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Abstract 

 

This thesis aims in enhancing the security of a federated Service Oriented 

Architecture, based on the communication of RESTful micro-services in the 

cloud. To achieve this goal, HTTPS (HyperText Transfer Protocol Secure) or 

HTTP over TLS (Transport Layer Security) was incorporated in the 

communication of the micro-services. In each exposed service, TLS certificates 

were installed in order to encrypt the communication and guarantee the 

authenticity of the service. Furthermore, emphasis was put on improving the 

mechanism for authorization and authentication of the users when they access 

the system. Τhe authorization code grant of the OAuth 2.0 protocol and OpenID 

Connect were incorporated in the API of the system. The authorization code 

grant provides API security and reduces the chance of exposing user credentials 

by utilizing scoped access tokens. OpenID Connect extends the OAuth 2.0 

Protocol and provides enhanced user authentication, ID token validation, and 

SSO (Single Sign-On) functionality amongst the federated architecture nodes. A 

series of experiments showed that the added security measures introduce delay 

into the system. Furthermore, it is demonstrated that different encryption 

algorithms and key lengths may affect system performance. 

  



3 

Table of Contents 

1. Introduction ....................................................................................... 5 

1.1 Motivation .................................................................................... 5 

1.2 Solution ....................................................................................... 6 

1.3 Contributions of the Work ............................................................ 8 

1.4 Structure ...................................................................................... 9 

2. Background ..................................................................................... 10 

2.1 HTTP ......................................................................................... 10 

2.2 HTTPS ...................................................................................... 11 

2.3 OAuth 2.0 .................................................................................. 14 

2.4 OpenID Connect ........................................................................ 14 

2.5 Service Oriented Architecture .................................................... 15 

2.6 iZen System .............................................................................. 16 

2.7 Docker ....................................................................................... 20 

3. iZen federated IoT architecture ....................................................... 22 

3.1 iZen Architecture ....................................................................... 23 

3.1.1 Front-End Services ............................................................. 23 

3.1.2 Back-End Services ............................................................. 27 

4. Implementation ............................................................................... 31 

4.1 HyperText Transfer Protocol Secure Incorporation .................... 31 

4.1.1 Components Communicating over public network .............. 32 

4.1.2 Certificate Creation ............................................................. 34 

4.1.3 PEP proxy Identity Manager and Web Application 

Modifications ............................................................................................. 41 

4.1.4 Cassandra Directory Database Modifications ..................... 45 



4 

4.2 Authorization Code Grant, OpenID Connect and Single Sign-On 

Implementation ............................................................................................. 51 

4.2.1 Authorization Code Grant Implementation .......................... 51 

4.2.2 OpenID Connect, Signature Validation and Single Sign-On 

Implementation ......................................................................................... 55 

5. Performance Evaluation .................................................................. 63 

5.1 Infrastructure for Conducting Experiments ................................ 63 

5.2 Apache Bench Tool .................................................................... 64 

5.3 Experiment 1 – HTTP vs HTTPS ............................................... 65 

5.4 User login to remote cloud node utilizing the Single Sign-On (SSO) 

functionality .................................................................................................. 68 

5.4.1 Experiment 2 – Request for authorization code while SSO is 

utilized for user login to remote node ........................................................... 69 

5.5.2 Experiment 3 – Exchange of authorization code for access token 

and id token while SSO is utilized ................................................................ 71 

5.6 Experiment 4 – RSA Encryption Algorithm Evaluation ............... 73 

5.7 Experiment 5 – Elliptic Curve Encryption Algorithm Evaluation . 74 

5.8 RSA and Elliptic Curve Encryption Algorithms Comparison ...... 76 

5.9 Experiment 6 - Register Sensor to a Remote Node while SSO is 

utilized .......................................................................................................... 78 

6. Conclusions .................................................................................... 80 

7. Future Work .................................................................................... 82 

 

 

  



5 

1. Introduction 

1.1 Motivation 

Internet of Things (IoT) and cloud computing are two highly 

interconnected technologies. The exponential use of sensors in industrial fields 

such as energy, healthcare, building management, agriculture, and 

transportation, as well as the introduction of smart devices facilitating daily 

activities, have created a vast volume of information which needs to be stored 

and processed via IoT applications. Due to its characteristics (scalability, 

affordability, easy maintenance, and accessibility), cloud computing is an ideal 

platform for deployment of IoT systems which collect, store, process, and 

analyze IoT data. The majority of these IoT systems follow the principles of the 

Service Oriented Architecture (SOA) and consist of independent services, 

communicating over the network. That communication is based on the HTTP 

protocol and is achieved by exchanging requests and responses between client 

and server services. The client service makes a request for a resource using a 

HTTP method (Get, Put, Post, Head, Delete) and the server service replies 

accordingly. HTTP is based on the assumption that mutual trust exists between 

the client and the server and has no built-in security measures to ensure 

communication integrity. Moreover, the communicating services are unable to 

verify each other’s authenticity. Consequently, messages can be intercepted by 

malicious third parties (man-in-the-middle attacks), who can acquire valuable 

and sensitive information such as user credentials, credit card numbers and 

identification of the user. Furthermore, since there is no data validation, the 

content of the messages can be altered, injected with malware, or redirected to 

another malevolent service. 

Encryption of the communication between two services is essential. In 

addition, a safe channel and communication method must be established before 

the exchange of the messages begins. These three components ensure that the 

content of the messages will remain safe even if they get intercepted by a third 

party, as they can not be read without possession of the decryption key. 
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Additionally, encoding guarantees that the messages have not been modified in 

any way and, as a result, the messages can be discarded by the services if an 

anomaly is detected. Another important matter that needs to be addressed is 

service identification. Each service ought to provide a document verifying its 

authenticity. In order for this document to be considered valid it must be signed 

by an independent authority that all the services recognize and trust. 

iZen is a federated IoT system that consists of a union of equipotent IoT 

nodes that communicate over the network. Each iZen node leverages the 

principles of Service Oriented Architectures (SOA) and is implemented as a 

composition of RESTful micro-services [1]. iZen offers user and organization 

management, data process storage, and management services, as well as 

appropriate interfaces for IoT devices installation. iZen services are protected by 

PEP-PROXY servers that allow access only to authorized users and services. 

There are three parties of interests in iZen (system administrators, infrastructure 

owners and customers). System administrators manage their IoT node and enlist 

it in the iZen federation to make it discoverable from the other nodes. 

Infrastructure owners register their sensors in a cloud node and sell the data they 

collect. Finally, the customers can subscribe to sensors in order to receive 

measurements. The current study uses iZen as the prototype and extends it, in 

order to address the aforementioned issues. 

1.2 Solution 

Upgrading HTTP (HyperText Transfer Protocol) to HTTPS (HyperText 

Transfer Protocol Secure) guarantees communication security. Each exposed 

service creates a private key, encoded by a strong encryption algorithm, and a 

certificate that includes information of the service owner (e.g. country, state, 

corporation, email and domain name). The certificate is sent to a trusted 

Certificate Authority (CA) which tests and verifies the information and proceeds 

to sign it. At the beginning of the communication between the services, a 

handshake is performed. During the handshake, the client and server service 

will agree upon an encryption algorithm to be used. The server presents its 
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certificate in order to validate its identity. The certificate contains the server’s 

domain name and the certificate authority that vouches for its authenticity. Finally, 

the server provides a key for generation of the session keys, that will be used for 

encryption and decryption, before the actual message transmission begins. 

Aiming to minimize the risk of exposing user credentials and to enhance 

user authorization and authentication, OpenID Connect and the authorization 

code grant of OAuth 2.0 protocol were implemented in the web API of iZen. Upon 

receiving a login request, the iZen web application now requests an authorization 

code from Fiware Keyrock Identity Manager (IDM) and redirects users to its 

graphical interface, which prompts them to input their email and password. After 

a successful login, Keyrock IDM responds to the web application with the 

generated authorization code. The web application makes a second request to 

the IDM instantaneously, in order to exchange the received authorization code 

with an access token and an ID token. IDM returns an access token to the web 

application, alongside a scoped ID token in the form of JSON web token which 

includes only the necessary user information. The iZen web application performs 

signature validation when it receives the ID token in order to verify the 

authenticity of the sender, and to ensure that the user belongs in a trusted iZen 

node. Additionally, it extracts the necessary user information from the ID token 

and binds them to the corresponding user session. This procedure is essential, 

especially when Single Sign On (SSO) functionality is used for login to a remote 

iZen node. In the aforementioned scenario, the web application will 

communicate, for authorization and authentication of the user, with the IDM 

located in the cloud where the user is registered. 

 

Figure 1 presents an abstract view of services communication during 

user login. 
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Figure 1: Abstract view of services communication 

 

1.3 Contributions of the Work 

 

The following summarizes the contribution of this work: 

HTTPS protocol is enabled in iZen services that communicate over the 

public network in order to encrypt the communication ensuring its security and 

integrity. 

User login and logout process is altered to follow the authorization code 

grant type flow, hence the risk to expose user credentials is reduced. 

OpenID Connect protocol is enabled which offers improved user 

authentication and system security utilizing scoped id tokens and the signature 

validation process. 

SSO functionally is incorporated between the iZen nodes allowing users 

to access remote nodes via their registered IDM account. 
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1.4 Structure 

Chapter 2 provides the knowledge background required for 

understanding this work and presents the software tools that are used for the 

completion of this thesis. 

Chapter 3 presents iZen’s system architecture and briefly explains the 

functionality of each service. 

Chapter 4 identifies the services where the communication occurs over 

the public network thus the incorporation of the HTTPS protocol is necessary. 

Additionally, it describes the procedure to generate TLS/SSL certificates, the 

incorporation of the HTTPS and OpenID Connect protocols and the 

implementation of authorization code grant type flow, signature token validation 

and Single Sign-On functionality in the system. 

Chapter 5 demonstrates how the added security measures and 

certificate private keys that are generated by two different encryption algorithms 

i.e., RSA and Elliptic Curve, which utilize different key lengths, affect the system’s 

performance. 

Chapter 6 summarizes the conclusions and Chapter 7 offers 

recommendations for future work. 
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2. Background 
 

2.1 HTTP 

The Hypertext Transfer Protocol (HTTP) [2] is a stateless application 

level request/response protocol that uses extensible semantics and self-

descriptive message payloads for flexible interaction with network-based 

hypertext information systems. HTTP communication occurs over TCP [3] and 

port:80 is the designated service port. 

 

HTTP "client": is a program that establishes a connection to a server for the 

purpose of sending one or more HTTP requests. 

 

HTTP "server": is a program that accepts connections in order to service HTTP 

requests by sending HTTP responses. 

 

 A client sends an HTTP request to a server in the form of a request 

message, beginning with a request-line that includes a method (GET, PUT, POST, 

DELETE, HEAD, TRACE, OPTIONS, CONNECT, PATCH), Uniform Resource 

Identifier (URI) [4], and protocol version. The request-line is followed by header 

fields containing request modifiers, client information, representation metadata, 

an empty line to indicate the end of the header section, and a message body 

containing the payload body. 

