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Abstract 

 

Apache Flink is an open source framework that supports high-throughput, low 

latency data processing, as well as event processing. Flink executes arbitrary dataflow 

programs in a data-parallel and pipelined manner. At a basic level, Flink programs 

consist of streams and operators which apply transformations on data. The number of 

operator subtasks correspond to the parallelism of that particular operator and 

regulates the allocated resources for the execution of the operator. As a result, it is 

possible to set the desirable overall parallelism of the program by adjusting accordingly 

the parallelism of each operator. Although, Flink currently lacks the ability to 

automatically adjust to the resource needs of a running program and therefore it 

cannot adapt the program to varying workload. Therefore, such an adjustion can only 

be done with human intervention. The lack of dynamic resource allocation could lead 

to performance drop or to allocated resources remaining unused for long time (in the 

case of over or under utilization of resources respectively). In order to address this 

issue, we propose a statistical machine learning methodology which is implemented 

as a software agent that runs in parallel with Flink. The agent monitors the running 

program and adjusts the allocated resources to the incoming workload. The agent acts 

proactively by predicting the forthcoming workload in order to maintain the 

performance of the application within acceptable limits (i.e. defined in the form of 

SLAs) while minimizing the utilization of resources. This is achieved by adjusting (i.e. 

scaling-up or down) the computational resources to the actual and future needs of the 

application. To do so, a statistical machine learning model is used with online training 

in order to approach an optimal policy for scaling. As a proof of concept, we designed 

and implemented an infrastructure on the cloud which assess the efficiency of such 

scaling method in a Flink cluster. We run an exhaustive set of experiments using 

synthetic and real workloads available on the internet. The experimental results are a 

good support to our claims of efficiency. 
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1. Introduction 

1.1. Technology environment and applications 

 

Apache Flink1 is a distributed framework for stream processing. It can be 

deployed in the cloud and execute programs in a parallel and distributed way. Flink 

provides an extensive toolbox of operators for implementing transformations on data 

streams (e.g., filtering, updating state, defining windows, aggregating). The Flink 

cluster consists of a manager and a number of workers. The manager regulates both 

the entire cluster and the operation of running applications. On the other hand, workers 

are the resources of the cluster which run the applications. The parallelism of such 

application is translated to the amount of resources allocated to that application. 

Consequently, Flink can be used to develop complex data stream programs that 

respond to high-throughput and low-latency specifications. 

Applications deployed in the cloud, are able to provide high demand services. 

Such a service is stream processing where data are continuously generated by various 

sources. When streaming data are generated at high speed, traditional data-

processing application software is no longer able to process the data within the 

acceptable time limit. The data processing speed can be dramatically improved by 

taking advantage of parallel execution environments where data are distributed across 

multiple servers. 

 

1.2. Problem description and needs 

 

The relation of service provider and service client is not arbitrary but shaped by 

a contract, referred to as service-level agreement (SLA). The type of service, its 

aspects (like quality or availability) and how they are measured, are agreed and 

formulated in SLA (e.g.  95% of the requests per seconds must be responded in less 

than 1 second or, service availability must be above 95% of the time of operation). In 

addition, the contract includes both obligations and penalties in case of non-

compliance with the agreement. As an example, internet service providers will 

commonly include service level agreements within the terms of their contracts with 

customers to define the level of service being provided. 

The quality of service is strongly related to the demand from clients as well as 

the allocated resources to that particular service. It is common knowledge that the 

workload of an application is not static but it can change throughout time, creating the 

need for dynamic configuration of the computing resources. Providers has to 

 
 
1 https://flink.apache.org 
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constantly adjust the allocated resources per service in response to application 

demands in order to maintain the quality of service. Considering that the target service 

is a website, the resources can be modeled as the number of machines serving 

requests. In case of increased workload, if application resources are not scaled up in 

response to applications needs, the targeted application ends up overloaded and 

under-served (i.e. the application is exhausting its computational resources, requests 

are slowed down or some requests cannot be served at all). Therefore, high workload 

in combination with inadequate number of allocated servers cause performance drop.  

The issue could be easily solved by having a relatively large number of servers 

permanently allocated to the application. Although the performance issue will be 

settled, the infrastructure will end up underutilized. Since allocated resources come at 

a price, maintaining dormant resources will make the service unsustainable in the long 

run. 

In order to deploy services which are both sustainable and performant, a variety 

of distributed frameworks have developed resource adjusting agents. The agents 

maintain the quality of service with as few allocated resources as possible. In a cloud 

environment, the problem can be solved by horizontal or vertical scaling2. For 

example, Kubernetes3 which is a container orchestrator, offers a mechanism for 

adjusting the number of active containers according the application’s load. However, 

Flink cannot be easily configured to support vertical or horizontal scaling solutions 

such as the above.   

 

1.3. Solution and prospects 

 

In this thesis, we propose an autonomous agent for automatically adjusting 

resources used by Flink applications. The abstract architecture of the system is 

depicted in Figure 1. The agent monitors the targeted application and modifies the 

allocated resources accordingly. To do so, dynamic scaling mechanisms are 

implemented. The first one, which is the reactive, mades a decision after the 

performance falls under the acceptable limit. The reactive scaling is easy to implement 

but it leaves room for both over-utilization and under-utilization of resources. The 

second option is the proactive scaling, which analyzes previous measurements of 

performance, resources and workload, and is capable of predicting possible SLA 

violations. Proactive scaling mades optimal decisions but it comes with a complex 

implementation and requires a pre-existing dataset for the model training. 

Both solutions have their pros and cons. In this work, we take advantage of 

both mechanisms and combine them into one integrated agent. At the beginning, the 

 
 
2 https://en.wikipedia.org/wiki/Scalability 
3 https://kubernetes.io/ 
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agent explores the performance of the application under varying workload and 

different number of workers (e.g. servers). Specifically, the reactive scaler collects 

workload and performance information and adjusts (scales-up or down) the number of 

workers based on the actual workload and as soon as the SLA is violated. At the same 

time, a statistical machine learning model is trained that captures the relation between 

workload, resources and performance. Afterwards, the proactive scaler takes over the 

resource management and the agent’s actions are based on the performance model. 

In this phase, the agent adjusts more efficiently the resource utilization and SLA 

violations are prevented. It is worth mentioning that modifications to the application’s 

environment (e.g. hardware failure) or in the application itself (e.g. support of a new 

feature) can lead to change of its overall behavior. For example, extending an existing 

operation of the application would increase the required computational resources of 

that particular operation and thus affect the performance per request.  In such a case, 

the existing machine learning model is not capable to describe the targeted application 

anymore, which in turn, could lead to inaccurate scaling actions. Such change 

detection forces the agent to return in reactive mode and start the collection of new 

data. The integration of both mechanisms in the overall architecture, results to self-

adapting agent which maximizes the resource utilization and minimizes the SLA 

violations. 

 

 
Figure 1 - Abstract architecture 

 

1.4. Contributions 

 

The main idea of the statistical machine learning approach for the scaling of 

resources has been described initially in [1] and [2]. These publications describe a 

controller which employs a performance model of the system to make decisions about 

the optimal allocation of resources for Web 2.0 applications deployed on cloud. 

However, the present work shows how the original idea can be exploited to support 

scaling decisions for Flink proactively rather than reactively. To the best our 
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knowledge, existing approaches (e.g.  Ververica’s Autopilot4) are mainly reactive and 

do not support proactive scaling. In addition, the scaling mechanism has been 

implemented using a statistical machine learning model and has been fully integrated 

within Flink. As a result, the new proactive Flink infrastructure can work for any 

application and any workload. This required that Flink jobs be constantly monitored 

using state-of-the-art tools (e.g. Prometheus) in order to take advantage of multiple 

systems measurements (e.g. queue length of unprocessed events referred to as 

"slow-events", throughputs referred to as number of workers or nodes, and resource 

utilization per worker).  

The autoscaler decides when resource allocation modification has to be applied 

to the running application. We utilize modern low-footprint virtualization technologies 

based on Docker containerization. The actual and future need for Flink workers (i.e. 

TaskManagers) are computed either reactively (during exploration mode) or 

proactively (during optimal control). To be more specific, when there is a need to 

deploy more Flink workers to the cluster, the required resources are predicted by the 

model before they are allocated to Flink. Similarly, when a considerable part of workers 

remains idle, they are removed and the resources are deprovisioned. Consequently, 

the application provider is charged only for necessary resources. 

 

 

1.5. Thesis structure 

 

• Chapter 2 provides the knowledge background required for understanding this 

work and presents the software tools that are used for the completion of this 

thesis. 

• Chapter 3 analyzes the components of the controller and how they interact with 

each other. 

• Chapter 4 describes in detail the architecture of the infrastructure which extends 

Flink and enable stream processing with dynamic scaling. 

• Chapter 5 evaluates the performance of the controller through experiments. 

• Finally, Chapter 6 summarizes the conclusions and Chapter 7 offers 

recommendations for future work. 

 
 
4 https://www.ververica.com/blog/introducing-ververica-platform-2.2-with-autoscaling-for-apache-flink 
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2. Background 

2.1. User cases 

Stream processing enables a variety of brand-new applications characterized 

by increased data generation and the low latency response. Steam data could have 

the form of GPS signals, financial transactions, communication signals, web traffic or 

measurements from sensors. The efficient analysis of such data could lead to critical-

mission applications. Some types of such applications are listed below: 

 

Fraud detection 

The use of data is spreading more and more in every sector of the society. It is no 

surprise that data can be altered in order to bypass the targeted system. Fraud 

detection undertakes the evaluation and identification of such data by marking them 

as a fraud. This can be done by training a model based on historical data which is able 

to identify patterns forming different types of fraud. For instance, a bank system could 

apply fraud detection for assessment of credit card transactions. 

 

Anomaly detection 

In various domains such as statistics, signal processing and finance, data follows a 

particular distribution but rare events or observations could occur. Anomaly detection 

is the identification of such cases which raise suspicions by differing significantly from 

the majority of the data. For example, in a health monitoring system, an anomaly in a 

patient’s data could be translated to a medical problem. 

 

Rule-based alerting 

In this user case the goal is to identify data which satisfy one or more rules. When 

such an event is captured, an alert is raised. Such an application could be a smart 

home system which receives several sensor readings from the rooms of a house. A 

flag for fire alarm could be generated when air-associated data satisfy specified 

conditions. 

 

Quality monitoring 

A deployed application could generate real-time metrics consisting a data stream. The 

processing of the data stream produces a continuously updated report about the 

quality of service. Such a report contains valuable information and indicators about the 

targeted service. The service provider could utilize that report to assess the quality of 

service and identify possible improvement points  
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2.2. Cloud Computing 

 

Cloud computing provides on-demand availability to computer resources, such 

as computation power and data storage. Cloud providers follow a "pay-as-you-go" 

policy, which means that clients are charged only for the allocated resources. The 

datacenter could be physically geographically distributed but be presented to the client 

of the system as a single entity. In this way, each client is able to request the preferable 

resources that fits the hosted application better. Resources in cloud are scalable, they 

can be easily adjusted by removing or adding resources. The client can scale the 

allocated resources depending on the needed utilization, resulting to a cost-efficient 

plan. 

Microservices architectural style arranges an application as a collection of 

loosely coupled services. The services can run on separate machines and through a 

communication protocol over a network form one single application. For example, the 

application could be deployed on the cloud and be distributed on separate virtual 

machines. The decomposition releases the application from the boundaries of a single 

machine and thus enables distributed and parallel applications. The parts of the 

application can be updated independently from each other and yet cause no disruption 

to overall operation the application.   

 

2.3. Apache Flink 

The content of the following section is based on Apache Flink documentation5. 

 

Flink6 is a framework and distributed processing engine for stateful 

computations over unbounded and bounded data streams. Flink has been designed 

to run in all common cluster environments, perform computations at in-memory speed 

and at any scale. 

 

Stream Processing 

Streams are data’s natural habitat. Whether the events are generated from web 

servers, trades from a stock exchange, or sensor readings from a machine on a factory 

floor, data is created as part of a stream, as shown in Figure 2. Therefore, data 

analysis can be organized in two forms: 

● Batch processing, where the data are processed as a bounded data stream. In 

this mode of operation, the entire dataset is ingested to Flink before producing 

any results. It is possible, for example, to sort the data, compute global 

statistics, or produce a final report that summarizes all of the input. 

 
 
5 https://ci.apache.org/projects/flink/flink-docs-release-1.11 
6 https://flink.apache.org 
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● Stream processing, on the other hand, involves unbounded data streams. 

Conceptually, the input may never end, and so the data has to be continuously 

processed as they arrive. 

 

 

 
Figure 2 - Stream data 

 

 

Applications 

In Flink, applications, referred as jobs, are composed of streaming data flows 

that may be transformed by user-defined operators. These dataflows form directed 

graphs, called JobGraph, that start with one or more sources, and end in one or more 

sinks. An example of a directed graph is shown in Figure 3. In the particular example, 

the data enter the dataflow through source, they are transformed by two operators and 

finally exit the dataflow through the sink. Last but not least, Flink offers different levels 

of abstraction for developing streaming/batch applications (e.g. SQL API). 

 

 
Figure 3 - Directed graph of Flink application 

 

An application may consume real-time data from streaming sources such as 

message queues or distributed logs, like Apache Kafka7 or Kinesis8. But Flink can also 

 
 
7 https://kafka.apache.org/ 
8 https://aws.amazon.com/kinesis/data-streams/ 
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consume bounded, historic data from a variety of data sources. Similarly, the streams 

of results being produced by a Flink application can be sent to a wide variety of 

systems that can be connected as sinks. An abstract diagram of several connectors 

types for source or sink operators are depicted in Figure 4. 

