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by Pavlos Paris Giakoumakis

The static stability of footbridges or pedestrian walkways can be effectively as-
sessed through several approaches developed in the fields of mechanical and civil en-
gineering. On the other hand, the dynamic stability of pedestrian walkways represents
an underexplored field and only in the last 2 years, the comfort of such structures has
been investigated. A walkway under the tendency to oscillate, provokes panic and
insecurity of the users and needs to be appropriately addressed in order to guarantee
the safety of pedestrians.

In this thesis, we introduce an innovative algorithm for modeling and simulation
of human walk using Gaussian Mixture Models. Our model satisfies the requirements
of simplicity, ease of use by engineers and is suitable to accurately assess the dynamic
stability of walkways. Furthermore, we implement a simulator that can be used to pro-
vide reliable prediction and assessment of floor vibrations under human actions. Eval-
uation results are promising, showing that our simulator is capable of supplementing
the experimental procedure in future research.

Η στατική ισορροπία των πεζογεφυρών ή πεζόδρομων μπορεί να εκτιμηθεί αποτελεσμα-

τικά μέσω διαφόρων προσεγγίσεων που έχουν αναπτυχθεί στα πλαίσια της μηχανολογίας

και της πολιτικής μηχανικής. Αντίθετα, η δυναμική ισορροπία των πεζόδρομων αποτελεί ένα

ανεξερεύνητο πεδίο και μόνο τα τελευταία 2 χρόνια ερευνάται το θέμα της άνεσης σε αυτές

τις κατασκευές. Μία πεζογέφυρα που τείνει να ταλαντωθεί, προκαλεί πανικό και ανασφάλεια

στους χρήστες και πρέπει να διευθετηθεί κατάλληλα ώστε να εγγυάται την ασφάλειας των

πεζών.

Σε αυτή τη διπλωματική εργασία, παρουσιάζουμε έναν καινοτόμο αλγόριθμο για τη μο-

ντελοποίηση και προσομοίωση του ανθρώπινου βαδίσματος χρησιμοποιώντας τα Gaussian
Mixture Models. Το μοντέλο μας ικανοποιεί τις απαιτήσεις απλότητας, ευκολίας στη χρήση
από μηχανικούς και είναι κατάλληλο για την εύστοχη εκτίμηση της δυναμικής ισορροπίας των

πεζόδρομων. Επιπροσθέτως, υλοποιήσαμε έναν προσομοιωτή που μπορεί να χρησιμοποιηθεί

για την αξιόπιστη πρόβλεψη και αξιολόγηση των δονήσεων του εδάφους που προκαλούνται

από ανθρώπινες δράσεις. Η πειραματική αξιολόγηση της προσέγγισης μας είναι ενθαρρυντική

καθώς υποδεικνύει ότι ο προσομοιωτής μας δύναται να ενισχύσει σημαντικά την πειραματική

διαδικασία σε μελλοντική έρευνα.

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=5397
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Chapter 1

Introduction

1.1 The Pedestrian Walkway

Definition 1 The pedestrian walkway or footbridge is a type of bridge designed solely for
pedestrian crossings between two points. This type of infrastructure gained prominence in
contemporary architecture of the 21st century because of the growing urban expansion and the
push towards a “greener” mobility [53].

Despite the desire of the human species to overcome the obstacles of nature, there has
been a considerable spread of walkways dedicated exclusively to pedestrians and cy-
clists only after the Second World War, following the development of the road network.
This has paved the way for numerous projects of pedestrian walkways climbing over
canals, rivers or roads. The design of this type of bridge requires the development of
a sustainable approach aimed at encouraging human’s approach to the living environ-
ment, even in highly urbanized tissues as well as promoting the use of bicycles and
walking not only for recreational use but also for basic needs.

Nowadays, pedestrian walkways are very widespread and are not only built for
crossing the obstacles of nature but also as a means to traverse road networks and
complex railways safely. Figure 1.1, depicts two pedestrian walkways, designed to
overcome a road and a river, respectively.

FIGURE 1.1: (a) The Knokke Footbridge in Deerlyck, Belgium - (b) The
Millennium Bridge in London, UK.
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1.2 Issues to The Design - Vibration Serviceability

Lightness and slenderness are substantive aesthetic characteristics in the design of a
modern footbridge. This is corollary given the fact that the loads these structures must
support are generally low (about 400-500 kg/m2).

An emblematic example of this is the London Millennium Footbridge in London,
UK. It is a steel suspension footbridge crossing the River Thames, linking Bankside
with the City of London that initially opened in June 2000. On this day, thousands of
pedestrians crossed it to celebrate the grand opening and was closed for modifications
only two days later because of unexpected lateral vibration due to resonant structural
response that was not adequately considered and analyzed during the design phase.
For this reason, residents of London often refer to it by the nickname “Wobbly Bridge”.

These excessive vibrations are a common under-researched phenomenon that also
applies to other infrastructures e.g., stadiums [24] theaters [63], building floors [14, 21],
and staircases [13]. In this case, the pedestrians crossed a bridge with lateral oscillation
and unconsciously matched their footsteps to the sway, exacerbating it. A well-known
example of this phenomenon is when troops march over a suspension bridge in a syn-
chronized step and therefore are required to break step when crossing such a bridge.

Definition 2 Vibration serviceability analysis is in fact to ensure the human comfort when
crossing such a walkway i.e., the study of the comfort of walkways.

