
TECHNICAL UNIVERSITY OF CRETE

Providing Personalized
Recommendations for Interactive Story

Generation

Author:
Petros I. Portokalakis

Thesis Committee:
Associate Prof. Georgios

Chalkiadakis (Supervisor)

Associate Prof. Michail
Lagoudakis

Associate Prof. Georgios
Giannakakis

A thesis submitted in partial fulfillment of the requirements for the degree of
Diploma in Electrical and Computer Engineering

in the

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

https://www.tuc.gr/index.php?id=5397
https://www.ece.tuc.gr/index.php?id=4481

ii

November 8, 2020

i

TECHNICAL UNIVERSITY OF CRETE

Abstract
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Diploma in Electrical and Computer Engineering

Providing Personalized Recommendations for Interactive Story Generation

by Petros I. Portokalakis

Interactive narrative is a form of digital entertainment where players can create or
influence a storyline through actions, usually by controlling the role of one (or more)
characters in a virtual world. In story-based games or any other interactive story sys-
tem in general, a drama manager is an omniscient agent that acts to guide the user
through the story space. While drama managers tend to improve user enjoyment, they
do not take into account the user’s preferences. In this thesis, we present a drama
manager that tries to tackle the sequential recommendation problem, while taking into
account user preferences. In order to create and maintain user engagement, we present
a recommendation approach using probabilistic topic modeling, intertwined with rein-
forcement learning. We use the Latent Dirichlet Allocation topic modeling algorithm,
applied in a Choose Your Own Adventure (CYOA) book to capture its latent topics.
The key aspect of our drama manager is that we model the user herself as an evolving
document represented by its respective mixture of latent topics; and which is appropri-
ately updated every time the user consumes an item. Also, inspired by reinforcement
learning literature, we introduce the use of variable learning rate for drama managers,
directly associated with the user model updating, and based on the well-known “Win
of Learn Fast” reinforcement learning method. The algorithm is trained using all the
Wikipedia articles referring to books. We also provide an efficient parser for Wikipedia
articles. Experimental evaluation results are promising, showing that our drama man-
ager is capable of providing efficient recommendations to the user.

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=5397
https://www.ece.tuc.gr/index.php?id=4481

ii

Η διαδραστική αφήγηση (interactive narrative) είναι μία μορφή ψηφιακής ψυχαγωγίας
όπου οι χρήστες δημιουργούν ή επηρεάζουν μία πλοκή. Αυτό συνήθως γίνεται μέσω του
έλεγχου ενός (ή περισσότερων) χαρακτήρων σε έναν εικονικό κόσμο. Σε παιχνίδια βασισμένα
στην πλοκή ή άλλα διαδραστικά συστήματα, ο διαχειριστής δράματος (drama manager) είναι
ένας παντογνώστης πράκτορας που έχει σαν σκοπό να καθοδηγήσει τον χρήσει μέσα στον

χώρο που δημιουργείται από όλες τις πιθανές πλοκές που μπορεί να προκύψουν (story space).
Στα περισσότερα διαδραστικά συστήματα αφήγησης εώς τώρα, ένας διαχειριστής δράματος
προσπαθεί να βελτιώσει την εμπειρία του χρήστη, χωρίς όμως να λαμβάνει υπόψη τις προτιμή-
σεις του. Σε αυτήν την διπλωματική εργασία, παρουσιάζουμε έναν διαχειριστή δράματος που
προσπαθεί να λύσει το πρόβλημα της ακολουθιακής σύστασης (sequential recommenda-
tion problem) ενώ ταυτόχρονα λαμβάνει υπόψη τις προτιμήσεις του χρήστη. Το σύστημά μας
πρέπει να δημιουργήσει και να διατηρήσει την ενασχόληση του χρήστη με αυτό. Οπότε, προτεί-
νουμε μια προσέγγιση για προσωποποιημένες συστάσεις χρησιμοποιώντας πιθανοτικά μοντέλα

(probabilistic topic models) μαζί με ενισχυτική μάθηση (reinforcement learning). Χρησι-
μοποιούμε τον αλγόριθμο πιθανοτικού συμπερασμού Latent Dirichlet Allocation (LDA), με
εφαρμογή σε βιβλία Choose Your Own Adventure με απώτερο σκοπό να ανακαλυφθούν οι
θεματολογίες που πραγματεύονται. Ο βασικός πυλώνας του διαχειριστή δράματος που προ-
τείνουμε, είναι η μοντελοποίηση του χρήστη ώς ένα αναπτυσσόμενο (στον χρόνο) κείμενο,
το οποίο αποτελείται από διάφορα θέματα σε διαφορετικά ποσοστά, και το οποίο ανανεώνε-
ται κάθε φορά που ο χρήστης "καταναλώνει" ένα αντικείμενο που του έχει συσταθεί. Ακόμα,
εμπνευσμένοι από τον τομέα της ενισχυτικής μάθησης προτείνουμε την χρήση μεταβλητού

ρυθμού μάθησης (learning rate) σε διαχειριστές δράματος. Η τεχνική για μεταβλητό ρυ-
θμό μάθησης που χρησιμοποιούμε βασίζεται στον γνωστό αλγόριθμο ενισχυτικής μάθησης

“Κέρδισε ή Μάθε Γρήγορα" (Win or Learn Fast). Ο ρυθμός μάθησης είναι συνδεδεμένος με
την ανανέωση του μοντέλου χρήστη. Ο αλγόριθμός μας εκπαιδεύτηκε χρησιμοποιώντας όλα
τα άρθρα της Wikipedia που περιλαμβάνουν περιγραφές βιβλίων. Επίσης, παρέχουμε έναν
ολοκληρωμένο αναλυτή κειμένου, για την σωστή αποθήκευση και επεξεργασία των κειμένων
της Wikipedia. Η πειραματική αξιολόγηση της προσέγγισής μας είναι ενθαρρυντική, καθώς
τα αποτελέσματά της δεικνύουν ότι ο διαχειριστής δράματος είναι ικανός να κάνει σωστές

συστάσεις στον χρήστη.

iii

Acknowledgements
First of all, I am very grateful to my advisor, Prof. Georgios Chalkiadakis for his guid-
ance and for trusting me with this topic. I would like to also thank for the rest of the
committee, Prof. Georgios Giannakakis and Prof. Michail Lagoudakis. For my family,
and my close friends, as nothing would be the same without them.

iv

Contents

Abstract i

Acknowledgements iii

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Game Artificial Intelligence . 1
1.2 Interactive Narrative . 1
1.3 Thesis Contributions . 4

2 Background 6
2.1 Probabilistic Topic Modeling . 6

2.1.1 Latent Dirichlet Allocation . 7
Notation . 8
The Generative Process . 8
Posterior Inference . 9

2.2 Learning Rate . 11

3 Related Work 12

4 Our Approach 15
4.1 Problem Definition . 15
4.2 Getting the Data from Wikipedia . 16

4.2.1 Downloads . 17
4.3 Preprocessing . 17

4.3.1 Parsing the Data . 17
4.3.2 Dealing with the Nature of the Data 18
4.3.3 Towards the Bag of Words Representation 20

4.4 Choosing the Optimal Topic Number . 22
4.4.1 Perplexity . 22
4.4.2 Topic Coherence . 24
4.4.3 Jaccard Similarity . 26
4.4.4 Human Judgement . 27

4.5 Our Drama Manager Model . 30
4.5.1 Plot point modeling . 30

v

4.5.2 User modeling . 30
4.5.3 Plot point model and user model updating 31

4.6 Prefix Tree Representation . 32
4.7 Recommendation phase . 34

4.7.1 Overview . 34
4.7.2 Shannon Jensen Divergence . 34
4.7.3 Cosine Distance . 35
4.7.4 Expected Utility . 35
4.7.5 Drama Manager Algorithm . 36

4.8 User Interface . 37

5 Experimental Setup - Evaluations 39
5.1 Workstations and Training Times . 39
5.2 Using Real CYOA books . 39

5.2.1 Gathering Information from a PDF 40
Construction of the Story Graph 40
Merged Words . 40

5.3 Simulating Users and Books . 42
Populating the Plot Points with Topics 43

5.4 Searching for the Optimal Path . 44
5.5 About Other Drama Manager Evaluation Methods 52

6 Conclusions & Future Work 54

A Manual Topic Inspection of an LDA model with 80 topics 57
A.1 Model Inspection . 57

B Dealing with merged words from the PDF parsing 64
B.1 Merged Words . 64

C System Parameters 67

D Modeling and Tackling Preference Shifts 68

Bibliography 70

vi

List of Figures

1.1 Example of a path choice from a CYOA book (Journey Under The Sea) . 2
1.2 Example of a branching story graph from a CYOA book (Journey Under

The Sea) . 3

2.1 Intuition behind Latent Dirichlet Allocation 7
2.2 Probabilistic Graphical Model of Latent Dirichlet Allocation 10

3.1 A sample branching story graph . 13
3.2 Branching story tree representation for the branching story graph 13
3.3 Narrative mediation tree . 14

4.1 Prefix rating matrix . 15
4.2 Graph showing the distribution of tokens per article 19
4.3 Graph showing the distribution of tokens per article 20
4.4 Increasing size of articles . 21
4.5 Perplexity values of 5 evaluations . 23
4.6 Average perplexity values . 23
4.7 Perplexity values (Obtained by the training data) 24
4.8 Topic coherence values of 5 evaluations 25
4.9 Average topic coherence values . 25
4.10 Jaccard similarity values of 5 evaluations 28
4.11 Average Jaccard similarity values . 28
4.12 Visualization of a topic (science fiction) in pyLDAvis 29
4.13 Branching story graph & Prefix graph . 33
4.14 The architecture of the interactive story generation system 34
4.15 Example of a prefix graph . 36
4.16 Example of a choice in our DM . 37

5.1 Command line utility for merged words inspection 42
5.2 Average rating of stories (a 5-rated path is available) 46
5.3 Average rating of stories (The user’s liked path is populated with 50% 5,

and 50% 4 rated plot points) . 46
5.4 Average rating of stories (The user’s liked path is populated with ratings

of 5), L=30 topics . 47
5.5 Average rating of stories (The user’s liked path is populated with ratings

of 5), L=40 topics . 48
5.6 Average rating of stories (The user’s liked path is populated with ratings

of 5), L=50 topics . 49

vii

5.7 Average rating of stories (The user’s liked path is populated with ratings
of 5), L=60 topics . 50

5.8 Average rating of stories (The user’s liked path is populated with ratings
of 5), L=70 topics . 50

5.9 Average rating of stories (The user’s liked path is populated with ratings
of 5), L=80 topics . 51

5.10 Average JSD between the true user model and the plot points of the
user’s likes path . 53

6.1 Branching story graph of the book Infected 56

D.1 Identification of major preference shifts 69

viii

List of Abbreviations

AI Artificial Intelligence
CPU Central Processing Unit
CF Collaborative Filtering
CYOA Choose Your Own Adventure
DM Drama Manager
Game AI Game Artificial Intelligence
LDA Latent Dirichlet Allocation
ML Machine Learning
NPC Non Player Character
PTM Probabilistic Topic Models
RAM Random Access Memory
RS Recommender System

1

Chapter 1

Introduction

1.1 Game Artificial Intelligence

One of the subdisciplines of Artificial Intelligence (AI) and Machine Learning (ML) is
the use of AI in games. The term Game AI covers a wide collection of programming
and design practices dealing with creating responsive, adaptive and intelligent agents
that act to bring maximum user enjoyment. Most of the research conducted on AI in
games, has been about creating opponents that perform well against human players.
But there is also work to be done in making the human player’s play session better.
AI systems should be able to infer and provide the best possible experience within the
context of the game[19].

A video game is considered to have two main aspects; the game and the context.
Game AI consists of the agents responsible for the actual challenges players face and
the problems they may encounter, such as rules and objectives. On the other hand,
context AI is referring to the agents that deal with context tasks such as motivating the
player and maintaining the global structure of the plot in order for the story to remain
coherent.

1.2 Interactive Narrative

From the early beginning of human civilization the ability to present a story has been
of uttermost importance. We humans use narratives to communicate, entertain, teach,
etc. In [15], Prince defines a narrative as:

Definition 1 A narrative is a recounting of one or more real or fictitious events communicated
by one or more narrators to one or more narratees.

In [17], Riedl and Butilko define interactive narrative as:

Definition 2 (Interactive Narrative). Interactive narrative is a form of digital interactive
experience in which users create or influence a dramatic storyline through actions, either by
assuming the role of a character in a fictional virtual world, issuing commands to computer-
controlled characters, or directly manipulating the fictional world state.

Interactive personalized story generation, a subdomain of context AI, is achieved by
letting a user make meaningful decisions about the fate of characters. An omniscient

Chapter 1. Introduction 2

FIGURE 1.1: Example of a path choice from a CYOA book (Journey Under
The Sea)

background agent frequently called drama manager (DM) is responsible for capturing
data about the user’s decisions. Depending on the system’s implementation, the drama
manager may provide recommendations about how the user should proceed, or ma-
nipulate the non-player characters (NPC) to act accordingly to drive the game to a
prefered state of the story space. So, drama managers monitor the virtual world in
which the user is immersed and act to determine what happens next in the player’s
story experience, often coordinating and/or instructing virtual characters[1].

A narrative can be decomposed into a finite set of discrete blocks of the story, called
plot points. When specific plot points which are coherent with each other are ordered
in a sequence, they create a story. There are two fundamental types of narrative: linear
narrative and branching narrative. Linear narrative is the most common form of narra-
tion. In linear narrative, all the plot points of a story are sequenced from beginning to
ending without the possibility of a user alternating the way the story unfolds. Many
books or computer games employ linear narratives. Every player experiences the same
story. On the other hand, a branching narrative offers the player the ability influence
the way the story progresses. At predefined points in the narrative, the user’s behavior
can alter the plot points that are about to follow.

As Young wonders in [31], What structures from AI research can most readily accommo-
date representations of narrative?

In our work, we use probabilistic topic modeling and reinforcement learning, in order
to address the sequential recommendation problem, and thus influence the narrative
a user experiences. The sequential selection problem is about providing recommenda-
tions that are dependent on the sequence of prior recommendations. The probabilistic

Chapter 1. Introduction 3

FIGURE 1.2: Example of a branching story graph from a CYOA book (Jour-
ney Under The Sea)

Chapter 1. Introduction 4

topic model used in this thesis is the Latent Dirichlet Allocation algorithm. In story-
based computer games and also other applications such as education systems, a nar-
rative is used to motivate the user’s activity and to create a sense of causal continuity
across a series of challenges[21].

In our work, we use Choose-your-own-adventure (CYOA), a well-known series of chil-
dren’s gamebooks. The stories are written from a second-person point of view, with
the user assuming the role of the protagonist, ultimately deciding the characters’ fate
and the overall plot outcome. In the end of each page of CYOA book, there are sev-
eral options the user has to choose from (usually there are two alternatives offered).
While the characters are dealing with a situation, the narration stops, and the author
lists the available options. An example is shown in figure 1.1, where the user must de-
cide whether to continue reading at page 6 or page 5. The reader chooses the preferred
action, and the story unfolds. The full stories contained in CYOA books are few, and
also small, as those books are designed for mostly young ages.

