
1

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Authorized user access in federated Service

Oriented Architectures for the Internet of Things

in the Cloud

Kontochristos Ilias

Committee

Supervisor: Prof. Euripides G.M Petrakis

Assoc. Prof. Deligiannakis Antonios

Assoc. Prof. Samoladas Vasileios

Chania, 2020

2

Abstract

This thesis aims in enhancing the security of a federated Service Oriented

Architecture, based on the communication of RESTful micro-services in the

cloud. To achieve this goal, HTTPS (HyperText Transfer Protocol Secure) or

HTTP over TLS (Transport Layer Security) was incorporated in the

communication of the micro-services. In each exposed service, TLS certificates

were installed in order to encrypt the communication and guarantee the

authenticity of the service. Furthermore, emphasis was put on improving the

mechanism for authorization and authentication of the users when they access

the system. Τhe authorization code grant of the OAuth 2.0 protocol and OpenID

Connect were incorporated in the API of the system. The authorization code

grant provides API security and reduces the chance of exposing user credentials

by utilizing scoped access tokens. OpenID Connect extends the OAuth 2.0

Protocol and provides enhanced user authentication, ID token validation, and

SSO (Single Sign-On) functionality amongst the federated architecture nodes. A

series of experiments showed that the added security measures introduce delay

into the system. Furthermore, it is demonstrated that different encryption

algorithms and key lengths may affect system performance.

3

Table of Contents

1. Introduction ... 5

1.1 Motivation .. 5

1.2 Solution ... 6

1.3 Contributions of the Work .. 8

1.4 Structure .. 9

2. Background ... 10

2.1 HTTP ... 10

2.2 HTTPS .. 11

2.3 OAuth 2.0 .. 14

2.4 OpenID Connect .. 14

2.5 Service Oriented Architecture .. 15

2.6 iZen System .. 16

2.7 Docker ... 20

3. iZen federated IoT architecture ... 22

3.1 iZen Architecture ... 23

3.1.1 Front-End Services ... 23

3.1.2 Back-End Services ... 27

4. Implementation ... 31

4.1 HyperText Transfer Protocol Secure Incorporation 31

4.1.1 Components Communicating over public network 32

4.1.2 Certificate Creation ... 34

4.1.3 PEP proxy Identity Manager and Web Application

Modifications ... 41

4.1.4 Cassandra Directory Database Modifications 45

4

4.2 Authorization Code Grant, OpenID Connect and Single Sign-On

Implementation ... 51

4.2.1 Authorization Code Grant Implementation 51

4.2.2 OpenID Connect, Signature Validation and Single Sign-On

Implementation ... 55

5. Performance Evaluation .. 63

5.1 Infrastructure for Conducting Experiments 63

5.2 Apache Bench Tool .. 64

5.3 Experiment 1 – HTTP vs HTTPS ... 65

5.4 User login to remote cloud node utilizing the Single Sign-On (SSO)

functionality .. 68

5.4.1 Experiment 2 – Request for authorization code while SSO is

utilized for user login to remote node ... 69

5.5.2 Experiment 3 – Exchange of authorization code for access token

and id token while SSO is utilized .. 71

5.6 Experiment 4 – RSA Encryption Algorithm Evaluation 73

5.7 Experiment 5 – Elliptic Curve Encryption Algorithm Evaluation . 74

5.8 RSA and Elliptic Curve Encryption Algorithms Comparison 76

5.9 Experiment 6 - Register Sensor to a Remote Node while SSO is

utilized .. 78

6. Conclusions .. 80

7. Future Work .. 82

5

1. Introduction

1.1 Motivation

Internet of Things (IoT) and cloud computing are two highly

interconnected technologies. The exponential use of sensors in industrial fields

such as energy, healthcare, building management, agriculture, and

transportation, as well as the introduction of smart devices facilitating daily

activities, have created a vast volume of information which needs to be stored

and processed via IoT applications. Due to its characteristics (scalability,

affordability, easy maintenance, and accessibility), cloud computing is an ideal

platform for deployment of IoT systems which collect, store, process, and

analyze IoT data. The majority of these IoT systems follow the principles of the

Service Oriented Architecture (SOA) and consist of independent services,

communicating over the network. That communication is based on the HTTP

protocol and is achieved by exchanging requests and responses between client

and server services. The client service makes a request for a resource using a

HTTP method (Get, Put, Post, Head, Delete) and the server service replies

accordingly. HTTP is based on the assumption that mutual trust exists between

the client and the server and has no built-in security measures to ensure

communication integrity. Moreover, the communicating services are unable to

verify each other’s authenticity. Consequently, messages can be intercepted by

malicious third parties (man-in-the-middle attacks), who can acquire valuable

and sensitive information such as user credentials, credit card numbers and

identification of the user. Furthermore, since there is no data validation, the

content of the messages can be altered, injected with malware, or redirected to

another malevolent service.

Encryption of the communication between two services is essential. In

addition, a safe channel and communication method must be established before

the exchange of the messages begins. These three components ensure that the

content of the messages will remain safe even if they get intercepted by a third

party, as they can not be read without possession of the decryption key.

6

Additionally, encoding guarantees that the messages have not been modified in

any way and, as a result, the messages can be discarded by the services if an

anomaly is detected. Another important matter that needs to be addressed is

service identification. Each service ought to provide a document verifying its

authenticity. In order for this document to be considered valid it must be signed

by an independent authority that all the services recognize and trust.

iZen is a federated IoT system that consists of a union of equipotent IoT

nodes that communicate over the network. Each iZen node leverages the

principles of Service Oriented Architectures (SOA) and is implemented as a

composition of RESTful micro-services [1]. iZen offers user and organization

management, data process storage, and management services, as well as

appropriate interfaces for IoT devices installation. iZen services are protected by

PEP-PROXY servers that allow access only to authorized users and services.

There are three parties of interests in iZen (system administrators, infrastructure

owners and customers). System administrators manage their IoT node and enlist

it in the iZen federation to make it discoverable from the other nodes.

Infrastructure owners register their sensors in a cloud node and sell the data they

collect. Finally, the customers can subscribe to sensors in order to receive

measurements. The current study uses iZen as the prototype and extends it, in

order to address the aforementioned issues.

1.2 Solution

Upgrading HTTP (HyperText Transfer Protocol) to HTTPS (HyperText

Transfer Protocol Secure) guarantees communication security. Each exposed

service creates a private key, encoded by a strong encryption algorithm, and a

certificate that includes information of the service owner (e.g. country, state,

corporation, email and domain name). The certificate is sent to a trusted

Certificate Authority (CA) which tests and verifies the information and proceeds

to sign it. At the beginning of the communication between the services, a

handshake is performed. During the handshake, the client and server service

will agree upon an encryption algorithm to be used. The server presents its

7

certificate in order to validate its identity. The certificate contains the server’s

domain name and the certificate authority that vouches for its authenticity. Finally,

the server provides a key for generation of the session keys, that will be used for

encryption and decryption, before the actual message transmission begins.

Aiming to minimize the risk of exposing user credentials and to enhance

user authorization and authentication, OpenID Connect and the authorization

code grant of OAuth 2.0 protocol were implemented in the web API of iZen. Upon

receiving a login request, the iZen web application now requests an authorization

code from Fiware Keyrock Identity Manager (IDM) and redirects users to its

graphical interface, which prompts them to input their email and password. After

a successful login, Keyrock IDM responds to the web application with the

generated authorization code. The web application makes a second request to

the IDM instantaneously, in order to exchange the received authorization code

with an access token and an ID token. IDM returns an access token to the web

application, alongside a scoped ID token in the form of JSON web token which

includes only the necessary user information. The iZen web application performs

signature validation when it receives the ID token in order to verify the

authenticity of the sender, and to ensure that the user belongs in a trusted iZen

node. Additionally, it extracts the necessary user information from the ID token

and binds them to the corresponding user session. This procedure is essential,

especially when Single Sign On (SSO) functionality is used for login to a remote

iZen node. In the aforementioned scenario, the web application will

communicate, for authorization and authentication of the user, with the IDM

located in the cloud where the user is registered.

Figure 1 presents an abstract view of services communication during

user login.

8

Figure 1: Abstract view of services communication

1.3 Contributions of the Work

The following summarizes the contribution of this work:

HTTPS protocol is enabled in iZen services that communicate over the

public network in order to encrypt the communication ensuring its security and

integrity.

User login and logout process is altered to follow the authorization code

grant type flow, hence the risk to expose user credentials is reduced.

OpenID Connect protocol is enabled which offers improved user

authentication and system security utilizing scoped id tokens and the signature

validation process.

SSO functionally is incorporated between the iZen nodes allowing users

to access remote nodes via their registered IDM account.

9

1.4 Structure

Chapter 2 provides the knowledge background required for

understanding this work and presents the software tools that are used for the

completion of this thesis.

Chapter 3 presents iZen’s system architecture and briefly explains the

functionality of each service.

Chapter 4 identifies the services where the communication occurs over

the public network thus the incorporation of the HTTPS protocol is necessary.

Additionally, it describes the procedure to generate TLS/SSL certificates, the

incorporation of the HTTPS and OpenID Connect protocols and the

implementation of authorization code grant type flow, signature token validation

and Single Sign-On functionality in the system.

Chapter 5 demonstrates how the added security measures and

certificate private keys that are generated by two different encryption algorithms

i.e., RSA and Elliptic Curve, which utilize different key lengths, affect the system’s

performance.

Chapter 6 summarizes the conclusions and Chapter 7 offers

recommendations for future work.

10

2. Background

2.1 HTTP

The Hypertext Transfer Protocol (HTTP) [2] is a stateless application

level request/response protocol that uses extensible semantics and self-

descriptive message payloads for flexible interaction with network-based

hypertext information systems. HTTP communication occurs over TCP [3] and

port:80 is the designated service port.

HTTP "client": is a program that establishes a connection to a server for the

purpose of sending one or more HTTP requests.

HTTP "server": is a program that accepts connections in order to service HTTP

requests by sending HTTP responses.

 A client sends an HTTP request to a server in the form of a request

message, beginning with a request-line that includes a method (GET, PUT, POST,

DELETE, HEAD, TRACE, OPTIONS, CONNECT, PATCH), Uniform Resource

Identifier (URI) [4], and protocol version. The request-line is followed by header

fields containing request modifiers, client information, representation metadata,

an empty line to indicate the end of the header section, and a message body

containing the payload body.

 A server responds to client requests by sending one or more HTTP

response messages, each beginning with a status line that includes the protocol

version, a success or error code, and textual reason phrase, possibly followed

by header fields containing server information, resource metadata,

representation metadata, an empty line to indicate the end of the header section,

and a message body containing the payload body.

11

2.2 HTTPS

The Hypertext Transfer Protocol Secure (HTTPS) [5],[6] extends HTTP,

by encrypting the communication protocol using Transport Layer Security (TLS)

[7] or its predecessor Secure Sockets Layer (SSL). As a result, HTTPS is

alternatively referred to as HTTP over SSL/TLS. HTTPS ensures data integrity

and privacy, and protects the communication against interception by third parties

(man-in-the-middle attacks). Furthermore, HTTPS provides authentication of

server services, and clients if opted by the server, by utilizing certificates.

Certificates contain information about the owner, the domain name of the service,

as well as a private key that was encoded using a strong encryption algorithm.

Servers send their certificate to a Certificate Authority (CA), i.e., highly trusted

third-party organizations, that verify the information and signs it, vouching for the

authenticity of the service. HTTPS communication uses a secure channel

utilizing the TLS cryptographic protocol and the designated service port is the

443.

