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ABSTRACT 21 

Information acquired from Unmanned Aerial Vehicles (UAVs) is frequently used 22 

nowadays in a variety of disciplines and research fields. The present study 23 

explores for the first time the combined use of UAVs with a newly proposed 24 

technique for estimating evaporative fraction (EF) and surface soil moisture (SSM). 25 

The investigation is performed in a typical Mediterranean setting, a citrus field with 26 

flat topography divided in two plots with different irrigation schemes, in Sicily, Italy, 27 

at which ground data acquired during an extensive field campaign in July 2019. 28 

Reasonable estimates of both EF and surface wetness were produced, with 29 

patterns in agreement to vegetation cover fragmentation, topography, and other 30 

site-specific characteristics. Validation shows average error of 0.053 for EF and of 31 

0.040 cm3 cm−3 for SSM.  The results are comparable or better to those reported in 32 

analogous studies performed in similar areas. This implies that the investigated 33 

approach performs well under the semi-arid conditions characterising the 34 

experimental set up. To our knowledge, this study represents the first evaluation of 35 

the combined use of the “simplified triangle” with very high-resolution UAV 36 

imagery. As such, the findings are of significance regarding the potential future use 37 

of the “simplified triangle “approach particularly with very fine resolution imagery 38 

such as that provided by UAV for mapping and monitoring EF and SSM in 39 

agricultural and natural ecosystems.  40 

 41 

KEYWORDS: earth observation, unmanned aerial vehicles, surface soil moisture, 42 

evaporative fraction, simplified triangle, surface temperature/vegetation index  43 

1. Introduction 44 

The natural processes taking place on the Earth’s surface control the energy and mass 45 

exchanges between land and atmosphere and are key drivers of the Earth's system (North et 46 
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al., 2015; Gerken et al., 2019). Today, particularly so in light of climate change and concerns 47 

related global food and water security, an improved understanding of land-atmosphere 48 

interactions is a topic of urgent importance (Ireland et al., 2015; Deng et al., 2019). In this 49 

context, obtaining accurate information on the spatial and temporal variability of land surface 50 

parameters such as evaporative fraction, EF (defined as the ratio of instantaneous latent heat 51 

flux (LE) to net radiation (Rn) and surface soil moisture (SSM) is of primary interest for several 52 

environmental applications and research investigations (Jung et al., 2011; Srivastava et al., 53 

2019). This is due to the influence of these parameters on key physical processes and 54 

feedback loops of the Earth system (Nutini et al., 2104; Srivastava et al., 2015; Amani et al., 55 

2016). Accurate information on their spatiotemporal variability, particularly at fine spatial and 56 

temporal resolution, can provide valuable information in research studies and practical 57 

applications linked to ecosystem processes, plant water requirements and water resources 58 

management (Shi et al., 2014; Minacapilli et al., 2015; Deng et al., 2019; Yang et al., 2020).  59 

Despite their significance, it is quite difficult to quantify EF and SSM on a routine basis over 60 

large geographical regions using ground instrumentation. The main reasons include the large 61 

spatiotemporal variability of these parameters (Bao et al., 2018). Earth Observation (EO) 62 

presents a suitable alternative to ground observations for deriving SSM and/or EF over large 63 

regions and diverse geographical scales (Tian et al., 2014).  A variety of approaches have 64 

been proposed for this purpose, ranging from semi-empirical to physically-based ones (see 65 

Petropoulos et al., 2015; 2018). Those approaches are characterised by different degree of 66 

complexity, input parameters requirements and retrieval accuracy.  67 

A specific group of EO-based techniques commonly termed as surface temperature (Ts)  and 68 

vegetation index (VI) methods (Ts/VI), has shown an excellent promise at deriving spatially 69 

explicit maps of sensible and latent heat fluxes (H, LE) and/or SSM. These methods utilise 70 

optical (visible and infrared - VNIR) and thermal infrared (TIR) EO data and are based on 71 

physical relationships between the satellite-derived Ts and a VI, the latter being associated to 72 

the existent degree of vegetation (Zhang et al., 2014; Capodici et al., 2020). If these 73 

parameters are in a scatter plot, provided that there is a full variability in VI, a 74 

triangular/trapezoidal shape similar to that shown in Figure 1 emerges. This shape, 75 

characterised by the physical boundaries also shown in Figure 1, results from the Ts 76 

sensitivity to water content, which increases as a function of the proportion of bare soil 77 

exposed. The biophysical properties included in this Ts/VI domain are well-documented 78 

(Gillies et al., 1997; Chauhan et al., 2003; Maltese et al., 2015; Wang et al., 2018; Cui et al., 79 

2020). Detailed descriptions of these properties, including the key parameters affecting the 80 

Ts/VI scatterplot shape, are summarised in Petropoulos et al. (2009) and Petropoulos et al. 81 