The branching narrative can be represented by a branching story graph, that is, a
graph in which each node represents a plot point. Any path in this graph, starting
from the root node and ending to a sink node (a node with no outgoing edges, with
out-degree of 0) is a complete story experience. Figure 1.2 shows the branching story
graph representation of a CYOA book - Journey Under The Sea. Each node represents
a page in the book. In general, the branching story graph can be authored by a human
designer or by an intelligent process or through a collaborative process such as crowd-
sourcing. In this thesis we focus on the design of the DM, and not on the crafting of
complete story graphs. That is why we use CYOA books throughout this thesis. Even
though we study the application of our drama manager in CYOA books, the system
can adapt to any secret path book. The same techniques can also be applied to any
interactive narrative system with preauthored plot points. Thus, the DM can be ex-
tended to applications in video games, given descriptive information about each plot
point of a game.

1.3 Thesis Contributions

We provide a recommendations-based approach for a drama manager (DM) that uses
player modeling to personalize the user’s story according to her preferences. A rec-
ommender system’s task in this domain is to make informed guesses as to which story
path the user must follow, in order for her to experience maximum enjoyment. We em-
ploy topic modelling, one of the most powerful techniques in text mining. Specifically,
we use Latent Dirichlet Allocation (LDA), perhaps the most popular algorithm in the
topic modeling field, as the key element of the user modeling performed by our DM.
Because the LDA algorithm is trained using Wikipedia articles referring to books, we
created an efficient parser to only obtain the required articles. Also, we provide some
useful methods for processing of digital books. A command line utility is created to
split possible merged words due to bad formatting of pdf files. Also, a method is pro-
posed for automatic construction of the branching story graph by using the textual
information.

Chapter 1. Introduction 5

Our DM is capable of providing recommendations regardless of the number of
users (i.e., we do not rely on CF for user modeling, like [33] does). We introduced
a novel distance metric for DM agents, which is the expected utility. Our DM calculates
the expected utility of the user for each possible story reachable by the current plot
point. We do that using her current user model as an approximation the actual user
model, to identify the optimal path the user should follow. The recommended plot
point is the one belonging to the story yielding the maximum expected utility. Finally,
we evaluate our story generation system using simulated books and simulated users.
Whenever the story branches our DM will inform the user which path she is more
likely to get engaged to, by exploiting ratings the user provides after every recommen-
dation. Nevertheless, our DM is non-intrusive, meaning that the user can disregard the
DM’s recommendations and choose an alternative option. Our DM adapts into the new
situation, and keeps recommending the best choice. Although the system we present is
quite simple, it represents one of the fundamental principles of drama management, that
is discovering new storylines based on a pre-authored library of legal stories. Our DM
yields positive results, even though the LDA algorithm is a generic topic modelling
algorithm, and does not capture sequential information. As we discuss in Chapter 6,
a custom probabilistic topic model can be built, to capture the sequential nature of the
CYOA books, and yield even better results.

This work also serves as a framework for similar research, showing how the train-
ing data was gathered, providing basic functionality for the preprocessing, the creation
of the necessary data structures and the distance metrics used and so on.

Our DM is a novel one, as it is the only one as far as we know, that uses probabilistic
topic models for plot point modeling and user model updating. Experimental results
show that if there is a path in the story space that the user likes (i.e., a path populated
with plot points that the user assigns high ratings), our DM is capable of finding and
recommending that path to the user, plot point by plot point. We also show, that even
if there is a path in the story space, that is not completely aligned with the user pref-
erences (i.e., with a maximum rating of 5, the path is populated with plot points that
the user rates half of them with a rating of 4, and the remaining half with a rating of 5),
the DM still manages in most occasions, to recommend a highly-rated path. Finally in
D we outline some first steps towards an attempt to account for major user preference
shifts. Though this effort is still immature, it lays the ground for further research to
that end.

The remainder of this thesis is structures as follows. In chapter 2, we provide some
background knowledge needed to understand our DM; in chapter 3, we investigate
some related work in the field of DMs. Later in 4 we discuss our approach, starting
from the data gathering and preprocessing, moving on to the optimal topic number
identification for the LDA algorithm, and finally describing the inner workings of our
DM. In chapter 5 we discuss the experimental results, and in chapter 6 we discuss
future work.

6

Chapter 2

Background

In this chapter, we provide background on the key concepts used throughout the thesis.
Even though the ideas presented bellow should be sufficient for the reader to grasp the
idea, we refer interested readers to [34] and [16]. Also, for a survey on topic modeling
algorithms, see [3].

2.1 Probabilistic Topic Modeling

We will briefly discuss the basics of Probabilistic Topic Modeling (PTM). This work
is highly motivated and inspired by PTMs. They are a type of statistical model, that
discovers latent abstract topics that occur in collections of documents. Hence, they are
considered unsupervised learning algorithms.

In text analysis, a corpus is a collection of documents, and documents are collec-
tions of words. Topic models are based in the idea that documents are composed by
multiple topics. PTMs are capable of discovering with great accuracy the topics that a
document discusses. For example in Figure 2.1 the article’s title is “Seeking Life’s Bare
(Genetic) Necessities”. It speaks about the application of data analysis to determine the
number of genes needed by an organism to survive. After analysis, a topic modelling
algorithm will identify the proportions of k1% about genetics and k2% about data anal-
ysis and so forth. In the following paragraphs, we will discuss the logic behind topic
models, as well as their key assumption, the "Bag of Words" paradigm. We focus in the
algorithm used in this thesis, Latend Dirichlet Allocation.

Given a corpus of documents, our ultimate goal is to infer the knowlegde contained
in this corpus. In order to be able to extract information from a corpus, topic models
must be aware of the data representation. A commonly used representation is the
’Bag of Words’ (BoW) model. In this data representation, the exact location of each
word in a document di does not matter [8]. This means that all permutations of a
document will yield the same result. This interprets that given several instances of
a problem, each instance is referred to as bag, whereas its variables are the words.
The above assumption actually means that the model only "remembers" the number of
times each word appears in a document. In general, we use this model to describe a
problem where a set of discrete data compose a cohesive structure. This representation
is based on a fundamental statistical assumption, exchangeability [14], which allows
the order of random variables to be neglected by the specific model.

Chapter 2. Background 7

FIGURE 2.1: Example of the intuition of Latent Dirichlet Allocation [3]

Definition 3 (Exchangeability). A finite set of random variables z1, ..., zn is said to be ex-
changeable if the joint distribution is invariant to permutation. If π is a permutation of the
integers from 1 to N:

p(z1, ..., zn) = p(zπ(1), ..., zπ(N)) (2.1)

The BoW paradigm, works under the assumption that exchangeability applies to
both documents and words. This assumption is not a realistic one, but it turns out
that it works. In Figure 2.1, by just changing the order of the words in this document,
the topic model would assign the same topic to this document, which is, the topic of
genetics. In a similar way, we consider that documents are also exchangeable.

2.1.1 Latent Dirichlet Allocation

This section describes the bacis notion of the LDA algorithm [4]. The LDA model
has been a strong foundational model, forming a basis for various other topic models.
The topic models Latent Semantic Indexing (LSI) [6] and the later Probabilistic Latent
Semantic Indexing (pLSI) [7], created the canvas and inspired [4] with the simplest
topic model, LDA.

LDA’s intuition relies on fact the documents are composed by a variety of topics.
We define a topic as a distribution of some words sampled by a fixed vocabulary. Each
topic though, needs a human annotator to come up with a correct description. If we
consider that a corpus of documents is accurately described by K topics, then each doc-
ument is composed by different proportions of those topics. For example, a document
d is described by kth ∈ {1, ..., K} topic in a proportion pk%. This assumption makes
sense, and comes natural. If a human is asked to read any document, she will identify

Chapter 2. Background 8

with ease the topics portrayed in this document. In LDA, the topics are modeled after
hidden-variable models.

For example, let us consider that we apply LDA on the article in Figure 2.1. LDA
would produce the topics seen at the left side of the figure. A human annotator can
easily infer that the first topic is probably referring to genetics, the second topic to
evolutionary biology and so on. On the right side of the figure, we see a plot of a
discrete probability distribution. This probability distribution encodes the percentage
that corresponds to each topic of the document. Concluding the process, we know
that this article is a mixture of data analysis, genetics evolutionary biology in different
proportions.

Notation

First of all, we need to establish the notation to describe the generative process of the
LDA algorithm. Even though the LDA algorithm is not applicable only in the text
processing domain, we will follow the notation used by [4]:

• A word is the basic unit of discrete data, which is defined as an item from a vo-
cabulary that is indexed by {1, ..., V}.

• A document is an sequence of N words denoted by w = (w1, ..., wN), in which wn
denotes the nth word in order.

• A corpus is a collection of M documents denoted by D = {w1, ..., wM}

For example, in the article of Figure 2.1 we observe that there are three main topics
captured by the algorithm. The genetics topic shown with yellow, the evolutionary bi-
ology topic shown with pink and the data analysis topic shown with blue. Each one of
those three topics, includes words about the respective concept with high probability.

The Generative Process

So far, we have defined the necessary notation and intuition of topic models and par-
ticularly the LDA algorithm. In what follows, we will describe the generative process
of the model, in order to try to imitate the way the observed data was produced. It is
impossible for a PTM algorithm model to infer exactly the way the data was created,
but it nevertheless tries to approximate it. By following the process described below,
we model the data in order to discover the latent topics. Let K, as mentioned, denote
the number of topics we want to discover. The LDA algorithm takes the topic number
K as input.

LDA assumes the following generative process:

• For each topic z, where z ∈ {1, ..., K}:

– Draw a distribution over the words of the vocabulary, φz ∼ Dir(β).

• For each document wi where i ∈ {1, ..., M} in a corpus D:

Chapter 2. Background 9

– Choose θi ∼ Dir(α).

– For each wn the nth word in ith document, where n ∈ {1, ..., N}
∗ Choose a topic zn ∼ Multinomial(θi).
∗ Choose a word wn ∼ Multinomial(φz), a multinomial probability con-

ditioned on the topic zn.

We define some notation to be used in the following sections and chapters. Each
topic z is a distribution over a vocabulary, denoted by V. We also denote this distribu-
tion, φz which is a Dirichlet distribution with parameter β. β is a KxV matrix, whose
elements are populated by βi,j = p(wj = 1|zi = 1). θdi , a K-dimensional Dirichlet
random variable, encodes the topic proportions for document di. The topic proportion
variable θ is sampled from a Dirichlet distribution, with parameter α, also a K-vector.
For alpha, (αj > 0, f orj = 1, ..., K). We denote with zn the topic corresponding to the nth

word, while z is a N dimensional vector which defines which topic each of the words
of the vocabulary belongs to. Following the notation in [4], equation 2.2 provides the
joint distribution of a topic mixture θ.

p(θ, z, w|α, β) = p(θ|α)
N

∏
n=1

p(zn|θ)p(wn|zn, β) (2.2)

where α, β are the model parameters for a set of N topic z and a set of N words w.
By integrating over θ and summing over z:

p(w|α, β) =
∫

p(θ|α)
(N

∏
n=1

∑
zn

p(zn|θ)p(wn, |zn, β)

)
dθ (2.3)

while for all documents, the probability of a corpus occurring given the model param-
eters is:

p(D|α, β) =
M

∏
d=1

∫
p(θd|α)

(Nd

∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd (2.4)

The LDA algorithm represented in plate notation is shown in Figure 2.2, where the
grey node corresponds to the observed variable, while the white nodes represent the
hidden variables which we need to infer. The plates represent variables that repeat in a
graphical model. As shown in the graphical model, the parameters α and β are related
with the structure of the corpus. The variable θd is generated once for each document,
and zdn and wdn are generated for each of the words in a document. This can is shown
in the graphical model by the N plate and the D plate.

Posterior Inference

In general, the goal of the LDA algorithm is to discover the latent topics from a corpus.
The documents are treated as observed data, or evidence, while the topics, the distri-
bution of topics per document and the topic term distributions are treated as hidden

Chapter 2. Background 10

FIGURE 2.2: Probabilistic Graphical Model of Latent Dirichlet Allocation
[12]

variables. The computation problem that arises is to find a computationally efficient
way of approximating the hidden variables. This can be achieved by reversing the
generative process. The process of inferring distributions includes learning:

• the set of topics

• their associated word probabilities

• the topic of each word

• the particular topic mixture of each document

This is a problem of Bayesian Inference. The following equation defines the posterior
distribution of the hidden variables given the evidence (a document):

p(θ, z|w, α, β) =
p(θ, z, w|α, β)

p(z|α, β)
(2.5)

The equation 2.5 is intractable to compute, but there are available methods to ap-
proximate it. Widely used approximations fall into two categories; sampling based al-
gorithms and variational algorithms. Sampling based algorithms collect samples from
the posterior to try to approximate the equation with an empirical distribution. A com-
monly used algorithm is Gibbs sampling. Variational methods instead of approximating
the posterior, try to find a family of distributions that best fits the observed data. Thus,
the approximation problem transforms into an optimization problem. For more de-
tails, we refer interested users to [4].

Chapter 2. Background 11

2.2 Learning Rate

In the ML literature many algorithms have been suggested for the update of a learning
rate. The learning rate parameter appears in various key areas of ML and AI, like in
neural networks, reinforcement learning, and others. Wherever some form of learn-
ing rate is used, it represents a tuning parameter in an optimization algorithm. That
parameter determines the step size according to which the algorithm moves toward a
minimum defined by the loss function. This often suggests some iterative process with
an update of a subset of the parameters [35]. Intuitively, the learning rate determines
the step size and hence how quickly the search converges [30].

Most algorithms that use a given learning rate parameter depend on the system
designer to manually choose it, given a specific application. To combat this issue,
many techniques have developed that automatically change the learning rate parame-
ter, based on the performance according to a metric set by the practitioner.

We focus in a hill-climbing technique named WoLF ("Win or Learn Fast") [5]. The
essence of this technique is that a learning agent must learn and adapt quickly when
it is performing worse than expected. On the other hand, it must make small changes
in the learning parameters, when performing better than expected. Due to the sequen-
tial nature of the problem we are aiming to solve, the updates to the learning rate are
made considering the relation between the overall performance and the last k recom-
mendations. We utilize two variations for the learning rate, δwin for the case the agent
is performing better and δlose for the case it is performing worse [28].

The variable learning rate used in our work, behaves in the following way:

∆t+1 =

{
min(∆t + δlose, ∆max) Losing
max(∆t − δwin, ∆min) Winning

(2.6)

where, ∆max and ∆min are predefined parameters indicating the maximum and min-
imum value of the learning rate. The conditions Losing and Winning are defined in the
algorithm 1, in chapter 4.

12

Chapter 3

Related Work

In general, a lot of research has been conducted to construct a successful Drama Man-
ager, i.e., a DM that selects plot points that enhance user experience.

Drama manager agents have been widely applied to the interactive storytelling do-
main, assuming the role of human designers. There are two approaches to drama
management, search based drama management [29][11][23] and declarative optimiza-
tion based drama management [2][20]. The two aforementioned approaches transform
the plot selection problem into a search problem where the DM searches for the next
plot points based on an evaluation function set by the human designer. This technique,
even though it is dynamic, only responds to player actions in a way partially or com-
pletely conceived by a human designer. This evaluation function does not take into
account the evolving preferences of a user.