The main difference between HTTP and HTTPS communication is the

TLS handshake that occurs after the TCP connection has been established and

before services start exchanging the actual messages. During the handshake,

the server and client discuss which TLS version and cipher suite [8] will be used

for encryption. Furthermore, the server service verifies its identity via its public

key and the digital signature of the TLS certificate authority. Lastly, the two

services generate session keys for symmetric communication encryption after

the handshake is over.

The TLS handshake steps while using (RSA), the most common key

exchange algorithm named after its creators Rivest Ron, Shamir Adi, and

Adleman Leonard, are presented below.

12

 1. Client initiates the handshake with a ClientHello message that

contains the TLS versions and cipher suites, that client supports, as well as a

string of random bytes known as the Client Random.

 2. Server responds with a ServerHello message that contains its

certificate, its choice for TLS version and cipher suite that will be used for the

communication, and a Server Random, its string of random bytes. Optionally,

server may request for the client’s certificate. If server and client are not

compatible a Handshake Failure message will be sent instead.

 3. Client proceeds to verify the server’s certificate with the authority

that issued it and responds with its certificate if requested; client will send an

empty certificate if he does not possess one. This process guarantee’s server

authenticity.

 4. Server verifies client’s certificate. If it receives an empty or invalid

certificate, it may choose to continue the communication or interrupt it and

respond with Handshake Failure message.

 5. Client sends another random string of bytes, called the “Premaster

Secret”, which is encrypted using the public key obtained from the server’s

certificate and can only be decrypted using the server’s private key.

 6. Server proceeds to decrypt the Premaster Secret.

 7. The two sides generate session keys from the Client Random, the

Server Random and the Premaster key. The generated session keys should be

identical for both sides.

 8. Each side sends a Finished message that is encrypted with the

session key and validates the message that it receives from the other side.

 9. Handshake is completed and secure symmetric encryption has

been achieved. From this point forward, communication will be encrypted using

the session keys.

13

 When the communication ends, the client has to send an “end of

communication” message, otherwise the server assumes that an error has

occurred.

 Figure 2 visualize the handshake between a client and a server.

 Figure 2: Client and Server Handshake

14

2.3 OAuth 2.0

OAuth 2.0 [9] is an open standard authorization protocol used to provide

secure delegated access to client applications while protecting user’s

credentials. Authorization servers act as an intermediate between client

applications and end users, issuing access tokens to client applications, in order

for them to access protected resources. Identity managers issue access tokens

only after successfully authenticating the resource owner (end user) and acquire

authorization.

2.4 OpenID Connect

OpenID Connect [10] builds on the OAuth protocol and extends it, by

utilizing scoped tokens to provide additional user authentication. When OpenID

Connect is incorporated, access tokens issued by an authorization server

include a scoped ID token. ID tokens contain information such as issuer’s identity,

issued and expiration time of the token and additional information controlled by

scopes, that the end user has accepted to reveal to the client application.

Moreover, OpenID Connect offers signature validation of the access tokens and

can facilitate Single Sign-On (SSO) functionality among different client

applications.

Role of HTTPS, OAuth2.0 and OpenID Connect in communication

All three protocols i.e., HTTPS, OAuth2.0 and OpenID Connect are

utilized in services communication as each one implements a distinctive function.

• HTTPS encodes the communication guaranteeing the security

and the integrity of the exchanged messages.

• OAuth2.0 provides access tokens for user authorization and

authentication in the system.

• OpenID Connect enhances the authentication by providing

scoped id tokens which contain additional issuer and user

information.

15

2.5 Service Oriented Architecture

Service Oriented Architecture (SOA) [11], [12] is a software design

pattern that defines principles based on which services can be used as

independent reusable modules, reachable over the network via a well formatted

interface. Each service performs a specific and explicitly defined function and

provides an interface that other services can use for communication. This

communication takes place using standard protocols (SOAP/HTTP or

JSON/HTTP) and without the need for human interaction or further code

alteration, thus facilitating easy access and fast integration into existing systems.

The main principles of Service Oriented Architecture (SOA) are

presented below:

Standardized Service Contract: Services ought to provide a

description of their functionality for the other application services.

Service Autonomy & Abstraction: Services control their functionality

and how it is implemented but conceal code logic from other services.

Loose Coupling: Services must depend on each other as little as

possible, so that any service functionality modification does not hinder the

functionality of the whole application.

Service Reusability & Composability: Application logic must be

broken down into smaller pieces so that each service implements a certain

functionality and can be reused by another system to fulfill the same purpose.

Conversely, services must be able to be combined in order to create a single

application.

Service Interoperability: Service interfaces must include common

communication standards, so that they can be used by a diverse set of

subscribers.

16

2.6 iZen System

iZen is a federated IoT system that consists of a union of equipotent IoT

cloud nodes that communicate over the network. Each node represents a

different organization. Each member organization can improve their offered

services and increase their potential profit, on the basis of information exchange.

Node administrators control the information they share and only authorized

users are able to access their system. There are three parties of interest that

interact in iZen:

System administrators: are responsible for the proper functioning of

their system and monitor its operations. They perform Create, Read, Update,

Delete (CRUD) operations on users and assign appropriate roles and

permissions to them. Lastly, they register their node to the federation to make it

discoverable by other nodes.

Infrastructure Owners: possess IoT devices which they can install and

register on a cloud node, after receiving the appropriate permission by system

administrators. Registered devices are discoverable by all iZen nodes.

Infrastructure Owners aim to sell data and data management services to

customers.

Customers: subscribe to one or more cloud nodes. They can discover

and select IoT devices that interested them and get notified about their

measurements. In addition, they can acquire data management services

provided by Infrastructure Owners.

iZen nodes are independent, expandable, and secure by design, as

each individual service is protected by a Policy Enforcement Point PEP-PROXY,

conjointly with a Policy Decision Point in case more complex policy rules are

required. Nodes leverage the principles of Service Oriented Architectures (SOA)

and are implemented as a composition of RESTful micro-services by combining

17

well known technologies such as PHP, HTML and JSON with databases

(Cassandra, MySQL, MongoDB) and Generic Enablers. The latter are reusable

components able to execute specific functionalities and they are accessible via

APIs that include standard communication protocols. They are provided by

FIWARE [13], an open source platform that aims to contribute in the

development and implementation of future internet services and applications.

 Popular FIWARE Generic Enablers, that are incorporated in the iZen

architecture, are briefly discussed hereafter.

FIWARE Orion Context Broker

Gartner defined context broker as a “service designed to gather

reachable context data of a variety of types, sources and velocity. It then applies

conditioning, integration, rules and analytics to derive the reduced prepared

context data, actionable at a point of business decision by a system or a human.”.

Orion is FIWARE’s implementation of a Context Broker [14] and

constitutes the cornerstone of each FIWARE component architecture. It is a

NGSIv2 [15] server implementation that manages context process and

distribution. Clients can query, update, and register context information or they

can subscribe to receive notifications upon designated context change.

FIWARE Keyrock Identity Manager

Identity managers (IDMs) are frameworks consisting of technologies

and policies responsible for assigning digital identities to entities (physical users

or services). They guarantee that only authenticated and authorized individuals

can access protected resources if certain conditions are met.

18

Fiware Keyrock [16] Identity Manager is the core of system’s security

and alongside PEP-PROXY Wilma and PDP AuthZforce, it can incorporate

security authentication and authorization in a system. Keyrock connects other

components at application level and enables them to use standard

authentication mechanisms in order to accept or reject requests based on

industry standard protocols.

The main services offered by Keyrock’s API are:

• User account creation and secure information management.

• Application/service registration and declaration of trusted

applications, organizations, and users. Activation of

communication protocols or technologies that the application

accepts at requests.

• PEP-PROXY registration alongside a policy rule set, in order to

protect application access points and allow only authorized

authenticated access.

• Organization creation and management. Assigning roles and

appropriate permissions to members.

FIWARE PEP PROXY Wilma and PDP AuthZForce

PEP proxies are application endpoints placed in front of individual

services or resources in order to protect them from unauthorized access. PEP

proxies intercept client requests to the service and perform authentication before

permitting or denying access.

For more sophisticated access control, PEP proxies can be combined

with Policy Decision Points (PDP). After intercepting a request to the protected

service, PEP sends the client’s attributes to a PDP which in turn takes the

decision to permit or deny access based on relevant registered access policy

rule sets. Afterwards, PDP returns its decision to PEP, in order for it to enforced.

19

FIWARE’s generic enablers PEP proxy Wilma [17] and PDP AuthZForce

[18] are combined with Keyrock IDM to perform advanced access control to

backend services. Keyrock’s API enables registration of PEP proxies to secure

services. It also facilitates creation of access policy rule sets based on the

XACML [19] standard, that utilized by PDP AuthZForce to assess Permit/Deny

policy decisions.

FIWARE Short Time Historic Database Comet

Comet [20] is a Short-Term Historic (STH) database build on top of

MongoDB. Comet is responsible for managing historical raw and aggregated

context data registered in an Orion Context Broker instance.

Communication between the Comet database and the Orion Context

Broker uses standardized NGSI interfaces.

FIWARE Cygnus

Cygnus [21] is an intermediate in charge of persisting context data from

Orion (which is a NGSI source of data) into STH Comet or other third party

database that accept NGSI-like context data, in order to create a historical view

of the context. Cygnus accepts NGSI data flows and stores them to their

predefined appropriate databases.

Cassadra

A key component of iZen’s architecture is the Cassandra [22] database.

Cassandra is developed by Apache Software Foundation and is a distributed

NoSQL database ideal for creation of clusters that replicate and share data

between nodes, offering high data availability while guaranteeing no single point

of failure. In each iZen cloud node, a Cassandra node exists that manages data

and enables search by the registered users.

20

2.7 Docker

Docker [23] is an open platform offering containerization of applications.

It separates applications from infrastructure, as each application is packaged in

a loosely isolated environment, called a container, alongside its required libraries

and dependencies. Thus, docker guarantees application interoperability, while

simultaneously allowing multiple containers to run in the same host without

interfering with each other, as shown in Figure 3.

Basic concepts of Docker are explained below.

Docker Image [24] : is the building base of a docker container.

Developers can create their own images or use and extend images shared by

other developers at public registries such Docker Hub.

Figure 3: Docker Containerized Applications

21

Dockerfile [25] : is a text document used by docker to automatically

build images. It contains all necessary instructions that are needed to assemble

an image, in the form of commands. The commands are executed during the

container creation.

Docker Container [26] : is a standardized unit containing all necessary

libraries, dependencies and environmental variables of an application or service.

It represents an instance of a running image.

Docker Volume [27] : is a mechanism for storing persistent data to be

exchanged between a container and the host. Volumes create a link between a

directory of the container and the host machine, enabling the sharing of stored

data. Even if the container is deleted, volumes remain intact and can be bound

to another container.

Docker Compose [28] : is a tool for specifying and running applications

comprised of multiple containers. Compose utilizes a YAML file that defines a

container’s configuration, inter-connection, volumes and needed environment

variables. By utilizing docker compose, developers are able to deploy multi-

container applications with a single command.

22

3. iZen Federated IoT Architecture

iZen cloud nodes are deployed on Virtual Machines (VMs) that use the

OpenStack platform. Each VM contains a docker that encloses iZen’s system

services in individual containers. An iZen node can be reached by users or other

nodes via its provided public IP address.

iZen’s system containers are deployed utilizing the docker compose tool.

Docker’s compose YAML file defines the base image used to create each service,

the environment variables to pass inside the containers, and the necessary

volumes bound to the containers. A private network needs to be created which

will be used by containers for communication. Furthermore, a private IP address

is assigned to each individual container. Finally, the YAML file describes the

mapping of the services. The ports available for requests from users or other

services are declared for each container. Docker provides two different port

mechanisms for interaction with its container, the publish and the expose

mechanism. The publish mechanism enables the assignment of ports to the

containers, which are available for requests from outside the Docker. The expose

mechanism allocates ports to each container, used for inter-container

communication, via Docker’s private network.

