαινότυπο. Ο καρκινικός φαινότυπος δημιουργείται από 

την αναδιάταξη και τις αλλοιώσεις τις γενετικής πληροφορίας. Η μετάλλαξη των γονιδίων 

οδηγεί στον κυτταρικό πολλαπλασιασμό και κατά συνέπεια, στην εξάπλωση του καρκίνου, 

η οποία χαρακτηρίζει το καρκινικό στάδιο. Έγκυρα διαγνωστικά εργαλεία για την 

αναγνώριση του καρκινικού σταδίου είναι αναγκαία, ώστε να επιλεγεί η κατάλληλη 

θεραπεία.  

Η παρούσα έρευνα έχει ως στόχο την εξερεύνηση συσχετίσεων μεταξύ των πιο σημαντικών 

απεικονιστικών χαρακτηριστικών και γονιδίων του καρκίνου του πνεύμονα και της 

δυνατότητάς τους να ανιχνεύσουν το καρκινικό στάδιο ασθενών με μη-μικροκυτταρικό 

καρκίνο του πνεύμονα  (ΜΜΚΠ). Η παρούσα ανάλυση περιλαμβάνει την αναγνώριση των 

διαφορετικά εκφραζόμενων γονιδίων μεταξύ πληθυσμών που έχουν προσβληθεί από 

καρκίνο και υγιών πληθυσμών, μέσω της εφαρμογής του αλγορίθμου Significance Analysis 

of Microarrays (SAM) και της τεχνικής 2-fold change. Εν συνεχεία, υλοποιήθηκαν 

συσχετίσεις των γονιδίων με παραγόμενα απεικονιστικά χαρακτηριστικά αξονικής 

τομογραφίας, μέσω των μεθόδων Spearman rank correlation test, SAM για ποσοτικά 

προβλήματα και False Discovery Rate (FDR), αποκαλύπτοντας 78 σημαντικά γονίδια 

συσχετιζόμενα με απεικονιστικά χαρακτηριστικά. Τα γονίδια αυτά, αξιολογήθηκαν ως προς 

την εγκυρότητά τους για τον διαγνωστικό τους χαρακτήρα μέσω τεχνικών ταξινόμησης και 

clustering. Ακολούθησε ο σχηματισμός clusters από συνεκφραζόμενα απεικονιστικά 

χαρακτηριστικά (metafeatures). Από αυτές τις δυο διαδικασίες , 77 ομογενή metafeatures 

και 73 σημαντικά γονίδια αναγνωρίστηκαν. Τα γονίδια αναλύθηκαν μέσω του αλγορίθμου 

Least Absolute Shrinkage and Selection Operation (LASSO) regression, για να διερευνηθεί η 

δυνατότητά τους να προβλέψουν με ακρίβεια τα metafeatures. Μέσω της ανάλυσης, 51 

metafeatures, τα οποία είναι συσχετιζόμενα και μπορούν να προβλεφθούν μέσω των 

γονιδίων, αναγνωρίστηκαν. Το τελευταίο στάδιο περιλάμβανε την εξέταση της 

προβλεπτικής ικανότητας των εναπομεινάντων σημαντικών γονιδίων και metafeatures, του 

καρκίνου του πνεύμονα, μέσω ποικίλων τεστ ταξινόμησης χρησιμοποιώντας Linear Support 

Vector Machines (SVM) αλγορίθμους. Η παρούσα έρευνα είχε ως βασικό συμπέρασμα ότι, 

το καρκινικό στάδιο μπορεί να προβλεφθεί μέσω a) γονιδίων, με ακρίβεια 75.00%-95.11%, 

b) metafeatures, με ακρίβεια 70.83%-95.00%, και c) συνδυασμού metafeatures και 

γονιδίων, με ακρίβεια 85.24%-100.00%. Επιπλέον, τεχνητά απεικονιστικά χαρακτηριστικά 

παράχθηκαν μέσω γραμμικού συνδυασμού γονιδίων, τα οποία δείχνουν ότι μπορούν να 

αντικαταστήσουν τα πραγματικά metafeatures και να προβλέψουν το καρκινικό στάδιο με 

ακρίβεια 76.47%-83.60%. Τέλος, ανακαλύφθηκαν σηματοδοτικά και μεταβολικά 

μονοπάτια καθώς και miRNA targets μέσω της ανάλυσης εμπλουτισμού των παραγόμενων 

γονιδιακών υπογραφών.     
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1. Introduction 
 

Lung cancer is a common and aggressive type of cancer in both men and women. The 

majority of the affected population is of age 65 or over, while a small proportion of 

people diagnosed with lung cancer are younger than 45. [1] There are two types of 

lung cancer:  small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The 

NSCLC is the most common form, accounting for more than 85% of lung cancer cases 

and constitutes the leading cause of cancer-related deaths. [2] The main cause of lung 

cancer is smoking; both active and passive smokers, i.e. people who are non-smokers 

but are being exposed at secondhand smoke, can ail. Family history for lung cancer, 

ionizing radiation and exposure to other carcinogens, such as arsenic, chromium and 

nickel, are some other risk factors for lung cancer, which can act independently or in 

combination with smoking. [3] Cigarette smoke consists of many cancer-causing 

substances (carcinogens), such as nickel, carbon monoxide etc, whose inhalation can 

damage the cells in the lung tissue. The repeated exposure of people in these 

substances leads to abnormal function of cells and oxidative stress, which increases 

the risk of developing lung cancer. However, this risk can be decreased after several 

years of quitting smoking. Therefore, people who smoke for a short period of time, 

have lower risk of developing lung cancer. [4] The symptoms of lung cancer are not 

noticeable in early stages. The basic signs occur when the cancer starts to spread 

(metastasizes) through the lung or to other parts of the human body. When metastasis 

has progressed, the disease is considered advanced. The treatment and the survival 

of people with lung cancer depends on the stage of the cancer when it is diagnosed. 

Early diagnosis, and therefore detection, of the cancer in its earlier stage, when the 

tumor is confined in a small area, increases the probabilities of curing and survival.   

Screening at-risk populations, which are suspected for lung cancer, is suggested by the 

doctors to detect the disease at an early stage, when the treatment has more 

probabilities to succeed. The most popular screening tests are Computed Tomography 

(CT) scan, Magnetic Resonance Imaging (MRI) scan, Positron Emission Tomography 

(PET) scan and PET/CT scans. CT scans, and specifically low dose CT scans, are widely 

used as recommended screening test for lung cancer. [5] These medical images 

illustrate the development and the progression of the cancer, providing valuable 

information for the clinical diagnosis and the treatment planning. Within the last few 

years, an evolving field, Radiomics, targets to the extraction of quantitative features 

from the medical images in order to support decisions for the cancer diagnosis and 

treatment. [6] This tool evaluates the tumor heterogeneity using medical images, 

reflecting the tumor phenotype. An emerging branch of Radiomics is Radiogenomics, 

which investigates the linkage between these imaging-derived features and the tumor 

genomic profiles.[7] A high-throughput amount of gene expression profiles can be 

derived from the widely used DNA microarray technology. The Radiogenomics analysis 

targets to provide noninvasive and comprehensive information about the tumor and 

its peripheral morphology, contributing significantly in the field of medicine. [8]       
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1.1. Goal of the study  
 

The goal of this study is the combined analysis of gene expressions data and imaging 
features in order to investigate their diagnostic potential in cancer staging. 
Specifically, this study aimed at:  

 Investigating genes that have diagnostic character in lung cancer and 
simultaneously predictive ability of radiomic features. 

 Generating reliable mappings for cancer associations between genes and 
imaging features. 

 Developing of potential non-invasive tumor imaging biomarkers. 

 Identificating genes and radiomic features that are important in diagnosis of 
lung cancer staging.   

 

1.2. Thesis outline 
 

This thesis is divided in 7 chapters. Chapter 1 is a brief introduction of the basic goals 

and concepts. Chapter 2 includes additional information about studies that have been 

conducted in the field of Radiomics and Radiogenomics. Chapter 3 presents the 

theoretical background that is necessary for a deeper understanding of the processes 

in which imaging features and gene expression microarray data are extracted. Chapter 

4 includes the technical background about the statistical tests and the machine 

learning algorithms that were used in our analysis. Chapter 5 describes the proposed 

methodology and the final results of this study. Chapter 6 summarizes this work and 

includes a discussion about the proposed analysis. Chapter 7 concludes the findings 

alongside with proposed future work. 
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2. Related work 
 

The extraction of imaging features from the tumor region and their connection with 

the characterization of tumor aggression constitute significant tools for the non-

invasive diagnosis, prognosis and evaluation of the disease. Andersen et al. [9] 

employed the technique of Computed Tomography Texture Analysis (CTTA) in order 

to differentiate between benign and malignant lymph nodes in the mediastinum. The 

CTTA technique for each lymph node was performed in two stages, including: a) 

filtering of images and b) quantification of texture. The first stage implemented by the 

application of a Laplacian of Gaussian bandpass and spatial filter to highlight fine, 

medium and coarse textures from the region-of-interest (ROI) of the image. This filter 

contribute to the extraction and the enhancement of imaging features of different 

texture degree. The different texture degrees of the image correspond to different 

values in diameter of the spatial filter. The second stage, which is the quantification 

of image texture, was performed by histogram analysis, in which the mean gray-level 

intensity for all filter sizes was calculated from the whole tumor of each lymph node. 

This mean image intensity was calculated for both group of benign and malignant 

tumors of filtered and unfiltered images. Furthermore, the mean short axis diameter 

and the mean long axis diameter was calculated for these two groups. The 

independent t-test between the malignant and benign groups was performed for each 

of the three previous features in order to investigate statistically significant difference 

between these two independent groups.  The results showed that only the mean 

image intensity of the unfiltered images presents statistically significant difference, P 

= 0.001, between the group of malignant and benign lymph nodes. Specifically, the 

mean image intensity of the lymph nodes in the malignant group was substantially 

higher than in the benign group. This feature was subsequently used in a binary logistic 

regression model to assess the method. The applied CTTA method showed high 

enough performance by classifying 82.6% of the cases correctly, proving that the 

texture analysis of CT scans has the ability to help and distinguish differences between 

malignant and benign lymph nodes from the mediastinum for patients that are 

suspected for lung cancer. However, with the rapid development of the field of 

machine learning many researchers focused on the use of deep learning networks to 

extract features from medical images and classify, predict and evaluate a disease. 

Zeju Li et al. [10] constructed a convolutional neural network (CNN) to predict the 

mutation of gene isocitrate dehydrogenase 1 (IDH1) and compare this deep learning 

method with the traditional method of extraction radiomic features from medical 

images. CNN was used to segment tumors from MRI images of patients with low grade 

glioma and with validated mutation status of IDH1 gene, which could be mutation or 

wild type. Their approach included the extraction of imaging features from the 

information of the last convolutional layers of CNN, where more and deeper 

information about the intensity, the shape and the texture of the tumor exist. The use 

of feature maps of CNN as imaging features was the main difference of the proposed 

approach from the standard radiomic approaches, in which imaging features are 
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calculated directly from the segmented tumors. The feature maps was encoded by a 

Fisher vector to normalize these features from image slices of different sizes. For each 

encoded feature map, the first and the second order statistics were calculated; 

therefore a one-dimensional high-throughput feature vector was produced for each 

patient and constituted the CNN features that characterize each tumor. Student t-test 

and F-scores were used to define the most important CNN features, which have 

statistically significant difference between the two mutation statuses of the IDH1 gene 

and thus, they are related to the type of the gene. A Support Vector Machine (SVM) 

with linear kernel was performed for the classification of mutation status of IDH1 gene 

using the selected significant CNN features and for the assessment of the model. The 

proposal method, which employ the CNN features, was evaluated by its ability to 

predict correctly the mutation status of IDH1 gene, which is a significant molecular 

biomarker. The deep learning-based radiomics method showed better performance 

compared to the traditional method of extracting radiomic features from the initial 

medical images.  

In addition, the work of Bibault et al. [11] confirms the evolving invasion of deep 

learning in radiomics. In this work, the calculation of radiomic features was combined 

with the creation of a deep neural network (DNN) to predict complete response (pCR) 

of patients with rectal adenocarcinoma after neo-adjuvant chemoradiation. The 

method implemented the extraction of some clinical, biological and pathological 

features from patients, of which only the value of T stage showed significant 

correlation with pCR after performing the Chi-squared test. Furthermore, a large 

number of radiomic features were extracted from the segmented tumor of the initial 

CT scans for each patient, which were obtained before the chemoradiation. The 

features were associated with the following categories: shape, intensity, gray-level co-

occurrence matrix 2D and 3D, neighbor intensity difference and Gray Level Run Length 

matrix. The intra-class correlation coefficient (ICC) was calculated to estimate the 

robustness of the features and the Wilcoxon test was performed to select features 

significantly correlated with pCR of rectal cancer. Only 28 features, from the 

categories of intensity and of gray-level co-occurrence matrix 2D and 3D, were 

selected for further analysis by satisfying the criterion of ICC to be greater of 0.8 and 

by applying the Wilcoxon test. Subsequently, the T stage and these 28 robust features 

were used as input to the DNN and as predictors to another machine learning network, 

the Support Vector Machines (SVM). Furthermore, the T stage was used separately as 

predictor to a linear regression model. The performance of these three different 

models was assessed and the researchers concluded that the DNN has the higher 

performance (80%) in precise prediction of the pCR of patients with rectal 

adenocarcinoma after neo-adjuvant chemoradiation.   

An advanced technique of deep learning networks is the 3D CNN that present 

improved performance in the study of medical data than the 2D CNN.  Trivizakis et al. 

[12]  created a 3D CNN to classify the liver tumor in primary or metastatic stage using 

MRI images. The data are used without pre-processing, such as segmentation or 

definition of ROI, for the network’s training. The significant advantage of this model is 
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that it is constructed from a huge number of trainable parameters and thus data pre-

processing is not required. Furthermore, the oncogenic feature maps, which are 

derived from the interactions of the neurons, lead to richer representation of inner 

and overall structure of the tumor’s environment and of the tumor itself.    

Within the last few years, an increased number of studies have been conducted in 

order to link the phenotype and genotype of the examined disease. Emphasis has been 

given to the investigation of the correlation between the derived imaging features 

from clinical images and the genomic data of the disease. These correlations could 

demonstrate the underlying biology of the imaging features and of genes in order to 

enhance the accuracy and validity of the clinical results. Zhou et al. [13] created a 

radiogenomics map to link the derived imaging features from CT scans with the gene 

expression profiles analyzed by RNA sequencing for patients with NSCLC. More 

precisely, 87 semantic image features were extracted from the medical images to 

describe the lung characteristics by a thoracic radiologist using the open-source e-PAD 

platform. However, only the 35 of the 87 imaging features were used for further 

statistical analysis due to the criterion of occurrence rate ≥ 10% in the initial study 

dataset. These 35 features captured lung characteristics, such as nodule location, 

margins, attenuation, ground-glass composition and presence of emphysema. The 

high-throughput gene expression profiles were grouped together to metagenes as 

clusters of co-expressed genes, which means that genes with relevant expression 

profiles were assigned to the same metagene. The grouping of genes yielded to the 

reduction of their dimensionality. The homogeneity score of each metagene was 

calculated for the study cohort and for five other validation cohorts to validate the co-

expression of genes within each metagene in different datasets. 10 metagenes with 

the higher homogeneity score were used for further analysis, while their molecular 

functions were annotated by using public accessible molecular databases, which link 

the genes with known biological pathways. Furthermore, the metagenes were 

associated with the survival by using the PRECOG tool, which contains publicly 

available gene expression profiles and their corresponding survival data for lung 

adenocarcinoma and lung squamous cell carcinoma. The correlation of the metagenes 

with survival was assessed by the univariate Cox proportional hazards regression. The 

final step was the creation of the radiogenomics map by performing t-statictic and 

Spearman correlation metric to evaluate significant correlations between the top 10 

metagenes and the 35 semantic image features. To enhance the validity of these 

correlations, the False Discovery Rate (FDR) was used to correct for multiple testing. 

The results showed that 32 significant correlations between CT imaging features and 

metagenes were produced.  For instance, the metagene that is related to late cell cycle 

was correlated with nodule attenuation and nodule margins and the metagene that is 

related to the activity of the Epidermal Growth Factor (EGF) pathway was associated 

with nodule margins and ground-glass opacity. Therefore, this study illustrates a 

method in which specific imaging features could be linked with specific metagenes 

that describe molecular properties and activate or deactivate specific molecular 

pathways. Thus, a comprehensive detection of genetic changes and a noninvasive 
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identification of molecular properties through imaging features could be achieved for 

patients that are diagnosed with NSCLC.  

Prior to the aforementioned study, similar investigations for the discovery of 

prognostic imaging biomarkers for the NSCLC, deploying medical images and 

simultaneously gene expression profiles from the patients, were implemented from 

Gevaert et al. [14] and Nair et al. [15]. The research of Gevaert et al. [14] investigated 

PET and CT images from patients with NSCLC, while the research of Nair et al. [15] was 

focused on the study of PET images from the same patients to extract imaging features 

that can be used as imaging biomarkers to the evaluation and the prognosis of the 

disease progression. Gevaert et al. used a) a study cohort with 25 patients with NSCLC, 

which had PET scans and genomics data, but no follow-up data, b) an external cohort 

with data from a previous analysis of 63 patients with lung adenocarcinoma, which 

provided genomics data that were linked with the survival of the patients, while Nair 

et al. [15] used additionally c) a validation cohort, which provided PET scans of 84 

patients with NSCLC and known clinical outcome of the patients. The method that 

conducted in the framework of radiogenomics comprised of the extraction of the 

imaging features from the DICOM images of the study cohort by using a suitable 

program which called RT_image. Regarding to the PET images, the imaging features 

were related to the measurement of some standard uptake value (SUV) of 18F-2-

fluoro-2-deoxyglucose (FDG). The Principal Component Analysis (PCA) technique was 

performed on the uptake features from PET scans and the first three principal 

components were used as three new FDG uptake features. The genes were grouped 

together to form the metagenes by performing an iterative k-means clustering 

algorithm. The quality of the metagenes was tested by calculating the homogeneity 

score of each metagene in the study and the external cohort. The correlation between 

the imaging features and the genes profiles was assessed by using the Spearman rank 

correlation test, the Significance Analysis of Microarrays (SAM) and the FDR for 

correction from multiple comparisons. Furthermore, two predictive models were 

implemented by using generalized linear regression with Lasso Regularization in order 

to investigate the way to predict the metagenes in terms of image features and the 

image features in terms of metagenes, which are called predicted image features.  The 

metagenes from the study cohort were mapped to the publicly available gene 

expressions data with survival of the external cohort. Thus, the imaging features, 

which correlate with the metagenes, were associated with survival by leveraging 

public gene expression data. Moreover, the Kaplan-Meier (KM) curves and the Cox-

proportional hazards (CPH) testing were used to assess the prognostic ability of the 

predicted uptake features and of single genes highly associated with FDG features. 

These tests were performed to define whether a predicted image feature provide 

independent information with the presence other clinical data, such as the age, 

gender, smoking status, size and stage of tumor. Additionally, a multivariate survival 

model based on the predicted image features was constructed by using generalized 

linear regression with lasso regularization.  
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In the work of Nair et al. [15] the FDG uptake image features were calculated from the 

PET images of the validation cohort, similar to the study cohort, in order to define the 

association between the actual imaging features of the study cohort and the survival. 

Their prognostic significance was evaluated with the same techniques that were used 

for the predicted imaging features. The study concluded that only two FDG uptake 

imaging features, and especially the SUVmax and the multivariate-SUV model, remain 

significantly associated with survival in the validation cohort. The final step was the 

gene enrichment analysis to correlate these two important imaging features that were 

expressed in terms of genes, with known molecular pathways of these genes. This 

analysis was performed by leveraging publicly available molecular databases, which 

link genes with known molecular pathways.  

Radiogenomics constitutes an important tool for precision diagnosis, prognosis and 

treatment planning in oncology. Many studies for different types of malignancies have 

been conducted in order to investigate correlations between imaging features with 

genes and thus with their molecular pathways. [2] Liao et al. [16] conducted a 

radiogenomic study in patients with glioblastoma multiforme (GBM), which is a brain 

tumor with high mortality. Radiomic features were extracted from the tumor region 

of MRI images by using a python software package called Pyradiomics. The patients 

were divided into two groups according to their survival rate; patients with survival 

rate shorter than 1 year were grouped together and similarly patients with survival 

rate longer than 1 year. Feature selection were performed on the extracted radiomic 

features in order to select the most representative features to construct the model 

and predict the survival rate of the patients. The Gradient Boosting Decision Tree 

(GBDT) with these selected features achieved accuracy of 81% for distinguishing 

patients with short and long survival, which was the highest accuracy among logistic 

regression model, SVM and K-Nearest Neighbor (KNN). The most relevant genes were 

simultaneously selected by investigating the genes with statistically significant 

difference between the two survival groups. The R package DESeq2, the fold change 

and the t-test were used for the genes selection. The Pearson correlation coefficient 

between the selected imaging features and the differentially expressed genes in the 

two groups was calculated in order to investigate associations between them. The 

results revealed that some radiomic features had the ability to predict the clinical 

outcome of patients with GBM and simultaneously were associated to significant 

differentially expressed genes. For example, the textural features showed great ability 

of predicting the clinical outcome and at the same time were significantly correlated 

with three relevant genes. Thus, the imaging and molecular data were correlated to 

provide a precise prognosis and detailed information of the disease.  
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3. Theoretical background 
 

3.1. Radiomics 
 

Radiomics is an advanced technique of extracting quantitative information from the 

tumor region of clinical images, in order to provide a comprehensive characterization 

of the image phenotypes of the tumor [17]. This innovative field has evolved 

significantly during the past few years and is widely used for tumor evaluation in 

clinical oncology.  It is a novel tool for discovering new imaging biomarkers, by 

extracting a significant amount of features from medical images, and identifying novel 

imaging signatures that help to improve diagnosis, prognosis and treatment planning 

strategies in medical applications. Moreover, radiomics can be applied to any type of 

standard-of-care clinical images such as Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI) and Positron Emission Tomography (PET). It is an emerging 

advanced texture analysis technique, which targets the identification of the linkage 

between tumor imaging biomarkers and the underlying genetic heterogeneity of the 

tumor or the available data on treatment outcomes, such as survival.[18]   

According to Lambin et al. [19] a typical radiomics study can be structured through the 

following five phases (Figure 1): 

a) Data selection, in which the following procedures are determined: i) 

imaging protocol, ii) the sub-regions or the region of the tumor that will be 

examined and iii) the expected goal of the study. 

b) Medical imaging, which includes the determination of the way of 

segmentation of the initial medical image (automated, semi-automated, 

manually) and the phantom studies to gauge the uncertainties (such as 

organ motion or different imaging protocols) and reduce the risk in cases 

where patients’ images are generated from different scanners. 

c) Feature extraction, in which the high-throughput quantitative image 

features are extracted, that describe the medical image and characterize 

the region-of-interest (ROI). 

d)  Exploratory analysis–Feature selection, which enables the investigation of 

the relationship between features, in order to reduce the dimensionality 

of the feature vector. This is achieved by clustering radiomic features that 

are highly correlated and distinguish the ROI. Feature selection can also be 

implemented using another dimensionality reduction technique called 

Principal Component Analysis (PCA). In this way, overfitting is more likely 

to be avoided, because features that are redundant and lack robustness 

are eliminated whereas only the features that have not similar information 

are used for further processing. Furthermore, clinical variables, e.g. age, 

stage of the tumor, smoking status etc. can be included during the 

exploratory analysis to examine if they have an important role in tumor 

aggression.   
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e) Modeling, in which the methods and the models are defined. These 

methods will use the radiomic features, in order to achieve the goal of the 

study for prediction or diagnosis or evaluation of a disease. The most usual 

method for this purpose is machine learning algorithms. However, it is 

essential to assess model performance in order to identify whether the 

model is predictive for the target patient population or just for a particular 

subset of samples. For assessing model performance, validation 

techniques are used, such as the receiver operating characteristic (ROC) 

curve and the area under the ROC curve (AUC): methods that quantify the 

sensitivity and the specificity of the model. 

 

 

 

Radiomics focuses on the processing of imaging data prior to the treatment. A specific 

field of radiomics is Delta-Radiomics [19] in which quantitative features are acquired 

from the medical images over the course of a treatment. The purpose of this 

technique is to determine whether radiomic features change during therapy by 

measuring the value of these features after the desired time of treatment. The result 

assist in understanding the way that the human organism responds to treatment and 

the way prognosis, diagnosis, prediction, monitoring and assessment of therapeutic 

response are improved.    

 

3.1.1. Tumor imaging biomarkers – Radiomic features 
 

Tumor imaging biomarkers are extracted from medical images. They are used to 

quantify the tumor burden describing the macroscopic and microscopic structures of 

Data 
selection

• Imaging protocol,

• Sub-regions or region of the tumor that will be examined 

• Expected goal of the study

Medical 
imaging

• Segmentation of the initial medical image

• Phantom studies

Feature 
Extraction

•High-throughput quantitative image features 

Exploratory 
Analysis

•Feature Selection

•Add clinical variables

Modeling

•Definition of methods and models

•Assessment of the model

•Validation techniques

Figure 1. Five Stages of a Radiomics Study (Lambin, 2017) 
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a tumor.[18] Macroscopic structures refer to the shape and the size of a tumor, which 

are extracted using specific criteria, e.g. WHO, RECIST, CHOI, mRECIST,[20] while 

microscopic structures refer to biological or pathological characteristics within a 

tumor, such as the hemodynamic parameters and the local image textural patterns 

(e.g. signal intensity, heterogeneity, histogram analysis, wavelet transformations).  

The imaging evaluation of the tumor response to treatment is based on measuring 

and comparing the values of these imaging biomarkers before and after the 

treatment. The tumor response is then classified into four categories: a) complete 

response (CR), b) partial response (PR), c) stable disease (SD) and d) progressive 

disease (PD).  

Radiomic features are an alternative definition of these tumor imaging biomarkers, 

which can be extracted from images to comprehensively characterize the tumor 

phenotypes and can be used in the radiomic analysis. They have the potential to 

uncover disease characteristics that fail to be estimated with the naked eye. 

 

3.1.1.1. Texture Analysis 
 

The texture analysis methods quantify the tumor heterogeneity and characterize the 

biological or pathological changes of micro-structures within the tumor in order to 

evaluate the tumor’s response [18]. The texture analysis of images comprises of the 

calculation of several imaging features, such as histogram statistics features, run-

length (RL features) texture features to encode the coarseness of the tumor [21], gray 

level co-occurrence matrix (GLCM) and shape features to describe the spatial shape 

of the tumor.   