Riedl and Young have worked on the correlation between planning based narra-
tive mediation system and the branching story graph [32][18]. The narrative mediation
system, when needed, is capable of generating narratives that preserve the storyline.
During the story, the user can interact with the virtual world (i.e., computer controlled
agents). If the system detects that the actions of the user are such that the story starts to
deviate from the originally planned one, it generates alternative stories from the point
of the deviation. They also show, that their system can work with branching story
graphs as well, because any acyclic branching story graph can be transformed into a
branching story tree which can be transformed into a mediation tree. Figures 3.1, 3.2
and 3.3 show the graphs used in the narrative mediation system. Their approach acts
to maintain coherence. They do not mention how the optimal linear story is generated.
Also, their work focuses on real-time adaptation of the story in order to maintain co-
herency, whereas in our work, we focus on the optimal plot point recommendation,
from a pool of preauthored plot points. Hence in our work, we do not deal with story
coherency, as every story generated is coherent. Our goal is to recommend to each user,
the story she will be more likely to like.

The PaSSAGE (Player-Specific Stories via Automatically Generated Events) system
[27] observes the player’s actions and extracts his preferences through observations.
Using the extracted model, the DM dynamically selects the branches of a CYOA style
story graph. PaSSAGE uses Robin’s Laws five game player types: Fighters, Power
Gamers, Tacticians, Storyteller, and Method Actors. The user model is constructed by
using each of the five dimensions as the strength of each type. As the player interacts
with the game and the user model is updated by the DM, dimensions are updated in
accordance to the five game player definitions. Peinado and Gervas [13] also use the

Chapter 3. Related Work 13

FIGURE 3.1: A sample branching story graph

FIGURE 3.2: The branching story tree representation for the branching
story graph in Figure 3.1

Chapter 3. Related Work 14

FIGURE 3.3: The narrative mediation tree for the branching story tree of
Figure 3.2

same player types as PaSSAGE. They use a knowledge intensive case based reasoning
approach to generate interactive stories, based on the game state and the user model.
Seif El-Nasr [10] created Mirage [9], which uses a four-dimension player model: hero-
ism, violence, selfinterestedness, and cowardice. Mirage uses a preauthored rule-based
system to associate player behaviors to the four dimensional models.

All those methods create player models that can only be classified according to a
few discrete play styles. These systems also assume that the predefined player types
are sufficient for any choice encountered. Also, none of those methods employ prob-
abilistic topic modelling techniques to tackle the interactive story generation, and the
sequential recommendation problem.

This thesis is inspired by the work of Tripolitakis & Chalkiadakis [28], who em-
ployed topic modelling and reinforcement learning for movie recommendations and
[33], by Yu & Riedl who implemented a DM which uses collaborative filtering to sug-
gest the next plot point on CYOA books. The beginning of 4, makes more clear how
these two aforementioned papers helped shape our work in this thesis.

15

Chapter 4

Our Approach

In this chapter, we describe our recommender DM agent. Its main component is a data-
driven player modeling algorithm that predicts the user’s preferences over successive
plot points and offers recommendations as to which choice the user should make. The
chapter is structured as follows. First, in Section 4.1 we examine the work of [28] and
[33], and how those two aforementioned papers gave us the concepts this thesis stud-
ies; then, in Section 4.2 we discuss about the dataset download while in 4.3 we show
the preprocessing methods used. In Section 4.4 we explain how we decided the op-
timal topic number K of our LDA model. In Section 4.5 we show how the plot point
model and the user model correlate, and how the user model update is performed. In
Section 4.6 we show the prefix tree which is the main data structure that our DM uses.
In Section 4.7 we discuss the recommendation phase of our DM. Finally, in section 4.8
we show our DM’s user interface.

4.1 Problem Definition

In [33], Yu and Riedl create a recommender system (RS) for branching narrative, which
uses a collaborative filtering (CF) approach. They introduced a prefix based collabo-
rative filtering algorithm based on the input given by the users. In this way, they ad-
dress the sequential selection problem, i.e., the problem of recommending items that
are dependent on the sequence of prior recommendations. In their work items under
recommendation are plot points. In this occasion, a plot point is the sub-story between

FIGURE 4.1: Illustration of the prefix-rating matrix. A, B, C and D repre-
sent the prefixes. The larger the digital number, the higher the preference.

The stars represent those missing ratings[33]

Chapter 4. Our Approach 16

two consecutive story branching points; the branching point that led to this plot point,
and the branching point that lies ahead. Exceptions to that definition are the starting
plot point, and the ending plot points as one branching point is replaced by the start-
ing and the ending of the book. In CYOA books, a plot point is usually a page of the
book, respectively. For example, in Figure 1.2, page 6 is a plot point as is lies between
the branching of plot point 3 (choice between 6 and 5) and the branch leading to either
page 12 or 10.

Figure 4.1 illustrates a simple prefix-user matrix. At the Prefix column we can see
some of the prefixes, which contain all the plot points until a specific point. For ex-
ample, prefix A(1) is a substory containing plot point 1, prefix B(1,2) is a sub-story
containing plot points 1 and 2, and so on. The main goal of Yu and Riedl is to guess
the missing values of the matrix. To this end, they employ CF. CF is a family of al-
gorithms that try to detect users’ rating patterns. By using those patterns, they can
make predictions of new user’s ratings based on similar users. They test two CF learn-
ing algorithms: probabilistic Principal Component Analysis and Non-negative Matrix
Factorization. Specifically, they model the users as five dimensional vectors, with each
dimension representing a specific player type (fighters, power gamers, tactitians, sto-
rytellers and method actors). Each entry of a vector ranges from 0 to 1. This approach,
while yielding interesting results, only works when there are multiple users that use
the system. Before the prefix-rating matrix is sufficiently populated with data, their
algorithm will perform poorly. CF algorithms are known to be prone to the notorious
cold start problem. Cold start is a problem in recommender systems, stating that rec-
ommendations are of very low quality until the system gathers sufficient information.
Also, another disadvantage of their method, is that the plot points are labeled by hu-
mans. The method we propose automatically assigns plot point descriptions based on
the LDA model.

In [28], Tripolitakis and Chalkiadakis create a movie recommender system by em-
ploying probabilistic topic modeling intertwined with ideas taken from the field of
reinforcement learning. They model both the user and the items as mixtures of latent
topics following a distribution with Dirichlet priors; this can be achieved by exploiting
the robustness of crowdsourced information for each item. Their method is immune
to the "cold start" problem, and it can also cope with changing user preferences.

This thesis comes to unite the work of the two aforementioned projects. Our work
shows that a similar DM to the one in [33] can be built, which can work even if only
one user uses it (i.e., we do not rely on CF for user modeling). We show that by em-
ploying probabilistic topic models we can extract meaningful information from book
plot points. Inspired by [28], we also model the user and the items as mixtures of latent
topics.

4.2 Getting the Data from Wikipedia

Before the application of any ML algorithm, some kind of data preprocessing must
be performed. In order for LDA to capture a wide spectrum of topics, we decided
to train the algorithm with Wikipedia articles describing books. Specifically, we collect

Chapter 4. Our Approach 17

information on every single book found in Wikipedia. We chose Wikipedia because it is
one of the bigger online communities producing peer-reviewed, unbiased information.

4.2.1 Downloads

Wikipedia offers copies of its database for free to interested users. It provides public
dumps located at various mirror sites, though the most common is Wikimedia Down-
loads1. Wikipedia is a dynamic environment, relying on a croudsourcing model for the
constant update of available information. Because anyone can issue changes to any ar-
ticle at any time, the articles are constantly being updated. Subsequently, the Wikipedia
data dumps must be also updated so the interested practitioners can have up-to-date
information. The wikipedia dump we used in our work was that of 04/20/20202. This
dump contains the Wikipedia database split into 59 files, all of which were down-
loaded.

4.3 Preprocessing

4.3.1 Parsing the Data

Even though the 59 mentioned files that were downloaded are compressed, they oc-
cupy 34.3 GB of disk space. It is estimated that the size of the uncompressed files is
about 51 GB3. So, uncompressing and then preprocessing is infeasible for a desktop
computer. Our system processes the files by decompressing them one by one, and
one line at a time, and thus rendering the processing computationally feasible. The
uncompressed data is in XML format, so all available information is enclosed in XML
tags. This is the key idea behind line-wise preprocessing of the downloaded files. In
our case, we are only interested in the data encapsulated between title and text tags;
denoted in XML format as <tag> (starting tag) and </tag> (ending tag). This means
that we only need the title, and the text of each article. Every time the parser encoun-
ters the starting tag of one of these two tags, it will save characters to a buffer until it
encounters the corresponding end tag. Articles are identified by page tags. In general,
content dumps of wikipedia articles have many tags for information handling like ns,
id, revision, contributor, comment, model, format, text xml, sha1, parentid, username, and so
on. Since none of those XML tags provide us with useful information for the DM, we
do not process nor store the data encapsulated in them.

Our goal is to determine which articles are about books. We use the python package
mwparserfromhell, which is a powerful python parser for Wikimedia Downloads (i.e. the
site we downloaded our data from). Using functionality provided by this package, we
are able to filter out articles based on an attribute of Wikipedia pages: The Infobox. Each
category of articles on Wikipedia, such as films, books, radio stations, etc has its own
type of Infobox. Since we are designing a parser that gets all book articles, the desired

1https://dumps.wikimedia.org/
2https://dumps.wikimedia.org/enwiktionary/20200420/
3https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/enwiktionary/20200420/
 https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

Chapter 4. Our Approach 18

Infobox template is named Infobox book. For every book found, we collect its title, text,
and length. We gathered 39627 articles.

Now that we have gathered all the books, we continue with with some further text
cleanup of the books corpus: The following functions were created:

• text_one_liner: Removes \n (new line) characters and replaces them with space
characters.

• real_exp_remover: Removes all XML tags left in the texts. With the use of regular
expressions, all the tags got removed. The most common tag removed is <ref>.

• filler_remover: Wikipedia articles are split in various parts called article elements.
Each article element has a title to make in distinguishable by the other elements.
Those titles do not provide useful information and are thus removed. A few
examples of article elements are References, Plot, Contents, Notes, etc.

• possessive_fixer: In English, we add ’s to show possession. Even though this con-
tains information about a sentence’s meaning, it is not useful to topic modelling
algorithms, which we will employ to create our personalised recommender sys-
tem.

• website_remover: Links are removed from the articles.

• space_reducer: Abundant space characters between words are reduced to one
space character.

4.3.2 Dealing with the Nature of the Data

It is meaningful to examine the length distribution of the articles. In figures 4.2 and
4.3 (which is a zoomed version of 4.2) we observe that most of the articles are quite
small. In figure 4.3, we observe how the documents are distributed as their length gets
larger. By examining manually some of the smallest articles, we observed that they do
not contain much meaningful information. For example, some of the smallest articles
obtained are:

• Dorothea Dreams: "Dorothea Dreams is a 1986 novel by American author Suzy
McKee Charnas. 1986 American novels."

• I nattens tystnad: "I nattens tystnad is a novel by Margit Sandemo. 1998 novels
Novels by Margit Sandemo."

• The Einstein Girl: "The Einstein Girl (2009) is a novel written by Philip Sington.
2009 British novels."

• Sarkofag: "Sarkofag is a novel by Slovenian author Dušan Merc. It was first pub-
lished in 1997. List of Slovenian novels Slovenian novels 1997 novels."

Chapter 4. Our Approach 19

FIGURE 4.2: Graph showing the distribution of tokens per article. The
lengths are rounded up to hundreds.

• Tarot ReVisioned: "Tarot ReVisioned is a 2003 book and Hermetic Tarot deck by
Leigh McCloskey. The foreword is written by Stanislas Klossowski de Rola. 2003
non-fiction books Tarot decks."

We observe that the shortest of articles only contain information about the year the
book was published, and the name of the author. This information is essentially useless
to a topic modeling algorithm. We also observe some text that we did not manage to
preprocess. For example in I nattens tystnad, there is a phrase "1998 novels Novels by
Margit Sandemo" or in The Einstein Girl, we see "2009 British novels". This is residue
text that is very hard to remove via parsing, so we leave it as is.

We sorted the articles by their length, and then examined the dataset by hand, to
attempt to locate a point at which the articles begin to yield useful information about
a book. After further examination, we concluded that there is not a specific article
length that beyond it, the book descriptions become meaningful. So, we introduce
a heuristic value represented by the variable low to 0.3 (30%), meaning that from the
39627 discovered articles, we omit the 11888 shortest ones. Figures 4.2, 4.2 and 4.4 show
the article length distribution before we apply the pruning based on the low heuristic.

Chapter 4. Our Approach 20

FIGURE 4.3: Graph showing the distribution of tokens per article (this is a
zoomed version of 4.2). The lengths are rounded up to hundreds.

Also, from each article obtained from Wikipedia, we removed the first names, as
they do not provide semantic information about a topic.

4.3.3 Towards the Bag of Words Representation

In the previous section, we dealt with various characteristics of our dataset, concern-
ing mostly the Wikipedia’s dataset format. Before applying the LDA algorithm to the
dataset, we must further preprocess our data.

The next preprocessing step is the tokenization. Tokenization is the process by
which a document is transformed from a sequence of sentences containing words, to
a sequence of words (reffered as tokens) without punctuation. Also, the tokens are all
converted to lowercase letters. The tokenization applied in our case, ignores tokens
that are too short or to strong. We chose minimum length of accepted tokens to be 2,
and maximum length of 15. Even though our system gives an option to perform lem-
matizing and stemming, we chose to not perform those tasks in our dataset. The goal
of both stemming and lemmatization is to reduce inflectional forms and sometimes

Chapter 4. Our Approach 21

FIGURE 4.4: Increasing size of articles

derivationally related forms of a word to a common base form.4 But as suggested by
[22], in English, morphological conflation treatments such as stemmers and lemmatiz-
ers can worsen topic model quality, while LDA turns out to be quite good at combining
morphological variants by itself. So, in this work, we choose to not use stemming and
lemmatizing, as they pose a potential cause of damage to our model.

The final step before applying the LDA algorithm to the dataset, was to allow bi-
grams to exist in our tokenized lists. In computational linguistics, n-grams are con-
tiguous sequences of n items. In our case, we allowed 2-gram sequences (which are
defined as bigrams) to be counted as a token if this 2-gram sequence tends to appear a
lot in the dataset.

4https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Chapter 4. Our Approach 22

4.4 Choosing the Optimal Topic Number

The disadvantage of LDA is that it does not infer the optimal number of topics. So
it relies on the a-priori definition of topics by the practitioner. For determining the
optimal topic number, we used three model quality metrics; perplexity, topic coherence
and Jaccard similarity. Except for those three metrics, we also used human judgement
to evaluate the interpretability of the inferred topics.

In order to get the best results out of the selected metrics, the following procedure
was applied:

• We split the dataset into k = 5 equal sized buckets. That is, the Wikipedia corpus
of M = 27739 crowdsourced documents was partitioned into k buckets of Mtest =
5548 documents.

• For the calculation of perplexity, we iterated over the dataset k times. For each
iteration, we used a different permutation of the k − 1 buckets for training the
model, and the remaining bucket served as validation corpus.

• For the calculation of Jaccard similarity and topic coherence, the concept of eval-
uation over a held-out dataset does not apply. Nevertheless, we calculated the
models k times by removing one bucket out of the dataset. With this procedure,
we try to capture any anomalies caused by a subset of the dataset.

4.4.1 Perplexity

In the field of information theory, perplexity is a metric of how well a probability model
predicts a sample. It is not useful as an absolute number, but rather in comparison of
perplexities of many probability models. Low perplexity indicates that a probability
distribution is good at predicting the sample. The perplexity of a probability distribu-
tion p is

perplexity(p) = b−∑x p(x)logb p(x) (4.1)

where b is usually 2 or e, even though perplexity is independent of the base, in condi-
tion that the entropy and the exponentiation use the same base.