Consequently, users and node system services can send requests to a

service (container), located in a remote cloud node, via the node’s public IP

address followed by container’s publish port. Containers located in the same

node, utilize private addresses alongside the exposed ports to communicate

inside the established private network of the Docker.

23

3.1 iZen Architecture

 Figure 4: Mapping of iZen services

3.1.1 Front-End Services

Front-end services provide graphical interfaces to facilitate the

interaction of cloud users with the iZen node. These services are accessible via

the node’s public IP and their assigned published port. Communication between

these services and the users occurs over the public network.

All front-end services, except from the Identity Manager, are

implemented from a newly created Dockerfile. The basic image for the Dockerfile

is 7.1.11-apache acquired from the official repository of PHP. The Dockerfile

contains an implementation of Apache web server version 2.4.10 and the

libraries for the programming language PHP version 7.1.11 which is used to write

24

the HTML pages that are served to the users from the front-end services.

Additionally, the drivers to support communication with the Cassandra database

utilizing PHP 7.1 were installed from DataStax [29]. Lastly, the ports where

Apache web server accepts requests were exposed.

The functionalities of each front-end service are briefly mentioned

hereafter.

Web application

The web application is the Login endpoint of each iZen cloud node.

Users select the cloud node on which they are registered and are redirected to

the graphical interface of the node’s Keyrock IDM in order to fill in their

credentials. After successful authentication Keyrock redirects them back to the

web application where they can choose to access either the customers portal or

the infrastructure owners portal corresponding to their role in the iZen cloud node.

When users select a portal, a role check is performed in order to verify that the

user is authorized to access it. Portals are intermediate HTML pages, between

the web application and the provided services, which display the available

actions for each group of users and redirects them to the corresponding service.

Register Service

The register service provides a graphical interface that can be used by

Infrastructure Owners, Admins and Customers to perform the following actions.

• Infrastructure Owners can register their sensors by filling the

necessary information, i.e., id, name, owner’s details and the type

of measurements that the sensor provides. Register service

inserts the data to the cloud’s Cassandra node so that the sensor

can be discovered by interested Customers.

25

• Customers can subscribe to selected sensors to receive

measurements. Register service updates customer’s

subscription list in the Cloud’s Cassandra node.

• System Administrators can fill their nodes information, i.e.,

location, public IP, and owner’s information, in order to register it

in the iZen federation and make it discoverable to users.

Administrators must acquire authorization to be permitted to

register their node.

Query Service

Query service constitutes a search engine that enables users to discover

sensors and cloud nodes via its provided graphical interface.

Query service offers fast and easy search by enabling users to filter by

cloud node and type of sensor measurement. Before the search begins a

permission check is performed to verify that the user is authorized to view the

requested cloud’s sensors. If the user is authorized, query service retrieves the

appropriate sensors from the Cassandra node.

Additionally, users can utilize the service to discover the available cloud

nodes registered in the federation and request to subscribe to any of them. A

request for subscription is sent to the cloud’s node administrator and if he/she

approves it, the user can query for the sensors registered in that cloud node.

History Service

History service acts as an intermediate between Comet and the users

by providing a graphical interface to interact with it.

Customers and Infrastructure Owners can select from the sensors they

are subscribed to or provide and receive historical measurements. Users can

specify a time frame that interests them or choose a specific metric of

26

measurements, e.g., max temperature during a month or average humidity of

the week.

Sensor Interface Service

Sensor interface service acts as an intermediate between IoT-Agent and

the Infrastructure Owners and enables them to install their sensors in their

registered cloud.

Infrastructure Owners fill the characteristics of their sensor in the

graphical interface and provide the necessary drivers for their sensor’s

functionality. Sensor Interface service proceeds to pass the information to the

IoT-Agent to complete the installation.

Identification and Authorization Service

The Identification and Authorization Service is implemented based on

FIWARE’s Keyrock IDM image. It orchestrates system authentication and

authorization in services based on the OAuth 2.0 protocol. Via its provided

graphical interface users can perform the following actions:

Administrators: register their node’s services in Keyrock IDM and

declare which services and group of users may have access to them. They can

declare which technologies are enabled for communication with the service and

add a PEP-PROXY to protect it. Furthermore, they can write rule sets in form of

XACML for the Policy Decision Point AuthZForce to assess the requests for

access in each service protected by a PEP-PROXY. Finally, administrators

define the groups of users that exist in their node and are able to register users

in their system and assign them roles and their corresponding permissions.

Customers / Infrastructure Owners: create an account and manage

their personal information through Keyrock’s graphical interface. They have to

make a request to the system administrator in order to join the cloud node. The

request contains the intended role they want to receive; the available roles are

customer or infrastructure owner. If the administrator accepts it, they are added

27

to their desired group of users and automatically receive the permissions that

correspond to their group.

3.1.2 Back-End Services

Back-end components implement the core functionalities of an iZen

system, i.e., data management, storage and retrieval, as well as incorporation of

authentication and authorization into the system. These components are based

on images provided by FIWARE’s official repository, excluding the two MongoDB

and the MySQL databases which are based on their own images acquired from

the respective official DockerHub repositories. An exception, is the directory

database, Cassandra, which is installed directly into the cloud VM and not inside

a docker container. Although Cassandra is a back-end component, it may

communicate with Cassandra nodes from other clouds via a public network, to

exchange data.

Publish/Subscribe Service Orion

This service is implement based on the Orion Context Broker image

provided by FIWARE. It is responsible for managing entities based on the NGSI-

2 model. Orion receives a HTTP request when a sensor is register in the cloud

through the IoT-Agent. It creates a sensor entity with the requested

characteristics and stores it in MongoDB. Orion subscribes to the cloud’s

sensors, in order to receives notifications when the context is altered, and

proceeds to inform all subscribers of the particular sensor about the relevant

change. Finally, if a customer receives authorization and subscribes to a sensor

installed in a remote cloud, Orion proceeds to subscribe to that cloud’s Orion

instance, in order to receive context changes of the sensor and to inform its

customer.

28

Sensor Data Storage Service Cygnus

This service is implement based on the Cygnus image provided by

FIWARE. It utilizes a specialized agent compatible with MongoDB that receives

stream flows of data in the NGSI format from Orion Context Broker and proceeds

to forward and store them in the historic MongoDB database. The Cygnus-

specialized agent subscribes to each of Orion’s sensors, so that when a

measurement change occurs it gets notified. Upon notification, the agent

receives and stores the data in raw and aggregated form in its designated

database.

Historic Data retrieval Service Comet

This service is implement based on the Comet image provided by

FIWARE. It combines individual time-stamped context data of an entity, that are

stored in historic database, in order to create historic view. Moreover, via its

RESTful API, it accepts request from the Historic service and retrieves raw and

aggregated data from the database.

Authorization Policy Decision Point

This service is implement based on the AuthZForce image provided by

FIWARE. It is responsible to assess requests from cloud users to access

protected services.

AuthZForce receives a REST request whenever an administrator

creates a policy rule, based on the XACML standard, for a PEP proxy and stores

it in a different domain for each PEP. Afterwards, whenever a PEP forwards a

request for access from a user, PDP checks the rule sets registered in PEP’s

corresponding domain in order to Permit or Deny access.

29

Policy Enforcement Point Proxy Server

This service is implement based on the Wilma image provided by

FIWARE. The role of Policy Enforcement Points is to ensure that only authorized

users or services are able to access protected services. There are two operating

scenarios of PEP proxies:

The first scenario occurs when a PEP is an intermediate in the

communication of two services. The requesting service must include the master

key in the header of the request, in order to be authorized by PEP to access the

service. The master key is a secret that was defined by the administrator of the

cloud during PEP’s creation and each PEP has a different one.

In the second scenario, PEP proxy intercepts the request of a user to

the service. In this case, the collaboration of PEP with the Identity Manager and

the PDP is necessary to ensure user authentication and authorization. Initially,

PEP proxy receives a request for access from a user that includes an OAuth2

token in the header. An OAuth2 token is created during the user’s login in the

system by the IDM and represents the identity of the user and that he/she is

authenticated by the IDM. PEP exports the token and sends it to IDM for

validation. IDM verifies token validity using its database and responds with the

user’s role in the organization. Afterwards, PEP forwards the user’s role

alongside the desired action and the path of the protected resource to PDP to

evaluate them. PDP checks the rule sets inside the domain corresponding to the

PEP in order to make a decision to Permit or Deny the request. Finally, PDP

returns its decision to PEP which enforces it.

30

Figure 5:Workflow of authorization of a user’s request

31

4. Implementation

iZen’s system services support the HTTP/1.1 protocol for

communication. Incorporation of the HTTPS protocol may introduce delay in

iZen’s system performance. It is essential to recognize points in the iZen system

where communication occurs over public networks, i.e., points vulnerable to

attacks, as well as points where communication is safe as it is encapsulated

inside the iZen system.

This chapter presents the necessary modifications that need to be made

in the YAML file of iZen, the necessary configuration for each service, as well as

the procedure to generate certificates and encryption keys in order to enable

communication over the HTTPS protocol wherever it is necessary. Furthermore,

it explains how the authorization code flow of the OAuth 2.0 protocol and OpenID

Connect were incorporated in the iZen system for authorization, authentication

and additional security. Finally, utilizing OpenID Connect, token signature

validation and Single Sign-On (SSO) is enabled through the iZen nodes for the

users.

4.1 HyperText Transfer Protocol Secure Incorporation

This section presents the necessary steps to incorporate HTTPS into

the system. Parts where the communication occurs over public networks are

pinpointed, so that they can be subsequently addressed, in an effort to prevent

attacks to the system. Furthermore, the procedure for certificate generation,

which are utilized during communication, is demonstrated. Lastly, the

modifications inside the docker’s compose YAML file that took place in order to

enable communication over HTTPS are presented.

32

4.1.1 Components Communicating over public network

Communication of iZen components is based on the HTTP/1.1 protocol.

Due to this, upgrading to HTTPS introduces delay in the system’s performance.

It is essential to recognize and enable HTTPS only for components whose

communication occurs over public network, in order to ensure security without

heavily affecting performance. The components are presented hereafter.

Front-End Policy Enforcement Points Proxy Servers

PEP proxies (1,2,3 and 7), as shown in Figure 4, are stationed in the

front-end. They ensure that only authenticated and authorized users are

permitted to access the graphical interfaces of protected services. In a typical

scenario, PEP receives a request from a user over the public network, confirms

with the PDP and the IDM that the user is authorized, and in the end forwards

them to the service through docker’s private network. When SSO is utilized to

access the node, PEP will communicate with the remote IDM to validate the

guest user’s access token.

Identification and Authorization Service Keyrock IDM

The graphical interface of the service is reachable through the public

network so that administrators can manage their system and users are able to

create their account and request entry to their desired group (customers or

infrastructure owners). When registered users utilize the Single Sign-On

functionality to access a remote iZen cloud, remote services request, through

the public network, for an Oauth2 token to authenticate the user. The

aforementioned function is described in detail in section 4.2.2.

33

Web application

Web application comprises the gateway to the iZen system, allowing

user access through the provided graphical interface, over public networks. The

web application authenticates the users and creates a user session with the

necessary parameters for the system functionalities. Furthermore, the web

application redirects users to the appropriate service, where they can perform

their desired actions, if they are authorized to access the service. Consequently,

incorporation of the HTTPS protocol in the web application is necessary.

Directory Database Cassandra

Directory database Cassandra is a back-end component accessible by

the cloud’s services through the docker’s private network. Although it is a back-

end service, in order to perform its function, it is necessary to communicate for

data exchange with the Cassandra node, placed in each iZen cloud. The inter-

node communication occurs over the public network; thus, incorporation of

TLS/SSL is essential.