There are two principal aspects of texture analysis, that can be used independently or 

in combination, to quantify the tumor heterogeneity [22]: 

 Image transformation for the extraction of imaging features that highlight the 

texture properties. This method uses filters which transfer the imaging 

features to larger scales in order to reduce the effect of photon noise and to 

enhance the evaluation and the quantification of the heterogeneity. There are 

two transformations that are widely used: a) Fourier transform, which 

describes the image in terms of frequencies that are defined by the shapes and 

the size of the image characteristics and b) Wavelet transform, which provide 

information for the spatial location of the imaging features in addition to their 

frequency characteristics. A specific category of wavelet transformations is the 

non-orthogonal wavelet filters which have the potential to highlight precisely 

the imaging features of a particular size. The Laplacian of band-pass Gaussian 

filter (LoG spatial filter) belongs to the category of the non-orthogonal wavelet 

filters. It is mainly used for the extraction and the enhancement of imaging 

features of fine, medium and coarse textures. 

 Image quantification for the characterization of the texture, equivalent to 

definition of the category of the tumor region (normal vs abnormal, less or 
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more aggressive disease). The techniques for the calculation of the parameters 

that quantify the image texture are divided in the following categories: 

 Structural approaches, which are used when there is no information 

about the discrete shape of the object’s boundary and the probability 

of the specific object to be in a particular location.    

 Model-based approaches, in which mathematical models, such as 

fractal and stochastic models, are used to interpret the image texture 

by comparing images that are generated by models. For example, 

fractal dimension can be used as an indicator of surface-texture and 

shows the similarity between shapes of different scales. 

 Statistical approaches, which are based on representations of the 

texture by using the properties that are being derived from the 

distribution and the relationship among the gray-level intensity values 

of image. First order, second order and higher order statistics were 

calculated by using the histogram due to their property to differ 

significantly in the description of the gray-level distribution of the 

image. Specifically, the following features can be calculated from the 

histogram: 

 First order statistics which are based on the probability 

distributions of the gray-level pixel values, such as the mean 

value and the entropy. 

 Second order statistics which are based on the jointly 

probability distributions of pair of pixels, such as variance, 

standard deviation of the histogram, correlation, gray level run 

length (GLRL) or gray level co-occurrence matrices (GLCM). The 

GLRL matrix quantify the size of consecutive pixels with the 

same gray-level intensity in a fixed direction and thus provide 

the size of homogeneous runs along specific axis for each gray 

level [23]. The GLCM matrix contains the jointly probability 

occurrence of pairs of gray values along fixed axes within the 

image. 

 Third order statistics, such as skewness for the histogram’s 

asymmetry. 

 Fourth order statistics, such as kurtosis for the measurement of 

the tail-heaviness of the distribution. 

The texture analysis technique is used for the evaluation of the tumor response in 

treatment, the detection and characterization of the lesions due to the differences 

that are noticed between the texture features of the tumor and the surrounding tissue 

as well as between different diseases. 
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3.2. Radiogenomics 
 

Radiogenomics is a field of science that aims to associate imaging features with their 

gene profiles in order to non-invasively predict tumor genomic alterations identifying 

specific imaging features.[7] These imaging-derived features (phenotypes) can be 

linked with genomic data, in order to understand their biological underpinnings, such 

as their molecular pathways. Furthermore, this linkage may improve the prediction 

accuracy of clinical outcomes.[17] What differentiates radiomics from radiogenomics 

is that radiomics refers to a general branch of study in which imaging features from 

patient scans are converted into quantitative data while radiogenomics is a specific 

application where imaging features are linked to genomic profiles. This field aims to 

bypass both the issue of invasiveness and the sampling bias which is used in biopsies 

by using non-invasive radiological images to analyze the full tumor burden.  

From the biological aspect, genes carry the necessary information for the functioning 

of cells and the synthesis of functional structures such as proteins. [24] The genotype 

of the cell determines the amount of protein that is present in that cell. The synthesis 

of these functional structures is implemented through the information transfer of 

messages that are formed from genes. These processes are critical due to the fact that 

they assist to the formation of the characteristics features or phenotypes of the cells, 

such as normal and cancer cells.[24] Hence, the phenotype of the cells and as a result 

the organism, is “determined” by the genes in combination with the environmental 

factors. Thus, radiogenomics targets to investigate this underlying biological meaning 

of association of phenotype and genotype in an organism’s cells. To conclude, the flow 

of the linkage from genes to organism phenotype is illustrated in the following Figure 

2:  

 

Figure 2. Flow of genes to organism phenotype  

Tumor genetic profile knowledge, which can be gained non-invasively with 
radiogenomics, is highly important to clinicians and assists the precision of medicine. 
Genomic alterations are a hallmark of cancer and the accumulation of genetic 
mutations results in unchecked cell proliferation. Gene profiles can be used as a 
prognostic biomarker to predict survival or as a predictive biomarker to predict 
treatment response, helping to plan clinical decisions and especially treatment 
selection [7]. Precision therapy takes advantage of tumor-specific biology to inhibit 
the action of tumor-associated proteins or enzymes, mutated receptors or other 
oncogenic molecular vulnerabilities. The detailed knowledge of genetic structure of 
the tumor, for instance driver mutations, can provide much-needed guidance on the 
prediction of the disease progression and the selection of an efficient therapy.   
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3.3.  DNA Microarray technology 
 

DNA 

Deoxyribonucleic acid (DNA) [25] is the hereditary material in humans and all 

mammalian-organisms. The same DNA exists in all the cells of the organism and 

controls their activity. Cells are fundamental structures of each living organism. Most 

DNA is located in the cell nucleus (nuclear DNA) and a small amount of DNA can also 

be found in the mitochondria (mitochondrial DNA or mtDNA). Mitochondria are 

structures within a cell that convert the energy from the food consumed into a useful 

form; thus they are considered the “powerhouse” of the cell.  

DNA is a molecule composed of two polynucleotide chains that are held together 

primarily by hydrogen bounds and coil around each other to form a double helix 

carrying genetic instructions for the development, functioning, growth and 

reproduction of all organisms. This molecule consists of four fundamental molecular 

units called nucleotides which they are arranged in two long strands that form the 

double helix. Each nucleotide contains a phosphate group, a (deoxyribose) sugar and 

a nitrogen base. The four types of nucleotides are distinguished by their distinct 

nitrogen base: adenine (A), cytosine (C), guanine (G) and thymine (T).  Each of the four 

nucleotide DNA bases is linked in pairs to form units called base pairs. Hence, base A 

links to T, reversely base T links to base A and similarly base C links to G and G to C. 

[24], [25], [26]  

The specific pairing of DNA bases (A-T and C-G) is called base-sequence 

complementarity. A DNA sequence is a specific type of ordering base pairs in DNA 

strands. [24], [26] 

 

Figure 3. DNA double helix and the complementarity of the DNA bases 
(https://ghr.nlm.nih.gov/primer/basics/dna) 

https://ghr.nlm.nih.gov/primer/basics/dna
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Genes 

A gene is the basic physical and functional unit of heredity and they consist of DNA. 

Some of them act as instructions to form other molecules called proteins (coding 

DNA). However, most of the genes do not code for proteins (non-coding DNA), but 

they are fundamental for cells function, particularly the control of gene activity.  In the 

human organism, genes vary in size from a few hundred DNA bases to more than 2 

million bases. The “Human Genome Project” estimated that humans have 

approximately 20,500 genes. Every person has two copies of each gene, one inherited 

from each parent. Most genes are the same in all people, but a small number of genes 

(less than 1 percent of the total) are slightly different among people which results from 

small differences in their sequence of DNA bases. These small differences contribute 

to each person’s unique physical features. Scientists keep track of genes by giving 

them unique names or symbols. Thus, genome of one living organism is considered 

the whole DNA sequence of the organism, including all of its genes. Therefore, a 

genome contains all the essential information which are needed to build and maintain 

an organism. In humans, a copy of the entire genome—more than 3 billion DNA base 

pairs—is contained in all cells that have a nucleus. [24], [25] 

 

Figure 4. Gene representation (https://ghr.nlm.nih.gov/primer/basics/gene) 

 

Gene expression profile 

Genes can be responsible for the production of proteins’ molecules. The flow of 

information from genes and consequently from DNA to proteins is achieved via two 

major processes: transcription and translation. [24], [26], [25] 

1.  During the process of transcription, the gene’s DNA sequence is transcribed 

into mRNA (messenger RNA). The name of messenger RNA comes from its 

property to convey the information (or message) from the DNA out of nucleus 

into the cytoplasm. Both RNA and DNA are nucleic acids with the differences 

https://ghr.nlm.nih.gov/primer/basics/gene
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that RNA is a single stranded rather than double helix found in DNA, the sugar 

in its nucleotide is ribose rather than deoxyribose and has the base Uracil (U) 

instead of the base thymine (T) that exists in DNA. That means that in RNA base 

Uracil is complementary to Adenine forming a hydrogen bond between these 

two bases. The other two bases, Cytosine and Guanine, remain 

complementary to each other. Hence, the synthesis of RNA chain is 

implemented by adding nucleotides with base A, C, G and U where a T,G,C and 

A base is found in DNA template strand with respect to the bases’ 

complementarity.  

2. The other process, the translation, takes place in the cytoplasm of the cell. 

During this procedure mRNA translates into amino acid sequence of proteins, 

which conduct different cell functions.  

The activity of proteins provides the genetic information that is contained in the DNA. 

Thus, the transcription and translation, in which a gene’s DNA sequence is initially 

transcribed into mRNA and then into a protein, are called gene expression. To be more 

specific, the level of a gene expression shows the approximate number of produced 

copies of RNA from that gene in one cell and is related to the amount of derived 

proteins. [26] 

 

Figure 5. Graphical representation of the processes and the flow information for protein's formation 
(https://ghr.nlm.nih.gov/primer/howgeneswork/makingprotein) 

 

 

 

https://ghr.nlm.nih.gov/primer/howgeneswork/makingprotein
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DNA Microarray technology 

DNA Microarray technology is widely used to explore and measure the gene 

expression profiles with which scientists have the ability to identify gene functions and 

contribute to cancer diagnosis. The advantage of this technology is that it has the 

potential to simultaneously measure the relative expression level of thousands of 

genes within a cell or a tissue within a short period of time. This technology is based 

on the property of complementarity of the four nucleotide DNA or RNA bases.  The 

two major types of microarray experiments depending on the DNA probes that are 

used in them, are complementary DNA (cDNA) microarray and oligonucleotide arrays 

(abbreviated oligo chips). [26] 

A DNA microarray (Figure 6) measures the amount of mRNA expression levels of a 

gene, which is the gene expression at the transcription level [24]. For this reason, the 

cellular mRNA of the cell is extracted in order to be measured. Two crucial procedures 

occur during this measurement process: a) reverse transcription and b) hybridization. 

During the process of reverse transcription, the mRNA of a gene, which is 

experimentally isolated from a cell, is reverse-transcribed into a complementary DNA 

copy called cDNA, which is double-stranded. In specific cases, this double-stranded 

cDNA is feasible to be reverse-transcribed into a complementary RNA copy called 

cRNA. The second procedure, hybridization, is the process in which the molecules of 

nucleic acid recognize and link in pairs to molecules with a complementary sequence. 

In this case, the two single strands of DNA or RNA are being base paired. The two 

strands of DNA are separated by heating in a characteristic melting temperature, 

above 65°C. In following step the reduction of the temperature results in the re-

binding of the two single stranded, which originate from a DNA or/and an RNA 

molecule, on the principle of base pairing (complementarity). It is important to note 

that when hybridization between a DNA and an RNA molecule occurs, a single 

stranded DNA which has been produced from a melted DNA molecule, binds strongly 

to its complementary RNA in a way that prevents the two single DNA strands of re-

coupling with each other. [25]   
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Figure 6. The cancer and the normal tissues are RNA isolated, reverse transcribed and labelled with fluorescent 
dyes. The probes of the DNA microarray technology is hybridized and the spots are dyed in the appropriate color. 

(Image from: https://microbenotes.com/dna-microarray/) 

A microarray is a small chip made of chemically coated glass, nylon membrane or 

silicon.[27] In most cases, it is a microscopic glass slide on which molecules of 

complementary DNA (cDNA) are placed to certain locations called spots. There is a 

fundamental difference between cDNA microarrays and oligo chips. The cDNA 

microarrays consist of long sequences of cDNA, while oligo chips consist of short 

sequences of single-stranded cDNA called synthetic oligonucleotides (abbreviated to 

oligos).[26] The tethered cDNA sequences or oligos are called probes and they 

represent known genes or segments of known DNA sequences. The reverse-

transcribed form of the extracted cellular mRNA is referred to as the target.[25] 

Therefore, the construction of the chip is the first process of the basic procedure that 

DNA microarrays follow. Following the first process, the mRNA of the cell is extracted 

and reverse transcribed into cDNA, for the case of cDNA microarrays, and into cRNA, 

for the case of oligo chips. These molecules constitute the target in each type of the 

corresponding microarray. The target is labeled with fluorescent dye and then 

hybridized to the probes on the surface of the chip. With the hybridization, each single 

strand of target cDNA or cRNA is bound with probes (double-stranded or single 

stranded cDNA respectively) by finding and linking complementary nucleotide base 

pairs with hydrogen bonds. Once hybridization has completed, the glass side (i.e. 

microarray) is washed to be cleaned from non-hybridized molecules and scanned with 

a laser scanner to obtain images. The signal intensity of the labeled and hybridized 

targets is determined from the scanning of these images. The more intense 

fluorescent dyes correspond to higher amount of cDNA or cRNA that is hybridized to 

each probe. Thus, DNA microarrays succeed to measure the gene expression profile 

levels by measuring the relative mRNA abundance of the gene. This abundance is 

estimated by the measurement of the intensity of the fluorescent dyes that is emitted 

from the hybridization of the probes with the targets.[25],[27]    

https://microbenotes.com/dna-microarray/
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Additional differences exist during the process of target labelling with fluorescent dyes 

and the structure of spots that will be used for the hybridization of genes, depending 

on the types of DNA microarrays used. In cDNA microarrays the mRNA molecules are 

extracted from two samples, the one is the control sample (i.e. cells of normal tissue) 

and the other is the test sample (i.e. cells of tested tissue). These two mRNA samples 

are reverse-transcribed into cDNA and are labelled with 2 different fluorescent dyes. 

The fluorescent dye, Cye-3 (green), labels the cDNA molecules that correspond to the 

cells of the control sample and the fluorescent dye, Cye-5 (red), labels the cDNA that 

correspond to the cells of the test sample. This target mixture of the two dyes is 

hybridized to the probes on the glass slides of the microarray. Then, the dye of each 

spot determines which of the two populations (i.e. control or test sample) has greater 

amount of cDNA molecules. To be more specific, a spot is dyed in red color, if the 

amount of cDNA is greater in the test sample, while it is dyed in green color, if the 

cDNA is in higher amount in the control sample. Hence, the relative mRNA abundance 

(i.e. gene expression) of the gene in the cell can be measured by fluorescence intensity 

of each of the two dyes in each spot. The log ratio between the two intensities of these 

two dyes represents the gene expression profile. Each spot corresponds to a gene and 

the color of the spot indicates whether the gene is expressed (colored) or not and the 

relative level of gene expression in the two samples.[26], [25], [24], [28].   

For the case of oligo chips, the mRNA molecules are extracted from the test sample 

and then reverse-transcribed into cDNA, which is double-stranded and then converted 

into cRNA. After reverse transcription occurs, this target is fluorescently labeled with 

a single dye. The main difference of this technology is the usage of probe redundancy. 

Probe redundancy is used to identify a gene and measure the relative gene expression 

of a set of well-chosen small segments of cDNA unique to the DNA of the gene and 

not only a spot (like in the case of cDNA microarrays). Specifically, a gene in oligo chips 

is represented by a set of probe pairs, which a probe pair consists of a perfect match 

(PM) probe and a mismatch (MM) probe. The MM probe is identical to the 

corresponding PM probe except from the central base of the nucleotide, which is 

replaced with its complementary base. Therefore, the PM probe is complementary to 

the target gene sequence and thus, detect uniquely the gene by the hybridization. The 

MM probe works as “control”.  Hence, high intensity for the PM probe and low 

intensity for the MM probe are expected for a specific gene in the cell sample, under 

ideal circumstances. Thus, the use of the probe pairs and the fact that a set of probe 

pairs are used simultaneously and are scattered across the microarray to identify the 

same gene, contribute to decrease the chance of cross-hybridization and reduce the 

noise present in the signal.[24],[25] Cross-hybridization is a situation where fragments 

of the reverse – transcribed mRNA of target hybridize to similar complementary 

probes but not to the real complementary probe and thus, false detections can be 

caused.[25]    

 In conclusion, both cDNA microarrays and oligo chips measure the relative expression 

levels of each gene; however, the calculation of the ratio of signal intensity between 

the test sample and the control sample follows a different process in each case. Thus, 
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these two types of microarray technology are based on similar technical concepts 

behind the measurement’s procedure and hence the produced gene values from both 

methods share the same biological semantics. [27]  

 

4. Technical Background  
 

4.1. Significance Analysis of Microarrays (SAM) 
 

Significance Analysis of Microarrays (SAM) is a statistical method for genomic 

expression data mining. Tusher et al. [29] proposed this statistical algorithm, which 

targets to discover the most significant genes in a set of microarray experiments.  

The gene expression measurements from microarray experiments are imported as 

input to SAM as well as the response variable from each experiment. The response 

variable determines the class in which each sample belongs for each gene. It is defined 

according to the response type of the examined problem. Some examples of response 

types are: 

A) Quantitative, in which the response variable is real-valued, such as blood 

pressure, values of an imaging feature etc. 

B) Two-class unpaired, in which the response variable is expressed by an integer 

(1 or 2) and refers to the class of each measurement of different experimental 

units. For example, the two classes could be cancer and normal samples from 

different patients. 

C) Multiclass, in which similarly the response variable is expressed by an integer 

(1,2,…) and refers to the class of each measurement. The only difference with 

the two-class problem is that the number of classes is greater than 2.    

D) Paired, in which there are groups of two sets of measurements with the same 

experimental unit in each group. The response variable indicates the group of 

each measurement (i.e. 1,2,…), while the sign of the response variable (i.e. 

positive or negative) shows the set of each group that the measurement 

belongs. For instance, a two class-paired problem is a group of samples from 

the same patients that are measured before and after the treatment. 

E) One-class, in which the response variable is equal to 1 for all the 

measurements due to the fact that they belong to the same class. The goal of 

this problem is, usually, to test whether the mean of each gene expression 

differs from zero.    

SAM computes a score statistic di for each gene i in order to identify genes with 

expression that vary with statistical significance across the response variable. This 

statistic di is called “relative difference” in gene expression and is similar to the t-

statistic. It expresses the change in gene expression across the response variable 
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relative to the standard deviation of the gene. Specifically, the statistic di is calculated 

according to the following equation:  

𝑑𝑖 =  
𝑟𝑖

𝑠𝑖 + 𝑠0
 

where index i = 1,2,….p indicates the number of gene. 

For the following definitions the index j is supposed to be the indicator of the number 

of sample/measurement, yj is the value of the response variable of each sample j and 

xij is the value of the gene i for the sample j. 

The calculation of the numerator ri and the si is based on the response type of the 

problem. The equations for these two terms of statistic di are shown for the 

quantitative and the two-class problem. 

Two class problem 

The numerator ri is calculated as the difference in the mean values of the gene 

expressions between the two classes (i.e. normal measurements belong to the class 1 

and cancer measurements belong to the class 2). The equation of ri is: 

𝑟𝑖 =  𝑥1̅̅̅(𝑖) − 𝑥2̅̅ ̅(𝑖)  

where 𝑥1̅̅̅(𝑖) is the average expression value of class 1 and 𝑥2̅̅ ̅(𝑖) is the average 

expression value of class 2 for each gene i. 

The si is the pooled standard deviation [30] of the gene i, that is the mean standard 

deviation of repeated measurements under the assumption that the standard 

deviation of each class C1 and C2 remains the same. The equation of si is: 

𝑠𝑖 =  √(
1

𝑛1
+

1

𝑛2
)

∑ (𝑥𝑖 − 𝑥1̅̅̅(𝑖))2 + ∑ (𝑥𝑖 − 𝑥2̅̅ ̅(𝑖))2 𝑥∈𝐶2
 𝑥∈𝐶1

𝑛1 + 𝑛2 − 2
 

where 𝑛1 and 𝑛2 are the number of measurements in class C1 and C2 respectively. 

Quantitative problem 

The numerator ri is calculated as the linear regression coefficient of each gene i on the 

response variable y. For each gene the ri is calculated in order to find the solution to 

the problem 𝑦 =  𝑟𝑖𝑥𝑖. The equation of ri is: 

𝑟𝑖 =  
∑ 𝑦𝑗(𝑥𝑖𝑗 −  𝑥�̅�)𝑗

∑ (𝑦𝑗 − 𝑦�̅�)2
𝑗

 

where 𝑥�̅� is the mean value of gene i and 𝑦�̅� is the mean value of the response variable 

of sample j. 

The si is the standard error of ri and its equation is: 

𝑠𝑖 =  
𝜎�̂�

[∑ (𝑦𝑗 − 𝑦�̅�)2
𝑗 ]1/2
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where 𝜎�̂� is the square root of residual error and it is equal to: 

𝜎�̂� = [
∑ (𝑥𝑖𝑗 − �̂�𝑖𝑗)2

𝑗

𝑛 − 2
]1/2 

where n is the number of measurements and: 

�̂�𝑖𝑗 =  �̂�𝑖0 + 𝑟𝑖𝑦𝑗 

�̂�𝑖0 =  �̅�𝑗 − 𝑟𝑖�̅�𝑗 

 
The factor s0 is called exchangeability factor and is constant across all the genes. It is 
expressed as a percentile of the standard deviation values of all genes. The role of the 
factor s0 is to include a “penalty” term next to the standard deviation si in order to 
protect genes with expressions close to 0. These genes have small standard deviation 
and the factor s0 protect them from having large scores of statistic di. [31] Hence, the 
value of s0 restricts the effect of the fluctuations in genes’ variance, ensuring that the 
distribution of di from all genes is independent of the gene expression levels. [29]  
 
SAM initially computes the statistic di for each gene from the input values. The di value 
is the observed score and after it is calculated, SAM ranks all the observed scores di in 
ascending order. Subsequently, it performs repeated permutations on the data by 
randomly changing the class of each sample in order to assess the statistical 
significance of each gene related to the response. For each permutation, b, the 

statistic 𝑑𝑖
𝑏 for each gene is re-calculated and these statistic values are also ranked in 

ascending order 𝑑(1)
𝑏 ≤  𝑑(2)

𝑏  ≤ ⋯ ≤  𝑑(𝑝)
𝑏  . The following step is the calculation of the 

expected score in each place (1,2,….p) as the average value E[d(i)] of the statistic values 
across all the permutations. The equation of the expected score E[d(i)] is E[d(i)] =

 
1

𝐵
∑ 𝑑(𝑖)

𝑏
𝑏 .  

 
To identify significant genes in expression, SAM defines the delta (Δ) value, which is a 
threshold for significance. Specifically, SAM calculates the difference in value between 
the observed score di and the expected score E[d(i)] for each gene. Consequently, SAM 
identifies the first gene that satisfies the criterion di - E[d(i)]  > Δ. The value di of this 
first gene “k” that satisfies this criterion constitutes the upper cut-point: cutup = dk. All 
genes that have di values > cutup are considered as “positive significant”.  
Similarly, SAM calculates for each gene the difference E[d(i)] - di. Then, it recognizes 
the first gene that satisfies the reverse criterion E[d(i)] - di > Δ. The value di of the first 
gene “m” that satisfies this criterion defines the lower cut-point cutlow = dm. All genes 
that have di values < cutlow are considered as “negative significant”. 
 
Hence, genes with score higher than the threshold are deemed significant. The 
threshold for significance is determined by the tuning parameter Δ, which is defined 
by the user and is depended on the number of false positives that are acceptable. 
False positives or falsely called are the genes that are identified as significant, while in 
fact they are not. To estimate the proportion of these genes, which are identified as 
significant by chance, the FDR is calculated. Firstly, SAM calculates the total number 
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or the median number of falsely called genes. For each permutation the number of 
falsely significant genes is equal to the number of genes that exceed the horizontal 
cutoffs, meaning that genes have di value > cutup or di value < cutlow. The total number 
of falsely called genes is calculated as the average number of falsely called genes from 
all permutations. Similarly, the median number of falsely called genes is calculated as 
the median number of falsely called genes among all permutations. The FDR is 
computed as the ratio between the number of the falsely called genes and the number 
of the genes called significant. 
Therefore, as the Δ value decreases, the cutoffs decrease and thus, the number of 
genes called significant increases with a cost of an increasing FDR. 
 
Additionally, SAM computes the q-value for each gene, which is the lower FDR that 
can be achieved over all rejection regions from all Δ, at which the gene is called 
significant. [30]  The q-value measures the significance of each gene: as |di| increases, 
the corresponding q-value decreases. Hence, the lower the q-value of a gene is, the 
higher the significance of this gene.  
 

4.1.1. Fold Change 
 

Fold change measures the change of a quantity between two measurements A and B. 

It is defined as the ratio between these two measurements, i.e. 𝐹𝐶 =  
𝐴

𝐵
  is the fold 

change of A with respect to B.  

Fold change is a common method in analysis of gene expression data, where genes 

with change in their expression level between different experimental measurements 

are deemed significant. Moreover, a particular cutoff in fold change is defined in order 

to specify the acceptable and necessary amount of change in values to characterize a 

gene as significant. For this reason, the term ‘X-fold change’ is used to describe an 

increase of multiple X in expression levels of a quantity in a population compared to 

its expression levels in another population. For example, 2-fold change increase 

between A and B means that A is twice as big as B or alternatively A is “2 times” larger 

than B (in other words A is 200% of B). Due to the widely use of fold change in gene 

expression analysis, SAM has the extra option of setting a non-zero fold-change 

parameter as a more stringent criterion in the exploratory procedure analysis of 

significant genes.  
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4.2. Correlation tests – Statistical Significance 
 

Correlation coefficient is a simple statistical measure of the strength of the 
relationship between two variables and the direction of this association. [32] The 
values of the correlation coefficient vary between -1 and +1. The extreme values of ± 
1 indicate a perfect association between the two variables, while the values that are 
closer to 0 indicate weaker relationship between them. Thus, higher absolute value of 
the correlation coefficient corresponds to stronger association. The direction of the 
relationship is defined by the sign (+ or -) of the correlation coefficient. A positive sign 
(+) shows positive correlation, which means that both variables move in the same 
direction. Positive correlation exists when one variable increases as the other one 
increases as well, or one variable decreases while the other one, similarly, decreases. 
Inversely, a negative sign (-) indicates negative correlation, meaning that the two 
variables move in the opposite direction. Negative correlation indicates that one 
variable increases when the other one decreases and vice versa. 
 
In statistics, there are several correlation tests that depend on different statistical 
hypothesis in order to measure the relationship between two variables. The most 
well-known correlation tests are:   
 

 Pearson correlation coefficient 
 
The Pearson correlation coefficient measures the strength and the direction of the 

linear relationship between two variables.  

This test assumes that both variables should be normally distributed and they should 

be interval or ratio variables. Furthermore, it assumes linearity, which means that a 

straight line relationship between the variables is expected to be formed. 

