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ABSTRACT 10 

Earth Observation (EO) employed often in synergy with  simulation process models provides a 11 

promising direction for acquiring information on key parameters required to understand the 12 

Earth’s system physical mechanisms and interactions. The objective of this study is two-fold: 13 

First, it explores the combined use of EO data from the Advanced Along-Track Scanning 14 

Radiometer (AATSR) with the SimSphere land biosphere model via the “triangle” to derive latent 15 

(LE) and sensible heat (H) fluxes and soil moisture content (SMC) over diverse European 16 

ecosystems. Secondly, it investigates the influence of atmospheric correction on the “triangle”-17 

derived retrievals. For this purpose, both non-atmospherically (AATSR 1P) and atmospherically 18 

corrected (AATSR 2P) AATSR data products are used. Those were acquired for selected days 19 

spanning from 2007 to 2011 at 12 sites belonging to a European ground monitoring network. The 20 

comparison of the predictions from the 1P product against the in-situ measured SMC resulted in 21 

an RMSD of 0.13 cm cm-1, which improved to 0.06 cm3 cm-3 when the 2P product was utilised. The 22 

correlation coefficient (R) was also satisfactory for both product levels (R=0.766 for the 1P versus 23 

R=0.844 for the 2P product). The daytime-averaged fluxes also improved by using the 2P 24 

products with RMSD values of 0.146 and 0.130 for the daytime averages of LE and H fluxes 25 

respectively. For all predicted parameters the statistical measures notably improved when the 2P 26 

product is utilised (with R of 0.92 and 0.69 for the LE and H fluxes respectively). Comparisons 27 

showed a variant agreement between the predicted parameters and the measured values 28 

depending on the land cover type. The findings are significant since to our knowledge, the present 29 

study for the first time addresses the following issues: (1) It assesses the triangle technique at a 30 

mesoscale resolution of 1 km using AATSR data, offering important information regarding the 31 

surface heterogeneity effect on the parameters retrieval accuracy. (2) It investigates the effect of 32 

atmospheric correction on the technique’s prediction accuracy, thus addressing an scientific 33 

knowledge gap in its application, as such errors can lead to higher uncertainty and biases in the 34 

“triangle”-derived retrievals. These findings provide important information regarding the future 35 

utilisation of the investigated technique for potential operationalisation.   36 
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1. INTRODUCTION 40 

Earth’s physical mechanisms, interactions and feedback processes between its land surface and 41 

atmosphere are key elements in forming our physical environment (Seneviratne et al., 2010; Sun 42 

et al., 2019). These land-surface interactions include the numerous complex natural processes 43 

which also influence the global climate system (Stoyanova and Georgiev, 2013; North et al., 2015). 44 

Thus, understandably, accurate information about such climate parameters over a variety of 45 

space and time scales is essential to assess the dynamics and distribution of key biophysical 46 

variables and to ensure long-term stability of terrestrial ecosystem services (Bao et al., 2018). In 47 

particular, parameters such as soil moisture content (SMC), combined with sensible (H) and 48 

latent heat (LE) heat are key state variables affecting numerous Earth’s processes (Vereecken et 49 

al., 2014; Shi and Liang, 2014; Deng et al., 2019a). Accurate estimation of their spatiotemporal 50 

variability is thus of prime interest for many research investigations, practical applications and in 51 

addressing key societal challenges today linked to global societal challenges such as food and 52 

water security (Petropoulos et al., 2015; Silva-Fuzzo et al., 2019). 53 

Accurate information on the spatiotemporal variability of both LE/ H fluxes and of SMC over large 54 

scales can be very expensive and time consuming (Petropoulos & McCalmont, 2017), particularly 55 

so over highly heterogeneous areas. In this respect, Earth Observation (EO) is recognised today as 56 

a promising avenue in estimating turbulent fluxes of LE and H and/or SMC. Numerous techniques 57 

have been developed for this purpose that utilise data obtained across the range of 58 

electromagnetic spectrum, with their relevant implementation strengths and weaknesses already 59 

well-documented in the literature (see recent reviews by Petropoulos et al., 2018a,b; Petropoulos 60 

et al., 2015). A special group of EO-based methods includes those which combine the surface 61 

temperature (Ts) with a Vegetation Index (VI), where empirical relations are obtained by plotting 62 

Ts against VI, termed as Ts/VI methods (for an extensive review see Petropoulos et al., 2009a). 63 

Compared to other EO-based modelling approaches employed in the retrievals of energy fluxes 64 

and/or SMC, Ts/VI techniques are characterised by an enhanced capability to account for land 65 

surface heterogeneity. In addition to this, their implementation is based on easily obtainable from 66 

EO data which also makes them also an ideal candidate for operational implementation.  67 

Some researchers have proposed the use the Ts/VI domain synergistically with a land surface 68 

process model in obtaining information on both LE/H fluxes and SMC from EO data, commonly 69 

termed as the “triangle” (Petropoulos et al., 2014; Carlson & Petropoulos, 2019). This approach 70 

allows merging the spectral resolution and horizontal coverage of EO data with the detailed 71 

description of the physical processes vertically and the fine prediction time step of SVAT models. 72 

One of the key is that it links the Ts/VI feature space with the predicted LE/H fluxes and SMC in a 73 

non-linear relationship, which is more realistic than the assumption of linearity provided by most 74 

other Ts/VI methods. In addition, it offers the potential for relatively easy transformation of the 75 

derived fluxes for each satellite overpass time to daytime averages. Various studies have already 76 

demonstrated the “triangle’s” ability to predict LE and H fluxes and SMC with accuracy in the 77 

range between 40 and 70 Wm-2 and within 5 % cm3 cm-3 for SMC, which is considered a 78 

satisfactory prediction for many applications (Gillies et al., 1997; Petropoulos and Carlson, 2011). 79 

A variant of the “triangle” is at present operationally implemented to map SMC over Spain at 1 km 80 

based on ESA’s SMOS satellite (Piles et al., 2011). Also, modified versions of this approach have 81 

been under investigation towards the operational level development of relevant products 82 