Consequently, the so-called vibration serviceability has become a dominant de-
sign aspect to consider over the last few years and has been increasingly the focus of
researchers worldwide [61, 54, 34, 43]. This factor is firmly linked to the possible de-
formation and vibration of the structure even though these vibration phenomena gen-
erally do not pose a risk to the safety of the structure. It is therefore of vital importance
to monitor and evaluate the mode of vibration to avoid discomfort situations.

The two main parameters typically used to quantitatively describe vibration re-
sponse are amplitude and frequency [9]. More specifically, if the amplitude exceeds a
tolerance limit at the frequency of vibration, it is considered excessive i.e. the frequen-
cies of vibrations induced in the bridge must be distant from the low frequencies that
are perceived by humans.

Vibration serviceability analysis can be broken down into three key components
as depicted in Figure 1.2. These are the input (excitation source), the system (floor
structure), and the output (vibration receiver) [41, 42, 40, 50, 70]. The pedestrian is a
typical receiver of vibrations in the walkway but also represents the excitation source
that this work will focus on, due to the induced dynamic load. Human activities such

FIGURE 1.2: Components of vibration serviceability analysis.
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as walking [10], jogging [45], jumping [49], and running [36] commonly create the vi-
bration problems.

Over the years there have been several studies planning to establish a natural fre-
quency threshold. An example of these is the NTC 2008 that concluded in the fact that
a higher natural frequency to 5Hz ensures a good level of comfort to the pedestrian.
However, the evaluation of vibrations induced by humans is still widely debated and
poorly understood despite the importance of vibration serviceability in the design of
the structure. In fact, there is a wide variety of contradictory dynamic load models due
to many uncertainties associated with human walking [37]. This problem would be
surpassed by an acceptable uniform model of the human walk.

1.3 Thesis Contributions

The scope of this thesis is to provide a reliable and efficient uniform model of human
walk as well as a simulator for the sake of establishing an experimental procedure
and a reference dataset for future researches taking its probabilistic nature into con-
sideration. More specifically, the measurements resulting by more than 200 subjects
crossing an instrumented floor were provided and calibrated in a walk database (see
chapter 5). The appropriate variables describing human gait were then extracted from
these measurements in order to statistically describe them. Then, a statistical model
describing the parameters of the variable models is estimated therefore creating our
uniform model of human walk. Furthermore, a gait simulator has been developed
based on this statistical model. The output of this simulator are the n appropriate vari-
ables describing a random walk of n steps.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• In chapter 2, we introduce some basic background concerning the bipedal walk-
ing as well as some key ideas used throughout the thesis. Furthermore, a defini-
tion of the problem beneficial to understanding the mathematical models imple-
mented is described.

• In chapter 3 we investigate the history and some related work in the field of
modeling human-induced walking excitation.

• In chapter 4 we discuss the proposed approach, starting from the experimental
framework and the calibration of the walk database, moving on to the statistical
description of the variables describing human walk, then the modeling of the
parameters describing these variables, and finally describing the implementation
of the simulator.

• In chapter 5 we elaborate on the experimental setup and more specifically on the
instruments used for the analysis as well as the critical factors we should consider
in the measurements.
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• In chapter 6 we provide an evaluation of the simulations and the simulated re-
sults.

• Finally, chapter 7 provides a conclusion for our work and suggests possible future
work.
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Chapter 2

Background

In section 2.1, we are going to give a short introduction to the key ideas used through-
out the thesis as well as present the basic concept of bipedal walking, while in sec-
tion 2.2 we will present the statistical model deployed in this work.

2.1 The Bipedal Walking

2.1.1 The Walking Cycle

In most people’s eyes, walking is a simple and automatic act. However, if we focus on
the dynamics of human movement, we find that it is rather a complex mechanism. It is
therefore important to understand what constitutes a complete walk cycle in this first
analysis.

Definition 3 A complete walk cycle consists of the human body movement starting from
the beginning of a step with one foot, up to the beginning of the next step with the same foot, as
shown in Figure 2.1.

While walking, each foot passes through two phases during a single step: the swing
phase and the stance (or contact) phase.

Definition 4 The swing phase refers to the period when the foot is off the floor, while the
stance phase refers to the period during which the foot is in contact with the ground [4].

Concurrently, the human body goes through two stages during the walking pro-
cess: the double-support and the single-support stage.

Definition 5 When the body is on the double-support stage, the feet are in contact with
the ground [32]. This stage usually comprises less than 20% of the walking cycle while as the
walking speed increases, it comprises a smaller percentage. On the contrary, the human body is
at the single-support stage when one foot is in contact, while the other is off the ground [59].

A complete walk cycle can be explained as a series of consecutive events as follows
[22, 20, 57, 44]:

1. The left foot is straying from the ground ("left toe-off" in Figure 2.1) in the direc-
tion of walking. At the same time, the right foot provides the essential support.
Thus, the left foot is in a swing phase, while the human body is in a right single-
support stage.
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FIGURE 2.1: A Complete Walk Cycle. [22]

2. Subsequently, the left foot contacts the floor ("left heel contact" in Figure 2.1) and
starts the contact phase, while the human body passes through a stage of double
support once again.

3. Next, the right foot moves off the floor and starts a swing phase, while the left
foot is still in contact phase providing left single support for the body.