(2018). Tang et al. (2017) introduced the End-member-based Soil and Vegetation Energy 82 

Partitioning model (ESVEP), a two-source approach for estimating land surface 83 

evapotranspiration (ET) ) for which two dry edges could be considered in the case of a root 84 

zone water stress occurs. It is based on the consideration that soil evaporation primarily draws 85 

water from the upper soil layer, whereas, transpiration exploits water from the root zone. The 86 

temporal response of soil water content of the upper soil and root zone in the framework of the 87 

ET process is therefore different: the dynamic of the soil water content is more rapid in the 88 

upper layer; it is slower in the root zone.  89 

Recently, Carlson & Petropoulos (2019) proposed a Ts/VI technique for estimating both EF 90 

and SSM, which they named “simplified triangle”. This approach is essentially a variant of the 91 

so-called “triangle” technique (Carlson, 2007) and does not require for its implementation a 92 
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land biosphere model or any other ancillary data. These characteristics make this approach 93 

easy to apply in comparison to other Ts/VI methods. Furthermore, being dependent on a small 94 

number of easily computed EO-based parameters, it becomes a very attractive choice for 95 

potential operational use. Fuzzo et al. (2019) demonstrated how this newly introduced 96 

approach can be coupled with a crop prediction and a climatological water balance model in 97 

soybean yield prediction using MODIS data. However, as the technique is recent, studies 98 

validating its performance in different environments and with a range of EO instruments are 99 

scarce.  100 

 101 

[Please put Figure 1 around here] 102 

 103 

To our knowledge, this newly proposed technique has not been implemented on and verified 104 

for unmanned aerial vehicles (UAVs) data yet. UAV platforms with on-board visible/near 105 

infrared and thermal sensors have very important advantages over satellite EO platforms, 106 

such as user flexibility to select the target area and the frequency of data acquisition (Dawson 107 

et al., 2019; Liu et al., 2020). Therefore, this technique implementation with UAVs would be 108 

indisputably of key importance, as it would inform on its potential usefulness in a broad 109 

spectrum of practical applications and research purposes alike.  110 

In this context, this study aims at exploring for the first time the combined use of the “simplified 111 

triangle” with very high spatial resolution UAV data, to predict the spatio-temporal variability of 112 

both EF and SSM. For this purpose UAV, ground truthing and ancillary data acquired during a 113 

field campaign that took place in July 2019 at one experimental site in Sicily, Italy, are 114 

employed. The experimental set up description is provided in Section 2, whereas the 115 

“simplified” technique implementation with the UAV data is made available in Section 3, 116 

followed by the results and the related discussion which are described in Sections 4, and 5, 117 

respectively. 118 

 119 

2 Materials  120 

2.1 Study site 121 

The study site is a citrus orchard field (C. reticulata Blanco, cv. Tardivo di Ciaculli) located in 122 

the neighbourhood of Palermo, Italy (38° 4'53.4"N, 13° 25' 8.2"E). The site contains 30 year 123 

old tangerine trees planted at a regular spacing of 5.0 m × 5.0 m (plant density of 400 plants 124 

per ha) and irrigated with a subsurface drip system. The area is in a typical eastern 125 

Mediterranean semi-arid environment. The study area has flat topography with elevation 126 

between 30 and 35 m above sea level, and slopes ranging from 1% to 4%. 127 

To differentiate irrigation management, the field has been divided into two plots of about 4,000 128 

m2 each, as shown in Figure 2. The first plot was maintained under full irrigation (FI), whereas 129 

the second under deficit irrigation (DI) applied throughout phase II of fruit growth (from 1 July 130 

2019 to 20 August 2019). Each plot was, in turn, divided into four sub-plots differentiated for 131 

the anti-root agents introduced into the emitters during the manufacturing process, but not for 132 

the irrigation management, nor for the emitters’ hydraulic performance. The subsurface drip 133 

system is characterized by two lateral pipes per plant row, installed at a distance of 1.1 m from 134 

the trees and buried at a depth of 0.30 m. In each lateral pipe, self-compensating emitters 135 
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were installed with half-meter spacing between them, nominal flow rate of 2.3 h-1 and 136 

operating pressure of 150 kPa. A disc filter, an electric control valve, a relief valve, a pressure 137 

gauge, and a flow meter completed each sub-plot irrigation unit. 138 

The experimental setup is equipped with a WatchDog 2000 weather station (Spectrum 139 

Technologies, Inc.), including sensors for relative air humidity, wind speed and direction, air 140 

temperature, solar radiation, and rainfall, as well as eight "drill & drop" frequency domain 141 

reflectometry sensors (Sentek Pty Ltd, Stepney, Australia) to monitor soil water content, 142 

installed on a central tree of each sub-plot, 0.30 m away from the closest emitter. All the 143 

sensors were interfaced with a communications board that uses the cellular 3G data network 144 

for internet connection using the MODBUS RTU protocol to transfer and save the data into a 145 