 A server responds to client requests by sending one or more HTTP 

response messages, each beginning with a status line that includes the protocol 

version, a success or error code, and textual reason phrase, possibly followed 

by header fields containing server information, resource metadata, 

representation metadata, an empty line to indicate the end of the header section, 

and a message body containing the payload body. 
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2.2 HTTPS 

The Hypertext Transfer Protocol Secure (HTTPS) [5],[6] extends HTTP, 

by encrypting the communication protocol using Transport Layer Security (TLS) 

[7] or its predecessor Secure Sockets Layer (SSL). As a result, HTTPS is 

alternatively referred to as HTTP over SSL/TLS. HTTPS ensures data integrity 

and privacy, and protects the communication against interception by third parties 

(man-in-the-middle attacks). Furthermore, HTTPS provides authentication of 

server services, and clients if opted by the server, by utilizing certificates. 

Certificates contain information about the owner, the domain name of the service, 

as well as a private key that was encoded using a strong encryption algorithm. 

Servers send their certificate to a Certificate Authority (CA), i.e., highly trusted 

third-party organizations, that verify the information and signs it, vouching for the 

authenticity of the service. HTTPS communication uses a secure channel 

utilizing the TLS cryptographic protocol and the designated service port is the 

443. 

 

The main difference between HTTP and HTTPS communication is the 

TLS handshake that occurs after the TCP connection has been established and 

before services start exchanging the actual messages. During the handshake, 

the server and client discuss which TLS version and cipher suite [8] will be used 

for encryption. Furthermore, the server service verifies its identity via its public 

key and the digital signature of the TLS certificate authority. Lastly, the two 

services generate session keys for symmetric communication encryption after 

the handshake is over. 

 

The TLS handshake steps while using (RSA), the most common key 

exchange algorithm named after its creators Rivest Ron, Shamir Adi, and 

Adleman Leonard, are presented below. 
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 1. Client initiates the handshake with a ClientHello message that 

contains the TLS versions and cipher suites, that client supports, as well as a 

string of random bytes known as the Client Random. 

 2. Server responds with a ServerHello message that contains its 

certificate, its choice for TLS version and cipher suite that will be used for the 

communication, and a Server Random, its string of random bytes. Optionally, 

server may request for the client’s certificate. If server and client are not 

compatible a Handshake Failure message will be sent instead. 

 3. Client proceeds to verify the server’s certificate with the authority 

that issued it and responds with its certificate if requested; client will send an 

empty certificate if he does not possess one. This process guarantee’s server 

authenticity. 

 4. Server verifies client’s certificate. If it receives an empty or invalid 

certificate, it may choose to continue the communication or interrupt it and 

respond with Handshake Failure message. 

 5. Client sends another random string of bytes, called the “Premaster 

Secret”, which is encrypted using the public key obtained from the server’s 

certificate and can only be decrypted using the server’s private key. 

 6. Server proceeds to decrypt the Premaster Secret. 

 7. The two sides generate session keys from the Client Random, the 

Server Random and the Premaster key. The generated session keys should be 

identical for both sides. 

 8. Each side sends a Finished message that is encrypted with the 

session key and validates the message that it receives from the other side. 

 9. Handshake is completed and secure symmetric encryption has 

been achieved. From this point forward, communication will be encrypted using 

the session keys. 
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 When the communication ends, the client has to send an “end of 

communication” message, otherwise the server assumes that an error has 

occurred. 

        Figure 2 visualize the handshake between a client and a server. 

 

                                    Figure 2: Client and Server Handshake 
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2.3 OAuth 2.0 

OAuth 2.0 [9] is an open standard authorization protocol used to provide 

secure delegated access to client applications while protecting user’s 

credentials. Authorization servers act as an intermediate between client 

applications and end users, issuing access tokens to client applications, in order 

for them to access protected resources. Identity managers issue access tokens 

only after successfully authenticating the resource owner (end user) and acquire 

authorization. 

2.4 OpenID Connect 

OpenID Connect [10] builds on the OAuth protocol and extends it, by 

utilizing scoped tokens to provide additional user authentication. When OpenID 

Connect is incorporated, access tokens issued by an authorization server 

include a scoped ID token. ID tokens contain information such as issuer’s identity, 

issued and expiration time of the token and additional information controlled by 

scopes, that the end user has accepted to reveal to the client application. 

Moreover, OpenID Connect offers signature validation of the access tokens and 

can facilitate Single Sign-On (SSO) functionality among different client 

applications. 

Role of HTTPS, OAuth2.0 and OpenID Connect in communication 

All three protocols i.e., HTTPS, OAuth2.0 and OpenID Connect are 

utilized in services communication as each one implements a distinctive function. 

• HTTPS encodes the communication guaranteeing the security 

and the integrity of the exchanged messages. 

• OAuth2.0 provides access tokens for user authorization and 

authentication in the system. 

• OpenID Connect enhances the authentication by providing 

scoped id tokens which contain additional issuer and user 

information. 
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2.5 Service Oriented Architecture 

Service Oriented Architecture (SOA) [11], [12] is a software design 

pattern that defines principles based on which services can be used as 

independent reusable modules, reachable over the network via a well formatted 

interface. Each service performs a specific and explicitly defined function and 

provides an interface that other services can use for communication. This 

communication takes place using standard protocols (SOAP/HTTP or 

JSON/HTTP) and without the need for human interaction or further code 

alteration, thus facilitating easy access and fast integration into existing systems. 

The main principles of Service Oriented Architecture (SOA) are 

presented below: 

Standardized Service Contract: Services ought to provide a 

description of their functionality for the other application services. 

Service Autonomy & Abstraction: Services control their functionality 

and how it is implemented but conceal code logic from other services. 

Loose Coupling: Services must depend on each other as little as 

possible, so that any service functionality modification does not hinder the 

functionality of the whole application. 

Service Reusability & Composability: Application logic must be 

broken down into smaller pieces so that each service implements a certain 

functionality and can be reused by another system to fulfill the same purpose. 

Conversely, services must be able to be combined in order to create a single 

application. 

Service Interoperability: Service interfaces must include common 

communication standards, so that they can be used by a diverse set of 

subscribers. 
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2.6 iZen System 

iZen is a federated IoT system that consists of a union of equipotent IoT 

cloud nodes that communicate over the network. Each node represents a 

different organization. Each member organization can improve their offered 

services and increase their potential profit, on the basis of information exchange. 

Node administrators control the information they share and only authorized 

users are able to access their system. There are three parties of interest that 

interact in iZen: 

System administrators: are responsible for the proper functioning of 

their system and monitor its operations. They perform Create, Read, Update, 

Delete (CRUD) operations on users and assign appropriate roles and 

permissions to them. Lastly, they register their node to the federation to make it 

discoverable by other nodes. 

Infrastructure Owners: possess IoT devices which they can install and 

register on a cloud node, after receiving the appropriate permission by system 

administrators. Registered devices are discoverable by all iZen nodes. 

Infrastructure Owners aim to sell data and data management services to 

customers. 

Customers: subscribe to one or more cloud nodes. They can discover 

and select IoT devices that interested them and get notified about their 

measurements. In addition, they can acquire data management services 

provided by Infrastructure Owners. 

 

 

iZen nodes are independent, expandable, and secure by design, as 

each individual service is protected by a Policy Enforcement Point PEP-PROXY, 

conjointly with a Policy Decision Point in case more complex policy rules are 

required. Nodes leverage the principles of Service Oriented Architectures (SOA) 

and are implemented as a composition of RESTful micro-services by combining 
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well known technologies such as PHP, HTML and JSON with databases 

(Cassandra, MySQL, MongoDB) and Generic Enablers.  The latter are reusable 

components able to execute specific functionalities and they are accessible via 

APIs that include standard communication protocols. They are provided by 

FIWARE [13], an open source platform that aims to contribute in the 

development and implementation of future internet services and applications. 

 

 Popular FIWARE Generic Enablers, that are incorporated in the iZen 

architecture, are briefly discussed hereafter. 

 

FIWARE Orion Context Broker 

Gartner defined context broker as a “service designed to gather 

reachable context data of a variety of types, sources and velocity. It then applies 

conditioning, integration, rules and analytics to derive the reduced prepared 

context data, actionable at a point of business decision by a system or a human.”. 

Orion is FIWARE’s implementation of a Context Broker [14]  and 

constitutes the cornerstone of each FIWARE component architecture. It is a 

NGSIv2 [15] server implementation that manages context process and 

distribution. Clients can query, update, and register context information or they 

can subscribe to receive notifications upon designated context change. 

 

 

FIWARE Keyrock Identity Manager 

Identity managers (IDMs) are frameworks consisting of technologies 

and policies responsible for assigning digital identities to entities (physical users 

or services). They guarantee that only authenticated and authorized individuals 

can access protected resources if certain conditions are met. 
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Fiware Keyrock [16] Identity Manager is the core of system’s security 

and alongside PEP-PROXY Wilma and PDP AuthZforce, it can incorporate 

security authentication and authorization in a system. Keyrock connects other 

components at application level and enables them to use standard 

authentication mechanisms in order to accept or reject requests based on 

industry standard protocols. 

 

The main services offered by Keyrock’s API are: 

• User account creation and secure information management. 

• Application/service registration and declaration of trusted 

applications, organizations, and users. Activation of 

communication protocols or technologies that the application 

accepts at requests. 

• PEP-PROXY registration alongside a policy rule set, in order to 

protect application access points and allow only authorized 

authenticated access. 

• Organization creation and management. Assigning roles and 

appropriate permissions to members. 

 

FIWARE PEP PROXY Wilma and PDP AuthZForce 

PEP proxies are application endpoints placed in front of individual 

services or resources in order to protect them from unauthorized access. PEP 

proxies intercept client requests to the service and perform authentication before 

permitting or denying access. 

For more sophisticated access control, PEP proxies can be combined 

with Policy Decision Points (PDP). After intercepting a request to the protected 

service, PEP sends the client’s attributes to a PDP which in turn takes the 

decision to permit or deny access based on relevant registered access policy 

rule sets. Afterwards, PDP returns its decision to PEP, in order for it to enforced. 
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FIWARE’s generic enablers PEP proxy Wilma [17] and PDP AuthZForce 

[18] are combined with Keyrock IDM to perform advanced access control to 

backend services. Keyrock’s API enables registration of PEP proxies to secure 

services. It also facilitates creation of access policy rule sets based on the 

XACML [19] standard, that utilized by PDP AuthZForce to assess Permit/Deny 

policy decisions. 

 

FIWARE Short Time Historic Database Comet 

Comet [20] is a Short-Term Historic (STH) database build on top of 

MongoDB. Comet is responsible for managing historical raw and aggregated 

context data registered in an Orion Context Broker instance. 

Communication between the Comet database and the Orion Context 

Broker uses standardized NGSI interfaces. 

 

FIWARE Cygnus 

Cygnus [21] is an intermediate in charge of persisting context data from 

Orion (which is a NGSI source of data) into STH Comet or other third party 

database that accept NGSI-like context data, in order to create a historical view 

of the context. Cygnus accepts NGSI data flows and stores them to their 

predefined appropriate databases. 

 

Cassadra 

A key component of iZen’s architecture is the Cassandra [22] database. 