The formula of the Pearson r coefficient is: 

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝛸𝜎𝑌
=  

𝐸[(𝑋 − 𝜇𝛸)(𝛶 − 𝜇𝑌)]

𝜎𝛸𝜎𝑌
 

where X and Y are the two variables, 

cov(X,Y) is the covariance matrix of X and Y,  

𝜇𝛸 and 𝜇𝑌 are the mean values of X and Y respectively, 

𝜎𝛸 =  √𝐸[𝑋2] − (𝐸[𝑋])2  is the standard deviation of X, 

𝜎𝑌 =  √𝐸[𝑌2] − (𝐸[𝑌])2  is the standard deviation of Y 

 

 Spearman’s rank correlation test 

The Spearman’s rank correlation test is a non-parametric test that measures the 

strength of the relationship between two variables and specifically, the degree to 

which this relationship is monotonic. It determines whether there is an arbitrary 

monotonic function, which describes the relationship between two variables. 
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This test assumes that any assumptions about the distribution of the variables are not 

required. Moreover, the condition of having linear relationship between the two 

variables and using interval or ratio variables are not necessary.  

The two variables X and Y are converted into ranks 𝑟𝑔𝑋 and 𝑟𝑔𝑌 in order to compute 
the Spearman’s rank correlation coefficient. The Spearman’s rank correlation 
coefficient, which has the abbreviation of Greek letter ρ (rho), is equal to the Pearson 
correlation coefficient between the rank variables. The general formula of the 
Spearman’s rank correlation coefficient is: 

𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 𝜌 =  
𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌 )

𝜎𝑟𝑔𝑋 𝜎𝑟𝑔𝑌 
 

where 𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌 ) is the covariance matrix of the rank variables, 
 𝜎𝑟𝑔𝑋 is the standard deviation of the rank variable X, 

 𝜎𝑟𝑔𝑌 is the standard deviation of the rank variable Y 

If there are no tied ranks, meaning that all ranks are distinct integers, the ρ coefficient 
can be calculated using the following simpler formula: 

𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

where n is the number of observations and 
𝑑𝑖 = 𝑟𝑔𝑋(𝑖) −  𝑟𝑔𝑌(𝑖) is the difference between the ranks of each i 

observation 

 Kendall’s tau correlation test 

The Kendall’s tau correlation test is a non-parametric test that measures the 
relationship between two ordinal variables. 

The test assumes that there is no need of knowledge about the distribution of the 
variables, similarly to the Spearman’s rank correlation test. Furthermore, the variables 
must be at least at an ordinal scale.  

The Kendall’s tau correlation coefficient is used as an alternative correlation test to 
the Pearson correlation, when the assumptions of this test are not fulfilled. 
Additionally, it constitutes an alternative correlation test to the Spearman rank 
correlation test when there is a small sample size with many tied ranks.  

The Kendall’s tau correlation coefficient has high value when the ranks of the 
observations of two variables are similar, while it has low value when they are 
dissimilar.  

The formula of the Kendall’s tau correlation coefficient, which is abbreviated by the 
Greek letter τ (tau), is equal to: 

𝑟𝐾𝑒𝑛𝑑𝑎𝑙𝑙 = 𝜏 =  
𝑛𝑐 − 𝑛𝑑

1
2 𝑛(𝑛 − 1)

 

where 𝑛𝑐  is the number of concordant pairs, i.e. pairs ordered in the same way, 
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 𝑛𝑑 is the number of discordant pairs, i.e. pairs ordered differently,   
the denominator represents the binomial coefficient for the number of ways 
to select two items from n items. 

 

Statistical significance 

In order to assess the statistical significance of each correlation, the corresponding p-
value is calculated. The p-value is the probability that the obtaining results are 
“extreme” or “more extreme” compared to the observed results of a statistical 
hypothesis test, under the assumption that the null hypothesis is true. [33] Hence, the 
p-value evaluates how well the data reject the null-hypothesis, which is defined as the 
statement that there is no relationship between the variables.  

The significance level (α) is the probability that the null hypothesis is rejected, while 
the null hypothesis is actually true. Thus, it represents the proportion of obtaining 
false positives. For example, a significance level of 5% means that 5% of all tests may 
result in false positives.  
 
A small p-value indicates that there is not enough evidence to accept the null 
hypothesis. Specifically, a small p-value, less than the significance level α, indicates 
that there is statistically significant correlation between the two variables.  

The p-value is obtained by a sampling distribution, which is generated by re-sampling 
the values of the two variables. Specifically, the correlation coefficient (i.e. statistic) 
between the two variables is calculated for each random sampling of the variables’ 
values resulting in the sampling distribution of this statistic which expresses the 
distribution of that statistic.   
The original value of the statistic, which is computed from the initial values of the two 
variables, is checked against this distribution.  To assess the statistical significance of 
this statistic, there are two alternative ways: a) the one-tailed test and b) the two-
tailed test. The one-tailed test is a statistical test in which the critical area is one-sided. 
To be more specific, in the one-tailed test the statistic needs to satisfy one direction, 
i.e. it can either be greater than or less than a specific value, but not both (Figure 7). 
The critical area is the region of the distribution in which, if the estimated statistic falls 
into the area, the alternative hypothesis will be accepted. In contrast, the two-tailed 
test is a statistical test in which the critical area is two-sided so that the statistic can 
be greater than or less than a specific value. To be more specific, half of the α is used 
to test the statistical significance in one direction and half of the alpha to test the 
statistical significance in the other direction (Figure 7). Thus, the statistic is considered 
significant when the original value of this statistic is checked against the sampling 
distribution and falls into the α% critical area. The p-value is calculated using the 
sampling distribution of the statistic under the null hypothesis and the type of test 
(one-sided or two-sided). For the lower-sided test, the p-value is the cumulative 
distribution function of this statistic. [34] 
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Figure 7. Graphical representation of the critical area of the one-tailed test (left) and two-tailed test (right) for a 
significance level of 5% (https://towardsdatascience.com/hypothesis-testing-in-machine-learning-using-python-

a0dc89e169ce) 

 

 

4.2.1. Multiple Comparisons 
 

Multiple statistical comparisons may emerge when a set of statistical tests are 

performed simultaneously. In this case, there is an increased risk of type I errors to 

occur. [35]  Type I error is a result that indicates that the null hypothesis is rejected 

incorrectly or in other words that a condition exists when it actually does not; thus, it 

is a false positive. This could mean that the likelihood of obtaining significant results 

by chance is increased. To solve this problem, there are two widely used procedures 

for correction due to such multiple comparisons: a) Bonferroni correction  and b) 

adjusting the false discovery rate using Benjamini – Hochberg procedure [36]. 

Bonferroni correction 

 

Bonferroni correction is a conservative test which controls the family-wise error rate 

(FWER). The FWER is the probability of making at least one type I error in an entire set 

of tests. Thus, Bonferroni correction controls the FWER, guarding against the chance 

of making one or more type I errors (i.e. false positives). Supposing that the familywise 

error rate is defined to be equal to 0.05, Bonferroni correction secures that if the null 

hypothesis is true, the probability that the family of tests includes one or more false 

positives is equal or less than 0.05.   

Bonferroni works finding the critical value for an individual test by dividing the 

familywise error rate by the total number of the family of tests. The p-value of the 

result of a test must be less than the critical value, in order to be statistically 

significant.   

https://towardsdatascience.com/hypothesis-testing-in-machine-learning-using-python-a0dc89e169ce
https://towardsdatascience.com/hypothesis-testing-in-machine-learning-using-python-a0dc89e169ce
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Bonferroni is a strict criterion and is used when a single false positive in a family of 

tests would be a problem. It is appropriate when a small number of tests are 

performed and only few results are expected to be significant. In a large number of 

tests Bonferroni correction may be too strict to lead in incorrectly acceptance of the 

null hypothesis (i.e. false negatives).    

 

Benjamini – Hochberg procedure 

 

Benjamini – Hochberg procedure controls the false discovery rate. False Discovery 

Rate (FDR) is the expected proportion of “discoveries” (i.e. significant results) that are 

actually false positives. Thus, this procedure controls the low proportion of false 

positives.  

Benjamini – Hochberg works by sorting the p-values in ascending order and ranking 

them. Then, the critical value of each individual test is calculated with the equation 
𝑖

𝑚
𝑄, where i is the rank, m is the total number of tests and Q is the desired false 

discovery rate. The largest p-value that satisfies P < 
𝑖

𝑚
𝑄 is significant as well as all the 

p-values that are smaller than it, even if they are not lower than their critical values.  

This statistical approach is less strict and sensitive than Bonferroni. Thus, it is preferred 

when there is a large number of tests.   

 

4.3. Classification Methods  
 

4.3.1. Support Vector Machine Classifier 
 

Support Vector Machine (SVM) [37] is a machine learning algorithm and supervised 

learning model that analyzes data for classification and regression analysis. SVM 

targets to find an optimal hyperplane in an N-dimensional space, where N is the 

number of features, which distinctly classifies the data points. SVM is a binary 

classification, meaning that it aims to find the hyperplane that separates the data 

points of two classes.  

The SVM tries to solve the classification problem based on two concepts: a) large-

margin separation and b) kernel functions. Thus, SVM targets to find the hyperplane 

that maximizes the margin between the two classes in the space (Figure 8). The margin 

is the distance between the hyperplane and the support vectors. The support vectors 

are the points of each class closer to the hyperplane. SVM algorithm uses a set of 

mathematical functions which are defined as the kernel. The kernel function takes as 

input the data and transforms it in the required form. Thus, the kernel function defines 

the dimension of the feature space in which the training data will be classified. The 

basic kernels are the linear, the Gaussian and the polynomial whereas the selection of 

the appropriate kernel function is crucial for the classifier’s performance.  
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Figure 8. The black line represents the optimal hyperplane that separates the two classes and is chosen by the 
SVM classifier. (https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm) 

 

4.3.2. K – Nearest Neighbors algorithm 
 

The K – Nearest Neighbors algorithm [38] is a supervised machine learning algorithm 

that is used for classification and regression problems. The KNN algorithm makes the 

assumption that similar data points are close to each other. When a new sample has 

to be classified, the distances between this new sample and the training data points 

are calculated. The KNN selects the k-nearest points according to their distances and 

assigns the new sample to the dominant sign. The sign indicates the class label; if there 

are two classes, the samples of the positive class are signed with “+” while the samples 

of the negative class are signed with “-”.  

The main drawback of the KNN is that there is ambiguity in the selection of the initial 

“K”, which is the number of the nearest “neighbors” that the algorithm should include 

into the process.  Additionally, it has high computational cost due to the fact that it 

needs to compute distances between each query and all the training samples. 

  

4.3.3. Multiclass classification 

Multiclass classification is the classification task that consists of data driven from more 

than two classes. Most of the machine learning classifiers, such as SVM and KNN, are 

by nature binary. However, there are two popular techniques to solve the problem of 

multiclass classification by forming multiple binary classifiers, the one-vs-all and one-

vs-one technique. [39] 

One-vs-all (OVA) 

The one-vs-rest approach reduces the multiclass problem by creating K binary 

classifiers, where K is the number of different classes. Each of the K binary classifiers 

https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
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is trained with the samples of the kth class as positive samples and all the other samples 

as negatives. When an unknown sample is tested, it is assigned to the class of the 

classifier that produces the maximum score. 

One-vs-one (OVO) 

The one-vs-one approach reduces the multiclass problem by comparing each class to 

each other class. A binary classifier is built using the samples of a pair of classes from 

the initial training set and learning to discriminate the two classes, while discarding 

the samples of the rest classes. Thus, 
𝐾(𝐾−1)

2
 binary classifiers are required in order to 

combine all the possible pairs of classes. When an unknown sample is tested, the class 

that gets the more votes is selected. 

 

4.4. Clustering methods   
 

Clustering is an unsupervised machine learning technique that aims to group together 

relative data points. The data points that are grouped together in the same cluster are 

expected to have similar properties and features, while data points of different 

clusters should have significantly dissimilar behavior. There are two popular clustering 

algorithms: a) K-means clustering and b) Hierarchical clustering. [40] 

K-means clustering 

K-means clustering is a widely used clustering algorithm. The method initially selects 

a predetermined number of clusters, which is symbolized by K and randomly initializes 

their respective cluster centroids. For each data point the distance between the point 

and each group center is calculated. The data point is assigned to the cluster whose 

center is closest to it. The cluster centroids are re-calculated by averaging all the 

vectors of the points that belong in the group. This procedure is repeated iteratively 

until the cluster centroids do not change significantly between the iterations. Thus, 

the algorithm groups together data points without having any knowledge about their 

labels.  

Hierarchical clustering 

Hierarchical clustering is an agglomerative algorithm, which results in a tree-like 

structure which is called dendrogram (Figure 9). The approach starts by considering 

each data point as a separate cluster. Consequently, it identifies the two clusters that 

are closest together based on a distance measure and merges them to one cluster. 

This procedure is repeated iteratively until all the clusters are merged together in one. 

The height in which the tree cutoff is set, determines the number of the derived 

clusters of the algorithm. 
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Figure 9. Structure of a dendrogram (https://www.datanovia.com/en/lessons/divisive-hierarchical-clustering/) 

 

4.5. Regression Methods 
 

Regression is a statistical method that examines and estimates the relationship 

between a dependent variable and one or more predictors. It is a reliable method for 

identifying the impact of the predictors on the dependent variable. The dependent 

variable is the main variable that the regression model aims to predict. Predictors (or 

independent variables) are the variables that are hypothesized to influence and are 

used to predict the dependent variable. When the number of predictors is more than 

one, the process is called multiple regression.  

Linear regression consists of finding the best-fitting straight line through the observed 

data points. The best-fitting line represents the regression line. Thus, linear regression 

attempts to model the linear relationship between the dependent variable Y and the 

predictors X. The model is expressed in matrix form as: Y = X*w + ε, where w is the 

vector of regression coefficients that needs to be estimated and ε is the error term.    

The most common method for fitting a regression line is the least-squares method. 

This method calculates the best-fitting straight line for the observed data by 

minimizing the sum of squares of the vertical deviations from each data point to the 

line. This vertical deviation is equal to 0, when the point lies on the fitted line exactly. 

Thus, the cost function, which actually represents the difference between the 

estimated values and the actual data we are trying to fit, is equal to:  

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

=  ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗

𝑃

𝑗=0

)

2
𝑁

𝑖=1

 

where  N and P are the number of observations and predictors, respectively 

𝑦𝑖 is the actual value of the dependent variable for the i-th observation 

 𝑦�̂� is the estimated value from the regression model for the i-th observation 

 𝑤𝑗 is the vector with the weights (or regression coefficients) for each predictor 

 𝑥𝑖𝑗 is the value of the “j” predictor for the i-th observation 

 

https://www.datanovia.com/en/lessons/divisive-hierarchical-clustering/
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However, when the number of predictors is greater than the number of observations, 

the regression model may result to overfitting, providing inaccurate results. The 

shrinkage – regularization methods can be used in order to solve the model complexity 

and prevent overfitting. There are two well-known regularization methods [41]: a) 

least absolute shrinkage and selection operation (LASSO) regression [42] and b) ridge 

regression.  
 

4.5.1. Least Absolute Shrinkage and Selection Operator (LASSO)  
 

LASSO is a type of linear regression analysis that uses a shrinkage procedure. Shrinkage 

is a statistical process to shrink data values towards a specific point, such as zero. Lasso 

regression uses L1 regularization, meaning that it adds a “penalty” term of the 

absolute value of the magnitude of the regression coefficients in the cost function. 

Specifically, the cost function of Lasso is equal to: 

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

+ 𝜆 ∑ |𝑤𝑗|

𝑃

𝑗=0

 

The hyperparameter λ is a tuning parameter that expresses the amount of the 

strinkage. As the value of λ increases, more and more coefficients are set to zero and 

the corresponding independent variables are eliminated. On the contrast, when λ = 0, 

no regularization is performed and thus no parameters are eliminated.   

This type of regularization can lead to zero coefficients and thus some predictors are 

completely neglected for the evaluation of the dependent variable. Hence, lasso 

selects the most important predictors which are considered to predict adequately the 

outcome. Lasso regression performs feature selection and regularization, reducing the 

chance of overfitting and enhancing the prediction accuracy and the significance of 

the selected predictors. 

4.5.2. Ridge Regression 

Ridge regression is a linear regression that uses shrinkage without leading to the 

elimination of predictors. Ridge regression uses L2 regularization, meaning that it adds 

a “penalty” term equivalent to the square of the magnitude of the regression 

coefficients. The cost function of Ridge regression is: 

∑(𝑦𝑖 − 𝑦�̂�)
2

𝑁

𝑖=1

+ 𝜆 ∑ 𝑤𝑗
2

𝑃

𝑗=0

 

Similarly to LASSO, the hyperparameter λ is the same tuning parameter that controls 

the strength of the penalty term. When λ = 0 ridge regression performs the least-

squares method. When λ = ∞, all regression coefficients are shrunk to zero.     

Ridge regression shrinks the coefficients, but it does not eliminated them. Thus, the 

method reduces the model complexity and multi-collinearity, but it does not perform 

feature selection. 
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5. Methodology and Results 
 

5.1. Methodology Overview 
 

This project demonstrates a combined analysis of gene expression microarray data 

and radiomic features data acquired from CT medical images from patients with 

NSCLC, in order to contribute to valid diagnosis and prognosis of lung cancer. 

Statistical methods and tests were used to examine significant correlations between 

gene expressions and imaging features and identify their potential to the lung cancer 

diagnosis. Furthermore, machine learning methods were used to classify and cluster 

problems as well as to evaluate them, in order to investigate deeper associations and 

enhance the significance and the diagnostic ability of radiomic and genomic data. 

The steps of the proposed analysis are briefly mentioned below (Figure 10). Each step 

is described in detail in its dedicated section.  

1. Data acquisition. 

2. Identification of Differentially Expressed Genes using SAM and 2-fold change. 

3. Investigation of correlations between genes and radiomic features using 

Spearman rank correlation test and quantitative SAM. 

4. Extra validation of the extracted significant genes. 

5. Clustering of radiomic features. 

6. Construction of predictive models of radiomic features in terms of genes. 

7. Prediction of lung cancer’s staging using genomic and imaging feature data. 

8. Gene Enrichment Analysis 
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Figure 10. Flowchart of the proposed analysis. 



 
 

[42] 
 

5.2. Description of Datasets 
 

Four different datasets were used during the initial procedure analysis. The gene 

expression microarray data of all datasets were obtained from the publicly available 

Gene Expression Omnibus (GEO) database. In each dataset the probes were coded 

into their corresponding Entrez Gene ID according to the Illumina platform. Due to the 

fact that one Entrez Gene ID may map to more than one probes, the probe with the 

higher gene expression value was used to express the corresponding Entrez Gene ID. 

The gene expression values of all probes of all datasets have been preprocessed with 

the same method: quantile normalization and log2 transformation.  

 The main dataset is dataset GSE28827 ([14], [15]) (abbreviated Dataset1), 

which contains gene expression microarray data and CT radiomic feature 

values for 26 patients with NSCLC. This dataset contains gene expression 

profiles for 24371 different genes, regarding to the Entrez Gene terminology, 

for each patient. Furthermore, it contains CT scans for each patient, which are 

obtained from the publicly available Cancer Imaging Archive (TCIA) database. 

The radiomic features were provided by Eleftherios Trivizakis (University of 

Crete) and were extracted using the open-source python package pyradiomics 

[43]. This package requires the 3D-ROI of the scan for each patient. Scans with 

ROI < 10 pixels were excluded; thus, 24 patients were used for further analysis. 

Hence, 749 CT radiomic features were extracted for the 24 patients. According 

to pyradiomics, features were computed on the original images as well as on 

derived filtered images. In order to efficiently process the images, several 

filters were applied on the original image, such as the Laplacian of Gaussian, 

Wavelet, Square, Square Root, Logarithm, Exponential and Gradient. 

Consequently, imaging features were calculated for each filtered and 

unfiltered image related to the following categories [44]:  

 First order statistics, such as energy, entropy, the minimum, the maximum 

and the mean gray level intensity, standard deviation, skewness, kurtosis 

etc. The first order statistics features describe the distribution of voxel 

intensities within the image ROI. 

  Shape 3D features, such as maximum 3D diameter, surface area etc. The 

shape 3D features include descriptors of the three-dimensional (3D) size 

and shape of the ROI. They are independent from the gray level intensity 

distribution and thus they have the same values for all the original and the 

filtered images. 

  Gray Level Co-occurrence Matrix (GLCM), such as autocorrelation, cluster 

tendency, contrast etc. The GLCM describes the second-order joint 

probability function of the image region defined by the mask.  

  Gray Level Size Zone Matrix (GLSZM), such as gray level Non-Uniformity, 

Gray Level Variance etc. The GLSZM quantifies gray level zones in the image, 

where the number of connected voxels that share the same gray level 

intensity constitutes a gray level zone. 
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  Gray Level Run Length Matrix (GLRLM), such as High Gray Level Run 

Emphasis, Long Run Emphasis etc. The GLRLM quantifies gray level runs, 

which are the length of consecutive pixels that have the same gray level 

intensity. 

  Neighboring Gray Tone Difference Matrix (NGTDM), such as coarseness, 

complexity, contrast etc. The NGTDM quantifies the difference between a 

gray level intensity and the average gray level intensity of its neighbors. 

  Gray Level Dependence Matrix (GLDM), such as dependence entropy, 

dependence variance etc. The GLDM quantifies gray level dependencies in 

an image. 

Additionally, dataset GSE28827 includes the information for the cancer staging of each 

patient. 

 

 Dataset GSE75037 (abbreviated Dataset2) contains only gene expression 

microarray data for both cancer and normal samples. There are 83 patients for 

each population (cancerous or normal) in this dataset, resulting in 166 patients 

in total. It includes gene expression values for 19227 different genes for each 

patient. The cancer staging of each cancer sample is also provided. 

 

 A control dataset, which is the Dataset GSE76925 (abbreviated Dataset3), was 

used during the proposed method. From this dataset, only the gene expression 

microarray data from the normal samples were deployed in the analysis. It 

contains gene expression values for 17130 different genes for 40 samples. 

  

 A new dataset, which is the Dataset GSE18842 (abbreviated Dataset4), was 

only used during the validation procedure. Hence, this dataset is defined as the 

validation dataset. It includes gene expression microarray data for both cancer 

and normal samples. There are 44 patients for each population (cancerous or 

normal) in this dataset, resulting in 88 patients in total.  

 

Table 1 represents an overview of the used datasets. 
 

Table 1. Overview of datasets 

Authors Dataset GSE Genes Cancer Normal Radiomic 
features 

Nair et al. 
(2012) 

1 28827 24371 24 (samples) -  (samples) 749 

Girard et al. 
(2016) 

2 75037 19227 83 83 - 

Morrow et al. 
(2017) 

3 76925 17130 - 40 - 

Sanchez-
Palencia et al. 

(2011) 

4 18842 - 44 44 - 
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5.3. Differentially Expressed Genes Analysis 
 

The first step of the analysis was the identification of genes that have differentiation 

ability between cancer and normal samples. These differentially expressed genes have 

the potential to distinguish cancer from normal tissues and subsequently constitute 

diagnostic biomarkers for lung cancer.   

The gene values of cancer samples of Dataset2 and the gene values of normal samples 

of Dataset3 were used to examine which genes are significant and have differentiation 

ability in a set of microarray experiments. The cancer samples and the normal samples 

of two different datasets were used in order to generalize the results. Dataset2 has 

19227 different genes and Dataset3 has 17130 different genes. The common genes, 

which are the genes that exist in both datasets, are 16252. The expression profiles of 

these 16252 genes were used for further analysis.     

However, due to the fact that the cancer and normal samples of each gene are derived 

from two different datasets, cross normalization is required as a pre-processing step. 

More precisely, the gene values of the cancer and the normal samples have been 

derived from different staff members, different platforms and under different 

laboratory conditions, which are known as “batch effects”. To restrict the batch effects 

and make the two different datasets comparable, cross-normalization is essential. 

Hence, mean-centering normalization is applied in both datasets independently as a 

pre-processing step. The mean-centering normalization is performed by calculating 

the mean value of each dataset independently and subtracting this value from each 

value within the dataset. Thus, the 0 point of each dataset is redefined as its mean 

value.  

 

SAM implementation 

 

After pre-processing was completed, SAM was used to identify genes that differ 

significantly between the two sets of microarray experiments. The mean-centered 

values of the 16252 common genes from Dataset2 and Dataset3 were imported as 

input to SAM. Apart from gene expression profiles of microarray experiments, the 

response variable for each experiment should also be imported as input to SAM. The 

response variable determines the class in which each sample of each gene belongs to. 

In this case, there are two classes: a) the normal samples of Dataset3, which constitute 

the first class and are marked with label ‘1’ and similarly, b) the cancer samples of 

Dataset2 form the second class and are marked with label ‘2’. Hence, there are 40 

samples from class ’1’ and 83 samples from class ‘2’ for each gene. They correspond 

to normal and cancer groups with samples from different patients; thus, SAM was 

performed for the two-class unpaired problem. Two parameters of SAM, Δ value and 

the number of permutations, need to be defined in order to run SAM. The parameter 
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Δ was chosen with respect to the criterion of minimum FDR. In this case, the minimum 

FDR was equal to 0 and thus, the Δ value that corresponds to this FDR was chosen as 

the desired one. The value of Δ was 3.94. For the number of permutations, it is 

considered that the higher the number of repetitions, the better the results. According 

to Damle et al. [45] ,who showed that as the number of permutation increases, the 

FDR decreases. However, after some number of permutations, FDR has no change or 

very slight change. At this stage, permutations can be terminated. Hence, the number 

of permutations was set equal to 1000, which is an enough big number to provide 

precise results.   

Furthermore, SAM has the extra option of setting a non-zero Minimum Fold Change. 

This is a more stringent criterion, because genes must satisfy the extra criterion of 

changing at least a pre-specified amount, in order to be called ‘significant’. For this 

reason, SAM was performed with the aforementioned options and the additional 

setting of 2-fold change. Hence, positive and negative significant genes were derived 

after performing SAM with 2-fold change.  

SAM with 2-fold change identified 7014 significant genes with a q-value equal to 0%. 

The 5260 of these 7014 genes were declared as positive significant, which indicates 

that their expression profiles are higher in cancer samples (group 2) than in normal 

samples (group 1). Conversely, 1754 of the 7014 significant genes were identified as 

negative significant; thus, their expression profiles are higher in normal samples 

(group 1) than in cancer samples (group 2).   

2-Fold Change within Dataset2 

These 7014 derived significant genes were expected to have the potential to diagnose 

normal from cancer samples. However, the differentiation ability of these genes had 

to be examined more accurately, due to the fact that the gene analysis was performed 

on two completely different datasets. The batch effects were restricted, but it is 

uncertain that they are eliminated. To enhance the significance of these genes and to 

provide more precise diagnosis, 2-fold change between cancer and normal samples of 

Dataset2 was performed. The examination of the expressions of these genes between 

the 2 states (cancer and normal) of the same dataset can provide more accurate gene 

expression analysis. The genes that continue to have “2 times” bigger expressions in 

one state instead of the other state within Dataset2, remain to be deemed significant 

in lung cancer diagnosis.   