Figure 6 presents the mapping of system’s services. Red-colored lines

indicate communication occurring over public networks where HTTPS protocol

must be enabled, while green-colored ones indicate communication through the

private network that occurs over HTTP.

34

4.1.2 Certificate Creation

Certificates are core components of the HTTPS communication. They

digitally bind an organization name with an encryption key and can be presented

to client services to validate the authenticity of the server service. Each server

service has to own a certificate in order to be able to communicate over the

TLS/SSL protocol. A certificate verifies the owner of a domain and can be used

by multiple services in that domain.

 Figure 6: Distinction between public and private network communication

35

OpenSSL can be utilized for the creation of Certificate Authorities (CA),

cryptographic keys, certificate sign requests, and finally the certificates.

OpenSSL [30] is an open source toolkit that includes various cryptography-

related libraries and allows users to perform TLS/SSL tasks in the form of

terminal commands

 Private Certificate Authority Creation

In this thesis, certificates are used for research and not for production

purposes. For that reason, an official well-known CA is not needed and instead

a private CA is used for signing certificate requests in order to subsequently

generate certificates.

The first step for the creation of a private CA is the generation of a private

key. Afterwards, a Certificate Sign Request (CSR) is generated, that contains all

essential information of the certificate authority. Finally, the private key is used

to self-sign the CSR in order to create the CA certificate. In this thesis, the above

actions are implemented through CLI commands, using the OpenSSL toolkit.

The steps for the certificate authority creation and the parameters used

in each command are described below.

Certificate Authority’s Private Key Generation

Initially, the private key of the certificate authority is generated using the

CLI command:

openssl genpkey -algorithm RSA -des3 -out CA-private-key.pem

-pkeyopt rsa_keygen_bits:4096

• genpkey: OpenSSL command to generate a private key with the given

parameters.

• -algorithm RSA: specifies which algorithm will be used for the public

key generation. RSA is the standard algorithm for creation of

36

encryption keys. Other popular algorithms are RSA-PSS, EC,

ED25519.

• -des3: indicates that OpenSSL must encrypt the private key utilizing

the Triple Data Encryption Algorithm (3DES) [31] which applies the

Data Encryption Standard (DES) [32] algorithm three times to each

block of data. 3DES ensures that the key will remain safe even in the

occasion that is stolen by a third party as it can not be used without

decryption. When OpenSSL executes this command, it prompts the

user to provide a password to be used.

• -out CA-private-key.pem: indicates where the produced key with be

stored; the file CA-private-key.pem is used in this case. PEM is the

most common format to store certificates and their keys. The content

of the file is Base64 Enconded ASCII. Other popular formats are DER

and PKCS#12. OpenSSL provides the necessary commands to

convert one format to another, if a service requires a specific format.

• -pkeyopt rsa_keygen_bits: 4096: specifies the length of the generated

key in bits; 4096 bits in this case. Encryption algorithms and key sizes

affect system performance during communication. Different

encryption algorithms require different key lengths to provide the

same level of security.

Certificate Sign Request Generation

After generating the private key, a certificate sign request (CSR), that

contains the necessary information of the domain owner, and the public key must

be created and sent to an official CA. The CA reviews and confirms the included

information and proceeds to digitally sign it, vouching for its validity. This

procedure creates a certificate chain; meaning that each certificate is signed by

a trusted CA. The command to generate the CSR is presented below.

openssl req -new -key CA-private-key.pem -out CA-csr.pem

37

• req: OpenSSL command for CSR creation. The generated CSR is in

PKCS#10 binary format which is compatible with the X.509 format

that will be used for the certificates.

• -new: generates a new CSR and prompts the user to fill the

necessary information.

• -key CA-private-key.pem: Designates the path of the file containing

the private key

• -out CA-csr.pem: Designates the output file of the command.

When the previous command is executed, OpenSSL requests from the

user to fill the following information that will be included in the CSR and the

certificate.

Country Name: The official two letter code of the country where the

organization is located.

State or Providence Name: The full name of the state or the

providence where the organization is located.

Locality Name (e.g., city): The city where the organization is

located.

Organization Name (e.g., company): The full name of the

organization.

Organization Unit Name (e.g., section): The department of the

organization.

Common Name (e.g., fully qualified host name): The fully

qualified domain name that the certificate will bind to. Alternatively,

user may fill the public IP address of the host.

Email address: The email address of the host owner.

The host owner may choose to left some of these fields blank but some

client services might consider the certificate invalid if it has empty fields.

38

Self-Signed Certificate Generation for the Certificate Authority

When an official CA receives a CSR, it reviews the included data and

verifies that the host actually owns the relevant domain name that it received.

The CA then proceeds to generate a certificate for the client that includes the

digital signature of the CA. Finally, the CA sends the certificate to the client.

In order to create a certificate for the private CA that is used in this thesis,

the CSR is signed by the private key that was previously generated. Thus, the

private CA will have a self-signed certificate. In section 3.2.3 it is explained how

the certificate of the private CA can be stored in the designated directory inside

each service, alongside the certificates of the well-known CAs, in order to

validate the created certificates during communication between services.

For the generation of the self-signed certificate the following OpenSSL

command is used.

openssl x509 -in CA-csr.pem -out CA-certificate.pem -req -

signkey CA-private-key.pem -days 365

• x509: OpenSSL command for certificate generation following the

x509 standard. A certificate based on the x509 format contains a

public key and the information of the owner. It is digitally signed by a

CA or it can be self-signed. The x509 command of OpenSSL can be

used to decode a x509 certificate in order to see its content.

• -in CA-csr.pem: indicates the certificate sign request file.

-out CA-certificate.pem: indicates the output file where OpenSSL will

store the certificate as well as its format.

• -req: indicates to OpenSSL that the input is a certificate sign request.

• -signkey CA-private-key.pem: indicates the key to be used to self-

sign the certificate sign request.

• -days 365: indicates that the certificate is valid for 365 days. A

certificate can be created to be valid for up to three years (1095 days).

39

When the certificate expires, the owner must make a renewal request

to the CA that signed it, or create a new certificate.

Services Certificate Creation

OpenSSL provides various algorithms for the private key generation. In

this thesis, two different encryption algorithms are studied, Rivest–Shamir–

Adleman(RSA) [33] and Elliptic-Curve (EC) [34]). The influence of the two

algorithms in system performance, during HTTP communication over TLS/SLL,

is quantitatively measured and compared through a series of experiments.

Services Private Key Generation

For the generation of service private keys, utilizing the RSA algorithm,

the same OpenSSL command is used as in the section about the certificate

authority’s private key creation. The only difference is the name of the key.

openssl genpkey -algorithm RSA -des3 -out Service-private-

key.pem -pkeyopt rsa_keygen_bits:2048

For creation of private keys utilizing the Elliptic Curve algorithm, the

following OpenSSL command is used:

openssl ecparam -genkey -name prime256v1 -out Service-private-

key.pem

• ecparam: indicates to OpenSSL to generate elliptic curve parameters,

which are used by the ECC algorithm.

• -genkey: is the OpenSSL command to generate a private key with the

given parameters.

• -name prime256v1: indicates to OpenSSL which elliptic curve to use

and the number of the bit prime field. Bit prime field is the length of

the private key.

• -out Service-private-key.pem: indicates to OpenSSL where to store

the generated private key and in which format.

40

Services Certificate Sign Request Generation

After creating the service private keys, a CSR, containing the public key

and the information of the service owner, must be created. The CSR is sent to

the private CA in order to be signed. The same OpenSSL command is used as

in the section about the certificate authority’s CSR creation. Of course, this time

the private key of the service is provided.

openssl req -new -key Service-private-key.pem -out Service-

csr.pem

Similarly to the previous usage of the command in this thesis, OpenSSL

prompts the user to fill the necessary information of the service owner. In the

field of the fully qualified domain name, the public IP of each VM in OpenStack

that hosts an iZen system is declared.

Services Certificate Generation

Finally, for certificate generation, the CSR must be signed by the private

CA. The below OpenSSL command is used for this task.

openssl x509 -req -in Service-csr.pem -CA CA-certificate.pem -

CAkey CA-private-key.pem -CAcreateserial -out Service-cert.crt -days 365

Compared to the OpenSSL command used to create the CA’s certificate

the following parameters have been added.

• -CA CA-certificate.pem: indicates to OpenSSL the CA certificate that

will be used to sign the CSR.

• -CAkey CA-private-key.pem: indicates to OpenSSL the private key

of the CA that will be used to sign the CSR.

• -CAcreateserial: provides a unique serial number to the generated

certificate. Each certificate issued by a CA must contain a serial

number.

41

Figure 7 below demonstrates the content of a certificate after it has been

decoded utilizing the x509 command of the OpenSSL.

The generated certificates and private keys must be installed in the

designated store of each service.

4.1.3 PEP proxy Identity Manager and Web Application
Modifications

The PEP proxy servers and the identification and authorization service

are implemented in containers based on images provided by FIWARE. During

the creation of the containers, the necessary modules for HTTP communication

over TLS/SSL are installed but they are not enabled as HTTP is the default

protocol for service communication.

FIWARE provides specified environment variables that facilitate the

containers inter-connection and the enabling of the HTTPS protocol in these

Figure 7: Service certificate content with a 512-bit RSA Public-key

42

services. The environment variables are declared in the YAML file that the

docker compose tool uses for the creation of the containers and their values are

passed in the configuration file of their service, when the container is created.

In order to incorporate the HTTPS protocol in the communication of the

services, the modules responsible for HTTPS must be enabled. Moreover,

HTTPS-specific port declaration is necessary. As the certificates and the private

keys are persistent data, volumes have to be mounted in the appropriate

directories of each service.

Identity Manager’s Modifications

Initially, the identity manager is configured, via the provided environment

variables located inside the YAML file, to use the HTTPS protocol for

communication over the public network and HTTP for the communication inside

the docker. The utilized environment variables are mentioned below.

- IDM_HTTPS_ENABLED=true: enables the module inside the

container of IDM that is responsible for HTTPS communication.

- IDM_HTTPS_PORT=3443: declares the published port that only

accepts request based on the HTTPS protocol. The graphical and the REST

interface of IDM will be reachable through the public network via this port.

- IDM_PORT=3005: declares the exposed port that will be used by the

services to reach IDM through the private network. This communication occurs

over the HTTP protocol.

After declaring the environment variables, it is necessary to publish the

HTTPS-communication port and expose the HTTP port in the YAML file.

expose:

- “3005”

ports:

- “3443:3443”

43

As a last step, two new volumes must be created. The first volume is

mounted in the directory where the service stores the CA certificates. The

second volume is mounted in a new directory in order to store the service’s

certificate and private key. The volumes need to be declared in the YAML file.

volumes:

./CAcert:/etc/ssl/certs

./IDMcert:/opt/fiware-idm/certs

CA’s certificate is placed inside the CAcert file of the VM while the

service’s certificate and private key are stored in the IDMcert file.

PEP Proxy Modifications

The front-end PEP proxies (1,2,3 and 7) as shown in Figure 4 must be

modified to accept HTTPS requests via the public network, decode them, and

forward them to their protected service. These PEPs communicate, via docker’s

private network, with the identity manager and the policy decision point, in order

to provide authentication and authorization of the users.

The necessary changes are implemented in the YAML file utilizing the

environment variables below.

• -PEP_PROXY_HTTPS_ENABLED=true: enables the module

inside the container of the PEP that is responsible for HTTPS

communication.

• -PEP_PROXY_HTTPS_PORT=: indicates the PEP’s HTTPS

port that receives requests through the public network.