Cassandra is developed by Apache Software Foundation and is a distributed 

NoSQL database ideal for creation of clusters that replicate and share data 

between nodes, offering high data availability while guaranteeing no single point 

of failure. In each iZen cloud node, a Cassandra node exists that manages data 

and enables search by the registered users. 
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2.7 Docker 

Docker [23] is an open platform offering containerization of applications. 

It separates applications from infrastructure, as each application is packaged in 

a loosely isolated environment, called a container, alongside its required libraries 

and dependencies. Thus, docker guarantees application interoperability, while 

simultaneously allowing multiple containers to run in the same host without 

interfering with each other, as shown in Figure 3. 

 

 

 

                        

                     

 

                                    

 

 

 

 

 

Basic concepts of Docker are explained below. 

 

Docker Image [24] : is the building base of a docker container. 

Developers can create their own images or use and extend images shared by 

other developers at public registries such Docker Hub. 

 

 

Figure 3: Docker Containerized Applications 
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Dockerfile [25] : is a text document used by docker to automatically 

build images. It contains all necessary instructions that are needed to assemble 

an image, in the form of commands. The commands are executed during the 

container creation. 

 

Docker Container [26] : is a standardized unit containing all necessary 

libraries, dependencies and environmental variables of an application or service. 

It represents an instance of a running image. 

 

Docker Volume [27] : is a mechanism for storing persistent data to be 

exchanged between a container and the host. Volumes create a link between a 

directory of the container and the host machine, enabling the sharing of stored 

data. Even if the container is deleted, volumes remain intact and can be bound 

to another container. 

 

Docker Compose [28] : is a tool for specifying and running applications 

comprised of multiple containers. Compose utilizes a YAML file that defines a 

container’s configuration, inter-connection, volumes and needed environment 

variables. By utilizing docker compose, developers are able to deploy multi-

container applications with a single command. 
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3. iZen Federated IoT Architecture 

 

iZen cloud nodes are deployed on Virtual Machines (VMs) that use the 

OpenStack platform. Each VM contains a docker that encloses iZen’s system 

services in individual containers. An iZen node can be reached by users or other 

nodes via its provided public IP address. 

iZen’s system containers are deployed utilizing the docker compose tool. 

Docker’s compose YAML file defines the base image used to create each service, 

the environment variables to pass inside the containers, and the necessary 

volumes bound to the containers. A private network needs to be created which 

will be used by containers for communication. Furthermore, a private IP address 

is assigned to each individual container. Finally, the YAML file describes the 

mapping of the services. The ports available for requests from users or other 

services are declared for each container. Docker provides two different port 

mechanisms for interaction with its container, the publish and the expose 

mechanism. The publish mechanism enables the assignment of ports to the 

containers, which are available for requests from outside the Docker. The expose 

mechanism allocates ports to each container, used for inter-container 

communication, via Docker’s private network. 

Consequently, users and node system services can send requests to a 

service (container), located in a remote cloud node, via the node’s public IP 

address followed by container’s publish port. Containers located in the same 

node, utilize private addresses alongside the exposed ports to communicate 

inside the established private network of the Docker. 
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3.1 iZen Architecture                             

 

                                       Figure 4: Mapping of iZen services 

 

3.1.1 Front-End Services 

Front-end services provide graphical interfaces to facilitate the 

interaction of cloud users with the iZen node. These services are accessible via 

the node’s public IP and their assigned published port. Communication between 

these services and the users occurs over the public network. 

 

All front-end services, except from the Identity Manager, are 

implemented from a newly created Dockerfile. The basic image for the Dockerfile 

is 7.1.11-apache acquired from the official repository of PHP.  The Dockerfile 

contains an implementation of Apache web server version 2.4.10 and the 

libraries for the programming language PHP version 7.1.11 which is used to write 
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the HTML pages that are served to the users from the front-end services. 

Additionally, the drivers to support communication with the Cassandra database 

utilizing PHP 7.1 were installed from DataStax [29]. Lastly, the ports where 

Apache web server accepts requests were exposed. 

 

The functionalities of each front-end service are briefly mentioned 

hereafter. 

 

Web application 

The web application is the Login endpoint of each iZen cloud node. 

Users select the cloud node on which they are registered and are redirected to 

the graphical interface of the node’s Keyrock IDM in order to fill in their 

credentials. After successful authentication Keyrock redirects them back to the 

web application where they can choose to access either the customers portal or 

the infrastructure owners portal corresponding to their role in the iZen cloud node. 

When users select a portal, a role check is performed in order to verify that the 

user is authorized to access it. Portals are intermediate HTML pages, between 

the web application and the provided services, which display the available 

actions for each group of users and redirects them to the corresponding service. 

Register Service 

The register service provides a graphical interface that can be used by 

Infrastructure Owners, Admins and Customers to perform the following actions. 

• Infrastructure Owners can register their sensors by filling the 

necessary information, i.e., id, name, owner’s details and the type 

of measurements that the sensor provides. Register service 

inserts the data to the cloud’s Cassandra node so that the sensor 

can be discovered by interested Customers. 
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• Customers can subscribe to selected sensors to receive 

measurements. Register service updates customer’s 

subscription list in the Cloud’s Cassandra node. 

• System Administrators can fill their nodes information, i.e., 

location, public IP, and owner’s information, in order to register it 

in the iZen federation and make it discoverable to users. 

Administrators must acquire authorization to be permitted to 

register their node. 

 

Query Service 

Query service constitutes a search engine that enables users to discover 

sensors and cloud nodes via its provided graphical interface. 

Query service offers fast and easy search by enabling users to filter by 

cloud node and type of sensor measurement. Before the search begins a 

permission check is performed to verify that the user is authorized to view the 

requested cloud’s sensors. If the user is authorized, query service retrieves the 

appropriate sensors from the Cassandra node. 

Additionally, users can utilize the service to discover the available cloud 

nodes registered in the federation and request to subscribe to any of them. A 

request for subscription is sent to the cloud’s node administrator and if he/she 

approves it, the user can query for the sensors registered in that cloud node. 

 

History Service 

History service acts as an intermediate between Comet and the users 

by providing a graphical interface to interact with it. 

Customers and Infrastructure Owners can select from the sensors they 

are subscribed to or provide and receive historical measurements. Users can 

specify a time frame that interests them or choose a specific metric of 
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measurements, e.g., max temperature during a month or average humidity of 

the week. 

Sensor Interface Service 

Sensor interface service acts as an intermediate between IoT-Agent and 

the Infrastructure Owners and enables them to install their sensors in their 

registered cloud. 

Infrastructure Owners fill the characteristics of their sensor in the 

graphical interface and provide the necessary drivers for their sensor’s 

functionality. Sensor Interface service proceeds to pass the information to the 

IoT-Agent to complete the installation. 

Identification and Authorization Service 

The Identification and Authorization Service is implemented based on 

FIWARE’s Keyrock IDM image. It orchestrates system authentication and 

authorization in services based on the OAuth 2.0 protocol. Via its provided 

graphical interface users can perform the following actions: 

Administrators: register their node’s services in Keyrock IDM and 

declare which services and group of users may have access to them. They can 

declare which technologies are enabled for communication with the service and 

add a PEP-PROXY to protect it. Furthermore, they can write rule sets in form of 

XACML for the Policy Decision Point AuthZForce to assess the requests for 

access in each service protected by a PEP-PROXY. Finally, administrators 

define the groups of users that exist in their node and are able to register users 

in their system and assign them roles and their corresponding permissions. 

Customers / Infrastructure Owners: create an account and manage 

their personal information through Keyrock’s graphical interface. They have to 

make a request to the system administrator in order to join the cloud node. The 

request contains the intended role they want to receive; the available roles are 

customer or infrastructure owner. If the administrator accepts it, they are added 
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to their desired group of users and automatically receive the permissions that 

correspond to their group. 

 

3.1.2 Back-End Services 

 

Back-end components implement the core functionalities of an iZen 

system, i.e., data management, storage and retrieval, as well as incorporation of 

authentication and authorization into the system. These components are based 

on images provided by FIWARE’s official repository, excluding the two MongoDB 

and the MySQL databases which are based on their own images acquired from 

the respective official DockerHub repositories. An exception, is the directory 

database, Cassandra, which is installed directly into the cloud VM and not inside 

a docker container. Although Cassandra is a back-end component, it may 

communicate with Cassandra nodes from other clouds via a public network, to 

exchange data. 

 

Publish/Subscribe Service Orion 

This service is implement based on the Orion Context Broker image 

provided by FIWARE. It is responsible for managing entities based on the NGSI-

2 model. Orion receives a HTTP request when a sensor is register in the cloud 

through the IoT-Agent. It creates a sensor entity with the requested 

characteristics and stores it in MongoDB. Orion subscribes to the cloud’s 

sensors, in order to receives notifications when the context is altered, and 

proceeds to inform all subscribers of the particular sensor about the relevant 

change. Finally, if a customer receives authorization and subscribes to a sensor 

installed in a remote cloud, Orion proceeds to subscribe to that cloud’s Orion 

instance, in order to receive context changes of the sensor and to inform its 

customer. 
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Sensor Data Storage Service Cygnus 

This service is implement based on the Cygnus image provided by 

FIWARE. It utilizes a specialized agent compatible with MongoDB that receives 

stream flows of data in the NGSI format from Orion Context Broker and proceeds 

to forward and store them in the historic MongoDB database. The Cygnus-

specialized agent subscribes to each of Orion’s sensors, so that when a 

measurement change occurs it gets notified. Upon notification, the agent 

receives and stores the data in raw and aggregated form in its designated 

database. 

 

Historic Data retrieval Service Comet 

This service is implement based on the Comet image provided by 

FIWARE. It combines individual time-stamped context data of an entity, that are 

stored in historic database, in order to create historic view. Moreover, via its 

RESTful API, it accepts request from the Historic service and retrieves raw and 

aggregated data from the database. 

 

Authorization Policy Decision Point 

This service is implement based on the AuthZForce image provided by 

FIWARE. It is responsible to assess requests from cloud users to access 

protected services. 

AuthZForce receives a REST request whenever an administrator 

creates a policy rule, based on the XACML standard, for a PEP proxy and stores 

it in a different domain for each PEP. Afterwards, whenever a PEP forwards a 

request for access from a user, PDP checks the rule sets registered in PEP’s 

corresponding domain in order to Permit or Deny access. 
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Policy Enforcement Point Proxy Server 

This service is implement based on the Wilma image provided by 

FIWARE. The role of Policy Enforcement Points is to ensure that only authorized 

users or services are able to access protected services. There are two operating 

scenarios of PEP proxies: 

The first scenario occurs when a PEP is an intermediate in the 

communication of two services. The requesting service must include the master 

key in the header of the request, in order to be authorized by PEP to access the 

service. The master key is a secret that was defined by the administrator of the 

cloud during PEP’s creation and each PEP has a different one. 

