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Abstract: Remote sensing applications in water resources management are quite essential in
watershed characterization, particularly when mega basins are under investigation. Water quality
parameters help in decision making regarding the further use of water based on its quality.
Water quality parameters of chlorophyll a concentration, nitrate concentration, and water turbidity
were used in the current study to estimate the water quality parameters in the dam lake of Wadi
Baysh, Saudi Arabia. Water quality parameters were collected daily over 2 years (2017–2018) from
the water treatment station located within the dam vicinity and were correspondingly tested against
remotely sensed water quality parameters. Remote sensing data were collected from Sentinel-2 sensor,
European Space Agency (ESA) on a satellite temporal resolution basis. Data were pre-processed then
processed to estimate the maximum chlorophyll index (MCI), green normalized difference vegetation
index (GNDVI) and normalized difference turbidity index (NDTI). Zonal statistics were used to
improve the regression analysis between the spatial data estimated from the remote sensing images
and the nonspatial data collected from the water treatment plant. Results showed different correlation
coefficients between the ground truth collected data and the corresponding indices conducted from
remote sensing data. Actual chlorophyll a concentration showed high correlation with estimated
MCI mean values with an R2 of 0.96, actual nitrate concentration showed high correlation with the
estimated GNDVI mean values with an R2 of 0.94, and the actual water turbidity measurements
showed high correlation with the estimated NDTI mean values with an R2 of 0.94. The research
findings support the use of remote sensing data of Sentinel-2 to estimate water quality parameters in
arid environments.

Keywords: green normalized difference vegetation index (GNDVI); maximum chlorophyll index
(MCI); normalized difference turbidity index (NDTI); Sentinel-2

1. Introduction

There are many changes in the water body that take place when flowing water stops at the lowest
elevation point on land. The flowing water transfers and holds the temperature from one location to
the next, so all drainages that recharge a natural reservoir or an artificial dam will affect the water at
the destination [1]. Moreover, thermal changes in the water body are associated with chemical changes
which influence the organism cycle at the lagoon. Again, small streams and other channels that end at
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a lagoon will carry any small particles in its path and transfer all these pollutants to the lagoon [2].
As the water stays in the dam or in a pond, more recharge streams will contaminate it and move more
sediment to the dam. Hence, over a long period, the change in the water quality will be larger than the
change within a short time. In the case of water at a dam, all water supplies from that dam will be
contaminated [3].

The amount of decline in water quality is connected to the retention time of the dam’s water and
its storage capacity in relation to the amount of water charging the dam during the year. Water in a
small pond behind a run-of-river dam will undergo very little or no deterioration; that stored for many
months or even years behind a major dam may be lethal to most life in the reservoir and in the river
for many kilometers below the dam [4].

Sinking organic materials will consume oxygen in the water. Then, undesirable materials, like
carbon dioxide and methane, are released into the dam water. This procedure can take a decade or so,
although, in the tropics it may take many decades or even centuries for most of the organic matter to
molder [5]. One of the large events that caused great harm to the environment and the surrounding
people happened at Brokopondo Dam in 1964.

Normal bacteria can change the water quality because of cyanobacteria concentrations.
Cyanobacteria produce a greenish floating matter over the surface of the water body—bloom—which
pollutes the water and is associated with respiratory problems and skin irritation issues [6]. Also,
a high concentration of such bacteria leading to a slight aberrance in the amount of nitrogen will cause
a strong and horrific smell. Discovering harmful blooms over the surface of the water body while in
the early stages is very important for protecting the water quality and to control the water source [7].

Digital pictures are easier to use than older images, also, they allow researchers to work with
bigger areas than before. In addition, digital images can be saved onto small hard drives and used later
with most standard computers carrying the appropriate software. In fact, digital images have opened
the doors for many kinds of developments, such as watershed modeling, ship tracking, accurate
weather forecasting, flood analyzing, and other beneficial examples of gained knowledge [8]. At the
same time, other scientists working on wave bands were trying to study the effects of each band on
different objects. Sensors were also developed to detect invisible bands [9].

In recent times, the Environmental Protection Agency (EPA) has been developing and offering an
application that monitors the water surface and provides a reasonable water quality parameter and is
available for normal users. The current observation application uses satellite data that comes from the
European Space Agency (ESA). The ESA gets images and data by using the ocean land color instrument
(OCLI), USGS Landsat satellite, and the medium resolution imaging spectrometer (MODIS). Sentinel-2
provides data with a high spatial resolution and has been used in conjunction with developed models
to detect chlorophyll and dissolved organic matter. A recent study on Sentinel-2 shows that the most
accurate algorithm to acquire the highest reflectance from dissolved organic matter (DOM) comes
from bond 5 and bond 3. Bond 4 and 5 were used to develop a model to detect chlorophyll with
low root mean squared error [10]. Furthermore, Sentinel-2 with an onboard multispectral imager
MSI was proven, in more than one study, to be more accurate than the moderate-resolution imaging
spectroradiometer. MSI has been used to detect suspended particulate matter in the water body and
its results were acceptable within a wavelength range of 560 to 780 nm [11].