4. Then the right foot contacts the floor and the body is on double support phase.

5. Finally, the left foot moves off the ground (left toe-off in Figure 2.1), and the
walking cycle is completed.

2.1.2 The Walking Parameters

The parameters used to describe human gait are divided into two types: the temporal
(time) and spatial (distance or location) parameters [younis].

Some typical temporal parameters are:

• The walking speed: The magnitude of horizontal velocity in the gait direction,
expressed in meters per second.

• Cycle time: Represents the period during which a complete cycle occurs.
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• Pacing rate (walking frequency): The number of steps in a specific duration,
usually expressed in steps per minute or Hz [57].

Some typical spatial parameters are:

• Step length: The distance measured during a single step between both heels in
the direction of walking.

• Step width: The distance measured transversely between the two lines which
describe the paths taken by the right and the left foot, where these lines pass
through heel midpoints.

• Stride length: The distance measured along the gait direction between two con-
secutive contacts of the same foot. It also represents the total distance traveled
during one cycle period [44].

2.1.3 The Vertical Load Induced During a Walk

Regarding the various parameters that characterize the human walking process, we
can identify the presence of two types of randomness: The intersubject and the intra-
subject variability [35].

Definition 6 The intersubject variability exists because different persons will have different
key parameters directly related to the induced forces, such as subject weight, step frequency,
walking speed, and so on [68]. So, the resultant walking forces vary from person to person.
However, intrasubject variability exists because an individual never repeats two identical
steps sequentially i.e., a person produces forces that are different at each footfall [67].

A walking person causes dynamic forces that have components in three directions:
the vertical the horizontal-parallel, and the horizontal-transverse to the direction of
movement [5]. However, only the vertical force component will be addressed in this
thesis, since it has the highest magnitude of all and is by far the most significant in
vibration serviceability analysis.

Thorough studies conducted by several researchers starting with Harper [19] and
followed by Galbraith and Barton [18], Blanchard et al. [7], Ohlsson [38], Andriacchi
et al. [1], and Kerr [26], conclude that the vertical force typically has two peaks and a
trough as shown in Figure 2.2.

In this figure, the force is expressed as a percentage of the body weight, and the
time is normalized with respect to the stance phase duration (see Figure 2.1). When
the heel strikes the floor, the dynamic force increases until it reaches a peak value equal
to F1 at time T1 which corresponds to approximately 25-30% of the stance phase’s (or
contact’s) duration. After that, the dynamic force decreases until the mid-stance point,
T2, at which both the heel and toe are in contact with the ground, while the other foot
is in a swing phase. Subsequently, the heel rises, and the vertical force increases until
it reaches another peak, F3, at time, T3, near the end of the stance phase and heel strike
of the other foot. Finally, the foot rises from the floor and the force decreases rapidly to
zero at the stance phase completion [50].
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FIGURE 2.2: Vertical force induced in a single step. [50]

It was noted, however, that this graph changes considerably at different walking
speeds. There are two main factors considered to affect the amplitude of the peak
force: the weight of the person and the frequency steps. The increase of these factors
leads to higher peak forces.

Wheeler [younis, 58] has conducted a wide-ranging study to classify different types
of human movements, arranged from slow walking to running (Figure 2.3). Each of
these categories had a unique peak amplitude single-step dynamic force, shape, and
stance period. Additionally, the author stated that different parameters such as stride
length, walking speed, contact time, peak force and step frequency are related. For
example, increasing the step frequency leads to shortening the contact time and in-
creasing the peak force.

This work will emphasize in normal tempo gaits (see Figure 2.2). Thus, running
will not be discussed further as it is considered an extreme case of walking in terms of
movement speed.
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FIGURE 2.3: Vertical force induced for different modes of movement ac-
tivity. [70]
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2.2 Problem Definition

2.2.1 The Statistical Model Deployed in This Work

In this study, the human walk is described through four variables. Those are the mean
vertical force (denoted as force), the interarrival time ∆t (denoted as time), the length,
and the angle of each step. Force is related to the weight and gait of the pedestrian and
represents the excitation signal of a structure. For the sake of simplicity, it is assumed
that each step’s force is applied to a dimensionless point of the structure and the only
forces considered are vertical.

The variables described above are related to each other. However, the steps of each
person are never identical, as explained in subsection 2.1.3 and thus, the pedestrian
walk is modeled as a series of steps where each parameter of a given step is indepen-
dent of those of the previous steps. The drawback of this method is the fact that due
to this; the proposed model is memoryless and unable to describe some events i.e., a
stumble or a collision.

The mathematical model used in this work takes inspiration from a Markov chain
application called random walk. More specifically, the position of each pedestrian is
described as a sequence where each step’s position depends exclusively on the position
of the previous step. In a classical random walk, the direction of each step is uniformly
distributed between [0, 2π). However, the pedestrian in our case is walking towards
an endpoint, which means that its direction cannot be uniformly distributed.

In this scenario, the state of the Markov chain at the kth step is described as:

Sk = {Fk, ∆tk, lk, θk} (2.1)

where:

• Fk: The mean vertical force applied at the kth step.

• ∆tk: The time between the k− 1th and kth step.

• lk: The length traversed between the k− 1th and kth step.