MySQL database operated by AgriNET/Tuctronics which is accessible from the web. The 146 

system allows the download of weather variables, soil water content (SWC) and temperatures 147 

(T) in the root zone, at 10 cm intervals from the first 5 cm of the soil layer down to a depth of 148 

0.6 or 1.2 m. The Scholander chamber (Scholander et al., 1965) was used to follow the 149 

temporal dynamic of predawn and midday stem water potential, whereas a couple of Granier 150 

thermal dissipation probes (Granier, 1985) was installed in four trees to monitor sap flow 151 

during the irrigation season.  152 

In addition, an eddy covariance flux tower was set up in the orchard in February 2019 to 153 

measure the turbulent fluxes (sensible, H, and latent, LE, heat fluxes) and a four-component 154 

net radiometer was used to measure net radiation (Rn) individual components. A CNR1 four 155 

component Net Radiometer was installed at 3.1 m a.g.l, while an InfraRed Gas Analyzer IRGA 156 

LI7500 (manufactured by LI-COR, Inc.) and a CSAT3 Three Dimensional Sonic Anemometer 157 

anemometer (manufactured by Kipp & Zonen B.V.) were installed slightly above, at 3.5 m 158 

above ground level (a.g.l.), , i.e., approximately 55 and 95 cm above the vegetation canopy. 159 

All the data were processed at 30 minutes interval. The footprint flux tower was calculated 160 

according to Schuepp et al. (1990) at 70% of the fluxes. 161 

[Please put Figure 2 around here] 162 

 163 

2.2 Data Acquisition & Pre-processing 164 

2.2.1 Data Acquisition  165 

The fieldwork for this study was carried out on July 2019. A series of spatial and ancillary data 166 

was acquired on 30 July 2019 as part of the field campaign that was conducted in order to 167 

support the study implementation. In particular: 168 

 Global Navigation Satellite System (GNSS) Survey. Nine black and white control 169 

targets, and the same number of aluminium targets were distributed on a regular grid 170 

to cover the whole study area.  171 

The coordinates of the targets were measured by a NRTK survey using a Topcon 172 

Hiper V receiver (both Global Positioning System (GPS) and Glonass constellations). 173 

A UNIPA (University of Palermo) GNSS Cross-origin resource sharing (CORS) 174 

network encompassing 8 permanent stations, 2 of them installed on two University 175 

buildings in Palermo and Agrigento and 6 at other public institutions of the Sicilian 176 

territory was employed for Network real-time kinematic (NRTK) positioning. The 177 

network covers about 7400 km2  western Sicily. The GNSS CORS Network project was 178 

carried out with the technical collaboration of Topcon Italy (that supported the scientific 179 
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research with GNSS receivers and antennae), in the framework of developing a 180 

network for technical (real-time) and scientific (post-processing) use. The CORSs is 181 

included in the Topcon Netgeo GNSS network. Since 2013 the data retrieved from 182 

UNIPA GNSS CORS network have been used for the computation of the RDN2 (Rete 183 

Dinamica Nazionale 2) which provides the WGS84 datum for Italy in the European 184 

Permanent Network (EPN subnetwork). UNIPA GNSS CORS network has received 185 

the scientific acknowledgment through many experiments in various application fields 186 

(Catania et al. 2020;  Angrisano et al. 2020, Kenyeres et al 2019, Pipitone et al. 2018, 187 

Dardanelli et al. 2015, Dardanelli et al. 2014, and Dardanelli and Carella, 2013). Since 188 

2013 the postprocessing RINEX (Riceiver INdependent EXchange) data have been 189 

made available for the evaluation of the national reference framework by the IGMI 190 

(Italian cartographic military institute) and for technical researches able to investigate 191 

the horizontal and vertical velocity map in Italy (Maseroli, 2015). NRTK positioning was 192 

carried out using the hardware and software infrastructure of the permanent Netgeo-193 

Topcon Italy network framed in the reference system ETRF2000 (powered by UNIPA 194 

GNSS CORS) and in particular via the VRS (Virtual Reference Station) stream. Data 195 

availability and geodetic framework are described in Dardanelli et al. (2020). The 196 

processing of GNSS data acquired to allow an accurate orthorectification of 197 

multispectral and thermal images was carried out by Meridiana software ver. 2020. 198 

 Proximity sensing images. Multispectral images were acquired using a NT8 contras 199 

octocopter carrying a RikolaDT-17 Fabry-Pérot camera (manufactured by Rikola Ltd). 200 

The multispectral camera has a 36.5° Field of View. It was set-up to acquire images in 201 

9 spectral bands with a 10 nm bandwidth. Central wavelengths were 460.43, 480.01, 202 

545.28, 640.45, 660.21, 700.40, 725.09, 749.51 and 795.53 nm. At a flight altitude of 203 