(Chauhan et al., 2003; ESA STSE, 2012).  83 

Yet, to our knowledge, investigation of this method accuracy on a meso- to macro-scale as well as 84 

for European ecosystems is limited. Indeed, studies that have been concerned with the validation 85 
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of the “triangle” investigated primarily when that is applied with fine spatial resolution EO data, 86 

and on US ecosystems. Interestingly, most of these studies have also been concerned only with the 87 

validation of instantaneous SMC and energy flux estimates. Hence, very little is known practically 88 

on the methods’ accuracy for daytime average estimates. Verification of the “triangle” at coarser 89 

spatial resolution (e.g. of 1km or higher) will offer important information on the surface 90 

heterogeneity effect on the retrieval accuracies of the target parameters. Furthermore, the 91 

“triangle” has been implemented in studies which have utilised either atmospherically or non-92 

atmospherically corrected data. Hence, little is known at present on the atmospheric correction 93 

effect on the technique’s prediction accuracy. This is an important scientific knowledge gap, as 94 

errors in satellite derived Ts and VI could lead to uncertainty and biases in the “triangle”-derived 95 

retrievals. It is known that atmospheric effects can affect in some cases even dramatically the 96 

quality of EO data and the effect is depended on the spectral band used (Agapiou et al., 2011). 97 

Hadjimitsis et al. (2010) highlighted a mean difference of 18% for NDVI with and without 98 

atmospheric correction implementation. On the other, in the TIR window, atmospheric 99 

transmissivity and path radiance can affect the retrieval accuracy of surface temperature by even 100 

more than 10°C (French et al., 2003). Thus, it is undoubtedly of key interest to explore the 101 

atmospheric correction effect on the “triangle”-predictions accuracy.  102 

In purview of the above, this study’s objectives are two-fold: Firstly, to explore the ability of the 103 

“triangle” in deriving spatiotemporal estimates of energy fluxes and SMC using EO data from the 104 

Advanced Along-Track Scanning Radiometer (AATSR) acquired at a range of European 105 

ecosystems. A further objective has been to assess the effect of atmospheric corrections on the 106 

technique’s accuracy. For this purpose, the “triangle” was implemented at selected CarboEurope 107 

sites for which non-atmospherically corrected (AATSR 1P) and atmospherically corrected (AATSR 108 

2P) AATSR satellite data operational products had been acquired for selected experimental days 109 

or 47 days in total spanning the period 2007-2011.   110 

 111 

2. TRIANGLE DESCRIPTION & IMPLEMENTATION 112 

2.1 The Ts/VI domain  113 

Numerous investigations already published have established the physical properties embedded in 114 

the triangular (or trapezoidal) shape that emerges from a scatterplot between Ts and VI (Gillies et 115 

al., 1997; Carlson 2007; Maltese et al., 2015; Carlson & Petropoulos, 2019). This shape arises from 116 

the different effect that surface water content has on Ts, being higher over vegetated areas in 117 

contrast to bare soil areas. Such a scatterplot is characterised by four boundaries, as illustrated in 118 

Figure 1. The so-called “dry edge” or “warm edge” is delineated by the points of highest 119 

temperature which include a range of bare soil and vegetation fractions. Presumably, it 120 

represents circumstances of restricted surface soil water content and zero soil evaporative flux. 121 

Likewise, the “wet edge” or “cold edge” portrays the water availability in relation to vegetation 122 

conditions. Variation along the “base” of the triangle reflects the joint effect of the spatial 123 

variability in soil water and elevation. For data points with identical VI, the pixels with the 124 

minimum Ts are those with the strongest evaporative cooling, whereas the opposite is the case for 125 

the pixels with maximum Ts. 126 

2.2 “Triangle” Implementation 127 

The “triangle” operation links the Ts/VI scatterplot with a SVAT model which allows estimating 128 

spatially turbulent fluxes of LE and H (both instantaneous and daytime average) as well as SMC. 129 

An overview of the method implementation is furnished next, also depicted in Figure 2.   130 
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2.2.1 Data Pre-Processing 131 

First, all the datasets need to be georeferenced to a common projection. Subsequently, if 132 

necessary, a masking should be implemented to remove pixels containing clouds, cloud shadows 133 

and water bodies. Then, vegetation fractional cover (Fr) is computed from the Normalised 134 

Difference Vegetation Index (NDVI, Deering et al. (1975) according to Gillies & Carlson (1995) as 135 

follows: 136 
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where NDVI0 and NDVIs are the minimum and maximum NDVI values respectively at the 138 

locations within the image, which are usually derived from the scatterplot of the Ts versus NDVI 139 

maps. This transformation allows plotting at the same scale both the simulations from the SVAT 140 

model and the EO-derived Ts. 141 

The next step includes scaling of the surface temperature, Ts by means of: 142 
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where Ts denotes the pixel temperature value within the study domain. Tmin and Tmax can be 144 

defined directly from the Ts/VI scatterplot and refer to the minimum and the maximum Ts for 145 

wet vegetated pixels and for the dry, bare soil respectively. 146 

2.2.2 Coupling EO with the SVAT Model 147 

In the next step, Ts (or equally Tscaled) and Fr are coupled with a SVAT model which allows 148 

deriving the LE/H fluxes and SMC spatially.  In this study, SimSphere SVAT model is used for this 149 

purpose. This model is known from its initial development as the Penn-State University 150 

Biosphere-Atmosphere Modelling Scheme (PSUBAMS) (Carlson and Boland, 1978; Lynn and 151 

Carlson, 1990). SimSphere has significantly evolved by Gillies et al. (1997) and later by 152 