Perplexity is often used as an example of an intrinsic evaluation metric. It is used
widely in the language modeling community, and aims to capture how unsuprised a
model is of new data it has not seen before. This is commonly measured as the nor-
malised log-likelihood of a held out test set. Perplexity is monotonically decreasing
in the likelihood of the test data, and is algebraicly equivalent to the inverse of the
geometric mean per-word likelihood. A lower perplexity score indicates better gener-
alization performance [4]. Perplexity is algebraically equivalent to the inverse of the
geometric mean per-word likelihood. For a test set of M documents, the perplexity is:

perplexity(Dtest) = exp(−∑M
d=1 logp(wd)

∑M
d=1 Nd

) (4.2)

Chapter 4. Our Approach 23

FIGURE 4.5: Perplexity values of 5 evaluations

FIGURE 4.6: Average perplexity values

Chapter 4. Our Approach 24

FIGURE 4.7: Perplexity values (Obtained by the training data)

In this work we used gensim’s5 function log_perplexity which computes a per-word
likelihood lower bound. Although the bounds obtained are not as informative as we
would hope, they do provide us some useful guidance. In Figure 4.5 we see the plots
of perplexity bounds, as the number of topics increase. Those perplexity bound curve
values tell us that the perplexity will not be lower than the curve. In figure 4.7, we ob-
serve that there is a perplexity minimum. Given the fact that the inferred topics have
been optimized based on the training set, we observe that the perplexity upper bound
obtains its minimum value for 30 to 100 topics. This is a strong indication that our
model’s predictive strength maximizes at this range of topics. The global minimum
of the perplexity’s lower bound is at K = 60 topics. We applied the elbow criterion
to identify the optimal number of topics K. Elbow criterion is a heuristic used in de-
termining the value of parameters in various data driven models, such as principal
component analysis among other clustering algorithms. In Figure 4.7 the elbow cri-
terion indicates that the optimal topic number K must be chosen between K = 45,
K = 60, K = 80.

4.4.2 Topic Coherence

Topic coherence measures whether the words in a topic tend to co-occur together. It
adds up a score for each distinct pair of top-ranked words. The score is the log of
the probability that a document containing at least one instance of the higher-ranked

5https://radimrehurek.com/gensim/

Chapter 4. Our Approach 25

FIGURE 4.8: Topic coherence values of 5 evaluations

FIGURE 4.9: Average topic coherence values

Chapter 4. Our Approach 26

word also contains at least one instance of the lower-ranked word. Simply, they score
a single topic by measuring the degree of semantic similarity between high scoring
words in the topic[25]. Topic coherence is one of the methods used to decide whether
the inferred topics are interpretable. In simple words, we can use topic coherence
to help us distinguish good and bad topics. Topic coherence measures compute the
sum of pairwise distributional similarity scores over the set of topic words V. So, this
generalizes as:

coherence(V) = ∑
(vi,vj)∈V

score(vi, vj, ε) (4.3)

where V is the set containing the words of a topic. In this work, the coherence measure
UMass was used:

score(vi, vj, ε) = log
D(vi, vj) + ε

D(vj)
(4.4)

where D(x, y) counts the number of documents containing words x and y and D(x)
counts the number of documents containing x. Also, ε indicates a smoothing factor
which guarantees that score returns real numbers. In this work, a value of ε = 1−12

was used. UMass measure is a way of confirming that the model actually learned the
data that it was trained with. Topic coherence uses the ntop words of each topic. ntop
refers to the n words that have the highest weight in each topic.

In Figures 4.8 and 4.9 we see the evolution of topic coherence as the topic number
increases. We observe that the topic coherence tends to be monotonically decreasing,
even though in theory, we would like the coherence to be as high as possible. A possi-
ble explanation for this outcome, is that while the topic number increases, we observe
that the ’junk’ topics (topics that did not capture a concept, and to a human seem like
random words), may increase. So, this decreases the value of the coherence metric. In
any case, a non-interpretable topic is not a problem for our system, because we can
define a-priori which topics are meaningfull, and exclude the rest from the process.

Thus, we have a measure to compare the topics of a model. But we require a mea-
sure to compare between different models, rather than individual topics from a specific
model. So we average the topic coherences from each model.

4.4.3 Jaccard Similarity

The Jaccard similarity coefficient is a statistic used for measuring the similarity between
two finite sets. It is defined as the size of the intersection divided by the size of the
union of the sample sets:

J(A, B) =
|A ∩ B|
|A ∪ B| (4.5)

If A = ∅ and B = ∅ then we define J(A, B) = 1. In general, 0 ≤ J(A, B) ≤ 1. For
example, if we have two topics, topic1 and topic2, with:

topic1 = {police, murder, crime, case, death, mystery, detective, killed, later, dead}

Chapter 4. Our Approach 27

and

topic2 = {police, murder, case, crime, detective, death, trial, prison, evidence}

the Jaccard similarity is computed as:

J(topic1, topic2) =
A
B

=
6

13
= 0.461

where
A = |police, murder, crime, case, death, detective|

B = |police, murder, crime, case, death, mystery, detective, killed, later, dead, trial, poison, evidence|
We compute the Jaccard similarity of an LDA model (with K topics) by taking the

average Jaccard similarities between all its combination of topics. We do not include
J(A, A) (the similarity between the same topic) in the computation. So, for a model
with K topics, we compute (K − 1)2 similarities. Formally, we compute for each LDA
model with K topics LDAK:

JLDAK =
1

(K− 1)2

K

∑
i=1,j 6=i

K

∑
j=1

J(LDAKi, LDAK j) (4.6)

When J(A, B) is above a certain threshold, a high correlation between the models
is implied. Jaccard similarity is the simpler of methods used to determine the number
of topics of our final model. We would like the average Jaccard similarity to be as low
as possible. As we observe in Figures 4.10 and 4.11, as the topic number K increases,
Jaccard similarity converges to a value of 0.0021. This turns out to be a weak indication
that the bigger the K, the better. We want our topics to be semantically far from each
other, to cover a wide spectrum of topics. Note however that two similar topics that
nevertheless do not share any common word, have a Jaccard similarity of zero, but
may be quite similar.

4.4.4 Human Judgement

We expect from the LDA algorithm to discover as many (meaningful) topics as pos-
sible from a large variety of Wikipedia articles. If our dataset was only composed by
a few Wikipedia articles, we could use a human annotator for the document-topic as-
signments. A human could infer topics of equal, or better interpretability than the
LDA algorithm. Obviously, for nearly 40.000 Wikipedia articles, that would be impos-
sible. Regardless, even though we studied many techniques to determine the optimal
topic number for our model, a human has the final say. Thus, given the obtained in-
sights from the evaluations with perplexity, coherence and Jaccard similarity discussed in
the end of Sections 4.4.1, 4.4.2 and 4.4.3 we will explore some of the models and their
respective topics manually.

Chapter 4. Our Approach 28

FIGURE 4.10: Jaccard similarity values of 5 evaluations

FIGURE 4.11: Average Jaccard similarity values

Chapter 4. Our Approach 29

We use pyLDAviz [24] to visualize the topic term distributions of the various topics.
As we discuss in appendix A, in a LDA model with K = 80 topics, 59 of those topics
showcase a very clearly defined topic, with the remaining 21 being either completely
composed of unrelated words, or composed of words that can have a connection, but
not a clear one. We chose to continue our work with K = 80 topics.

Apart from the default ordering of words as seen in Figure 4.12, the practitioner
can also examine different orderings of words per topic, by experimenting with the
relevance parameter λ. In [24], the authors define the relevance of term w to topic k
given a weight parameter λ (where 0 ≤ λ ≤ 1) as:

r(w|t) = λp(w|t) + (1− λ)
p(w|t)
p(w)

(4.7)

where w is a word (or bigram) from the topic vocabulary, and t is the topic. With
λ = 1, the results are ranked by the familiar order of their topic-specific probability.
With λ = 0, the results are ranked solely by their lift. Lift is defined as the ratio of a
term’s probability within a topic to its marginal probability across the corpus.

FIGURE 4.12: Visualization of a topic (science fiction) in pyLDAvis

In conclusion, we discuss the insight given by each metric. The Jaccard similarity
metric suggests that the we should choose the largest K possible, but it is a rather sim-
ple evaluation metric, not taking into consideration the topic quality, but only the topic
terms. The Figures showing the Jaccard similarity give us an expected behaviour, and

Chapter 4. Our Approach 30

are mostly used to make sure that the model produced topics consisting of a variety
of terms. The perplexity metric helped us find a good range of topics to examine. The
coherence metric did not prove useful for identifying optimal topic number, but nev-
ertheless proves that some topics of the LDA models must be removed from the final
model; insight given by the examination of topics by a human.

4.5 Our Drama Manager Model

We use the LDA algorithm to model both the user and the items under recommenda-
tion. Following [28], we consider them both as mixtures over topics with a Dirichlet
prior. The number of topics in both user and item models is set to the same value K.
For this model to apply, some assumptions must be met:

• There is descriptive information freely available. We trained our DM with all the book
pages from Wikipedia. A practitioner can choose different datasets to train the
LDA algorithm. Of course, the dataset must be chosen carefully, in order to cover
a wide spectrum of topics.

• The dataset texts are objective, and not biased. This assumption is made because we
do not know the profile of the users using our DM. In any case where the practi-
tioner is sure about the profile of the target group of the system, this assumption
can be relaxed.

4.5.1 Plot point modeling

The items under recommendation in our approach are the story’s plot points. The plot
points yi ∈ Y, |Y| = M, 1 ≤ i ≤ M are represented by documents belonging to a corpus
D, containing M documents. There are N words in total in the corpus vocabulary. The
number of topics in both user and item models is set to the same value K. For each
document, we choose:

• θi ∼ DirK(α), where θi is the distribution of topics in document i, and DirK(α) is
the Dirichlet distribution of parameter α.

• φk ∼ DirN(β), where φk is the word distribution for topic k, and DirN(β) is the
Dirichlet distribution of parameter β

α and β are the Dirichlet parameters of topic distributions per document and word
distributions per topic, respectively.

4.5.2 User modeling

In a similar way, we consider that each user uj can be represented by a "document".
This document has the ability to evolve over time. It is a mixture of topics with a
Dirichlet prior. The topic distribution mixture follows a Dirichlet distribution, like
the plot points. So, θj ∼ DirK(α), where θj is the distribution of topics in the single

Chapter 4. Our Approach 31

document that models the user, DirK(α) is the Dirichlet distribution of parameter α,
and K the number of topics.

4.5.3 Plot point model and user model updating

A plot point is a fraction of the story that lies between story branching points. When
a user reads a plot point, she needs to provide a rating. Using Bayesian updating,
this rating will alter her topic mixture. As the topic distribution of the document that
models the user is unknown, we utilize Bayes rule to take into account evidence (user
ratings), a likelihood function and a marginal probability, in order to derive a posterior
distribution.

The likelihood function associates the prior with the observations, while preserv-
ing the form of the overall model. The posterior which is produced represents the
updated belief for the prior, given the evidence. Using the posterior beliefs, we are
able to update our unknown model. In our case we use the Dirichlet and the multi-
nomial distributions, which are conjugate. This is a useful property, which allows us
to perform easy updates to the prior’s hyperparameters, using a closed form equation,
which we will show below.

Hence, given documents y and with topics mixtures θ, we have:

θ ∼ Dir(α = 〈a1, ..., aK〉) (4.8)

y ∼ Mult(θ = 〈θ1, ..., θK〉) (4.9)

In detail, the topic mixtures θ are described by:

Dir(θ|a1, ..., aK) =
Γ(a1 + ... + aK)

Γ(a1)...Γ(aK)

K

∏
i=1

θ
ai−1
i (4.10)

Given the evidence, consisting of a document y with Dirichlet prior:

f (θ|y) ∝ f (θ, y) = f (θ1, ..., θk|α1, ..., αk) f (y|θ1, ..., θk) ∝
K

∏
j=1

θ
aj−1
j

K

∏
j=1

θ
y(j)

j =
K

∏
j=1

θ
aj−1+(y(j))

j

(4.11)
Hence the updated hyperparameters of the Dirichlet prior are:

aj
′ = aj + y(j) (4.12)

where aj
′ is the updated user model, aj is the user model prior to the update, and y(j)

is model of the plot point that was just consumed. Thus, we can update the user model
by simply adding to counts of each topic θk of the user "document", the topic counts
from the plot point "document" that was just consumed and rated. That is, we perform
an element-by-element addition of the user model and the plot point model. Also,
we take the user’s t-th rating r into account by updating the user model n times. Each
rating the user provides, refers to the story-so-far (i.e., the story from the beginning until
the current plot point). The value of n is updated as shown in the following equation:

Chapter 4. Our Approach 32

n = b∆t
r − 1c (4.13)

where ∆t is the variable learning rate for the t-th recommended item, ranging from
∆min = 1 to ∆max = 4. ∆ is assigned various values throughout the operation of our
DM, according to the "Win or Learn Fast" (WoLF) method. Also r, which is the user
rating, takes a value of 0, 1, 2, 3, 4 or 5.

For example, let us define a prior user model aj = (0.1, 0.4, 0.2, 0.3), and a plot
point model y(j) = (0.5, 0.5, 0, 0). The topic number in this example is K = 4 that is, the
length of the vectors. For a learning rate ∆ = 1.5 and a rating of 3 out of 5, the update is
performed as follows. First, the value of n is computed as n =

⌊
1.53 − 1

⌋
= b2.375c =

2. Hence, the addition aj + y(j) is performed n = 2 times to compute the final updated
user model. So, the first update is:

(0.1, 0.4, 0.2, 0.3) + (0.5, 0.5, 0, 0) = (0.6, 0.9, 0.2, 0.3)

and the second update is

(0.6, 0.9, 0.2, 0.3) + (0.5, 0.5, 0, 0) = (1.1, 1.4, 0.2, 0.3)

. The result is normalized, hence the updated user model is

a′j = (0.36667, 0.46667, 0.06667, 0.1)

. This example showcases that the update shifts the user model towards the plot point
that was just rated. With higher rating, it would have shifted even more towards the
plot point model.

Therefore, items that have been positively rated by the user, can be thought as hav-
ing greater influence on the overall user preferences. Further, the intuition behind the
above equation is that items rated by 0,1 and 2 should have minimal or no influence
on the evolution of the user’s model. Contrary to that, items rated with 3 to 5 should
contribute proportionally to their significance. We empirically found suitable values
of ∆t to lie between 1.1 and 3.0, and we thus allow ∆t to range between these values in
our implementation.