Fold change is calculated initially by performing the anti-log of all values for each gene, 

i.e. 2^(value), and finding the average value for each group (normal – group 1 and 

cancer – group 2 of Dataset2). These average expression levels of each gene under 

each of two states within Dataset2 are marked as 𝑥1𝑖  and 𝑥2𝑖  respectively. The fold 

change is calculated as the ratio between these two average values.  

Hence, a positive gene must satisfy the extra demand of  

2_𝐹𝐶 =  
𝑥2𝑖  

𝑥1𝑖  
 ≥ 2 
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in order to maintain to its positive significance. 

Respectively, a negative gene must satisfy the corresponding extra demand of 

2_𝐹𝐶 =  
𝑥2𝑖  

𝑥1𝑖  
 ≤

1

2
 

in order to preserve its negative significance. 

The result was that 2415 of the 7014 genes remain significant according to the 2-fold 

change within Dataset2. 1573 genes from them were positive significant, while the 

rest 842 were negative significant. Hence, a fewer number of genes was proved to 

have the ability to discriminate cancer from normal samples after the extra 

examination of their diagnostic potential. 

Identification of significant genes in Dataset1 

Dataset1 is the only dataset that consists of gene expression data and radiomic 

features data. Thus, it constitutes the main dataset of this study in order to investigate 

the relationship between gene expression profiles and imaging features and their 

contribution to the prediction of lung cancer staging. Consequently, these 2415 

significant genes were identified in Dataset1. 2370 of the 2415 significant genes 

existed in patients of Dataset1. The 1540 were positive significant, while the 830 were 

negative significant.  

This procedure analysis for the identification of genes with high differentiation ability 

between cancer and normal samples will be considered as step A. In Figure 11 is 

depicted the flowchart of this procedure analysis and the corresponding results.  
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Figure 11. Flowchart of Differentially Expressed Genes Analysis (step A) 
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5.4. Correlation of genes with radiomic features  
 

The genes that were identified to demonstrate diagnostic character, from the previous 

step analysis, were used to examine their correlation with the radiomic features. 

These correlations are important for lung cancer diagnosis in order to investigate the 

underlying biology and connection of the genotype and the phenotype of lung cancer. 

Radiomic features reflect the tumor heterogeneity, which is caused by the mutations 

of the genes in lung cancer.   

In this step, the gene expression values of the 2370 significant genes and the 749 CT 

radiomic features from Dataset1 were used for further analysis. Each gene and each 

radiomic feature have values for 24 samples (patients). However, 42 imaging features 

were observed to have the same value across all samples, meaning that the variable 

does not change. When a variable does not change, its variance and thus its standard 

deviation is equal to 0. Hence, these imaging features are considered to have no 

correlation with any gene. These 42 radiomic features were excluded and the 

remaining 707 imaging features were used to reveal possible correlations with the 

genes. To investigate these associations, two statistical methods were implemented. 

The whole step, including both statistical methods, is defined as step B. 

 

5.4.1. Spearman rank correlation test 
 

First method: Spearman rank correlation test (step B1) 

The first method used was the Spearman rank correlation test and is marked as step 

B1. Specifically, the Spearman rank correlation test was performed between every 

gene and every imaging feature. This statistical test was selected due to the fact that 

it is a non-parametric test, meaning that there is no assumption about the distribution 

of the variables. The test aims to find a monotonic relationship between the two 

variables and thus is more general than the Pearson correlation test, which measures 

the specific linear relationship.  Furthermore, the values of the imaging features have 

no tied ranks; thus, the Kendall’s tau correlation test is not required. 

 

The rho (ρ) values and the corresponding p-values of the Spearman rank correlation 

test were produced for each pair of genes and imaging features. This test is 

implemented using the build-in function corr of Matlab. According to this function, the 

p-values are computed using the Student’s t-distribution for two-tailed test by 

doubling the more significant value of the two (right or left) one-tailed p-values.  

 

The total number of correlation tests were equal to 2370 (genes) x 707 (imaging 

features) = 1675590 tests. This is the number of all possible pairs of genes and imaging 

features. Due to the extremely large number of tests, we applied FDR-controlling  as 

a statistical approach to correct multiple comparisons and enhance the statistical 
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significance of the derived correlations. The Benjamini-Hochberg procedure was used 

to correct the p-values using the FDR correction. This approach is a more robust 

method and is preferred when the number of tests is large. FDR aims to control the 

proportion of “discoveries” (significant results) that are actually false positives and is 

appropriate when seeking for “discoveries”, because it is a less strict criterion than 

Bonferroni method. Bonferroni is rather preferred with small amounts of multiple 

comparisons or significant results, not in a quest for many “discoveries”. When there 

are large numbers of tests, as in this case, Bonferroni could be so strict that it may 

produce false negatives; thus, it may discard desired significant correlations. 

Consequently, we used the Benjamini-Hochberg method to correct the p-values of the 

correlation due to its increased power in set of many tests However, such an extreme 

large number of tests (1675590) reduces the robustness of FDR Hence, due to the fact 

that during this step we aimed to investigate correlations between individual genes 

and each imaging feature, FDR across each gene was applied to correct multiple 

comparisons. In other words, the correlations between a gene and all imaging features 

were corrected for each gene separately. A vector with the p-values of the correlations 

between each gene and all imaging features was imported as input to FDR. The length 

of the vector was equal to 707, which is the number of the radiomic features. Thus, 

2370 independent FDR tests (equal to the number of genes) were performed to 

correct multiple comparisons. FDR equal to 5% was applied in order to guarantee that 

only 5% of the significant correlations may be false positives.   

 

This statistical analysis resulted in 6883 statistically significant correlations among 

genes and radiomic features. These statistically significant correlations refer to 95 

different genes, as some genes are correlated with more than one imaging feature. To 

be more specific 95 from the initial 2370 different genes were correlated with at least 

one imaging feature.   

 

 

5.4.2. Quantitative SAM 

 

Second method: Quantitative SAM (step B2)     

The second method to investigate significant correlations between genes and imaging 

features was the SAM using the quantitative problem. This approach is defined as step 

B2 of the whole procedure analysis. The SAM investigates significant genes with 

respect to their response variable, meaning that it identifies genes significantly 

correlated with the response variable. Thus, the gene values of the 2370 differentially 

expressed genes, which have been derived from step A, was imported as input to the 

quantitative SAM and the continuous-valued imaging feature as the response variable. 

The SAM for quantitative problems method was used due to the fact that the desired 

response variable is a continuous-valued variable. Thus, a SAM with all genes values 

for each imaging feature independently was implemented. Therefore, 707 different 

SAM tests were implemented; one for each imaging feature. In each SAM, correlations 

between the particular imaging feature and the genes were investigated. 
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However, SAM for quantitative problems uses the “linear regression coefficient” as 

the numerator ri of the statistic di by regressing the expression of each gene “i” on the 

response variable “y”. In this thesis, Spearman’s rank correlation coefficient is 

preferred to be used as statistic di , which defines the significant or not significant 

correlation of the gene “i” with the response variable (i.e. imaging feature) by the 

implementation of the SAM permutation-based algorithm. Hence, step B2 is 

comparable to step B1, while they are using the same correlation coefficient (rho 

value).   

 For this reason, the input of each quantitative SAM (i.e. genes and imaging features 

values) was transformed before importing to SAM. The relation between a linear 

regression coefficient “b” and the Pearson correlation coefficient rxy is: 

𝑏 =  𝑟𝑥𝑦

𝑠𝑦

𝑠𝑥
  

Hence, the linear regression coefficient “b” is equal to Pearson correlation coefficient 

rxy , when the standard deviation of the response variable “y” and the gene “x” are 

equal to 1. In this case, SAM will use the Pearson correlation coefficient rxy  as a statistic 

score in the computations. However, the Spearman rank correlation coefficient 

between two variables is equal to the Pearson correlation coefficient of the ranked 

variables.  

Thus, the transformation, that is required, is to transform the values of each gene “x” 

and each response variable “y” into ranks and then scale-divide them with their 

standard deviations independently, forming 𝑥′ =  
𝑥

𝑠𝑥
  and 𝑦′ =  

𝑦

𝑠𝑦
 respectively, in 

order to have sx’ = sy’ = 1.  

Proof of sx’ = sy’ = 1: 

𝑣𝑎𝑟(𝑥′) = 𝑣𝑎𝑟 (
𝑥

𝑠𝑥

) =  𝐸 (
𝑥

𝑠𝑥

− 𝐸 (
𝑥

𝑠𝑥

))

2

=  𝐸 (
1

𝑠𝑥

(𝑥 − 𝐸(𝑥)))

2

=
1

𝑠𝑥
2

𝐸(𝑥 −  𝐸(𝑥))2 =  
1

𝑠𝑥
2

 𝑣𝑎𝑟(𝑥) 

 

Thus, 𝑣𝑎𝑟(𝑥′) =   
1

𝑠𝑥
2  𝑣𝑎𝑟(𝑥) =  

𝑣𝑎𝑟(𝑥)

𝑣𝑎𝑟(𝑥)
= 1  and 𝑠𝑥′ =  √𝑣𝑎𝑟(𝑥′) =  √1 = 1 

 

Similarly, it can be proved that sy’ is equal to 1. 

 

Additionally, to prove that Spearman rank correlation coefficient is equal to the 

Pearson correlation coefficient of these ranked-scaled variables x’ and y’, it is needed 

to be shown that Pearson correlation is invariant to scaling transforms i.e. rx’y’ = rxy. 

Proof of rx’y’ = rxy:  

𝑟𝑥′𝑦′ =  
𝑐𝑜𝑣(𝑥′, 𝑦′)

𝑠𝑥′  𝑠𝑦′

= 𝑐𝑜𝑣(𝑥′, 𝑦′) = 𝐸[(𝑥′ − 𝐸(𝑥′))(𝑦′ − 𝐸(𝑦′))]  ⇔  

𝑟𝑥′𝑦′ = 𝐸 [(
𝑥

𝑠𝑥

− 𝐸 (
𝑥

𝑠𝑥

)) (
𝑦

𝑠𝑦

− 𝐸 (
𝑦

𝑠𝑦

))] = 𝐸 [
1

𝑠𝑥

(𝑥 − 𝐸(𝑥))
1

𝑠𝑦

(𝑦 − 𝐸(𝑦))]  ⇔ 

      

𝑟𝑥′𝑦′ =  
1

𝑠𝑥𝑠𝑦

𝐸[(𝑥 − 𝐸(𝑥))(𝑦 − 𝐸(𝑦))] =  
1

𝑠𝑥𝑠𝑦

𝑐𝑜𝑣(𝑥, 𝑦) = 𝑟𝑥𝑦 
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In conclusion, SAM will actually use the Spearman rank correlation coefficient of the 

original data in its computations with the transformation of the values of each gene 

and of imaging feature into ranks and their deviation with their standard deviations. 

The numerator ri of the statistic di, that SAM uses in its computations, expresses the ρ 

correlation coefficient between gene “i” and each response variable.    

After transforming the input, the 707 SAM tests were performed to identify significant 

correlations between genes and each imaging feature. The number of permutations 

was set equal to 1000 and the Δ value was chosen in each SAM so that the minimum 

FDR is achieved. The minimum FDR is equal to 0, but in some cases the SAM execution 

failed to achieve FDR = 0. In these cases, SAM used the Δ value that corresponds to 

minimum FDR, which may reach high and unacceptable values, such as FDR = 58%. To 

exclude the genes that correspond to these unacceptable values of FDR and 

simultaneously were identified as significant from SAM, a filter of q-value <= 0.05 was 

applied. Hence, significant genes and consequently significant correlations were 

considered only the genes that correspond to q-value <= 0.05.   

This second statistical analysis resulted in 651 statistically significant correlations. 

Similarly with the step B1, some genes had significant correlations with more than one 

imaging feature. Thus, these 651 correlations referred to 137 different significant 

genes. 

 

5.4.3. Combination of the two statistical methods 
 

Both the Spearman rank correlation method and the quantitative SAM method 
investigate possible statistically significant associations between important genes 
with high differentiation ability and radiomic features. The statistical significance of 
these correlations is secured by applying the extra criterion of FDR 5% in both cases. 
There was a remarkable reduction in the number of significant genes in both methods, 
after searching for genes that, apart from their differentiation ability, satisfy the extra 
demand of being correlated with radiomic features. The significant genes after step A 
were 2370, while after step B1 and step B2 were reduced to 95 and 137 respectively.  

The common genes of these two methods (step B1 and step B2) were used for further 
analysis to enhance their significance. The number of these genes was equal to 78, 
meaning that these 78 genes are significantly correlated with imaging features in both 
B1 and B2 steps. They are genes that have high discrimination ability and 
simultaneously significant correlations with radiomic features after the application of 
the two different methods. Thus, they seem to have a high impact on the detection 
and the diagnosis of lung cancer.  

The flow of the statistical tests and their results that are conducted during the whole 
analysis of step B is depicted in Figure 12. 
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Figure 12. Workflow for the investigation of correlations between genes and imaging features (step B) 
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5.5. Data visualization with Heatmaps 
 

The expression profiles of the 78 significant genes, that have been derived so far, were 

expected to differ significantly between cancer and normal tissues. Heatmap is a data 

visualization technique which describes the magnitude of the values by coloring them 

from a predefined color spectrum. It is widely used for the visualization and the 

interpretation of gene expression data.   

Two heatmaps were created for the data visualization of the 78 significant genes in 

order to visualize the difference in their gene expression profiles between the cancer 

and the normal samples. The heatmaps were made in R programing language using 

the function heatmap.2 with row scaling.   

1st Heatmap:  

The first heatmap was constructed using normal and cancer samples from different 

datasets. Specifically, 40 normal samples from Dataset3 and 107 cancer samples (83 

cancer samples from Dataset2 and 24 cancer samples from Dataset1) were used for 

making the heatmap as shown in the following Figure 13:  

 

Figure 13. Heatmap for 78 genes using 40 normal samples from Dataset3 and 107 cancer samples from Dataset2 
and Dataset1 

The samples are represented in the columns and the genes in the rows. Looking at the 

figure 13 from top to bottom, the positive significant genes are displayed first, 

followed by the negative significant genes. Furthermore, looking at the figure 13 from 

left to right, the normal samples are displayed first, followed by the cancer samples. 

Red color indicates higher values and green color indicates lower, as indicated in the 

‘colorkey’ bar.  
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The positive significant genes are the genes that have higher values in cancer samples 

than in normal. On the contrary, negative significant genes are the genes that have 

higher values on normal samples than in cancer. We can discriminate these two 

groups (positive or negative) of genes from the first heatmap (Figure 13), because the 

cancer samples for the positive genes are labelled mainly with red colors while the 

normal samples of these genes are labelled with more shades of green color. Similarly, 

the cancer samples for the negative genes are labelled with green color while the 

normal samples are labelled with mainly red color. However, the cancer samples of 

the Dataset1 (right samples on the figure 13) do not depict clearly this difference 

between the normal and the cancer samples for all genes. The fact that the gene 

values originate from different datasets can explain the presence of batch effects.  
 

2nd Heatmap: 

The second heatmap was constructed using normal and cancer samples from the 

same dataset. Hence, 83 normal and 83 cancer samples from Dataset2 were used to 

create the heatmap as shown in the following Figure 14:  

 

Figure 14. Heatmap for 78 genes using 83 normal and 83 cancer samples from Dataset2 

The only difference with the previous heatmap (Figure 13), is that the cancer samples 

in this case have been displayed in the left side of the figure 14 and the normal samples 

in the right side.  

This heatmap has the potential to differentiate more accurately the two groups of 

genes (positive and negative) and the two groups of samples (cancer and normal). The 

higher values of the positive genes for the cancer samples are represented quite 

clearly with the red shades and the lower values for the normal samples with the green 
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color. On the opposite, the higher values of the negative genes for the normal samples 

and the lower values for the cancer samples are expressed with the red color in normal 

samples and the green color in cancer samples, respectively.  

Therefore, both heatmaps show the difference in the expression profiles of these 

genes between cancer and normal samples. The heatmaps confirm the discrimination 

and diagnostic potential of these 78 genes in lung cancer.  

 

5.6. Extra validation of genes 
 

The 78 genes have shown a noticeable behavior for lung cancer diagnosis and its 

underlying biological behavior detection related to the phenotype of the tumor. They 

tend to have the potential to be used as significant biomarkers for NSCLC. However, it 

is crucial to validate further their significance and role in the detection of lung cancer 

in order to provide reliable findings for precise medicine. Thus, several steps have 

been conducted in order to validate the significance of these genes. All steps that are 

used during this section constitute the step C of the whole analysis. 

 

5.6.1. Examination of genes’ predictive ability in classification  
 

This step analysis, which constitutes step C1, aims at determining the ability of the 

genes to predict if a sample belongs to cancer or normal tissues. To empower the 

outcome of this classification, a new Dataset, Dataset4, which has not yet been used, 

is introduced as a testing set.  However, the new Dataset4 does not contain 5 of the 

78 significant genes. Thus, these 5 genes were excluded from the analysis.   

A SVM linear classifier was used for the classification of the samples. The SVMs have 

many features that make them attractive for classification using gene expression data. 

Specifically, SVM has the advantage to deal with data that has unknown distribution 

and in general, there is not much information about it, due to the use of different 

kernels. Furthermore, it shows good performance, when the dimension of the feature 

space is greater than the number of observations. Additionally, it has the ability to 

identify outliers and reduce their influence in finding the separating hyperplane, 

resulting in better classification scores. [37] For all these reasons, SVM is adopted in 

this step for classification using gene expression data. Moreover, all kernels of SVM 

were tried (linear, gaussian, polynomial) in order to assess its performance. The kernel 

with the better performance was the linear and thus it was selected for the classifier. 

The other two kernels fitted with higher efficiency the training dataset that resulted 

in overfitting; thus, they could not predict the new unseen dataset.  

The feature vector of the SVM linear classifier is composed of the 73 different genes. 

The classifier was trained at the 83 cancer and 83 normal samples of Dataset2. Thus, 
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the training set was equal to 166 samples. The test set was the 88 samples of the new 

unseen Dataset4, which contained 44 cancer and 44 normal samples (Figure 15).  

Mean-centering as cross-normalization technique was performed on the two datasets 

due to the fact that the gene expression profiles have been produced from different 

staff and under different experimental conditions. The prediction of the classifier is 

one of the two classes: ‘tumor’ or ‘control’. The class ‘tumor’ is considered as the 

positive class and the class ‘control’ is considered as the negative class. 

 

 

Figure 15. Workflow of the examination of predictive ability of genes in tissue classification 

The classifier was evaluated by examining its ability to predict if a sample is cancerous 

or normal. The classifier showed great performance achieving accuracy equal to 

92.05% (Table 3). Thus, the classifier has the ability to predict correctly, in high 

percentage, if a sample is cancerous or normal. Furthermore, the confusion matrix 

(Table 2) was produced in order to show the number of true positives (TP), true 

negatives (TN), false positives (FP) and false negatives (FN). In this case, the definition 

of these measurements are: 

 True Positives (TP) is the number of cancer samples that were classified 

correctly as cancer sample. 

 True Negatives (TN) is the number of normal samples that were classified 

correctly as normal sample. 

 False Positives (FP) is the number of normal samples that were misclassified as 

cancer sample. 

 False Negatives (FN) is the number of cancer samples that were misclassified 

as normal sample. 

Furthermore, two additional validity metrics (Table 3) were used to evaluate the 

performance of the classifier using the confusion matrix. The first one is the Sensitivity, 

which expresses the ability of the classifier to correctly classify a sample as ‘tumor’.  In 

other words, it gives the probability (as percentage) that a sample is ‘tumor’ given that 
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the sample is cancerous. The second one is the Specificity, which expresses the ability 

of the classifier to correctly classify a sample as ‘control’. Thus, it gives the probability 

(as percentage) that a sample is ‘control’ given that the sample is actually normal. 

Equations: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟𝑜𝑢𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

The scores of Sensitivity and Specificity were also quite high. Sensitivity was equal to 

84.09%, meaning that a huge proportion of cancer samples were correctly determined 

as cancer. Specificity was equal to 100%, meaning that all normal samples were 

identified by the classifier as normal. Hence, the classifier does not produce false 

alarms, while none of the normal samples was identified as cancerous. 
  

Table 2. Confusion Matrix of the SVM classifier using 73 different genes for tissue classification 

 

Predicted 

Cancer Normal 

Actual 

Cancer TP = 37 FN = 7 

Normal FP = 0 TN = 44 

 

 

Table  3. Validity metrics for evaluation performance of the SVM classifier using 73 different genes for tissue 
classification 

Accuracy 92.05% 

Sensitivity 84.09% 

Specificity 100% 

 

The high performance of this classifier, assessing all the validity metrics, indicates that 

these 73 genes have the potential to predict accurately if a sample belongs to cancer 

or normal sample. Hence, the significance of these genes is enhanced, while their 
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diagnostic ability in lung cancer was examined with another machine learning method 

and was tested in a new dataset.  

  

5.6.2. Examination of genes expression variance 
 

The expression profiles of these 73 genes were analyzed to investigate the genes’ 

values variance. Specifically, three measurements were calculated: 

 The variance of each of these 73 genes 

 The mean variance from all genes for each state (cancer or normal) within each 

dataset 

 The difference of each gene’s variance from the mean variance for each 

population in each dataset 

The previous measurements were computed on the datasets that have been already 

used during the analysis, apart from the validation dataset (Dataset4). Thus, the 

expression profiles of the 73 genes in Dataset1, cancer population in Dataset2, normal 

population in Dataset2 and Dataset3 were deployed for this step. This step analysis is 

defined as step C2. Therefore, four mean variance values were calculated; one for each 

of the aforementioned datasets and their distinct populations. 

After calculating and examining the differences of each gene’s variance from the mean 

variance in each dataset, it was concluded that most of the genes present small 

differences. The small difference indicates that the values of these 73 genes have not 

huge fluctuations with respect to the mean variance of all genes within the dataset. 

Thus, the range of the values of the gene does not differ significantly from the mean 

range of the values of all genes within the dataset. Hence, these 73 genes seem to be 

compact in all datasets.  

 

5.6.3. Calculation of Biological Homogeneity Index (BHI)   
 

The Biological Homogeneity Index was used as an extra criterion to comprehensively 

evaluate and increase the significance of the 73 genes in lung cancer prediction. 

Biological Homogeneity Index (BHI) [46] is a measure that assesses how biologically 

homogeneous the clusters are. Biologically homogeneous clusters are the clusters 

that their samples belong to the same biological class.  

The calculation of the BHI concludes the following procedure: 

 Hierarchical clustering with one minus the Pearson’s correlation coefficient as 

a measure of dissimilarity. 

 Determination of the number of the derived clusters from clustering.  

 Calculation of the BHI to assess the homogeneity of the derived clusters. 
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The equation for the calculation of BHI is:  

 

where k is the number of statistical clusters 

nj is the number of samples within cluster j 

Dj express the cluster j 

C(x) and C(y) are the biological class of sample x and y respectively 

Should we assume that x and y are two samples that have been assigned to the same 

statistical class, the indicator function I(C(x) = C(y)) will take the value 1 if C(x) and C(y) 

are referred to the same biological class.  

  

As the samples x and y are assigned to the same statistical class, it is expected to 

originate from the same biological class. Thus, the maximum and better value of BHI 

is equal to 1, meaning that all the samples within each statistical cluster belong 

simultaneously to the same biological class, producing completely homogeneous 

clusters. Therefore, BHI measures the proportion of sample pairs with same biological 

classes that are grouped together to the same statistical class. 

 

The BHI was calculated for two different clustering cases using the expression profiles 

of the 73 significant genes of Dataset4. This step analysis, which is denoted as step C3, 

deploys the gene values of cancer and normal samples from the validation dataset 

(Dataset4) in order to examine further their significance using a new independent 

dataset (Figure 16).  

 
Figure 16. Flowchart for the calculation of BHI 
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The two different clustering cases are the following: 

 First case: clustering of samples based on the gene expression profiles and 

calculation of BHI for assessment of the biological homogeneity of the clusters. 

 Second case: clustering of genes followed by the calculation of BHI for the 

evaluation of the biological homogeneity of the clusters. 

 

The two cases are described in detail separately. 

 

First case: Clustering of samples based on the gene values  

This first case refers to the clustering of samples based on the values of the 73 

significant genes from the Dataset4. The BHI aims to validate if these 73 significant 

genes have the ability to produce biologically homogeneous clusters. Hence, it 

investigates the potential of the genes to group together samples with similar 

biological behavior forming biological classes.   

The biological classes of the samples were “cancer” and “normal”. Each sample was 

represented by 73 coordinates, one for each of the 73 genes. The proposed 

hierarchical clustering was performed in order to create clusters of samples. The 

number of clusters that were derived from the hierarchical clustering, was set equal 

to 2. Thus, the cutoff of the derived tree was set equal to 2 due to the two classes of 

the samples (cancer or normal). To be more specific, the goal of this step was to 

investigate if the genes could produce two biologically homogeneous clusters.   

This procedure analysis resulted in a BHI = 0.8563135, a quite high value, meaning that 

the two clusters are adequately biologically homogeneous with respect to the class. 

Hence, the larger proportion of sample pairs with same biological class were grouped 

together to the same statistical class based on the expression profiles of the 73 

significant genes. These genes seem to have the potential to group together 

biologically similar samples and thus derive biologically homogeneous clusters related 

to the functional class.               

 

Second case: Clustering of genes 

The second case refers to the clustering of these 73 significant genes using their 

expression profiles from the 88 samples of Dataset4, followed by the calculation of 

BHI. In this case, the BHI is calculated in order to examine if the genes of the same 

biological class are grouped together in the same statistical cluster, producing 

homogeneous clusters.   

The biological classes of the genes are “positive” and “negative”. This characterization 

has been produced during the first step (step A) of differentially expressed genes 

analysis and identifies the genes for the whole procedure analysis. Each gene was 

represented by 88 coordinates, one for each sample of Dataset4. Similarly to the first 

case of the clustered samples, the hierarchical clustering tree cutoff was set equal to 

two producing two clusters. The value of cutoff was determined by the number of the 

biological classes of the genes, which was two (positive and negative). The goal was to 

examine if the genes of the two biological classes could be grouped together in two 

statistical clusters with respect to their biological class.  
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The outcome of the analysis in this case derived a BHI = 0.8929619, concluding to a 

larger amount of gene pairs with same biological class that were grouped together to 

the same statistical class based on their expression profiles across all samples. 

Therefore, the larger proportion of the positive genes of these 73 genes were grouped 

together and the same was observed for the negative genes, resulting to biologically 

homogeneous clusters.     

 

In conclusion, in both cases the value of BHI was high, meaning that the genes have 

the potential to group together tissue samples of the same biological class. 

Simultaneously genes of the same biological class are grouped together in the same 

statistical class. Thus, the ability of the 73 significant genes to discriminate cancer 

indications on a human’s organism was examined and validated by two different 

scopes in a validation dataset in this step C3, leading to promising results.     