 

 
Figure 4 - Flink connectors 

 

Programs in Flink are inherently parallel and distributed. During execution, a 

stream has one or more stream partitions, and each operator has one or more operator 

subtasks. The operator subtasks are independent of one another, and execute in 

different threads and possibly on different machines or containers. The number of 

operator subtasks is the parallelism of that particular operator. Different operators of 

the same program may have different levels of parallelism. For example, in Figure 5, 

all operators have parallelism 2, except Sink which has parallelism 1. The load of each 

operation is evenly balanced between its subtasks. 

 

 
Figure 5 - Flink parallel dataflow 
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Architecture 

The Flink runtime consists of two types of processes: a JobManager and one 

or more TaskManagers. The abstract architecture is depicted in Figure 6. 

 

JobManager  

The JobManager is responsible for the coordination of the distributed execution of 

Flink Applications: it decides when to schedule the next task (or set of tasks), reacts 

to finished tasks or execution failures, coordinates checkpoints, and coordinates 

recovery on failures, among others. This process consists of three different 

components: 

● The ResourceManager, which is responsible for resource de-/allocation and 

provisioning in a Flink cluster — it manages task slots, which are the unit of 

resource scheduling in a Flink cluster.  

● The Dispatcher, which provides a REST interface to submit Flink applications 

for execution and starts a new JobMaster for each submitted job. It also runs 

the Flink WebUI to provide information about job executions. 

● A JobMaster, which is responsible for managing the execution of a single 

JobGraph. Multiple jobs can run simultaneously in a Flink cluster, each having 

its own JobMaster. 

 

There is always at least one JobManager. A high-availability setup might have 

multiple JobManagers, one of which is always the leader, and the others are in standby 

mode. 

 

 

TaskManagers 

The TaskManagers (also called workers) execute the tasks of a dataflow and 

exchange the data streams. 

 

There must always be at least one TaskManager. The smallest unit of resource 

scheduling in a TaskManager is a task slot. The number of task slots in a TaskManager 

indicates the number of concurrent processing tasks. Multiple operators may execute 

in a task slot. 
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Figure 6 - Flink runtime 

Stateful Stream Processing 

Flink’s operations can be stateful. This means that how one event is handled 

can depend on the accumulated effect of all the events that came before it. State may 

be used for something simple, such as counting events per minute to display on a 

dashboard, or for something more complex, such as computing features for a fraud 

detection model. 

 

 

Fault Tolerance via State Snapshots 

Flink is able to provide fault-tolerant, exactly-once semantics through a 

combination of state snapshots and stream replay. The term ‘exactly-once’ means 

there in no data loss or duplicates but each data record is process exactly once. Data 

records, are distinguished from each other on the bases of their offsets, which are 

positional numbers of the records in the data stream. Using offsets, we are able to 

track up to which point the data stream is consumed. As a result, lost data records can 

be recovered with stream replay, in which data records are re-consumed. 

The snapshots capture the entire state of the distributed pipeline, recording 

offsets into the input queues as well as the state throughout the job graph. When a 

failure occurs, the sources are rewound, the state is restored, and processing is 

resumed. These state snapshots are captured asynchronously, without impeding the 

ongoing processing. 

 

There are two main types of snapshots: 

1. Checkpoint: a snapshot taken automatically by Flink for the purpose of being 

able to recover from faults. Checkpoints can be incremental, and are optimized 

for being restored quickly. 

2. Savepoint: a snapshot triggered manually by a user (or an API call) for some 

operational purpose, such as a stateful redeploy/upgrade/rescaling operation. 
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High Availability 

The general idea of JobManager high availability is that there is a single leading 

JobManager at any time and multiple standby JobManagers to take over leadership in 

case the leader fails. This guarantees that there is no single point of failure and 

programs can make progress as soon as a standby JobManager has taken leadership. 

There is no explicit distinction between standby and master JobManager instances. 

Each JobManager can take the role of master or standby. 

 

 
Figure 7 - Flink High Availability 

 

An example with three JobManager instances is shown in Figure 7. The 

JobManager High Availability mode is enabled by using Zookeeper9. Flink utilizes 

Zookeeper for distributed coordination between all running JobManager instances. 

Zookeeper is a separate service from Flink, which provides highly reliable distributed 

coordination via leader election and light-weight consistent state storage. Zookeeper 

is described in Section 2.6. 

 

 

Cluster modes 

Flink has three main modes for clustering. The Flink Cluster consists of at least 

one JobManager and one or more TaskManagers. The cluster mode regulates 

whether Flink is dedicated to only one job or can host multiple jobs. Also, each option 

offers different lifecycle of cluster and resource isolation guarantees. 

 

 
 
9 https://zookeeper.apache.org/ 
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Session Mode 

Session mode assumes an already running cluster and uses the resources of that 

cluster to execute any submitted application. Applications executed in the same 

(session) cluster use, and consequently compete for, the same resources. This has 

the advantage that there is no resource overhead of spinning up a full cluster for every 

submitted job (e.g. each cluster has its one JobManager). But, if one of the jobs 

misbehaves or brings down a TaskManager, then all jobs running on that 

TaskManager will be affected by the failure. Additionally, having a single cluster 

running multiple jobs implies more load for the JobManager, which is responsible for 

the book-keeping of all the jobs in the cluster. 

 

Per-Job Mode 

Aiming at providing better resource isolation guarantees, the Per-Job mode uses the 

available cluster manager framework (e.g. Kubernetes) to spin up a cluster for each 

submitted job. This cluster is available to that job only. When the job finishes, the 

cluster is shut down and any lingering resources (e.g. files) are cleared up. This 

provides better resource isolation, as a misbehaving job can only bring down its own 

TaskManagers. In addition, it spreads the load of book-keeping across multiple 

JobManagers, as there is one per job.  

 

Application Mode 

In all previous modes, the application’s main() method is executed on the client side. 

This process includes downloading the application’s dependencies locally, build the 

job and then submitted to the cluster. This makes the client a heavy resource 

consumer as it may need substantial network bandwidth to download dependencies 

and upload binaries to the cluster. Building on this observation, the Application Mode 

creates a cluster per submitted application, but this time, the main() method of the 

application is executed on the JobManager. Creating a cluster per application can be 

seen as creating a session cluster shared only among the jobs of a particular 

application, and shut down when the application finishes. With this architecture, the 

Application Mode provides the same resource isolation and load balancing guarantees 

as the Per-Job mode, but at the granularity of a whole application. Executing the main() 

on the JobManager allows for saving the CPU cycles required for the build of the job, 

but also save the bandwidth required for downloading the dependencies locally.  
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Why Apache Flink 

Although other frameworks, like Spark10, Storm11, Samza12 and Apex13, already 

provide stream processing, Flink is gaining more and more ground. Developing a 

steam processing engine could be quite challenging due to the nature of such data. 

Flink stood out from the rest of the frameworks by overcoming challenges and 

limitations which were left unresolved from the other platforms. Some of the major 

benefits of Flink are the following: 

1. Native Streaming: Flink offers true streaming processing, which means 

records are consumed immediately upon their arrival. Another approach for 

stream processing is micro-batching, which processes records in small 

batches. In this case, the processing takes place after the required number of 

records is collected resulting to additional latency. 

2. Exactly-once guarantee: records are processed exactly once. Even in case of 

a machine or software failure, there is no duplicate data or data loss. On the 

other hand, an at-least-once system has no data loss but could process some 

data records more than one times and thus affecting the final output. 

3. Performance: a streaming engine attempts to minimize the data latency (the 

total time needed for the processing of each data record) and maximize the 

total number of processed records per second. To put it in another way, both 

low-latency and high-throughput define an effective framework. 

4. Stateful operations: operators which require the ability to maintain a state. For 

instance, a counter updates its value by incrementing the previous one. 

5. Advanced operations: Flink offers a variety of built-in features which make the 

programming easier. Such features are event time processing, aggregation and 

watermarks. In addition, Flink includes machine learning and graph API that 

developers can easily integrate within their streaming applications. 

6. Unified framework: Flink provides different abstraction APIs for both batch and 

stream processing. 

 

Therefore, Flink combines the traits of the pre-existed frameworks and extend them 

even further in one technology. 

 

 

 

 
 
10 https://spark.apache.org/ 
11 https://storm.apache.org/ 
12 http://samza.apache.org/ 
13 https://apex.apache.org/ 
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2.4. Prometheus 

The content of the following section is based on Prometheus documentation14. 

 

Prometheus15 is an open-source platform used for event monitoring. The 

monitored targets run specified agents which export metrics (e.g. CPU load or memory 

usage) through HTTP endpoints. The agents can be created by using client libraries 

for the supported programming languages or be user custom programs which 

implement the required exposition formats (the format of the exported metrics). 

Prometheus collects data, in the form of time series16, from all targets into a centralized 

server by querying the HTTP endpoints on these targets at a specific polling frequency.  

Every time series is uniquely identified by its metric name and optional key-

value pairs called labels. Labels can include information on the data source (which 

server the data is coming from) and other application-specific breakdown information 

such as the HTTP status code, query method (GET or POST), etc. Labels enable 

Prometheus's dimensional data model: any given combination of labels for the same 

metric name identifies a particular dimensional instantiation of that metric. For 

example, all HTTP requests that use the method POST to the /api/tracks handler. In 

this case, the HTTP request consists the metric name while the method and handler 

are the labels. Fundamentally all data are stored as time series: streams of 

timestamped values belonging to the same metric and the same set of labeled 

dimensions. Besides stored time series, Prometheus may generate temporary derived 

time series as the result of queries (e.g. total number of GET requests of the last one 

hour). 

In Prometheus terms, an endpoint which can be scraped (requests can be 

made on it), is called an instance, usually corresponding to a single process. A 

collection of instances with the same purpose, a process replicated for scalability or 

reliability for example, is called a job. For example, an API server job with four 

replicated instances could have the following form: 

job: api-server 

a. instance 1: 1.2.3.4:5670 

b. instance 2: 1.2.3.4:5671 

c. instance 3: 5.6.7.8:5670 

d. instance 4: 5.6.7.8:5671 

 

The monitoring targets can be configured at the beginning of the operation of 

Prometheus and be modified dynamically afterwards. In additions, Prometheus 

provides a functional query language called PromQL (Prometheus Query Language) 

that lets the user select and aggregate time series data, based on label dimensions in 

 
 
14 https://prometheus.io/docs/introduction/overview/ 
15 https://prometheus.io/  
16 https://en.wikipedia.org/wiki/Time_series_database 
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real time. Changing any label value, including adding or removing a label, will create 

a new time series. The result of an expression can either be shown as a graph, viewed 

as tabular data in Prometheus's expression browser, or consumed by external 

systems via the HTTP API. 

 

2.5. Apache Kafka 

The content of the following section is based on Apache Kafka documentation17. 

 

Apache Kafka18 is an open-source distributed event streaming platform used 

for high-performance data pipelines, streaming analytics, data integration, and 

mission-critical applications. 

Event streaming is the practice of capturing data in real-time from event sources 

like databases, sensors, mobile devices, cloud services, and software applications in 

the form of streams of events; storing these event streams durably for later retrieval; 

manipulating, processing, and reacting to the event streams in real-time as well as 

retrospectively; and routing the event streams to different destination technologies as 

needed. Event streaming thus ensures a continuous flow and interpretation of data so 

that the right information is at the right place, at the right time. 

Kafka supports three key capabilities for event streaming end-to-end with a single 

battle-tested solution: 

1. To publish (write) and subscribe to (read) streams of events, including 

continuous import/export of data from other systems. 

2. To store streams of events durably and reliably. 

3. To process streams of events as they occur or retrospectively. 

 

Kafka is a distributed system consisting of servers and clients that communicate 

via a high-performance TCP network protocol. It can be deployed on bare-metal 

hardware, virtual machines, and containers in on-premise as well as cloud 

environments. Kafka runs as a cluster of one or more servers that can span multiple 

data centers or cloud regions. The clients allow the development of distributed 

applications and microservices that read, write, and process streams of events in 

parallel, at scale, and in a fault-tolerant manner even in the case of network problems 

or machine failures.  

 

 

 

 

 
 
17 https://kafka.apache.org/documentation/ 
18 https://kafka.apache.org/  
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Events 

An event records the fact that "something happened". An event has a key, value, 

timestamp, and optional metadata headers.  

● Event key: "Alice" 

● Event value: "Made a payment of $200 to Bob" 

● Event timestamp: "Jun. 25, 2020 at 2:06 p.m." 

 

Producers are those client applications that publish (write) events to Kafka, and 

consumers are those that subscribe to (read and process) these events. In Kafka, 

producers and consumers are fully decoupled and agnostic of each other, which is a 

key design element to achieve the high scalability. For example, producers never need 

to wait for consumers.  

Events are organized and durably stored in topics. A topic is similar to a folder in a 

filesystem, and the events are the files in that folder. Events in a topic can be read as 

often as needed - unlike traditional messaging systems, events are not deleted after 

consumption. Instead, a policy can be defined for how long Kafka should retain events 

through a per-topic configuration setting, after which old events will be discarded.  

 

Partitions 

Topics are partitioned, meaning a topic is spread over a number of "buckets" 

located on different Kafka brokers. The structure of a topic is depicted in Figure 8. This 

distributed placement of the data is very important for scalability because it allows 

client applications to both read and write the data from/to many brokers at the same 

time. When a new event is published to a topic, it is actually appended to one of the 

topic's partitions. Events with the same event key (e.g., a customer or vehicle ID) are 

written to the same partition, and Kafka guarantees that any consumer of a given topic-

partition will always read that partition's events in exactly the same order as they were 

written.  

 

Figure 8 – Structure of Kafka topic 
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To make the data fault-tolerant and highly-available, every topic can be 

replicated, even across geo-regions or data centers, so that there are always multiple 

brokers that have a copy of the data just in case of failure or maintenance. Under non-

failure conditions, each partition in Kafka has a single leader and zero or more 

followers. There is no explicit distinction between leader and followers’ instances. The 

total number of replicas including the leader constitute the replication factor. All reads 

and writes go to the leader of the partition. The logs on the followers are identical to 

the leader's log which means that they all have the same messages in the same order. 