In this study, the goal is to monitor the water quality, therefore, the focus will be on the highest
reflectance percentage from the chlorophyll, nitrogen, and water turbidity. Sentinel-2 provides data
with high spatial resolution and has developed models for detecting such parameters. Regression
analysis is practiced in the current research to define the relationship between the actual and the
estimated water quality parameters.
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2. Materials and Methods

2.1. Study Area Description

Baysh Dam is a gravity dam on Wadi Baysh around 35 km upper east of Baysh in the Jizan Region
of southwestern Saudi Arabia (Figure 1). The dam has numerous reasons to incorporate surge control,
water system, and groundwater revive. The Baysh Dam was constructed between 2003 and 2009, and
is owned and operated by the Ministry of Water and Electricity. The Baysh Dam is 120 m high from the
foundation level, with no sunlight reaching the bottom of the dam’s lake. The total reservoir capacity
of the dam is 192 million cubic meters. The dam normally requires a long time to be clear of the effects
of organic materials. Sinking organic materials will consume oxygen in the water. Then, undesirable
gases, like carbon dioxide and methane, are released into the dam water. This procedure can take
a decade or so, although, in the tropics it may take many decades or even centuries for most of the
organic matter to molder.
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Figure 1. Location of the study area.

2.2. Water Sample Collection

Regular water sample collections were initiated during the middle of each climatic season. From
2017 to 2018, following the complete random sampling (CRS) technique [12], a total of 120 water
samples were collected and transferred to the laboratory to perform the designated colorimetry
test [13], nitrate concentration (mg/L) test [14], and turbidity test (NTU) [15]. For the restricted part of
the lake, water quality parameters were collected from the water treatment plant located at the vicinity
of the dam lake.

2.3. Remote Sensing Data

Routine collection of Sentinel-2 data began in January 2017 and continued until the end of
December 2018 on a sensor revisit resolution (16 days) which resulted in total of 52 images. The
Sentinel-2 instrument is made of 12 spectral bands with a 10 m resolution of visible bands (VI),
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20 m resolution of vegetation red edge (VRE) bands, and short-wave infrared (SWIR) bands, in
addition to three bands related to coastal aerosols and water vapor of 60 m resolution. Three different
remotely sensed indices were obtained to represent three different water quality parameters, maximum
chlorophyll index (MCI), green normalized difference vegetation index (GNDVI), and normalized
difference turbidity index (NDTI).

2.3.1. Maximum Chlorophyll Index

Maximum chlorophyll index (MCI) was used to exploit the height of the measurements in a
certain spectral band above a baseline which passes through three bands B4 (665 nm), B5 (705 nm),
and B6 (740 nm) [16,17]. The MCI for floating vegetation and inland water bodies is estimated using
the algorithm of Matthews et al. [18] considering the top of atmosphere (TOA) condition:

MCI = Rrs(λ2)− Rrs(λ1)

[
λ2 − λ1

λ3 − λ1
Rrs(λ3)− Rrs(λ1)

]
, (1)

where Rrs can be obtained based on a field measurement as follows [19]:

Rrs(λ) = RP X
{[

Lw(λ)− ρ X Lsky(λ)
]
/π X LP

}
, (2)

where Rp is the standard reflectance panel, Lw(λ) is the radiance of water-viewing, Lsky(λ) is
sky-measured radiance, ρ is the air–water interface reflectance, and Lp is the radiance reference panel.

2.3.2. Green Normalized Difference Vegetation Index

The green normalized difference vegetation index is based on two-band combinations of the
red-edge region of the spectrum [20]. GNDVI is very sensitive to the change in chlorophyll content,
which is tidally related with the nitrogen content at the dam lake. The nitrogen index was created and
found from the following equation [21]:

(NIR − Green)/(NIR + Green). (3)

The normalized difference vegetation index was used to detect nitrogen content using the
following equation:

(NIR − (690 nm~710 nm))/(IR + (690 nm~710 nm)). (4)

After many studies, it was found that using the green ray for detection of nitrogen content was
more effective than the normal vegetation index. Therefore, GNDVI uses the following equation [22]:

GNDVI = ((NIR − (540 nm~570 nm))/(NIR + (540 nm~570 nm)). (5)

The wavelength which was used in the previous equation was shifted to the green edge in order
to get a clearer result from satellite images [22], where NIR is the near-infrared band of Sentinel-2.