Petropoulos et al. (2013b) & Anagnostopoulos & Petropoulos (2017). A comprehensive 153 

overview of the SVAT model use can be found in Petropoulos et al. (2009b).  154 

SimSphere parameterisation requires providing as input information concerning the 155 

experimental area geographical location, soil and vegetation properties as well as atmospheric 156 

profile data. Once SimSphere is parameterised, it is then iterated up to the point where the 157 

simulated (modelled with the SVAT) the extreme values of Fr and Ts as recorded from the EO 158 

data match. These conditions define the initial state of the model conditions. Then, it is iterated 159 

for all theoretical combinations of Fr and SMC (in this case in increments of 10% and 0.1 for Fr 160 

and SMC respectively) keeping all other model inputs fixed.  The output values of SMC, LE, H, Ts, 161 

and Rn are recorded per iteration for the specific satellite overpass time. This results to a set of 162 

model outputs presented in the form of a matrix calculated for each set of Fr and SMC which 163 

includes the parameters SMC, Fr, Tscaled (or equally Ts), LE and H  Next, from this matrix a series 164 

of non-linear (cubic) equations are computed, relating Fr and Tscaled to each of the other variables 165 

of interest: instantaneous SMC, H, LE, and also the daytime average LE and H fluxes as expressed 166 

from the ratios of LE/Rn and H/Rn respectively, where Rn is the Net Radiation (computed by the 167 

model as well). These equations are essential quadratic equations which for example, for the 168 

case of the relation of SMC to Fr and Ts and/or Tscaled have the form shown below: 169 
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where ap,q are the coefficients estimated from the non-linear regression between the Fr, Tscaled 171 

and SMC while p and q vary from 0 to 3. Thus, these equations establish the physically-based 172 

simple and empirical relationships used to estimate the SMC and LE/H fluxes at the selected 173 

locations and times.  The derived equations are subsequently employed to the AATSR derived Fr 174 

and Ts products in order to obtain the LE/H and SMC spatially explicit mps.  175 

3. EXPERIMENTAL SET UP  176 

3.1 Study Sites 177 

A total of 12 experimental sites were chosen from the CarboEurope monitoring network; the 178 

latter is part of FLUXNET land surface parameters monitoring network (Baldocchi et al., 1996). At 179 

CarboEurope, ground data collection is based on a uniformly adopted approach at all sites, which 180 

enables data comparison.  LE and H fluxes are computed using the eddy covariance technique 181 

(Aubinet et al., 2012), whereas SMC measurement is made at a minimum in the surface and root 182 

zone soil depths using standardised instrumentation across the network sites. All the 183 

measurements acquired are subject to quality-control and error correction following 184 

standardised procedures (see Aubinet et al. 2000). 185 

Table 1 summarises our test sites key characteristics, whereas Figure 3 shows the geographical 186 

distribution of the sites. The selected sites represent different ecosystem types and were chosen 187 

taking into account certain criteria. The selected test needed to belong to CarboEurope validated 188 

network and also data from the exact same processing level should be available. Sites were also 189 

chosen based on differing land cover types to allow analysis of the land cover effect on the 190 

accuracy of retrieval results. A total of 47 days of in-situ data measured at a 30’ time step from 191 

each experimental site were acquired. These 47 days adequately cover the period from 2007-192 

2011. The main criteria for selecting the specific days included as complete as possible, cloud-193 

free, good quality in-situ data on which concurrent AATSR images were available from different 194 

land use/cover types. The in-situ data was acquired from FLUXNET global observational network 195 

(http://fluxnet.ornl.gov/obtain-data) at Level 2 processing level. Besides, local atmospheric 196 

profiles at 06.00 hours were acquired from the geographically nearest experimental site available 197 

in the University’s of Wyoming weather archive 198 

(http://weather.uwyo.edu/upperair/sounding.html).  199 

3.2 Satellite Observations 200 

AATSR is a dual-view imaging radiometer on board the European Space Agency (ESA) ENVISAT 201 

satellite. It records both the reflected and emitted radiation at 7 spectral bands distributed from 202 

the optical to thermal infrared parts of the electromagnetic spectrum at a 512 km swath and a 203 

spatial resolution of 1 km at nadir and 1-3 days temporal resolution. In this study, two AATSR 204 

products were used. The first was the ATS_TOA_1P product; this is the Level 1B Product 205 

containing geolocated, radiometrically and geometrically corrected brightness 206 

temperature/radiance at the top-of-the atmosphere (TOA) projected in a longitude-latitude grid. 207 

Thermal channels include the brightness temperature at different spectral bands which has been 208 

derived from the thermal channel radiances by applying the Planck’s Law. In the product, both the 209 

forward and nadir views are 'co-located' as a result of geometric correction (for more details see 210 

ESA AATSR Product Handbook, 2007). In addition, the ATS_NR_2P Level 2 geophysical product 211 

http://weather.uwyo.edu/upperair/sounding.html
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was obtained (ESA ENVISAT-1 Products Specifications Manual, 2013). This product provides the 212 

values of various geophysical parameters at 1 km spatial resolution, including the NDVI and the 213 

surface brightness temperature/radiance. All the AATSR images were acquired from ESA’s 214 

EOLiSA platform (https://earth.esa.int/web/guest/eoli) for 47 days which included both the 215 

ATS_TOA_1P and ATS_NR_2P products per day.  216 

4. METHODS 217 

4.1 Implementation 218 

Pre-processing of all the acquired AATSR images involved the following steps: first, the Ts, TBB, 219 

radiance true values were derived by applying the scale factors provided in the ATBD of each 220 

product. Subsequently, the NDVI was computed (for the ATS_TOA_1P only) and the Fr (for both 221 

ATS_TOA_1P and ATS_NR_2P). Next, masking of clouds, and land surface covered by water and 222 

snow was applied to each image, and the product quality flags were used to remove from any 223 

further analysis spurious pixels/data. After this step, image subset was applied keeping a radius 224 

of about 50 x 50 km around each experimental site used for validation.  For the ATS_TOA_1P 225 

product in particular, only the nadir views were utilized and all pre-processing steps were 226 

consequently applied to this specific dataset.  227 

Next, the “triangle” technique was implemented for each AATSR image following the steps 228 

summarized earlier (Section 2.2.1). In addition, for each day of AATSR data, the results were 229 

recalculated using as input the Fr computed from the NDVI and the Ts which were obtained from 230 

the AATSR Surface Temperature Level 2 products (readily available in the ATS_TOA_1P product). 231 

The repetition of the calculation allowed evaluating the influence of the atmospherically corrected 232 