In the second scenario, PEP proxy intercepts the request of a user to 

the service. In this case, the collaboration of PEP with the Identity Manager and 

the PDP is necessary to ensure user authentication and authorization. Initially, 

PEP proxy receives a request for access from a user that includes an OAuth2 

token in the header. An OAuth2 token is created during the user’s login in the 

system by the IDM and represents the identity of the user and that he/she is 

authenticated by the IDM. PEP exports the token and sends it to IDM for 

validation. IDM verifies token validity using its database and responds with the 

user’s role in the organization. Afterwards, PEP forwards the user’s role 

alongside the desired action and the path of the protected resource to PDP to 

evaluate them. PDP checks the rule sets inside the domain corresponding to the 

PEP in order to make a decision to Permit or Deny the request. Finally, PDP 

returns its decision to PEP which enforces it. 
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Figure 5:Workflow of authorization of a user’s request 
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4. Implementation 
 

iZen’s system services support the HTTP/1.1 protocol for 

communication. Incorporation of the HTTPS protocol may introduce delay in 

iZen’s system performance. It is essential to recognize points in the iZen system 

where communication occurs over public networks, i.e., points vulnerable to 

attacks, as well as points where communication is safe as it is encapsulated 

inside the iZen system. 

This chapter presents the necessary modifications that need to be made 

in the YAML file of iZen, the necessary configuration for each service, as well as 

the procedure to generate certificates and encryption keys in order to enable 

communication over the HTTPS protocol wherever it is necessary. Furthermore, 

it explains how the authorization code flow of the OAuth 2.0 protocol and OpenID 

Connect were incorporated in the iZen system for authorization, authentication 

and additional security. Finally, utilizing OpenID Connect, token signature 

validation and Single Sign-On (SSO) is enabled through the iZen nodes for the 

users. 

 

4.1 HyperText Transfer Protocol Secure Incorporation 

 

This section presents the necessary steps to incorporate HTTPS into 

the system. Parts where the communication occurs over public networks are 

pinpointed, so that they can be subsequently addressed, in an effort to prevent 

attacks to the system. Furthermore, the procedure for certificate generation, 

which are utilized during communication, is demonstrated. Lastly, the 

modifications inside the docker’s compose YAML file that took place in order to 

enable communication over HTTPS are presented. 
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4.1.1 Components Communicating over public network 

 

Communication of iZen components is based on the HTTP/1.1 protocol. 

Due to this, upgrading to HTTPS introduces delay in the system’s performance. 

It is essential to recognize and enable HTTPS only for components whose 

communication occurs over public network, in order to ensure security without 

heavily affecting performance. The components are presented hereafter. 

 

Front-End Policy Enforcement Points Proxy Servers 

PEP proxies (1,2,3 and 7), as shown in Figure 4, are stationed in the 

front-end. They ensure that only authenticated and authorized users are 

permitted to access the graphical interfaces of protected services. In a typical 

scenario, PEP receives a request from a user over the public network, confirms 

with the PDP and the IDM that the user is authorized, and in the end forwards 

them to the service through docker’s private network. When SSO is utilized to 

access the node, PEP will communicate with the remote IDM to validate the 

guest user’s access token. 

 

Identification and Authorization Service Keyrock IDM 

The graphical interface of the service is reachable through the public 

network so that administrators can manage their system and users are able to 

create their account and request entry to their desired group (customers or 

infrastructure owners). When registered users utilize the Single Sign-On 

functionality to access a remote iZen cloud, remote services request, through 

the public network, for an Oauth2 token to authenticate the user. The 

aforementioned function is described in detail in section 4.2.2. 
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Web application 

Web application comprises the gateway to the iZen system, allowing 

user access through the provided graphical interface, over public networks. The 

web application authenticates the users and creates a user session with the 

necessary parameters for the system functionalities. Furthermore, the web 

application redirects users to the appropriate service, where they can perform 

their desired actions, if they are authorized to access the service. Consequently, 

incorporation of the HTTPS protocol in the web application is necessary. 

 

Directory Database Cassandra 

Directory database Cassandra is a back-end component accessible by 

the cloud’s services through the docker’s private network. Although it is a back-

end service, in order to perform its function, it is necessary to communicate for 

data exchange with the Cassandra node, placed in each iZen cloud. The inter-

node communication occurs over the public network; thus, incorporation of 

TLS/SSL is essential. 

 

Figure 6 presents the mapping of system’s services. Red-colored lines 

indicate communication occurring over public networks where HTTPS protocol 

must be enabled, while green-colored ones indicate communication through the 

private network that occurs over HTTP. 
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4.1.2 Certificate Creation 

 

Certificates are core components of the HTTPS communication. They 

digitally bind an organization name with an encryption key and can be presented 

to client services to validate the authenticity of the server service. Each server 

service has to own a certificate in order to be able to communicate over the 

TLS/SSL protocol. A certificate verifies the owner of a domain and can be used 

by multiple services in that domain. 

                                        Figure 6: Distinction between public and private network communication 
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OpenSSL can be utilized for the creation of Certificate Authorities (CA), 

cryptographic keys, certificate sign requests, and finally the certificates. 

OpenSSL [30] is an open source toolkit that includes various cryptography-

related libraries and allows users to perform TLS/SSL tasks in the form of 

terminal commands 

 

 Private Certificate Authority Creation 

In this thesis, certificates are used for research and not for production 

purposes. For that reason, an official well-known CA is not needed and instead 

a private CA is used for signing certificate requests in order to subsequently 

generate certificates. 

The first step for the creation of a private CA is the generation of a private 

key. Afterwards, a Certificate Sign Request (CSR) is generated, that contains all 

essential information of the certificate authority. Finally, the private key is used 

to self-sign the CSR in order to create the CA certificate. In this thesis, the above 

actions are implemented through CLI commands, using the OpenSSL toolkit. 

The steps for the certificate authority creation and the parameters used 

in each command are described below. 

Certificate Authority’s Private Key Generation 

Initially, the private key of the certificate authority is generated using the 

CLI command: 

openssl genpkey -algorithm RSA -des3 -out CA-private-key.pem            

-pkeyopt rsa_keygen_bits:4096 

• genpkey: OpenSSL command to generate a private key with the given 

parameters. 

• -algorithm RSA: specifies which algorithm will be used for the public 

key generation. RSA is the standard algorithm for creation of 
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encryption keys. Other popular algorithms are RSA-PSS, EC, 

ED25519. 

• -des3: indicates that OpenSSL must encrypt the private key utilizing 

the Triple Data Encryption Algorithm (3DES) [31] which applies the 

Data Encryption Standard (DES) [32] algorithm three times to each 

block of data. 3DES ensures that the key will remain safe even in the 

occasion that is stolen by a third party as it can not be used without 

decryption. When OpenSSL executes this command, it prompts the 

user to provide a password to be used. 

• -out CA-private-key.pem: indicates where the produced key with be 

stored; the file CA-private-key.pem is used in this case. PEM is the 

most common format to store certificates and their keys. The content 

of the file is Base64 Enconded ASCII. Other popular formats are DER 

and PKCS#12. OpenSSL provides the necessary commands to 

convert one format to another, if a service requires a specific format. 

• -pkeyopt rsa_keygen_bits: 4096: specifies the length of the generated 

key in bits; 4096 bits in this case. Encryption algorithms and key sizes 

affect system performance during communication. Different 

encryption algorithms require different key lengths to provide the 

same level of security. 

 

Certificate Sign Request Generation 

After generating the private key, a certificate sign request (CSR), that 

contains the necessary information of the domain owner, and the public key must 

be created and sent to an official CA. The CA reviews and confirms the included 

information and proceeds to digitally sign it, vouching for its validity. This 

procedure creates a certificate chain; meaning that each certificate is signed by 

a trusted CA. The command to generate the CSR is presented below. 

openssl req -new -key CA-private-key.pem -out CA-csr.pem 
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• req: OpenSSL command for CSR creation. The generated CSR is in 

PKCS#10 binary format which is compatible with the X.509 format 

that will be used for the certificates. 

• -new: generates a new CSR and prompts the user to fill the 

necessary information. 

• -key CA-private-key.pem:  Designates the path of the file containing 

the private key 

• -out CA-csr.pem: Designates the output file of the command. 

 

When the previous command is executed, OpenSSL requests from the 

user to fill the following information that will be included in the CSR and the 

certificate. 

Country Name: The official two letter code of the country where the 

organization is located. 

State or Providence Name: The full name of the state or the 

providence where the organization is located. 

Locality Name (e.g., city):  The city where the organization is 

located. 

Organization Name (e.g., company): The full name of the 

organization. 

Organization Unit Name (e.g., section): The department of the 

organization. 

Common Name (e.g., fully qualified host name): The fully 

qualified domain name that the certificate will bind to. Alternatively, 

user may fill the public IP address of the host. 

Email address: The email address of the host owner. 

 

The host owner may choose to left some of these fields blank but some 

client services might consider the certificate invalid if it has empty fields. 
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Self-Signed Certificate Generation for the Certificate Authority 

When an official CA receives a CSR, it reviews the included data and 

verifies that the host actually owns the relevant domain name that it received. 

The CA then proceeds to generate a certificate for the client that includes the 

digital signature of the CA. Finally, the CA sends the certificate to the client. 

In order to create a certificate for the private CA that is used in this thesis, 

the CSR is signed by the private key that was previously generated. Thus, the 

private CA will have a self-signed certificate. In section 3.2.3 it is explained how 

the certificate of the private CA can be stored in the designated directory inside 

each service, alongside the certificates of the well-known CAs, in order to 

validate the created certificates during communication between services. 

For the generation of the self-signed certificate the following OpenSSL 

command is used. 

openssl x509  -in CA-csr.pem     -out CA-certificate.pem -req          -

signkey CA-private-key.pem  -days 365 

• x509: OpenSSL command for certificate generation following the 

x509 standard. A certificate based on the x509 format contains a 

public key and the information of the owner. It is digitally signed by a 

CA or it can be self-signed. The x509 command of OpenSSL can be 

used to decode a x509 certificate in order to see its content. 

• -in CA-csr.pem: indicates the certificate sign request file. 

-out CA-certificate.pem:  indicates the output file where OpenSSL will 

store the certificate as well as its format. 

• -req: indicates to OpenSSL that the input is a certificate sign request. 

• -signkey CA-private-key.pem:  indicates the key to be used to self-

sign the certificate sign request. 

• -days 365: indicates that the certificate is valid for 365 days. A 

certificate can be created to be valid for up to three years (1095 days). 
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When the certificate expires, the owner must make a renewal request 

to the CA that signed it, or create a new certificate. 

Services Certificate Creation 

OpenSSL provides various algorithms for the private key generation. In 

this thesis, two different encryption algorithms are studied, Rivest–Shamir–

Adleman(RSA) [33] and Elliptic-Curve (EC) [34]).  The influence of the two 

algorithms in system performance, during HTTP communication over TLS/SLL, 

is quantitatively measured and compared through a series of experiments. 

 

Services Private Key Generation 

For the generation of service private keys, utilizing the RSA algorithm, 

the same OpenSSL command is used as in the section about the certificate 

authority’s private key creation. The only difference is the name of the key. 

openssl genpkey -algorithm RSA -des3 -out Service-private-

key.pem  -pkeyopt rsa_keygen_bits:2048 

For creation of private keys utilizing the Elliptic Curve algorithm, the 

following OpenSSL command is used: 

openssl ecparam -genkey -name prime256v1 -out Service-private-

key.pem 

• ecparam: indicates to OpenSSL to generate elliptic curve parameters, 

which are used by the ECC algorithm. 