• θk: The direction of the kth step (angle between the k− 1th and kth step)

Figure 2.4 describes the geometrical interpretation of the proposed model. Since
the process is represented by a countable sequence of steps, it can be inferred that
the Markov chain is continuous in the state space S and discrete in time. Lastly, it is
assumed that the steps are independent and identically distributed (i.i.d.) and thus, the
Markov chain is described by the transition probability density function (pdf) which is
devised by the experimental measurements contained in the provided database as:

p(S) = p(F, ∆t, l, θ) (2.2)
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FIGURE 2.4: The geometrical interpretation of the proposed model. [39]

Consequently, the correlation between the 4 variables describing the human walk
was extracted by Fornaciari [17], using some experimental measurements. More specif-
ically, the correlation coefficients of distinct variables have been assessed for each stu-
dent and then averaged over the number of students to devise general indications.
Thus, the average matrix correlation R̄ arises as:

R̄ = [R̄ij] =


1 −0.33 −0.25 0.02
−0.33 1 0.06 0.15
−0.25 0.06 1 0.08
0.02 0.15 0.08 1

 for i, j = 1, 2, 3, 4 (2.3)

Where:

• R12 = R21 = −0.33: The time-force correlation coefficient

• R13 = R31 = −0.25: The time-length correlation coefficient

• R14 = R41 = 0.02: The time-angle correlation coefficient

• R23 = R32 = 0.06: The force-length correlation coefficient

• R24 = R42 = 0.15: The force-angle correlation coefficient

• R34 = R43 = 0.08: The length-angle correlation coefficient

As it occurs, the time-force, time-length, and force-angle correlations are impor-
tant whereas any other correlation can be considered negligible. We consider that for
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each step, time, force, and length are correlated, while the angle variable is statistically
independent from the other variables. Thus, Equation 2.2 can be written as:

p(S) = p(F, ∆t, l, θ) = p(F, ∆t, l)p(θ) (2.4)

2.2.2 Gaussian Mixture Modelling

Definition 7 A Gaussian Mixture Model (GMM) is a probabilistic model for representing
normally distributed subpopulations within an overall population. It is parameterized by the
mixture component weights, the component means, and the variances/covariances.

For a Gaussian mixture model with K components, the kth component has a mean of
mk and variance of σk for the univariate case and a mean of µk and covariance matrix
of Σk for the multivariate case. The mixture component weights are defined as φk for
component Ck, with the constraint that the total probability distribution normalizes to
1, thus:

K

∑
i=1

φi = 1 (2.5)

The component weights are the a-posteriori estimates of the component probabilities
given the data.

As eventuated by the work of Caleri [11], a GMM is an interesting approach to this
work since it depends on a limited number of parameters, can accurately approximate
several practical distributions, can rely on simple algorithms, and represents the prob-
lem at hand successfully.

Assuming that the GM p(F, ∆t, l) fitting the multivariate pdf p(F, ∆t, l) is based on
K components, the pdf is approximated through the GM:

p̂(F, ∆t, l) =
K

∑
i=1

wiN(µi, Σi) (2.6)

where φi is the weight of the ith component and N(µi, Σi) is a multivariate normal
distribution with mean µi and symmetric covariance matrix Σi, for i = 1, 2, 3 such that:

N(µi, Σi) =
1√

(2π)3|Σi|
exp
(
− 1

2
(~x−~µi)

TΣ−1
i (~x− ~µi)

)
(2.7)

The pdf of the step angle p(θ) has been analyzed independently of the other vari-
ables (time, force, and step length). Assuming that the GM p(θ) fitting the univariate
pdf p(θ) is based on M components, the pdf is approximated through the GM:

p̂(θ) =
M

∑
i=1

αiN(mi, σi) (2.8)

where φi is the weight of the ith component and N(mi, σi) is a univariate normal distri-
bution with mean mi and standard deviation σi, for i = 1, 2, 3, 4 such that:
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N(mi, σi) =
1

σi
√

2π
exp
(
− (x−mi)

2

2σ2
i

)
(2.9)

Concluding, the transition pdf p̂(S) is therefore approximated using eq: 2.4, 2.6 and
2.8 as:

p̂(S) = p̂(F, ∆t, l) p̂(θ) =
( K

∑
i=1

wiN(µi, Σi)

)( M

∑
i=1

αiN(mi, σi)

)
(2.10)
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Chapter 3

Related Work

In this chapter, we introduce some related work on the field of modeling human walk-
ing forces. The resulted models can be used to predict vibrations during the design
phase. However, this modeling presents several challenges. First, due to many param-
eters being affected by the intersubject and intrasubject variability, a high variability in
force waveform shapes is presented [58] as depicted in Figure 2.3. Moreover, the dy-
namic forces induced by a pedestrian are narrowband random processes that are not
completely understood yet and thus, not accurately assessed [8].

However, several force models have been implemented by researchers and are used
during the design phase. Two types of models are most commonly used for human
walking excitation. These are the time-domain models that are currently more widely
used, and the frequency-domain models.

Time-domain force models are forked into two groups; the deterministic and prob-
abilistic.

Definition 8 Deterministic models aim to generate a uniform force model without directly
considering the natural variability between people [6]. These models are based on assumptions
such as perfect periodicity and uniformity of produced force for both feet. On the other hand,
the probabilistic models consider the intersubject variability of each person i.e., each individ-
ual presents unique parameters influencing the produced forces e.g., weight, tempo etc. Each
parameter is described by its pdf and hence, measured by the probability of occurrence [69].

In the remaining chapter, we first discuss about time-domain deterministic force
models available in the literature. Then, the frequency-domain models will be intro-
duced and we conclude with some probabilistic force models that surfaced in the last
years.