AASTR products on the predicted by the “triangle” LE/H fluxes and the SM, since all other inputs 233 

involved did not change for the second application of the method (using the corresponding 234 

ATS_TOA_1P product).   235 

4.2 Statistical Analysis 236 

Point-by-point comparisons were carried out between predicted and observed parameter values 237 

per site and also per land cover type. Degree of agreement was quantified on the basis of the 238 

statistical scores summarised in Table 2 and a detailed description of these can be found for 239 

example in Wilmott (1982). Briefly, those statistical metrics included the linear regression 240 

coefficient of determination (R2), the root mean square difference (RMSD), the scatter or mean 241 

standard deviation (MSD), the mean absolute difference (MAD) and the bias or mean bias error 242 

(MBE). Those statistical parameters have been used in analogous studies in the past (Brunsell and 243 

Gillies 2003; Chauhan et al., 2003) and on related operational products accuracy benchmarking 244 

studies (e.g. Validation Report Evapotranspiration Products LSA-16, 2010). The latter allowed a 245 

consistency to be maintained to previous studies and allowed a direct comparison to the results 246 

obtained in this study to previously published relevant works.   247 

5. RESULTS 248 

5.1 Instantaneous SMC and Turbulent Fluxes  249 

5.1.1 SMC  250 

In terms of the SMC comparisons (Table 3, Figure 4a), the agreement between the estimated and 251 

observed SMC varies significantly variations dependent on the satellite product level used in the 252 

“triangle” implementation. As demonstrated by the high R values (0.766 and 0.844 respectively), 253 

https://earth.esa.int/web/guest/eoli
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predicted and in-situ measurements of SMC were generally close for both the AATSR_1P (1P) and 254 

AATSR_2P (2P) implementations,. Notably, when the higher level sensor product was used, a 255 

considerable increase in correlation was evident. The 1P product exhibited a moderate 256 

overestimation of the in-situ measurements (MBE = 0.082 cm3 cm-3), with comparable scatter 257 

(MSD = 0.102 cm3 cm-3). The 2P product analysis reported MBE = 0.007 cm3 cm-3, an improvement 258 

in model bias prediction by 0.075 cm3 cm-3 1 and an improvement of 0.040 cm3 cm-3  for scatter. 259 

Error ranges for the 1P product were relatively high, demonstrated by an RMSD of 0.131 cm3 cm-260 
3, which exceeds by 0.031 cm3 cm-3  the accuracy of 0.100 cm3 cm-3 required in delivering SMC on 261 

operational status. A significant improvement in accuracy was again obtained when the 2P 262 

product was utilised in place of the lower level product. An RMSD value of 0.063 cm3 cm-3 and 263 

MAD of 0.054 cm3 cm-3 were exhibited for the atmospherically corrected product, an increase of 264 

0.068 cm3 cm-3 and 0.045 cm3 cm-3 respectively.  265 

With respect to land cover, correspondence between the predicted and reference SMC varied 266 

between the AATSR products (Table 4, Figure 4a). For the 1P product, the highest prediction 267 

performance was found for the mixed forest sites (RMSD = 0.073 cm3 cm-3). This land cover type 268 

also showed lowest bias and scatter results among all land cover types. For the 2P product, the 269 

grassland sites reported lowest RMSD of 0.057 cm3 cm-3, and a minor overestimation of the 270 

observed values (MBE = 0.008 cm3 cm-3). As evidenced in the statistical measures for all land 271 

cover types, there was significant improvement by using the 2P instead of 1P product for all land 272 

cover types. The improvement is particularly noticeable for the grassland sites (a decrease in 273 

RMSD of 0.087 cm3 cm-3 from 1P to 2P). The deciduous broadleaf forest sites displayed the highest 274 

error for both product levels, with RMSD of 0.153 cm3 cm-3 for the 1P and 0.084 cm3 cm-3 and 2P 275 

products, respectively.  RMSD results for SMC were not calculated for the cropland, evergreen 276 

needle-leaf forest and open shrubland sites due to the limited number of data sites per land cover 277 

type.  278 

5.1.2 LE fluxes  279 

With regards to the instantaneous LE fluxes, analysis of the 1P products returned a close 280 

correlation between the predicted and observed (R = 0.728) (Table 3, Figure 4c). Similarly to the 281 

SMC results, a clear and significant improvement in agreement is evident if the 2P product is 282 

utilised (R = 0.927, an increase of 0.199). Validation results also indicated that the highest 283 

correlation coefficient among all the parameters studied was obtained for the 2P LE flux 284 

implementation (R =0.919). MBE was relatively high for the 1P product (58.55 Wm-2), being 285 

noticeably overestimated in comparison to the reference (i.e. in-situ) data. Once again, a clear 286 

improvement was displayed with the use of the atmospherically corrected product; however, 287 

results still displayed a moderate overestimation (MBE = 18.59 Wm-2). Error values for the 1P 288 

product were relatively high, with both RMSD (102.21 Wm-2) and MAD (80.90 Wm-2) exceeding 289 

the required accuracy range for operational retrieval (50.00 Wm2). In addition, moderately high 290 

scatter results suggest a relatively unstable estimate (MSD = 83.79 Wm-2). If the 2P product is 291 

used, RMSD drops to 49.03 Wm-2 and MAD to 40.62 Wm-2. Both error values achieve the required 292 

accuracy for practical application. Lower scatter values for the 2P implementation also suggest 293 

stable prediction (MSD = 45.37 Wm-2). 294 

The instantaneous LE fluxes comparisons showed large variability depending on land cover type 295 

and product level used (Table 4, Figure 4c). For the case of the 1P product, the closest agreement 296 

between the predictions and in-situ LE fluxes was found for the evergreen broadleaf forest sites 297 

(RMSD = 74.27 Wm-2); these sites also exhibited the lowest bias (MBE = 19.81 Wm-2). Similarly 298 

with the SMC comparisons, agreement over the mixed forest sites was also moderately close 299 
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(RMSD = 76.60 Wm-2). The cropland and evergreen needle-leaf forest sites displayed very high 300 

error, with RMSD values of 120.78 Wm-2 and 131.50 Wm-2 and MAD values of 93.16 Wm-2 and 301 