50m above ground (a.g.l)., the average Ground Sampling Distance (GSD) was 3 cm. 204 

Thermal images were acquired almost simultaneously to the multispectral images, 205 

using a DJI Mavic 2 Enterprise Dual quadcopter carrying on-board a FLIR Lepton® 206 

(manufactured by FLIR® Systems, Inc) acquiring in the longwave infrared spectral 207 

range (from 8 to 14 µm), with a thermal sensitivity lower than 50 mK (0.050 °C). The 208 

average GSD was 3.46 cm. All the images were resampled at 4 cm spatial resolution 209 

using a pixel aggregate resampling method. 210 

 Spectroradiometric measurements. Four reference targets, ranging in a greyscale 211 

from black to white were also positioned to allow the spectral reflectance calibration by 212 

means of a field spectroradiometer. The employed ASD FieldSpec®FR 213 

spectroradiometer (Analytical Spectral Device, ASD, Inc.) measured the full solar 214 

spectrum (between 350 and 2500 nm) with no fore optic attached.  215 

 Thermographs. Ground measurements of surface temperature (TS) were carried out 216 

at noon using a handheld FLIR SC660 (FLIR® Systems, Inc.) characterized by a 217 

sensitivity lower than 30 mK. 218 

 219 

2.2.1 Pre-processing 220 

Following the data acquisition, standard pre-processing steps were applied. To orthorectify the 221 

multispectral and thermal images, a standard photogrammetric/SfM approach (e.g., Harwin 222 

and Lucieer, 2012) was applied via Pix4D mapper (by Pix4D Inc.). A Topcon Hiper V receiver 223 

(both GPS and GNSS Connectivity) was employed to acquire ground control points for the 224 

orthorectification. The average position dilution of precision (PDOP) and the geometric dilution 225 

of precision (GDOP) were 1.8 and 2.0, respectively. The control targets were positioned with 226 
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average planimetric and altimetric accuracy of ±2 cm that can be considered within acceptable 227 

geometrical configuration limits to orthorectify the UAV images, considering that these latter 228 

are characterized by a spatial resolution of 4 cm once orthorectified. Images acquired in the 229 

visible and near infrared were calibrated to ground reflectance implementing the empirical line 230 

technique (Karpouzli and Malthus, 2003), which allows the simultaneous correction of the 231 

atmospheric influence. Similarly, TIR images were calibrated into surface radiometric 232 

temperatures by means of a linear regression with at ground thermographs and an emissivity 233 

map of the soil vegetation system (Negm et al., 2017). The spatial distribution of emissivity 234 

was calculated according to Valor and Caselles (1996). Given the spatial resolution of the 235 

images (about 10-2 m) compared to the spacing of the trees (about 5 m) we did not consider 236 

the cavity effect. We assume the emissivity values for bare soil and densely vegetated ground 237 

to be equal to 0.97 and 0.99, respectively, as reported in Sobrino et al. (2004). Figure 3 238 

illustrates the Normalized Difference Vegetation Index (NDVI) and of Surface Temperature 239 

(Ts) final products upon completion of all pre-processing steps.    240 

[Please put figure 3 around here] 241 

 242 

3 Methods  243 

3.1 Simplified Triangle Method 244 

A comprehensive account of the “simplified “triangle technique implementation is available in 245 

Carlson and Petropoulos (2019). Briefly, the method allows the retrievals of two parameters, 246 

the soil water availability (Mo) and EF.  Mo represents surface wetness in the bare soil surface 247 

(top few millimetres of it) and it is computed from the ratio between the actual soil/vegetation 248 

system evapotranspiration ET and potential evapotranspiration (ET/ETP).  Mo is also equated 249 

to SSM by multiplying Mo with the soil’s field capacity. On the other hand, EF is defined as the 250 

ratio between latent heat flux (LE) and net radiation (Rn).  251 

EF and Mo are obtained from the Ts/VI feature space. The scatterplot is constructed by plotting 252 

the Ts versus fractional vegetation (Fr), where the latter is computed from the NDVI (see 253 

Equation (1) below) and its corresponding range of variability, as proposed by Carlson (2007). 254 

Upon completion of this step, a number of parameters need to be determined, namely: (a) the 255 

NDVI values for bare soil and dense vegetation (respectively, NDVIo and NDVIs), and (b) the 256 

highest value of Ts (Ts [max]) which is characteristic of dry/bare soil pixels, as well as the 257 

minimum value of Ts (Ts[min]).  258 

NDVIo, NDVIs, Tmax and Tmin are used to specify the Ts/VI feature space boundaries and to 259 

constrain the solution for EF and Mo. NDVIs and Tmin, represent dense vegetation and define 260 

the lower left (wet) vertex of the triangle, i.e. the so-called ‘wet edge’ or ‘cold edge’ (see 261 