 

5.7. Clustering of radiomic features 
 

The significance of genes, which have been identified to contribute to lung cancer 

diagnosis, was validated during the process of step C. These genes, apart from their 

contribution to lung cancer diagnosis, revealed significant correlations with radiomic 

features, showing a combination of genetic and imaging information. According to the 

proposed model the next step was to examine further the potential associations 

between the radiomic features in order to explore groupings of relative imaging 

features. During this step analysis (step D), we aimed at conducting the clustering of 

the radiomic features (Figure 17).    

The only dataset that contains radiomic features data is the main Dataset, Dataset1, 

with features of 24 patients. From the aforementioned analysis of step B, 42 imaging 

features have been excluded due to its constant value across all samples; thus, the 

707 imaging features was used for further analysis. These features which have been 

extracted from the tumor region, quantify the tumor shape and heterogeneity. They 

reflect the tumor characteristics, providing useful insight for the tumor morphology. 

The clustering of the radiomic features is essential to identify groups of relatively 

similar imaging features and simultaneously reduce the number of significant imaging 

features in lung cancer.  

The values of the 707 different radiomic features are measured in different scales 

therefore they will not contribute equally to the analysis and the formation of the 

clusters. In order to overcome this problem, standardization is applied as a pre-

processing step of the data. The standardization procedure encompassed the 

calculation of the mean value and the standard deviation of each radiomic feature. 

The mean value was then subtracted from the initial value of the radiomic feature and 

divided with the standard deviation. Thus, all radiomic features were comparable to 

each other while they have mean value equal to 0 and standard deviation equal to 1. 
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The iterative K-means algorithm was implemented to group together similar imaging 

features. K-means algorithm is a widely used clustering algorithm, as it is simple, quite 

fast and easy to understand and implement. The algorithm aims to achieve local 

convergence via calculating iteratively the within-cluster sum of squared distances, 

modifying group membership of each point to reduce the within-cluster sum of 

squared distances, and computing new cluster centers. [47] Additionally, two 

important advantages of K-means are that it works well with unlabeled datasets, 

meaning that there is no evidence to guide the way that the dataset should be 

grouped into clusters and the data should not be exclusively linearly separable.   

The number of iterations of K-means algorithm was set equal to 200 in order to 

achieve convergence of the algorithm. To avoid finding local minimum, the number of 

replicates was set equal to 10, meaning that for each iteration the algorithm will start 

from a different set of initial starting points for 10 times. The number of K was chosen 

from testing 100 different values for initial K (the range was from 1 to 100). The best 

value of K was chosen according to its better score in Silhouette [48] and Davies – 

Bouldin criterion ([26], [49]). A brief explanation of these two criteria is the following: 

 Silhouette score shows how an element is similar to the other elements of the 
same cluster in range from -1 to 1. Values closer to 1 mean that the sample is 
far away from the neighboring clusters, those closer to 0 that it is very close to 
the neighboring clusters whereas closer to -1 that it is assigned to the wrong 
clusters.  

 Davies Bouldin index criterion is expressed as the average similarity measure 

of each cluster with its most similar cluster. Similarity is the maximum ratio (Rij) 

of within-cluster distances to between-cluster distances for each pairwise of 

clusters. Thus, clusters which are farther apart and less dispersed will result in 

a better score. The minimum score is zero. Smaller values are preferred. 

However, the value of K was chosen arbitrary large in order to produce enough 

clusters with a homogeneity score > 0.75. The Homogeneity score ([13], [14], [15]) was 

calculated by averaging all pair-wise Spearman correlation coefficients within each 

cluster.  

Thus, the value of K that satisfies all the aforementioned criteria was equal to 95. 

Additionally, for K = 95 the Inertia and the Calinski – Harabasz criterion [50] were 

evaluated in order to assess the performance of clustering.  

 Inertia is defined as the sum of the squared distance between each member 

of a cluster and its cluster centroid. It expresses the intra cluster distance and 

it is expected to be small, because the distance between the points within a 

cluster should be as low as possible, leading to compactness of the cluster.  

 Calinski – Harabasz criterion is defined as the between-cluster dispersion 

(BCD) and the within-cluster dispersion (WCD) ratio. This is also known as the 

variance ratio criterion. Larger values are preferred.  
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The values of these validity metrics are depicted in Table 4. These measurements refer 

to clustering results applying K = 95. Thus, 95 clusters of relatively similar imaging 

features were produced.  

 
Table 4. Results of the validity metrics for the evaluation of K-means clustering algorithm on radiomic features 

Criterion Results 

Silhouette score 0.4148 
Davies – Bouldin index 1.0074 

Inertia 1407.99 
Calinski - Harabasz 63.7785 

 

The homogeneity score of each of the 95 derived clusters was computed in order to 

assess the homogeneity of each cluster. The criterion was that the clusters that had 

homogeneity score > 0.75 were considered adequately homogeneous. 77 of the 95 

clusters satisfied this criterion and thus they were used for further analysis. Each of 

the 77 homogeneous clusters entangles related features in the compact form of a 

‘metafeature’. Thus, we will refer to each of these homogeneous clusters with the 

compact notion of a ‘metafeatures’. Each metafeature consisted of a different number 

of imaging features that constitute the cluster. Hence, we represent each metafeature 

by the nearest imaging feature to its cluster centroid; this nearest imaging feature 

constitutes the principal component of the metafeature. For the cases that more than 

one imaging features had the same minimum distance from the cluster centroid, the 

first imaging feature with the minimum distance was chosen as the principal 

component of the metafeature.  

 

In conclusion, this step D produced clusters of adequately co-expressed imaging 

features that are important in lung cancer diagnosis and stage identification. 

Furthermore, the initial number of imaging features was reduced by identifying 

radiomic features that can be grouped together in homogeneous clusters. The 

compact form of the metafeature is used in order to express a group of co-expressed 

imaging features by one representative imaging feature from the group. 
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Figure 17. Flowchart of the procedure for clustering radiomic features (step D) 

 

5.8. Predictive model of radiomic features in terms of genes  
 

At this point, the analysis has revealed 73 genes and 77 metafeatures that are 

important for the diagnosis and the evaluation of lung cancer. The genes indicate a 

diagnostic character and are correlated with radiomic features. It is now important to 

investigate if they have also the ability to predict the values of metafeatures, which 

are actually radiomic features. To be more specific, it is crucial to explore if they have 

the potential to produce the radiomic features, providing a robust tool for the 

formation of artificial imaging features from genes.   

The goal of this step analysis (step E) is to implement prognostic models of 

metafeatures in terms of genes. Thus, we investigate combination of genes that have 

the ability to predict the metafeatures (Figure 18).    

Multiple linear regression is used in order to model the relationship between the 

dependent variable, which is the metafeature, and the independent variables, which 

are the genes. The 73 genes constitute the predictors of the model and each of the 77 

metafeature represents the dependent variable of the regression analysis. Hence, 77 

models using linear regression were performed, in order to construct a model 

between the genes and the metafeature.   
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The gene expression data and the radiomic features data from the main dataset, 

(Dataset1) were used for the regression analysis, as it is the only dataset that contains 

both genomic and imaging data. Dataset1 is comprised of data from 24 patients. The 

linear regression model for each metafeature has N = 24 observations (sample size) 

and P = 73 predictors (genes). Hence, the number of predictors is greater than the 

number of observations (P > N); therefore, the linear regression approach is 

problematic and the derived regression coefficients are unreliable. The least squared 

method is unreliable when there are too many predictors, due to the infinite number 

of solutions for a given problem. Moreover, when the number of predictors is greater 

than the number of observations, the learned hypothesis may fit the training set very 

well, yet fail to generalize in new samples, leading to overfitting. Overfitting is not 

desirable and may lead to inaccurate results. To solve this problem, LASSO 

regularization is used. LASSO regularization includes an extra “penalty” term in the 

cost function that tries to minimize it, in order to enhance the prediction ability of the 

regression model. This penalty term shrinks some of the regression coefficients of the 

predictors to 0, leading to feature selection and reducing variance. Thus, these 

predictors with coefficients equal to 0 are completely neglected for the evaluation of 

the dependent variable. On the other hand, ridge regression reduces the regression 

coefficient of some predictors that are considered to be less important and gives 

weight to the more important predictors. Thus, it gives different importance weights 

to the predictors without eliminating the unimportant variables. Therefore, LASSO 

regularization was selected in order to avoid overfitting and multicollinearity by 

reducing the number of predictors and selecting only the important ones.  

The hyperparameter lambda (λ), is a shrinkage parameter of LASSO algorithm which 

controls the amount of shrinkage imposed on the coefficients and has to be tuned. 

Thus, the leave one-out cross validation (LOOCV) technique is performed to assess the 

model’s performance and define the proper lambda value. The lambda value that 

minimizes the cross validated Mean Squared Error (MSE) is chosen to subsequently 

select its corresponding regression coefficients. The LOOCV procedure operates by 

dividing the samples into K subsets randomly, where K is the initial total number of 

samples. Then, the K-1 subsets were used in order to train the model. The remaining 

Kth sample is used to test the model. This procedure is repeated for K times in order 

to give the opportunity to each sample to be used as test set.  

The cross validated MSE is the average value of the MSE from all the cross validation 

tests. The MSE is the average of the squares of the errors, meaning that is the average 

squared difference between the actual and the predicted value. It shows how close 

are the predicted values from the actual ones, reflecting how well they fit on the 

predictive model.  

Equation: 𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1  

where 𝑦𝑖 is the actual value of the i-th observation and 

 𝑦�̂� is the estimated value of the i-th observation 
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After selecting the λ value, the regression coefficients that correspond to its value are 

used to predict the dependent variable. In order to assess the model’s performance, 

the R-squared is calculated according to the following equation:  

𝑅2 = 1 −  
∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙  −  𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑘;𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙  −  𝑌𝑚𝑒𝑎𝑛)2
𝑘;𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

 

 

R-squared, which is also known as coefficient of determination, represents the 

proportion of the variance for the dependent variable that is explained by the 

predictors in the regression model. The maximum and best value of the R-squared 

coefficient is equal to 1, when the estimated variable is identical to the actual; thus 

there are no errors from the predictive model. Hence, the accuracy of the model was 

calculated with the R-squared.  

The criterion of R-squared > 0.70 (out of a max measure of 1) was applied, in order to 

identify the models that adequately predict the metafeatures. The result was that 53 

of the 77 models satisfy this criterion, meaning that 53 metafeatures can be predicted 

from genes with an accuracy 70% and greater. Each one of these 53 predicted 

metafeatures is called “pMetafeature”, using the prefix “p” to identify the predicted 

metafeatures. Furthermore, each pMetafeature was predicted from a subset of genes 

that have non-zero regression coefficients. The subset of the genes that predict the 

pMetafeature is called “signature of pMetafeature” and differ among the 

pMetafeatures.   

Additionally, some extra validity metrics were used in order to assess the performance 

of the predictive models. [41] Specifically, for each of the 53 metafeatures the 

following metrics were calculated: 

 Normalized Root Mean Squared error (Normalized RMSE):    

 

√∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙  −  𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2
𝑛;𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑁

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
 

 

where Ymax is the maximum value of the Yactual and 

             Ymin is the minimum value of the Yactual 

 

Similarly to MSE, the normalized root mean squared error measures the 

goodness of fit of the predictive model. Values closer to 0 correspond to better 

predictive ability of the model.  

 

 Pearson Correlation between the predicted Metafeature and the actual 

Metafeature in order to assess the relationship between the estimated and 

the actual values. Values closer to 1 mean stronger association between the 

two variables. 
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 Cross Validated Normalized RMSE:  

√𝑀𝑆𝐸

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
 

Similarly to MSE, the cross validated normalized root mean squared error 

measures how well the data is fitted. Values closer to 0 mean better predictive 

performance of the model. 

 

The range of the derived values of the extra validity metrics for the 53 

metafeatures are depicted in Table 5. The values of the normalized RMSE as 

well as the values of the cross validated normalized RMSE for all the 53 

metafeatures were acceptably small, indicating that the estimated values were 

close to the actual. Furthermore, the Pearson correlation coefficient between 

the pMetafeature and the actual metafeature for all the examined 

metafeatures was greater than 0.88, showing desired strong relationships 

between them. Simultaneously all the corresponding p-values of Pearson 

correlation coefficients were significantly lower than 1%, indicating strong 

evidence for rejecting the null hypothesis. 

 

Table 5. Range of the values of the validity metrics for the predictive models of metafeatures in terms of genes 

VALIDITY METRIC MIN VALUE MAX VALUE 

NORMALIZED RMSE 0.007066477 0.146459931 

PEARSON CORRELATION 
(PMETAFEATURE + 

ACTUAL METAFEATURE) 

0.881558633 0.999754279 

CROSS NORMALIZED 
RMSE 

0.121271463 0.361192079 

 

 

However, the metafeatures that can be predicted with high accuracy from the genes 

needed to be statistically correlated to them according to step B. To be more specific, 

the metafeatures are important to have predictive and simultaneously statistical 

correlation with genes in order to enhance their significance in lung cancer.  After 

examining the correlations between the 53 metafeatures and the genes according to 

step B, 2 of the 53 metafeatures resulted not to be statistically correlated with genes. 

Thus, these two metafeatures were excluded from the further analysis, resulting to 51 

significant metafeatures.  

Thus, we reduced the number of metafeatures and consequently the number of 

imaging features that are important in characterization of cancer. Furthermore, more 
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reliable and specific mappings for cancer associations between genes and imaging 

features have been investigated through step B and E. However, all the 73 genes were 

participated in at least one predictive model; thus, no further reduction of the number 

of genes was found.   

 

Figure 18. Workflow of regression analysis of metafeatures in terms of genes (step E) 
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5.9. Cancer Staging Classification 
 

Early and valid diagnosis of lung cancer staging is crucial for the treatment planning 

and consequently for the patients’ outcome. Lung cancer diagnosis at its early stages 

increase the probabilities for successful treatment and treatment. Hence, the impact 

of the 73 significant genes and the 51 metafeatures on predicting lung cancer staging 

has to be examined. Through the procedure analysis, these genomic and imaging 

features have shown significantly statistical and predictive relationship between them 

as well as detective potential for lung cancer. In this final step (step F), we investigate 

their diagnostic ability in lung cancer staging in order to reveal their underlying 

biological significance.    

We performed two sets of classification tests in order to comprehensively examine 

the contribution of the genes and metafeatures in lung cancer staging prediction. In 

both sets of classification tests, the SVM linear classifier was used due to its simplicity 

and advantages. Furthermore, the SVM linear classifier had better (in some cases 

slight better) performance than KNN, Naïve Bayes, Decision Tree and SVMs with 

Gaussian or polynomial kernels. Thus, SVM linear classifier was selected to perform all 

the classification tests due to its robustness.  

The first set of classification tests were performed using Dataset1, which is the only 

dataset with gene expressions and imaging data. It contains data from 24 patients, 

which is a small sample size. The second set of classification tests were performed 

using Dataset1 and Dataset2 as training and testing respectively and vice versa. 

Dataset2 contains data from 84 patients with lung cancer, which is also a small sample 

size.  

Thus, the small sample size and the large number of feature space in each classifier 

may lead to underfitting of the model and thus poor performance. To overcome this 

problem, we apply a feature selection method to simplify the model by reducing the 

number of features which constitute the feature vector of the classifier. The feature 

selection methods reduce data complexity while they select the subset of the most 

important and relevant features, leading, in most cases, to more efficient 

performance. The Support Vector Machine - Recursive Feature Elimination (SVM - 

RFE) method was used as feature selection method. This method was selected due to 

the fact that SVM-RFE is an SVM-based feature selection algorithm and was created 

for gene expression data by Guyon et al. [51], being appropriate for our classification 

tests. It promises reducing computational time and higher classification accuracy 

rates. [51],[52] The SVM-RFE is a wrapper-type feature selection algorithm, meaning 

that RFE “wraps” the machine learning algorithm (i.e. SVM) to compute the scores of 

the features and select the more important ones. More precisely, it aims to recognize 

the most relevant features according to the ranking weights. It begins by computing 

the importance scores for all features and then removes the least important 

predictors. The model is re-built and the importance scores of the remaining features 

is calculated again. The process terminates when the optimal subset of important 

features is selected. Briefly, the main steps are the following:  
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1. Initialize with the full input dataset. 

2. Train the SVM model and calculate the ranking weight for each feature.  

3. Find a specific number of features (set by the user) with the lower weights and 

remove them. 

4. Recursively repeat steps 2 and 3 with the subset of features. 

5. Terminate when the optimal subset of features is defined.  
 

5.9.1. Classification tests based on Dataset1 
 

The first set of classification tests (step F1) were performed on Dataset1. Specifically, 

Dataset1 is the only dataset that contains expression profiles for the 73 significant 

genes and imaging values for the 51 metafeatures. Additionally, it includes the cancer 

staging for all 24 patients. In terms of cancer staging classification the information 

refers to T, N and M staging. The T (tumor) stage describes the tumor size and location, 

the N (nodal) stage indicates the spread of lung cancer to the lymph nodes around the 

lung and the M (metastasis) stage refers to the metastasis of cancer to other organs.  

[53] The combination of the status of the three descriptors determines the final lung 

cancer stage, which ranges from zero to four, expressed by Roman numerals (0-IV). 

The lower the stage, the less cancer has been spread. More precisely, stages 0, I and 

II are more premature stages, while stages III and IV are more advanced. The final 

cancer stage of each patient was derived from the combination of T, N and M staging 

according to the American Joint Committee on Cancer (AJCC) TNM system.  

 

Dataset1 contains patients with staging 0, I, II and III (Table 6). The number of patients 

are not distributed equally to the four cancer stages, forming an imbalanced dataset. 

For example, 14 from the 24 patients had stage I, meaning that more than half of the 

dataset consists of patients with stage I. Thus, the imbalanced dataset in combination 

with the quite small initial sample size of the dataset lead to an exploratory 

classification analysis of different cancer cases. Each case consists of different number 

of patients, while combinations of different cancer stages were used.  

Specifically, the five different classification cases were: 

 Case 1.1: 4 stages (0,I,II,III) – 24 samples 

 Case 1.2: 3 stages (I,II,III – except 0) – 20 samples 

 Case 1.3: 3 stages (0,I,II (stages II and III are combined into ‘II’ stage)) – 24 

samples 

  Case 1.4: 2 stages (I and II (stages II and III are combined into ‘II’ stage) – 

except 0) -  20 samples 

  Case 1.5: 2 stages (I and III – except 0,II) – 17 samples  
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Thus, we investigated the ability of the genes and the metafeatures to predict the 

cancer staging in different cases, in order to find the cases in which they had the better 

predictive performance.      

 
Table 6. Overview of lung cancer staging in Dataset1 

Stage Number of patients 

0 4 
I 14 
II 3 
III 3 

  

In the cases that the number of cancer stages was greater than two, the approach 

one-vs-one was used to perform the multi-class classification due to the fact that it is 

less sensitive to the problems of imbalanced datasets than the one-vs-all technique. 

Furthermore, standardization was applied as pre-processing of the data, in order to 

transform the values of the genes and the metafeatures in the same scale. To evaluate 

the classifiers’ performance, the LOOCV technique was used due to the limited sample 

size of the dataset and the absence of test sets. Additionally, the SVM-RFE technique 

was directly performed to the classifiers in order to prevent the classifier from a poor 

performance due to the fact that the dimension of the feature space was greater than 

the sample size of the dataset. The number of the features that constitute the optimal 

subset was chosen by applying all the possible numbers of features to select and 

distinguish the one which leads to the best performance of the classifier.   

For each of the aforementioned cases, we implemented and evaluated the following 

classifiers: 

1. SVM-RFE using the actual metafeatures as feature vector  

2. SVM-RFE using the genes as feature vector  

3. SVM-RFE using the pMetafeatures as feature vector 

4. SVM using the pMetafeatures of the actual selected (from 1) metafeatures + 

selected genes (from 2) as feature vector 

5. SVM-RFE using the pMetafeatures of the actual selected (from 1) 

metafeatures + selected genes (from 2) as feature vector 

The first and the second classifiers were implemented in order to assess the ability of 

the actual radiomic features and the genes, respectively, to classify the cancer stage 

of a sample. The third classifier was performed to evaluate the potential of the 

metafeatures that have been predicted from genes to estimate the staging of the 

cancer and thus their ability to replace the actual metafeatures. The fourth classifier 

combined the predicted metafeatures of the actual metafeatures that have been 

selected as significant from the SVM-RFE method of the first classifier and the genes 

that have been selected as significant from the SVM-RFE technique of the second 
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classifier. Thus, this classifier is constituted from genes, while the predicted 

metafeatures are a linear combination of a number of genes. Therefore, it assesses 

the diagnostic potential in cancer staging of a group of genes. The last classifier 

performed an SVM-RFE algorithm on the feature vector of the fourth classifier in order 

to evaluate if there is excess information on this feature space, concluding to the most 

significant and representative features for lung cancer classification. 

The accuracy of the aforementioned classifiers for all the examined cases are depicted 

in Table 7.  

Table 7. Accuracy of classification tests with each feature vector for all 5 cases 

 
Actual 

metafeatures 
Genes 

Predicted 

metafeatures 

Predicted 

metafeatures+genes 

Selected 

pFeatures+genes 

1st case 70.83% 75% 70.83% 70.83% 87.5% 

2nd case 85% 85% 85% 85% 90% 

3rd case 87.5% 91.66% 91.66% 87.5% 95.83% 

4th case 95% 90% 95% 90% 100% 

5th case 94.11% 94.11% 88.23% 88.23% 100% 

 

The first case (1.1) which involved all the cancer stages had the poorer performance 

results. We assume that it is rather logical and can be explained by the fact that there 

were many different classes (i.e. 4 cancer stages) for such a small sample size (i.e. 24 

patients), thus, the classifiers do not have an adequate sample size to be trained 

efficiently. The remaining cases (1.2, 1.3, 1.4, 1.5) showed satisfactory performance 

results in all classifiers, achieving an accuracy of at least 85%. Hence, we concluded to 

the assumption that the performance results would improve by reducing the number 

of the different predictive classes of the classifiers. This could be expected as a bigger 

amount of samples of each different class, with respect to the total sample size, would 

be provided for the training of the classifier.  

Furthermore, it is important to notice that the accuracy of the classifiers that deployed 

the predicted metafeatures as feature vector is quite similar to the classifiers with the 

actual metafeatures in all cases. Thus, the predicted metafeatures are comparable to 

prediction ability of the actual metafeatures in lung cancer staging, showing promising 

results that can be used as diagnostic biomarkers. Additionally, the classifiers with the 

genes as feature vector have equally high accuracy with the classifiers with the actual 

and predicted metafeatures. Hence, similar to metafeatures, genes seem to have the 

ability to predict the cancer staging precisely. The accuracy of the fourth classifier 

shows that the combination of the selected predicted metafeatures and the selected 

genes results to similar diagnostic ability with the classifiers that use only genes or 

only metafeatures. However, the last classifier has even better accuracy, which is the 
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highest over all the classifiers. Thus, the fourth classifier seems to have redundant 

features which were eliminated from the SVM-RFE, leading to a more precise 

performance of the classifier. Therefore, the combination of the most relevant 

metafeatures and genes has the better diagnostic ability on lung cancer staging. 

The size of the optimal subset of features after performing SVM-RFE is shown on Table 

8.  The initial length of the feature vector with genes and metafeatures was 73 and 51 

respectively. Thus, the number of the selected genes and the selected metafeatures 

(either actual or predicted) was reduced in less than the half of the initial. This 

significant reduction indicates that there were enough redundant genes or 

metafeatures for predicting the cancer staging, while using the values of Dataset1. 

Moreover, the last column of Table 8 shows that in the last classifier, which had the 

better performance, both pMetafeatures and genes were selected after applying 

SVM-RFE. The presence of pMetafeatures and genes implies that both the 

combination of genes (i.e. pMetafeatures) and the individual genes are essential for a 

precise prediction of lung cancer staging.     

    
 

Table 8. Number of selected features after performing SVM-RFE for classifiers 1, 2, 3 and 5 for all cases. 

 

Selected 

Actual 

metafeatures 

(1) 

Selected 

Genes 

(2) 

Selected 

Predicted 

metafeatures 

(3) 

Selected 

pMetafeatures+genes 

(5) 

1st case 20 30 13 16 (3 pMetafeatures) 

2nd case 10 22 10 22 (2 pMetafeatures) 

3rd case 20 30 10 25 (7 pMetafeatures) 

4th case 20 42 17 57 (17 pMetafeatures) 

5th case 15 30 12 28 (6 pMetafeatures) 

 

   

5.9.2. Classification tests based on Dataset1 and Dataset2 
 

The small number of patients of Dataset1 makes it essential for a further examination 

of the diagnostic ability of genes and radiomic features in cancer staging. The 

enhancement of the significance of the individual genes and the signatures of 

pMetafeatures was expected to provide more information about their potential on 

cancer staging prediction.   

This set of classification tests (step F2) were performed using Dataset1 and Dataset2. 

Dataset2 contains 83 patients with NSCLC. For each patient the T, N, and M staging is 

provided. Hence, the final cancer stage of each patient were derived similarly to 

Dataset1. This dataset has patients with staging I, II, III and IV (Table 9).  
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Table 9. Overview of lung cancer staging in Dataset2 

Stage Number of patients 

I 50 
II 20 
III 11 
IV 2 

 

Dataset2 contains expression profiles for the 73 significant genes, but it does not 

provide information about any radiomic features. Thus, we produced artificial 

metafeatures, which represent artificial radiomic features. Each artificial metafeature 

was produced by using the corresponding regression coefficients of the 73 genes that 

have been derived during the lasso regression of step E. To be more specific, we 

multiplied the vector of the regression coefficients with the expression profiles of the 

73 genes of Dataset2 in order to produce the pMetafeature. This process was 

performed for all the 51 significant metafeatures using the corresponding vector of 

regression coefficients for each one of them. Thus, for all the patients of Dataset2 was 

produced artificial imaging features by using their actual expression profiles of the 73 

genes and the derived vector of regression coefficients. The vector of the regression 

coefficients contains the appropriate weights for each one of the 73 genes. During the 

examination analysis of step E, this vector of each pMetafeature was proven to have 

the ability, in combination with the values of the 73 genes, to predict accurately the 

values of the actual metafeatures. This predictive ability will be verified further during 

the step F2.    

Patients with stages 0 and IV were excluded for further analysis, as they were included 

only in Dataset1 and Dataset2, respectively. Dataset1 has few samples and low 

generalization capacity. Furthermore, stages I and II are quite close, as they constitute 

premature stages of lung cancer and thus it is more difficult to distinguish them. On 

the contrary, stage III is a more advanced stage and thus, it is easier to distinguish its 

difference from stages I and II. Due to the low generalization capacity of the dataset1 

and the biological nature of the different cancer stages, we decided to perform 

classification tests using only the patients with cancer stage I and III. Thus, we selected 

the most distant stages which have an adequately proportion of samples in both 

datasets according to their total sample size.   