3.1 Time-Domain Deterministic Force Models

Bachmann and Ammann [5] indicated that the magnitude of human-induced vibration
depends significantly on the ratio of walking frequency of the pedestrian and the low-
est vertical natural frequency of the floor. There are two types of floors presented in the
literature according to their natural frequency: the low-frequency and high-frequency
floors [50]. This distinction has been applied as a result of significant variations in the
dynamic responses, as ascertained in several studies. The threshold frequency values
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defining the type of floor is calculated at 9-10 Hz for floors having at least one natural
frequency.

In the moment of writing, there is no deterministic walking force model that can be
used for prediction of both low-frequency and high-frequency floor responses, due to
the different response behavior. Therefore researchers have developed different force
models for each.

3.1.1 Low-Frequency Force Models

Definition 9 Low-frequency floors are typically regarded as floors having at least one re-
sponsive natural frequency below 9-10 Hz.

Each periodic force with a period T can be represented by a Fourier series. The vertical
dynamic force induced by a pedestrian can be expressed by a summation of harmonic
components (i.e., Fourier series) being assumed as periodic in the time domain as:

Fp(t) = G +
n

∑
i=1

Gαi sin (2πi fpt− φi) (3.1)

where:

• G: The individual static weight (N).

• i: The order number of the harmonic.

• n: The number of all contributing harmonics.

• fp: The step frequency (Hz).

• φi: The phase shift of the ith harmonic (rads).

• αi: The Fourier coefficient of the ith harmonic, usually known as the dynamic load
factor (DLF) i.e., The dynamic coefficient.

Many researchers have attempted to quantify the DLF αi for the contributing harmon-
ics over the last years as it is the key to generate an accurate deterministic force model.
These studies resulted in the force models included in the major footbridge design
guides used today.

Blanchard et al. [7] proposed a simple deterministic force model concerning the
load exerted on footbridges by a pedestrian. In this model, it is concluded that if the
fundamental frequency of the walkway does not exceed 4 Hz, resonance is presented
in the first harmonic of the dynamic load with αi = 0.257 and G = 700N. If the
fundamental frequency is between 4 and 5 Hz , the resonance is a result of the second
harmonic and therefore applied some reduction factors.

Later in 1982, Kajikawa, according to Yoneda [64], improved the previous model.
More specifically, he introduced a relationship between the correction coefficient i.e.,
DLF and walking pace (m/sec). The walking speed depending on step frequency was
also added as an output of his model. His results are presented in Figure 3.1.



3.1. Time-Domain Deterministic Force Models 17

FIGURE 3.1: Walking speed and DLF as a function of pacing rate. [64]

Subsequently, Bachmann and Ammann [57] reported the Fourier coefficient values
for the first five harmonics of the walking force and highlighted that the induced load
is related to the step frequency. They specifically suggested DLFs of 0.4 and 0.5 for the
first harmonic DLF at frequencies of 2.0 and 2.4 Hz, respectively, with linear interpola-
tion for the frequencies in between, while a DLF value of 0.1 was proposed for a step
frequency close to 2 Hz.

In late 80s, Rainer et al. [51] made a significant contribution by measuring the
continuous waveform of force induced by walking, running and jumping on an in-
strumented floor. Through their studies, they also confirmed the strong bond between
the DLF and the frequency. Interestingly, the dynamic forces reported for walking
were found to be considerably higher than the ones suggested by previous researchers.
However, the deficiency of this study is that it included measurements from only three
test individuals and therefore cannot be considered statistically reliable [50, 70].

A very thorough work has been performed by Kerr [33] as part of his PhD the-
sis. He recruited 40 subjects and generated a very large database consisting of 1000
single-step force measurements of a single footfall on a force plate covering step fre-
quencies ranging form 1 Hz, which is unnaturally low, to 3 Hz, which is unnaturally
high. Each step was repeatedly appended and summed to create a waveform that rep-
resents a walk in a certain period of time, which was Fourier transformed to estimate
the DLFs. The DLF values of the harmonics were characterized statistically simply by
mean values and standard deviation with the exception of the first harmonic, in which
the dynamic forces increase with step frequency. This study was partly criticized by
Rasic et al. [18] due to its inability to represent the intrasubject variability.

Young [65] as well as Willford et al. [60] conducted a wide-ranging study to de-
velop a reliable guide for modeling walking forces and the corresponding structural
responses. More specifically, they applied statistical regression in the data of Figure 3.2
that were published by several researchers. Hence, they proposed DLF’s mean and
design values for the first four harmonics. Young [65] suggested the following set of
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FIGURE 3.2: DLFs for the first four harmonics of the walking force gath-
ered from different researchers. [65]

equations as a function of step frequency:

α1 = 0.41( f − 0.95) ≤ 0.56
α2 = 0.069 + 0.0056 f
α3 = 0.033 + 0.0064 f
α4 = 0.013 + 0.0065 f

1 Hz ≤ f ≤ 2.8 Hz
2 Hz ≤ f ≤ 5.6 Hz
3 Hz ≤ f ≤ 8.4 Hz

4 Hz ≤ f ≤ 11.2 Hz

(3.2)

Where f represents the frequency of the harmonic which equals an integer multiple of
the pacing rate. He also stated that the recommended design values have 25% prob-
ability of exceeding. This deduction classifies him as one of the first researchers that
accounted the probabilistic nature of human walking.