Figure 4). The wet edge corresponds to Mo and EF values equal to 1.0. Similarly, NDVIo and 262 

Tmax define the lower left vertex of the triangle, the so-called ‘dry edge’ or ‘warm edge’ (also 263 

shown also in Figure 4). These points characterize the soil dryness boundary with Mo = 0 and 264 

covers the area from Tmax and NDVIo to NDVIs, which, for a triangle with a distinct upper 265 

vertex, occurs at Tmin. Even though Mo = 0 along the “dry edge”, along the dry edge EF itself is 266 

non-zero apart from the triangle’s lower right vertex. The next step in the technique 267 

implementation includes the scaling of Ts to T* (by applying Equation (2) below), which ranges 268 

between zero to one.  269 
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At this stage two central hypotheses are made. The first is that when vegetation is at wilting 270 

point transpiration is always equal to the potential transpiration, as generally assumed in 271 

nearly all Ts/VI approaches (e.g., Jiang and Islam 2003). The second hypothesis is related to 272 

the relationship between EF and Mo within the Ts/VI domain, which is assumed to be linear. 273 

[Please put Figure 4 around here] 274 

 275 

Thus, on the basis of the assumptions above, Mo is defined as the ratio between the lengths 276 

“a” and “d”. Both these lengths depend on T* and Fr. For conditions where a pixel comprises 277 

of both areas of vegetation and bare soil, the canopy EF is taken as the weighted value of EF 278 

for the vegetation fraction of the pixel (EFveg = 1, by definition).  As such, both Mo and EF are 279 

computed for all pixels contained in the T*/Fr domain from the implementation of Equations (3) 280 

and (4) shown below.  281 

 282 

     
              

               
 
 

 (1) 

   {T – Tmin} / {(Tmax–Tmin} (2) 

                                  (3) 

                                         (4) 

In the above, EFsoil refers to the ratio between soil evaporation and net radiation. T (pixel) is 283 

the scaled surface temperature    for a given pixel within the scatterplot and T (dry edge) is 284 

thevalue of    tthe dry edge of the triangle. In this study, the values for the temperature limits 285 

were Tmin = 19.40 oC and Tmax = 73.27 oC, whereas for NDVI were NDVI0 = 0 and NDVIs = 1. 286 

Noticeably that fully vegetated pixels exhibit a variability in T* of 0.25 conferring to the T* - Fr 287 

scatterplot a trapezoidal shape. The variability in T* could be attributed to the very high spatial 288 

resolution achieved by UAV which allows to record the surface temperatures of the single 289 

leaves of the same canopy. In particular, the variability in T* is attributed to the different 290 

exposure to the direct solar radiation of the single leaves which controls i) directly, the 291 

individual leaf warming up; ii) indirectly, the leaf transpiration. 292 

The implementation of the steps summarized above to the pre-processed UAV data resulted 293 

in the scatterplots of NDVI vs Ts and of computed Fr vs T* shown in Figure 5.  The spatial 294 

maps of Fr and T* are also shown in this figure.  295 

  [Please put Figure 5 around here] 296 

 297 

3.2 Statistical Analysis 298 

Evaluation of the predicted SSM and EF included at first a visual inspection of the 299 

spatiotemporal variability of the derived maps. Next, the main validation approach involved 300 

comparisons at pixel level between the predicted and measured parameters. The statistical 301 

scores computed that quantify the agreement between predictions and observations are 302 

summarised in Table 1. These statistical measures have already been used in similar past 303 

verification exercises (e.g. Nutini et al., 2014; Piles et al., 2016; Amani et al., 2016; Xu et al., 304 

2018, Wang et al., 2018). 305 
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[Please put Table 1 around here] 306 

 307 

4 Results  308 

4.1 Visual Comparisons 309 

The EF and SSM maps and their corresponding histograms obtained from the UAV data and 310 

the “simplified triangle” technique are illustrated in Figure 6. The first step of the analysis 311 

included a visual inspection of the spatial variability of the derived parameters. As can be 312 

observed, both EF and SSM maps exhibited a sensible range of values as well as reasonable 313 

spatial variability. Clearly, the spatial variability is in agreement with the changes in land 314 

use/cover, as well as with the derived Fr and Ts maps based on the UAV data that were 315 

presented in Figure 5. Both EF and SSM predicted by the “simplified” triangle are spatially 316 

consistent with the soil/vegetation cover patterns and variability: in particular, high values of 317 

both variables correspond to the vegetated areas of the image, whereas low values appear in 318 

areas of bare soil. 319 

To further illustrate the above observation, it was further investigated the variability of the 320 

derived parameters separately for the bare soil and the partially or fully vegetated components 321 

(see Figure 7). As evidenced in the maps shown in Figure 7 (and their associated 322 

histograms), the variability of the examined parameters is largely explained by the spatial 323 

variability in the land surface fragmentation.  It is evident from the visual comparisons of bare 324 

soil and vegetation maps and histograms, that the variability of the vegetation for both EF and 325 