4.6 Prefix Tree Representation

In CYOA books, the user can affect the way in which the story unfolds. The first step
towards creating an algorithm that tackles the sequential recommendation problem is
to transform the branching story graph into a prefix tree, or prefix graph (we use the
terms prefix graph and prefix tree interchangeably, as they are the same object). We
define a story as a path from the root to a terminal node (leaf) of the branching story
graph. Figure 4.13(a) shows a story graph. In Figure 4.13b it is transformed into a
prefix tree. In Figure 4.13b every node is a prefix of a possible generated story. The
children of a node in the prefix tree are prefixes that can directly follow the parent

Chapter 4. Our Approach 33

FIGURE 4.13: (a) Branching story graph of a simple story library which
contains three stories. (b) The prefix graph of the story library. obtained

by [33]

prefix. In Figure 4.13 we see three possible complete stories: {1, 2, 6, 5}, {1, 2, 3, 4}
and {1, 2, 3, 5}. While the transformation between the two representation may seem
obvious, the employment of a data structure like the prefix tree is crucial for a drama
manager like the one we discuss. With the prefix tree, the drama manager does not
need to worry about the past nodes, because all the past nodes are incorporated into
the prefix tree themselves. It is a tradeoff between simplicity in the implementation
process, and some overhead in memory, which we are aware of. We use the python
package treelib to create the prefix graph. Treelib offers a function leaves, that given a
node, returns all the leaves reachable from this node.

The stories will be presented to the user plot point by plot point. After each plot
point, the drama manager will collect a rating for "the story so far". The collection pro-
cess is performed with a command line utility as explained in Section 4.8. The rating is
used for the user model update, as shown in Equation 4.13. We believe this collection
method is preferred to collecting a rating of the previous plot point, because any plot
point does not make sense without the previous ones. Also, it is more difficult for a
user to isolate the feeling she has developed for a specific part of the story, and to not
consider the context of the prior story. Finally, there is no need for the drama manager
to solve the credit assignment problem as in reinforcement learning to determine the
proportion of a final rating each plot point is responsible for [26].

In Figure 4.14 the architecture of an interactive system is shown. Our DM also
follows this architecture. The DM has access to a story library, which contains every
possible plot point. The user interacts with the DM through an interactive system
interface. The system takes as input the user ratings and the current plot point of the
story, and as output the next plot point. Also, the player model depends on the player
feedback.

Chapter 4. Our Approach 34

FIGURE 4.14: The architecture of the interactive story generation system.
obtained by [33]

4.7 Recommendation phase

The recommendation phase consists of two main functions: a) The querying of the
available low-dimensional representation of items for the most similar and b) the mon-
itoring of the system performance and adjustment of the learning rate. The recommen-
dation process is described in the pseudocode of algorithm 1.

4.7.1 Overview

Lets assume that the user starts using the system. At some point, she will face the first
branching of the story. The DM will collect a rating of the story-so-far, which is the
first plot point, since the story just started. We start the DM with the maximum value
of Delta, ∆ = 4, to force the user model to adapt fast into a user model close to the
actual one. At this point, where we have our first evidence (first rating) about the user
preferences, we can start recommending plot points based on that user model. Every
leaf node of the prefix graph has the information about all the plot points needed to
reach the leaf. For each complete story reachable from a node, we compute the pro-
jected user model if the user follows that path. As prior knowledge, we use the current
user model. When we have computed all the possible final user models, we select the
best, using one of the three methods discussed below. Our DM supports the addition
of multiple distance metrics, to make the experimentation for the practitioner easier. In
our case, the expected utility metric yielded the best results, though we also describe
cosine similarity and Shannon Jensen divergence, for the sake of completeness.

4.7.2 Shannon Jensen Divergence

We study the application of the Shannon Jensen divergence as one of the distance met-
rics. Jensen Shannon divergence between probability vectors p and q is defined as:

JSD(p, q) =

√
KL(p||m) + KL(q||m)

2
(4.14)

Chapter 4. Our Approach 35

where m is the pointwise mean of p and q and KL is the Kullback-Leibler diver-
gence. The Jensen–Shannon divergence is bounded by 1 for two probability distribu-
tions.

0 ≤ JSD(P||Q) ≤ 1 (4.15)

In turn, the Kullback-Leibler (used to calculate the JSD) divergence between two
discrete probability distributions P and Q is defined as:

DKL(P||Q) = ∑
x∈X

P(x)log
P(x)
Q(x)

(4.16)

4.7.3 Cosine Distance

Inspired by the work of Tripolitakis & Chalkiadakis [28], we also test their recommen-
dation approach. Given the fact that both users and items are represented by the same
distribution, we can assess their similarity by employing the cosine distance Dcosine
metric:

Dcosine(P, Q) = 1− ∑n
i=1 Pi ×Qi√

∑n
i=1 Pi ×

√
∑n

i=1 Qi
(4.17)

where:

P, Q are distributions of the same type and same size.

The lower the Dcosine metric, the greater the proximity between the two distributions.

4.7.4 Expected Utility

The cosine distance metric, while proven to work well under the circumstances studied
in [28], does not perform so well as explained in Chapter 5. To optimize our DM for
the sequential recommendation problem we try to tackle, we introduced the notion of
expected utility. At any given plot point, the user is modeled as a mixture of latent
topics with a Dirichlet prior. By experimental evaluations discussed in Chapter 5, we
define the user utility given the user model and a plot point as the dot product between
the current user model and the plot point’s topic proportions given by the item model:

U(uj, yi) = uj · yi (4.18)

To be able to address the sequential selection problem, for each possible story pro-
duced from the current plot point our DM calculates the utilities for each plot point.
Then, the average utility is stored for each path. Finally, the DM recommends the next
page belonging to the path with the maximum average utility.

For example suppose that during a session, a user is at node D of the story graph of
Figure 4.15. At this point, the DM knows what the possible stories are, by finding all
the leaf nodes accessible from D. So, leaf node E is omitted from the recommendation

Chapter 4. Our Approach 36

FIGURE 4.15: Example of a prefix graph

process, and nodes H and I and G will be examined. The information about the com-
plete story path is contained in each one of the leaf nodes, so the DM only needs those
three nodes to make a decision.

4.7.5 Drama Manager Algorithm

The overall description of our DM is found in algorithm 1. The cosine distance and
maximum expected utility are explained in Subsections 4.7.3 and 4.7.4, respectively.
The Update user-model state uses the Equations 4.12 and 4.13. We observe the update of
the learning rate, explained in 2.6.

Finally, in line 9 of the algorithm, we observe the condition that determines Losing
and Winning of the Equation 2.6. The global average of user ratings ruj is compared to
the latest ξ ratings, rujξ multiplied by a factor c. In our experiments shown in 5, we use
a value of c = 1.1 and a value of ξ = 3. An table containing all the parameters used by
our DM, is shown in Appendix C.

Chapter 4. Our Approach 37

Algorithm 1 Plot point recommendation

1: procedure RECOMMENDNEXTPLOTPOINT
2: for each item yi ∈ D do
3: Calculate the maximum utility between the item and the user uj and store it

in an array
4: end for
5: Ask user for a rating of the story so far
6: updateUser:
7: Update the average of user ratings ruj and the average rating for the latest ξ

recommendations rujξ
8: if ruj > c rujξ then
9: ∆t+1 = min(∆t + δwin, ∆max)

10: else
11: ∆t+1 = max(∆t + δlose, ∆min)
12: end if
13: Update user-model
14: end procedure

4.8 User Interface

Our drama manager is in a form of a command-line utility, that the user runs when he
starts reading the story. When the user faces a decision she checks the drama manager,
and the drama manager yields the suggested option. The drama manager will present
its recommendation, but the user will be the one to decide how the story will proceed.
When the user makes a decision, she enters one of the available options back to the
command line utility and then she continues reading the story.

In Figure 4.16, we see an example of our DM in action. We showcase the first choice
of the CYOA book Journey Under The Sea. We observe that in page 2 user input was not
asked, because there in no choice to make. Thus, the DM promts the user to continue

FIGURE 4.16: Example of a choice in our DM

Chapter 4. Our Approach 38

reading to page 3. In page 3, a choice must be made, so the DM collects a rating of the
story so far, and then calculated the best path according to the user model.

39

Chapter 5

Experimental Setup - Evaluations

Following our discussion in Chapter 4 of how to process the Wikipedia dumps and
train the LDA model, in this Chapter we present in depth our simulation results.

5.1 Workstations and Training Times

We had two workstations in our disposal for this work. A desktop PC equipped with
an Intel i5-4440@3.3 GHz (4 cores, 4 threads) and 8GB of RAM, and a laptop equipped
with an Intel i7-6500U@2.5 GHz (2 cores, 4 threads) and 8 GB of RAM. In Chapter 4 we
discussed the methods used in order to process the Wikipedia dataset. Here we will
discuss the computational setup for our experiments. To utilize the available resources
optimally we applied multiprocessing techniques to process our data more quickly.
The laptop was chosen to make all the heavy computation even though it has 2 cores
compared to 4 cores of our desktop, due to a cooling problem of our desktop PC CPU
(when the desktop CPU was running at 100%, it was overheating). 59 compressed
files were downloaded from the Wikipedia dumps. Using the python multiprocessing
package, we mapped the 59 files to the 4 available threads. For each one of the 59 men-
tioned files, our system creates a new .ndjson file1, containing only the articles refering
to books. The workload was high, rendering the CPU usage at 95-100% continuously.
The wikipedia dump processing was completed after five days of processing. We man-
aged to reduce the wikipedia dataset size from 34,3 GB to 197,9 MB, by only keeping
the articles refering to books.

Following a similar scheme, the training of the LDA algorithm was also performed
on the laptop, with multiprocessing applied. For most experiments, we trained 78 LDA
models (from K = 5 to K = 390 with a step of 5). Once again, we mapped the training
of the models to the 4 threads. The 78 models are complete after 24 hours of training.
Because we performed 5-fold cross validation, the final models were computed after
five days.

5.2 Using Real CYOA books

In order to evaluate our system, we had to find some CYOA books to experiment with.
The CYOA book the code was mostly built on, was Journey Under The Sea, published

1http://ndjson.org/

Chapter 5. Experimental Setup - Evaluations 40

in May, 2006. We found several CYOA books online, but none of them had enough
main topics in order to use it as a reference book for our experiments. This is why
we created simulated books and users for our experiments, as explained in Section
5.3. Nevertheless for sake of completeness, in Section 5.2.1 we describe the process we
followed in order to use real books, in case a practitioner founds suitable books for
experiments.

5.2.1 Gathering Information from a PDF

Construction of the Story Graph

Given a CYOA book, our DM must be able to obtain the connections between the
various plot points. To create a story graph, we must iterate over all the pages of a
book and search for spedific keywords. We provide a function called getDestination,
that uses a page’s text as input, and returns the pages the user can be redirected to.
This is currently only tested on CYOA books. Of course, a practitioner can customize
this function to apply to any other secret story book. To craft a function that uncovers
the structure of a CYOA-like book, we must carefully study the ways the author uses
to guide the user. In our case we identify 5 distinct cases that each page falls into:

• The page contains a variation of the phrase "Turn to page x" one or more times.

• The page contains the phrase "The End" with no other phrases indicating alter-
nate endings.

• The page contains the phrase "The End" and a variation of the phrase "if you do
not like this ending, turn to page x".

• The page contains a variation of the phrase "Go on to the next page".

• None of the above, so the user just continues reading to the next page.

Finally, after we have iterated over all the pages of the book, the required informa-
tion is gathered to create the story graph, and continue as described in this thesis. That
is, for every page of the book, we know whether it is a terminal page or not, and to
which pages it is connected to.

Merged Words

The most common format of digital books is the PDF format. We used the python
package PyPDF2 to obtain the full text of the book. The .pdf file format is widely used
and known because pdf files can be viewed on any platform. Now, pdf files have
drawbacks. PDF has a locked layout, meaning that every element of the file (such as
letters, images etc.) has its own place in the layout. Even though many pdfs look fine
when reading them, they may have a very unstructured internal layout. Unfortunately,
our CYOA books also had some problems. PyPDF2 offers functionality that can extract
the text from a given page of the pfd file. The obtained text though, did not include
the new line characters, resulting in the final word of a line, and the first word of the

Chapter 5. Experimental Setup - Evaluations 41

next line, to be merged together. Even though there are some packages like python’s
compound-word-splitter, they do not have 100% accuracy. This means that when there
is more than one possible split of the two merged words, there is a chance the result
is incorrect. Our algorithm’s accuracy is based solely on the textual information of the
books, so we do not want to risk losing potentially important words from the book.
To prove that this package does not work optimaly, we provide some wrongly splitted
words from CYOA, Journey Under The Sea:

Merged Words compound-word-splitter Original Meaning
theresearch Therese arch the research

ofthe oft he of the
youthink youth ink you think

toolate tool ate too late
youthat youth at you that
toleave tole ave to leave
toreport tore port to report

otherspaces others paces other spaces
toescape toes cape to escape
asmall as mall a small

A full list of the ambiguous merged words can be found in appendix B. The problem
of splitting merged english words is hard. In order to become automated, it requires
the application of natural language processing methods which goes beyond the scope
of this thesis. Though, this could be a future extension. As a consequence, we imple-
mented a command line utility to split the merged words manually. The user probably
has the pdf or the printed book in her possession. So, during the first time our DM is
executed, a command line pops up, requesting for the manual inspection of merged
words. We exploit the fact that the uses possesses the book in some format, so she can
refer to the book to complete the process easily. In figure 5.1, we see a screenshot of
this process. For every ambiguous word the DM shows the inferred split, and the user
can either type the correct split, or press Enter if the proposed split is correct.

Apart from merged words, the command line utility of figure 5.1 also deals with
informal words. Because we do not know the words that are merged, all the words of
the book are checked, one by one. Every word is checked against an English dictionary.
If the word exists, then the process continues. But if the word is not contained in the
English dictionary, there is a potential candidate for two merged words. The command
line utility then lists the token and asks for the correct split. There is a possibility that
the word is not a merged word produced by two other words, but rather a word that is
not included in the English dictionary. Some examples from the CYOA book, Journey
Under The Sea are: Atlantis, Atlanteans, Nodoors (referring to a tribe living in Atlantis,
etc). In this case, the user presses Enter, and the process continues.

Chapter 5. Experimental Setup - Evaluations 42

FIGURE 5.1: Command line utility for merged words inspection

5.3 Simulating Users and Books

The CYOA books we have in our disposal, being created for children, do not contain
a wide variety of topics. Most books we examined contained few topics. Also, the
majority of stories are composed by those few topics. As a consequence, we cannot
extensively test our DM with such books. Thus, to create reliable results, we created
synthetic users and synthetic books.

To create the synthetic books needed, we need to create a branching story graph.
In order to save time, we used the branching story graph of the CYOA book, Journey
Under The Sea, as seen in Figure 1.2. Any other existing or artificial story graph would
be applicable. Following the structure of Figure 1.2, we suppose that each node in the
graph, is a plot point of the book. For our later experiments, we simulate 500 indepen-
dent runs of the DM, with different user preferences, and different topic proportions
for each plot point. The only common attribute between those independent runs is the
structure of the branching story graph, which remains the same for simplicity reasons.
The common branching story graph, does not affect the independence between the
DM simulations. In the evaluation section, each simulation is referred as episode. The
term episode must not to be confused with its meaning in the reinforcement learning
domain.

For the LDA model, we choose K = 80 topics. Though, in our experiments evalu-
ating the performance of the DM, we use L = 20 as the topic number. For L:

0 ≤ L ≤ K (5.1)

Chapter 5. Experimental Setup - Evaluations 43

The DM, knows what content is available by accessing the story library (Figure
4.14). In the CYOA domain, and in secret path books in general, 20 topics are sufficient
to capture a multitude of content. So, the DM can access the calculated LDA model,
and omit the topics that are not used in a particular interactive session. We made this
decision because the performance drops when the topic number increases, as described
in Section 5.4.