• -PEP_PROXY_APP_SSL_ENABLED=false: indicates that

PEP’s protected service does not communicate over the SSL

protocol, thus the requests must be decoded by the PEP before

it forwards them to the service.

• PEP_PROXY_PORT=: indicates the PEP’s HTTP port used for

communication through the docker’s private network.

44

• PEP_PROXY_IDM_SSL_ENABLED=false: indicates that the

communication between the PEP and the IDM will not occur over

SSL.

• PEP_PROXY_IDM_PORT=3005: indicates IDM’s HTTP port.

• PEP_PROXY_AZF_PROTOCOL=http: indicates that the PEP

will communicate with the AuthZForce PDP over the HTTP

protocol.

PEP’s HTTPS port must be published, in order to receive HTTPS

request through the public network, and the HTTP port must be exposed for the

inter-container communication. Furthermore, the creation of two volumes is

necessary for storage of the CA’s certificate and the private key and certificate

the of the PEP.

volumes:

./CAcert:/etc/ssl/certs

./PEPcert:/opt/fiware-idm/cert

Web Application Modifications

The necessary modifications to enable communication over SSL/TLS in

the web application are implemented in the Dockerfile that is used to create the

web application image and in the docker-compose.yaml file that creates the

containers of the iZen node in the docker.

Inside the Dockerfile, two additional commands have been added. The

first one “RUN a2enmod ssl” enables the Apache web server module responsible

for handling SSL/TLS communication. The second command “RUN a2ensite

default ssl” indicates to the Apache web server to utilize the default-ssl.conf file

for the site. The configuration file has been altered to indicate the path to the

previously generated service certificate and key. Finally, port 443 is exposed,

which is the designated port to handle HTTPS requests.

45

The file docker-compose.yaml file must also be altered. The HTTPS port

443 is published in order for the container to receive HTTPS requests from the

users through the public network. Three additional volumes, shown below, are

mounted in the container, for storage of the service key, service certificate, and

CA’s certificate.

volumes:

./CAcert:/etc/ssl/certs

./ServiceCert/private:/etc/ssl/private

./ServiceCert/cert:/etc/ssl/certs

4.1.4 Cassandra Directory Database Modifications

Cassandra database uses SSL/TLS certificates to offer client-to-node

encryption and node-to-node encryption. In iZen’s system client to node

communication occurs via the secure private network, thus it will not be enabled.

Cassandra stores the CA’s certificate in a dedicated directory inside a

truststore file, and the node’s private key and certificate in a keystore file. It

secures these files by requiring a password to permit the access to them.

Consequently, a new CA certificate and nodes certificates must be generated

that will include the above passwords. For the generation of the certificates

OpenSSL toolkit is used. Afterwards, java keytool [35], a tool provided by java

that facilitates certificate and key management, is utilized to place the CA’s

certificate in a truststore and the node’s private key and certificate in a keystore

and then deposit them to their respective directories.

The procedure to enable node-to-node encryption is described below.

46

Cassandra’s Certificate Authority Creation

Initially, a configuration file is created that defines the key pair

configurations and includes a password and the necessary information of the CA.

This file is named CA.conf and its format and content is shown below.

[req]

distinguished_name = CA_DM

output_password = rootca_password

prompt = no

default_bits = 2048

[CA_DM]

C = CC

O = org_name

OU = cluster_name

CN =CA_CN

where:

• CA_DM: The distinguished name of the Certificate Authority

• rootca_password: The password for the generated file that will be used

to sign certificates. For this root CA the password will be cassandra.

• CC: The official two letter country code of the CA.

• org_name: The organization name of the CA.

• cluster_name: The name of the cluster that is formed from each

cassandra node in the iZen’s cloud systems.

47

• CA_CN: The common name for the root CA. For this CA the CN will be

CassandraCA.

After creating the configuration file, a private key and a self-sign

certificate will be generated utilizing the OpenSSL toolkit with the below

command.

openssl req -config CA.conf -new -x509 -keyout CAkey.key.pem -

out CAcert.crt.pem -days 365

The new parameter -config CA.conf indicates to Openssl to utilize the

information inside the configuration file to fill the fields of the CA certificate.

At last, utilizing the java keytool, a new truststore will be created that will

contain the CA’s certificate. This truststore have to be installed on each

cassandra node to verify incoming connections. Official CAs certificates are

preinstalled in truststores in the cassandra. The java keytool command to

generate the truststore and its parameters are explained below.

keytool -alias CassandraCA -keystore CAtruststore.jks -

importcert -file CAcert.crt.pem -keypass cassandra -storepass cassandra

-noprompt

• -alias CassandraCA: indicate the common name of the CA and is

used by the keytool for identification when importing the certificate in

the keystore.

48

• -keystore CAtruststore.jks: indicates the keystore name to be

created and the store type. The default store type is JKS while other

common types are JCEKS and PKCS12.

• -importcert: indicates to keytool to import the certificate file.

• -file CAcert.pem: indicates to keytool the file containing the

certificate.

• -keypass cassandra: The keypass that is used to protect the private

key.

• -storepass cassandra: The storepass that is used to access the

keystore.

• -noprompt: keytool automates the procedure and use the default

options in order to not prompt the user.

Cassandra’s node Certificate Generation

Each Cassandra node must own a certificate that is signed by the CA

and is store inside a keystore in the appropriate directory.

Java keytool is used for the generation of a private key and the certificate

for the node. Afterwards, the above pair is stored inside the keystore. Java

keytool’s command that implements the aforementioned tasks alongside its

parameters are described hereafter.

keytool -genkeypair -keyalg RSA -alias IZENnode1 -keystore

IZENnode1-keystore.jks -keypass cassandra -storepass cassandra -

validity 365 -keysize 2048 -dname “CN=IZENnode1, OU= IZENcluster,

O=IZEN, C=GR” -ext “san=ip:node_ip_address”

• -genkeypair: keytool command for the generation of a private key

and a certificate with the mentioned parameters.

• -keyalg RSA: indicates to keytool to use the RSA algorithm for the

generation of the private key.

• -validity 365: indicates that the certificate will be valid for 365 days.

49

• -keysize 2048: indicates the size of the generated key i.e., 2048.

• -dname: indicates to keytool the information of the node that must

be contained inside the certificate.

• -ext “san=ip:node_ip_address”: indicates the IP of the Cassandra

node.

Utilizing keytool a certificate sign request that includes the generated

node certificate from the keystore will be created.

keytool -alias IZENnode1 -keystore IZENnode1-keystore.jks -

keypass cassandra -storepass cassandra -certreq -file IZENnode1.csr

• -certeq: keytool command for the generation of a certificate sign

request.

• -file IZENnode1.csr: indicates the output file of the sign request.

The generated CSR must be signed by the CA’s public key for the

creation of a valid node certificate. The below OpenSSL command is used for

this task.

Openssl -req -CA CAcert.crt.pem -CAkey CAkey.key.pem -in

IZENnode1.csr -out IZENnode1.crt.signed -days 365 -CAcreateserial -

passin pass:cassandra

Compared to the OpenSSL command that was used to generate the

PEP and IDM certificates, an additional parameter has been added.

• -passin pass:cassandra: this parameter indicates to OpenSSL the

password to access the CA’s certificate.

Finally, the generated signed node certificate alongside the CA’s

certificate must be stored into the keystore in order to create a certificate trust

chain.

50

Keytool -alias IZENnode1 -keystore IZENnode1-keystore.jks -

import -file IZENnode1.crt.signed -keypass cassandra -storepass

cassandra -noprompt

Keytool -alias CassandraCA -keystore IZENnode1-keystore.jks -

import -file CAcert.crt.pem -keypass cassandra -storepass cassandra -

noprompt

Cassandra’s Configuration File Modifications

After the generation and the storage of the node’s certificates in the

appropriate keystores, Cassandra’s configuration file, cassandra.yaml, is edited

in order to enable node-to-node SSL encryption. The section of variables that

enables node-to-node SSL encryption already exists in the default

cassandra.yaml file but it is commented, thus it is inactive. The aforementioned

variables that need to be enabled and their edited values in order to activate

inter-node SSL communication are mentioned hereafter.

server_encryption_options:

internode encryption: rack : when the variable’s value is set to rack Cassandra

will enable node-to-node SSL encryption.

keystore: /home/cassandra/certs/IZENnode1-keystore.jks : indicates to

Cassandra the path to the node’s keystore.

keystore_password: cassandra : indicates to Cassandra the necessary

password to access the keystore.

truststore: /home/cassandra/certs/CAtruststore.jks : indicates to Cassandra

the path to the node’s truststore.

truststore_password: cassandra : indicates to Cassandra the necessary

password to access the truststore.

The above procedure is repeated for each Cassandra node in the

system to enable node-to-node SSL encryption. It is essential that the same

51

private CA signs all the certificates of the nodes in order for them to be accepted

as valid by other nodes. In the case that an official well-known CA is used to sign

and create the node’s certificate, that CA’s certificate must be added in the same

keystore in the node with the generated node certificate for the creation of a

certificate trust chain.

4.2 Authorization Code Grant, OpenID Connect and
Single Sign-On Implementation

In this thesis, iZen system is extended in order to reduce the chances of

exposing users credentials and improve the authentication and authorization of

its users during their access to the system. This section describes the

implementation of the mechanisms that were incorporated in the system to

achieve this goal.

4.2.1 Authorization Code Grant Implementation

FIWARE’s Keyrock IDM complies with the OAuth 2.0 protocol and

provides all four different grant types. Authorization code grant type is the best

practice [36] and is promoted by companies as it offers better security compared

to the other types. The procedure to incorporate authorization code grant type

for the access of the users in the system is described hereafter.

When an administrator registers his cloud in the IDM, he/she must

register each system’s service as an application. The fields mentioned below are

crucial for IDM’s functionality and are utilized to secure user’s access.

• URL: The administrator declares the applications URL. Only OAuth

requests from this URL are accepted by IDM.

• Callback URL: The user agent will be redirected to this URL when

the OAuth flow is finished.

• Sign-out Callback URL: The user will be redirected to this URL

when he/she signs out from the application.

• Grant Type: The administrator chooses the OAuth grant type that

will be enabled in the application. When the administrator selects the

52

authorization code grant type two unique identifiers, the Client ID and

the Client Secret are generated.

Now that the application is registered and the necessary variables have

been declared the steps of the authorization code grant type and how each step

is implemented are described below.

1. A user accesses the graphical interface of the web application and

chooses to connect with his IDM account. The web application sends a

GET request to /oauth2/authorize endpoint of the IDM requesting a code.

The request must have in its header the parameters

(response_type=code which indicates to IDM to respond with a code, the

Client ID that was created when the administrator registered the web

application in the IDM, and the redirect uri which indicates the location

where the user agent will be redirected with the generated code).

2. The user is redirected to IDM’s graphical interface and provides the email

and the password of his IDM account. IDM initially confirms that the

incoming request is from the URL that was declared during the application

registration and that the received redirect_uri matches the declared

callback URL. Then, it proceeds to search the registered users in its

database in order to authenticate the user. After successfully

authenticating the user, IDM creates an authorization code. Finally, it

responds with the HTTP status code 302 Found, the generated code and

redirects the user to the indicated callback URL.

3. When the web application receives the authorization code, it must

exchange it with an access token. This time, the web application makes

a POST request to the /oauth2/token endpoint of the IDM. In the header

field of the request an Authorization Basic header is included. This header

is the identity of the service and its value is generated by joining the two

unique identifiers, Client ID and Client Secret, with the symbol “:” between

them (i.e client_id:client_secret) and encrypting them using the base64

method (i.e. base64(client_id:client_secret)). The body of the request

includes the parameters (grant_type=authorization_code which indicates

53

to IDM to respond with an access token, the received code from the

previous request, and the redirect uri).