Followers consume messages from the leader just as a normal Kafka consumer would 

and apply them to their own log. If the leader crashes, the followers elect a new leader 

which continues the operation of the particular partition. The leader election 

functionality is provided by Zookeeper. 

 

Kafka APIs 

Kafka has five core APIs: 

● The Admin API to manage and inspect topics, brokers, and other Kafka objects. 

For example, create/delete topics or list consumers connected to the cluster. 

● The Producer API to publish (write) a stream of events to one or more Kafka 

topics. 

● The Consumer API to subscribe to (read) one or more topics and to process 

the stream of events produced to them. 

● The Kafka Streams API is used to implement stream processing applications 

and microservices. It provides higher-level functions to process event streams, 

including transformations, stateful operations like aggregations and joins. Input 

is read from one or more topics in order to generate output to one or more 

topics, effectively transforming the input streams to output streams. 

● The Kafka Connect API to build and run reusable data connectors that consume 

(read) or produce (write) streams of events from and to external systems and 

applications so they can integrate with Kafka. Compared to Streams API which 

read/write data from/to Kafka topics, the Connect API offers connectivity 

(import/export of data) between Kafka and other systems.  For example, a 

connector to a relational database might capture every change to a table.  
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2.6. Apache Zookeeper 

The content of the following section is based on Apache Zookeeper documentation19. 

 

Apache ZooKeeper20 is a distributed, open-source coordination service for 

distributed applications. It exposes a simple set of primitives that distributed 

applications can build upon to implement higher level services for synchronization, 

configuration service, and naming registry. 

Operations like configuration management in distributed systems could be quite 

challenging due to the distributed nature of the system. The state of the system is 

composed of each individual state of the distributed parts, which increase the 

complexity of maintaining a valid state. A modification to one part has to be 

broadcasted to the rest of the system, which could be quite complex in large 

applications. In addition, synchronization operations (like leader election21) or 

maintaining a naming registry (discovery among the distributed parts), are hard to build 

from scratch. The aforementioned issues could be solved by introducing a centralized 

service which coordinates the operations. Zookeeper offers a high-performance 

coordination service where developers can build upon their distributed applications. 

To do so, Zookeeper allows distributed processes to coordinate with each other 

through a shared hierarchical namespace which is organized similarly to a standard 

file system. The namespace consists of data registers - called znodes, which are 

similar to files and directories. The namespace is depicted in Figure 9. Unlike a typical 

file system, which is designed for storage, data is kept in-memory, achieving high 

throughput and low latency. Znodes maintain timestamps and version numbers for 

data changes. Clients can read from and write to the nodes and in this way have a 

shared configuration service.  

 

 
Figure 9 – Zookeeper’s namespace 

 

 
 
19 https://zookeeper.apache.org/doc/r3.6.2/index.html 
20 https://zookeeper.apache.org/ 
21 https://en.wikipedia.org/wiki/Leader_election 
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The components of distributed system connect to Zookeeper through clients 

and coordinate with each other through znodes. The clients can create/delete znodes 

or read/write data. Znodes can be used to store coordination data of the system (e.g. 

status information, configuration and location information). In this way, data updates 

are instantly available to all clients. In addition, there is the notion of ephemeral nodes, 

which exist as long as the client’s session, that created the znode, is active. When the 

session ends the znode is deleted, which in turn, indicates that a client disconnected 

(e.g. crashed). A client can be notified of modifications in particular znodes and thus 

be aware of the activity of other clients. Consequently, znodes can be used to share 

information among a distributed system and provide notifications for the status of each 

component. 

Last but not least, properties of znodes can be utilized to perform certain 

functions. For example, in a leader election, clients create child znodes under the path 

"/election" that represent "proposals" and Zookeeper selects as leader the client that 

created the znode with smallest sequence number (e.g. znode which created first).  

 

2.7. Dynamic Scaling 

2.7.1. Proactive Scaling 

The mechanism for proactive scaling is based on future predictions related to 

targeted application and thus attempts to maintain the performance by acting in time. 

Typically, a proactive mechanism utilizes machine learning methods in order to 

generate a model which describes the behavior of the application. The model captures 

the relation between performance, workload and used resources. In order to do so, a 

dataset with historical data of the application is required for the training of the model. 

A proactive scaler will try to predict and then prevent a harmful event, such as SLA 

violation, based the incoming workload and act before it actually takes place. For 

example, if the application is a video streaming platform and it is known that the usage 

of the platform is increased at Fridays, the proactive mechanism should increase the 

running servers ahead of that time period. As a result, the performance is maintained 

to the desirable levels. In addition, resources are released as soon as the incoming 

workload can be processed with few resources. 

The training of the model could be performed offline or online. In the first case, 

model fitting takes place only once using the previously stored metrics of the 

applications. In the second case, the training dataset is updated by the production data 

so as to capture new characteristics in the behavior of the application. In comparison, 

the offline training results to a static but simple model while online is adjustable but 

more sophisticated. 
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Related work 

Bodík et al. [1,2] describe a proactive autoscaling mechanism for Web 2.0 
applications which run on virtual machines (VMs). The autoscaler is implemented 
using statistical machine learning and it is trained online by production data. In our 
work, we examine the efficiency of such autoscaler in a streaming engine like Apache 
Flink which is deployed in a containerized environment. 

Arabnejad et al. [3] compare two different autoscaling types of Reinforcement 
Learning (RL), which is SARSA and Q-learning. The autoscaler dynamically resize 
web applications, which run on virtual machines, in order to meet Quality of Service 
requirements. A fuzzy controller is implemented in order to reduce the total solutions 
which are generated by the state-action values of the RL algorithm.  

Bibal Benifa and D. Dejey [4] propose the RLPAS algorithm, which applies 
Reinforcement Learning (RL) through a neural network in order to reduce the time for 
convergence to an optimal policy. The autoscaler learns the environment and adjusts 
the allocated resources for Web applications deployed on VMs.  

Rossi, Nardelli and Cardellini [5] propose Reinforcement Learning (RL) 
solutions for controlling the horizontal and vertical elasticity of container-based 
applications in order to cope with varying workloads. Although, RL solutions, like [3],[4] 
and [5], are based on a trial and error policy. As a result, they could lead to increased 
SLA violations. In addition, the particular autoscalers do not apply any change point 
detection method for adapting the model in changes of application’s behavior. 
 

2.7.2. Reactive Scaling 

Another mechanism for scaling is the reactive one which makes a decision 

when one or more metrics of the system exceeds a specified threshold. For example, 

a new server will be added when the CPU usage is more than 90%. Therefore, this 

kind of mechanism will react after an event happens. Also, the reactive scaler releases 

allocated resources when they remain idle for a specific period of time, showing that 

they are no longer needed. The implementation of the reactive scaler is much simpler 

than the proactive but it tolerates more SLA violations.  

 

Related work 

Baresi et al. [6] present an autoscaling technique that allows containerized 
applications to scale their resources both at the virtual machine level and at the 
container level. The autoscaling is based on a planner, which consists of a discrete-
time feedback controller.  The planner computes the required resources (e.g. CPU 
cores) that have to be available to each tier so as to maintain the response time below 
a certain threshold. Afterwards, the computed resource allocations are translated into 
adaptation actions. 

DS2 [7] is an autoscaler that enables automatic scaling to applications which 
consists of dataflow operators (like Apache Flink). The controller assesses the running 
application in operator granularity and finds the bottleneck in the dataflow (which 
operator slows down the whole application). In contrast to this work, DS2 adjust the 
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parallelism of each operator separately in order to maintain the throughput in 
acceptable rate. Although, the scaler works reactively rather than proactively. 

Elixir [8] is an autonomous agent for enabling autoscaling on Docker Swarm. 
The agent monitors the targeted applications and adjusts reactively the allocated 
resources when a metric of the system surpasses a specified threshold (e.g. CPU 
usage). The resource adjustion is performed by adding or removing Nodes to the 
Swarm.  

Autopilot22 is an autoscaler which was introduced to the latest release of 
Ververica Platform. The autoscaler performs dynamic resource adjustion reactively on 
Apache Flink applications deployed on Ververica Platform. The autoscaler allocates 
the minimum required resources so as the application continues to keep up with all of 
its sources, resulting to minimum latency. Autopilot supports applications with multiple 
sources, while in our work, the supported applications contain only one source. 
 

2.8. Faban 

The content of the following section is based on Faban documentation23. 

 

Faban24 is a framework for developing and running benchmarks for the 

assessment of a targeted system, referred as System Under Test (SUT). It has two 

major components, the Faban Driver Framework and the Faban Harness. 

 

Faban Harness 

Faban Harness is a tool to automate the running of server benchmarks. It also 

serves as a container to host benchmarks allowing them to be deployed in a rapid 

manner. The Faban harness provides a web interface to launch, queue, view, compare 

and graph run outputs. The architecture is shown in Figure 10 and includes the 

following components: 

1. Master: Contains a web server which facilitates access through the web 

interface to Faban harness. It provides user interfaces for submitting, managing 

runs as well as accessing the run results. The run queue is the main engine 

controlling the runs. The log server receives and stores log records from the 

master itself, agents, and possibly the SUT. The master may or may not act as 

a load driving agent by itself, depending on the configuration. 

2. Agents: There are two types of agents. The driver agents who are responsible 

to drive the benchmark run (e.g. making requests to the targeted SUT). Also, 

there are the Faban command agents who are located on the system under 

test (SUT). The command agents are lightweight agents which act as a proxy 

 
 
22 https://www.ververica.com/blog/introducing-ververica-platform-2.2-with-autoscaling-for-apache-flink 
23 http://faban.org/1.3/docs/index.html 
24 http://faban.org/  

http://faban.org/
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for starting/stopping server processes as well as collecting relevant statistics 

from the system under test. Both types of agents are optional. 

 

 
Figure 10 - Architecture of Faban Harness. 

Faban Driver Framework 

Faban Driver Framework is an API-based framework that allows developers to 

easily define new benchmarks using the Java Programming Language. The driver 

framework controls the lifecycle of the benchmark run as well as the stochastic model 

used to simulate users. It provides built-in support for a variety of servers such as 

Apache httpd and a well-documented interface to add support for any other server 

(e.g. Apache Kafka). The Driver Frameworks architecture is depicted in Figure 11 and 

includes the following components: 

● The Registry registers all the Agents so that the Master can find them and 

distribute the tasks to them. There is only one instance of the registry in a 

benchmark configuration. 

● The Master starts, stops and collects the metrics for each of the benchmark 

runs. It also provides services to collect runtime metrics, do a benchmark health 

check, and to cancel the benchmark run prematurely. There is only one 

instance of the master in a benchmark configuration. 

● The Agent is the process that actually drives the load. It will create threads as 

instructed by the master and drive the load for the length of time or number of 

iterations as instructed by the master. Each of the agent threads simulate a 

single client or user to the system under test (SUT). These threads will 

instantiate the developer-supplied driver, collect metrics, and aggregate and 

propagate them back to the master for final processing and reporting. 

● The Agent Thread is created by the agent to simulate a single user executing 

an instance of the driver. The agent thread executes the workload and handles 

all timing functions and operation selections on the driver, and collects all the 

standard metrics. 
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● The Driver is a developer-supplied class that describes the workload and 

contains all the logic defining how to talk to the system under test (e.g. what 

operations can be made). It provides a grouping of all simulated user scenarios, 

each of them provided in the form of an operation. The selection of the 

scenarios is descriptively specified in the driver but actually controlled by the 

agent.  

● The Benchmark is a grouping of one or more drivers. The benchmark result or 

metric is an aggregation of the driver metrics and are reported as one final 

metric. 

● The standard Metrics object collects all the common statistics of a benchmark 

run. Faban provides an extension mechanism which allows a developer to 

specify custom metrics that may not be covered by the standard ones.  

 

 

 
Figure 11 - Components of Faban Driver Framework 

 

Driver Class 

The driver class represents a plain old Java object (POJO) which contains 

annotations defining the load model of the driver. The class is a description of the 

simulated user. It contains the possible operations that the user can perform on the 

System Under Test (e.g. visit the home page or contact page), their time 

characteristics (e.g. make a new request after 30 sec from the previous one) and how 

the operations are related to each other (e.g. visit the contact page if you currently are 

at the home page). The possible configuration terms are listed below: 

● Operation: a single unit of task executed by the user or the driver. 

● Operation Mix: defines how operations are executed by a simulated user or 

driver thread. 

● Operation Cycle: defines the timing characteristics from one operation to the 

next. 

● Metric: is the resulting data of the operations collected over the steady state 

time of the benchmark operation. 
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● Cycle Time: defines the elapsed time between the begin of the previous 

operation to the begin of the current operation. 

● Think Time: defines the elapsed time between the end of the previous 

operation to the begin of the current operation. 

● Critical Section: defines the portion of an operation in which the response time 

is measured. 

● Data Preparation Section: defines the portion of an operation before the 

critical section where the data gets prepared. 

● Validation Section: defines the portion of an operation after the critical section 

where the results get validated. 

 

 

Configuring Runs with Varying Loads 

The default workload of Faban is steady throughout the run, but it can be 

configured to follow a specific distribution. In this way, the system under test can be 

assessed in terms of elasticity, adaptivity or other limitations under varying workload. 

Faban provides load variation files in order to simulate such behavior and can be 

enabled through the configuration file of the run. In the beginning, all the necessary 

Agent Threads, for the entire workload, are being created. Each moment of time, only 

the needed Agent Threads, according the variation file, are active to drive the load. 

The rest of them remain idle until they are needed. Different load variation files can be 

defined for each agent. 

The file contains load level records, one per line. Each record is a comma-

separated pair of integers in the form <runtime in secs> , <thread count>. For example, 

in Figure 12, a load of 500 threads is applied for 10 seconds, then 700 threads start 

applying load for 20 seconds. Afterwards, 600 threads apply the last set of load for 10 

seconds. Consequently, the variation file can describe any workload distribution 

including a synthetic one. The synthetic workload distribution is produced by analyzing 

the trace or log files of deployed services making possible to repeat the targeted real 

workload [9]. For example, we can measure the past workload of a system by looking 

into its log files and then count how many requests the system received per second. 