3.1.2 High-Frequency Force Models

Definition 10 High-frequency floors are typically regarded as floors having no responsive
natural frequency below 9-10 Hz i.e., floors with frequency higher than four times the average
walking frequency.

The available literature on high-frequency force models is generally limited due to the
fact that human discomfort in vibration phenomena is mainly found in low-frequency



3.1. Time-Domain Deterministic Force Models 19

FIGURE 3.3: Response behavior comparison of successive steps in (a) low
and (b) high frequency floors. [33]

floors. The response of these floors presents a transient or impulsive profile [33] unlike
the resonant behavior found in the response of low-frequency counterparts. Figure 3.3
illustrates this difference.

In this figure it is noted that, unlike the typical low-frequency resonant response
which involves an accumulation in structure’s response of successive step, in high-
frequency floors the vibration responses of successive steps do not build up because of
the structural damping decaying effect. More specifically, the first heel touch produces
an initial peak response followed by floor oscillating at its natural frequency with a de-
caying rate associated with the damping ratio of the fundamental mode [28]. Similarly,
another impulse response is generated at each subsequent step.

3.1.3 Drawbacks in Deterministic Force Modeling

Deterministic force models account for the most common approach in human walk
modeling. Thus, the reliability of those models has been extensively tested and im-
portant drawbacks have been identified. First, these models usually do not consider
the inter-and intrasubject variability of human walking. Secondly, the classification of
floors by their natural frequency is not considered accurate in certain circumstances
e.g., a floor with a fundamental frequency close to the 9-10 Hz threshold probably
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exhibits a mixed response and thus cannot be classified [71]. Lastly, the vibration re-
sponse computed in these models is a numeral usually compared with a selected limit
of vibration tolerance. This results in a binary pass or fail criterion which does not
provide enough information to make a decision in the design phase [72]. Therefore,
Deterministic modeling is generally not considered very accurate or precise, leading
to wrong estimation of the floor vibration response.

3.2 Frequency Domain Force Models

Continuous walking forces can be alternatively represented in the frequency domain,
i.e. the walking history can be represented by the amplitudes gathered via Fourier
transform decomposition [55]. Ohlsson [38] was one of the first researchers involved
in frequency-domain representations of walking forces. He concluded that a single
step contains excitation energy in the frequency range between 0 and 6 Hz and also
extracted the autospectral density (ASD) of the walking force in the high frequency
range of 6-50 Hz.

Eriksson [16] performed a similar study focusing on the low-frequency floors and
produced the ASD of Figure 3.4. In this figure, it is noted that the excitation energy at
integer multiples of step frequency is smeared into the adjacent frequencies, producing
a leakage at each peak. This leakage indicates that the human walking pattern presents
imperfection and therefore force is not perfectly periodic [2]. The same author stated
that human walking is a random process [16].

In another study, Sahnaci and Kasperski [52] stated that these imperfections result
in what is known as subharmonics, which are intermediate load amplitudes holding a
significant portion of excitation energy between the main harmonic frequency bands as
presented in Figure 3.5. The authors suggested that this phenomenon is presented due
to the difference between left and right feet in the walking parameters e.g. step length,
pacing tempo etc. Finally, they stated that the dynamic response without taking these
subharmonics into consideration is significantly different [52].
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FIGURE 3.4: Autospectral density (ASD) of the walking force. [16]

FIGURE 3.5: Representation of walking force in the frequency domain.
[72]
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3.3 Probabilistic Force Models

The probabilistic models were developed to respond to the need for more reliable ap-
proaches on the mathematical representation of the dynamic forces induced by human
walking. These approaches take into account the intersubject and intrasubject vari-
ability i.e., a large database of measurements should be provided [47]. On reflection,
according to these models, the human walking is considered a random or stochas-
tic process with non deterministic behavior i.e., the next state cannot be predicted by
the current state [12] and repeated experiments from the same person will be differ-
ent [48]. The randomness can be expressed by the probability of the above variables
density function. The output of these models are not a binary value generated from
a comparison on a threshold but instead, the induced response can be expressed as a
probability that will not exceed a certain value. This gives more space for engineers to
make a decision on vibration serviceability [31].

3.3.1 Step Frequency of Probabilistic Force Models

There is a notable difference between step properties from several studies in the lit-
erature [72, 30, 25, 27]. Figure 3.6 depicts the normal distributions of step frequency
for normal tempo walking as extracted in several researches. These differences occur
because of the fact that step properties have been proven to depend on multiple fac-
tors such as gender, nation, culture [66, 62] and the environment [23]. Therefore, Racic
et al. [50] suggested that in order to perform a reliable statistical analysis of walking
parameters, a random sample of people from different genders, nations, and cultures
should be collected.

Using statistical analysis, Zivanovic [66] noted that walking speed follows a nor-
mal distribution pattern, as illustrated in Figure 3.7. In this figure, the step frequency
is adjusted at 1.8 Hz as this is the mean value of the normal probability distribution
describing step frequency introduced by Pachi and Ji [23].

3.3.2 Probabilistic Force Models Available in the Literature

Ebrahimpour et al. [15] performed one of the first attempts to include the randomness
into human induced walking forces. In the study about the dynamic loads induced by
crowds of pedestrians, they achieved a model that can be used to determine the first
harmonic DLF given the step frequency and the number of people (Figure 3.8). How-
ever, their model is not comprehensive and cannot be applied to predict the vibration
response.