4. IDM validates the identity of the application by decoding the authorization

header and confirming that the client id and client secret match the

generated ones during the registration of the application. It proceeds to

generate an access token and stores it in his database. Furthermore, it

creates a user session that includes the oauth sign in. At last, it responds

with the HTTP status code 200 OK in the header field of the response,

and the main body, which is in JSON format, and contains the generated

access token, indicates that the type of the token is bearer, declares the

expiration time of the access token, and provides a refresh token which

can be exchanged by the application to automatically refresh the access

token if it expires while the user continues his session.

5. When the web application receives the IDM’s response, it extracts the

access token and binds it to the user’s session. The access token signifies

the user’s identity and it needs to be provided to the PEPs in order for

them to authenticate the user and authorize his access to the protected

resources.

If the user has previously sign in IDM though the provided graphical

interface, IDM would have already created a session for the user, due to this, it

will not prompt the user to fill in his credential, and it will instantly respond with a

code at the step 2 mentioned above.

When the user desires to log out of the web application, the user

sessions that are created inside the application and the IDM must be deleted.

The flow that occurs during the user’s log out is described below.

1. The user clicks the logout button in the application. This triggers the

application to send a DELETE request to /auth/external_logout endpoint

of the IDM. The request includes the client id, facilitating the IDM to find

and delete the user’s session.

54

2. The IDM finds the application’s domain inside his database, based on the

provided client id, and deletes the stored session of the user. It proceeds

to redirect the user agent at the /Destroy_session.php endpoint of the

web application, which is the designated Sing-out Callback URL.

3. The web application destroys the parameters of the stored user session

and redirect the user to the log in page of the application.

The complete authorization code grant type flow that occurs during the

users login and logout is presented in the Figure 8.

Figure 8: Authorization code grant type flow

55

4.2.2 OpenID Connect, Signature Validation and Single Sign-On
Implementation

OpenID connect builds upon the OAuth 2.0 protocol and extends it in

order to offer improved user authentication and authorization in the system.

Furthermore, it improves the security of the system as it facilitates the creation

of a signature validation mechanism for the generated tokens. In the latest

version of Keyrock IDM, FIWARE incorporated the necessary functionalities that

allow users to enable OpenID connect in their applications through the graphical

interface provided by Keyrock.

When the cloud administrator enables the OpenID connect, Keyrock

IDM responds when requested with an access token and an additional Jason

Web Token (JWT), the id_token. A JWT consists of three parts, the Header, the

Payload, and the Signature. Each part is encoded in JSON and they are joined

by the symbol “.” between them (i.e.

json_encode(Header).json_encode(Payload).json_encode(Signature)). The

decoded content of each part of the id_token is in JSON format and includes the

information below.

Header: declares which algorithm is used for the signature or the

encryption, and what type of token the id_token is.

Payload: contains information of the organization where the user is a

member and its role in that organization. Furthermore, it provides the user’s

email, username and unique identifier inside the system. Lastly, it provides

information of the token itself i.e. (the issuer of the token, the subject that the

token refers to, the audience that the token is intended for, the expiration time of

the token and the time that the token is issued).

Signature: is a keyed hash value generated using the HMAC method.

The parameters of the method are: a hashing algorithm i.e., sha256, the

message to be hashed which consists of the base64URL encoded header joined

with the base64URL encoded body by the symbol “.” between them, and a

shared secret key used for generating the HMAC variant of the message digest.

56

The secret is generated when the administrator enables the OpenID connect

protocol in the application. The token’s signature is a mean to verify the integrity

of the claims inside the token and validate its authenticity.

 The authorization code grant type flow is slightly different when the

OpenID protocol is enabled. The altered steps of the flow compared to the

previous section are described hereafter.

Step 1: The web application additionally includes the scope=openid

parameter in the GET request to the /oauth/token endpoint of the IDM. This

parameter indicates to IDM that the OpenID connect protocol is used and that

the IDM must respond with an id token that includes the claims mentioned above

in the payload section.

Step 4: The IDM responds with the access token and the JWT id token.

The signature of the id token is created using the shared secret that was

generated when the administrator enabled the OpenID connect protocol in the

registered web application in the IDM.

Step 5: The web application extracts the access token and the id token

from IDM’s response. It proceeds to split the id token in order to receive each

part i.e. (header, payload, signature) and performs signature validation utilizing

the shared secret. If the signature is valid, the web application allows the access

of the user in system and binds both the access token and the id token in the

user’s session as they will be utilized for the user’s authentication and

authorization afterwards.

The steps 2 and 3 of the login flow as well as the logout flow remain the

same.

The complete authorization code grant type flow that occurs during the

users login and logout while the OpenID protocol is enabled is presented in

Figure 9.

57

Signature Validation Process

Signature validation guarantees the integrity of the id token’s content

and that the sender is the IDM and not a third-party service that imposes as the

IDM. In order to implement the signature validation a secret that is known only

to the IDM and the application is utilized. When the web application receives an

id token, it proceeds to generate an “expected” signature based on the token’s

header, payload and the shared secret. If the expected signature matches the

Figure 9: User login and logout flow when OpenID is enabled

58

received signature of the id token, the token is considered valid, thus the user

may access the system. Conversely, if the two signatures do not match, the

access is denied and the user is redirected to the initial login page. The

implementation of the signature validation in the web application of the system

is described hereafter.

1. The web application extracts the id token from the IDM’s

response. It splits the id token at the symbol “.” in order to receive

the JWT token’s three parts i.e.(header, payload, signature) and

stores them into variables. The parts are base64 encoded.

2. The header and the payload are decoded into text by utilizing the

function base64_decode() of the PHP programming language.

3. For the generation of the expected signature the header and the

payload must be encoded in base64URL format. PHP does not

include a function for base64URL encoding, thus a new function

is created for this purpose. The new function named

base64urlEncode receives as input a text and replaces the

symbols “+”, “/” and “=” with “-”, “_” and “ ” respectively. Then, it

encodes the text using the PHP function base64_encode(). The

output variable is in base64URL format.

4. After encoding the header and the payload in base64URL format

the expected signature can be created. For this purpose the

hash_hmac function of PHP is utilized. This function generates a

keyed hash value using the HMAC method. It receives as input

the hashing algorithm, the data and a HMAC variant of the

message digest. The hashing algorithm utilized is the sha256, the

data consist of the base64URL encoded header joined with the

base64URL encoded payload with the symbol “.” between them

i.e. (base64urlEncode(Header).base64urlEncode(Payload)), and

the HMAC variant is the shared secret.

5. Finally, the web application compares the expected signature with

the received signature. If the two signatures match the id token is

59

considered valid as only someone who possesses the secret i.e.,

the IDM, can generate this signature.

Single Sign-On implementation

Incorporation of the OpenID connect protocol in the communication of

the system provides the necessary mechanisms for the implementation of single

sign-on functionality among the iZen nodes. The JWT id token includes all the

essential information to authenticate and authorize a user in the system.

Additionally, the signature validation guarantees the integrity of the claims that

the id token contains, and verifies that the token is generated from a trusted IDM.

In order to explain the single sign-on functionality in this section the two

interacting iZen nodes will be referred as node A and node B. The user is

registered in the node A, therefore this node provides the id token for the user

authentication and authorization. Node B is the remote node where the user

desires to have access to.

For the implementation of the single sign-on functionality among node A

and node B, the administrators must perform the following actions.

The administrator of node A must register a new application in his IDM.

The URL, Callback URL, and Sign-out Callback URL of this application will

indicate the appropriate URL’s at the domain of the node B. Keyrock IDM

ensures that only requests from node’s B domain will be accepted to this

application. Additionally, the administrator designates that the application’s grant

type is authorization code grant in order to generate the unique identifiers of the

application, i.e., client id and client secret. Moreover, he/she enables the OpenID

connect protocol in the application, therefore IDM will respond with an id token

when it receives a code. Finally, the id token secret that was generated when

then administrator of node A enabled the OpenID connect protocol and the

unique identifiers of the application are shared with the administrator of node B.

The administrator of node B stores the received id token secret and

application identifiers inside its web application. Furthermore, he/she must

60

modify the application to redirect the users to node’s A graphical interface of the

IDM to fill their password and email, in order to receive a code and exchange it

for the id token. Moreover, the logout procedure must be modified to send a

DELETE user session request to the appropriate IDM. Finally, the web

application must identify if the guest user is a customer or an infrastructure owner,

and bind the respective role i.e. (guest customer or guest infrastructure owner)

to the user’s session. Consequently, the administrator must create the

aforementioned roles in his organization and assign them the appropriate

permissions. Hence, the administrator is able to control the resources which the

guest users are authorized to access.

The flow of a guest user’s login to a remote node is briefly discussed

hereafter.

1. The guest user from node A visits the web application of node B

and selects to login with his registered account in node A. The

web application sends a GET request to /oauth2/authorize

endpoint of the IDM located at node A requesting a code. The

request includes the client id of the newly registered application

that accepts requests from node B and the scope=openid

parameter. The redirect URI in the request indicates the HTML

page of the node B.

2. The user is redirected to the graphical interface of node’s A IDM

to fill in his credentials. The IDM verifies that the request is coming

from a trusted domain and authenticates the user. It responds to

the indicated redirect URI with an authorization code.

3. The web application receives the authorization code and makes

a POST request to the /oauth2/token endpoint of the IDM located

at node A requesting to exchange the received code for an access

token and an id token. The Authorization Basic field of the header

consists of the client id and client secret that the administrator of

node B received and stored in the web application from node’s A

administrator.

61

4. Node’s A IDM decodes the Authorization Basic field of the header

and validates the identity of the application. It proceeds to

generate an access token and an id token of the authenticated

user, which is signed using the shared token secret. It stores a

user session in his database and responds to the web application

with the generated tokens.

5. Node’s B web application extracts the id token from the response.

It proceeds to split the token and performs signature validation. If

the signature is valid, it extracts the user’s role in node A from the

claims of the id token. If the user is a customer the web

application will assign the role of the guest customer in node B,

while if the user is an infrastructure owner it will assign the role of

the guest infrastructure owner. Finally, the web application

creates a user session and binds the access token, the id token

and the user’s new role to it. When the user desires to access a

protected resource, the PEP sends the user’s new role to the

PDP for assessment of the request based on the rule set that the

administrator registered for this role. Furthermore, if a service

requires some user’s credentials for its functionality, it extracts

them from the id token.

When the user desires to logout from the node’s B system the web

application sends a DELETE request to /auth/external_logout endpoint of the

IDM located in node A. IDM deletes the stored user session from its database

and redirects the user agent to the indicated sign-out callback URL at node B.

Afterwards, node’s B web application deletes the user session that was created

in the web application, and redirects him/her to the login home page.

The complete flow when a guest user logins and logouts to a remote

node is presented in the Figure 10 below.

62

Figure 10: Single Sign-On login and logout flow

63

5. Performance Evaluation
A series of experiments were conducted in order to evaluate the

performance of the system after enabling the HTTPS and the OpenID connect

protocols in communication, as well as incorporating the authorization code

grant, the signature validation mechanism and the Single Sign-On functionality

among the cloud nodes in the system.

5.1 Infrastructure for Conducting Experiments

In total, three cloud node systems were used for the conduction of the

experiments. Two of them were developed in virtual machines on the Intellicloud

of Technical University of Crete at Chania. One cloud node was developed in a

private physical machine located at Athens in order to take realistic

measurements that include the network delay.

The technical features of the virtual machines and the physical machine

are as follows:

 Figure 11: VMs Technical Features

 Figure 12: Physical Machine Technical Features

64

5.2 Apache Bench Tool

Apache Bench [37] is a load testing and benchmarking tool for HTTP

and HTTPS servers. It can simulate a large number of requests to be handled

by a service and it allows the user to set a concurrency, i.e., the number of

requests that the service must execute at the same time.