115.07 Wm-2 respectively. Regarding the comparisons for the 2P implementation, RMSD 302 

improved markedly for all land cover types. Most notably, RMSD for the evergreen needle-leaf 303 

forest sites displayed a significant drop to 5.02 Wm-2. Additionally, the grassland site again 304 

exhibited high accuracy, with an RMSD of 47.03 Wm-2 and a MAD of 37.39 Wm-2. The highest 305 

RMSD was found for the evergreen broadleaf forest and cropland sites, which displayed values of 306 

59.75 Wm-2 and 56.53 Wm-2 respectively.  However, one should keep in mind that the statistics 307 

calculated for evergreen needle-leaf forest are based on just two points and are thus most likely 308 

inaccurate. For the deciduous broadleaf forest and open shrubland sites no results were reported 309 

for LE flux comparisons due to absence of data points.  Overall, as shown in Table 4, the sample 310 

sizes are small.  Therefore, a goal of future studies should be to examine the relation between 311 

estimates and observations based on larger sample sizes.  312 

5.1.3 H fluxes  313 

Correspondence between the 1P “triangle” H flux predictions and the reference data from 314 

CarboEurope sites was relatively low for the instantaneous H flux comparisons, as evidenced by 315 

the correlation coefficient results (R - 0.305) (Table 3, Figure 4b), which notably, was the lowest 316 

of all parameters. There was a clear difference in agreement between the two AATSR product 317 

levels, with the 2P product showing an improvement in R of 0.382, increasing to 0.687. The 2P 318 

implementation also showed a minor improvement in estimation bias in comparison to the 319 

results of the 1P (an improvement of 0.74 Wm-2 in MBE). Notably, that the 2P product 320 

underestimated the in-situ measurements (MBE = -11.15 Wm-2), in contrast to the positive bias 321 

shown by the 1P product (MBE = 11.89 Wm-2). Interestingly, the only 3 instances of 322 

underestimation by the model predictions were all recorded for either the instantaneous or 323 

daytime average H flux parameter comparisons. RMSD for both product levels were comparable, 324 

with only a minor improvement between the accuracy of validation results of both products (1P 325 

RMSD= 63.24 Wm-2/2P RMSD = 44.37 Wm-2).  326 

In regards to the comparisons of the predicted H fluxes over different land cover types, those 327 

show overall better agreement between observations and model-based estimates than the LE 328 

fluxes results (Table 4, Figures 4b and 4c).  For the 1P product, the lowest RMSD was exhibited 329 

for the cropland sites (RMSD = 16.99 Wm-2), with comparable values between the other land 330 

cover types (RMSD = 59.69 – 81.44 Wm-2). Similarly with the LE fluxes comparisons, the highest 331 

RMSD was displayed by the evergreen needle-leaf sites (RMSD = 81.44 Wm-2). Regarding the 332 

results of the 2P product, the cropland sites showed a decline in accuracy of ~46% compared to 333 

the 1P product; this result is in contrast with all other land cover types which showed an 334 

improvement between 19.31 and 38.62 Wm-2. In contrast to the LE comparisons, the highest error 335 

value was found for the evergreen needle-leaf forest sites (RMSD = 55.96 Wm-2). Results for the 336 

evergreen broadleaf forest, mixed forest and open shrubland sites were unavailable for H flux 337 

comparisons due to limited sample size. 338 

5.2 Daytime Energy Fluxes  339 

The performance of the daytime average LE and H heat flux estimates, expressed by the ratios of 340 

LE/Rn and H/Rn respectively, was poor in comparison to the results reported for the 341 

instantaneous fluxes (Table 3, Figure 5).  Agreement between both datasets was low for the 1P 342 

product, exhibited by R values of 0.494 and 0.572 for the LE/Rn and H/Rn parameters 343 

respectively. An improvement was evident when the 2P product was utilised (improvement of 344 
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0.140 and 0.066 for the LE/Rn and H/Rn respectively). For both the 1P and 2P product 345 

implementations, the predicted LE/Rn estimations systematically overestimated the in-situ data 346 

(MBE 1P = 0.102/MBE 2P = 0.042), while for the H/Rn parameter the model-based estimates 347 

underestimated the data (MBE 1P = -0.024/MBE 2P = -0.038). A clear improvement in RMSD was 348 

obtained for both parameters by using the level 2P product as seen in Table 3. It should be noted 349 

that all daytime averaged scenarios failed to reach the required accuracy of RMSD=0.100 cm3 cm-3 350 

for operational application.  351 

The statistical analyses concerning the daytime fluxes agreement over different land cover types 352 

also showed relatively low prediction accuracy in comparison to both the instantaneous LE and H 353 

fluxes results (Table 5, Figures 4b-4c and Figures 5a-5b). The RMSD for the 1P product 354 

comparisons ranged from 0.159 for the mixed forest, to 0.264 for the evergreen needle-leaf sites. 355 

Some similarities were apparent between the instantaneous and daytime averaged LE fluxes 356 

results, with the mixed forest performing relatively well and the highest error rates being 357 

associated with the evergreen needle-leaf sites. Improvement in agreement over all sites was 358 

evident when the 2P product was used. Most noticeable improvement in RMSD was shown for the 359 

evergreen needle-leaf forest sites (improved from 0.264 to 0.057), in agreement with the 360 

instantaneous results. Results were again generally poor for the daytime-averaged H fluxes for all 361 

types of land cover included. Lowest RMSD for the 1P product implementation correlated with 362 

the instantaneous H flux results (cropland RMSD = 0.086), with the remaining land cover types 363 

ranging from 0.113 to 0.223. In contrast to the results  for other parameters , error values only 364 

showed improvement for 2 of the 7 land cover types (deciduous broadleaf forest and evergreen 365 

broadleaf forest sites)  when the 2P product was utilised, with the remaining 3 (open shrubland, 366 

evergreen needle-leaf and cropland sites) showing a decline in accuracy between 0.001 and 367 