Populating the Plot Points with Topics

In order to accurately simulate our DM, we must create plot point topic proportions
that could belong to an actual CYOA book. In order to prove our DM’s ability to find
the optimal path, the book under recommendation must have a considerable amount
of possible stories. The book we experiment with, CYOA-Journey Under The Sea has
186 distinct stories the user can read. The process of synthetic user and synthetic book
creation is as follows.

We create a random user model by a random permutation of elements of the vec-
tor utility_values = [2, 3, ..., L − 1, L, L + 1], with L being the number of topics. In
our experiments, we use a value of L = 10. We name this permutation of the vector
utility_values as user_pre f erences. Then, we normalize user_pre f erences, in order
to represent a discrete probability distribution. The vector user_pre f erences repre-
sents the hidden user model. To define how this user rates plot points, we defined his
utility function, which is a scalar value dependent of each plot point the user encoun-
ters. The higher the utility value between a user and a plot point, the more the user
likes the plot point. The utility is defined as follows:

U(uj, yi) = weight · yi (5.2)

where uj, yi, weight ∈ IRK. uj is the user model, yi is the item (plot point) model,
and weight is a vector with weights, indicating which topics the user likes. The vector
yi is a discrete probability distribution, and represents the topic proportions a plot
point is described of.

In the weight vector, each index corresponds to a topic. For example, let us define
the following weight vector:

weightexample = [L + 1, L, ..., 3, 2]

The weight vector weightexample suggests that the user adores topic 0, and the pref-
erence slowly declines till topic L-1, which the user hates. It is useful to note, that for
weightsexample, Umin(uj, yi) = 2, while Umax(uj, yi) = L + 1. Umin(uj, yi) is obtained
by yi = [0, 0, ...0, 1], while Umax(uj, yi) by yi = [1, 0, ...0, 0]. All item models in our sys-
tem are probability distributions, because they are outputs of the LDA model discussed
earlier. This explains why the aforementioned vectors are the ones that corresponds to
the maximum and minimum utilities. In general, 2 ≤ U(uj, yi) ≤ L + 1. Item model yi
for Umin and Umax is as described, because it represents topic proportions and thus, it
is a probability distribution. The user_pre f erences vector mentioned before encodes
the user’s topic preferences in a similar way as the weights vector.

Chapter 5. Experimental Setup - Evaluations 44

Using this model, we can translate the U(uj, yi) into a rating r ∈ [0, 1, 2, 3, 4, 5]. We
do that by splitting the interval [2, L + 1] into buckets as follows:

• When C ≤ U(uj, yi) ≤ C + (L+1)−(C)
6 , r = 0

• When C + (L+1)−(C)
6 < U(uj, yi) ≤ C + 2 (L+1)−(C)

6 , r = 1

• When C + 2 (L+1)−(C)
6 < U(uj, yi) ≤ C + 3 (L+1)−(C)

6 , r = 2

• When C + 3 (L+1)−(C)
6 < U(uj, yi) ≤ C + 4 (L+1)−(C)

6 , r = 3

• When C + 4 (L+1)−(C)
6 < U(uj, yi) ≤ C + 5 (L+1)−(C)

6 , r = 4

• When C + 5 (L+1)−(C)
6 < U(uj, yi) ≤ L + 1, r = 5

where C is the minimum value of the weights vector. In our case, C = 2, and
L = 20. We have |R| = 6 utility intervals (|R| denotes the cardinality of R i.e., the
number of elements of R).

Practitioners can modify the aforementioned intervals for different values of the
weight vector or rating values.

The aforementioned utility limits can be adjusted to every utility function proposed
by the practitioner. We chose to model the user’s preferences with a linearly increasing
utility between the various topics. Also, we split the range of plot point utilities in six
equal intervals in order to map plot points to ratings.

Using the user preference model, we can populate the plot point topic proportions
in the following manner. We select two out of the 186 possible stories at random, and
declare one of them to be the story the user likes, and the other one to be the story the
user dislikes. The first path referred as "the liked path" and the second path is referred
as "the disliked path", respectively. We check if they are different paths. If they happen
to be the same path, we repeat the process until the two paths are different. For each
node in the liked path we generate random vectors until we have generated a random
vector that the user will rate with a rating of r = 5. Those random vectors, are of size
L, and have from three to seven (chosen at random) topics activated, whose values
are also random. Each activated topic’s value is sampled from a uniform distribution.
After that, the random vector produced is normalized. We repeat the process for the
disliked path, with the difference that now the user must rate this path’s plot points
with a rating of r = 0. (If the two paths have plot points in common, we assign them
ratings of r = 5). The rest plot points of the story graph are populated with random
vectors, to ensure that the rest of the story will have random ratings from the user.

5.4 Searching for the Optimal Path

In this section, we may use the terms hidden user model and actual user model inter-
changeably. This also same applies to the terms DM simulation and DM episode.

Chapter 5. Experimental Setup - Evaluations 45

The most crucial aspect of a drama manager is to be able to identify the best pos-
sible story path (in terms rating) from a pool of preauthored stories. In each one of
the Figures shown later in this Section, we observe the average rating users give at
each one of 500 independent simulations of our DM. We use the term average rating
because for each story, the user will provide as many ratings as there are plot points.
So a reliable performance metric is the average rating for each story. As explained in
Section 5.3, the term independent simulation means that in each one of the 500 DM sim-
ulations, a uniform prior user model is assumed. We will call one such independent
simulation, an episode, for short. Also, in each simulation the user preferences change at
random, and so do the book topic proportions. However all the simulations share the
same branching story graph. To summarize, each independent DM simulation tells us
how one random user will rate a DM recommended story. In each simulation, the book’s
topic proportions change. Overall, in each of the Figures below, we see the rating be-
haviour of 500 different users, each one involved in a different episode. Also, the term
episode seen in the following figures must not to be confused with its meaning in the
reinforcement learning domain. In this thesis, the term episode has a meaning of an
independent trial.

In each episode of our DM two random paths are chosen to represent the "liked
path" and "disliked path", and are given appropriate topic proportions, based on the
actual user model. Specifically, by introducing the "liked path" we aim to model the
optimal path our DM must discover. The "liked path" is a full story, which is crafted
based on the hidden user model. We must clarify, that the actual user model differs
from the user model we use in our updates. The actual user model vector is produced
only in order to provide the simulated users’ ratings. Our DM is obviously prohibited
to access this vector.

We observe that in the vast majority of the simulations, the DM manages to guide
the user through the optimal path. In the simulation set of Figure 5.2, the "liked path"
is populated with topics giving the user high utility (thus the user will rate each plot
point with 5). Respectively, the "disliked path" is populated with topics giving the
user the lowest utility, and thus the user will rate each plot point in the story with 0.
Overall, in this setting our DM managed a overall average rating of 4.8. The absence
of our DM (which means whenever the user is faced with a choice, she picks one at
random) yielded an average rating of 2.8. Also, we observe that at 485 out of 500
episodes, the use of our DM resulted in higher average ratings. This means that our
DM has an 0.97 rate of recommending good quality stories, when the user’s "liked
path" consists of plot points that all will be assigned the maximum rating (which is 5
in our experiments).

In Figure 5.3, we observe a different set of results. In this experiment, we designed
the plot points of the story such that half plot points of the user’s "liked path" will be
assigned a rating of 5, and the remaining half will be assigned a rating of 4. We observe
that the majority of average user ratings lie at 4.5. This is the best we can hope for, as
the average of the true ratings (according to the actual user model) is 4.5. Also, we
observe that at 431 out of 500 episodes the use of our DM resulted in higher average
ratings. Thus, in this setting our DM has an 0.86 rate, of recommending good quality
stories.

Chapter 5. Experimental Setup - Evaluations 46

FIGURE 5.2: Average rating of stories (a 5-rated path is available)

FIGURE 5.3: Average rating of stories (The user’s liked path is populated
with 50% 5, and 50% 4 rated plot points)

Chapter 5. Experimental Setup - Evaluations 47

We previously mentioned that the performance of our DM drops as the topic num-
ber increases, which is why we are not using the full LDA model calculated, but only
the topics which are present each book we are dealing with. We use L = 20 topics for
the experiments of Figures 5.2 and 5.3. In Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 we show the
performance drop for different topic numbers (i.e., different values of L).

In Figure 5.4, the average rating in the presence of our DM is 4.46, while in absence
of DM the obtained average rating has a value of 3.1. 430 out of 500 episodes yielded a
higher average rating when using the DM.

FIGURE 5.4: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=30 topics

In Figure 5.5, the average rating in the presence of our DM is 4.21, while in absence
of DM the obtained average rating has a value 2.9. 395 out of 500 episodes yielded a
higher average rating when using the DM.

In Figure 5.6, the average rating in the presence of our DM is 4.1, while in absence
of DM the obtained average rating has a value of 2.85. 383 out of 500 episodes yielded
a higher average rating when using the DM.

In Figure 5.7, the average rating in the presence of our DM is 4.15, while in absence
of DM the obtained average rating has a value of 2.95. 380 out of 500 episodes yielded
a higher average rating when using the DM.

In Figure 5.8, the average rating in the presence of our DM is 4.11, while in absence
of DM the obtained average rating has a value of 3.1. 384 out of 500 episodes yielded a
higher average rating when using the DM.

In Figure 5.9, the average rating in the presence of our DM is 4.00, while in absence
of DM the obtained average rating has a value of 3.05. 355 out of 500 episodes yielded
a higher average rating when using the DM.

Chapter 5. Experimental Setup - Evaluations 48

FIGURE 5.5: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=40 topics

In the Figures above, we observe a decrease in the performance of our DM over
time. This is why we chose to tackle this issue, by using only the L most important
topics for each book, and omitting the rest K − L topics. The decrease in the perfor-
mance of our DM is visible in the plots 5.4 to 5.9, as the average rating decreases. As
K increases, more and more ratings corresponding to the use of our DM tend to move
away from higher rating values.

Chapter 5. Experimental Setup - Evaluations 49

FIGURE 5.6: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=50 topics

Chapter 5. Experimental Setup - Evaluations 50

FIGURE 5.7: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=60 topics

FIGURE 5.8: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=70 topics

Chapter 5. Experimental Setup - Evaluations 51

FIGURE 5.9: Average rating of stories (The user’s liked path is populated
with ratings of 5), L=80 topics

Chapter 5. Experimental Setup - Evaluations 52

5.5 About Other Drama Manager Evaluation Methods

We heavily rely on the ratings of the simulated users as a performance metric for our
system. User ratings are the best method to evaluate our system. In the current section,
we explain why we did not use other methods.

As described in the previous sections, in our DM we model the user as an evolv-
ing document, which is a probability distribution over topics. Also, in order to create
the simulated users, a hidden user model is generated for each user, which is used for
providing the ratings of the simulated users. Both the user model inferred by the DM,
and the hidden user model are probability distributions. Intuition says that probabil-
ity distribution distance metrics (Kullback-Leibler divergence, Jensen-Shannon diver-
gence) are useful in this setting, in order to discover the distance between the hidden
user model and the user model the DM has inferred. It is reasonable to assume that in
this way we can examine our DM’s ability to approximate the user model.

This assumption has only limited application in our settings, however. The plot
points of the users’ liked paths are created based both on the user’s hidden model
and the user utility model (based on the weight vector described in Section 5.3). But
the user’s hidden model only guarantees that the user will rate the generated plot
point with a high rating. For each one of the six utility intervals of our DM described
in Section 5.3, there is a wide variety of topic proportions that is accepted. This is a
realistic way to model the plot points, because a user is not capable of distinguishing
small differences between two similar plot points. A real user’s rating depends on
the presence of the topics she likes, rather than the topic proportions themselves. We
could create the liked path plot points in such a way, that the deeper into the story,
the closer they are to the hidden user model, but this is a rather unrealistic way to
construct a story. As we shown in the previous Sections, by using our DM a user will
end up with a story that is within a greater story set of stories she likes. Distribution
similarity metrics cannot be always accurate or capture the true distance from the real
user preferences.

We examine a simple example. Assume the following two models (it is irrelevant if
they are user or item models):

model1 = [0, 0.1, 0, 0.2, 0.1, 0.4, 0.2, 0, 0, 0] (5.3)

model2 = [0.05, 0.05, 0.1, 0.1, 0, 0.3, 0.3, 0.1, 0, 0] (5.4)

We calculate the Jensen Shannon divergence between model1 and model2.

JSD(model1, model2) = 0.37 (5.5)

We remind the reader that JSD is bounded by 0 and 1.
If the models above correspond to two different plot points, the user would proba-

bly assign them the same rating, even though the JSD metric suggests that they are at
a distance of JSD(model1, model2) = 0.37. This claim is based on the fact that a human
user cannot distinguish a difference of 0.05 (topic 0 difference between models model1

Chapter 5. Experimental Setup - Evaluations 53

and model2) or 0.1 (topic 5 difference between models model1 and model2). We remind
the reader that each index of the vectors of the models above, corresponds to a topic
i.e., index 0 to topic 0, index 1 to topic 1 and so on. With this example we aim to demon-
strate, how conventional probability distribution similarity metrics fail to display the
desired behaviour.

In Figure 5.10 we observe the average Jensen-Shannon divergence between the hid-
den user model, and the plot points the user likes (story rated with only ratings of five).
Each of the 100 episodes shown is an independent simulation of our DM, with differ-
ent user model and different plot points. We see that the distances are big, even though
the user will rate those plot points with high ratings.

FIGURE 5.10: Average JSD between the true user model and the plot
points of the user’s likes path

In conclusion, because user ratings depend on a variety of topic proportions for
each utility interval, rather than a single instance of topic proportions, the concept of
tracking the probability distribution convergence does not readily apply.

54

Chapter 6

Conclusions & Future Work

In this thesis, we created a novel drama management approach. We employed prob-
abilistic topic modeling for modeling items under recommendation. Also, in a novel
approach inspired by [28], we also model an evolving user model as a mixture of latent
topics. We treat the user as a document, whose topic proportions change according to
the items the user consumes. We achieved this by using techniques from the reinforce-
ment learning field. That is, by taking into account the user rating, we accelerate or
decelerate the rate at which the user model changes. We provide an efficient parser for
Wikipedia articles useful for the download and processing of the necessary training
data for a PTM. Our DM does not rely on CF, and we proved it works with even one
user. We introduced a novel metric for user-item model distance, expected utility. A
command line utility is created tosplit possible merged words due to bad formatting
of pdf files. Also, a method is pro-posed for automatic construction of the branching
story graph by using the textual information.

As future work, we aim to study different datasets, to see if the performance of our
dataset changes. Also, a more specific PTM algorithm can be implemented, designed
exactly for the sequential recommendation problem. Moreover, we aim to automat-
ically split merged words with high accuracy, in case the future work still includes
CYOA books. There is also room for experiments with other than linearly increasing
utility values between topic proportions of plot points. In would be interesting to also
experiment with more than 6 (0, 1, 2, 3, 4, 5) rating values. The system should also be
tested on human users, given the fact that adequate secret path books are found.

In our experiments, we assume that the user model prior to the interaction with
our DM, is uniformly distributed. In future work, we aim to study if it is realistic to
assume a prior user model that is closer to the actual user model than the uniformly
distributed prior. This is not a difficult requirement, because as system designers, we
know the topics discussed across the possible stories from our pool of stories. So, in
a small interactive session the user can rate a small amount of items (chosen by the
DM, in order to be relative to topics existing in the story space). The construction of
such interactive session, along with the experimental result evaluation, is left for future
work. Also, we do not experiment with multiple DM sessions of the same user (i.e., to
use an already calculated user model as a prior model for other DM simulations).