SSM is significantly higher in bare soil. From these figures it is shown that the EF and SSM for 326 

vegetation are predominantly above 0.9 EF and 0.2 SSM. Bare soil presents higher variability, 327 

but the highest frequencies (especially for SSM) are close to 0.26.   328 

[please put figure 6 around here] 329 

[Please put figure 7 around here] 330 

 331 

The last step of the visual analysis focused on an arbitrary transect, chosen as the diagonal 332 

line connecting the North and the South vertices of the experimental site. The spatial evolution 333 

of each predicted parameter along this transect is depicted in Figure 8. This approach allows 334 

examining simultaneously the variability of the different parameters, namely of EF, SSM, Fr, 335 

and T*. The results of this analysis are depicted in Figure 8. As one can notice, the variability 336 

of the predicted parameters within the field follows largely explainable trends, depending on 337 

both Fr and T*. This observation provided further evidence of the technique’s ability to 338 

satisfactorily predict both EF and SSM in the field when implemented with the UAV data.  339 

[Please put figure 8 around here] 340 

 341 

4.2 Point Comparisons 342 

The results which concerned point-wise (i.e. pixel level) comparisons are summarised in 343 

Table 2. As already noted, ground measurements of the radiation and turbulent fluxes were 344 

acquired at a single location within the experimental field. On the other, SSM measurements 345 

were conducted at a total of eight sites across the field, in which two different irrigation 346 
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strategies were applied since 1 July 2019. In particular, sites 1 to 4 were maintained under full 347 

irrigation, whereas sites 5 to 8 under water deficit conditions.  348 

As can be observed (in Table 2), the “simplified triangle” achieved very good predictions of 349 

both EF and SSM, which are in close agreement to the field observations and in the same 350 

range as the results of similar studies (e.g., Peng and Loew, 2014; Bai et al., 2019). The 351 

predicted EF value, compared with the observed one, was slightly overestimated, with an 352 

absolute difference of 0.053. However, it should be noted that this difference is also based on 353 

a single ground measurement, since there was only one eddy covariance station installed in 354 

the central part of the experimental site. In reference to the soil water content, Table 2 shows 355 

that the predicted SSM is in very good agreement with the respective measurements, with 356 

RMSE of 0.040 cm cm-3.  Scatter (0.031 cm cm-3) contributes to RMSE relatively more than 357 

Bias (-0.025 cm cm-3) but not overly so. 358 

[please put Table 2 around here] 359 

 360 

 361 

As shown in Table 2, the mean predicted SSM (denoted as “P”) for the locations of Stations 1 362 

to 4 (plots with full irrigation) is 0.123 cm cm-3 while for locations of stations 5 to 8 (plots with 363 

deficit irrigation) the mean predicted SSM is lower at 0.096 cm cm-3. On the other hand, the 364 

measured SSM by the stations (denoted as “O”) does not reveal remarkable differences 365 

between plots maintained under different irrigation strategies. The mean observed SSM for 366 

plots 1 to 4 is 0.138 cm3 cm-3, while for the plots 5 to 8 it is only marginally lower and equal to 367 

0.131 cm cm-3. While bias is generally low, the predicted SSM underestimates the 368 

corresponding values in all the plots under deficit irrigation by -0.035 cm cm-3 on average. 369 

However, for the fully irrigated plots, the underestimation is less than half in magnitude (equal 370 

to -0.015 cm cm-3). All in all, these results suggest that the “simplified triangle” performed 371 

satisfactorily in predicting both the EF and SSM under the examined conditions.  372 

 373 

5. Discussion 374 

Based on the results obtained (Section 4), the “simplified triangle” technique performed well to 375 

in reproducing the high spatial resolution of EF and Mo/SSM maps for the study area. Both 376 

predicted maps exhibited a largely explainable spatial variability across the experimental site, 377 

with patterns in agreement to land cover type, topography and other site-specific 378 

characteristics.  In terms of statistical agreement, prediction accuracy was good for both EF 379 

and SSM, and in agreement to the accuracies reported by other independent investigators 380 

using different approaches and EO data types. For EF the difference between the predicted 381 

and measured value is 0.053, giving a slight overestimation. After the Mo was converted to 382 

SSM for the 8 stations, the results showed fairly low RMSE (0.040 cm cm-3) and low 383 

underestimation (Bias = -0.025). These values are close to those reported by other studies 384 

retrieving EF and SSM using TIR-based techniques (e.g., Peng and Loew, 2014; Nutini et al., 385 

2014; Lu et al., 2015; Xu et al., 2018; Bai et al., 2019). Thus, findings, although are based on 386 

the single image analysis, are confirming the usefulness of the examined technique for EF and 387 