0.057. Results for the grassland and mixed forest sites were unavailable for daytime average H 368 

flux comparisons due to limited data points. 369 

6. DISCUSSION 370 

This study was concerned with a robust verification of the so-called “triangle” technique 371 

implemented with AATSR level 1 and 2 products was performed. The reference data was obtained 372 

from 12 CarboEurope sites for 47 selected days during the period 2007-2011.  Overall, results 373 

suggested that estimates of energy fluxes and SMC by the investigated method utilising the lower-374 

level 1P product yielded moderate accuracies. The integration of the higher level AATSR_2P 375 

product significantly improved the accuracy, leading to estimates, for the majority of the studied 376 

parameters that achieve the required accuracy for many practical applications. Improvements 377 

were evident in almost all statistical comparison measures if the higher level 2P product is used 378 

which has undergone a more extensive pre-processing.  379 

SMC results were comparable to those reported in the limited number of similar studies available 380 

in the literature. For example, Capehart and Carlson (1997) implemented the “triangle” with EO 381 

data from the Advanced Very High Resolution Radiometer (AVHRR) data. Authors compared the 382 

predicted SMC from the technique versus simulations from a soil hydrological model and 383 

reported a RMSD varying from 0.15 to 0.19 respectively and a low correlation (R2 from 0.266 to 384 

0.441). Authors attributed the relatively low agreement in SMC to the mismatch between the 385 

hydrological model and the EO data arguing that the “triangle”-predicted SMC may respond to 386 

water content a much shallower soil layer in comparison to the hydrological model. Gillies et al. 387 

(1997) implemented the “triangle” also with airborne data from the NS001 multispectral scanner 388 

and reported R2 ranging between 0.29 to 0.79 and standard errors varying from 8.73 to 8.25 %, 389 

results comparable to those reported herein.  390 
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To our knowledge, very few studies have explored the “triangle” integrated with a land biosphere 391 

model, and thus direct comparisons of the results presented here to such studies are not 392 

available. However, a number of recent variants of the “triangle” have evaluated the effect of using 393 

different inputs to construct the Ts/VI feature space and thus derive SMC from newly proposed 394 

indices. For example, Chauhan et al. (2003) using satellite observations from the Advanced Very 395 

High Resolution Radiometer (AVHRR) and the Special Sensor Microwave Imager (SSM/I) 396 

implemented a variant of the “triangle” for an experimental area in Southern Great Plains. 397 

Authors reported a RMSD below that 0.05 cm3 cm-3  in the prediction of SMC by their technique. 398 

Yet, results of their study would be inappropriate scientifically to be directly compared to our 399 

study due to differences in the testing conditions (e.g. in their study test sites were covered by 400 

bare soil only). In a different study, Zhang et al. (2014a) proposed estimating SMC from the mid-401 

morning Ts increase rate using the so-called Temperature Rising Rate Vegetation Dryness Index 402 

(TRRVDI) to construct the Ts/VI feature space. Authors implemented their proposed scheme  403 

using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager 404 

(SEVIRI) EO data acquired over an experimental site in Spain that contained data from 19 405 

meteorological stations and found a mean R2 and RMSD  of 0.46 and 4% cm3 cm-3 respectively, 406 

results analogous to our findings. Zhang et al. (2014b) also utilised MSG SEVIRI to implement a 407 

variant of the “triangle”, termed the Soil Moisture Saturation Index (SMSI), to estimate SMC. The 408 

SMSI was estimated from the Ts/VI feature space using EO data from the Apparent Thermal 409 

Inertia (ATI) in place of both LST and Fr. Authors reported an R of 0.33 and 0.43 for SMC, 410 

agreement that is below what was found herein. Authors suggested that spatial scale 411 

discrepancies and the fact that ATI is an accumulation of multi-surface interactions compared to 412 

single-surface SMC recorded by the in-situ stations were potential reasons for poorer agreement.  413 

In regards to the LE fluxes predictions, results were in close agreement to other studies as well. 414 

For example, Gillies et al. (1997) compared the LE predicted by the triangle versus ground 415 

observations from FIFE (Sellers et al., 1992) and MONSOON’90 (Kustas and Goodrich, 1994) field 416 

experiments using data from the NS001airborne scanner (30 m spatial resolution) and found a 417 

mean standard error of 34.73 Wm-2 in LE prediction. In another study, Brunsell and Gillies (2003) 418 

implemented the “triangle” with both airborne (from TIMS sensor) and satellite (from NOAA 419 

AVHRR) data acquired during the SGP’97 Hydrology experiment. They reported an RMSD ranging 420 

from 18 to 90 Wm-2. More recent studies have concentrated on developing variants of the 421 

“triangle” to estimate LE flux. For example, Batra et al., (2006) presented results of an extensive 422 

inter-comparison of variants of “triangle”-derived spatially distributed LE fluxes, based on data 423 

from MODIS, AVHRR, NOAA14 and NOAA16 sensors. Validation against ground stations in the SGP 424 

region displayed RMSDs ranging from 51 to 73 Wm-2, comparable to results presented in this 425 

study. In a different study, Bhattacharya et al., (2010) utilised Kalapana-1 VHRR (K1VHRR) Indian 426 

geostationary sensor to estimate regional clear sky ET and LE flux. RMSD was again comparable 427 

with 46 Wm-2 with an R value of 0.610.  428 

The predicted H fluxes reported herein are also comparable to prior verification exercises of the 429 

“triangle” technique implemented using dissimilar EO data. Gillies et al. (1997) validated the 430 

technique using the NS001 multispectral scanner airborne data and found for H fluxes a R2 of 0.83 431 

and standard errors of ranging from 25 to 55 Wm-2. Brunsell (2003) and Brunsell and Gillies 432 

(2003) also implemented the “triangle” method with high resolution airborne from TIMS sensor 433 

and also with AVHRR data acquired during the SGP ’97 field experiment in the USA. They reported 434 

a agreement in H fluxes varying from 21 to 145 Wm-2 for the AVHRR comparisons and between 435 