Later, Zivanovic [66] implemented a framework to predict the vertical response of
a walkway excited by a single pedestrian. This was performed by first performing a
statistical analysis on the walking parameters and finally extracting the pdfs of these
parameters in order to calculate the cumulative probability that the vibration response
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FIGURE 3.6: Normal distributions of step frequency for normal tempo
walking as extracted from (a) Zivanovic´ et al. [72], (b) Matsumoto et al.

[30], (c) Kasperski and Sahnaci [25], and (d) Kramer and Kebe. [27]

FIGURE 3.7: Normal distribution of walking speed at 1.8 Hz of step fre-
quency. [66]
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FIGURE 3.8: DLFs of the first harmonic as a function of the number of
persons and step frequency. [15]

does not exceed a specified threshold. This framework however is bounded for foot-
bridges presenting light traffic and only the first mode of vibrations is counted. Nev-
ertheless, it is concluded that the first step to develop a reliable probabilistic model is
to represent the single pedestrian excitation.

Consequently, Zivanovic´et al. [72] have extended this model to include the sub-
harmonics appearing in the frequency domain, unlike previous models considering the
main harmonics only, as shown in Figure 3.9. The authors have accounted the inter-
subject variability using the pdfs of the variables describing the human walk as well as
the intrasubject variability via the phase angle, which was represented in the frequency
domain with a random pattern uniformly distributed between (−π, π). However, due
to the lack of measurement database for subharmonics, the corresponding amplitudes
were included as a function of the first harmonic’s DLF. The accuracy of this model
was proved to be adequate based on the experimental results.

Another model was introduced by Racic and Brownjohn [46]. This model emerged
by an experimental campaign of 824 steps from about 80 subject of different physical
characteristics. In this work, the authors categorized the walking signals into 20 clus-
ters according to the pacing rate, each of 0.1 Hz, as depicted in Figure 3.10. Finally,
they explained an algorithm for generating the walking force signals. However, the
proposed modeling approach is numerically complicated thus making it impractical
for the design engineers as the current techniques require simple calculations.
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FIGURE 3.9: (a) 80-step walking force time history for a single pedestrian,
(b) DLFs for the main harmonics and subharmonics in the frequency do-
main, (c) phase angle of forces in Fourier spectrum and (d) period of walk-

ing steps. [72]

FIGURE 3.10: Categorization of walking force signals based on pacing
rate. [46]
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Chapter 4

Proposed Approach

In this chapter, we introduce the proposed approach to the problem. More specifically,
in the first phase, we try to develop a uniform model of human walk. Therefore,
the variables characterizing the walk of each subject in the database are modeled and
then the parameters of the resulted models are fitted into new models to describe them
uniformly as illustrated in the brief modeling plan of Figure 4.1.

In second phase, a simulator of random human walk was implemented based on
our models for the sake of establishing an experimental procedure as well as a reference
dataset for future researches. Technically, this simulator uses the models describing the
parameters, developed in the first phase, and generates random parameters. These pa-
rameters will be fitted into a new model that constitutes our simulator. This procedure
is depicted in the brief simulation plan of Figure 4.2.

The aforementioned are described analytically in the following sections.
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FIGURE 4.1: A brief modeling plan.

FIGURE 4.2: A brief simulation plan.
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4.1 Experimental Framework

4.1.1 Database Properties

The database used for the modeling of human walk consists of valid measurements
for more than 200 pedestrians in a variety of physical characteristics. More specifi-
cally, each subject was asked to cross a 10m2 plane walkway twice at a normal tempo.
The equipment used to conduct the experiments included 10 plates along with the
appropriate force sensors that occupy 1m2 each, as described in chapter 5.

Subsequently, the database provided for the analysis was in the form of a cell table
of 229 rows (subjects) and differed number of columns depending on the steps mea-
sured for each individual (minimum is 21 while maximum is 32 steps) for a sampling
frequency of 50Hz. It is important to note that each subject (row) includes measure-
ments of both walks for the specific individual e.g. if the first cross consisted of 14
steps and the second of 13, columns 1-14 include the measurements for the first walk
and columns 15-27 include those of the second. Furthermore, some of the 229 rows
are empty i.e., do not contain any measurements and as a result, will be considered
invalid for the analysis.

Considering the subject (row) index as i and the step (column) index as j, each
cell {i, j} in the database matrix includes measured information about force, time and
position on the plane for the ith pedestrian at the jth step.

Thus, database cell {i,j}.time is an array of measured times that step j lasted
corresponding to the forces induced during this step which are found on {i,j}.force
(maximum 70 measurements for each step). The time measurements were extracted
by a timer used in the experimental procedure. Consequently, {i,j}.force is an ar-
ray of vertical forces induced during each step corresponding to the time array and
measured in Newtons.

The {i,j}.x_step and {i,j}.y_step attributes are denoting the relative position
of feet through the walkway on the x and y axis for the jth step. By placing the center
of axis in the middle of the plates on height and the start of the first plate on width (as
depicted in Figure 4.3), it is concluded that y_step is a floating point number ranging
in [−0.5, 0.5] while x_step is a positive floating point number ranging in [0, 10].

FIGURE 4.3: Position measurements axis.
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FIGURE 4.4: Simplified form of the initial database.