SSM spatial determination at very fine resolution when implemented with UAV data. 388 
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There are a few factors which should be taken into consideration as well, when interpreting 389 

the statistical agreement found herein. For example, the accuracy of the retrieved Fr and of Ts 390 

is a possible cause of error as the technique requires only those two parameters as inputs for 391 

its implementation. In our study, LST was measured by FLIR SC660 with an error lower than 392 

0.03 oK, which is considered very small. Furthermore, since Ts is scaled in the “triangle”, the 393 

effect of the predicted temperature accuracy might be small (Carlson, 2007). Possible reasons 394 

for the lack of complete agreement could be related to the scale-mismatch between the EO-395 

data and the in-situ measurements, geo-location errors, and surface heterogeneity at the UAV 396 

sensor spatial resolution, even though in this particular case predictions were obtained at very 397 

high spatial resolution. Another possible factor concerning the SSM comparisons in particular 398 

is that the ground measurements were acquired at 0 to 10 cm depth, while the UAV-derived 399 

ones respond to soil water content at a much shallower layer (0 to 5 cm) over bare soil. 400 

Effective soil depth for SSM measurement is an issue under investigation (Amani et al., 2016). 401 

Some studies (Finn et al., 2011; Kasim et al., 2020) suggest an effective measurement at a 402 

depth of 5 cm, while other studies (Zhang et al., 2015) suggest effective agreement at a depth 403 

of 10 cm. Furthermore, uncertainties due to the instrumentation accuracy for EF and Rn 404 

measurement should further be considered. Various studies have reported that errors in 405 

instantaneous LE flux measurement can be in the order of 20% to 30%, which can be even 406 

higher under certain circumstances (such as terrain features); similarly a measurement 407 

uncertainty for Rn of 10% is not uncommon (Petropoulos et al., 2013).  408 

Despite the promising results obtained in this first investigation performed herein, the 409 

“simplified triangle” technique has some limitations which should also be acknowledged. 410 

Those include its requirement to have within the image field of view a sufficient variability of Fr 411 

and SSM range, in order to properly define the “wet” edge and the “dry” edge. Another issue is 412 

the possible human error in the selection of warm and cold edges. However, this is an issue 413 

common to other Ts/VI methods (Tomas et al., 2014; Mi et al., 2015). Furthermore, the 414 

technique assumes a linear relationship between the TS/VI feature space and the predicted 415 

EF and SSM, which might not necessarily be the case in nature. 416 

Nonetheless, the “simplified triangle” capitalises on the inherent relationships existing in the 417 

Ts/VI feature space for estimating Mo and EF. Yet, it seems to have some strong advantages 418 

in comparison to other Ts/VI methods. The technique is simple to be applied and is dependent 419 

on a few input parameters which can be easily computed from EO sensors. This makes the 420 

technique implementation quick and computationally inexpensive when that is to be applied to 421 

small scale studies. Its implementation, particularly with UAV images, presents several 422 

advantages. When the technique is implemented with UAV data cloud cover is not an issue 423 

(as UAVs fly at very low altitude) as it would be if satellite data had been used. In addition, the 424 

technique when implemented with UAV data, the spatiotemporal variability of EF and Mo are 425 

computed at a very fine spatial resolution (at 4 cm in our case). As information on very high 426 

spatial and potentially temporal resolution of EF and SSM is essential to decision making in 427 

most agricultural applications, including precision agriculture (Wang et al., 2018; Cui et al., 428 

2020), the potential added value of the “simplified” triangle technique to addressing this 429 

requirement is clear. In overall, all the above characteristics place the “simplified triangle” in a 430 

privileged position as a candidate for further investigation for a potential operationalisation with 431 

either with satellite or airborne EO data.  432 

 433 
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6. Conclusions 434 

In this study, a first assessment of the so-called “simplified triangle” technique was performed 435 

to evaluate the ability of this method to predict EF and Mo/SSM when very high spatial 436 

resolution EO imagery acquired from UAV are available. A robust evaluation was carried out 437 

for an experimental site located in Sicily, Italy for which an extensive field campaign took place 438 

in July 2019. To our knowledge, the study represents the first detailed assessment of this 439 

innovative method with UAV data, particularly in a Mediterranean setting. The implementation 440 

of the investigated herein technique with UAV images presents several advantages. Data 441 

cloud cover is not an issue for UAV images and the spatiotemporal variability of EF and 442 

Mo/SSM are computed at a very fine spatial resolution (at 4 cm in our case). Regardless, UAV 443 

images present an additional challenge in correctly implementing the “simplified triangle” 444 

technique. The method requires a sufficient variability of Fr and SSM range within the image 445 

which can prove challenging in UAV imagery. 446 

The obtained results suggest that the “simplified triangle” performed satisfactorily in predicting 447 

both the Mo/SSM and EF. Validation showed an average error of 0.053 for EF and of 0.040 448 

cm3 cm-3 for SSM. This implies that the investigated approach performs well under the semi-449 

arid conditions characterizing the experimental set up. Both predicted maps also exhibited 450 

sensible spatial variability across the experimental site, with patterns in agreement to land 451 

cover type, topography and other site-specific characteristics. The prediction accuracy of the 452 

technique was also in close agreement, or even better, than accuracies reported by other 453 

independent investigators using different Ts/VI approaches and EO data types. 454 