Afterwards, the workload is described in the variation file and each active thread 

simulates the user by making requests to the System Under Test. As a result, Faban 

can be used for the generation of benchmarks based on real workload distributions 

and thus for the evaluation of the targeted system’s capabilities under realistic 

conditions.  

 

 
Figure 12 - Example file for generating varying workload in Faban. 



AUTOSCALER FOR FLINK 29 

 
 
 

 
 

3. Autoscaler for Flink 

3.1. System requirements 

The autoscaler can be integrated in any system which supports the following 

functionalities, as shown in Figure 13: 

1. Resource scaling: The available resources of the system has to be dynamically 

configured. For example, in containerized environment (e.g. Docker, 

Kubernetes), the orchestrator creates or removes containers on the fly. 

Similarly, in a cloud environment (e.g. OpenStack25) the available virtual 

machines are allocated/deallocated dynamically. Afterwards, the available 

resources have to be de/allocated to a specific running application as servers. 

2. Scheduler: The scheduler distributes the available resources to applications 

and provides load balancing26. The system has to be able to evenly distribute 

the incoming workload of the running application among its allocated servers. 

In other words, all servers handle the same number of requests (considering 

that each request demands the same amount of computational power). This is 

essential for the optimal utilization of resources. If the load is not evenly 

distributed, some servers will be stressed more than others, resulting to 

performance drop to requests served by the stressed servers. The even 

distribution of workload ensures the performance will drop only if all allocated 

servers are exhausted (none of the served requests satisfies the SLA). 

3. Monitoring: The components of the system have to be constantly monitored in 

order to extract the required metrics for the decision making. Such metrics are: 

a. Number of allocated servers: the allocated resources which serve 

requests. 

b. Workload: The number of requests per second which has to be served 

by the application 

c. Performance: The amount of time needed to serve a request. The 

performance can be measured by the average latency per request, 

which represent the amount of time needed by the server to generate a 

response. Another option is to measure the number of requests which 

are not yet processed by any server but remain in a queue. 

4. Endpoint: The point which the client interacts with the running 

application. In stream processing such endpoint could be Kafka. 

 

 

 

 

 
 
25 https://www.openstack.org/ 
26 https://en.wikipedia.org/wiki/Load_balancing_(computing) 
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Figure 13 - General structure of system. The interconnection between the system’s components is omitted. 

 

The autoscaler can be integrated in any system which supports the functionalities 

referred above so as to enable dynamic resource scaling. The autoscaler 

automatically adjust the allocated resources of the application in order to adopt to the 

incoming workload. To do so, metrics related to application’s state (allocated 

resources, workload and performance) are retrieved and based on some policy 

(reactive or proactive) a scaling decision (increase/decrease the allocated resources) 

is made. 

In this thesis, the system consists of a Flink Cluster. The Flink Cluster size is 

adjusted by adding or removing TaskManagers which run on containers or virtual 

machines by the container/VM orchestrator. (e.g. Docker or OpenStack) Afterwards, 

the available TaskManagers can be allocated to running jobs by the JobManager 

(scheduler). Flink automatically load balance the workload of the running job among 

the allocated resources (TaskManagers). In addition, each TaskManager has exactly 

one task slot. Kafka plays the role of the endpoint of the system where data get in or 

out through Kafka topics. Prometheus is used for the monitoring of the system in terms 

of allocated resources, workload and performance. The form of the system if depicted 

in Figure 14. 
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Figure 14 - Abstract system of Flink Cluster 

 

 

Defined SLA 

We measure the percentage of slow records indirectly using the workload and 

queue metrics. The workload indicates how many records per second the system 

receives. The queue is the number of records which are not consumed instantly but 

remain in a buffer for a short period of time. The queue is an indicator which specifies 

in what degree the system is able to keep up with the rate of incoming records. The 

percentile of slow records is calculated by the formula  
𝑞𝑢𝑒𝑢𝑒

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑
. 

SLA is defined as the percentile of slow records during a period of time (e.g. 

per second) that the application owner or user can accept. Records are considered as 

slow records if they are not consumed (processed) as soon as possible but remain in 

a queue. If the measured percentile is above a threshold value (e.g. 90%), the system 

encounters a violation of the SLA. The percentile defines the worst performance that 

the application owner can tolerate. 

 

 

3.2. Reactive Scaler 

The autoscaler is based on a reactive mechanism which acts as soon as the 

SLA is violated. The scaler receives metrics from the system in order to assess the 

current state of the application. If the system is over-utilized or under-utilized, the 

autoscaler adjusts accordingly the allocated resources (adds/removes servers). The 

interaction between the system and the autoscaler is depicted in Figure 15. 

 

 



AUTOSCALER FOR FLINK 32 

 
 
 

 
 

 
Figure 15 - Interconnection of System and Reactive Scaler 

 

 

3.2.1. Architecture 

The Reactive Scaler consists of the Capacity Calculator and the Reactive 

Policy. The interconnection of the components and their interconnection is depicted in 

Figure 16. 

 

 

 
Figure 16 - Workflow of Reactive Scaler 
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Capacity Calculator 

 

The purpose of capacity is to measure how many records per second a single 

TaskManager is able to process. Due to the fact that every server is created from the 

same instance, the capacity of each running TaskManager is approximately the same. 

The capacity represents the maximum incoming rate of records which a TaskManager 

can consume while its queue length does not exceed the SLA. Consequently, we are 

able to calculate the maximum workload that each number of TaskManagers, running 

the targeted job, can consume without causing SLA violations. 

 

In order to measure the capacity of the system the Algorithm 1 is executed, which 

performs the following steps: 

1. Let 𝑤𝑡 and 𝑛𝑡 be the workload and number of servers at time t, respectively.  

2. When the SLA is violated for the first time, we calculate the capacity 𝑤𝑚𝑎𝑥 as  

𝑤𝑡 / 𝑛𝑡 . 

3. Each time the SLA is violated again, the capacity value is updated by taking the 

average of the old value, weighted with the number of the previous capacity 

values, and the current value 𝑤𝑡 / 𝑛𝑡. This step is performed for as long as the 

controller is in exploration mode. 

 

The function is executed every time a scale-up action is performed in exploration 

mode. This is done, every time the SLA is violated. Instead of calculating the capacity 

value 𝑤𝑚𝑎𝑥 once, the value is constantly updated in order to get a better approximation 

of the actual capacity of a single server. 
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Reactive Policy 

 

The decision is based on the specified SLA. The reactive scaler checks if one 
of the following actions should be taken every 15 seconds.  
 

Scale up 

The scaler increases the number of allocated TaskManagers as soon as the SLA 
is violated. There are two possible option for the increase rate of Taskmanagers: 

1. The scaler adds one new TaskManager at a time. This is option is simple but it 
has the drawback that it is unable to keep up with a high increased workload. If 
more than one Taskmanagers are needed, the allocation will be gradual 
causing over-utilization of the application.  

2. The capacity 𝑤𝑚𝑎𝑥 is utilized to calculate the exact number of required 
TaskManagers for the incoming workload 𝑤𝑡. Specifically, at time t, the scaler, 
adds 𝑤𝑡 / 𝑤𝑚𝑎𝑥  Taskmanagers. The particular option is able to keep up to any 
workload rate. In case of a slow increase rate of workload the scaler adds one 
Taskmanager at a time, similarly to option 1. 

 

Scale down 

At time t, the exploration policy will remove a TaskManager only if there are 
more than 90% of TaskManagers running than those are needed. In other words, the 
scaler removes a server if there are more than ⌈𝑤𝑡 / 𝑤𝑚𝑎𝑥 / 0.9⌉ servers running. 
Furthermore, we check if this condition is satisfied for a number of consecutive 
samples, referred as 𝑆 (in Algorithm 2, we set 𝑆 = 10). A single sample which does 
not represent the real state of the system could lead to a false action. As the number 
of the samples is increasing, the probability of false action is decreasing. 
  

The main idea of both scaling actions is described in Algorithm 2. The 
implementation of the scaling actions (ScaleUp/ScaleDown) is described in detail, in 
Section 4. 
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3.3. Proactive Scaler 

The autoscaler implements a controller which is in a constant switch between 

two states, the exploration mode and the optimal control as shown in the Figure 17. 

When the controller is initialized for first time, it enters exploration mode in which the 

behavior of the system is discovered while working reactively. When this phase is 

successfully completed, the controller switches to optimal control. In this phase, the 

gathered information from the previous step is used for the training of a statistical 

machine learning model. Then, the proactive scaler takes over the control for scaling 

actions by predicting the near future behavior of the application. Although, changes in 

the system (e.g. updates or failures) or in the running application itself (e.g. introducing 

a new feature) could affect the overall performance of the application (e.g. increase 

the latency per request). As a result, the optimal control is no longer able to take 

effective scaling actions and the proactive scaler has to be re-trained. In this case, the 

controller returns again to exploration mode in order to discover the new behavior of 

the application. 

 
Figure 17 - States of controller 

3.3.1. Exploration mode 

 

 

 
Figure 18 - Interconnection of System and Exploration Mode 
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The controller explores the behavior of the application under varying workload 

and different parallelism (number of servers). The outcome of this phase is a machine 

learning model which is able to predict the performance of the running application. 

During exploration, the controller uses a reactive mechanism, as shown in Figure 18, 

in order to ensure the normal operation of the application in terms of performance and 

resource utilization. The components of the exploration mode and the way they 

communicate each other is depicted in Figure 19. 

 
 

 

 
Figure 19 - Workflow of Exploration Mode 
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Reactive Scaler 

 

During the exploration mode, there are not enough data to extract a pattern 
about the behavior for the running application. For this reason, a reactive mechanism 
is used to decide whether the system should make a scaling action. The decision is 
based on the specified SLA. The Reactive Scaler operates as described in section 3.2. 
and is consists of the Reactive Policy and the Capacity Calculator.  
 

 

Data Collector 

 

This component collects and stores data throughout the operation of the system 

both in exploration mode and optimal control. In exploration mode the following 

functions are supported: 

• Metrics insertion: Each time the autoscaler retrieves metrics from the system in 

order to examine if a scaling action should be made (every 15 seconds in our 

case), the metrics are also appended in data structures. Specifically, at a time 

𝑡, we append the metrics 𝑤𝑡, 𝑛𝑡 , 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡 where 𝑤 the workload, 𝑛 the 

number of allocated servers and 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 the percentile of slow records 

computed over the total number of records generated during a prespecified time 

interval (e.g. 15 seconds in our case). The stored metrics form the dataset of 

the exploration mode. The metrics are stored in memory and periodically are 

moved into files in order to ensure free space in memory and durability of data. 

For example, after 1000 insertions the data are moved from memory to disk. 

The data are not stored directly into disk since that would significantly increase 

the overall number of disk accesses. Considering that operations into disk are 

slower than those into memory27, more disk accesses are resulting into higher 

latency per metric’s insertion.  

• Metrics retrieval: Each time the controller needs to create a performance model, 

it retrieves the stored metrics. Note that the metrics could be divided both in 

disk and memory (as explained in Metrics insertion), so the Data Collector 

retrieve metrics from both data storages. 

 

 

Performance Model Training 

 

The performance model captures the relation between workload, number of 

TaskManagers, and the percentage of slow records. The model is trained using non-

linear regression28 and it includes two independent variables and one dependent 

 
 
27 https://en.wikipedia.org/wiki/Computer_data_storage 
28 https://en.wikipedia.org/wiki/Nonlinear_regression 
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variable. In other words, the model is described by the following form:  𝑓(𝑥1 , 𝑥2)  =  𝑦 

where 𝑥1 is the workload, 𝑥2 is the number of TaskManagers and 𝑦 is the percentage 

of slow records. The independent variables can be also represented in one variable 𝑋 

for simplicity: 𝑋 =  (𝑥1 , 𝑥2). 

 

The degree of the polynomial is selected by applying brute-force search29, in which 

the solution exhaustively searched. The procedure is depicted in Algorithm 3. The 

following steps are performed: 

1. We define the set P = {1…n} which contains the degrees that will be tested. 

The nth degree is the maximum degree that will be applied. The computational 

complexity is significantly increasing as the degree takes higher values. 

2. For each degree, a model is created using non-linear regression using the 

collected dataset. 

3. The Route-Mean-Square-Error (RMSE) of each of model is measured using the 

original dataset. The RMSE is calculated by comparing the actual value and the 

predicted value of the model. RMSE is a factor that describes how concentrated 

the dataset is around the regression line.  

4. The final degree of the model is the one with me minimum RMSE. Therefore, 

the one which is the best fit for the dataset.  

 

The training dataset is derived from the production data which are collected during 

the exploration mode. Periodically, a performance model is trained and then evaluated 

according to its accuracy to predict the behavior of the application. The accuracy of 

the model determines whether the system will switch to optimal control or not. 

 

 
 

 
 
29 https://en.wikipedia.org/wiki/Brute-force_search 
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Stability Check 

 

Each time we train a performance model, we check if we can rely on its 

predictions. To do so, we use bootstrap sampling30 to measure the standard deviation 

of the model. Bootstrapping is a technique which measures the properties of an 

estimator (such as its variance).  

 

The method is described in Algorithm 4. Bootstrap sampling works as follows: 

1. Let 𝐷 be the original dataset and let 𝑁 be its size, which is used to train the 

model. In addition, let 𝑘 be the number of the bootstrap samples that will be 

created. As the 𝑘 increasing, the approximation of the standard deviation is 

closer to the real value but also increases the computational complexity. In our 

experiments, we set 𝑘 = 250. 