• -genkey: is the OpenSSL command to generate a private key with the 

given parameters. 

• -name prime256v1: indicates to OpenSSL which elliptic curve to use 

and the number of the bit prime field. Bit prime field is the length of 

the private key. 

• -out Service-private-key.pem: indicates to OpenSSL where to store 

the generated private key and in which format. 
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Services Certificate Sign Request Generation 

After creating the service private keys, a CSR, containing the public key 

and the information of the service owner, must be created. The CSR is sent to 

the private CA in order to be signed. The same OpenSSL command is used as 

in the section about the certificate authority’s CSR creation. Of course, this time 

the private key of the service is provided. 

openssl req -new -key Service-private-key.pem -out Service-

csr.pem 

Similarly to the previous usage of the command in this thesis, OpenSSL 

prompts the user to fill the necessary information of the service owner. In the 

field of the fully qualified domain name, the public IP of each VM in OpenStack 

that hosts an iZen system is declared. 

 

Services Certificate Generation 

Finally, for certificate generation, the CSR must be signed by the private 

CA. The below OpenSSL command is used for this task. 

openssl x509 -req -in Service-csr.pem -CA CA-certificate.pem        -

CAkey CA-private-key.pem -CAcreateserial -out Service-cert.crt -days 365 

Compared to the OpenSSL command used to create the CA’s certificate 

the following parameters have been added. 

• -CA CA-certificate.pem: indicates to OpenSSL the CA certificate that 

will be used to sign the CSR. 

• -CAkey CA-private-key.pem:  indicates to OpenSSL the private key 

of the CA that will be used to sign the CSR. 

• -CAcreateserial: provides a unique serial number to the generated 

certificate. Each certificate issued by a CA must contain a serial 

number. 
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Figure 7 below demonstrates the content of a certificate after it has been 

decoded utilizing the x509 command of the OpenSSL. 

 

The generated certificates and private keys must be installed in the 

designated store of each service. 

 

4.1.3 PEP proxy Identity Manager and Web Application 
Modifications 

The PEP proxy servers and the identification and authorization service 

are implemented in containers based on images provided by FIWARE. During 

the creation of the containers, the necessary modules for HTTP communication 

over TLS/SSL are installed but they are not enabled as HTTP is the default 

protocol for service communication. 

FIWARE provides specified environment variables that facilitate the 

containers inter-connection and the enabling of the HTTPS protocol in these 

Figure 7:  Service certificate content with a 512-bit RSA Public-key 
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services. The environment variables are declared in the YAML file that the 

docker compose tool uses for the creation of the containers and their values are 

passed in the configuration file of their service, when the container is created. 

In order to incorporate the HTTPS protocol in the communication of the 

services, the modules responsible for HTTPS must be enabled. Moreover, 

HTTPS-specific port declaration is necessary. As the certificates and the private 

keys are persistent data, volumes have to be mounted in the appropriate 

directories of each service. 

Identity Manager’s Modifications 

Initially, the identity manager is configured, via the provided environment 

variables located inside the YAML file, to use the HTTPS protocol for 

communication over the public network and HTTP for the communication inside 

the docker. The utilized environment variables are mentioned below. 

- IDM_HTTPS_ENABLED=true: enables the module inside the 

container of IDM that is responsible for HTTPS communication. 

- IDM_HTTPS_PORT=3443: declares the published port that only 

accepts request based on the HTTPS protocol. The graphical and the REST 

interface of IDM will be reachable through the public network via this port. 

- IDM_PORT=3005: declares the exposed port that will be used by the 

services to reach IDM through the private network. This communication occurs 

over the HTTP protocol. 

After declaring the environment variables, it is necessary to publish the 

HTTPS-communication port and expose the HTTP port in the YAML file. 

expose: 

- “3005” 

ports: 

- “3443:3443” 
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As a last step, two new volumes must be created. The first volume is 

mounted in the directory where the service stores the CA certificates. The 

second volume is mounted in a new directory in order to store the service’s 

certificate and private key. The volumes need to be declared in the YAML file. 

volumes: 

./CAcert:/etc/ssl/certs 

./IDMcert:/opt/fiware-idm/certs 

CA’s certificate is placed inside the CAcert file of the VM while the 

service’s certificate and private key are stored in the IDMcert file. 

PEP Proxy Modifications 

The front-end PEP proxies (1,2,3 and 7) as shown in Figure 4 must be 

modified to accept HTTPS requests via the public network, decode them, and 

forward them to their protected service. These PEPs communicate, via docker’s 

private network, with the identity manager and the policy decision point, in order 

to provide authentication and authorization of the users. 

The necessary changes are implemented in the YAML file utilizing the 

environment variables below. 

• -PEP_PROXY_HTTPS_ENABLED=true: enables the module 

inside the container of the PEP that is responsible for HTTPS 

communication. 

• -PEP_PROXY_HTTPS_PORT=: indicates the PEP’s HTTPS 

port that receives requests through the public network. 

• -PEP_PROXY_APP_SSL_ENABLED=false: indicates that 

PEP’s protected service does not communicate over the SSL 

protocol, thus the requests must be decoded by the PEP before 

it forwards them to the service. 

• PEP_PROXY_PORT=: indicates the PEP’s HTTP port used for 

communication through the docker’s private network. 
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• PEP_PROXY_IDM_SSL_ENABLED=false: indicates that the 

communication between the PEP and the IDM will not occur over 

SSL. 

• PEP_PROXY_IDM_PORT=3005: indicates IDM’s HTTP port. 

• PEP_PROXY_AZF_PROTOCOL=http: indicates that the PEP 

will communicate with the AuthZForce PDP over the HTTP 

protocol. 

PEP’s HTTPS port must be published, in order to receive HTTPS 

request through the public network, and the HTTP port must be exposed for the 

inter-container communication. Furthermore, the creation of two volumes is 

necessary for storage of the CA’s certificate and the private key and certificate 

the of the PEP. 

volumes: 

./CAcert:/etc/ssl/certs 

./PEPcert:/opt/fiware-idm/cert 

Web Application Modifications 

The necessary modifications to enable communication over SSL/TLS in 

the web application are implemented in the Dockerfile that is used to create the 

web application image and in the docker-compose.yaml file that creates the 

containers of the iZen node in the docker. 

Inside the Dockerfile, two additional commands have been added. The 

first one “RUN a2enmod ssl” enables the Apache web server module responsible 

for handling SSL/TLS communication. The second command “RUN a2ensite 

default ssl” indicates to the Apache web server to utilize the default-ssl.conf file 

for the site. The configuration file has been altered to indicate the path to the 

previously generated service certificate and key. Finally, port 443 is exposed, 

which is the designated port to handle HTTPS requests. 
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The file docker-compose.yaml file must also be altered. The HTTPS port 

443 is published in order for the container to receive HTTPS requests from the 

users through the public network. Three additional volumes, shown below, are 

mounted in the container, for storage of the service key, service certificate, and 

CA’s certificate. 

volumes: 

./CAcert:/etc/ssl/certs 

./ServiceCert/private:/etc/ssl/private 

./ServiceCert/cert:/etc/ssl/certs 

  

4.1.4 Cassandra Directory Database Modifications 

Cassandra database uses SSL/TLS certificates to offer client-to-node 

encryption and node-to-node encryption. In iZen’s system client to node 

communication occurs via the secure private network, thus it will not be enabled. 

Cassandra stores the CA’s certificate in a dedicated directory inside a 

truststore file, and the node’s private key and certificate in a keystore file.  It 

secures these files by requiring a password to permit the access to them. 

Consequently, a new CA certificate and nodes certificates must be generated 

that will include the above passwords. For the generation of the certificates 

OpenSSL toolkit is used. Afterwards, java keytool [35], a tool provided by java 

that facilitates certificate and key management, is utilized to place the CA’s 

certificate in a truststore and the node’s private key and certificate in a keystore 

and then deposit them to their respective directories. 

 

The procedure to enable node-to-node encryption is described below. 



46 

Cassandra’s Certificate Authority Creation 

Initially, a configuration file is created that defines the key pair 

configurations and includes a password and the necessary information of the CA. 

This file is named CA.conf and its format and content is shown below. 

 

[ req ] 

distinguished_name = CA_DM 

output_password  = rootca_password 

prompt = no 

default_bits = 2048 

 

[ CA_DM] 

C = CC 

O = org_name 

OU = cluster_name 

CN =CA_CN 

 

where: 

• CA_DM: The distinguished name of the Certificate Authority 

• rootca_password: The password for the generated file that will be used 

to sign certificates. For this root CA the password will be cassandra. 

• CC: The official two letter country code of the CA. 

• org_name: The organization name of the CA. 

• cluster_name: The name of the cluster that is formed from each 

cassandra node in the iZen’s cloud systems. 
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• CA_CN: The common name for the root CA.  For this CA the CN will be 

CassandraCA. 

 

After creating the configuration file, a private key and a self-sign 

certificate will be generated utilizing the OpenSSL toolkit with the below 

command. 

 

openssl req -config CA.conf -new -x509 -keyout CAkey.key.pem -

out CAcert.crt.pem -days 365 

 

The new parameter -config CA.conf indicates to Openssl to utilize the 

information inside the configuration file to fill the fields of the CA certificate. 

 

At last, utilizing the java keytool, a new truststore will be created that will 

contain the CA’s certificate. This truststore have to be installed on each 

cassandra node to verify incoming connections. Official CAs certificates are 

preinstalled in truststores in the cassandra. The java keytool command to 

generate the truststore and its parameters are explained below. 

 

keytool -alias CassandraCA -keystore CAtruststore.jks                 -

importcert   -file CAcert.crt.pem -keypass cassandra -storepass cassandra 

-noprompt 

 

• -alias CassandraCA: indicate the common name of the CA and is 

used by the keytool for identification when importing the certificate in 

the keystore. 
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• -keystore CAtruststore.jks: indicates the keystore name to be 

created and the store type. The default store type is JKS while other 

common types are JCEKS and PKCS12. 

• -importcert: indicates to keytool to import the certificate file. 

• -file CAcert.pem:  indicates to keytool the file containing the 

certificate. 

• -keypass cassandra: The keypass that is used to protect the private 

key. 

• -storepass cassandra:  The storepass that is used to access the 

keystore. 

• -noprompt:  keytool automates the procedure and use the default 

options in order to not prompt the user. 

 

Cassandra’s node Certificate Generation 

Each Cassandra node must own a certificate that is signed by the CA 

and is store inside a keystore in the appropriate directory. 

Java keytool is used for the generation of a private key and the certificate 

for the node. Afterwards, the above pair is stored inside the keystore. Java 

keytool’s command that implements the aforementioned tasks alongside its 

parameters are described hereafter. 

keytool -genkeypair -keyalg RSA -alias IZENnode1 -keystore 

IZENnode1-keystore.jks -keypass cassandra -storepass cassandra -

validity 365 -keysize 2048 -dname “CN=IZENnode1, OU= IZENcluster, 

O=IZEN, C=GR” -ext “san=ip:node_ip_address” 

• -genkeypair: keytool command for the generation of a private key 

and a certificate with the mentioned parameters. 