45 to 80 Wm-2 for the TIMS data. Tang et al., (2010) implemented the “triangle” in a north western 436 

region of China using the MODIS land surface temperature/emissivity (MOD11) and NDVI 437 
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(MOD13) products. Authors reported in their study a RMSD of 25.07 Wm-2 in H flux estimation. 438 

Tang et al., (2010) attributed as one of the main error causes the lack of available uncontaminated 439 

points on partly cloudy days.   440 

Daytime average H and LE fluxes predictions were closely tied to the instantaneous H and LE 441 

fluxes predictions. This observation is in line to findings reported by others concerned with the 442 

method verification (Gillies et al., 1997 and Brunsell and Gillies, 2003). Generally, LE and LE/Rn 443 

were in closer agreement to the reference data in comparison to the derived H and H/Rn fluxes. 444 

The latter may be due to the prediction accuracy of SimSphere itself in terms of predicting itself 445 

those parameters, as found in verification studies of the model itself (e.g. North et al., 2015). 446 

Unfortunately, no other studies had previously assessed the “triangle” with respect to the 447 

prediction of the daytime averaged fluxes. However, notably, prediction accuracy of both daytime 448 

fluxes is comparable to the retrieval accuracy of other methods used in deriving these 449 

parameters, as for example approaches utilising the evaporative fraction (EF) (Jiang and Islam, 450 

2003; Nishida et al., 2003; Wang et al., 2006), although we underline that a direct assessment of 451 

the different methods would not be suitable.  452 

Ideally issues related to all significant error sources should be taken into account in interpreting 453 

this study’s main findings (Gillies et al., 1997; Brunsell and Gillies, 2003; Chauhan et al., 2003). 454 

Errors in the EO data, related to both the accuracy in which Fr and Ts/Tkin retrievals are derived 455 

and also potentially linked to the spatial resolution mismatch between the in-situ and predictions, 456 

can potentially significantly affect the accuracy of “triangle” predictions. As it has already been 457 

pointed out in several Ts/VI studies an improved accuracy in the estimation of Ts would be 458 

expected to also improve the “triangle” estimates (Gillies and Temesgen 2000; Islam et al., 2003). 459 

Fr has also been found to importantly contribute to the overall sensitivity of parameters computed 460 

in SimSphere, thus supporting the inclusion of this parameter in the “triangle” (e.g. Petropoulos et 461 

al., 2014). Hence, errors in Fr retrieval from the EO data may have an important effect on the 462 

accuracy of the predictions and subsequently lead to uncertainties in the inversion equations 463 

computed for all the predicted parameters by the technique. The effect of atmospheric correction 464 

of the EO inputs is also a factor to be considered in the “triangle”, at least this was the case herein.  465 

Explanation of results based on comparing directly the in-situ measurements with the EO data 466 

should be cautiously interpreted; this is because such a comparison may be limited by factors 467 

such as scale mismatch, geo-location errors and errors introduced as a result of the surface 468 

heterogeneity, with the latter being dependent also on the spatial resolution of the EO dataset 469 

(Batra et al., 2006; Bhattacharya et al., 2010). Due to the significant difference in spatial 470 

resolution between the CarboEurope point measurements (in the order of 5 × 5 m), and the 471 

AATSR satellite pixel (in the order of 1 × 1 km), a direct validation is subject to uncertainty caused 472 

by the scale effect (Capehart and Carlson, 1997; Stisen et al., 2008). Furthermore, agreement 473 

between the in-situ data and the predictions are not only hindered by horizontal spatial 474 

discrepancies, but also by vertical discrepancies in the derivation of the parameters. In particular, 475 

in-situ monitoring networks, such as CarboEurope, normally measure SMC as an average derived 476 

from the top 0-5 cm of the soil, whereas the “triangle” predicts the soil water content availability, 477 

the latter being a parameters that can be converted to SMC if knowing the soil's field capacity. 478 

Another consideration for interpreting the results is related to the uncertainty in the in-situ 479 

observations, due to instrumentation uncertainty or error. Uncertainty in turbulent flux 480 

measurement by means of the eddy covariance system is typically in the order of 10-15 % (Dugas 481 

et al., 1991), and can potentially increase if the eddy covariance system is installed in non-flat 482 

terrain (Schmid and Lloyd, 1999).  483 
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7. CONCLUSIONS 484 

This study investigated, to our knowledge for the first time, the implementation of the so-called 485 

“triangle” technique with EO data from ESA’s AATSR sensor to derive LE/H fluxes and SMC over a 486 

range of European ecosystems. Furthermore, for the first time was also evaluated the 487 

atmospheric correction effect on the “triangle”-derived retrievals. For this purpose, both non-488 

atmospherically corrected and atmospherically corrected AATSR data were used to implement 489 

the “triangle”.  Predicted LE and H fluxes and SMC were statistically compared versus collocated 490 

ground measurements acquired at a variety of CarboEurope study sites.   491 

In overall, results showed a satisfactory agreement between the in-situ and both “triangle” 492 

schemes in terms of SMC prediction (1P: R = 0.766 vs 2P: R= 0.844). Instantaneous LE and H 493 

fluxes predicted by the “triangle” were again much improved with the inclusion of the 494 

atmospherically corrected 2P product. The statistical analysis of the daytime average LE and H 495 

heat fluxes, were generally of lower accuracy compared to the validation accuracies exhibited by 496 

both the instantaneous LE and H fluxes (RMSD values of 0.146 and 0.130 and R values of 0.635 497 

and 0.638 for the 2P comparisons for LE/Rn and H/Rn respectively). Furthermore, findings of this 498 

study also provide an important evaluation of the importance of atmospheric correction on 499 

remotely sensed datasets before the latter are used as inputs in the “triangle”. In particular, 500 

results suggest that ensuring that true surface reflectance values are determined through full 501 

atmospheric correction is an invaluable step before deriving sensor-based images of Ts and NDVI 502 

and implementing the “triangle” technique. 503 

Although AATSR no longer provides data, it does provide a direct link to present work on the 504 

operational retrieval of surface fluxes and SMC that is carried out on current sensors (e.g. Landsat 505 