2. Create 𝑘 random samples with replacement with sample size 𝑁. The term “with 

replacement” refers to the way that a sample is created. Each sample is filled 

by randomly selecting 𝑁 elements from the original dataset 𝐷. The choices are 

independent from each other, which means that some elements could be 

selected multiple times while others are not selected at all. In the end of this 

step, there are 𝐷1 … 𝐷𝑘 samples. 

3. For each 𝐷𝑖 sample, the standard deviation is calculated.  

4. The standard deviation of the model is measured as the mean of the 𝑘 standard 

deviations measured by the 𝐷𝑖 models. 

 

 
 

The stability check is performed in two phases and is depicted in Algorithm 5: 

 

 
 
30 https://en.wikipedia.org/wiki/Bootstrapping_(statistics) 
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Phase 1 

In this phase, we check if the dataset consists of enough data to create an 

accurate model. We retrieve from the Data Collector the metrics which consists the 

independent variables of the performance model 𝑥1 , 𝑥2, which are the workload and 

the number of Taskmanagers respectively. We calculate the standard deviation of the 

predicted values  𝑦 by applying bootstrap sampling. If the standard deviation of the 

predicted values is less than the model stability threshold 𝜆 then we continue to Phase 

2. Otherwise, we ignore the trained model and we remain in exploration mode in order 

to collect more data. 

 

Phase 2 

In this step, we check if the created model is accurate to predict the 

performance of the application for the current number of TaskManagers 𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡. The 

phase 1 checks the accuracy of the model at least up to the point 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡, which is 

the current workload (the workload value when the stability check began). In Phase 2, 

we check if the model is stable for the rest of the workload that 𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Taskmanagers 

can process without causing SLA violations. The rest of that workload consists of the 

points 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 through 𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∙ 𝑤𝑚𝑎𝑥 which gives us the maximum workload that 

𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 can process with good performance according the capacity value.  

The procedure is similar to Phase 1. We perform bootstrap sampling at the 

points (𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡,  𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡) through (𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∙ 𝑤𝑚𝑎𝑥,  𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡). If the standard deviation 

of the predicted values  𝑦  is less than the model stability threshold λ then we switch 

to Optimal Control. Otherwise, we ignore the model and we remain in exploration mode 

in order to collect more data.  

Note that in this phase, the capacity of the application 𝑤𝑚𝑎𝑥 must be available, 

which means that the controller has scaled up at least one time. If the value 𝑤𝑚𝑎𝑥 has 

not been calculated yet, the stability check does perform phase 1 (since phase 2 

cannot be executed at all) and the controller remains in exploration mode for data 

collection. 
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The stability threshold 𝜆 is the maximum acceptable error of the model and it is 

user defined. The stability threshold 𝜆 is common for both phases. By selecting a small 

value, the trained model will be more accurate in term of its prediction capability. In 

addition, the exploration policy could last longer, since it continues the data collection 

until the standard deviation of the trained model is less than 𝜆. A good value of 𝜆 is 

defined as the balance between of the acceptable error of the model and the duration 

of the exploration mode. In this work, we set 𝜆 = 0.05 

 

 

 

 

3.3.2. Optimal Control 

 

 
Figure 20 - Interconnection of System and Optimal Control 
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In this mode, the behavior of the application is considered known and it is 

described by the performance model. The system switches from reactive mechanism 

to proactive, as shown in Figure 20, and no longer uses instant metrics to make a 

decision about parallelism (number of servers). Instead, near future predictions are 

used to determine the optimal parallelism of the system. The model attempts to predict 

and prevent possible SLA violations before they occur. The Figure 21 describes the 

workflow of Optimal Control and its components. 

 

 
Figure 21 - Workflow of Optimal Control 
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Workload Predictor 

 

The Workload Predictor captures the slope of the curve which the workload 

distribution followed in the near past. Considering that the slope will still apply in the 

near future, we are able to predict the upcoming workload. The slope of the curve is 

extracted using linear regression31 which is trained each time a new prediction is 

required. A new prediction is required each time the Proactive Scaler needs to check 

whether a scaling action should be made. The Workload Predictor does not attempt 

to capture the entire distribution of the workload but just the recent workload rate (if 

the workload increases, decreases or remains steady). In this way the predictor is able 

to adjust to any distribution.  

During the operation of optimal control, we predict the next 1 minute of workload 

using the most recent 10 minutes. The recent workload values could be retrieved by 

the monitor’s storage (e.g. Prometheus) or by the Data Collector. In Figure 21, the 

data are retrieved from the monitor. The Workload Predictor outputs an array of the 

predicted workload values for the desired time series with some step called 𝑤𝑠𝑡𝑒𝑝. 

Specifically, for future predictions for the next 60 seconds with step of 5 seconds 

(𝑤𝑠𝑡𝑒𝑝 = 5), we get the following result:  𝑤𝑓𝑢𝑡𝑢𝑟𝑒 [𝑤1 , 𝑤60 , 5]. The length of the array 

is equal to 
60

𝑤𝑠𝑡𝑒𝑝
=

60

5
= 12 points. 

 

 

Proactive Policy 

 

The performance model, which was trained during the exploration mode, is used 

to predict the behavior of the application for future workload. The overall procedure for 

scaling is described by Algorithm 6. The following steps are performed: 

1. The next 1 minute of the future workload 𝑤𝑓𝑢𝑡𝑢𝑟𝑒 is predicted using the 

Workload Predictor. 

2. We define the set [1 … 𝑛𝑚𝑎𝑥] which represents the possible parallelisms that 

the application can take. The value 𝑛𝑚𝑎𝑥 is the maximum number of server that 

the system can allocate to the application (e.g. due to resource limitation). For 

each possible parallelism 𝑛𝑖  ∈  [1 … 𝑛𝑚𝑎𝑥]  and the future workload, we predict 

the percentile of slow records using the performance model. In other words, the 

following function is executed for point of 𝑤𝑓𝑢𝑡𝑢𝑟𝑒 and each parallelism: 

𝑓( 𝑛𝑖,  𝑤𝑓𝑢𝑡𝑢𝑟𝑒)  =  𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒. The output 𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒 is an array 

which has the same length with 𝑤𝑓𝑢𝑡𝑢𝑟𝑒 and each predicted performance point 

has 𝑤𝑠𝑡𝑒𝑝 time distance from the next one. 

 
 
31 https://en.wikipedia.org/wiki/Linear_regression 
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3. The predictions 𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒 associated with the parallelism 𝑛𝑖 are 

evaluated according the given SLA. In detail, we reject the parallelism 𝑛𝑖 if at 

least one of the predicted performance points in 𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒 violates the 

SLA.  

4. The optimal parallelism 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 is the minimum parallelism 𝑛𝑖 which satisfies the 

SLA. 

 

 

To prevent rapid oscillations in the controller, we apply hysteresis with gains α and 

β. Both values are defined in the set [0,1]. The final parallelism 𝑆𝑛𝑒𝑤 is calculated as 

follows: 

➔ if 𝑆𝑡𝑎𝑟𝑔𝑒𝑡  > 𝑆𝑜𝑙𝑑  then  𝑆𝑛𝑒𝑤  =   𝑆𝑜𝑙𝑑 +  𝑎(𝑆𝑡𝑎𝑟𝑔𝑒𝑡  −  𝑆𝑜𝑙𝑑) 

➔ if 𝑆𝑡𝑎𝑟𝑔𝑒𝑡  < 𝑆𝑜𝑙𝑑  then  𝑆𝑛𝑒𝑤  =  𝑆𝑜𝑙𝑑 +  𝛽(𝑆𝑡𝑎𝑟𝑔𝑒𝑡  −  𝑆𝑜𝑙𝑑) 

 

The parameter 𝑎 specifies how quickly the system will make the transition from 

𝑆𝑜𝑙𝑑 to 𝑆𝑡𝑎𝑟𝑔𝑒𝑡. For a low value of 𝑎 targeted number of TaskManagers, will be added 

gradually to the running application. On the other hand, a high value will lead to the 

desirable number of TaskManagers in a short period of time. This parameter has a 

significant effect on the performance since the lack of adequate resources will over-

utilize the application causing SLA violations. For this reason, a value close to one is 

preferred so as the 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 be reached quickly.  

On the other hand, the parameter 𝛽 defines how quickly the system will scale 

down from 𝑆𝑜𝑙𝑑 to 𝑆𝑡𝑎𝑟𝑔𝑒𝑡. Similarly, to 𝑎, a high value will remove TaskManagers with 

a fast rate while a lower value with a slower one.  This parameter does not cause any 

SLA violation but could cause under-utilization of the application if resources remain 

idle for long time. Eventually, the 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 will be reached even if the parameter 𝛽 has a 

low value. 

In this work, the gain parameters are defined by the user. In our experiments 

we set 𝑎 = 0,9 and 𝛽 = 0,4. Although, the implementation of a Control Policy Simulator 

[2] could provide a solution for finding dynamically which gain parameters are optimal 

according the incoming workload distribution. 
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Change Point Detection 

 

Changes in the environment such as system updates or hardware failures could 

lead the application to behave in a different way. In case the performance model is no 

longer able to accurately predict the behavior of the application, it should be discarded 

and train a new one. 

We use the residuals of the percentile of slow records to assess the accuracy 

of the model. Under steady time, a residual is calculated from the form: 

| 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒| which gives us the difference of the 

predicted percentile of slow records and the actual one. The residuals of an accurate 

model should be almost equal to zero or in other words the predictions of the model 

should be verified by the actual performance of the application. 
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Residual points are constantly generated while the controller is in optimal 

control, hence, they form a live-streaming time series. The frequency of residual 

generation is regulated by the step of Workload Predictor (𝑤𝑠𝑡𝑒𝑝), which our case is 5 

seconds. Since such data are unbounded, a value has to be assessed as soon as it 

arrives. Online change detection [10] which captures abrupt changes in the streaming 

data, can be used to evaluate the generated residual points. The function returns a 

score which represents the degree of prediction failure. We consider that a change 

occurred when the score exceeds a specified threshold related to configuration of the 

chosen detection method. This threshold has to be set appropriately so as to captures 

the acceptable range of prediction deviations. The value of the threshold can be found 

experimentally. 

In case of very low threshold the controller will mark the performance model as 

inaccurate for very small prediction deviations. On the contrast, a quite high threshold 

could lead to SLA violations in case of significant prediction failure of the performance 

model. If a change point occurs the controller switches to exploration mode. When the 

controller returns to exploration mode, it starts the dataset collection from the 

beginning. Since a change point occurred, the previous dataset is considered 

inaccurate. 

 

 

Data Collector 

 

 In optimal control, the Data Collector supports functions for metrics and 

performance residuals insertion. Although the scaler examines if an action every 1 

minute, metrics retrieval takes place more frequently.  

• Metrics insertion: Every 𝑤𝑠𝑡𝑒𝑝 seconds the controller retrieves the metrics from 

the systems and appends them in data structures. Specifically, at a time 𝑡, we 

append the metrics 𝑤𝑡, 𝑛𝑡 , 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡 where 𝑤 the actual workload, 𝑛 the 

number of allocated servers and 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 the actual percentile of slow 

records. This function is the same as the described one in exploration mode but 

it is called in a different frequency. 

• Performance Model residuals insertion: We use the retrieved value 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡  from the previous function, let’s call it 𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡. We 

also get the corresponding predicted value for time 𝑡 from the array 

𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒, let’s call it 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝑡. The array has  
60

𝑤𝑠𝑡𝑒𝑝
=

60

5
= 12 elements, so we get the 12 corresponding actual performance 

points. For example, the first element of the array 𝑠𝑙𝑜𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑓𝑢𝑡𝑢𝑟𝑒 is the 

prediction of performance in the next 5 seconds. So, we wait 5 seconds and we 

measure the real performance. The residual is calculated as described in 

“Change Point Detection” module, by the form | 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 −

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|. Finally, the residual value is appended into data 
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structure in memory and periodically moved into disk (similarly to metric 

insertion function). 

 

The workflow of both functions is depicted in Algorithm 7. The aforementioned 

data, are not retrieved by the controller but are used for the assessment of the optimal 

control (e.g. in experiments). 

 

 
 

3.3.3. Comparison to related work 

In comparison to the publications [1] and [2], the autoscaler of the work has the 

following differences: 

1. Targeted applications: Bodík et al. examine the dynamic resource allocation to 

Web 2.032 applications while in this work we implement resource scaling on 

streaming applications. Web 2.0 applications receive requests by end users 

and generate a response back to them. On the other hand, stream processing 

receives high speed unbounded data in the form of records which could be 

generated by users, software agents (e.g. web scrapping agents33)  or devices 

(e.g. sensors). 

• Performance measuring: In publications [1,2] the performance of the application 

is measured using the latency per request (total required time to response back 

to the user). Since streaming applications does not necessary generate a result 

per record, we assess their performance by measuring the number of records 

which are not processed immediately but remain in a buffer (queue). 

• Application deployment environment: In our work, we perform resource scaling 

on a Flink Cluster by adding or removing allocated TaskManagers (in the form 

of containers) to a running job. On the contrary, Bodík et al. adjust the allocated 

resources by adding or removing server instances as virtual machines. 

 
 
32 https://en.wikipedia.org/wiki/Web_2.0 
33 https://en.wikipedia.org/wiki/Web_scraping 
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• Exploration Policy: The publication [1] adds/removes servers with the goal to 

reach a specified latency (which takes a random value between 0 and an upper 

safety threshold) in order to explore the system’s behavior under different 

values of latency. We did not follow the same approach since in the current 

Flink version, rescaling of a running job can be performed by restarting the job 

resulting to increased recovery delay. In this way, multiple scale actions could 

significantly increase the total time where the application is in recovery and thus 

the performance is dropped. Instead, we initialize the application to a user-

defined parallelism and let the controller to adjust the resources according the 

workload.  

• Change Point Detection: In publication [2] the implemented change point 

detection algorithm is able to capture both abrupt and gradual changes. In this 

work, the used algorithm is not able to capture gradual changes in the accuracy 

of the Performance Model. 