Finally, we aim to tackle the sequential recommendation problem for larger story
spaces. One such book showcasing a challenging problem of scalability for our DM, is
the book Infected: A Click Your Poison Book. Its branching story graph is shown in Figure
6.1. The bottleneck of our DM is the transformation from a branching story graph into

Chapter 6. Conclusions & Future Work 55

a prefix graph. The problem of finding all the possible paths of a graph (which is what
we do in order to calculate the prefix graph), is NP-Hard. In future work, we aim to
explore other graph transformation techniques, to be able to handle bigger stories.

Chapter 6. Conclusions & Future Work 56

1

140 46

397

423358

2

274311

44

275

314

2295

4

467

7

8

381

120

65

289

117286 415

9

315

318

10

11

13

353

182176

15

302

377

282

301

15691

378

12 134

14

376

16

45

331

305

19

20

23

191

61

285

24

95

340

26

27

55344

5659 57

28

52

54

30

31

404

405

32

396

184242

34

269

454

271

456

35

37

299

159

236

387

38

40

323

111

41

98

303

99

42

392 179

393

181

230

306

398

304

224

362

47

231

148 160

49

345

346

50

41688

417

89

51

244

245

143

328

326

146

424

327

371

5860

64

67

287

374

73

70

337429

338

435

72

219

222

76

77

79

296

264

436

461 280

80

81

237

238

83

85

418

292

252 452

87

90

71

93

136

137

94

341 96

389

249

390

320

97

151174

172

175

385

369

232

126

386

100

401

402

102

84

223

103

105

349400

350

246

106

108

133

382

110

112

192

196

113

115

116

365

368

119

125

127

129

132

152

155

384

135

399

139

82359

142

422

118 267

147

410

411

150

188258

190261

173

149

158

437 444

439

178

440

161

101

164

165

36

300

197200

167

372

373

168

171

363351

364352

177

290

291

183

185

109

187

226406

128413

68

21

199

201

426

202

204

347 339

348

205

208

210

211

209

298

114 48

217

214

295319 379

234

216

218

256

257

78

225

414

227

212

233

235

324

325

370

241

243

321141

466

322

248

35739

250

251

253

46586 462

463

254

255

276

420

262

464

266

268

166

279

273

360445

395

361

446

421

277

278

281

354

186

356

284

375

288

443

332

294

388

293 427272

428

309

329

330

162 407 130447

409449

342

343

336

121 138

394412

333307

33

169

239 45717

458

265

391

460

419

104

66

283

203

459

10763

453

215 206

450

451

442

FIGURE 6.1: Branching story graph of the book Infected

57

Appendix A

Manual Topic Inspection of an LDA
model with 80 topics

A.1 Model Inspection

In this appendix, we will examine a model with K = 80 topics.
In each bullet, we provide the most significant words, along with a description that

we suggest:
Topics are listed by decreasing percentage of tokens with respect to the dataset

1. Book writing, 6.1%: characters, character, literary, narrative, literature, themes,narrator,
style, theme

2. Undefined, 5.9%: tells, house, finds, night, goes, home, away, gets, room, takes,
asks

3. Battles, 5.6%: city, escape, group, death, killed, help, power, kill, takes, return,
attack, fight, battle, captured, leader,

4. Family, 4.9%: father, mother, love, family, daughter, brother, sister, woman, young,
wife, friend, child, death, husband, relationship, marriage, born

5. Philosophy-Argumentation, 3.8%: argues, theory, view, wrote, history, argued,
described, study, social, criticized, evidence, claims, argument, critisism, philoso-
pher,

6. Management, 3.8%: chapter, social, society, change, development, mastery, drift,
problems, problem, future, example, based, theory, technology

7. Book publishing, 3.5%: edition, volume, text, history, editions, pages, second,
page, version, original, volumes, chapter, chapters, english

8. British novels, 3.1%: london, british, lady, wife, house, england, young, money,
british novels, husband, english, friend, marriage, servant

9. Science fiction, 2.7%: science, earth, science fiction, planet, space, human, hu-
mans, future, universe, alien, travel, technology, humanity, race, solar, time travel,
colony, robots, ship

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 58

10. Publishing, 2.6%: review, reviews, writing, wrote, reception, publishers, critical,
positive, weekly, recieved, praised, reviewer, journal, library

11. Media, 2.6%: said, media, article, interviews, press, journalist, interview, news,
magazine, public, fiction books, wrote, controversy, publication, editor, newspa-
per, release

12. Spying, 2.5%: intelligence, agent, secret, thriller, security, team, officer, kill, pow-
ell, information, killed, police, chief, prison, operation, agency

13. Film adaptation of book, 2.2%: film, adapted, adaptation, films, television, di-
rected, movie, based, starring, released, novels adapted, version, production,
american novels, screenplay, hollywood, television series

14. Political-Financial (US oriented), 2.1%: states, united, political, economic, united
states, government, policy, money, capitalism, power, economy, great, america,
national, wealth, market

15. Existentialism, 2.1%: human, concept, philosophy, love, individual, nature, mind,
philosophical, self, experience, good, knowledge, reason, thought, soul, meaning,
consciousness, sence, evil, truth, question, reality, spirit, existence

16. Script (maybe?), 1.9%: wrote, writing, letters, manuscript, death, letter, publica-
tion, literary, thumb, read, write, according, began, file

17. Undefined, 1.8%: anxiety, good, know, says, things, said, want, word, feel, think,
person, words, right, wanted, able, voice

18. City (New York oriented)-American novels, 1.7%: city, york, narrator, New
York, street, drug, suicide, american novels, apartment, hotel, house, gang, an-
geles, money, drugs

19. Family-village life (positive feelings), 1.6%: family, town, children, village, home,
father, house, farm, families, land, child, lives, mother, local, wife, small, commu-
nity, living, grandfather, young, farmer, journey, country

20. High school, 1.5%: school, young, adult, young adult, year, friends, teacher,
boys, parents, students, girl, high school, library, college, class, education, teach-
ers, summer, grade

21. New York Times (NYT) bestsellers, 1.5%: list, york, times, released, york times,
copies, random, sold, house, bestseller, million, seller, year, release, weeks, sales,
ranking

22. Army-Military, 1.5%: army, military, battle, general, soldiers, forces, soldier, of-
ficer, force, commander, major, troops, invasion, attack, command, enemy, fight-
ing, corps, service, warfare, voctory, civil, killed, navy

23. Crime investigations, 1.4%: murder, crime, police, detective, mystery, case, death,
killer, killed, dead, murders, body, inspector, criminal, evidence, missing

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 59

24. Trip to the country, 1.4%: land, river, water, travel, journey, tree, great, moun-
tain, valley, lake, birds, fishing, bird, flies, wind, island, forest, wild, north, bear,
mountains, wood, expedition

25. Monthly subscriptions, 1.2%: times, york, review, retrieved, york times, june,
november, december, guardian, diary, daily, wrote, diaries, journal,year

26. Horror-terror-dark, 1.2%: horror, dream, great, dark, dreams, greek, lost, dead,
bridge, ancient, death, evil, supernatural, mysterious, revival, strange, secret,
darkness, mythology, greece, gothic, myth, past

27. Academia-university press, 1.2%: university, press, oxford, political, cambridge,
philosophy, university press, essays, studies, york, professor, instoduction, poli-
tics, college, princeton, society, harvard, academic, literature

28. Doctor Who, 1.1%: doctor, episode, serial, television, episodes, doctors, tardis,
released, broadcast, british, season, production, original, planet

29. Collections of books, 1.1%: stories, short, short story, collection, anthology, edited,
introduction, tales, writed, asimov, originally, essay, lovecraft, story collections,
isaac asimov, contains

30. Sailing-adventure, 1.1%: ship, island, crew, ships, boat, treasure, aboard, british,
navy, islands, pirates, pilot, storm, voyage, coast, flying, port, fleet, sail, ocean,
adventure, royal

31. Colonialism, 1.1%: white, african, culture, race, history, america, native, states,
african american, americans, racial, cultural, identiry, community, racism, africa,
colonial, movement, violence

32. Children books, 1.1%: children, children books, little, illustrations, picture, illus-
trated, animals, literature, characters, circus, fish, frog, children literature, young,
girl, home, parents

33. Religious affairs, 1.1%: church, religious, religion, christianity, catholic, faith,
century, protestant, christ, ancient, spiritual, rome, history, miracles, holy, spirit,
bishop, temple, bible, divine, pope, theology, saint, priest

34. Magazines (But it is not clear), 0.9%: miss, edition, club, magazine, york, dust,
issue, title, viking, publication, editions, press, appeared, hardcover

35. World War 2 (Holocaust oriented), 0.9%: jewish, polish, germany, jews, history,
nazi, israel, holocaust, poland, europe, massarce, historical, jerusalem, peace,
hitler, israeli, nazis, european, international, eastern

36. World War 2 (alternate history), 0.9%: british, united, british novels, london,
britain, kingdon, united kingdom, depictions, minister, cultural, history, cultural
depictions, prime, england, states hitler, germany, france, leader, alternate his-
tory, great britain

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 60

37. Book Translations, 0.9%: french, english, translation, translated, language, paris,
spanish, italian, france, dutch, enslish translation, title, languages, swedish, liter-
ature, original, translator

38. Communism-Russia, 0.9%: russian, soviet, revolution, political, union, russia,
class, revolutionary, communist, soviet union, moscow, socialist, party, history,
power, government, regime, fascism, left, marxist, propaganda, marxism, repub-
lic, movement, anarchist

39. Fantasy-Dungeons and Dragons, 0.8%: fantasy, magic, fantasy novels, magical,
sword, fantasy novel, trology, grey, american fantasy, magician, plot, dar, city,
quest, powers, magicians, mage, wizards, spider, gods, powerful, evil, fantastic

40. Legislation, 0.8%: state, court, states, laws, constitution, justice, legal, public,
government, judge, united, rights, united states, civil, authority, rules, congress,
rule, supreme, cases, members

41. Natural selection-biology, 0.8%: human, species, evolution, natural, humans,
animals, selection, nature, plants, evolutionary, enviromental, animal, biological,
biology, genetic, plant, natural history, population, genes, biologist

42. Medicine, 0.8%: health, medical, mental, hospital, brain, medicine, disease, pa-
tients, patient, aids, cancer, mind, body, care, phychiatrist, treatment, psychology,
doctors, disorder, research, illness, memory, meditation

43. Homosexuality-Sex, 0.8%: women, sexual, woman, female, feminist, male, gen-
der, homosexuality, sexuality, feminism, relationship, lgbt, rape, love, homo-
sexual, marriage, lesbian, desire, roles, rights, relationship, erotic, masculinity,
power, beauty

44. Cities of U.S. (related to sports?), 0.8%: boston, chicago, california, team, road,
baseball, florida, ohio, county, sports, pennsylvania, football, massachusetts, league,
state, york, corn, town, national, season

45. Wizardry, 0.7%: castle, witch, stone, wizard, wiches, horse, tower, wicked, lion,
statue, heart, woman, magic, magical, glass, emerald, witchcraft, dead

46. Scientific work, 0.7%: science, scientific, research, theory, professor, physics, sci-
entists, scientist, institute, newton, mathematics, design, university, universe,
intelligent, history, knowledge, sciences, physicist, mathematical, light, experi-
ments, astronomy, motion, discovery, experiment, quantum

47. Unrecognized, 0.7%: science, science fiction, originally, fantasy, magazine, origi-
nally published, galaxy, campbell, worlds, edition, astounding, american writer

48. Music scene, 0.7%: music, song, band, rock, album, songs, singer, musical, food,
golden, lyrics, dance, jazz, tune, record, popular, artists, composer

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 61

49. China-Australia relations (Book:Silent Invasion), 0.7%: chinese, japanese, aus-
tralian, china, australia, japan, asia, south, west, western, history, country, domi-
nation, kong, east, hong kong, tokyo, melbourne, eastern, shanghai

50. Historical novels, 0.6%: historical, century, history, period, england, historical
novels, records, early, events, death, late, kings, chronicle, royal, eighteenth, british,
rulers

51. Dungeons and Dragons, 0.6%: dragon, dragons, monster, dungeons, game, rules,
players, guide, characters, campaign, role, playing, history, edition, setting, realms,
adventure, masters, mage, spells, wizards, forgotten

52. Poetry, 0.6%: poem, poetry, poems, poet, irish, collection, song, verse, ireland,
love, poets, lines, epic, literature, night, dublin, poetic, poetry collections

53. Awards, 0.6%: award, awards, winning, year, nominated, prize, book award,
winner, award best, winning works, poll, shortlisted, award winning, finalist,
nominations, literary, association, awards nominations, placed, nominee, nebula
award, writers, choice

54. Theatre, 0.5%: play, theatre, stage, plays, shakespeare, musical, opera, produc-
tion, performed, theater, broadway, london, actor, drama, performance, com-
pany, actors

55. Unrecognized, 0.5%: blue, page, hair, roberts, eyes, white, skin, born, glass, sis-
ter, group, member, rainbow, kansas, special, pretty, characters, looking, wears,
website, lone, pink

56. US relations with the Islamic world, 0.5%: president, islam, muslim, bush, iran,
islamic, iraq, trump, political, washington, presidential, campaign, arabic, elec-
tion, tessorism, middle, states, iranian, terrorist, afghanistan, muslims, arab, pres-
idency, house, attacks, white house, vice, senator

57. Games-Africa (cannot relate them though), 0.4%: game, games, video, south,
park, africa, player, video game, playing, south africa,chess, play, shadow, par-
ody, entertainment, south african, video games, released, zero, african, interac-
tive, lost, original

58. Nuclear energy (post-apocalyptic oriented), 0.4%: nuclear, energy, global, post,
bomb, united, states, climate, power,apocalyptic, hook, weapons, rocket, united
states, north, atomic, electric, radiation, post apocalyptic, zone, nuclear weapons,
survivors, explosion, survival, arctic, bombs

59. Publishing, 0.4%: paperback, edition, hardcover, publication, hardback, norton,
editions, september, cover, audio, press, publication history, publishing, june,
march, july, edition published

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 62

60. Biography, 0.4%: biography, fiction books, memoir, account, describes, autobiog-
raphy, biographies, personal, details, early, covers, autobiographies, experiences,
events, carrees, childhood, biographical, memories, writing

61. Slavery, 0.4%: slave, civil, slavery, slaves, walker, south, southern, rights, north,
uncle, civil rights, history, freedom, movement, negro, free, united, sold

62. Kings and queens, 0.4%: prince, princess, kingdom, royal, knight, saint, palace,
kings, crown, knights, court, throne, heaven, hell, noble, ruler, priest, lady, royal
family, medieval, heir

63. Colonialism, 0.4%: india, indian, wells, oregon, pakistan, hindu, society, history,
zealand, delhi, caste, indias, colonial, massacre, language, haven, independence,
press, rule

64. Galactic empire (korean, korea unrelated), 0.3%: empire, emperor, master, moon,
north, ranking, imperial, korean, korea, grand, masters, apollo, mission, human,
republic, male, commander, leader, state, lunar, force, alliance, rebels, galactic

65. Star Trek-Canada, 0.3%: star, canadian, canada, graphic, wars, trek, star trek,
graphic novel, persian, enterprise, federation, canon, prequel, generals, fictional,
pocket