We performed two different classification cases in this step F2: 

 Case 2.1: Training at Dataset 1 – Testing at Dataset 2 

      2 stages (I and III) – Training set: 17 samples – Testing set: 61 samples 

  Case 2.2: Training at Dataset 2 – Testing at Dataset 1 

      2 stages (I and III) – Training set: 61 samples – Testing set: 17 samples 

Case 2.1 is the most important, while the main dataset of the whole procedure 

analysis, Dataset1, is used to train the classifier. Thus, the outcome of the classifier 
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will depend on how well it was trained by Dataset1. Furthermore, testing on Dataset2 

could generalize the results by examining the impact of the genes and the radiomic 

features that have been derived and trained by Dataset1 on another dataset. The fact 

that the Dataset2 does not provide radiomic features and thus artificial radiomic 

features were created, is significant for the evaluation of the replacement ability of 

radiomic features from genes.  

Case 2.2 is performed to validate further the importance of the genes in predicting the 

cancer staging and forming artificial imaging features that can also predict the stage 

of the cancer. Two important points in this case is that the classifiers are trained in a 

larger dataset than in case 2.1 and are tested in a dataset that contains actual values 

of radiomic features.  

 

Two pre-processing techniques were used before the implementation of the 

classifiers, the mean-centering and the standardization. The mean-centering 

algorithm is used to cross-normalize the values of genes and imaging features from 

the two different datasets, targeting to the restriction of batch effects. Additionally, 

standardization is used as a second pre-processing step in order to make the values of 

different scales comparable.  

 

For each of the two cases (case 2.1 and case 2.2), the following classifiers were 

implemented:  

1. SVM using genes as feature vector 

2. SVM-RFE using genes as feature vector 

3. SVM using imaging features as feature vector 

4. SVM-RFE using imaging features as feature vector 

5. SVM using the selected imaging features (from 4) + the selected genes (from 

2) as feature vector 

6. SVM-RFE using the selected imaging features (from 4) + the selected genes 

(from 2) as feature vector 

 

The first classifier was evaluated in order to assess the diagnostic ability of the 73 

significant genes on lung cancer staging. The second classifier was used to remove 

possible redundant genes, leading to the improvement of the classifier’s performance. 

The third and the fourth classifier were used to assess if the genes can produce 

artificial radiomic features that can predict the stage of the cancer. To be more 

specific, they evaluate the potential of genes to replace the predictive ability of 

imaging features. Finally, the fifth and the sixth classifier were performed to assess if 

the combination of groups of genes, that express imaging features and individual 

genes, can lead to better cancer staging classification scores.  

 

The accuracy of the 6 aforementioned classifiers for the two examined cases was 

calculated (Table 10). In both cases the classifiers (2) and (4), which are the classifiers 

with a subset of genes and metafeatures, respectively, showed slight better 

performance compared to classifiers (1) and (3), respectively. Thus, there were some 
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redundant features in both classifiers with the initial number of genes and 

metafeatures, which were removed.   

The classifier (3) of the case 2.1 was trained in the actual metafeatures of Dataset1 

and tested in the artificial metafeatures of Dataset2. Classifier (4), which was derived 

from classifier (3) after applying SVM-RFE, had the potential to predict the cancer 

staging with an accuracy of 83.60%, although the values of the radiomic features of 

this testing set were artificially produced. Thus, this classification test revealed the 

ability of the group of the 73 genes to produce radiomic features, providing CT imaging 

information of tumors that have not undergone CT scanning. Furthermore, classifier 

(4) of the case 2.2 indicated similar results. More precisely, this classifier was trained 

in the artificial metafeatures of Dataset2 and was tested in the actual metafeatures of 

Dataset1. The accuracy of the classifier was not reduced significantly compared to 

classifier (4) of case 1.1, showing that the classifier was trained adequately with the 

artificial imaging features. Thus, the classifier maintained the ability to predict 

correctly an acceptable percentage (82.35%) of the cancer staging of the patients 

based on their actual radiomic features.  

In case 2.1, classifier (5) with the combination of metafeatures and genes had one of 

the highest accuracies among the classifiers whereas in case 2.2 this classifier resulted 

in the highest accuracy. Hence, both individual genes and combination of genes (i.e. 

metafeatures) showed more precise detection of lung cancer, similarly to the set of 

classification tests of step F1. It is important to highlight that classifier (6) had slightly 

better or the same accuracy than classifier (5) in case 2.1 and 2.2, respectively. Thus, 

the optimal subset of the metafeatures and the genes seemed to have been selected 

during the construction of classifier (2) and (4).     

 
Table 10. Accuracy of classification tests with each feature vector for the two training cases. 

  
Genes 

(1) 

Genes after 

SVM-RFE (2) 

Metafeatures 

(3) 

Metafeatures 

after SVM-

RFE (4) 

Selected 

metafeatures+genes 

(5) 

Metafeatures+genes 

after SVM-RFE (6) 

Case 2.1 77.04% 78.68% 81.96% 83.60% 83.60% 85.24% 

Case 2.2 70.58% 82.35% 76.47% 82.35% 88.23% 88.23% 

  

The size of the subset of the features after applying SVM-RFE in the classifiers is 

depicted in Table 11. In case 2.1 there is reduction of the number of important genes 

and metafeatures in both classifiers (2) and (4), respectively. In case 2.2 a significant 

reduction on the number of genes in classifier (2) was occurred. By comparing the 

accuracy of 82.35% of the classifier (2) towards the accuracy of 70.58% of classifier (1), 

the results indicate that the initial 73 genes in this case were not capable to predict 

the lung cancer staging; hence, a significant reduction of their number was required. 

On the contrary, in the last column which contains the number of the selected 
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metafeatures and genes after applying SVM-RFE, it was confirmed that the optimal 

subset had already be selected. In case 2.1 the size of the combined list of 

metafeatures and genes was 50 (genes) + 18 (metafeatures), resulting to 68 features. 

The size of the final subset after SVM-RFE in this list was equal to 59. Similarly, in case 

2.2 the size of combined list was 5 (genes) + 20 (metafeatures), leading to 25 features 

whereas the size of the final subset of classifier (6) was 23. Thus, a slight reduction of 

the features of the combined list was performed. Furthermore, it is important to 

highlight that the final optimal subset of classifier (6), which had the better 

classification rates, was consisted of both metafeatures and genes. This result 

complies with the first set of classification tests (step F1) that both, individual genes 

and combination of genes which form the metafeatures, are required for a more 

accurate prediction of lung cancer staging.      

 
Table 11. Number of selected features after performing SVM-RFE for all classifiers for the two training cases. 

 Selected 

Genes (2) 

Selected 

Metafeatures 

(4) 

Selected 

Metafeatures+genes 

(6) 

Case 2.1 50 18 
59 (16 

pMetafeatures) 

Case 2.2 5 20 
23 (19 

pMetafeatures) 
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5.10. Enrichment Analysis 
 

The WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) [54] was used to study 
functional categories in different biological contexts, including biological processes, 
pathways, and miRNA targets (see Box), that are overrepresented among the 
signatures’ selected genes. WebGestalt is a popular tool for the interpretation of gene 
lists derived from high-throughput “-omics” studies. The current version of 
WebGestalt (2019) supports 155175 functional categories from well-known public 
databases, such as the gene ontology (GO) [55], Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [56], Protein ANalysis THrough Evolutionary Relationships (Panther) 
[57], Wikipathway [58], and Molecular Signatures Database (MSigDB) [59], and 
computational analyses. 
To include gene- and miRNA-disease related information, another public resource 
used was the Integrated Genomic Database of Non-Small Cell Lung Carcinoma 
(IGDB.NSCLC)[60] as a complement.  
 

Box: Key Terms at a Glance 
Gene Ontology [61], [62]: The Gene Ontology (GO) knowledgebase is the world’s largest source of information 
on the functions of genes. This knowledge is both human-readable and machine-readable. The Gene Ontology 
(GO) describes our knowledge of the biological domain with respect to three aspects: 1. Molecular Function: 
Molecular function terms describe activities that occur at the molecular level, such as “catalysis” or 
“transport”.  Molecular-level activities performed by gene products. 2. Cellular Component: The locations 
relative to cellular structures in which a gene product performs a function, either cellular compartments 
(e.g., mitochondrion), or stable macromolecular complexes of which they are parts (e.g., the ribosome). 3. 
Biological Process: The larger processes, or ‘biological programs’ accomplished by multiple molecular 
activities. Examples of broad biological process terms are DNA repair or signal transduction. Examples of more 
specific terms are pyrimidine  nucleobase biosynthetic process or glucose transmembrane transport. 

Pathways [63]: A biological pathway is a series of actions among molecules in a cell that leads to a certain 
product or a change in the cell. It can trigger the assembly of new molecules, such as a fat or protein, turn 
genes on and off, or spur a cell to move.  

miRNAs [64]: microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal 
specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and 
further inferring miRNA functions have been a critical strategy for understanding normal biological processes 
of miRNAs and their roles in the development of disease. 

KEGG [56]: KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on 
the molecular interaction, reaction and relation networks for: 1. Metabolism, 2. Genetic Information 
Processing, 3. Environmental Information Processing, 4. Cellular Processes, 5. Organismal Systems, 6. Human 
Diseases, 7. Drug Development. 

Panther [57]: The PANTHER Pathway ontology uses controlled vocabulary to describe pathways, their 
components, and the relationships among them. The PANTHER Pathway ontology has four key classes: 1. 
Pathway class, 2. Molecule class, 3. Reaction class and relationships, 4. Cell type or subcellular compartment 
class. 

Wikipathways Cancer [58]: WikiPathways captures the collective knowledge represented in biological 
pathways. Wikipathways Cancer is a cancer-related subset of WikiPathways. 

MSigDB [59]: The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive 
databases of gene sets for performing gene set enrichment analysis. 

WebGestalt [65]: WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) is one of the first software applications 
that integrate functional enrichment analysis and information visualization for the management, information 
retrieval, organization, visualization and statistical analysis of large sets of genes. 
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Overrepresentation Analysis on Differential Expressed Genes (DEGs) 

According to both screening criteria (Spearman & FDR across imaging features, SAM) 
of differentially expressed genes, 78 common genes showed significant alterations of 
expression levels in patients with NSCLC compared to normal control patients, 
including 66 up-regulated and 12 down-regulated genes, respectively. 
In order to clarify the potential roles of genes included in this signature, we performed 
overrepresentation analysis on the 78 common genes in the context of the 
aforementioned databases, using WebGestalt. The cutoff criterion for enrichment 
analyses was decided as p ≤ 0.05 and the false discovery rate (FDR) as < 0.05 for 
statistically significant terms. 
 
Supporting (S) Table 1a provides several GO biological processes that were enriched 
but did not reach statistical significance (p ≤ 0.05, FDR > 0.05), such as acute 
inflammatory response, nucleoside triphosphate metabolic process, carbohydrate 
catabolic process, and vasculogenesis. KEGG and Panther analysis results showed that 
78 genes were enriched (p ≤ 0.05, FDR > 0.05) in several metabolism related pathways, 
including Glycolysis/Gluconeogenesis, Riboflavin metabolism, Starch and sucrose 
metabolism, Fructose galactose metabolism, and Pentose phosphate pathway process 
(Table S1b). Wikipathway cancer analysis results showed that 78 genes were enriched 
(p ≤ 0.05, FDR > 0.05) in specific signaling pathways, such as ATR Signaling, DNA IR-
damage and cellular response via ATR, ATM Signaling Pathway, and DNA IR-Double 
Strand Breaks (DSBs) and cellular response via ATM. Among these enriched signaling 
pathways, the later reaches statistical significance (p = 0.00017, FDR = 0.01). 
Additionally, Table S1c provides the results of miRNA targets enrichment analysis 
reporting enriched miRNAs (p < 0.05), such as MIR-143, MIR-224, MIR-29A, MIR-29B, 
MIR-29C, MIR-423, MIR-380-3P, MIR-365, MIR-17-3P that did not reach statistical 
significance (FDR = 1) . 
 
Overrepresentation Analysis of Genes in the Classification Signatures 

In order to characterize the GO biological processes, pathways, and miRNA targets 
associated with the CT-derived imaging-correlated genes, genes of classification cases 
1.1, 1.2, 1.3, 1.4, 1.5, 2.1, and 2.2 were analyzed in the context of several databases, 
as aforementioned, using the online WebGestalt [66]. The cutoff for enrichment 
analyses was defined at a p ≤ 0.05 and the false discovery rate (FDR) was set at < 0.05 
for statistically significant terms.  
 
Since these gene sets (classification cases 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, and 2.2) relied on 
the same 78 gene signature, it is expected to find similar functional categories with 
some degree of variation in their ranking. Indeed, in part GO analysis results showed 
that genes were enriched in process of vasculogenesis (p ≤ 0.05) in all classification 
signatures (see Tables S2a-S8a), but also in process of acute inflammatory response, 
carbohydrate catabolic process, snRNA metabolic process, cell cycle checkpoint, 
double-strand break repair and phospholipase C-activating G protein-coupled 
receptor signaling pathway (p ≤ 0.05) in more than one classification signatures (see 
Tables S2a-S8a). 
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Similar, but to a greater extent, several metabolism related pathways were enriched 
in the majority of the classification signatures (see Tables S2b-S8b), including 
Glycolysis/Gluconeogenesis, Riboflavin metabolism, Starch and sucrose metabolism, 
Fructose galactose metabolism, and Pentose phosphate pathway (p ≤ 0.05). Also, 
several cancer signaling pathways were enriched in one or more classification 
signatures (p ≤ 0.05), including Cadherin signaling pathway (Tables S2b, S3b) and HIF-
1 signaling pathway (Tables S2b, S4b), as well as DNA IR-Double Strand Breaks (DSBs) 
and cellular response via ATM in the majority of the classification signatures (see 
Tables S4b-S8b), which reaches statistical significance in the classification case 2.1 (p 
= 0.00017, FDR = 0.01).  
 
In addition, Tables S2c-S8c provide the results of miRNA targets enrichment analysis 
reporting enriched miRNAs (p < 0.05), such as MIR-143, MIR-29A, MIR-29B, MIR-29C, 
MIR-224, MIR-423, MIR-380-3P, MIR-365, MIR-17-3P that did not reach statistical 
significance (FDR = 1).  
 
Based on the above analysis, the DNA IR-Double Strand Breaks (DSBs) and cellular 
response via ATM was the most prominent finding in the majority of the classification 
signatures and was the only statistical significant term among all functional categories 
in classification signatures (classification case 2.1, p = 0.00017, FDR = 0.01). In our 
study, the genes that involved in the pathway DNA IR-Double Strand Breaks (DSBs) 
and cellular response via ATM are: PARP1 (poly(ADP-ribose) polymerase 1), FANCD2 
(FA complementation group D2), RAD9A (RAD9 checkpoint clamp component A), and 
NABP2 (nucleic acid binding protein 2), which operate via ATM gene (Figure 19) [67].  

 
Figure 19. Wikipathway cancer (WP3959): DNA IR-Double Strand Breaks (DSBs) and cellular response via ATM.  

Ataxia-telangiectasia mutated (ATM) gene is critical in maintaining genomic integrity 
and plays a key role in the cellular DNA damage response. In response to DNA double-
strand breaks, ATM phosphorylates downstream proteins involved in cell-cycle 
checkpoint arrest, DNA repair, and apoptosis [68]. Petersen et al. (2017) reported that 
ATM loss seems to be an early event in NSCLC carcinogenesis and is an independent 
prognostic factor associated with worse survival in stage II/III patients. Thus, according 
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to our analysis, PARP1, FANCD2, RAD9A, NABP2 could be further experimentally 
evaluated for their prognostic role in NSCLC. 

 
Meanwhile, most “classification signatures” include COL5A2 (collagen type V alpha 2 
chain) gene, which has already been reported to be involved in the pathological 
process of colorectal cancer, adenomas, breast cancer, osteosarcoma, bladder cancer 
etc [69], and was also found significant in five studies of NSCLC, according to 
IGDB.NSCLC Database [60]. In addition, WebGestalt analysis provided also enriched 
miRNAs (p < 0.05), such as MIR-363, MIR-503, and MIR-22 (Tables S2c-S8c), which 
were found significant in several NSCLS studies, according to IGDB.NSCLC database. 
These miRNAs could also be further experimentally evaluated for their roles in the 
development of NSCLC disease, considering that miRNAs targeting pathways provide 
potential candidates for therapeutic intervention against various pathological 
conditions. 
 
To summarize, our analysis supports the notion that the DNA IR-Double Strand Breaks 
(DSBs) and cellular response via ATM seems to be a key signaling pathway in NSCLC. 
The related classification case 2.1 (see Table S7b), which involved training at dataset 
1-GSE28827 (17 samples), testing at dataset 2-GSE75037 (61 samples), and 2 stages (I 
and III), can be viewed as the most significant “classification signature”, that is also 
consistent with the statistical results. Moreover, our analysis provides indices for the 
emerging role of COL5A2, PARP1, FANCD2, RAD9A, NABP2 in NSCLC, and the potential 
significance of MIR-363, MIR-503, and MIR-22 in NSCLC. 
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6. Discussion - Summary 
 

Mutations of genes and cell proliferation are hallmarks of cancer. The mutations affect 
genes in ways that disturb the natural growth and death cycle of cells. These changes 
lead to abnormal and upregulated cell division forming the tumor. A gene mutation is 
an alteration in its DNA sequence. Thus, gene mutations cause changes in their 
expression profiles. We investigated the genes, whose level of expression profiles 
differ significantly between cancer and normal samples. A comprehensive analysis was 
conducted during step A using SAM and 2-fold change for genomic expression data 
mining. This analysis resulted to 2370 significant genes with differentiation ability 
between cancer and normal samples. The larger proportion of them (1540 genes) was 
positive significant, meaning that they have higher expression profiles in cancer 
population than in normal. The remaining 830 genes were negative significant with 
higher expression profiles in normal than in cancer state.   

Screening tests are widely used in order to detect and characterize a disease, such as 
lung cancer. Radiomics deploy textural analysis as a tool for the evaluation of the 
tumor heterogeneity using medical images. It generates an amount of quantitative 
imaging features, which reflect the shape, size and texture of the tumor. Liu et al.  [6] 
summarize many studies that have been conducted in the field of Radiomics for the 
detection, evaluation and prognosis of different type of cancers. In recent years, an 
extension of Radiomics, which is the Radiogenomics, aim to combine genomic and 
radiomic data in order to investigate possible correlations between them, leading to 
increase precision in diagnosis and assessment of cancer. [2] We examine the possible 
correlations between the 2370 significant genes and the CT radiomic features with 
two methods, the Spearman rank correlation test + FDR 5% and the quantitative SAM 
(q-value <= 0.05). The 78 common genes from the 2370 initial genes were identified 
to reveal statistically significant correlations with both methods. Hence, these 78 
genes showed differentiation and diagnostic ability (step A) and simultaneously were 
highly correlated with radiomic features (step B). A two-step reduction procedure had 
been implemented in order to identify the number of genes that are more important 
in lung cancer.       

The genomic data is publicly available from the GEO database, providing open access 
to the researchers. Thus, we used a new unseen dataset in order to assess further the 
significance of the genes that had been selected from our analysis on lung cancer 
diagnosis. The ability of the genes to classify the origin of a sample (cancer or normal) 
and produce homogeneous clusters with respect to the biological annotation was 
examined through step C. The results of the classification were promising, while the 
classifier achieved accuracy 92.05%, sensitivity 84.09% and specificity 100%. 
Furthermore, the BHI of the clustering of samples based on the gene values was 
85.63% and of the clustering of genes was 89.29%, showing the potential to group 
together samples of the same biological class.   

Once the significance of the genes had been validated with different approaches, the 
examination of the potential of the radiomic features was essential. Radiomics, in 
most cases, extracts a high-throughput amount of imaging features. To reduce the 
dimensionality of the imaging features and explore associations between them, we 
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perform K-means clustering algorithm on the radiomic features. Thus, 77 clusters of 
co-expressed imaging features were produced, forming the metafeatures. 
Simultaneously, the number of radiomic features was reduced, concluding in the most 
important ones for the description of the tumor characteristics.  

Similarly to Gevaert et al. [14], we investigate the potential of the significant genes to 
predict the values of the CT radiomic features. Only the metafeatures that can be 
predicted adequately (R2 > 0.70) and are highly correlated (step B) with the genes are 
considered as significant for further analysis, which are called as pMetafeatures. Thus, 
we have discovered genes with validated diagnostic character (step A and C), which 
were highly correlated with radiomic features (step B) and simultaneously have 
prediction ability of radiomic features (step E). Hence, more reliable and specific 
associations were produced between the genomic and the imaging data of lung 
cancer.  

The identification of the lung cancer staging is crucial for the treatment planning. We 
explore the potential of the significant metafeatures and genes in cancer staging 
prediction. The classification results revealed that the use of both metafeatures and 
genes as predictors leads to higher accuracy of predicting the cancer stage. 
Furthermore, the linear combination of the significant genes can produce artificial 
imaging features that can determine the lung cancer staging of the patients, providing 
radiomic data in patients who have not undergone screening tests. Thus, there are 
indications that genes can replace the predictive ability of imaging features in cancer 
staging.  
Furthermore, enrichment analysis reveal the functional processes related to cancer of 
the selected significant genes. Thus, genes are enriched with biological processes, 
pathways and miRNA targets.    

An example of the combined analysis of genetic and imaging associations that had 
been derived from our analysis, is illustrated at Figure 20. More precisely, the gene 
RAD9A was enriched in the significant signaling pathway DNA IR-Double Strand Breaks 
(DSBs) and cellular response via ATM, which participates in NSCLC carcinogenesis. This 
gene has shown diagnostic potential among cancer and normal samples through step 
A analysis. Furthermore, through step B1 and step B2 it is correlated only with the 
log_1_original_glcm_InverseVariance radiomic feature, which constitutes an imaging 
feature of the Gray Level Co-occurrence Matrix category. This imaging feature belongs 
to Metafeature 80 (through step C), which is represented by the 
log_1_original_glrlm_RunPercentage imaging feature of the Gray Level Run Length 
Matrix. Both the GLCM and GLRLM describe the texture of the medical image. 
Simultaneously, the gene RAD9A participates in the prediction of metafeature 80 
(through step E) and thus can predict the equivalent feature 
log_1_original_glcm_InverseVariance. This gene is involved also in the prediction of 
the metafeature 87, which is represented by the log_1_original_glcm_JointEnergy 
imaging feature of the GLCM category. Thus, gene RAD9A is correlated and can predict 
features that describe the texture of the tumor. Moreover, gene RAD9A and both 
metafeatures 80 and 87 participate in the prediction of lung cancer staging according 
to the case 2.1 (step F) which is the most significant “classification signature”. 
Simultaneously, this “classification signature” has revealed the emerging role of gene 
RAD9A in NSCLC carcinogenesis. In conclusion, this example (Figure 20) shows the 
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statistical and predictive relationships between a gene with differentiation ability and 
some textural radiomic features as well as the involvement of their combination in 
prediction of lung cancer staging.  

 

Figure 20. A graphical representation of the associations between the gene RAD9A and the radiomic features, 
which were derived from our analysis 

However, this study has limitations. The main drawback is the small sample size of 
genomic and imaging data. Specifically, the only dataset that contains both gene 
expression profiles and radiomic features, is consisted of 24 patients, which is a quite 
enough small sample size. Moreover, we used cross validation techniques to validate 
the accuracy of lung cancer classification due to the small sample size. Datasets with 
larger samples are required in order to enhance the predictive ability of genes and 
imaging features on lung cancer staging. Furthermore, the absence of publicly 
available radiomic data restrict the research to investigate and validate further the 
significance of radiomic features and the potential to be characterized as imaging-
based biomarkers. Additionally, PET images measure the metabolic processes in the 
human body and thus is considered more representative for revealing imaging and 
molecular associations than CT scans in lung cancer. Generally, the data from patients 
with cancer are sensitive data; thus, permission in most cases is not guaranteed. 
Additional datasets and higher-population datasets are needed to evaluate more 
precisely the diagnostic ability of genes and radiomic features in lung cancer staging.  
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7. Conclusions – Future Work    
 

This thesis aims to investigate and perfume the combined analysis of gene expression 

profiles, which constitute the genotype, and CT radiomic features data, which 

constitute the phenotype, in order to contribute in the precise diagnosis of lung cancer 

staging. Specifically, we investigated statistically and predictive correlations between 

differentially expressed genes and radiomic features, using statistical tests and 

machine learning algorithms. Moreover, we identified the potential of linear 

combination of significant genes, which can estimate imaging features, to replace the 

predictive ability of actual radiomic features on lung cancer staging. The combination 

of these group of significant genes and specific individual important genes revealed 

the highest performance on cancer staging classification tests in our analysis. 

Additionally, we indicate that groups of significant genes can produce artificial 

radiomic features in patients with no radiomic data, showing similar behavior with the 

actual imaging features on the prediction of lung cancer staging. Finally, the 

enrichment analysis indicates several signaling and metabolism pathways, several 

miRNA targets and the emerging role of some genes in NSCLC. 

Radiogenomics is an emerging field in which further investigation is needed to 

examine and validate the importance of the molecular and imaging data in order to 

achieve a precise diagnosis, prognosis and evaluation of NSCLC. Datasets with larger 

sample size is an essential prerequisite for radiomics and radiogenomics studies. 