• Hysteresis gains definition: In the current work, the gains 𝑎, 𝛽 are user-defined, 

while in publication [2] the optimal gain values are defined using a policy search 

algorithm. 
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4. Implementation 

4.1. Flink deployment options 

Flink can be installed directly on bare-metal machines or be deployed on virtual 

machines or containers. Using cloud technologies, the resources can be easily 

extended by adding new virtual machines. There are several options to select for 

deployment in the cloud technologies, in which the scaling action can be performed 

manually or using a software agent. 

 

Virtual machines infrastructure 

Flink runs as a cluster on multiple virtual machines. At the beginning, the cluster 

is initialized with a number of virtual machines but it can be easily expanded by adding 

new machines to the cluster. Likewise, the cluster may shrink with the removal of 

unnecessary machines. The architecture is depicted in Figure 22. 

 

 
Figure 22 - Flink cluster deployed on virtual machines 

 

 

Containers infrastructure 

The Flink cluster is deployed in a containerized environment. Such solutions 

are Mesos, Docker and Kubernetes. In this case, Flink instances run inside to 

containers, as shown in Figure 23. Containers are isolated processes by reserving 

resources from bare metal or virtual machines. Resources are not shared among 

containers but used by only one at a time. Therefore, the number of deployed 

containers is limited by the resources of the machine. Containers by default reserve 

as much resources are required to perform their operations. The maximum allocation 

of resources to each one can be restrained. The size of the cluster is modified, using 

vertical scaling, by adding or removing containers which run Flink processes.  
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Figure 23 - Flink cluster deployed on containers 

 

Hybrid infrastructure 

This type of architecture is a combination of the previous ones. Each virtual 

machine hosts a number of containers forming the Flink cluster. The cluster can be 

expanded by added new virtual machines and then deploy more containers inside 

them. In this way, further isolation between processes, running on the same machine, 

is achieved. The architecture, as depicted in Figure 24, supports both horizontal and 

vertical scaling. 

 

 
Figure 24 - Flink cluster deployed on containers which run on virtual machines 
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4.2. Architecture 

The implemented infrastructure uses Flink in order to run stream processing 

applications. Kafka plays the role of the system’s endpoint, so stream gets in or out 

through Kafka topics. The Autoscaler adjusts the allocated resources of the targeted 

application and Faban simulates the workload. The Autoscaler and Faban are 

deployed directly on virtual machines in OpenStack. The rest of the components are 

deployed as Docker containers which are distributed among virtual machines. 

Specifically, the Flink Cluster and Prometheus hosted in the same machine, while 

Zookeeper, Kafka and JMX exporter are placed together in another one. The virtual 

machines which host Docker containers, form a Docker Swarm cluster. In this way, 

the management of all containers can be performed by a single machine, the Docker 

Swarm Manager. The architecture of the implemented infrastructure is depicted in 

Figure 25.  

 

 

 
Figure 25 - Architecture of System Infrastructure 
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Infrastructure Initialization 

The Autoscaler and Faban, which run directly on virtual machines are installed 

manually. The other two virtual machines (VM1 and VM2), are created and configured 

by Docker Machine34. Docker Machine is a tool which allows the installation of Docker 

Engine on virtual hosts, referred as ‘machines’. It also provides API to perform 

operations on the created machines, like running commands. The virtual machines 

form a Docker Swarm35 cluster (an alternative could be Kubernetes36). In this way we 

are able to manage all containers from one machine, the Docker Swarm manager. 

The static components of the infrastructure’s architecture, that is all 

components except the TaskManagers, is described in a docker compose YAML file. 

The number of allocated TaskManagers varies over time and it is regulated by the 

Autoscaler. Docker Compose37 is a tool for defining and running multi-container 

Docker applications. With Compose, a YAML file is used to configure the application’s 

services. Then, with a single command, the services can be created and started from 

the configuration file. This file is built locally and its containers are pushed to Docker 

Hub. In this way, the virtual machines just download the required containers without 

building anything. 

Afterwards, the docker compose file is copied to Docker Swarm manager which 

will deploy the infrastructure. The file also specifies the resources that each container 

can use and in which virtual machine will be placed. 

 

Resources 

● Virtual Machine 1 (8 CPU and 16GB RAM) 

○ Flink JobManager (1 CPU and 2 GB RAM) 

○ Flink TaskManagers (1 CPU and 2 GB RAM each) 

○ Prometheus (1 CPU and 1 GB RAM) 

● Virtual Machine 2 (4 CPU and 8 GB RAM) 

○ Kafka (2.5 CPU and 6 GB RAM) 

○ Zookeeper (1 CPU and 1 GB RAM) 

○ JMX exporter (0.1 CPU and 0.5 GB RAM) 

● Virtual Machine 3 (4 CPU and 8 GB RAM) 

○ Autoscaler 

● Virtual Machine 4 (2 CPU and 4 GB RAM) 

○ Faban 

 

 
 
34 https://docs.docker.com/machine/overview/ 
35 https://docs.docker.com/engine/swarm/ 
36 https://kubernetes.io/ 
37 https://docs.docker.com/compose/ 
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4.3. Components 

4.3.1. Flink 

The Flink cluster is formed by deploying Flink instances inside Docker 

containers. The instances can be configured to be JobManagers or TaskManagers. In 

our implementation we have only one JobManager and at least one running 

TaskManager. Although, the containers of the Flink cluster could be extended to more 

than one machines, in the current implementation the instances are constrained into 

one single virtual machine. This is due to container’s communication issue among the 

Nodes of Docker Swarm which did not made the distribution of the Flink instance 

possible. To be more specific, TaskManagers were not able to connect to JobManager 

preventing the cluster formation. 

 

Scaling 

Currently, Flink (version 1.11 or older) doesn’t support dynamic scaling of a running 

job. As a result, the only way to change the parallelism of a job is the following: 

● Stop the job and take savepoint. 

● Re-run the job with the new parallelism. 

However, the community of Flink plans to add the re-scale functionality in a future 

version38. 

 

Cluster Configuration 

● The cluster is deployed as Flink Session Cluster39. In this way, the lifecycle of 

the running job is independent from the lifetime of the cluster. In other case, the 

cluster will shut down during the job’s rescaling due to the need for restart.  

● Each TaskManager has exactly one task slot. Which means that the number of 

allocated TaskManagers is identical to the parallelism of the job. As a result, 

we scale a job by modifying the number of TaskManager which are allocated 

to that particular job. 

● For monitoring purposes, the metrics are exposed to Prometheus40. 

 

Job configuration 

We observed that the rescaling request via the Flink REST API could not overwrite the 

parallelism specified in source code of the job. In order to change the parallelism of 

the job by passing the value as argument, the operators’ parallelism has not to be 

strictly specified in its source code. Otherwise, the passed parallelism is ignored and 

the scale is not performed. 

 
 
38 https://issues.apache.org/jira/browse/FLINK-12312 
39 https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/#session-mode 
40 https://prometheus.io/ 

https://issues.apache.org/jira/browse/FLINK-12312
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Performance metrics 

Flink offers a several metrics for the monitoring of running jobs. We found that three 

of them could provide us data that could effectively represent the performance of a 

job. The selected metrics are listed as follows: 

1. Latency tracking: The sources of the job will periodically emit a special record, 

called a LatencyMarker. The latency markers are not accounting for the time 

user records spend in operators as they are bypassing them (they are not 

processed by the operators). If operators are not able to accept new records, 

thus they are queuing up, the latency measured using the markers will reflect 

that. This method requires clock synchronization in order to avoid false latency 

results. In addition, enabling latency metrics can significantly impact the 

performance of the cluster. Its use is recommended for debugging purposes 

only. 

2. BackPressure: Backpressure refers to the situation where a job is receiving 

data at a higher rate than it can process during an increase of load.  A back-

pressure warning (e.g. High) for a task, means that it is producing data faster 

than the downstream operators can consume. Back pressure monitoring works 

by repeatedly taking back pressure samples of the running tasks. The sampling 

may affect the running job’s performance 

3. Kafka Consumer records-lag-max: Records lag is the calculated difference 

between a consumer’s current log offset and a producer’s current log offset. In 

other words, records lag shows how many records the consumer is behind from 

the latest produced one. Records lag max is the maximum observed value of 

records lag. An increasing value over time is an indication that the consumer 

group is not keeping up with the producers. 

 

By comparing the aforementioned metrics, the records-lag-max is considered the best 

choice to monitor the performance of the job. It offers good enough accuracy and does 

not add further burden to cluster’s load. 

 

4.3.2. Prometheus 

 

Prometheus is responsible for the monitoring of running applications. We 

measure the incoming workload by monitoring the Kafka topics which are used as a 

source by the running job. In order to retrieve metrics for a running job, every allocated 

TaskManager has to be monitored. Since the active TaskManagers change over time, 

the monitored targets have to be adjusted too. We perform such adjustion by updating 

a JSON file which contains the hostnames of the targeted TaskManagers. Each time 

the file if updated, Prometheus applies automatically the changes and the new targets 

are discovered. The length of the job’s queue can be measured by monitoring the 
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TaskManagers’ consumers. Specifically, we measure the total job’s queue as the sum 

of the individual queues of each Taskmanagers allocated to the particular job. 

 

4.3.3. Autoscaler 

 

In Chapter 3 we analyzed the operation of the autoscaler and focused on the 

decision mechanism for scaling actions, abstracting from the interconnection to other 

components of the Infrastructure. In this section, we describe in detail how the agent’s 

commands are actually implemented in the infrastructure. The autoscaler is 

implemented in Python 2.7 and it is responsible for the scaling of one running job. 

The autoscaler has three main endpoints: 

1. Prometheus REST API, for metrics retrieval. 

2. Flink REST API, for job management. 

3. An internal HTTP server with REST API, for resource adjustion on the Docker 

layer. 

 

 

Safety mechanisms 

The autoscaler uses the following safety mechanism to improve its operation: 

 

1. TaskManagers in hot standby 

The instantiation of a new TaskManager and its full connectivity to JobManager is a 

slow process. This kind of delay could prevent the controller to scale up instantly. We 

solve this issue by maintaining a small number of TaskManagers on standby. These 

instances are connected to Flink but they are not used by any job. When a standby 

TaskManager is allocated to a running job, a new one will be created to replace it. 

 

2. Discarding data during rescaling 

Due to the necessity of job’s restart in the case of rescaling, the job needs several 

minutes to recover. In this case, the job stops consuming records. As a result, the 

incoming records remains to Kafka until the recovery of the job.  When the job is 

running again, there is an accumulation of new records in Kafka which need to be 

consumed. In our experiments, the controller discards the metrics of the job until it is 

fully recovered. We observed that the job returns to its normal operation approximately 

after four minutes of delay from the rescaling action. Consequently, the controller waits 

four minutes in order the job to catch up with the incoming workload, and then 

continues its operation. 
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HTTP server 

Operations in docker layer, such as the creation or the removal of containers, are 

performed via an HTTP server. In this way, functions like container creation are 

performed in an asynchronous way and there is no need for delays in the controller’s 

workflow. The HTTP server responses with success code as soon as a request is 

received and then attempts to execute the command. The server supports the 

following functions: 

 

1. TaskManager creation 

Request: POST /taskmanager   

Body: 

{ 

    "target":"integer" 

} 

Function: Creates 𝑛𝑡𝑎𝑟𝑔𝑒𝑡 TaskManager containers. If the creation of the requested 

quantity exceeds the maximum number of total TaskManagers 𝑛𝑚𝑎𝑥, the HTTP server 

creates as much containers as the remaining space for new TaskManagers. If the 

maximum number of total TaskManagers containers is already reached, the request 

is ignored. The server takes care that IDs of the running containers are always in the 

range [1 . . . 𝑛𝑚𝑎𝑥]. As a result, the IDs are recycled instead of getting random or 

arbitrary values. The procedure is shown in Algorithm 8. 
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2. TaskManager removal  

Request: DELETE /taskmanager   

Body: 

{ 

    "used":"array", 

    "free":"integer" 

} 

Function: Removes unused TaskManagers and leaves a number of TaskManagers 

idle. Idle TaskManagers are not allocated to a particular job, but remain available for 

future use.  An array with the hostnames of the used TaskManagers is passed as 

argument in order to ensure that the removed TaskManagers are not allocated to the 

running job. The procedure is shown in Algorithm 9. 

 

 
 

 

Scaling actions 

The final form of the scaling actions includes resource management on both 

Docker layer and Flink Cluster. Note that the resources which are allocated to a job 

are only known to Flink Cluster. Docker Engine deploys TaskManagers instances but 

it has no knowledge whether an instance is used or it is idle. As a result, we first 

interact with the Flink Cluster in order to track which TaskManagers are active (e.g. 

they are receiving records for processing). A TaskManager is distinguished by its 

hostname (or container name). In addition, each running job is identified by a unique 

ID. Both TaskManager hostnames and job IDs are available to Prometheus. In this 

way, it is possible to get the allocated TaskManager to a specific job by querying 

Prometheus.  

Afterwards we continue hierarchically to the next layer, which is the Docker one, 

so as to remove or add containers. Let’s assume that there are five active 

TaskManagers to the cluster with hostnames TM1, TM2, TM3, TM4 and TM5, and we 

have a running job which has two allocated TaskManagers. We identify that 

TaskManagers with hostnames TM1 and TM4 are used by our job. If we want to 

remove a TaskManager instance, we can command the Docker Engine to remove the 
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container with hostname TM2 or TM3 (which we know that they are both idle). In this 

way, we ensure that we do not remove a used TaskManager and thus interfere to the 

normal operation of the job. On the other hand, the creation of a new TaskManager 

instance does not affect the operation of the job since the job’s resources are already 

allocated. 

In case of a Flink Cluster distributed among virtual machines, an extra resource 

layer is added, which manages the allocation/deallocation of virtual machines. In this 

case, we have to ensure that the swarm node to be removed, does not host any 

TaskManager containers used by a running job. Similarly, the cloud provider does not 

know in which machine, the used TaskManager containers are located. The Docker 

Engine is able to identify which nodes have idle Taskmanagers and thus be removed. 