• -keyalg RSA: indicates to keytool to use the RSA algorithm for the 

generation of the private key. 

• -validity 365: indicates that the certificate will be valid for 365 days. 
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• -keysize 2048: indicates the size of the generated key i.e., 2048. 

• -dname:   indicates to keytool the information of the node that must 

be contained inside the certificate. 

• -ext “san=ip:node_ip_address”: indicates the IP of the Cassandra 

node. 

 

Utilizing keytool a certificate sign request that includes the generated 

node certificate from the keystore will be created. 

keytool -alias IZENnode1 -keystore IZENnode1-keystore.jks        -

keypass cassandra -storepass cassandra -certreq -file IZENnode1.csr 

• -certeq: keytool command for the generation of a certificate sign 

request. 

• -file IZENnode1.csr: indicates the output file of the sign request. 

The generated CSR must be signed by the CA’s public key for the 

creation of a valid node certificate. The below OpenSSL command is used for 

this task. 

Openssl -req -CA CAcert.crt.pem -CAkey CAkey.key.pem -in 

IZENnode1.csr -out IZENnode1.crt.signed -days 365 -CAcreateserial      -

passin pass:cassandra 

Compared to the OpenSSL command that was used to generate the 

PEP and IDM certificates, an additional parameter has been added. 

• -passin pass:cassandra: this parameter indicates to OpenSSL the 

password to access the CA’s certificate. 

Finally, the generated signed node certificate alongside the CA’s 

certificate must be stored into the keystore in order to create a certificate trust 

chain. 
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Keytool -alias IZENnode1 -keystore IZENnode1-keystore.jks       -

import -file IZENnode1.crt.signed -keypass cassandra -storepass 

cassandra -noprompt 

Keytool -alias CassandraCA -keystore IZENnode1-keystore.jks    -

import -file CAcert.crt.pem -keypass cassandra -storepass cassandra   -

noprompt 

Cassandra’s Configuration File Modifications 

After the generation and the storage of the node’s certificates in the 

appropriate keystores, Cassandra’s configuration file, cassandra.yaml, is edited 

in order to enable node-to-node SSL encryption. The section of variables that 

enables node-to-node SSL encryption already exists in the default 

cassandra.yaml file but it is commented, thus it is inactive. The aforementioned 

variables that need to be enabled and their edited values in order to activate 

inter-node SSL communication are mentioned hereafter. 

server_encryption_options: 

internode encryption: rack : when the variable’s value is set to rack Cassandra 

will enable node-to-node SSL encryption. 

keystore: /home/cassandra/certs/IZENnode1-keystore.jks : indicates to 

Cassandra the path to the node’s keystore. 

keystore_password: cassandra : indicates to Cassandra the necessary 

password to access the keystore. 

truststore: /home/cassandra/certs/CAtruststore.jks : indicates to Cassandra 

the path to the node’s truststore. 

truststore_password: cassandra : indicates to Cassandra the necessary 

password to access the truststore. 

 

The above procedure is repeated for each Cassandra node in the 

system to enable node-to-node SSL encryption. It is essential that the same 
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private CA signs all the certificates of the nodes in order for them to be accepted 

as valid by other nodes. In the case that an official well-known CA is used to sign 

and create the node’s certificate, that CA’s certificate must be added in the same 

keystore in the node with the generated node certificate for the creation of a 

certificate trust chain. 

4.2 Authorization Code Grant, OpenID Connect and 
Single Sign-On Implementation 

In this thesis, iZen system is extended in order to reduce the chances of 

exposing users credentials and improve the authentication and authorization of 

its users during their access to the system. This section describes the 

implementation of the mechanisms that were incorporated in the system to 

achieve this goal. 

4.2.1 Authorization Code Grant Implementation 

FIWARE’s Keyrock IDM complies with the OAuth 2.0 protocol and 

provides all four different grant types. Authorization code grant type is the best 

practice [36] and is promoted by companies as it offers better security compared 

to the other types. The procedure to incorporate authorization code grant type 

for the access of the users in the system is described hereafter. 

When an administrator registers his cloud in the IDM, he/she must 

register each system’s service as an application. The fields mentioned below are 

crucial for IDM’s functionality and are utilized to secure user’s access. 

• URL: The administrator declares the applications URL. Only OAuth 

requests from this URL are accepted by IDM. 

• Callback URL: The user agent will be redirected to this URL when 

the OAuth flow is finished. 

• Sign-out Callback URL: The user will be redirected to this URL 

when he/she signs out from the application. 

• Grant Type: The administrator chooses the OAuth grant type that 

will be enabled in the application. When the administrator selects the 
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authorization code grant type two unique identifiers, the Client ID and 

the Client Secret are generated. 

Now that the application is registered and the necessary variables have 

been declared the steps of the authorization code grant type and how each step 

is implemented are described below. 

1. A user accesses the graphical interface of the web application and 

chooses to connect with his IDM account. The web application sends a 

GET request to /oauth2/authorize endpoint of the IDM requesting a code. 

The request must have in its header the parameters 

(response_type=code which indicates to IDM to respond with a code, the 

Client ID that was created when the administrator registered the web 

application in the IDM, and the redirect uri which indicates the location 

where the user agent will be redirected with the generated code). 

2. The user is redirected to IDM’s graphical interface and provides the email 

and the password of his IDM account. IDM initially confirms that the 

incoming request is from the URL that was declared during the application 

registration and that the received redirect_uri matches the declared 

callback URL. Then, it proceeds to search the registered users in its 

database in order to authenticate the user. After successfully 

authenticating the user, IDM creates an authorization code. Finally, it 

responds with the HTTP status code 302 Found, the generated code and 

redirects the user to the indicated callback URL. 

3. When the web application receives the authorization code, it must 

exchange it with an access token. This time, the web application makes 

a POST request to the /oauth2/token endpoint of the IDM. In the header 

field of the request an Authorization Basic header is included. This header 

is the identity of the service and its value is generated by joining the two 

unique identifiers, Client ID and Client Secret, with the symbol “:” between 

them (i.e client_id:client_secret) and encrypting them using the base64 

method (i.e. base64(client_id:client_secret)). The body of the request 

includes the parameters (grant_type=authorization_code which indicates 
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to IDM to respond with an access token, the received code from the 

previous request, and the redirect uri). 

4. IDM validates the identity of the application by decoding the authorization 

header and confirming that the client id and client secret match the 

generated ones during the registration of the application. It proceeds to 

generate an access token and stores it in his database. Furthermore, it 

creates a user session that includes the oauth sign in. At last, it responds 

with the HTTP status code 200 OK in the header field of the response, 

and the main body, which is in JSON format, and contains the generated 

access token, indicates that the type of the token is bearer, declares the 

expiration time of the access token, and provides a refresh token which 

can be exchanged by the application to automatically refresh the access 

token if it expires while the user continues his session. 

5. When the web application receives the IDM’s response, it extracts the 

access token and binds it to the user’s session. The access token signifies 

the user’s identity and it needs to be provided to the PEPs in order for 

them to authenticate the user and authorize his access to the protected 

resources. 

If the user has previously sign in IDM though the provided graphical 

interface, IDM would have already created a session for the user, due to this, it 

will not prompt the user to fill in his credential, and it will instantly respond with a 

code at the step 2 mentioned above. 

When the user desires to log out of the web application, the user 

sessions that are created inside the application and the IDM must be deleted.  

The flow that occurs during the user’s log out is described below. 

1. The user clicks the logout button in the application. This triggers the 

application to send a DELETE request to /auth/external_logout endpoint 

of the IDM. The request includes the client id, facilitating the IDM to find 

and delete the user’s session. 
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2. The IDM finds the application’s domain inside his database, based on the 

provided client id, and deletes the stored session of the user. It proceeds 

to redirect the user agent at the /Destroy_session.php endpoint of the 

web application, which is the designated Sing-out Callback URL. 

3. The web application destroys the parameters of the stored user session 

and redirect the user to the log in page of the application. 

 

The complete authorization code grant type flow that occurs during the 

users login and logout is presented in the Figure 8. 

 

Figure 8: Authorization code grant type flow 
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4.2.2 OpenID Connect, Signature Validation and Single Sign-On 
Implementation 

OpenID connect builds upon the OAuth 2.0 protocol and extends it in 

order to offer improved user authentication and authorization in the system. 

Furthermore, it improves the security of the system as it facilitates the creation 

of a signature validation mechanism for the generated tokens. In the latest 

version of Keyrock IDM, FIWARE incorporated the necessary functionalities that 

allow users to enable OpenID connect in their applications through the graphical 

interface provided by Keyrock. 

When the cloud administrator enables the OpenID connect, Keyrock 

IDM responds when requested with an access token and an additional Jason 

Web Token (JWT), the id_token. A JWT consists of three parts, the Header, the 

Payload, and the Signature. Each part is encoded in JSON and they are joined 

by the symbol “.” between them (i.e.   

json_encode(Header).json_encode(Payload).json_encode(Signature)).  The 

decoded content of each part of the id_token is in JSON format and includes the 

information below. 

Header: declares which algorithm is used for the signature or the 

encryption, and what type of token the id_token is. 

Payload: contains information of the organization where the user is a 

member and its role in that organization. Furthermore, it provides the user’s 

email, username and unique identifier inside the system. Lastly, it provides 

information of the token itself i.e. (the issuer of the token, the subject that the 

token refers to, the audience that the token is intended for, the expiration time of 

the token and the time that the token is issued). 

Signature: is a keyed hash value generated using the HMAC method. 

The parameters of the method are: a hashing algorithm i.e., sha256, the 

message to be hashed which consists of the base64URL encoded header joined 

with the base64URL encoded body by the symbol “.” between them, and a 

shared secret key used for generating the HMAC variant of the message digest. 
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The secret is generated when the administrator enables the OpenID connect 

protocol in the application. The token’s signature is a mean to verify the integrity 

of the claims inside the token and validate its authenticity. 

 The authorization code grant type flow is slightly different when the 

OpenID protocol is enabled. The altered steps of the flow compared to the 

previous section are described hereafter. 

Step 1: The web application additionally includes the scope=openid 

parameter in the GET request to the /oauth/token endpoint of the IDM. This 

parameter indicates to IDM that the OpenID connect protocol is used and that 

the IDM must respond with an id token that includes the claims mentioned above 

in the payload section. 

Step 4: The IDM responds with the access token and the JWT id token. 

The signature of the id token is created using the shared secret that was 

generated when the administrator enabled the OpenID connect protocol in the 

registered web application in the IDM. 

Step 5: The web application extracts the access token and the id token 

from IDM’s response. It proceeds to split the id token in order to receive each 

part i.e. (header, payload, signature) and performs signature validation utilizing 

the shared secret. If the signature is valid, the web application allows the access 

of the user in system and binds both the access token and the id token in the 

user’s session as they will be utilized for the user’s authentication and 

authorization afterwards. 

The steps 2 and 3 of the login flow as well as the logout flow remain the 

same. 