8, MODIS, Sentinels-3) and on other EO instruments with similar characteristics that may be 506 

planned for launch in the near future. This offers an avenue for the transfer of such methodologies 507 

to current and future operational platforms.  An example is ESA’s Sentinel-3 mission, which 508 

makes use of both the on-board Sea and Land Surface Temperature Radiometer (SLSTR) and 509 

Ocean and Land Colour Instrument (OLCI) radiometers to offer data continuity for the AATSR 510 

instrument. Both platforms have similar spatial resolution and the swaths of the two sensors 511 

overlap, permitting for novel joint applications or easy transferability between the two sensors. 512 

Thus, validation of the “triangle” utilising AATSR data provides an opportunity to assess the 513 

viability of extending it to newer platforms for more up-to-date research. Last but not least, our 514 

results are of considerable technical and practical significance in regards to the “triangle” 515 

technique use in the future, especially in light of ongoing efforts that aim to assess its application 516 

for operational product development at global scale. 517 
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Figure 1: Summary of the key descriptors and physical interpretations of the Ts/VI feature space 
“scatterplot”. Figure adopted from Petropoulos et al. (2009).  
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Figure 2: Overview of the steps comprising the “triangle” technique implementation. 

 



 

Figure 3: Location of the study sites used in this study (Image acquired from Google Earth). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

Figure 4: Scatterplots displaying the agreement between the half-hourly AATSR estimated values and 

CarboEurope in-situ measurements of; a) soil moisture content (cm3 cm-3), b) instantaneous sensible heat (H) flux 

(Wm
-2

), and c) instantaneous latent heat (LE) flux (Wm
-2

). The plots on the left hand side display the results 

stratified by land cover type obtained by the inversion method based on the non-atmospherically corrected 

product (AATSR 1P). The plots on the right hand side display the results stratified by land cover type obtained by 

the inversion method based on the atmospherically corrected product (AATSR 2P) (DBF – Deciduous Broadleaf 

Forest, GRA – Grassland, CRO – Cropland,  MF – Mixed Forest, ENF – Evergreen Needle-leaf Forest). 
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Figure 5: Scatterplots displaying the agreement between the half-hourly AATSR estimated values and CarboEurope 

in-situ measurements of; a) daytime averaged sensible heat (H/Rn) flux, and b) daytime averaged latent heat (LE/Rn) 

flux. The plots on the left hand side display the results stratified by land cover obtained by the inversion method based 

on the non-atmospherically corrected product (AATSR 1P). The plots on the right hand side display the results 

stratified by land cover type obtained by the inversion method implementation based on the atmospherically corrected 

product (AATSR 2P) (DBF – Deciduous Broadleaf Forest, GRA – Grassland, CRO – Cropland,  MF – Mixed Forest, 

ENF – Evergreen Needle-leaf Forest). 
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Table 1: Location and characteristics of the CarboEurope flux tower sites used in our study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Name
Site 

Abbreviation

Geographic 

Coordiantes
Country PFT Land Cover Elevation Climate

Aguamarga ES-Agu 36.8347/-2.2511 SPAIN
Open Shrubland

 - OSH
199m Arid Steppe cold

Amoladeras ES-Amo 36.9405/-2.0329 SPAIN
Open Shrubland

 - OSH
58m Arid Steppe cold

Collelongo- 

Selva Piana
IT-Col 41.8493/13.588 ITALY

Deciduous Broadleaf Forest - 

DBF
1560m

Warm temperate 

fully humid with 

hot summer

Renon/Ritten 

(Bolzano)
IT-Ren 46.5878/11.435 ITALY

Evergreen Needleleaf Forest - 

ENF
1730m

Snow fully humid 

cool summer

Lecceto IT-Lec 43.3046/11.271 ITALY
Evergreen Needleleaf Forest - 

ENF
314m

Warm temperate 

fully humid with 

hot summer

Nonantola IT-Non 44.6898/11.089 ITALY Mixed Forest - MF 20m

Warm temperate 

fully humid with 

hot summer

Malga Arpaco IT-Mal 46.1167/11.703 ITALY
Grassland

 - GRA
1730m Polar tundra

Bonis IT-Bon 39.4778/16.535 ITALY
Evergreen Needleleaf Forest - 

ENF
1170m

Warm temperate 

with dry, hot 

summer

Negrisia IT-Neg 45.7476/12.447 ITALY Cropland - CRO 9m

Warm temperate 

fully humid with 

warm summer

Castellaro IT-Cas 45.0700/8.7175 ITALY Cropland - CRO 84m

Warm temperate 

fully humid with 

hot summer

Espirra PT-Esp 38.6394/-8.6018 PORTUGAL
Evergreen

 Broadleaf Forest - EBF
95m

Warm temperate 

with dry, hot 

summer

Mitra IV Tojal PT-Mi2 38.4765/-8.0246 PORTUGAL
Grassland

 - GRA
190m

Warm temperate 

with dry, hot 

summer



Table 2: Definition of the statistical performance measures used to assess the agreement between 
the “triangle”-derived estimates, and the in-situ observations. Subscripts i = 1, … N denote the 
individual observations at N distinct locations, P denotes the predicted values, and O denotes the 
“observed” values. In this study the observed values are obtained from the selected CarboEurope 
sites. The horizontal bar in Scatter / MSD ratio equation denotes the mean value evaluated over 
the N sites. The summation in the correlation coefficient is over all the sites. 

 

 

 

 

 

Name Description Mathematical Definition 

Bias / MBE 
Bias (accuracy) or Mean 

Bias Error 




N

i

ii OP
N

MBEbias
1

)(
1  

Scatter / MSD 
Scatter (precision) or 

Mean Standard Deviation 
2

1

1
( ( ))

( 1)

N

i i i i

i

scatter P O P O
N 

   

  

RMSD 
Root Mean Square 

Difference 
22 scatterbiasRMSD   

MAD 

 
Mean Absolute Difference 



 
N

i

ii OPNMAD
1

1  

R 
Linear Correlation 

Coefficient 
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