The two metrics used in this study are:

 Time taken for tests i.e., the total time that the service needs to

execute all the requests at a specified concurrency.

Time per request mean i.e., the average time that the service needs to

execute a batch of requests at a specified concurrency.

Apache Bench was installed in each VM and the physical machine, in

order to evaluate the system performance.

In each of the following experiments, Apache Bench was utilized to

simulate 2000 service requests. Each experiment was repeated for five different

concurrencies: 1, 50, 100, 150 and 200.

The performed experiments take into consideration the network delay. It

is measured that the included delay is 10 to 11ms per request.

Figure 13: Color coding of concurrency, used in the diagrams below.

65

5.3 Experiment 1 – HTTP vs HTTPS

This experiment evaluates the response time of the web application and

compares the performance penalty of using HTTPS compared to HTTP.

Details: A user that lives in Athens visits the home page of the web

application which is located at a cloud node at Chania with IP address

147.27.60.43 and its published port is 8060. The requests are simulated from

the Apache Bench tool installed in the machine located at Athens, hence network

delay is included in the measurements. When HTTPS protocol is enabled, the

certificate installed in the web application contains a 2048-bit public key that was

generated using the RSA encryption algorithm.

REST: When HTTP is enabled GET requests are send to

http://147.27.60.43:8060. Resultant times measured for HTTP protocol are

presented in the diagrams below.

Figure 14: Total Time Taken for requests while HTTP protocol is utilized

158

7.857 7.814 7.956 7.999

1 50 100 150 200

0

20

40

60

80

100

120

140

160

180

CONCURRENCY

SE
C

O
N

D
S

HTTP TOTAL TIME TAKEN FOR REQUESTS

66

Figure 15: Time per request mean while HTTP protocol is utilized

 REST: When HTTPS is enabled, GET requests are send to

https://147.27.60.43:8060. Results are presented in the diagrams below.

Figure 16: Total Time Taken for requests while HTTPS protocol is utilized

316.776

17.322 17.384 17.44 17.826

1 50 100 150 200

0

50

100

150

200

250

300

350

CONCURRENCY

se
co

n
d

s

HTTPS TOTAL TIME TAKEN FOR REQUESTS

79

196.436

390.731

596.727

799.919

1 50 100 150 200

0

100

200

300

400

500

600

700

800

900

CONCURRENCY

m
ill

is
e

co
n

d
s

HTTP TIME PER REQUEST MEAN

67

The Diagrams below compare the total time taken and the time per

request at each concurrency between HTTP and HTTPS.

Figure 18: Total Time Taken for request comparison between HTTP and HTTPS

158.388

433.05

869.2

1308

1782.6

1 50 100 150 200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

CONCURRENCY

m
ill

iis
e

co
n

d
s

HTTPS TIME PER REQUEST MEAN

158

7.857 7.814 7.956 7.999

316.776

17.322 17.384 17.44 17.826

1 50 100 150 200

0

50

100

150

200

250

300

350

CONCURRENCY

se
co

n
d

s

HTTP vs HTTPS TOTAL TIME TAKEN FOR
REQUESTS

Figure 17: Time per request mean while HTTPS protocol is utilized

68

The comparison of the metrics demonstrates that enabling the HTTPS

protocol in the web application introduces significant delays, as the required time

to execute the same number of requests at the same concurrency doubles.

5.4 User login to remote cloud node utilizing the Single
Sign-On (SSO) functionality

When a user initiates a login at a remote cloud node utilizing the SSO

functionality provided by OpenID Connect, a two-part communication occurs

between the node’s web application and the IDM where the user is registered.

In the first part of the communication, the web application requests an

authorization code from IDM and redirects the user to its graphical interface. IDM

prompts the user to fill in their email and password. After successfully

authenticating the user, IDM responds with an authorization code to the web

application.

79
196.436

390.731

596.727

799.919

158.388

433.05

869.2

1308

1782.6

1 50 100 150 200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

CONCURRENCY

m
ill

iis
e

co
n

d
s

HTTP VS HTTPS TIME PER REQUEST MEAN

Figure 19: Time per request mean comparison between HTTP and HTTPS

69

In the second part, the web application sends a request to IDM, that

includes the previously acquired authorization code, in order to exchange it for

an access token and an id token. IDM responds accordingly. The received

access token is utilized for authorization of the user, while the id token is for

authentication as it includes all necessary user and issuer information.

Experiment 2 measures the response time of the remote IDM, when the

web application requests an authorization code. Experiment 3 measures the

time needed for IDM to exchange the previously generated authorization code

for an access token and an id token.

5.4.1 Experiment 2 – Request for authorization code
while SSO is utilized for user login to remote node

 The second experiment quantifies the response time when the web

application requests an authorization code from an IDM, which is located at a

remote cloud node. As the two communicating services are located in different

cloud nodes, the HTTPS protocol is utilized.

Details: A user registered at a cloud node located at Chania initiates a

login utilizing the Single Sign-On functionality, from the cloud node located at

Athens. The web application, in the Athens cloud node, sends a request for

authorization code at the cloud IDM at Chania. The IP address of the node at

Chania is 147.27.60.43 and the IDM published port is 3443. IDM’s certificate

contains a public key that was generated using the RSA encryption algorithm

and its length is 2048 bits.

REST: The Athens web application sends a GET request at

https://147.27.60.43:3443/oauth2/authorize. The request header contains (1)

the parameter “response_type=code”, (2) the client ID of the registered

application at Chania’s IDM, which accepts requests from the Athens node, (3)

the “scope=openid” parameter, and (4) the redirect URI.

70

The measured metrics are presented in the diagrams below.

417.0268

31.2998 31.3324 32.0538 32.8406

1 50 100 150 200

0

50

100

150

200

250

300

350

400

450

CONCURRENCY

SE
C

O
N

D
S

TOTAL TIME TAKEN FOR REQUESTS

208.5134

782.495

1566.62

2404.035

3284.06

1 50 100 150 200

0

500

1000

1500

2000

2500

3000

3500

CONCURRENCY

M
IL

LI
SE

C
N

D
S

TIME PER REQUEST MEAN

Figure 20: Total Time Taken for requests when the web app requests for authorization

code while SSO is utilized

Figure 21: Time per request mean when the web app requests for authorization code

while SSO is utilized

71

5.5.2 Experiment 3 – Exchange of authorization code for
access token and id token while SSO is utilized

 In the third experiment, the response time is measured when the web

application makes a request to exchange the previously acquired authorization

code for an access token and an id token from an IDM located at a remote cloud

node. As the two communicating services are located in different cloud nodes,

the HTTPS protocol is utilized.

Details: A user registered at a Chania cloud node initiates a login to the

cloud node located at Athens, utilizing the Single Sign-On functionality. The user

was previously redirected at Chania’s IDM graphical interface to fill his

credentials and was successfully authenticated by the IDM. Subsequently, the

IDM responded with an authorization code for Athens’s web application. The web

application of Athens’s cloud node sent a request at Chania’s cloud IDM, in order

to exchange the received code for an access token and an ID for the

authorization and authentication of a guest user.

 The IP address of the Chania node is 147.27.60.43 and the

published IDM port is 3443. IDM’s certificate contains a public key that was

generated using the RSA encryption algorithm and its length is 2048 bits.

REST: Athens’s web application sent a POST request to

https://147.27.60.43:3443/oauth2/token. The request header contains the

Authorization Basic field consists of the client id and client secret that the

administrator of Athens’s node received and stored in the web application from

Chania’s node administrator. The body of the request contains, in JSON format,

the field “grant_type=authorization_code”, the received authorization code, and

the redirect_uri.

The measured results are presented in the diagrams below.

72

Figure 23: Total Time Taken for requests when the web app requests for Access and ID

token while SSO is utilized

231.4408

872.85

1747.1

2625.15

3503.6

0

500

1000

1500

2000

2500

3000

3500

4000

1 50 100 150 200

M
IL

L
IS

E
C

O
N

D
S

CONCURRENCY

TIME PER REQUEST MEAN

462.8816

34.914 34.942 35.002 35.036

0

50

100

150

200

250

300

350

400

450

500

1 50 100 150 200

S
E

C
O

N
D

S

CONCURRENCY

TOTAL TIME TAKEN FOR REQUESTS

Figure 22: Time per request mean when the web app requests for Access and ID token

while SSO is utilized

73

5.6 Experiment 4 – RSA Encryption Algorithm
Evaluation

This experiment evaluates the response time of the web application

when the HTTPS protocol is enabled and the application’s public key, that is

contained in the certificate, was generated utilizing the RSA encryption algorithm.

Details: The web application is located at a cloud node at Chania with

IP address 147.27.60.43 and its published port is the 8060. Utilizing the RSA

encryption algorithm, two public keys with different lengths, 2048 and 4096 bits,

were generated and respectively installed in the web application, in order to

study how different key lengths, affect system performance. The requests are

simulated from the Apache Bench tool, installed in the machine located at Athens,

in order to take into consideration, the network delay.

The diagram below compares the total time needed for the web

application to execute all the requests at each concurrency, when the two RSA

keys, with different lengths, were utilized.

330.26

19.196 19.212 19.262 19.476

316.776

17.322 17.384 17.44 17.826

1 50 100 150 200

0

50

100

150

200

250

300

350

CONCURRENCY

SE
C

O
N

D
S

RSA 4096 VS 2048 TOTAL TIME TAKEN FOR
REQUEST

Figure 24: Total time taken for requests comparison between the RSA keys

74

The following diagram compares the average time that the web

application needed to execute a batch of requests at each concurrency when

the two RSA keys with different lengths were utilized.

As expected, the measurements when the 4096 bits length key is utilized

are higher, compared to the respective measurements of 2048 bits length key.

It is also worth mentioning that 2048 bits is the minimum key length for

the certificate’s key. Companies promote the usage of 4096-bit length keys for

additional security, especially when the service manages sensitive information.

5.7 Experiment 5 – Elliptic Curve Encryption Algorithm
Evaluation

This experiment is identical to the previous one, with the only difference

being that the keys were generated utilizing the elliptic curve encryption

algorithm. The two different keys have lengths 256 and 384 bits. A 256 bits ECC

key provides the same security with a 3072 bits RSA key, while a 384 bits key is

equivalent to a 7680 bits RSA key.

165.13

479.91

960.6

1444.65

1947.6

158.388

433.05

869.2

1308

1782.6

1 50 100 150 200

0

500

1000

1500

2000

2500

CONCURRENCY

M
IL

LI
SE

C
O

N
D

S

RSA 4096 VS 2048 TIME PER REQUEST
MEAN

Figure 25: Time per request mean comparison between the RSA keys

75

The diagram below compares the total time needed for the web

application to execute all the requests at each concurrency, when the two ECC

keys with different lengths were utilized.

The next diagram compares the average time that the web application

needed to execute a batch of requests at each concurrency when the two keys

with different lengths were utilized.

310.846

15.354 15.544 15.608 15.518

301.08

14.956 15.091 15.118 15.178

1 50 100 150 200

0

50

100

150

200

250

300

350

CONCURRENCY

SE
C

O
N

D
S

ECC 384 VS 256 TOTAL TIME TAKEN FOR
REQUESTS

Figure 26: Total time taken for requests comparison between the ECC keys

76

5.8 RSA and Elliptic Curve Encryption Algorithms
Comparison

The measured values for each utilized key, at each concurrency are

compared and the results comparing performance are presented in the diagrams

below.

 The diagram below demonstrates the total time needed for the web

application to execute all the requests at each concurrency for all the utilized

keys.