The complete authorization code grant type flow that occurs during the 

users login and logout while the OpenID protocol is enabled is presented in 

Figure 9. 
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Signature Validation Process 

Signature validation guarantees the integrity of the id token’s content 

and that the sender is the IDM and not a third-party service that imposes as the 

IDM. In order to implement the signature validation a secret that is known only 

to the IDM and the application is utilized. When the web application receives an 

id token, it proceeds to generate an “expected” signature based on the token’s 

header, payload and the shared secret. If the expected signature matches the 

Figure 9: User login and logout flow when OpenID is enabled 
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received signature of the id token, the token is considered valid, thus the user 

may access the system. Conversely, if the two signatures do not match, the 

access is denied and the user is redirected to the initial login page. The 

implementation of the signature validation in the web application of the system 

is described hereafter. 

1. The web application extracts the id token from the IDM’s 

response. It splits the id token at the symbol “.” in order to receive 

the JWT token’s three parts i.e.(header, payload, signature) and 

stores them into variables. The parts are base64 encoded. 

2. The header and the payload are decoded into text by utilizing the 

function base64_decode() of the PHP programming language. 

3. For the generation of the expected signature the header and the 

payload must be encoded in base64URL format. PHP does not 

include a function for base64URL encoding, thus a new function 

is created for this purpose. The new function named 

base64urlEncode receives as input a text and replaces the 

symbols “+”, “/” and “=” with “-”, “_” and “ ” respectively. Then, it 

encodes the text using the PHP function base64_encode(). The 

output variable is in base64URL format. 

4. After encoding the header and the payload in base64URL format 

the expected signature can be created. For this purpose the 

hash_hmac function of PHP is utilized. This function generates a 

keyed hash value using the HMAC method. It receives as input 

the hashing algorithm, the data and a HMAC variant of the 

message digest. The hashing algorithm utilized is the sha256, the 

data consist of the base64URL encoded header joined with the 

base64URL encoded payload with the symbol “.” between them 

i.e. (base64urlEncode(Header).base64urlEncode(Payload)), and 

the HMAC variant is the shared secret. 

5. Finally, the web application compares the expected signature with 

the received signature. If the two signatures match the id token is 
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considered valid as only someone who possesses the secret i.e., 

the IDM, can generate this signature. 

Single Sign-On implementation 

Incorporation of the OpenID connect protocol in the communication of 

the system provides the necessary mechanisms for the implementation of single 

sign-on functionality among the iZen nodes. The JWT id token includes all the 

essential information to authenticate and authorize a user in the system. 

Additionally, the signature validation guarantees the integrity of the claims that 

the id token contains, and verifies that the token is generated from a trusted IDM. 

In order to explain the single sign-on functionality in this section the two 

interacting iZen nodes will be referred as node A and node B. The user is 

registered in the node A, therefore this node provides the id token for the user 

authentication and authorization. Node B is the remote node where the user 

desires to have access to. 

For the implementation of the single sign-on functionality among node A 

and node B, the administrators must perform the following actions. 

The administrator of node A must register a new application in his IDM. 

The URL, Callback URL, and Sign-out Callback URL of this application will 

indicate the appropriate URL’s at the domain of the node B. Keyrock IDM 

ensures that only requests from node’s B domain will be accepted to this 

application. Additionally, the administrator designates that the application’s grant 

type is authorization code grant in order to generate the unique identifiers of the 

application, i.e., client id and client secret. Moreover, he/she enables the OpenID 

connect protocol in the application, therefore IDM will respond with an id token 

when it receives a code. Finally, the id token secret that was generated when 

then administrator of node A enabled the OpenID connect protocol and the 

unique identifiers of the application are shared with the administrator of node B. 

The administrator of node B stores the received id token secret and 

application identifiers inside its web application. Furthermore, he/she must 
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modify the application to redirect the users to node’s A graphical interface of the 

IDM to fill their password and email, in order to receive a code and exchange it 

for the id token. Moreover, the logout procedure must be modified to send a 

DELETE user session request to the appropriate IDM. Finally, the web 

application must identify if the guest user is a customer or an infrastructure owner, 

and bind the respective role i.e. (guest customer or guest infrastructure owner) 

to the user’s session. Consequently, the administrator must create the 

aforementioned roles in his organization and assign them the appropriate 

permissions. Hence, the administrator is able to control the resources which the 

guest users are authorized to access. 

The flow of a guest user’s login to a remote node is briefly discussed 

hereafter. 

1. The guest user from node A visits the web application of node B 

and selects to login with his registered account in node A. The 

web application sends a GET request to /oauth2/authorize 

endpoint of the IDM located at node A requesting a code. The 

request includes the client id of the newly registered application 

that accepts requests from node B and the scope=openid 

parameter. The redirect URI in the request indicates the HTML 

page of the node B. 

2. The user is redirected to the graphical interface of node’s A IDM 

to fill in his credentials. The IDM verifies that the request is coming 

from a trusted domain and authenticates the user. It responds to 

the indicated redirect URI with an authorization code. 

3. The web application receives the authorization code and makes 

a POST request to the /oauth2/token endpoint of the IDM located 

at node A requesting to exchange the received code for an access 

token and an id token. The Authorization Basic field of the header 

consists of the client id and client secret that the administrator of 

node B received and stored in the web application from node’s A 

administrator. 
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4. Node’s A IDM decodes the Authorization Basic field of the header 

and validates the identity of the application. It proceeds to 

generate an access token and an id token of the authenticated 

user, which is signed using the shared token secret. It stores a 

user session in his database and responds to the web application 

with the generated tokens. 

5. Node’s B web application extracts the id token from the response. 

It proceeds to split the token and performs signature validation. If 

the signature is valid, it extracts the user’s role in node A from the 

claims of the id token. If the user is a customer the web 

application will assign the role of the guest customer in node B, 

while if the user is an infrastructure owner it will assign the role of 

the guest infrastructure owner. Finally, the web application 

creates a user session and binds the access token, the id token 

and the user’s new role to it. When the user desires to access a 

protected resource, the PEP sends the user’s new role to the 

PDP for assessment of the request based on the rule set that the 

administrator registered for this role. Furthermore, if a service 

requires some user’s credentials for its functionality, it extracts 

them from the id token. 

 

When the user desires to logout from the node’s B system the web 

application sends a DELETE request to /auth/external_logout endpoint of the 

IDM located in node A. IDM deletes the stored user session from its database 

and redirects the user agent to the indicated sign-out callback URL at node B. 

Afterwards, node’s B web application deletes the user session that was created 

in the web application, and redirects him/her to the login home page. 

 

The complete flow when a guest user logins and logouts to a remote 

node is presented in the Figure 10 below. 
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Figure 10: Single Sign-On login and logout flow 
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5. Performance Evaluation 
A series of experiments were conducted in order to evaluate the 

performance of the system after enabling the HTTPS and the OpenID connect 

protocols in communication, as well as incorporating the authorization code 

grant, the signature validation mechanism and the Single Sign-On functionality 

among the cloud nodes in the system. 

 

5.1 Infrastructure for Conducting Experiments 

In total, three cloud node systems were used for the conduction of the 

experiments. Two of them were developed in virtual machines on the Intellicloud 

of Technical University of Crete at Chania. One cloud node was developed in a 

private physical machine located at Athens in order to take realistic 

measurements that include the network delay. 

The technical features of the virtual machines and the physical machine 

are as follows: 

 

                                      Figure 11: VMs Technical Features 

 

 

 

                               Figure 12: Physical Machine Technical Features 
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5.2 Apache Bench Tool 

Apache Bench [37] is a load testing and benchmarking tool for HTTP 

and HTTPS servers. It can simulate a large number of requests to be handled 

by a service and it allows the user to set a concurrency, i.e., the number of 

requests that the service must execute at the same time. 

The two metrics used in this study are: 

 Time taken for tests i.e., the total time that the service needs to 

execute all the requests at a specified concurrency. 

Time per request mean i.e., the average time that the service needs to 

execute a batch of requests at a specified concurrency. 

Apache Bench was installed in each VM and the physical machine, in 

order to evaluate the system performance. 

In each of the following experiments, Apache Bench was utilized to 

simulate 2000 service requests. Each experiment was repeated for five different 

concurrencies: 1, 50, 100, 150 and 200. 

The performed experiments take into consideration the network delay. It 

is measured that the included delay is 10 to 11ms per request. 

 

 

Figure 13: Color coding of concurrency, used in the diagrams below. 
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5.3 Experiment 1 – HTTP vs HTTPS 

This experiment evaluates the response time of the web application and 

compares the performance penalty of using HTTPS compared to HTTP. 

Details: A user that lives in Athens visits the home page of the web 

application which is located at a cloud node at Chania with IP address 

147.27.60.43 and its published port is 8060.  The requests are simulated from 

the Apache Bench tool installed in the machine located at Athens, hence network 

delay is included in the measurements. When HTTPS protocol is enabled, the 

certificate installed in the web application contains a 2048-bit public key that was 

generated using the RSA encryption algorithm. 

 

REST: When HTTP is enabled GET requests are send to 

http://147.27.60.43:8060. Resultant times measured for HTTP protocol are 

presented in the diagrams below. 

Figure 14: Total Time Taken for requests while HTTP protocol is utilized 
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Figure 15: Time per request mean while HTTP protocol is utilized 

 

 REST: When HTTPS is enabled, GET requests are send to 

https://147.27.60.43:8060. Results are presented in the diagrams below. 

Figure 16: Total Time Taken for requests while HTTPS protocol is utilized 
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The Diagrams below compare the total time taken and the time per 

request at each concurrency between HTTP and HTTPS. 

Figure 18: Total Time Taken for request comparison between HTTP and HTTPS 
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Figure 17: Time per request mean while HTTPS protocol is utilized 
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The comparison of the metrics demonstrates that enabling the HTTPS 

protocol in the web application introduces significant delays, as the required time 

to execute the same number of requests at the same concurrency doubles. 

 

5.4 User login to remote cloud node utilizing the Single 
Sign-On (SSO) functionality 

When a user initiates a login at a remote cloud node utilizing the SSO 

functionality provided by OpenID Connect, a two-part communication occurs 

between the node’s web application and the IDM where the user is registered. 

In the first part of the communication, the web application requests an 

authorization code from IDM and redirects the user to its graphical interface. IDM 

prompts the user to fill in their email and password. After successfully 

authenticating the user, IDM responds with an authorization code to the web 

application. 
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Figure 19: Time per request mean comparison between HTTP and HTTPS 



69 

In the second part, the web application sends a request to IDM, that 

includes the previously acquired authorization code, in order to exchange it for 

an access token and an id token. IDM responds accordingly. The received 

access token is utilized for authorization of the user, while the id token is for 

authentication as it includes all necessary user and issuer information. 

Experiment 2 measures the response time of the remote IDM, when the 

web application requests an authorization code. Experiment 3 measures the 

time needed for IDM to exchange the previously generated authorization code 

for an access token and an id token. 

 

5.4.1 Experiment 2 – Request for authorization code 
while SSO is utilized for user login to remote node 

 The second experiment quantifies the response time when the web 

application requests an authorization code from an IDM, which is located at a 

remote cloud node. As the two communicating services are located in different 

cloud nodes, the HTTPS protocol is utilized. 