Furthermore, datasets which contain genomic and imaging data are essential in order 

to provide adequate information about the genotype and the phenotype of lung 

cancer. These datasets could be used for further testing the classifiers of cancer 

staging and providing more accurate results. Simultaneously, predictive models of 

genes in terms of radiomic features could be examined in order to reveal imaging-

based biomarkers, providing genetic non-invasive information in patients which had 

not undergone biopsy procedure. Moreover, PET images should be used for the 

extraction of radiomic features, as these images reflect effectively the metabolic 

processes; thus, more specific associations will be identified between the molecular 

data and the PET radiomic features. Additionally, the relationship of the imaging 

features and/or genes with the survival or other clinical data could be examined, when 

these information is provided. An emerging field of machine learning, the deep 

learning algorithms, could be used for automatic extraction of radiomic features from 

medical images in order to explore their ability to provide more informative imaging 

features. Finally, deep learning algorithms can be used for classification tasks in order 

to investigate their ability to lead to better classification scores.   
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S1. Gene Annotation - 78 common Differential Expressed Genes 
(cDEGs)      

 
 

 
 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1 54825 CDHR2 cadherin-related family member 2

5883 RAD9A RAD9 homolog A (S. pombe) 83933 HDAC10 histone deacetylase 10

443 ASPA aspartoacylase 196410 METTL7B methyltransferase like 7B

284185 LINC00482 long intergenic non-protein coding RNA 482 645037 GAGE2B G antigen 2B

26232 FBXO2 F-box protein 2 8347 HIST1H2BC histone cluster 1, H2bc

2177 FANCD2 Fanconi anemia, complementation group D2 10615 SPAG5 sperm associated antigen 5

11142 PKIG

protein kinase (cAMP-dependent, catalytic) inhibitor 

gamma 3603 IL16 interleukin 16

1261 CNGA3 cyclic nucleotide gated channel alpha 3 5733 PTGER3 prostaglandin E receptor 3 (subtype EP3)

2859 GPR35 G protein-coupled receptor 35 10129 FRY furry homolog (Drosophila)

3866 KRT15 keratin 15 2524 FUT2

fucosyltransferase 2 (secretor status 

included)

114907 FBXO32 F-box protein 32 2027 ENO3 enolase 3 (beta, muscle)

2705 GJB1 gap junction protein, beta 1, 32kDa 153768 PRELID2 PRELI domain containing 2

4585 MUC4 mucin 4, cell surface associated 27094 KCNMB3

potassium large conductance calcium-

activated channel, subfamily M beta 

member 3

63035 BCORL1 BCL6 corepressor-like 1 79035 NABP2 nucleic acid binding protein 2

55277 FGGY FGGY carbohydrate kinase domain containing 23534 TNPO3 transportin 3

4157 MC1R

melanocortin 1 receptor (alpha melanocyte stimulating 

hormone receptor) 699 BUB1

budding uninhibited by benzimidazoles 1 

homolog (yeast)

1741 DLG3 discs, large homolog 3 (Drosophila) 23090 ZNF423 zinc finger protein 423

2118 ETV4 ets variant 4 25894 PLEKHG4

pleckstrin homology domain containing, 

family G (with RhoGef domain) member 4

5169 ENPP3 ectonucleotide pyrophosphatase/phosphodiesterase 3 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

55311 ZNF444 zinc finger protein 444 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

7125 TNNC2 troponin C type 2 (fast) 22874 PLEKHA6

pleckstrin homology domain containing, 

family A member 6

142 PARP1 poly (ADP-ribose) polymerase 1 7104 TM4SF4 transmembrane 4 L six family member 4

1290 COL5A2 collagen, type V, alpha 2 347853 TBX10 T-box 10

1747 DLX3 distal-less homeobox 3 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

8612 PPAP2C phosphatidic acid phosphatase type 2C 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

80201 HKDC1 hexokinase domain containing 1 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

65260 SELRC1 Sel1 repeat containing 1 23414 ZFPM2 zinc finger protein, multitype 2

54993 ZSCAN2 zinc finger and SCAN domain containing 2 3026 HABP2 hyaluronan binding protein 2

9244 CRLF1 cytokine receptor-like factor 1 127845 GOLT1A golgi transport 1A

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, interacting 

protein 1 220134 SKA1

spindle and kinetochore associated complex 

subunit 1

4796 TONSL tonsoku-like, DNA repair protein 3853 KRT6A keratin 6A

6289 SAA2 serum amyloid A2 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

84300 MNF1 mitochondrial nucleoid factor 1 25934 NIPSNAP3A nipsnap homolog 3A (C. elegans)

340706 VWA2 von Willebrand factor A domain containing 2 26112 CCDC69 coiled-coil domain containing 69

170487 ACTL10 actin-like 10 78990 OTUB2 OTU domain, ubiquitin aldehyde binding 2

10045 SH2D3A SH2 domain containing 3A 51481 VCX3A variable charge, X-linked 3A

729238 SFTPA2 surfactant protein A2 629 CFB complement factor B

638 BIK BCL2-interacting killer (apoptosis-inducing) 6878 TAF6

TAF6 RNA polymerase II, TATA box binding 

protein (TBP)-associated factor, 80kDa

202374 STK32A serine/threonine kinase 32A 23780 APOL2 apolipoprotein L, 2

Table S1: 78 common differentially expressed genes (cDEGs) as extracted from the intersection of the 1st approach (Spearman+FDR across imaging 

features), and the 2nd approach (SAM). The 73 genes highlighted in blue are used as input in the next steps of the proposed methodology. The genes are 

described by their gene symbols and gene names using WebGestalt 2013.

78 common Differential Expressed Genes (cDEGs)                                                                                                         

Intersection of Spearman & FDR across imaging features and SAM
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S1A. Enriched Gene Ontology (GO) biological processes (BP) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0002526 acute inflammatory response 0.0039297 1

GO:0009141 nucleoside triphosphate metabolic process 0.0087898 1

GO:0009123 nucleoside monophosphate metabolic process 0.010953 1

GO:0007586 digestion 0.017864 1

GO:0043954 cellular component maintenance 0.022214 1

GO:0016052 carbohydrate catabolic process 0.027134 1

GO:0060249 anatomical structure homeostasis 0.027795 1

GO:0050918 positive chemotaxis 0.029445 1

GO:0005996 monosaccharide metabolic process 0.029654 1

GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.032409 1

GO:0061458 reproductive system development 0.033196 1

GO:0009314 response to radiation 0.037651 1

GO:0001570 vasculogenesis 0.039365 1

GO:0007059 chromosome segregation 0.041553 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.041842 1

78 common Differential Expressed Genes (cDEGs)                                                                                                

Intersection of Spearman & FDR across imaging features and SAM

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S1: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 78 

cDEGs as extracted  from the intersection of the 1st approach (Spearman+FDR across imaging features), 

and the 2nd approach (SAM). The enrichment analysis was performed by WebGestalt 2019.
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S1B. Enriched Pathways  

 
 

 

 
S1C. Enriched miRNA targets  

 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.012163 1

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.023218 1

hsa03460 Fanconi anemia pathway 0.026215 1

hsa00740 Riboflavin metabolism 0.036896 1

hsa00010 Glycolysis / Gluconeogenesis 0.04007 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.02794 1

P02744 Fructose galactose metabolism 0.03824 1

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.00017467 0.01345

WP4016 DNA IR-damage and cellular response via ATR 0.0094637 0.36435

WP2516 ATM Signaling Pathway 0.020857 0.53533

WP3875 ATR Signaling 0.050732 0.88186

Table S1: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 78 cDEGs as extracted from the 

intersection of the 1st approach (Spearman+FDR across imaging features), and the 2nd approach (SAM). 

The enrichment analysis was performed by WebGestalt 2019.

78 cDEGs - Intersection of Spearman & FDR across imaging features and SAM

B. Pathways

KEGG (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Panther (p value ≤ 0.05)

P Value FDR

0.010415 1

0.012003 1

0.019426 1

0.024496 1

0.039115 1

0.04339 1

0.044852 1

78 DEGs - Intersection of Spearman & FDR across imaging features and SAM

C. miRNA targets

miRNA targets (p value ≤ 0.05)

Table S1: c) miRNA target annotation (MSigDB) of 78 cDEGs as extracted from the intersection of the 1st 

approach (Spearman+FDR across imaging features), and the 2nd approach (SAM). The enrichment 

analysis was performed by WebGestalt 2019.

Gene Set

TCATCTC,MIR-143

GTGACTT,MIR-224

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

GGGCATT,MIR-365

ACTGCAG,MIR-17-3P
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Entrez Gene ID Gene Symbol Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1

443 ASPA aspartoacylase

284185 LINC00482 long intergenic non-protein coding RNA 482

26232 FBXO2 F-box protein 2

2177 FANCD2 Fanconi anemia, complementation group D2

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma

54825 CDHR2 cadherin-related family member 2

83933 HDAC10 histone deacetylase 10

196410 METTL7B methyltransferase like 7B

8347 HIST1H2BC histone cluster 1, H2bc

10615 SPAG5 sperm associated antigen 5

2705 GJB1 gap junction protein, beta 1, 32kDa

5733 PTGER3 prostaglandin E receptor 3 (subtype EP3)

10129 FRY furry homolog (Drosophila)

2524 FUT2 fucosyltransferase 2 (secretor status included)

4585 MUC4 mucin 4, cell surface associated

63035 BCORL1 BCL6 corepressor-like 1

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor)

153768 PRELID2 PRELI domain containing 2

2027 ENO3 enolase 3 (beta, muscle)

23534 TNPO3 transportin 3

699 BUB1 budding uninhibited by benzimidazoles 1 homolog 

23090 ZNF423 zinc finger protein 423

2118 ETV4 ets variant 4

25894 PLEKHG4

pleckstrin homology domain containing, family G 

(with RhoGef domain) member 4

5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3

55311 ZNF444 zinc finger protein 444

79674 VEPH1

ventricular zone expressed PH domain homolog 1 

(zebrafish)

22874 PLEKHA6

pleckstrin homology domain containing, family A 

member 6

1290 COL5A2 collagen, type V, alpha 2

1747 DLX3 distal-less homeobox 3

7104 TM4SF4 transmembrane 4 L six family member 4

347853 TBX10 T-box 10

9245 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type

80201 HKDC1 hexokinase domain containing 1

7477 WNT7B

wingless-type MMTV integration site family, 

member 7B

54993 ZSCAN2 zinc finger and SCAN domain containing 2

9244 CRLF1 cytokine receptor-like factor 1

23414 ZFPM2 zinc finger protein, multitype 2

3026 HABP2 hyaluronan binding protein 2

3853 KRT6A keratin 6A

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, interacting 

protein 1

5980 REV3L

REV3-like, polymerase (DNA directed), zeta, 

catalytic subunit

78990 OTUB2 OTU domain, ubiquitin aldehyde binding 2

26112 CCDC69 coiled-coil domain containing 69

84300 MNF1 mitochondrial nucleoid factor 1

23780 APOL2 apolipoprotein L, 2

Classification Case 1.1 - 47 Genes 

Table S2: Based on the 73 gene list (S1), 47 genes were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 24 

samples), and 4 stages (0, I, II, III). The genes are described by their gene symbols and 

gene names using WebGestalt 2013.

S2. Gene Annotation - Classification Case 1.1 
 



 
 

[97] 
 

S2A. Enriched Gene Ontology (GO) biological processes (BP) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0007586 digestion 0.0039869 1

GO:0009141 nucleoside triphosphate metabolic process 0.0061138 1

GO:0016052 carbohydrate catabolic process 0.0062348 1

GO:0009123 nucleoside monophosphate metabolic process 0.0073894 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.0099717 1

GO:0046434 organophosphate catabolic process 0.013342 1

GO:0001570 vasculogenesis 0.014266 1

GO:0009100 glycoprotein metabolic process 0.01435 1

GO:0061458 reproductive system development 0.01953 1

GO:0046939 nucleotide phosphorylation 0.022709 1

GO:0070085 glycosylation 0.024202 1

GO:0015748 organophosphate ester transport 0.02496 1

GO:0005996 monosaccharide metabolic process 0.030167 1

GO:0098732 macromolecule deacylation 0.030217 1

GO:0006090 pyruvate metabolic process 0.031721 1

GO:0009259 ribonucleotide metabolic process 0.032227 1

GO:0009132 nucleoside diphosphate metabolic process 0.03274 1

GO:0007059 chromosome segregation 0.039646 1

GO:0001655 urogenital system development 0.04422 1

GO:0072524 pyridine-containing compound metabolic process 0.053148 1

GO:0002526 acute inflammatory response 0.053767 1

Classification Case 1.1 - 47 Genes

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S2: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 47 

genes that were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 24 samples), and 4 stages (0, I, II, III). The enrichment analysis was 

performed by WebGestalt 2019.
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S2B. Enriched Pathways  

 

 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.0032924 0.98659

hsa03460 Fanconi anemia pathway 0.0072892 0.98659

hsa00010 Glycolysis / Gluconeogenesis 0.011375 0.98659

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.011995 0.98659

hsa00740 Riboflavin metabolism 0.019127 1

hsa04066 HIF-1 signaling pathway 0.023619 1

hsa04916 Melanogenesis 0.024062 1

hsa01100 Metabolic pathways 0.026151 1

hsa01200 Carbon metabolism 0.031113 1

hsa00603 Glycosphingolipid biosynthesis 0.035579 1

hsa00770 Pantothenate and CoA biosynthesis 0.044862 1

hsa00340 Histidine metabolism 0.054062 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.014056 1

P02744 Fructose galactose metabolism 0.019289 1

P00012 Cadherin signaling pathway 0.024829 1

P00024 Glycolysis 0.029692 1

Gene Set Description P Value FDR

WP4018 Pathways in clear cell renal cell carcinoma 0.037065 1

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S2: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 47 genes that were obtained 

after the classification approach which involved training and testing at the same dataset (dataset 1-

GSE28827, 24 samples), and 4 stages (0, I, II, III). The enrichment analysis was performed by WebGestalt 

2019.

KEGG (p value ≤ 0.05)

Classification Case 1.1 - 47 Genes

B. Pathways
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S2C. Enriched miRNA targets  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P Value FDR

0.0036484 0.31145

0.0037866 0.31145

0.0042279 0.31145

0.017097 0.71805

0.019738 0.71805

0.021975 0.71805

0.022744 0.71805

0.026861 0.74203

0.050472 1

TCATCTC,MIR-143

ACTGCAG,MIR-17-3P

GTGCAAT,MIR-25,MIR-32,MIR-92,MIR-363,MIR-367

CGCTGCT,MIR-503

Table S2: c) miRNA target annotation (MSigDB) of 47 genes that were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 24 samples), and 

4 stages (0, I, II, III). The enrichment analysis was performed by WebGestalt 2019.

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

GTGACTT,MIR-224

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

GGGCATT,MIR-365

Gene Set

Classification Case 1.1 - 47 Genes

C. miRNA targets

miRNA targets (p value ≤ 0.05)
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Entrez Gene ID Gene Symbol Gene Name

284185 LINC00482 long intergenic non-protein coding RNA 482

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma

54825 CDHR2 cadherin-related family member 2

1261 CNGA3 cyclic nucleotide gated channel alpha 3

196410 METTL7B methyltransferase like 7B

8347 HIST1H2BC histone cluster 1, H2bc

10615 SPAG5 sperm associated antigen 5

5733 PTGER3 prostaglandin E receptor 3 (subtype EP3)

4585 MUC4 mucin 4, cell surface associated

63035 BCORL1 BCL6 corepressor-like 1

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor)

23534 TNPO3 transportin 3

699 BUB1

budding uninhibited by benzimidazoles 1 

homolog (yeast)

23090 ZNF423 zinc finger protein 423

25894 PLEKHG4

pleckstrin homology domain containing, family G 

(with RhoGef domain) member 4

5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3

7125 TNNC2 troponin C type 2 (fast)

79674 VEPH1

ventricular zone expressed PH domain homolog 1 

(zebrafish)

22874 PLEKHA6

pleckstrin homology domain containing, family A 

member 6

142 PARP1 poly (ADP-ribose) polymerase 1

7104 TM4SF4 transmembrane 4 L six family member 4

9245 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type

6690 SPINK1 serine peptidase inhibitor, Kazal type 1

7477 WNT7B

wingless-type MMTV integration site family, 

member 7B

23414 ZFPM2 zinc finger protein, multitype 2

54993 ZSCAN2 zinc finger and SCAN domain containing 2

220134 SKA1 spindle and kinetochore associated complex 

3026 HABP2 hyaluronan binding protein 2

3853 KRT6A keratin 6A

5980 REV3L

REV3-like, polymerase (DNA directed), zeta, 

catalytic subunit

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, 

interacting protein 1

26112 CCDC69 coiled-coil domain containing 69

78990 OTUB2 OTU domain, ubiquitin aldehyde binding 2

6878 TAF6

TAF6 RNA polymerase II, TATA box binding 

protein (TBP)-associated factor, 80kDa

Classification Case 1.2 - 34 Genes 

Table S3: Based on the 73 gene list (S1), 34 genes were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 

20 samples), and 3 stages (I, II, III). The genes are described by their gene symbols and 

gene names using WebGestalt 2013.

S3. Gene Annotation - Classification Case 1.2 
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S3A. Enriched Gene Ontology (GO) biological processes (BP) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0007586 digestion 0.0015491 1

GO:0001570 vasculogenesis 0.007603 1

GO:0034504 protein localization to nucleus 0.01109 1

GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.013595 1

GO:0007059 chromosome segregation 0.016826 1

GO:2000241 regulation of reproductive process 0.025196 1

GO:0048545 response to steroid hormone 0.0297 1

GO:0023019 signal transduction involved in regulation of gene 

expression

0.034556 1

GO:0030323 respiratory tube development 0.036321 1

GO:0003012 muscle system process 0.036989 1

GO:0007051 spindle organization 0.037483 1

GO:0019932 second-messenger-mediated signaling 0.039227 1

GO:0060541 respiratory system development 0.04475 1

GO:0051051 negative regulation of transport 0.045124 1

GO:0070528 protein kinase C signaling 0.048054 1

GO:0048871 multicellular organismal homeostasis 0.048105 1

GO:0032886 regulation of microtubule-based process 0.049429 1

GO:0000002 mitochondrial genome maintenance 0.049729 1

GO:0032528 microvillus organization 0.051401 1

GO:0017038 protein import 0.052497 1

GO:0010737 protein kinase A signaling 0.053069 1

GO:0002251 organ or tissue specific immune response 0.054735 1

Classification Case 1.2 - 34 Genes  

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S3: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 34 

genes that were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 20 samples), and 3 stages (I, II, III). The enrichment analysis was 

performed by WebGestalt 2019.
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S3B. Enriched Pathways  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa04916 Melanogenesis 0.012816 1

hsa00740 Riboflavin metabolism 0.013846 1

hsa00770 Pantothenate and CoA biosynthesis 0.032596 1

hsa04020 Calcium signaling pathway 0.039003 1

hsa04024 cAMP signaling pathway 0.045425 1

hsa00760 Nicotinate and nicotinamide metabolism 0.051016 1

hsa00512 Mucin type O-glycan biosynthesis 0.052674 1

Gene Set Description P Value FDR

P00012 Cadherin signaling pathway 0.039562 1

Gene Set Description P Value FDR

WP4240 Regulation of sister chromatid separation at the 

metaphase-anaphase transition

0.04121 1

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S3: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 34 genes that were obtained 

after the classification approach which involved training and testing at the same dataset (dataset 1-

GSE28827, 20 samples), and 3 stages (I, II, III). The enrichment analysis was performed by WebGestalt 

2019.

KEGG (p value ≤ 0.05)

Classification Case 1.2 - 34 Genes  

B. Pathways
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S3C. Enriched miRNA targets  

 

 

 

P Value FDR

0.0013462 0.29751

0.0094586 0.65095

0.010937 0.65095

0.011782 0.65095

0.019493 0.86158

0.034968 0.9504

0.035969 0.9504

0.036974 0.9504

0.044303 0.9504

0.044999 0.9504

0.048184 0.9504

Table S3: c) miRNA target annotation (MSigDB) of 34 genes that were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 20 samples), and 

3 stages (I, II, III). The enrichment analysis was performed by WebGestalt 2019.

ATTACAT,MIR-380-3P

ACTGCAG,MIR-17-3P

ACCGAGC,MIR-423

TCATCTC,MIR-143

AACTGGA,MIR-145

ATGTTAA,MIR-302C

CGCTGCT,MIR-503

GTATTAT,MIR-369-3P

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

GGCAGCT,MIR-22

Gene Set

GTGACTT,MIR-224

Classification Case 1.2 - 34 Genes  

C. miRNA targets

miRNA targets (p value ≤ 0.05)
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S4. Gene Annotation - Classification Case 1.3 

 

 
 
 
 
 
 
 
 
 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

170487 ACTL10 actin-like 10 25894 PLEKHG4

pleckstrin homology domain containing, 

family G (with RhoGef domain) member 

10882 C1QL1 complement component 1, q subcomponent-like 1 5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3

443 ASPA aspartoacylase 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

284185 LINC00482 long intergenic non-protein coding RNA 482 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

638 BIK BCL2-interacting killer (apoptosis-inducing) 7125 TNNC2 troponin C type 2 (fast)

26232 FBXO2 F-box protein 2 22874 PLEKHA6

pleckstrin homology domain containing, 

family A member 6

2177 FANCD2 Fanconi anemia, complementation group D2 1290 COL5A2 collagen, type V, alpha 2

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 7104 TM4SF4 transmembrane 4 L six family member 4

54825 CDHR2 cadherin-related family member 2 347853 TBX10 T-box 10

83933 HDAC10 histone deacetylase 10 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

1261 CNGA3 cyclic nucleotide gated channel alpha 3 80201 HKDC1 hexokinase domain containing 1

196410 METTL7B methyltransferase like 7B 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

8347 HIST1H2BC histone cluster 1, H2bc 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

10615 SPAG5 sperm associated antigen 5 65260 SELRC1 Sel1 repeat containing 1

2859 GPR35 G protein-coupled receptor 35 54993 ZSCAN2

zinc finger and SCAN domain containing 

2

114907 FBXO32 F-box protein 32 23414 ZFPM2 zinc finger protein, multitype 2

5733 PTGER3 prostaglandin E receptor 3 (subtype EP3) 9244 CRLF1 cytokine receptor-like factor 1

2705 GJB1 gap junction protein, beta 1, 32kDa 220134 SKA1

spindle and kinetochore associated 

complex subunit 1

2524 FUT2 fucosyltransferase 2 (secretor status included) 127845 GOLT1A golgi transport 1A

4585 MUC4 mucin 4, cell surface associated 3026 HABP2 hyaluronan binding protein 2

63035 BCORL1 BCL6 corepressor-like 1 3853 KRT6A keratin 6A

55277 FGGY FGGY carbohydrate kinase domain containing 116092 DNTTIP1

deoxynucleotidyltransferase, terminal, 

interacting protein 1

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor) 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

153768 PRELID2 PRELI domain containing 2 4796 TONSL tonsoku-like, DNA repair protein

2027 ENO3 enolase 3 (beta, muscle) 25934 NIPSNAP3A nipsnap homolog 3A (C. elegans)

79035 NABP2 nucleic acid binding protein 2 78990 OTUB2

OTU domain, ubiquitin aldehyde 

binding 2

27094 KCNMB3

potassium large conductance calcium-activated 

channel, subfamily M beta member 3 26112 CCDC69 coiled-coil domain containing 69

23534 TNPO3 transportin 3 84300 MNF1 mitochondrial nucleoid factor 1

699 BUB1

budding uninhibited by benzimidazoles 1 homolog 

(yeast) 6878 TAF6

TAF6 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

80kDa

23090 ZNF423 zinc finger protein 423 23780 APOL2 apolipoprotein L, 2

1741 DLG3 discs, large homolog 3 (Drosophila)

Classification Case 1.3 - 61 Genes

Table S4: Based on the 73 gene list (S1), 61 genes were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 24 samples), and 3 stages (0, I, and 'II' (a combination of II and III)). The genes are described by their gene 

symbols and gene names using WebGestalt 2013.
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S4A. Enriched Gene Ontology (GO) biological processes (BP) 

 

 

 

 

 

 

 

 

 

Gene Set Description P Value FDR

GO:0007586 digestion 0.0094598 1

GO:0005996 monosaccharide metabolic process 0.013606 1

GO:0043954 cellular component maintenance 0.014245 1

GO:0016052 carbohydrate catabolic process 0.014578 1

GO:0009141 nucleoside triphosphate metabolic process 0.01788 1

GO:0007059 chromosome segregation 0.019472 1

GO:0009123 nucleoside monophosphate metabolic process 0.021365 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.02289 1

GO:0001570 vasculogenesis 0.02553 1

GO:0046434 organophosphate catabolic process 0.030226 1

GO:0016073 snRNA metabolic process 0.039404 1

GO:0009100 glycoprotein metabolic process 0.039624 1

GO:0007200 phospholipase C-activating G protein-coupled 

receptor signaling pathway

0.040159 1

GO:0046939 nucleotide phosphorylation 0.040159 1

GO:0015748 organophosphate ester transport 0.044016 1

GO:0098781 ncRNA transcription 0.046394 1

GO:0061458 reproductive system development 0.05259 1

GO:0070085 glycosylation 0.053078 1

GO:0044282 small molecule catabolic process 0.05333 1

GO:0006090 pyruvate metabolic process 0.055503 1

Classification Case 1.3 - 61 Genes 

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S4: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 61 

genes that were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 24 samples), and 3 stages (0, I, and 'II' (a combination of II and III)). 

The enrichment analysis was performed by WebGestalt 2019.
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S4B. Enriched Pathways 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.0073505 1

hsa03460 Fanconi anemia pathway 0.016043 1

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.017949 1

hsa00010 Glycolysis / Gluconeogenesis 0.02476 1

hsa00740 Riboflavin metabolism 0.028569 1

hsa04066 HIF-1 signaling pathway 0.050146 1

hsa04916 Melanogenesis 0.051047 1

hsa00603 Glycosphingolipid biosynthesis 0.052922 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.024485 1

P02744 Fructose galactose metabolism 0.033533 1

P00024 Glycolysis 0.051415 1

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.025722 1

Classification Case 1.3 - 61 Genes 

B. Pathways

KEGG (p value ≤ 0.05)

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S4: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 61 genes that were obtained 

after the classification approach which involved training and testing at the same dataset (dataset 1-

GSE28827, 24 samples), and 3 stages (0, I, and 'II' (a combination of II and III)). The enrichment analysis 

was performed by WebGestalt 2019. 
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S4C. Enriched miRNA targets  

 

 

 

 

 

P Value FDR

0.0036484 0.46718

0.0042279 0.46718

0.017097 0.83773

0.019738 0.83773

0.022056 0.83773

0.022744 0.83773

0.031469 0.99352

0.050472 1

Table S4: c) miRNA target annotation (MSigDB) of 61 genes that were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 24 samples), and 

3 stages (0, I, and 'II' (a combination of II and III)). The enrichment analysis was performed by 

WebGestalt 2019.