2.3.3. Normalized Difference Turbidity Index

Lacaux et al. [23] developed an algorithm to estimate the water turbidity using remote sensing
data specifically for ponds and inland waters, and it can be estimated as follows:

NDTI =
Red−Green
Red + Green

, (6)

where R is the red band of Sentinel-2, and G is the green band of Sentinel-2.
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2.4. Data Normalization and Regression Analysis

In order to establish a regression analysis between the actual and estimated water quality
parameters, a data normalization procedure is essential task to omit the unit’s dimension from the two
datasets. Data normalization can be achieved as follows [24]:

f (χ, µ, σ) =
1√
2πσ

e−(
(π−µ)2

2σ2 ). (7)

The basic equation for Pearson’s correlation is defined as follows [25]:

r =
n(∑ xy)− (∑ x)(∑ y)√
[n ∑ x2]

[
n ∑ y2 − (∑ y)2

] , (8)

where N is number of pairs of scores, ∑xy is sum of the products of paired scores, ∑x is sum of x scores,
∑y is sum of y scores, ∑x2 is sum of squared x scores, and ∑y2 is sum of squared y scores.

The intention behind performing the regression analyses is to envisage the regression potentials
between the actual and the remotely sensed estimated water quality parameters. Therefore, the actual
parameters will be plotted against the estimated parameters and root mean square error (RMSE) values
are used to obtain the best fit. RMSE is obtained as follows [26]:

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
, (9)

where P is the predicted value; O is the observed values.
Zonal statistics under arc environment were exercised and resulted in four different statistic types

(mean, P 90 “majority”, maximum, and minimum values of the input raster) which were used in the
regression analysis to identify the best fit.

3. Results and Discussion

Multiple empirical regression analyses were exercised in order to evaluate and realize the coherent
relationships between the actual water quality parameter concentrations collected in situ and the
corresponded water quality parameters in reflectance values estimated from remote sensing data.

The in-situ water quality parameters were taken daily by the dam authority for routine
analysis, therefore, there was no time difference between the in-situ sampling and remote sensing
data acquisition.

Statistical analyses that included calculations of the average, maximum, and minimum values, and
linear and nonlinear regressions were performed. Pearson correlation analysis was used to investigate
the strength of the association between the two variables with a correlation coefficient (r). Significance
levels were reported to be significant (p < 0.05) or not significant (p > 0.05) with a t-test, which provides
evidence of an association between the two variables.

Statistical analyses were performed using the mean values of in situ measurements against
the mean, P 90 (majority), maximum, and minimum values of remote sensing data to evaluate the
analysis consistencies in linear and nonlinear regressions. The variables’ association strength was
examined for subsequent Person correlation with p < 0.05 for a significant association and p > 0.05 for
no significant association. Figures 2–4 demonstrates the linear regression analysis of MCI, GNDVI,
and NDTI, respectively.
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Figure 2. Maximum chlorophyll index (MCI) regression analysis with respect to different zonal
statistics values.
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Figure 3. Green normalized difference vegetation index (GNDVI) regression analysis with respect to
different zonal statistics values.
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Figure 4. Normalized difference turbidity index (NDTI) regression analysis with respect to different
zonal statistics values.

Regression results showed that mean pixel values were the best for presenting a coherent
association between the actual water parameters and the remotely sensed estimated ones in each of the
investigated water quality parameters (MCI, GNDVI, and NDTI). RMSE expressed in Table 1 confirms
the robust association between the mean value of the in-situ water quality measurements and the
conducted values from remote sensing data based on the summary of the fit analysis [27,28].



Water 2019, 11, 556 8 of 14

Table 1. Summary of fit analysis.

Header
MCI

Mean P 90 Min Max

RSquare 0.966900 0.886912 0.930364 0.947727

RSquare Adj 0.966051 0.884012 0.928579 0.946386

Root Mean Square Error 0.039628 0.073256 0.075427 0.051299

Mean of Response 0.452561 0.465951 0.489893 0.447380

GNDVI

RSquare 0.940660 0.920928 0.917046 0.096571

RSquare Adj 0.939138 0.918900 0.914919 0.073406

Root Mean Square Error 0.068546 0.076428 0.090124 0.014555

Mean of Response 0.492012 0.520620 0.510049 0.420685

NDTI

RSquare 0.941958 0.921015 0.942222 0.736541

RSquare Adj 0.940470 0.918990 0.940741 0.729786

Root Mean Square Error 0.077774 0.062725 0.075304 0.156997

Mean of Response 0.513581 0.413256 0.504930 0.532880

Multi variance analysis shows a strong correlation between the mean in situ readings and the mean
image values of estimated MCI, GNDVI, and NDTI (Figures 5–7). Table 2 expresses the correlation
coefficient of the water quality parameters under investigation.
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Table 2. The correlation coefficient of the water quality parameters.