155.42

383.85

777.23

1170.6

1551.8

150.54

373.9

754.56

1133.85

1517.86

1 50 100 150 200

0

200

400

600

800

1000

1200

1400

1600

1800

CONCURRENCY

M
IL

LI
SE

C
O

N
D

ECC 384 VS 256 TIME PER REQUEST MEAN

Figure 27: Time per request mean comparison between the ECC keys

77

 Figure 28: Total Time Taken for requests comparison between all keys

The following diagram demonstrates the average time that the web

application needed to execute a batch of requests at each concurrency for all

the utilized keys.

 Figure 29: Time per request mean comparison between all keys

1 50 100 150 200

RSA 4096 330.26 19.196 19.212 19.262 19.476

RSA 2048 316.776 17.322 17.384 17.44 17.826

ECC 384 310.846 15.354 15.544 15.608 15.518

ECC 256 301.08 14.956 15.091 15.118 15.178

0
50

100
150
200
250
300
350

S
E

C
O

N
D

S

CONCURRENCY

RSA VS ECC KEYS TOTAL TIME
TAKEN FOR REQUESTS

1 50 100 150 200

RSA 4096 165.13 479.91 960.6 1444.65 1947.6

RSA 2048 158.388 433.05 869.2 1308 1782.6

ECC 384 155.42 383.85 777.23 1170.6 1551.8

ECC 256 150.54 373.9 754.56 1133.85 1517.86

0

500

1000

1500

2000

2500

M
IL

L
IS

E
C

O
N

D

CONCURRENCY

RSA VS ECC KEYS TIME PER
REQUEST MEAN

78

 The comparison shows that the keys generated with the EC encryption

algorithm outperforms the keys generated with the RSA encryption algorithm.

Characteristically, even when the 384 bits length ECC key is utilized the system’s

performance is greater compared to when 2048 bits length RSA key is used.

Finally, the best system performance is observed when the 256-bit ECC

key is utilized.

5.9 Experiment 6 - Register Sensor to a Remote Node
while SSO is utilized

The last experiment studies the response time of the system when an

infrastructure owner, which has utilized the SSO functionality to login to a remote

node, registers a sensor to the node.

 In this scenario, the user is registered in the Athens node. Utilizing the

SSO functionality they have successfully logged into the Chania’s node web

application. The web application has successfully authenticated the user and it

has bound an access token to them, as well as an id token and the guest

infrastructure owner role. The user is redirected to the graphical interface of the

Register Service in order to register their sensor. When the user sends the

request, PEP extracts the user’s role in the node, i.e., guest infrastructure owner,

and forwards it alongside the requested resource to the PDP. The PDP assesses

the request based on the stored rule set for the role and returns its decision to

the PEP. If the permission is Permit, the PEP forwards the request to the register

service. The latter extracts the sensor information from the request body and

registers the sensor to the Cassandra directory database. Lastly, register service

responds to the user with a success message or a failure message depending

on the outcome of the user’s request.

Details: The requests are sent from the physical machine located in

Athens; hence the measurements include the network delay. The IP address of

Chania’s node is 147.27.60.43 and the PEP published port, that protects the

register service, is 8066. The PEP’s certificate contains a public key that was

generated using the RSA encryption algorithm and its length is 2048 bits.

79

REST: The user sends a POST request to

https://147.27.60.43:8066/RegisterSensor. The body contains the email of the

user, the sensor’s name and the type of the measurement the sensor receives,

e.g., temperature.

The measured times are presented below.

Figure 30: Total Time Taken for requests to register a sensor to a remote node

Figure 31: Time per request mean to register a sensor to a remote node

626.846

36.993 37.072 37.251 37.293

0

100

200

300

400

500

600

700

1 50 100 150 200

S
E

C
O

N
D

S

CONCURRENCY

TOTAL TIME TAKEN FOR REQUESTS

313.423

924.832

1853.61

2793.852

3729.37

0

500

1000

1500

2000

2500

3000

3500

4000

1 50 100 150 200

M
IL

L
IS

E
C

O
N

D
S

CONCURRENCY

TIME TAKEN PER REQUEST MEAN

80

6. Conclusions

In this thesis, different security authentication and authorization

mechanisms were implemented in a master-less federated cloud node

architecture, in order to improve the system of each node in these areas.

Specifically, the HTTPS protocol was incorporated in crucial

components of the system, for which communication occurs over public

networks. Usage of the HTTPS protocol reinforced system security, as it

encodes the communication utilizing encryption algorithms. To this end, two

underlying encryption algorithms, i.e., RSA and ECC with different key lengths,

were utilized in order to evaluate their effect in system performance. The

experimental measurements demonstrated that enabling HTTPS introduced

significant delay in the system, due to the time penalty introduced by the

encryption process that occurs between two services before the communication

begins. Moreover, quantitative evaluation revealed that amongst tested keys, the

one generated by the ECC encryption algorithm with 256-bit length provides the

best system performance.

The authentication code grant type of the OAuth2.0 protocol was

incorporated in the system in order to reduce the chance of exposing user

credentials. In addition, the OpenID Connect protocol, which extends the

OAuth2.0 protocol, was enabled. OpenID Connect improves user authentication

and authorization in the system by providing scoped ID tokens. In addition, it

facilitated the creation of a token signature validation mechanism which

guarantees the authenticity of the tokens and the integrity of the claims that they

contain.

Finally, Single Sign-On (SSO) functionality, amongst federated nodes,

was implemented. SSO was based on the OpenID Connect protocol and it allows

registered users to login and use services of remote cloud nodes, on which they

are not registered, via the IDM account of their node. In order to authenticate

and authorize the user, remote cloud nodes request ID tokens from the user’s

81

registered node. These ID tokens contain all necessary user information required

for system functionality. Furthermore, administrators of remote cloud nodes can

control to which resources the guest users have access to, via rule sets.

82

7. Future Work
This thesis succeeded in reinforcing overall system security, as well as

user authentication and authorization, by utilizing modern techniques and

solutions. Additionally, it provided an implementation of Single Sign-On

functionality, among federation cloud nodes. However, there are still areas for

improvement and further research, which could not be covered in this study, due

to time constrains or current technological limitations. Proposed future directions

are outlined below.

Upgrading HTTPS/1.1 protocol to HTTPS/2.0 protocol – HTTPS/2.0

utilizes multiplexing of the requests and the responses. Due to this, it can greatly

improve system performance, while guaranteeing security of the communication.

Securing the communication between the system and the IoT

sensors – IoT sensors are characterized by their low energy demand and their

relative low processing power. Due to these characteristics, incorporation of the

HTTPS protocol in order to secure the communication between the sensors and

the system is a demanding challenge, due to the associated computational

complexity of encryption.

Modification of the system to replace Cassandra database –

Cassandra is a high-performance distributed database and constitutes a core

component of the system, as a Cassandra node is installed in every cloud node,

enabling the exchange of information between them. Nonetheless, Cassandra

poses several system security risks either due to service errors or due to

malicious edge owners. A potential flaw can compromise the information stored

in all nodes, while restoring information is time consuming and has large cost

implications for the edge owners. Replacement of Cassandra with a no-

distributed, no-SQL database requires modifications in the implementation of

system services. Formation of the federation can be based on the OpenID

Connect protocol and the Single Sign-On functionality that was implemented in

this thesis.

83

References

[1] N. Zacharia, K. Tsakos, and E. G. M. Petrakis, “iZen: Secure Federated Service Oriented
Architecture for the Internet of Things in the Cloud BT - Advanced Information Networking and
Applications,” 2020, pp. 1189–1200.
[2] “Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing.”
https://tools.ietf.org/html/rfc7230.

[3] “What is TCP/IP?” https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/.

[4] “Uniform Resource Identifier (URI): Generic Syntax.” https://tools.ietf.org/html/rfc3986.

[5] “HTTP Over TLS.” https://tools.ietf.org/html/rfc2818 (HTTPS).

[6] “TLS Security 5: Establishing a TLS Connection.”
https://www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5/.

[7] “The Transport Layer Security (TLS) Protocol Version 1.2.”
https://tools.ietf.org/html/rfc5246.

[8] “Cipher Suites in TLS/SSL (Schannel SSP).” https://docs.microsoft.com/en-
us/windows/win32/secauthn/cipher-suites-in-schannel.

[9] “Oauth 2.0.” https://oauth.net/2/.

[10] “OpenID Connect Protocol.” https://auth0.com/docs/protocols/openid-connect-protocol.

[11] M. Papazoglou and W.-J. Heuvel, “Service oriented architectures: Approaches,
technologies and research issues,” VLDB J., vol. 16, pp. 389–415, Jul. 2007, doi:
10.1007/s00778-007-0044-3.

[12] M. Khanbabaei and M. Asadi, “Principles of service-oriented architecture and web
services application in order to implement service-oriented architecture in software
engineering,” vol. 5, pp. 2046–2051, Nov. 2011.

[13] “What is FIWARE?” https://www.fiware.org/about-us/.

[14] “FIWARE-ORION.” https://fiware-orion.readthedocs.io/en/master/.

[15] “FIWARE-NGSI v2 Specification.” https://fiware.github.io/specifications/ngsiv2/stable/.

[16] “IDENTITY MANAGER - KEYROCK.” https://fiware-idm.readthedocs.io/en/latest/.

[17] “PEP PROXY WILMA,” [Online]. Available: https://fiware-pep-
proxy.readthedocs.io/en/latest/.

[18] “WELCOME TO AUTHZFORCE’S OFFICIAL DOCUMENTATION.” https://authzforce-ce-
fiware.readthedocs.io/en/latest/.

[19] “eXtensible Access Control Markup Language (XACML) Version 3.0.” http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[20] “WELCOME TO THE FIWARE SHORT TIME HISTORIC (STH) - COMET
DOCUMENTATION.” https://fiware-sth-comet.readthedocs.io/en/latest/.

[21] “CYGNUS.” https://fiware-cygnus.readthedocs.io/en/latest/.

[22] “What is Cassandra?,” [Online]. Available: https://www.datastax.com/cassandra.

84

[23] “What is Docker?” https://opensource.com/resources/what-docker.

[24] “Docker Images.” https://docs.docker.com/engine/reference/commandline/images/.

[25] “Dockerfile reference.” https://docs.docker.com/engine/reference/builder/.

[26] “What is a Container?” https://www.docker.com/resources/what-container.

[27] “Use volumes.” https://docs.docker.com/storage/volumes/.

[28] “Overview of Docker Compose.” https://docs.docker.com/compose/.

[29] “DataStax.” https://www.datastax.com/.

[30] “OpenSSL.” https://www.openssl.org/.

[31] D. Cherry and T. Larock, “2 - Database Encryption,” D. Cherry and T. B. T.-S. S. Q. L. S.
Larock, Eds. Boston: Syngress, 2011, pp. 27–71.

[32] E. Conrad, S. Misenar, and J. Feldman, “Chapter 3 - Domain 3: Security engineering,” E.
Conrad, S. Misenar, and J. B. T.-E. H. C. (Third E. Feldman, Eds. Syngress, 2017, pp. 47–93.

[33] “PKCS #1: RSA Cryptography Specifications Version 2.2.”
https://tools.ietf.org/html/rfc8017.

[34] “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
Versions 1.2 and Earlier.” https://tools.ietf.org/html/rfc8422.

[35] “keytool - Key and Certificate Management Tool.”
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html.

[36] “OAuth 2.0 Security Best Current Practice draft-ietf-oauth-security-topics-12.”
https://tools.ietf.org/id/draft-ietf-oauth-security-topics-12.html.

[37] “ab - Apache HTTP server benchmarking tool.”
https://httpd.apache.org/docs/2.4/programs/ab.html.

https://httpd.apache.org/docs/2.4/programs/ab.html