However, the results reported herein are evidently based on a single image analysis. As the 455 

technique is recent, further scrutiny and additional studies are required to establish its 456 

applicability to different ecosystems. Such future investigations would require exploring the 457 

prediction accuracy of the technique in different ecosystem environments and for longer time 458 

periods using UAV imagery and spaceborne datasets from appropriate sensors (e.g. Landsat, 459 

Setinel 1 to 3, Moderate Resolution Imaging Spectroradiometer (MODIS)), as well as including 460 

a flux footprint analysis comparisons for the case of EF/ET predictions. In addition, a detailed 461 

sensitivity analysis of the method would also allow quantifying the effect of Ts and Fr errors on 462 

prediction accuracy. Other aspects of the technique that deserved investigation involve 463 

automating the process of determining the wet and dry edge, which would also eliminate user 464 

subjectivity in the technique implementation. It could potentially prove beneficial to combine 465 

pixels to satellite sensor spatial resolution (e.g. from the Landsat resolution of 30 or 120 m) to 466 

define the triangle boundaries. Then, once those boundaries have been established, they 467 

could be imposed on the higher resolution UAV image. All the above are topics of key 468 

importance that will be pursued in future studies. 469 
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Figure 1: Conceptualisation of the main properties encapsulated in a Ts/VI 

scatterplot  (adopted from Petropoulos et al. 2009).  

 

 

Figure 2: The experimental site, including the distribution of the ground 

measurement stations. ST1-8 refers to the locations of the probes  that monitor soil 

water content, whereas ST9 is the eddy covariance system location. The image on 

the right is the actual UAV area covered by the UAV upon completion of 

orthorectification (see section 2.2.2 below).  

 



 

Figure 3: Pseudo colour maps of NDVI (a) and Ts (°C) (b) derived upon completion 

of the pre-processing steps. The insets show the frequency histograms of NDVI and 

Ts respectively. Temperature units are in Celsius. 

 

Figure 4: Graphical summary of the “simplified” triangle method principles and 

critical points selection required in its implementation (adopted from Carlson & 

Petropoulos, 2019) 

 



 

Figure 5: The scatterplots derived during the implementation (a,b), the Fr map (c) 

and the T* map (d), derived from the datasets acquired with UAV. The “wet” and “dry” 

edge of the proposed triangle is shown by the continuous black line in scatterplot (b). 

The different colors in scatterplots (a,b) are for illustrative purposes only. 

 

 



Figure 6: Maps of EF (a) and SSM (b) computed from the “simplified triangle” 

implementation using the data retrieved with UAV. The corresponding histograms are 

also shown. 

 

 

 

Figure 7: EF maps computed separately for the vegetated area (b) and for bare soil 

(a). Similarly, the derived SSM maps for the vegetated area (d) and for the bare soil 

(c), are also shown. Each map is accompanied by the corresponding frequency 

histogram. 

 



 

Figure 8: Arbitrarily selected transect within the field (e), and plots of the spatial 

variation of EF (a), SSM (b), Fr (c) and T* (d) along the selected transect.  

 

 

 



 

Table 1: Statistical measures used to assess the agreement between the predictions 

and ground observations. Subscripts i = 1 … N refer to the individual observations, 

while O and P refer to the observed and predicted values.  

 

Table 2: Summary of the point by point comparisons between the ground 

observations (O) and the corresponding predicted with the “simplified triangle” 

(P). The differences (D) between predicted and observed values are also 

indicated. Bias, Scatter and RMSE are expressed in units of cm3 cm-3. 

 

 

Name Description Mathematical definition 

Bias / MBE 
Bias (accuracy) or Mean 

Bias Error 
        

     

 

 

   

 

Scatter / SD 
Scatter (precision) or 

Standard Deviation 
       

             
             

 

 

   

 

RMSE Root Mean Square Error         
        

 

 
 

Fluxes  (-)  O P D 

LE Rn
-1

 0.266 0.319 0.053 

    

SSM (cm3 cm-3)  O  P D 

SM1     0.139     0.090    -0.049 

SM2     0.107     0.132     0.025 

SM3     0.162     0.171     0.009 

SM4     0.145     0.099    -0.045 

SM5     0.078     0.073    -0.006 

SM6     0.121     0.084    -0.037 

SM7     0.145     0.084    -0.061 

SM8     0.180     0.144    -0.036 

 Bias   -0.025 

 Scatter    0.031 

 RMSE    0.040 
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