ACTGCAG,MIR-17-3P

GTGCAAA,MIR-507

CGCTGCT,MIR-503

Gene Set

TCATCTC,MIR-143

GTGACTT,MIR-224

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

miRNA targets (p value ≤ 0.05)

Classification Case 1.3 - 61 Genes 

C. miRNA targets
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S5. Gene Annotation - Classification Case 1.4 

 

 

 

 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1 196410 METTL7B methyltransferase like 7B

443 ASPA aspartoacylase 8347 HIST1H2BC histone cluster 1, H2bc

284185 LINC00482 long intergenic non-protein coding RNA 482 10615 SPAG5 sperm associated antigen 5

26232 FBXO2 F-box protein 2 3603 IL16 interleukin 16

2177 FANCD2 Fanconi anemia, complementation group D2 5733 PTGER3 prostaglandin E receptor 3 (subtype EP3)

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 2524 FUT2

fucosyltransferase 2 (secretor status 

included)

1261 CNGA3 cyclic nucleotide gated channel alpha 3 10129 FRY furry homolog (Drosophila)

2859 GPR35 G protein-coupled receptor 35 153768 PRELID2 PRELI domain containing 2

3866 KRT15 keratin 15 2027 ENO3 enolase 3 (beta, muscle)

114907 FBXO32 F-box protein 32 27094 KCNMB3

potassium large conductance calcium-

activated channel, subfamily M beta 

2705 GJB1 gap junction protein, beta 1, 32kDa 79035 NABP2 nucleic acid binding protein 2

4585 MUC4 mucin 4, cell surface associated 23534 TNPO3 transportin 3

63035 BCORL1 BCL6 corepressor-like 1 699 BUB1

budding uninhibited by benzimidazoles 

1 homolog (yeast)

55277 FGGY FGGY carbohydrate kinase domain containing 23090 ZNF423 zinc finger protein 423

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor) 25894 PLEKHG4

pleckstrin homology domain containing, 

family G (with RhoGef domain) member 

4

1741 DLG3 discs, large homolog 3 (Drosophila) 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

2118 ETV4 ets variant 4 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3 22874 PLEKHA6

pleckstrin homology domain containing, 

family A member 6

55311 ZNF444 zinc finger protein 444 7104 TM4SF4 transmembrane 4 L six family member 4

7125 TNNC2 troponin C type 2 (fast) 347853 TBX10 T-box 10

1290 COL5A2 collagen, type V, alpha 2 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

1747 DLX3 distal-less homeobox 3 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

8612 PPAP2C phosphatidic acid phosphatase type 2C 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

80201 HKDC1 hexokinase domain containing 1 23414 ZFPM2 zinc finger protein, multitype 2

65260 SELRC1 Sel1 repeat containing 1 220134 SKA1

spindle and kinetochore associated 

complex subunit 1

54993 ZSCAN2 zinc finger and SCAN domain containing 2 3026 HABP2 hyaluronan binding protein 2

9244 CRLF1 cytokine receptor-like factor 1 127845 GOLT1A golgi transport 1A

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, interacting 

protein 1 3853 KRT6A keratin 6A

4796 TONSL tonsoku-like, DNA repair protein 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

84300 MNF1 mitochondrial nucleoid factor 1 25934 NIPSNAP3A nipsnap homolog 3A (C. elegans)

170487 ACTL10 actin-like 10 26112 CCDC69 coiled-coil domain containing 69

10045 SH2D3A SH2 domain containing 3A 78990 OTUB2

OTU domain, ubiquitin aldehyde binding 

2

202374 STK32A serine/threonine kinase 32A 629 CFB complement factor B

638 BIK BCL2-interacting killer (apoptosis-inducing) 6878 TAF6

TAF6 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

80kDa

54825 CDHR2 cadherin-related family member 2 23780 APOL2 apolipoprotein L, 2

83933 HDAC10 histone deacetylase 10

 Classification Case 1.4 - 71 Genes

Table S5: Based on the 73 gene list (S1), 71 genes were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 20 samples), and 2 stages (I and 'II' (a combination of II and III)). The genes are described by their gene 

symbols and gene names using WebGestalt 2013.
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S5A. Enriched Gene Ontology (GO) biological processes (BP) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0007586 digestion 0.014271 1

GO:0043954 cellular component maintenance 0.018971 1

GO:0002526 acute inflammatory response 0.021432 1

GO:0016052 carbohydrate catabolic process 0.021796 1

GO:0005996 monosaccharide metabolic process 0.022577 1

GO:0061458 reproductive system development 0.024112 1

GO:0009141 nucleoside triphosphate metabolic process 0.02938 1

GO:0007059 chromosome segregation 0.031891 1

GO:0001570 vasculogenesis 0.033764 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.033845 1

GO:0009123 nucleoside monophosphate metabolic process 0.034864 1

GO:0046434 organophosphate catabolic process 0.044334 1

GO:0050727 regulation of inflammatory response 0.049985 1

GO:0016073 snRNA metabolic process 0.051755 1

GO:0007200 phospholipase C-activating G protein-coupled 

receptor signaling pathway

0.052728 1

GO:0046939 nucleotide phosphorylation 0.052728 1

Classification Case 1.4 - 71 Genes

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S5: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 71 

genes that were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 20 samples), and 2 stages (I and 'II' (a combination of II and III)). The 

enrichment analysis was performed by WebGestalt 2019. 
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S5B. Enriched Pathways 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.010231 1

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.021245 1

hsa03460 Fanconi anemia pathway 0.022156 1

hsa00740 Riboflavin metabolism 0.033781 1

hsa00010 Glycolysis / Gluconeogenesis 0.033988 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.024485 1

P02744 Fructose galactose metabolism 0.033533 1

P00024 Glycolysis 0.051415 1

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.025722 1

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S5: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 71 genes that were obtained 

after the classification approach which involved training and testing at the same dataset (dataset 1-

GSE28827, 20 samples), and 2 stages (I and 'II' (a combination of II and III)). The enrichment analysis was 

performed by WebGestalt 2019. 

KEGG (p value ≤ 0.05)

Classification Case 1.4 - 71 Genes

B. Pathways
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S5C. Enriched miRNA targets  

 

 

 

 

 

 

P Value FDR

0.0080534 0.9714

0.0092955 0.9714

0.013186 0.9714

0.022387 1

0.033045 1

0.036694 1

0.037945 1

0.052025 1

0.054785 1GTGCAAT,MIR-25,MIR-32,MIR-92,MIR-363,MIR-367

GGGCATT,MIR-365

ACTGCAG,MIR-17-3P

GTGCAAA,MIR-507

Table S5: c) miRNA target annotation (MSigDB) of 71 genes that were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 20 samples), and 

2 stages (I and 'II' (a combination of II and III)). The enrichment analysis was performed by WebGestalt 

2019.

TCATCTC,MIR-143

GTGACTT,MIR-224

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

Gene Set

Classification Case 1.4 - 71 Genes

C. miRNA targets

miRNA targets (p value ≤ 0.05)
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S6. Gene Annotation - Classification Case 1.5 

 

 

 

 

 

 

 

 

 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1 5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3

5883 RAD9A RAD9 homolog A (S. pombe) 55311 ZNF444 zinc finger protein 444

443 ASPA aspartoacylase 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

284185 LINC00482 long intergenic non-protein coding RNA 482 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

638 BIK BCL2-interacting killer (apoptosis-inducing) 7125 TNNC2 troponin C type 2 (fast)

26232 FBXO2 F-box protein 2 22874 PLEKHA6

pleckstrin homology domain containing, 

family A member 6

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 142 PARP1 poly (ADP-ribose) polymerase 1

54825 CDHR2 cadherin-related family member 2 1290 COL5A2 collagen, type V, alpha 2

83933 HDAC10 histone deacetylase 10 1747 DLX3 distal-less homeobox 3

1261 CNGA3 cyclic nucleotide gated channel alpha 3 7104 TM4SF4 transmembrane 4 L six family member 4

196410 METTL7B methyltransferase like 7B 347853 TBX10 T-box 10

8347 HIST1H2BC histone cluster 1, H2bc 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

10615 SPAG5 sperm associated antigen 5 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

114907 FBXO32 F-box protein 32 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

5733 PTGER3 prostaglandin E receptor 3 (subtype EP3) 65260 SELRC1 Sel1 repeat containing 1

2705 GJB1 gap junction protein, beta 1, 32kDa 54993 ZSCAN2

zinc finger and SCAN domain containing 

2

10129 FRY furry homolog (Drosophila) 23414 ZFPM2 zinc finger protein, multitype 2

2524 FUT2 fucosyltransferase 2 (secretor status included) 9244 CRLF1 cytokine receptor-like factor 1

4585 MUC4 mucin 4, cell surface associated 220134 SKA1

spindle and kinetochore associated 

complex subunit 1

63035 BCORL1 BCL6 corepressor-like 1 3026 HABP2 hyaluronan binding protein 2

55277 FGGY FGGY carbohydrate kinase domain containing 3853 KRT6A keratin 6A

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor) 116092 DNTTIP1

deoxynucleotidyltransferase, terminal, 

interacting protein 1

153768 PRELID2 PRELI domain containing 2 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

79035 NABP2 nucleic acid binding protein 2 4796 TONSL tonsoku-like, DNA repair protein

699 BUB1

budding uninhibited by benzimidazoles 1 homolog 

(yeast) 78990 OTUB2

OTU domain, ubiquitin aldehyde binding 

2

23090 ZNF423 zinc finger protein 423 26112 CCDC69 coiled-coil domain containing 69

1741 DLG3 discs, large homolog 3 (Drosophila) 84300 MNF1 mitochondrial nucleoid factor 1

2118 ETV4 ets variant 4 6878 TAF6

TAF6 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

80kDa

25894 PLEKHG4

pleckstrin homology domain containing, family G 

(with RhoGef domain) member 4 23780 APOL2 apolipoprotein L, 2

 Classification Case 1.5 - 58 Genes

Table S6: Based on the 73 gene list (S1), 58 genes were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 17 samples), and 2 stages (I and III). The genes are described by their gene symbols and gene names using 

WebGestalt 2013.
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S6A. Enriched Gene Ontology (GO) biological processes (BP) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0007586 digestion 0.0079462 1

GO:0061458 reproductive system development 0.010198 1

GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.012045 1

GO:0043954 cellular component maintenance 0.012626 1

GO:0001570 vasculogenesis 0.022688 1

GO:0000075 cell cycle checkpoint 0.029342 1

GO:0006302 double-strand break repair 0.030041 1

GO:0048545 response to steroid hormone 0.031907 1

GO:0009100 glycoprotein metabolic process 0.032428 1

GO:0016073 snRNA metabolic process 0.035109 1

GO:0060249 anatomical structure homeostasis 0.037343 1

GO:0015748 organophosphate ester transport 0.039249 1

GO:0098781 ncRNA transcription 0.041385 1

GO:0045930 negative regulation of mitotic cell cycle 0.044961 1

GO:0070085 glycosylation 0.045396 1

GO:0098732 macromolecule deacylation 0.047291 1

GO:0009314 response to radiation 0.048077 1

GO:0006310 DNA recombination 0.052635 1

Classification Case 1.5 - 58 Genes

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S6: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 58 

genes that were obtained after the classification approach which involved training and testing at the 

same dataset (dataset 1-GSE28827, 17 samples), and 2 stages (I and III). The enrichment analysis was 

performed by WebGestalt 2019.
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S6B. Enriched Pathways 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00740 Riboflavin metabolism 0.026478 1

hsa04916 Melanogenesis 0.044392 1

hsa00603 Glycosphingolipid biosynthesis 0.049093 1

Gene Set Description P Value FDR

none none none none

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.001677 0.12913

WP3875 ATR Signaling 0.041682 1

WP4016 DNA IR-damage and cellular response via ATR 0.052646 1

Classification Case 1.5 - 58 Genes

B. Pathways

KEGG (p value ≤ 0.05)

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S6: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 58 genes that were obtained 

after the classification approach which involved training and testing at the same dataset (dataset 1-

GSE28827, 17 samples), and 2 stages (I and III). The enrichment analysis was performed by WebGestalt 

2019.
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S6C. Enriched miRNA targets  

 
 
 
 
 
 
 
 
 
 
 

 
 

P Value FDR

0.0070045 0.78429

0.0080912 0.78429

0.010646 0.78429

0.021331 1

0.030163 1

0.033512 1

0.03466 1

0.047607 1

0.048403 1

GGGCATT,MIR-365

ACTGCAG,MIR-17-3P

GTGCAAA,MIR-507

GTGCAAT,MIR-25,MIR-32,MIR-92,MIR-363,MIR-367

Table S6: c) miRNA target annotation (MSigDB) of 58 genes that were obtained after the classification 

approach which involved training and testing at the same dataset (dataset 1-GSE28827, 17 samples), and 

2 stages (I and III). The enrichment analysis was performed by WebGestalt 2019.

GTGACTT,MIR-224

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

Gene Set

TCATCTC,MIR-143

miRNA targets (p value ≤ 0.05)

Classification Case 1.5 - 58 Genes

C. miRNA targets
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S7. Gene Annotation - Classification Case 2.1 

 

 

 
 
 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1 196410 METTL7B methyltransferase like 7B

5883 RAD9A RAD9 homolog A (S. pombe) 8347 HIST1H2BC histone cluster 1, H2bc

443 ASPA aspartoacylase 10615 SPAG5 sperm associated antigen 5

284185 LINC00482 long intergenic non-protein coding RNA 482 5733 PTGER3

prostaglandin E receptor 3 (subtype 

EP3)

26232 FBXO2 F-box protein 2 2524 FUT2

fucosyltransferase 2 (secretor status 

included)

2177 FANCD2 Fanconi anemia, complementation group D2 10129 FRY furry homolog (Drosophila)

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 2027 ENO3 enolase 3 (beta, muscle)

1261 CNGA3 cyclic nucleotide gated channel alpha 3 153768 PRELID2 PRELI domain containing 2

2859 GPR35 G protein-coupled receptor 35 27094 KCNMB3

potassium large conductance calcium-

activated channel, subfamily M beta 

member 3

3866 KRT15 keratin 15 79035 NABP2 nucleic acid binding protein 2

114907 FBXO32 F-box protein 32 23534 TNPO3 transportin 3

2705 GJB1 gap junction protein, beta 1, 32kDa 699 BUB1

budding uninhibited by benzimidazoles 

1 homolog (yeast)

4585 MUC4 mucin 4, cell surface associated 23090 ZNF423 zinc finger protein 423

63035 BCORL1 BCL6 corepressor-like 1 25894 PLEKHG4

pleckstrin homology domain 

containing, family G (with RhoGef 

55277 FGGY FGGY carbohydrate kinase domain containing 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor) 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

1741 DLG3 discs, large homolog 3 (Drosophila) 22874 PLEKHA6

pleckstrin homology domain 

containing, family A member 6

2118 ETV4 ets variant 4 7104 TM4SF4 transmembrane 4 L six family member 4

5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3 347853 TBX10 T-box 10

55311 ZNF444 zinc finger protein 444 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

7125 TNNC2 troponin C type 2 (fast) 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

142 PARP1 poly (ADP-ribose) polymerase 1 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

1290 COL5A2 collagen, type V, alpha 2 23414 ZFPM2 zinc finger protein, multitype 2

80201 HKDC1 hexokinase domain containing 1 220134 SKA1

spindle and kinetochore associated 

complex subunit 1

65260 SELRC1 Sel1 repeat containing 1 3026 HABP2 hyaluronan binding protein 2

54993 ZSCAN2 zinc finger and SCAN domain containing 2 127845 GOLT1A golgi transport 1A

9244 CRLF1 cytokine receptor-like factor 1 3853 KRT6A keratin 6A

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, interacting 

protein 1 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

4796 TONSL tonsoku-like, DNA repair protein 25934 NIPSNAP3A nipsnap homolog 3A (C. elegans)

84300 MNF1 mitochondrial nucleoid factor 1 26112 CCDC69 coiled-coil domain containing 69

202374 STK32A serine/threonine kinase 32A 78990 OTUB2

OTU domain, ubiquitin aldehyde 

binding 2

638 BIK BCL2-interacting killer (apoptosis-inducing) 629 CFB complement factor B

54825 CDHR2 cadherin-related family member 2 6878 TAF6

TAF6 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

80kDa

83933 HDAC10 histone deacetylase 10 23780 APOL2 apolipoprotein L, 2

Classification Case 2.1 - 68 Genes

Table S7: Based on the 73 gene list (S1), 68 genes were obtained after the classification approach which involved training at dataset 1-GSE28827 

(17 samples), testing at dataset 2-GSE75037 (61 samples), and 2 stages (I and III). The genes are described by their gene symbols and gene 

names using WebGestalt 2013.
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S7A. Enriched Gene Ontology (GO) biological processes (BP) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0009141 nucleoside triphosphate metabolic process 0.0053053 1

GO:0009123 nucleoside monophosphate metabolic process 0.0066533 1

GO:0007586 digestion 0.012961 1

GO:0043954 cellular component maintenance 0.017735 1

GO:0002526 acute inflammatory response 0.019506 1

GO:0016052 carbohydrate catabolic process 0.019839 1

GO:0005996 monosaccharide metabolic process 0.020068 1

GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.021994 1

GO:0009314 response to radiation 0.023932 1

GO:0007059 chromosome segregation 0.028439 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.030892 1

GO:0001570 vasculogenesis 0.031619 1

GO:0009259 ribonucleotide metabolic process 0.037536 1

GO:0046434 organophosphate catabolic process 0.040547 1

GO:0050727 regulation of inflammatory response 0.044794 1

GO:0000075 cell cycle checkpoint 0.046147 1

GO:0006302 double-strand break repair 0.047205 1

GO:0016073 snRNA metabolic process 0.04855 1

GO:0007200 phospholipase C-activating G protein-coupled 

receptor signaling pathway

0.049468 1

GO:0046939 nucleotide phosphorylation 0.049468 1

 Classification Case 2.1 - 68 Genes                                                                            

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S7: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 68 

genes that were obtained after the classification approach which involved training at dataset 1-

GSE28827 (17 samples), testing at dataset 2-GSE75037 (61 samples), and 2 stages (I and III). The 

enrichment analysis was performed by WebGestalt 2019.
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S7B. Enriched Pathways 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.010231 1

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.021245 1

hsa03460 Fanconi anemia pathway 0.022156 1

hsa00740 Riboflavin metabolism 0.033781 1

hsa00010 Glycolysis / Gluconeogenesis 0.033988 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.02794 1

P02744 Fructose galactose metabolism 0.03824 1

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.00017467 0.01345

WP4016 DNA IR-damage and cellular response via ATR 0.0094637 0.36435

WP2516 ATM Signaling Pathway 0.020857 0.53533

WP3875 ATR Signaling 0.050732 0.88186

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S7: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of  68 genes that were obtained 

after the classification approach which involved training at dataset 1-GSE28827 (17 samples), testing at 

dataset 2-GSE75037 (61 samples), and 2 stages (I and III). The enrichment analysis was performed by 

WebGestalt 2019.

KEGG (p value ≤ 0.05)

 Classification Case 2.1 - 68 Genes                                                                            

B. Pathways
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S7C. Enriched miRNA targets  

 

 
 
 
 
 
 
 

P Value FDR

0.0080534 0.9714

0.0092955 0.9714

0.013186 0.9714

0.022387 1

0.033045 1

0.037945 1

0.052025 1

0.054785 1

TCATCTC,MIR-143

GTGACTT,MIR-224

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

GTGCAAT,MIR-25,MIR-32,MIR-92,MIR-363,MIR-367

Table S7: c) miRNA target annotation (MSigDB) of  68 genes that were obtained after the classification 

approach which involved training at dataset 1-GSE28827 (17 samples), testing at dataset 2-GSE75037 (61 

samples), and 2 stages (I and III). The enrichment analysis was performed by WebGestalt 2019.

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

ACTGCAG,MIR-17-3P

GTGCAAA,MIR-507

Gene Set

 Classification Case 2.1 - 68 Genes                                                                            

C. miRNA targets

miRNA targets (p value ≤ 0.05)
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S8. Gene Annotation - Classification Case 2.2 

 

 

 

 

 
 
 

Entrez 

Gene ID

Gene 

Symbol
Gene Name

Entrez 

Gene ID

Gene 

Symbol
Gene Name

10882 C1QL1 complement component 1, q subcomponent-like 1 83933 HDAC10 histone deacetylase 10

5883 RAD9A RAD9 homolog A (S. pombe) 196410 METTL7B methyltransferase like 7B

443 ASPA aspartoacylase 8347 HIST1H2BC histone cluster 1, H2bc

284185 LINC00482 long intergenic non-protein coding RNA 482 10615 SPAG5 sperm associated antigen 5

26232 FBXO2 F-box protein 2 3603 IL16 interleukin 16

2177 FANCD2 Fanconi anemia, complementation group D2 5733 PTGER3 prostaglandin E receptor 3 (subtype EP3)

11142 PKIG

protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 2524 FUT2

fucosyltransferase 2 (secretor status 

included)

1261 CNGA3 cyclic nucleotide gated channel alpha 3 10129 FRY furry homolog (Drosophila)

2859 GPR35 G protein-coupled receptor 35 2027 ENO3 enolase 3 (beta, muscle)

3866 KRT15 keratin 15 153768 PRELID2 PRELI domain containing 2

114907 FBXO32 F-box protein 32 27094 KCNMB3

potassium large conductance calcium-

activated channel, subfamily M beta 

2705 GJB1 gap junction protein, beta 1, 32kDa 79035 NABP2 nucleic acid binding protein 2

4585 MUC4 mucin 4, cell surface associated 23534 TNPO3 transportin 3

63035 BCORL1 BCL6 corepressor-like 1 699 BUB1

budding uninhibited by benzimidazoles 

1 homolog (yeast)

55277 FGGY FGGY carbohydrate kinase domain containing 23090 ZNF423 zinc finger protein 423

4157 MC1R

melanocortin 1 receptor (alpha melanocyte 

stimulating hormone receptor) 25894 PLEKHG4

pleckstrin homology domain containing, 

family G (with RhoGef domain) member 

4

1741 DLG3 discs, large homolog 3 (Drosophila) 3161 HMMR

hyaluronan-mediated motility receptor 

(RHAMM)

2118 ETV4 ets variant 4 79674 VEPH1

ventricular zone expressed PH domain 

homolog 1 (zebrafish)

5169 ENPP3

ectonucleotide 

pyrophosphatase/phosphodiesterase 3 22874 PLEKHA6

pleckstrin homology domain containing, 

family A member 6

55311 ZNF444 zinc finger protein 444 7104 TM4SF4 transmembrane 4 L six family member 4

7125 TNNC2 troponin C type 2 (fast) 347853 TBX10 T-box 10

1290 COL5A2 collagen, type V, alpha 2 9245 GCNT3

glucosaminyl (N-acetyl) transferase 3, 

mucin type

1747 DLX3 distal-less homeobox 3 7477 WNT7B

wingless-type MMTV integration site 

family, member 7B

8612 PPAP2C phosphatidic acid phosphatase type 2C 6690 SPINK1 serine peptidase inhibitor, Kazal type 1

80201 HKDC1 hexokinase domain containing 1 23414 ZFPM2 zinc finger protein, multitype 2

65260 SELRC1 Sel1 repeat containing 1 220134 SKA1

spindle and kinetochore associated 

complex subunit 1

54993 ZSCAN2 zinc finger and SCAN domain containing 2 3026 HABP2 hyaluronan binding protein 2

9244 CRLF1 cytokine receptor-like factor 1 127845 GOLT1A golgi transport 1A

116092 DNTTIP1

deoxynucleotidyltransferase, terminal, interacting 

protein 1 3853 KRT6A keratin 6A

4796 TONSL tonsoku-like, DNA repair protein 5980 REV3L

REV3-like, polymerase (DNA directed), 

zeta, catalytic subunit

84300 MNF1 mitochondrial nucleoid factor 1 25934 NIPSNAP3A nipsnap homolog 3A (C. elegans)

170487 ACTL10 actin-like 10 26112 CCDC69 coiled-coil domain containing 69

202374 STK32A serine/threonine kinase 32A 78990 OTUB2

OTU domain, ubiquitin aldehyde 

binding 2

638 BIK BCL2-interacting killer (apoptosis-inducing) 6878 TAF6

TAF6 RNA polymerase II, TATA box 

binding protein (TBP)-associated factor, 

80kDa

54825 CDHR2 cadherin-related family member 2 23780 APOL2 apolipoprotein L, 2

 Classification Case 2.2 - 70 Genes

Table S8: Based on the 73 gene list (S1), 70 genes were obtained after the classification approach which involved training at dataset 2-GSE75037 

(61 samples), testing at dataset 1-GSE28827 (17 samples), and 2 stages (I and III). The genes are described by their gene symbols and gene 

names using WebGestalt 2013.
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S8A. Enriched Gene Ontology (GO) biological processes (BP) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

GO:0007586 digestion 0.013607 1

GO:0043954 cellular component maintenance 0.018348 1

GO:0016052 carbohydrate catabolic process 0.020805 1

GO:0005996 monosaccharide metabolic process 0.021299 1

GO:0061458 reproductive system development 0.022513 1

GO:0009141 nucleoside triphosphate metabolic process 0.027751 1

GO:0007059 chromosome segregation 0.030136 1

GO:0034404 nucleobase-containing small molecule biosynthetic 

process

0.032351 1

GO:0001570 vasculogenesis 0.032684 1

GO:0009123 nucleoside monophosphate metabolic process 0.03296 1

GO:0046434 organophosphate catabolic process 0.042419 1

GO:0000075 cell cycle checkpoint 0.048253 1

GO:0016073 snRNA metabolic process 0.050143 1

GO:0007200 phospholipase C-activating G protein-coupled 

receptor signaling pathway

0.051089 1

GO:0046939 nucleotide phosphorylation 0.051089 1

Classification Case 2.2 - 70 Genes                                                        

A. Gene Ontology-Biological Process-noRedundant (p value ≤ 0.05)

Table S8: a) Gene Ontology (GO) annotation in the category of biological process-no redundant of 70 

genes that were obtained after the classification approach which involved training at dataset 2-

GSE75037 (61 samples), testing at dataset 1-GSE28827 (17 samples), and 2 stages (I and III). The 

enrichment analysis was performed by WebGestalt 2019.
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S8B. Enriched Pathways 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Set Description P Value FDR

hsa00500 Starch and sucrose metabolism 0.010231 1

hsa00524 Neomycin, kanamycin and gentamicin biosynthesis 0.021245 1

hsa03460 Fanconi anemia pathway 0.022156 1

hsa00740 Riboflavin metabolism 0.033781 1

hsa00010 Glycolysis / Gluconeogenesis 0.033988 1

Gene Set Description P Value FDR

P02762 Pentose phosphate pathway 0.024485 1

P02744 Fructose galactose metabolism 0.033533 1

P00024 Glycolysis 0.051415 1

Gene Set Description P Value FDR

WP3959 DNA IR-Double Strand Breaks (DSBs) and cellular 

response via ATM

0.002347 0.18072

WP2516 ATM Signaling Pathway 0.017292 0.66574

WP3875 ATR Signaling 0.046217 0.88906

WP707 DNA Damage Response 0.04795 0.88906

Classification Case 2.2 - 70 Genes                                                        

B. Pathways

KEGG (p value ≤ 0.05)

Panther (p value ≤ 0.05)

Wikipathway cancer (p value ≤ 0.05)

Table S8: b) Pathway annotation (KEGG, Panther, Wikipathway cancer) of 70 genes that were 

obtained after the classification approach which involved training at dataset 2-GSE75037 (61 

samples), testing at dataset 1-GSE28827 (17 samples), and 2 stages (I and III). The enrichment analysis 

was performed by WebGestalt 2019.
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S8C. Enriched miRNA targets  

 

 

 

 

 

P Value FDR

0.0091899 1

0.010599 1

0.016106 1

0.023442 1

0.03603 1

0.039988 1

0.041343 1

Table S8: c) miRNA target annotation (MSigDB) of 70 genes that were obtained after the classification 

approach which involved training at dataset 2-GSE75037 (61 samples), testing at dataset 1-GSE28827 

(17 samples), and 2 stages (I and III). The enrichment analysis was performed by WebGestalt 2019.

GGGCATT,MIR-365

ACTGCAG,MIR-17-3P

Gene Set

TCATCTC,MIR-143

GTGACTT,MIR-224

TGGTGCT,MIR-29A,MIR-29B,MIR-29C

ACCGAGC,MIR-423

ATTACAT,MIR-380-3P

miRNA targets (p value ≤ 0.05)

Classification Case 2.2 - 70 Genes                                                        

C. miRNA targets