The resources layers are depicted in Figure 26. 

 

 
Figure 26 - Resource adjustion layers 

 

The Algorithm 10 describes the function of the scaling actions. To be more specific, 

modification to Flink Cluster are performed through requests to Flink REST API, while 

changes to the Docker layer are done using the HTTP server. Both scaling actions 

change the parallelism by one level (adding one TaskManager or removing one 

TaskManager), but they could easily be extended to change more levels.  

1. Scale Up: The first step is to check if the operation can be performed, which 

means that job has not reached the maximum parallelism yet. In other words, 

we check if the requested number of TaskManagers is available (e.g. due to 

resource exhaustion). Considering that 𝑛𝑏𝑎𝑐𝑘𝑢𝑝 TaskManagers are already 

deployed from a previous call, the required resources already exist to Flink 

Cluster. We scale up the running job, so the cluster remains with one less idle 

TaskManager than before the scaling action. Afterwards, the operation ensures 

that 𝑛𝑏𝑎𝑐𝑘𝑢𝑝 TaskManager remain idle by sending a request to HTTP server. 

The HTTP server will implement the function on the Docker layer by creating 

the required containers. 

2. Scale down: Similarly, first we check if the job can be scaled down. If the job 

is already to the minimum parallelism, the operation is aborted. Afterwards, the 

job is scaled down, thus, the number of idle TaskManagers is increased. The 
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unnecessary TaskManagers are removed from the Flink Cluster by sending a 

request to the HTTP server. The server will let 𝑛𝑏𝑎𝑐𝑘𝑢𝑝 TaskManagers running 

and remove the rest.  

 

 
 

4.3.4. Kafka 

 

Kafka is the source of records of the running job. The job consumes records 

from a specified topic. The producers send records to the job by targeting that 

particular topic. Each TaskManager that runs the job, has its own Kafka Consumer 

that receives a part of the workload. 

In Flink, partitions are assigned to parallel task instances41. As a result, we have 

the following cases: 

• When there are more Flink tasks than Kafka partitions, some of the Flink 

consumers will just remain idle, not reading any data. As a result, some 

TaskManagers does not process records and the workload of the job is not load 

balanced. 

• When there are more Kafka partitions than Flink tasks, Flink consumer 

instances will subscribe to multiple partitions at the same time. In this case, all 

TaskManagers receive and process records. 

Kafka does not support the dynamic decrease of the partition number of an existing 

topic. For this reason, we set a static number of partitions during the creation of the 

topic. We set the number of partitions to be at least equal with the maximum number 

 
 
41 https://www.ververica.com/blog/kafka-flink-a-practical-how-to 
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of Flink parallel tasks 𝑛𝑚𝑎𝑥, hence, the maximum parallelism of the Flink Cluster. In 

this way, all of the allocated TaskManagers to a job receive records for processing. 

 

Generally, a Flink job can get input from multiple Kafka topics. Each topic could 

have different distribution of workload (the rate that new records enter the topic) from 

the others. In addition, the records of each topic could affect the utilization of 

TaskManagers in a different way. For example, the processing of records from one 

topic could require more computational power than the processing of another topic. In 

this way, multiple topics could require a more complex model, than the implemented 

one, to extract a pattern about the behavior of the application. As a result, creating a 

relation between workload per topic, allocated resources and performance could be 

more challenging. For this reason, the autoscaler of this work, can adjust only running 

jobs which use as a source only one topic. We could consider that the workload of the 

application is the sum of the individual workloads representing one single source. 

Although, we have not tested the efficiency of the autoscaler in practice for such a 

case. 

 

 

JMX Exporter 

In order to monitor Kafka, a JXM agent is used. The direct connection between 

Kafka and Prometheus was not possible, so we use a JMX agent to retrieve the 

metrics. Java Management Extensions42 (JMX) is a technology which enables 

managing and monitoring applications, system objects, devices, and service-oriented 

networks. The agent retrieves metrics from Kafka and makes them available by 

exposing a HTTP server. Prometheus retrieves the Kafka metrics by querying the 

HTTP endpoint of JMX exporter. In this way, we are able to monitor the workload of 

Kafka topics and thus the workload of the running job. 

 

 

Zookeeper 

Zookeeper is essential for the function of Kafka43. It is also required by Flink in 

the High Availability mode. Although, in our implementation the High Availability mode 

is not enabled. 

 

 

 

 

 
 
42 https://en.wikipedia.org/wiki/Java_Management_Extensions 
43 https://medium.com/@logeesan/zookeeper-in-kafka-ce31b3dd55b1 
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4.3.5. Faban 

 

Faban produces the workload of the System Under Test (SUT) by scheduling 

benchmarks. The benchmark is running a driver class which specifies where the 

workload should be sent and what operations should be performed. The benchmark 

creates Kafka producers which send records to the targeted application. The format 

of the records is dependent on the Flink’s job. The records are filled with random data 

and then sent to the targeted Kafka topic. The distribution of the produced rate is 

controlled by the variation file which specifies the number of Faban active threads. 

Each thread creates a Kafka producer. By adding/removing Kafka producers it is 

possible to generate any desirable distribution. 

Faban is deployed in a separate machine from the other components since it is 

not part of the system but simulates its client. In addition, the separation is essential 

for the right assessment of the system, Faban should not burden with its operation the 

rest of the components during the run of experiments. 

At the beginning of the operation of benchmark with varying workload, Faban 

performs some checks according the given workload distribution. During those checks, 

a spike is produced which last a few minutes. Since this spike is not part of the 

workload distribution, the autoscaler is configured to ignore it. 
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5. Experiments 

 

The experiments in this chapter assess the ability of the proactive Autoscaler (as 

described in Chapter 3) to dynamically adjust the resources of the running application 

in the Infrastructure described in Section 4.2. 

5.1. Application: Clicks Fraud Detection 

 

In the next experiments we evaluate the implemented Autoscaler by running a 

click fraud detection application44. Click fraud45 is a type of fraud that occurs on the 

Internet in pay-per-click (PPC) online advertising. The owners of websites that post 

the ads are paid an amount of money determined by how many visitors to their sites 

click on the ads. Fraud occurs when a person, automated script, or computer program 

imitates a legitimate user of a web browser, by clicking on such an ad without having 

an actual interest in the target of the ad's link. 

 

The application receives records from a Kafka topic which has the following JSON 

format: 

{ 

 "ip": "205.0.44.187",  

 "userID": "e61b8f7a-5029-433a-9e44-79d5f514d309",  

 "timestamp": 1595431611,  

 "eventType": "display/click" 

} 

 

Consequently, the production rate of these records represents the workload of our 

application. 

 

The application attempts to capture these kinds of fraud by searching for three 

patterns: 

● Pattern 1: Count the User IDs per unique IP address in a window of 60 seconds. 

● Pattern 2: Count the IP addresses per unique User ID in a window of 60 

seconds. 

● Pattern 3: Calculate Click-Through Rate (CTR) per UID. In other words, is 

measures how many times an ad is clicked on, as compared to the number of 

times the ad is shown. 

 

For each pattern the application stores the results into files. 

 
 
44 https://github.com/Nada-S/Clicks_fraud_detection_with_Kafka_and_Flink 
45 https://en.wikipedia.org/wiki/Click_fraud 



EXPERIMENTS 63 

 
 
 

 
 

5.2. Experiment: Exploration Mode 

 

In this experiment we test the exploration mode of the proactive Autoscaler 

under a 5-hour workload which follows a gaussian distribution. The particular 

distribution begins from zero workload, smoothly increasing to its peak and then 

gradually returns to zero. In this way, the controller is able to explore all the desired 

parallelisms of the application on both scaling up and scaling down actions. The 

autoscaler was configured with the following parameters: λ = 0.05 and k=250 which 

are both parameters of Stability Check. Also, the controller created a Performance 

Model and performed Stability Check every 450 samples (~ 2 hours). The autoscaler 

switched to Optimal Control at the end of the particular experiment, so no observations 

are made for this mode. 

 

 

 
Figure 27 - Performance under gaussian distribution 
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In Figure 27 there are three diagrams that depict the state of the running 

application. All three diagrams have the same x-axis which is the number of samples. 

In exploration mode, a sample is taken every 15 seconds, which means that we 

retrieve metrics (workload and performance) every 15 seconds. The first diagram 

shows how the workload varies in time (how many records/second the application 

receives). The first diagram shows some abrupt changes in the distribution, since the 

autoscaler discards data after rescaling (in our case, data of the next 4 minute after 

rescaling occurred). This also applies to the next experiments. The second diagram 

shows the parallelism, which is the number of used TaskManagers, of the running 

application. The parallelism of the job is decided by the reactive scaler of the 

exploration mode according the SLA. The last diagram, depicts the performance of the 

application and whether the SLA is satisfied or not. We measure the performance as 

the percent of the incoming records that are not instantly served but remain in the 

queue. We consider that the SLA is violated when more than 10% of the incoming 

records remain in the queue.  More formally, the SLA is defined as the 10th percentile 

of slow records. In the third diagram, SLA violation occur when the percentage of slow 

records is above the value 0.1 (10%) or the blue signal surpasses the black horizontal 

line.  

We can observe that the controller under increasing workload is scaling up after 

SLA violation. This is in line with the addition of new TaskManagers in the second 

diagram (a new TaskManager in the second diagram is added each time an SLA 

violation occurs in the third diagram). That behavior was expected since the 

exploration mode works reactively. When the workload is decreasing, the controller 

gradually scales down. In this phase no SLA violation is observed. At the end of the 

experiment the controller switches to optimal. 
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Figure 28 - Performance model created by gaussian distribution 

Figure 28 illustrates the generated performance model. The performance model 

is the result of the exploration mode and utilize the collected data in order to describe 

the behavior of the application under different circumstances. Specifically, the 

performance model maps workload, number of Taskmanager and percentage of slow 

records. Generally, the representation of the performance model requires a three-

dimensional space, since we have three variables. We simplify the representation in 

two dimensions by showing each parallelism separately with a different line. The x-

axis depicts the incoming workload and the y-axis the percentage of slow records. The 

Performance Model is a function which gives the percentage of slow requests 

depending on workload and parallelism. For any incoming workload (in the range of 0 

records/second up to 4500), we can select which parallelism (which line) is optimal 

(does not violate the SLA).  
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The points in the diagram represent the actual measurements of the controller 

during the exploration mode while the line of each parallelism show us the predicted 

performance given the workload. In other words, each line is a function which takes 

as input the workload and output the performance. Consequently, we have 

accomplished to create an accurate model which is able to describe and thus predict 

the behavior of the application 

We can also observe that the model presents some fluctuations, mainly to the 

last two parallelisms. We consider that phenomenon occur for the following reasons: 

• Flink consume rate: The consume rate of Flink does not keep up with the 

workload instantly but after a few seconds. In case of increase in the workload 

rate, we may observe a slight increase of the queue. Afterwards, when the 

consume rate keeps up with workload’s rate, the queue returns to a decreased 

value again. As a result, we can observe temporal decrease of the slow records 

even when the workload is higher than before. This behavior is characteristic 

of Flink. 

• Infrastructure’s bug: As the workload increased and the controller allocated 

more Taskmanager to the application, we observed that the performance fall 

more quickly than expected. We consider this behavior is caused by a bug to 

our infrastructure or issue related to the running application. 
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5.3. Experiment: Optimal Control 

 

In this experiment we study the operation of the optimal control of the Proactive 

Scaler under a rapidly changing workload. The particular workload lasts 1.5 hours. 

The controller is pre-trained with the collected metrics of the previous experiment. As 

result, the controller begins its operation in optimal control and uses the performance 

model of Figure 21. At the end, we compare the proactive mechanism with the reactive 

one. The autoscaler was configured with 𝛼 = 0.9, 𝛽 = 0.4 (see page 44). 

 

 
Figure 29 - Performance of optimal control under gaussian distribution with low variance 

 

As we can see in Figure 29, the controller adds TaskManager in time and no 

SLA violations occurred.  

The Figure 30 depicts the accuracy of the predictions during optimal control. 

The x-axis of all three diagrams correspond to the workload (number of samples). In 

optimal control, the controller takes samples of the system every 5 seconds. The first 

diagram compares the actual performance to the predicted one. The actual 
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performance is the percentage of slow requests that the client of the system observers. 

The predicted performance is the output of the Performance Model for the selected 

parallelism. In the second diagram, the residuals of the application’s performance are 

depicted. The particular diagram shows how close the actual performance values are 

to the predicted ones. Each residual point is the difference between the predicted 

value and the corresponding actual one shown in the first diagram and it is the output 

of the formula: | 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|. When the residual 

points are close to zero, the Performance Model is considered accurate while 

increasing residual values indicate lack of accuracy. Consequently, we observe that 

the performance mode predicts the percentage of slow records accurately enough. 

The autoscaler was configure to switch to exploration mode if the residual points 

surpass the value 0.08 (or the prediction error is higher than 0.08). Although, the 

maximum difference of actual and predicted value is around 0.04 and thus no change 

point occurred. 

 

 
Figure 30 - Predictions of performance model under gaussian distribution with low variance 
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The Figure 30 depicts the predictions of the Workload Predictor. In this case, 

the predicted workload and the actual one is identical. The increased accuracy of the 

predictions of Workload Predictor was expected since the predictor is constantly 

adapted to the incoming workload (every 60 seconds). Since the predictions of 

Workload Predictor are input to the Performance Model, the accuracy of the first 

module affect the accuracy of the second one. Specifically, if the predicted workload 

is distant from the actual one, we would observe an increased difference to the actual 

and predicted performance. Although, we have not observed lack of accuracy to 

Workload Predictor in our experiments. 