Details: A user registered at a cloud node located at Chania initiates a 

login utilizing the Single Sign-On functionality, from the cloud node located at 

Athens. The web application, in the Athens cloud node, sends a request for 

authorization code at the cloud IDM at Chania. The IP address of the node at 

Chania is 147.27.60.43 and the IDM published port is 3443. IDM’s certificate 

contains a public key that was generated using the RSA encryption algorithm 

and its length is 2048 bits. 

REST: The Athens web application sends a GET request at                       

https://147.27.60.43:3443/oauth2/authorize.  The request header contains (1) 

the parameter “response_type=code”, (2) the client ID of the registered 

application at Chania’s IDM, which accepts requests from the Athens node, (3) 

the “scope=openid” parameter, and (4) the redirect URI. 
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The measured metrics are presented in the diagrams below. 
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Figure 20: Total Time Taken for requests when the web app requests for authorization 

code while SSO is utilized 

Figure 21: Time per request mean when the web app requests for authorization code 

while SSO is utilized 
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5.5.2 Experiment 3 – Exchange of authorization code for 
access token and id token while SSO is utilized  

 In the third experiment, the response time is measured when the web 

application makes a request to exchange the previously acquired authorization 

code for an access token and an id token from an IDM located at a remote cloud 

node. As the two communicating services are located in different cloud nodes, 

the HTTPS protocol is utilized. 

Details: A user registered at a Chania cloud node initiates a login to the 

cloud node located at Athens, utilizing the Single Sign-On functionality. The user 

was previously redirected at Chania’s IDM graphical interface to fill his 

credentials and was successfully authenticated by the IDM. Subsequently, the 

IDM responded with an authorization code for Athens’s web application. The web 

application of Athens’s cloud node sent a request at Chania’s cloud IDM, in order 

to exchange the received code for an access token and an ID for the 

authorization and authentication of a guest user.   

 The IP address of the Chania node is 147.27.60.43 and the 

published IDM port is 3443. IDM’s certificate contains a public key that was 

generated using the RSA encryption algorithm and its length is 2048 bits. 

REST: Athens’s web application sent a POST request to                       

https://147.27.60.43:3443/oauth2/token.  The request header contains the 

Authorization Basic field consists of the client id and client secret that the 

administrator of Athens’s node received and stored in the web application from 

Chania’s node administrator. The body of the request contains, in JSON format, 

the field “grant_type=authorization_code”, the received authorization code, and 

the redirect_uri. 

 

 

 

The measured results are presented in the diagrams below. 
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Figure 23: Total Time Taken for requests when the web app requests for Access and ID 

token while SSO is utilized 
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Figure 22: Time per request mean when the web app requests for Access and ID token 

while SSO is utilized 
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5.6 Experiment 4 – RSA Encryption Algorithm 
Evaluation 

This experiment evaluates the response time of the web application 

when the HTTPS protocol is enabled and the application’s public key, that is 

contained in the certificate, was generated utilizing the RSA encryption algorithm. 

Details: The web application is located at a cloud node at Chania with 

IP address 147.27.60.43 and its published port is the 8060. Utilizing the RSA 

encryption algorithm, two public keys with different lengths, 2048 and 4096 bits, 

were generated and respectively installed in the web application, in order to 

study how different key lengths, affect system performance. The requests are 

simulated from the Apache Bench tool, installed in the machine located at Athens, 

in order to take into consideration, the network delay. 

The diagram below compares the total time needed for the web 

application to execute all the requests at each concurrency, when the two RSA 

keys, with different lengths, were utilized. 
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Figure 24: Total time taken for requests comparison between the RSA keys 



74 

The following diagram compares the average time that the web 

application needed to execute a batch of requests at each concurrency when 

the two RSA keys with different lengths were utilized. 

 

As expected, the measurements when the 4096 bits length key is utilized 

are higher, compared to the respective measurements of 2048 bits length key. 

It is also worth mentioning that 2048 bits is the minimum key length for 

the certificate’s key. Companies promote the usage of 4096-bit length keys for 

additional security, especially when the service manages sensitive information. 

5.7 Experiment 5 – Elliptic Curve Encryption Algorithm 
Evaluation 

This experiment is identical to the previous one, with the only difference 

being that the keys were generated utilizing the elliptic curve encryption 

algorithm. The two different keys have lengths 256 and 384 bits. A 256 bits ECC 

key provides the same security with a 3072 bits RSA key, while a 384 bits key is 

equivalent to a 7680 bits RSA key. 
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Figure 25: Time per request mean comparison between the RSA keys 
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The diagram below compares the total time needed for the web 

application to execute all the requests at each concurrency, when the two ECC 

keys with different lengths were utilized. 

 

 

 

The next diagram compares the average time that the web application 

needed to execute a batch of requests at each concurrency when the two keys 

with different lengths were utilized. 
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Figure 26: Total time taken for requests comparison between the ECC keys 
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5.8 RSA and Elliptic Curve Encryption Algorithms 
Comparison 

 

The measured values for each utilized key, at each concurrency are 

compared and the results comparing performance are presented in the diagrams 

below. 

 

 The diagram below demonstrates the total time needed for the web 

application to execute all the requests at each concurrency for all the utilized 

keys. 

155.42

383.85

777.23

1170.6

1551.8

150.54

373.9

754.56

1133.85

1517.86

1 50 100 150 200

0

200

400

600

800

1000

1200

1400

1600

1800

CONCURRENCY

M
IL

LI
SE

C
O

N
D

ECC 384 VS 256 TIME PER REQUEST MEAN

Figure 27: Time per request mean comparison between the ECC keys 
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                      Figure 28: Total Time Taken for requests comparison between all keys 

 

The following diagram demonstrates the average time that the web 

application needed to execute a batch of requests at each concurrency for all 

the utilized keys. 

 

 

                         Figure 29: Time per request mean comparison between all keys 
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              The comparison shows that the keys generated with the EC encryption 

algorithm outperforms the keys generated with the RSA encryption algorithm. 

Characteristically, even when the 384 bits length ECC key is utilized the system’s 

performance is greater compared to when 2048 bits length RSA key is used. 

Finally, the best system performance is observed when the 256-bit ECC 

key is utilized. 

5.9 Experiment 6 - Register Sensor to a Remote Node 
while SSO is utilized 

The last experiment studies the response time of the system when an 

infrastructure owner, which has utilized the SSO functionality to login to a remote 

node, registers a sensor to the node. 

 In this scenario, the user is registered in the Athens node. Utilizing the 

SSO functionality they have successfully logged into the Chania’s node web 

application. The web application has successfully authenticated the user and it 

has bound an access token to them, as well as an id token and the guest 

infrastructure owner role. The user is redirected to the graphical interface of the 

Register Service in order to register their sensor. When the user sends the 

request, PEP extracts the user’s role in the node, i.e., guest infrastructure owner, 

and forwards it alongside the requested resource to the PDP. The PDP assesses 

the request based on the stored rule set for the role and returns its decision to 

the PEP. If the permission is Permit, the PEP forwards the request to the register 

service. The latter extracts the sensor information from the request body and 

registers the sensor to the Cassandra directory database. Lastly, register service 

responds to the user with a success message or a failure message depending 

on the outcome of the user’s request.    

Details: The requests are sent from the physical machine located in 

Athens; hence the measurements include the network delay. The IP address of 

Chania’s node is 147.27.60.43 and the PEP published port, that protects the 

register service, is 8066. The PEP’s certificate contains a public key that was 

generated using the RSA encryption algorithm and its length is 2048 bits.  
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REST: The user sends a POST request to 

https://147.27.60.43:8066/RegisterSensor. The body contains the email of the 

user, the sensor’s name and the type of the measurement the sensor receives, 

e.g., temperature. 

The measured times are presented below. 

 

Figure 30: Total Time Taken for requests to register a sensor to a remote node 

 

Figure 31: Time per request mean to register a sensor to a remote node  
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6. Conclusions 
 

In this thesis, different security authentication and authorization 

mechanisms were implemented in a master-less federated cloud node 

architecture, in order to improve the system of each node in these areas. 

Specifically, the HTTPS protocol was incorporated in crucial 

components of the system, for which communication occurs over public 

networks. Usage of the HTTPS protocol reinforced system security, as it 

encodes the communication utilizing encryption algorithms. To this end, two 

underlying encryption algorithms, i.e., RSA and ECC with different key lengths, 

were utilized in order to evaluate their effect in system performance. The 

experimental measurements demonstrated that enabling HTTPS introduced 

significant delay in the system, due to the time penalty introduced by the 

encryption process that occurs between two services before the communication 

begins. Moreover, quantitative evaluation revealed that amongst tested keys, the 

one generated by the ECC encryption algorithm with 256-bit length provides the 

best system performance. 

The authentication code grant type of the OAuth2.0 protocol was 

incorporated in the system in order to reduce the chance of exposing user 

credentials. In addition, the OpenID Connect protocol, which extends the 

OAuth2.0 protocol, was enabled. OpenID Connect improves user authentication 

and authorization in the system by providing scoped ID tokens. In addition, it 

facilitated the creation of a token signature validation mechanism which 

guarantees the authenticity of the tokens and the integrity of the claims that they 

contain. 

Finally, Single Sign-On (SSO) functionality, amongst federated nodes, 

was implemented. SSO was based on the OpenID Connect protocol and it allows 

registered users to login and use services of remote cloud nodes, on which they 

are not registered, via the IDM account of their node. In order to authenticate 

and authorize the user, remote cloud nodes request ID tokens from the user’s 
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registered node. These ID tokens contain all necessary user information required 

for system functionality. Furthermore, administrators of remote cloud nodes can 

control to which resources the guest users have access to, via rule sets. 
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7. Future Work 
This thesis succeeded in reinforcing overall system security, as well as 

user authentication and authorization, by utilizing modern techniques and 

solutions. Additionally, it provided an implementation of Single Sign-On 

functionality, among federation cloud nodes. However, there are still areas for 

improvement and further research, which could not be covered in this study, due 

to time constrains or current technological limitations. Proposed future directions 

are outlined below. 

Upgrading HTTPS/1.1 protocol to HTTPS/2.0 protocol – HTTPS/2.0 

utilizes multiplexing of the requests and the responses. Due to this, it can greatly 

improve system performance, while guaranteeing security of the communication. 

Securing the communication between the system and the IoT 

sensors – IoT sensors are characterized by their low energy demand and their 

relative low processing power. Due to these characteristics, incorporation of the 

HTTPS protocol in order to secure the communication between the sensors and 

the system is a demanding challenge, due to the associated computational 

complexity of encryption. 

Modification of the system to replace Cassandra database – 

Cassandra is a high-performance distributed database and constitutes a core 

component of the system, as a Cassandra node is installed in every cloud node, 

enabling the exchange of information between them. Nonetheless, Cassandra 

poses several system security risks either due to service errors or due to 

malicious edge owners. A potential flaw can compromise the information stored 

in all nodes, while restoring information is time consuming and has large cost 

implications for the edge owners. Replacement of Cassandra with a no-

distributed, no-SQL database requires modifications in the implementation of 

system services. Formation of the federation can be based on the OpenID 

Connect protocol and the Single Sign-On functionality that was implemented in 

this thesis.       
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