Header Color Mean P 90 Min Max

Color 1.0000 0.9833 0.9418 0.9646 0.9735

Mean 1.0000 0.9648 0.9748 0.9607

P 90 1.0000 0.9786 0.8863

Min 1.0000 0.9271

Max 1.0000

Nitrate Mean P 90 Min Max

Nitrate 1.0000 0.9699 0.9596 0.9576 0.3108

Mean 1.0000 0.9859 0.9874 0.3553

P 90 1.0000 0.9951 0.4076

Min 1.0000 0.4040

Max 1.0000

Turbidity Mean P 90 Min Max

Turbidity 1.0000 0.9707 0.9597 0.9705 0.8582

Mean 1.0000 0.9559 0.9771 0.8206

P 90 1.0000 0.9676 0.7770

Min 1.0000 0.8616

Max 1.0000

The minimum and maximum pixel did not show a strong association with in situ measurements.
The reason behind this weak relationship is that both minimum and maximum pixel values were
considered as the analysis range anomalies [29].

There was no significant difference between the in-situ surface water sampling across different
climatic conditions and the subsurface measurements taken by the dam authority, which might be
understood as reaching the saturation level of the investigated water quality parameters [30]. Therefore,
this leads to water being classified as of a low quality that cannot be safely or directly used [31].

The temporal analysis of the estimated remotely sensed indices ensured regression stability [7]
based on robust linear coherence between the actual and estimated water quality parameters examined
in the current research study.

While Van Wagtendonk et al. [32] failed to establish a strong association using Landsat data,
red-edge bands of Sentinel-2 proved to be efficiently reliable for estimating water quality parameters
specified in inland water [33].

According to Gitelson et al. [34], Odermatt et al. [35], and Vesali et al. [36] estimation of chlorophyll
concentration underwater turbidity conditions was satisfactorily conducted using several models
based on accurate spectral measurements. However, developing complex models seems to be difficult,
due to the broad bandwidth of Operational Land Imager (OLI) data. This requires the development of
a different method that is applicable to OLI data.

Nevertheless, complex models for chlorophyll estimations based on Landsat OLI data are hard to
develop because of Landsat OLI broad bandwidth in the near-infrared and thermal infrared regions [37].
Previously, scholarly work of Walthall et al. [38] and Adam et al. [39] reported weaknesses in the
association of middle infrared and chlorophyll concentrations in water using Landsat ETM+ data.
This was explained by the penetration limitations of Landsat ETM+ bands in deep water [40,41].

Estimation of N concentration in agricultural crops and its spatial distribution has been the goal
of several scholarly works because of its importance to soil fertilization [42,43]. However, estimation
of dissolved N is confined to a limited number of earth observation sensors equipped specifically with
the red-edge region of the spectrum [44].
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Regression analysis between the actual N concentration and the estimated index was exercised on
four different zonal statistic types. The mean and the P 90 values were more coherent than the actual
data with a correlation coefficient of 0.9699 and 0.9596, respectively, while maximum and minimum
values were less representative of the actual N concentration. The increase in the dissolved N in the
dam lake is a sign of pollution pressure to the water quality on the catchment scale [45,46]. However,
the N concentration is monitored by the local authority at the outflow, disregarding only the separation
distribution of the pollutant which can be assessed using remote sensing data [47,48].

Water turbidity as a sign of sedimentation processes was initially considered by Carpenter [49]
utilizing Landsat Thematic Mapper data. The algorithm was consequently developed to consider
the change in the central bandwidth of the recent sensors as Doxaran [50] reported using Satellite
Probatoire de l’Observation de la Terre (SPOT) images. The duality of the bands at 645 and 850 nm
of suspended particulate matter proved to be effective in turbidity detection, especially in inland
water [51]. Similarly, Sentinel-2 central band wavelengths in the near-infrared region cover the
designated bands for suspended particulate detection, making the sensor capable of estimation of
water turbidity in a precise manner [52,53].

4. Conclusions

The routine monitoring of water quality parameters is costly and requires constant laboratory
supplies and efforts. The implemented methodologies, as well as the comprehensive assessments,
answered the questions concerning the feasibility of using a linear empirical approach to estimate the
designated water quality parameters across temporal remote sensing data. Estimation of chlorophyll,
nitrogen content, and water turbidity were successfully achieved utilizing remote sensing data acquired
from Sentinel-2. Red-edge bands of Sentinel-2 are the keystone feature of the sensor for estimating the
addressed water quality parameters in a reliable manner. Moreover, the mean values of the raster data
showed a high correlation with the actual data from the conducted laboratory examinations. Therefore,
a consistent empirical model could be determined.
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