66. Vampires, 0.3%: blood, vampire, vampires, midnight, kill, human, beast, were-
wolf, horror, hole, atlas, turn, bloody, cold, night, turned, american horror

67. Unrecognized, 0.2%: camp, tale, rabbit, potter, tales, mouse, sprague camp, whale,
camps, fisher, wine, elephant, doll, racing, grass, gollancz

68. Unrecognized, 0.2%: queen, brothers, egypt, queens, brother, foster, egyptian,
thief, bacon, eden, arthurs

69. Workers of Mexico, 0.2%: ghost, mexico, train, station, mexican, factory, ghosts,
workers, iron, railway, ward, hunger, border, construction, latin, bread, strike,
industrial, canal, invisible, realism, working, savage, worker, rain, trains

70. Unrecognized, 0.2%: brown, jones, wolf, fairy, little brown, snow, rogers, greene,
wolves, miles, little, tale, fairy tale

71. Prize about a book for Vietnam (Unclear), 0.2%: prize, vietnam, national, adams,
foundation, christmas, pulitzer, knopf, vietnamese, national book, alfred knopf,
winning, shift, awarded, prize fiction, america, veterans

72. Unrecognized, 0.2%: bond, animals, animal, bone, cape, mountain, bones, jonathan
cape, brooks, hodder, bonds, dinosaurs, hodder stoughton, dinosaur

73. Unrecognized, 0.2%: holmes, comic, comics, adventure, sherlock holmes, adven-
tures, watson, tiger, comic book, chase, marsh, shadows, marvel, strip

Appendix A. Manual Topic Inspection of an LDA model with 80 topics 63

74. Unrecognized, 0.2%: hill, report, commonwealth, hills, cloud, coal, review, ranger,
mining, based, mark twain, silent, reports, collision, reviews

75. Unrecognized, 0.1%: earth, ring, texas, hunting, smiths, giant, rings, flood, gene-
sis, middle, wagner, rising

76. Unrecognized, 0.1%: bible, thompson, pseudonym, luther, georgia, code, baker,
print, confessions, testament, martin luther, sata, codes, examiner, biblibal

77. Unrecognized, 0.1%: hart, influential, cross, bell, moore, style, salt, merry, hand-
book, history, noter, person, huffington

78. Unrecognized, 0.1%: card, clan, dogs, cards, cats, warriors, clans, sheep, charity,
shepherd, bang, pets, called

79. Unrecognized, 0.1%: arts, martial, philips, colony, seed, harvest, devils, band,
fight, pact, mass, coincide, matrins press, blade

80. Unrecognized, 0.1%: machine, machines, rivers, miracle, pilgrimage, baltimore,
miraculous, phantom, hyperion, cotton, remake, booth, barrier, rewrite, abraham
lincoln, embark, critically acclaimed

64

Appendix B

Dealing with merged words from the
PDF parsing

B.1 Merged Words

In this section, we provide all the merged words we encountered, along with the word
split offered by the compound-word-splitter python package, and also the original
word split.

Merged Words compound-word-splitter Original Meaning
vesselseeker vessels eek er vessel seeker
theresearch Therese arch the research

maray maray mara y
ofthe oft he of the

astrong as tron g a strong
the seeker there eke r the seeker

adark Adar k a dark
theairlock Thea IR lock the airlock

tothe tot he to the
giantsquid giants quid giant squid

inthe int he in the
themoray them Ora y the moray

onthe ont he on the
theseeker these eke r the seeker
yousome yous om e you some

asubmarine (blank) a submarine
avulerable (blank) a vulnerable
youthink youth ink you think
theabyss Thea by s the abyss

ahalf ah Al f a half
guage (blank) guage
torise tor is e to rise

toolate tool ate too late
insimple ins imp Le in simple
youthat youth at you that

Appendix B. Dealing with merged words from the PDF parsing 65

theatlanteans Thea Tl ante ans the antlanteans
atlantean (blank) atlantean

forthe forth e for the
english Eng Li sh english
yoursea yours ea your sea
toleave tole ave to leave

thewreck thew rec k the wreck
toreport tore port to report
youstill yous till you still
cometo comet o come to
haveno haven o have no

otherspaces others paces other spaces
thenodoors the no doors the nodoors
abeautiful (blank) a beautiful
achance ac Han Ce a chance
asensing as ens in g a sensing
haveskin haves kin have skin
aglasslike Ag lass like a glass-like
maraythat ma ray that maray that
themaray them Ara y the maray
toescape toes cape to escape

ahole ah ole a hole
theearth thee art h the earth
goback gob ac k go back
toreturn tore turn to return

foranother fora not her for another
nodoors no doors nodoors
asmall as mall a small

amistake am is take a mistake
yoursenses yours ens es your senses

advisor adv is or advisor
theactors Thea ct or s the actors
marayis ma ray is maray is
nowthat nowt hat now that

theelectrons thee LE ctr on s the electrons
bethe Beth e be the
tojoin Tojo in to join

soclose soc lose so close
willseek wills eek will seek

arich (blank) a rich
workschedules works Che Du Le s work schedules

largesalary larges Alar y large salary
thework thew or k the work

Appendix B. Dealing with merged words from the PDF parsing 66

togo tog o to go
facethat facet hat face that

notworkers notwork er s not workers
thesea these a the sea

67

Appendix C

System Parameters

In this section, we provide a table containing all the parameters of our system.

LDA related parameters
Parameter Value

Lemmatizing False
Stemming False

LDA models trained 5 to 390 with step of 5
no_below 1 100
no_above 2 0.35

low 0.3
n-fold validation for topic quality 5

Topic Coherence True
Jaccard Similarity True

Perplexity True
allow bigrams True

allow n-grams with n>2 False
remove first names from dataset True

multiprocessing for quick preprocessing 4 threads
Drama Manager related parameters

Number of topics 80
Number of ratings 6 (0,1,2,3,4,5)

Delta 4
δlose 0.3
δwin 0.05

c 1.1
ξ 3

user utility function 2 to K with step of 1
linear user utility True

1Keep tokens which are contained in at least no_below documents for the LDA model training
2Keep tokens which are contained in no more than no_above documents (fraction of total corpus

size, not an absolute number) for the LDA training

68

Appendix D

Modeling and Tackling Preference
Shifts

In general, a DM must have the ability to quickly identify the eventual preference shifts
of a user. To prove our point, we created a separate testbed.

We experimented in a test case consisting of a sequence of 240 plot points, and
we choose the number of topics L for each plot point to be L = 80 (the number L is
unimportant in the preference shift tackling, and can be easily discovered with a trial
and error procedure). We suppose that each plot point is an amalgamation of three to
seven (for each iteration, this is chosen randomly) topics. So, we created 240 random
vectors, each of which has from three to seven non-negative values summing to one,
ensuring that the item model can be treated as a discrete probability distribution. This
way we model the topic proportions for each plot point.

We model the user’s initial preferences with the vector

weightspre_shi f t = [K + 1, K, ..., 3, 2]

whereas we model the user’s preference shift as

weightspost_shi f t = [2, 3, ..., K, K + 1]

We consider the following scenario. A user is interacting with our DM in a session
of 240 plot points. In the first 60, we model the convergence of the user model to
the actual user preferences. After the 60th plot point, every 60 plot points a major
preference shift occurs. Specifically, we create the user weights accordingly such that

D(weightspreshi f t
, weightspostshi f t

) > T

where D is the L2 norm, and T = 380. The value of T was a result of several experi-
ments, and is dependent of the number of topics, K. With this setting, we create a major
preference shift, meaning that the user starts hating the previously adored topics, and
vice versa. By examining the top two subplots of D.1, we can infer that the user indeed
likes what is being recommended to him. But we cannot identify if the items recom-
mended are similar. To tackle this problem, we keep the last W known user models,
and calculate their mean value. Whenever the user consumes an item, we calculate the
Jensen Shannon divergence between mean of the last W known user models (excluding

Appendix D. Modeling and Tackling Preference Shifts 69

FIGURE D.1: Identification of major preference shifts

the last user model), and the last user model. In the third subplot of figure D.1, we
notice three spikes, at the 60th, 120th and 180th plot point. Those are the plot points
where we placed the major preference shifts. So, with this technique, we were able to
identify changes in the user model, even though the rating pattern of the user did not
change.

70

Bibliography

[1] Joseph Bates. “Virtual reality, art, and entertainment”. In: Presence: Teleoperators
& Virtual Environments 1.1 (1992), pp. 133–138.

[2] Sooraj Bhat et al. “A globally optimal algorithm for TTD-MDPs”. In: Proceedings
of the 6th international joint conference on Autonomous agents and multiagent systems.
2007, pp. 1–8.

[3] David M Blei. “Probabilistic topic models”. In: Communications of the ACM 55.4
(2012), pp. 77–84.

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”.
In: Journal of machine Learning research 3.Jan (2003), pp. 993–1022.

[5] Michael Bowling and Manuela Veloso. “Multiagent learning using a variable
learning rate”. In: Artificial Intelligence 136.2 (2002), pp. 215–250.

[6] Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the
American society for information science 41.6 (1990), pp. 391–407.

[7] Thomas Hofmann. “Probabilistic latent semantic indexing”. In: Proceedings of the
22nd annual international ACM SIGIR conference on Research and development in in-
formation retrieval. 1999, pp. 50–57.

[8] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
USA: Cambridge University Press, 2008. ISBN: 0521865719.

[9] Magy Seif El-Nasr. “Interaction, narrative, and drama: Creating an adaptive in-
teractive narrative using performance arts theories”. In: Interaction Studies 8.2
(2007), pp. 209–240.

[10] Magy Seif El-Nasr. “Interactive Narrative Architecture based on Filmmaking
Theory.” In: Int. J. Intell. Games & Simulation 3.1 (2004), pp. 29–36.

[11] Mark J Nelson and Michael Mateas. “Search-Based Drama Management in the
Interactive Fiction Anchorhead.” In: AIIDE. 2005, pp. 99–104.

[12] Thaleia Ntiniakou. “A Framework for Employing Probabilisc Topic Models on
Gene Expression Data”. In: Technical University of Crete, Institutional Repository
(2019).

[13] Federico Peinado and Pablo Gervás. “Transferring game mastering laws to inter-
active digital storytelling”. In: International Conference on Technologies for Interac-
tive Digital Storytelling and Entertainment. Springer. 2004, pp. 48–54.

[14] Jim Pitman. “Exchangeable and partially exchangeable random partitions”. In:
Probability theory and related fields 102.2 (1995), pp. 145–158.

Bibliography 71

[15] Gerald Prince. A dictionary of narratology. U of Nebraska Press, 2003.

[16] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. “Sequence-aware
recommender systems”. In: ACM Computing Surveys (CSUR) 51.4 (2018), pp. 1–
36.

[17] Mark Owen Riedl and Vadim Bulitko. “Interactive narrative: An intelligent sys-
tems approach”. In: Ai Magazine 34.1 (2013), pp. 67–67.

[18] Mark Riedl, Cesare J Saretto, and R Michael Young. “Managing interaction be-
tween users and agents in a multi-agent storytelling environment”. In: Proceed-
ings of the second international joint conference on Autonomous agents and multiagent
systems. 2003, pp. 741–748.

[19] Mark Riedl, David Thue, and Vadim Bulitko. “Game AI as storytelling”. In: Ar-
tificial intelligence for computer games. Springer, 2011, pp. 125–150.

[20] David L Roberts et al. “Targeting specific distributions of trajectories in MDPs”.
In: Proceedings of the National Conference on Artificial Intelligence. Vol. 21. 2. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. 2006, p. 1213.

[21] Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on game
design. New Riders, 2003.

[22] Alexandra Schofield et al. “Understanding text pre-processing for latent Dirich-
let allocation”. In: Proceedings of the 15th conference of the European chapter of the
Association for Computational Linguistics. Vol. 2. 2017, pp. 432–436.

[23] Manu Sharma et al. “Player modeling evaluation for interactive fiction”. In: Pro-
ceedings of the AIIDE 2007 Workshop on Optimizing Player Satisfaction. 2007, pp. 19–
24.

[24] Carson Sievert and Kenneth Shirley. “LDAvis: A method for visualizing and in-
terpreting topics”. In: Proceedings of the workshop on interactive language learning,
visualization, and interfaces. 2014, pp. 63–70.

[25] Keith Stevens et al. “Exploring topic coherence over many models and many
topics”. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. 2012, pp. 952–
961.

[26] Richard S Sutton. “Temporal Credit Assignment in Reinforcement Learning.” In:
(1985).

[27] David Thue et al. “Interactive Storytelling: A Player Modelling Approach.” In:
AIIDE. 2007, pp. 43–48.

[28] Evangelos Tripolitakis and Georgios Chalkiadakis. “Probabilistic topic model-
ing, reinforcement learning, and crowdsourcing for personalized recommenda-
tions”. In: Multi-Agent Systems and Agreement Technologies. Springer, 2016, pp. 157–
171.

[29] Peter Weyhrauch and Joseph Bates. Guiding interactive drama. Carnegie Mellon
University Pittsburgh, PA, 1997.

Bibliography 72

[30] Ian H Witten and Eibe Frank. “Data mining: practical machine learning tools
and techniques with Java implementations”. In: Acm Sigmod Record 31.1 (2002),
pp. 76–77.

[31] R Michael Young. “Creating interactive narrative structures: The potential for AI
approaches”. In: Psychology 13 (2000), pp. 1–26.

[32] R Michael Young et al. “An architecture for integrating plan-based behavior gen-
eration with interactive game environments.” In: J. Game Dev. 1.1 (2004), pp. 1–
29.

[33] Hong Yu and Mark O Riedl. “A sequential recommendation approach for inter-
active personalized story generation.” In: AAMAS. Vol. 12. 2012, pp. 71–78.

[34] Hong Yu and Mark Owen Riedl. “Data-Driven Personalized Drama Manage-
ment.” In: AIIDE. Citeseer. 2013.

[35] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

	Abstract
	Acknowledgements
	List of Figures
	List of Abbreviations
	Introduction
	Game Artificial Intelligence
	Interactive Narrative
	Thesis Contributions

	Background
	Probabilistic Topic Modeling
	Latent Dirichlet Allocation
	Notation
	The Generative Process
	Posterior Inference

	Learning Rate

	Related Work
	Our Approach
	Problem Definition
	Getting the Data from Wikipedia
	Downloads

	Preprocessing
	Parsing the Data
	Dealing with the Nature of the Data
	Towards the Bag of Words Representation

	Choosing the Optimal Topic Number
	Perplexity
	Topic Coherence
	Jaccard Similarity
	Human Judgement

	Our Drama Manager Model
	Plot point modeling
	User modeling
	Plot point model and user model updating

	Prefix Tree Representation
	Recommendation phase
	Overview
	Shannon Jensen Divergence
	Cosine Distance
	Expected Utility
	Drama Manager Algorithm

	User Interface

	Experimental Setup - Evaluations
	Workstations and Training Times
	Using Real CYOA books
	Gathering Information from a PDF
	Construction of the Story Graph
	Merged Words

	Simulating Users and Books
	Populating the Plot Points with Topics

	Searching for the Optimal Path
	About Other Drama Manager Evaluation Methods

	Conclusions & Future Work
	Manual Topic Inspection of an LDA model with 80 topics
	Model Inspection

	Dealing with merged words from the PDF parsing
	Merged Words

	System Parameters
	Modeling and Tackling Preference Shifts
	Bibliography