 

 
Figure 31 - Comparison of proactive and reactive scaler under gaussian distribution with low variance 

 

In Figure 31 we compare the optimal control with the reactive mechanism in 

terms of performance and utilization. The first diagram of the figure represents the 
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workload distribution. The other two diagrams show the parallelism and the 

performance for each mechanism respectively. In the last two diagrams, we observe 

that the reactive scaler increases the parallelism of the application as soon as the SLA 

is violated, which is not the case of the proactive scaler. In this experiment, the reactive 

scaler allocates 1.84 Taskmanagers per sample (interval of 5 seconds) while the 

proactive scaler allocates 1.81 TaskManagers per sample. Consequently, in the 

current experiment, both mechanisms allocate approximately the same number of 

TaskManagers.  

Although, the proactive scaler is more effective since no SLA violation occurred 

in the third diagram. In the second diagram we observe that the proactive scaler 

increases the parallelism sooner than the reactive one. In other words, the proactive 

scaler allocates the required number of TaskManagers, needed for the near future 

workload, beforehand. Similarly, in decreasing workload the proactive scaler removes 

idle resources sooner than the reactive. In this case, both mechanisms have the same 

performance but with different resources. The reactive scaler maintains more 

resources than those are needed, ending up under-utilized. In summary, the proactive 

scaler outperforms the reactive one and shows increased utilization of resources.   

 

 

5.4. Experiment: Synthetic Workload Distribution 

 

In this experiment, we generated a 3-hour synthetic workload by analyzing a 

real workload from World Cup 98 Trace46. Although, only a part of the original workload 

distribution is shown to this experiment. The whole experiment could not be performed 

due to bug in the infrastructure. The purpose of the experiment is to analyze the whole 

operation of the controller which includes both exploration mode and optimal control. 

Also, we compare the proactive scaler with the reactive one. The autoscaler was 

configured with the following parameters: 𝜆 = 0.05, 𝜅 = 250, 𝛼 = 0.9, 𝛽 = 0.4 and to 

perform stability check every 300 samples (40 minutes). The change point detection 

captures changes when the residual points are higher than 0.08. In this experiment 

the autoscaler performs a check (if a scaling action should be made) every 5 seconds 

in both exploration and optimal control. The same applies for the reactive scaler. 

Otherwise each scaler would generate different number of samples and the 

comparison sample to sample would not be feasible. 

 

 
 
46 ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html  
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Figure 32 – Performance under synthetic workload distribution 

In Figure 32, we observe the behavior of the actions and the performance of 

the application. The controller operates in exploration mode until the 800th sample. 

Afterwards, a Performance Model is created and the controller switches to optimal 

control until the 1700th sample. Finally, a change point was detected which switches 

the controller to exploration mode again.  
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Figure 33 - Performance model created by synthetic workload 

 

In Figure 33, the performance model of the controller is depicted. During the 

exploration mode, the controller collected data about the performance of the 

application (percentile of slow records) for the parallelisms 1 and 2. 
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Figure 34 - Predictions of performance model under synthetic workload 

 

In the first diagram of Figure 34, the predictions of the performance model are 

depicted. We observe that the model predicts the percentage of slow records 

accurately enough. The accuracy of the predictions falls at the last points (around 800th 

sample), since the predicted and actual values diverges in higher degree. This is also 

depicted in the residual points which are more increased at the last points and finally 

reach the value 0.08. In this case, the online change point captures the lack of 

accuracy in the predictions and switches the controller to exploration mode. In the last 

diagram of the figure, we observe the accuracy of the Workload Predictor where the 

predicted workload is close to the actual one. 
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Figure 35 - Comparison of proactive and reactive scaler under synthetic workload in terms of application’s 

parallelism and performance. 

 

In Figure 35 we compare the proactive mechanism with the reactive one. At the 

beginning, both scalers behave in a similar way. This is expected because the 

controller is in exploration until the 800th sample and then switches to optimal. 

Afterwards, we observe that around the 900th sample the proactive scaler reduces to 

parallelism while the reactive performs the scale down later at the 1000th sample. We 

observe that at the 1700th sample during the operation of the proactive scaler, the 

performance gradually falls and violates the SLA. This phenomenon is not observed 

in the case of the reactive scaler. In addition, we observe that the workload around the 

sample 1700th is relatively steady and thus the performance fall was not expected. We 

consider that this phenomenon is an anomaly caused by an internal issue (e.g. crash) 

in the operation of the infrastructure. Finally, the proactive scaler returns to exploration 

mode until the end of the experiment. At this stage, both scalers behave similarly. 

During this experiment, the proactive scaler uses 1.56 TaskManagers per sample 

while the reactive scaler allocates 1.59 TaskManagers per sample. 
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Figure 36 - Utilization of resources under synthetic workload 

 

The Figure 36 depicts the throughput and the allocated TaskManagers for each 

scaler (proactive and reactive). The throughput of each scaler is calculated by the 

formula 𝑤𝑡 / 𝑤𝑚𝑎𝑥  where 𝑤𝑡  the workload at time t and  𝑤𝑚𝑎𝑥  the capacity of a single 

server (as described in Section 3.2). The throughput calculates approximately how 

many TaskManagers are required in order to handle the incoming workload with good 

performance.  

We observe that in beginning of both diagrams (samples 0 to 100) the 

throughput gradually increases and then coincides with the number of allocated 

TaskManagers. In this case, both scalers (since the proactive operates in exploration 

mode) work at the maximum capacity of the allocated resources, and at some point, 

they surpass it. Afterwards, the system is over-utilized causing SLA violation in both 

cases (as shown in the same samples at Figure 35) and each scaler increases the 

parallelism. We also observe that in the reactive scaler’s diagram of the Figure 36, 
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around the 1800th sample, the system is overutilized again which lead to another SLA 

violation (as depicted in the third diagram of Figure 35 around the 1800th sample). 

Finally, at the second point where the proactive scaler violated the SLA, which 

is depicted at the third diagram in Figure 35 around the 1700th sample, the application 

does not show over-utilization in the corresponding sample of the Figure 36. This is 

another indicator that an anomaly to the system occurred at that moment.  

 

5.5. Experiment: Autoscaler Load 

The purpose of this experiment is to measure the resources which the 
Autoscaler uses in order to perform proactive scaling in the target system. We examine 
the resource usage in both exploration mode and optimal control. The measurement 
is performed by the Linux command “htop”47. The autoscaler runs on a machine with 
4 CPU cores and 8 GB RAM. 
 
 
Exploration mode 

We examine the exploration mode in two phases depending on the frequency 
of the operations. In the first phase, in which operations are executed every 15 
seconds, the controller retrieves metrics and performs scaling actions. The second 
phase, which takes place every couple of hours, consists of the performance model 
training and the stability check.  
 
Phase 1:  Reactive Scaler 

Typically, in this phase the scaler gets measurement by Prometheus and 
checks if an action should be made. The request rate to Prometheus is associated to 
the check frequency performed by the scaler. For example, in the first experiment the 
scaler checks if the SLA is violated every 15 seconds. As result, the scaler makes 
queries to Prometheus every 15 seconds. If a condition for scaling is satisfied (e.g. 
SLA violation), the scaler makes a request to FLINK REST API in order to change the 
parallelism. Although, such request does not follow a specific period but it is workload 
dependent. During the described part of operation, we observe the resource usage 
depicted in Figure 37: 

• The CPU usage ranges between 0% and 2%. 
• The allocated Memory is 141MB. This results from the RES (resident 

size) column, which is an accurate representation of how much actual 
physical memory a process is consuming. 

• Disk read/writes occur rarely with the rate 2.58 KB/s. This behavior was 
expected since the collected data remain in memory and move to disk 
every couple of hours (e.g.  every 8 hours).  

Note that in this phase, the controller works reactively, so the required resources for 
the whole operation of a reactive scaler is the same. 

 

 
 
47 https://htop.dev/ 
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Figure 37 - General resource usage during exploration mode. 

 
Phase 2: Performance Model training and Stability check 
 Periodically (e.g. every 1 hour) the controller examines if there are enough 
collected data to generate an accurate Performance Model. This step included the 
performance model training and the Stability Check.  

• Performance Model training: This function searches which polynomial degree 
is the best fit for the collected data (in our case from degree 1 to 8) and creates 
a Performance Model. This step lasts about 5 seconds and we observer that 
the CPU usage is 118% while the allocated memory is 144MB out of 8GB. 
When the CPU usage is above 100% the process uses more than one core. 
The results are also depicted in Figure 38. 

• Stability Check: In this case, we use bootstrap sampling to measure the 
standard deviation of the trained model. The parameter k, which regulates the 
number of the created samples, significantly affect the total duration of 
bootstrap’s execution and the resource usage. In our experiments we set k = 
250 samples and thus the Stability check last about 60 seconds. We observe 
that the allocated memory is 144MB, the CPU usage is 104% and no disk IO 
operations are performed. The results are also depicted in Figure 39. 

 
 

 
Figure 38 - Resource usage in exploration mode during Performance Model training. 

 

 

 
Figure 39 - Resource usage in exploration mode during Stability Check. 
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Optimal Control 
 The controller, in this stage uses the Workload Predictor to estimate the near 
future workload and the Performance Model to determine the optimal parallelism of 
the running job. These operations take place every 60 seconds and require 1 query to 
Prometheus. Although, the controller performs further computations during those 60 
seconds in order to specify the accuracy of the performance model. Specifically, every 
5 seconds we get the actual performance by querying Prometheus and then perform 
change point detection.  
 During the whole operation of Optimal Control, we observe the resource usage 
shown in Figure 40. Specifically, the CPU usage ranges between 0% and 3%, the 
allocated memory is 143MB and rare disk IO operations take place. 
 

 

 
Figure 40 - Resource usage during Optimal Control. 

 

 Consequently, the frequent operations of the Autoscaler require minimal 

resources while the rare operations could use more than one CPU cores. As a result, 

we consider that an environment with 2 CPU cores and 2 GB RAM will be enough for 

the normal operation of the Autoscaler. Although, different configuration of the 

controller (e.g. different value for the parameter k) would affect the overall resource 

usage.  
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6. Conclusions 

 

In this thesis, we designed and implemented a proactive autoscaler for Apache 

Flink applications. Records can get in or out of Flink jobs through Apache Kafka topics. 

Also, Prometheus is used for monitoring of Flink jobs. The deployment took place on 

cloud technologies which provide us an easy way to handle the allocated resources. 

In this way, we are able to adjust the size of the Flink Cluster by adding or removing 

TaskManager instances.  The proposed Autoscaler extends the capabilities of a Flink 

Cluster by providing dynamic scaling of resources to a running job according the 

workload. In this way, the running job uses as few resources as possible while 

preserving the performance in acceptable limits. Hence, the application provider is not 

charged for idle resources while the client does not experience high delays in the 

operation of the particular application.  

The main idea of the autoscaler is based on publications [1] and [2] but is 

adjusted to be compatible to Flink and streaming applications. The autoscaler begins 

its operation by collecting metrics of the targeted application while preserving the 

performance using a reactive mechanism. The targeted application is analyzed in 

terms of performance, workload and allocated recourses, so as to export a pattern 

about its behavior. This is done by training a statistical machine learning model which 

captures the relation between workload, number of TaskManagers and performance. 

Afterwards, the generated machine learning model is utilized in order to act proactively 

and made optimal decisions. The autoscaler is also capable to detect and adopt to 

changes in application itself or its environment. The scaling actions, decided by the 

autoscaler, are performed in two stages. The number of allocated TaskManagers is 

determined according the incoming workload and then implemented by the Docker 

Engine in the form of containers.  

Last but not least, we run a variety of experiments in order to assess the 

efficiency of the autoscaler using both known (i.e. gaussian) and real distribution. The 

implemented controller proved to capable for predicting the performance of a running 

Flink with good accuracy and thus act proactively. We also compared the proactive 

autoscaler to a reactive one in order to prove the superiority of such proactive 

mechanism. To be more specific, the proactive mechanism shown decreased number 

of SLA violations and increased utilization of resources. At the end, we measured the 

resource usage of the autoscaler and concluded that a medium flavor machine could 

be enough to handle its requirements.  
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7. Future work 

The current work was been done within specific time limits, as a result, there is 
room for some issues as future work. The operation of the controller could be improved 
by addressing the following issues: 

1. Detecting gradual changes: Currently, the used change point detection is 
unable to capture changes that take place gradually. If the difference between 
the predictions of performance model and the actual values is increased slowly, 
the controller will remain in optimal control. This issue could be addressed by 
introducing a method which captures such changes like twin comparison.   

2. Data selection: During the operation of the application, a temporary change in 
the system could create outliers48. For instance, a slight crash of component, 
which occur rarely, could cause an instant but temporary performance drop. An 
outlier diverges from similar observations and can cause serious problems in 
statistical analysis. As a result, a few outliers in the dataset could dominate the 
training of the performance model resulting to lack of accuracy. Excluding data 
points, which does not describe the overall behavior of the application, could 
significantly improve the predictions of the performance model. Such a method 
is Outlier Detection. 

3. Defining optimal hysteresis gains: In the current implementation of the 
autoscaler, the gains 𝑎, 𝛽 are static and user-defined. The efficiency of the 
optimal control could be increased by defining the optimal parameters 
according the incoming workload. A method which provided solution to this kind 
of problem is a policy search algorithm [2]. 

4. Rescaling on operator granularity: Currently, a rescaling action modifies the 
parallelism of all operators of the job. For example, in case of SLA violation, 
every operator will be scaled up. We could improve the overall resource 
utilization of the job, by adjusting each operator separately according its needs. 
Such a rescaling methodology, which works reactively, is described in DS2 [7]. 

5. Supporting jobs with multiple Kafka topics: The current form of the 
autoscaler is designed to monitor jobs which use a single Kafka topic as a 
source. Although, a job could consume data from multiple Kafka topics. This 
could by achieved by introducing a more sophisticated performance model. 

 
 
 
 
 
 
 
 
 
 
 

 
 
48 https://en.wikipedia.org/wiki/Outlier 
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