Finally, the first column of each pedestrian {i, 1}, includes some extra measurement
information. More specifically, {i,1}.x and {i,1}.y contain the information about
which points of each plate came in contact through the path, {i,1}.Ptot represents
the sum of measurements acquired by all the force sensors beneath the instrumented
floor and {i,1}.P_div collects the signals acquired by all the force sensors i.e., 10 plates
and 4 sensors installed on each plate for a total of 40 measurements at each clock cycle.
Those are raw data and will not be used on this work.

Figure 4.4 depicts a simplified form of the initial database which was provided
for the analysis. In this example, it is obvious that each subject differs at number of
steps performed on the 2 walks. Also, some subjects do not contain any measurements
(subject 228 in this example) and ascribed to this, are considered invalid.

4.1.2 Database Analysis

The initial database, as described in subsection 4.1.1, needed some modifications in
order to satisfy the requirements of the modelling. First of all, it needed to contain
valid measurements only, but also force-time arrays contained in each cell are required
to have the same indices on all cells on the basis that the measurements would later
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FIGURE 4.5: Simplified form of the modified database.

be unified in tables for easier and more effective use. For this purpose, a "clear-out" is
performed.

Initially, the subjects (rows) with empty measurements were identified and deleted.
As a result, the database now contains measurements for 215 subjects as opposed to
the 229 initial subjects. This modification is depicted in Figure 4.5. Furthermore, the
force values are always be positive but due to some errors during the measurement
procedure, this was not the case on some occasions. Hence, force measurements with
negative values as well as the corresponding time values have been replaced with nan
values in order to practically remove them from the database.

Finally, the force-time arrays were further modified to have the same indices on
all cells as depicted in Figure 4.6. These arrays initially had different indices on each
cell but mutually the same. These modifications were crucial as a unified table would
be needed for each of those variables. To do so, the maximum force-time array in-
dices in the database were identified and each array was modified to fit these indices
by adding nan values to the bottom of the array until the indices reach this maximum
number. More specifically, the maximum array indices were calculated as 70 and there-
fore, each force-time array contains up to 70 measurements but always has 70 tuples.
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FIGURE 4.6: An example of the force-time arrays before and after the
"clear-out".

Figure 4.6 shows an example of how the "clear-out" is implemented. In this exam-
ple, it is visible that the pair of force-time will have a length of 70 tuples and all the
negative forces, as well as their pairs in time, are deleted.

4.1.3 Variable Extraction

The next big step concerns the extraction of the essential variables. For this purpose,
the 4 different variables contained in the database (force, time, x_step and y_step)
were extracted in different tables. The 4 tables created had the following forms:
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• time: 70x32x215 (max measurements x steps x subjects)

The times in which measurements occurred (1st dim) for each step (2nd dim) and each
subject (3rd dim).

• force: 70x32x215 (max measurements x steps x subjects)

Vertical force induced on each moment (1st dim) for each step (2nd dim) and each subject
(3rd dim).

• x_coord: 215x32 (subjects x steps)

The step coordinates in x axis for all subjects (rows) and steps (col).

• y_coord: 215x32 (subjects x steps)

The step coordinates in y axis for all subjects (rows) and steps (col).

However, these variables were not fitted to use for the statistical modeling of human
walk. Indeed, the extraction of the following necessary variables is performed:

• Interarrival time: 215x32 (subjects x steps)

Interarrival time (Dt) between each step (col) for each subject (row).

• Mean Vertical Force: 215x32 (subjects x steps)

Mean vertical force (meanF) induced on each step (col) for each subject (row).

• Length of step: 215x32 (subjects x steps)

The distance between each step.

• Angle of step: 215x32 (subjects x steps)

The angle of each step along the gait horizontal direction.

4.1.4 Extraction of Interarrival Time and Mean Force

As denoted, the time table contains up to 70 time measurements for each step of each
subject. These values are indicating the duration of step, but it would be preferable
if there was only one time value characterizing the time in which a step is performed.
The selected value for this was the mean time. Therefore, for each time array i.e., each
step of each subject, the mean value ignoring the nan values, has been calculated and
thus, the mean time of each step has been extracted as depicted in Figure 4.7.

Let j be the current step of subject i. The interarrival time (Dt) of step j will be
calculated as:
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FIGURE 4.7: Construction of meanTime table.



4.1. Experimental Framework 35

FIGURE 4.8: Dt extraction algorithm.

Dt(i, j) = meanTime(i, j)−meanTime(i, j− 1) (4.1)

Subsequently, each interarrival time between steps can be calculated using Equa-
tion 4.1. This indicates that the first step (Dt(i, 1)) has no interarrival time, although
the mean time of the first step will be used to calculate the interarrival time between
the first and second step. Therefore, Dt(i, 1) will be nan.

As stated above, each subject includes measurements for 2 walks on the pathway.
Subsequently, each time a second walk starts, the analysis resets to zero and the first
step of the second walk must ignore the effect of previous steps which belong to the
first walk. The values in time, force, x_coord and y_coord arrays are continuous e.g.
if the last step of the first walk was the 13th, the new walk starts at the 14th step. In
order to identify in which step the new walk starts, the x_coord variable is used. More
specifically, x_coord signifies the position of the subject on the plane and thus on the
same walk: x_coord(i, j) ≥ x_coord(i, j − 1). It can be inferred that a new walk has
started when the subject has returned to the beginning of the walkway. In this case:

x_coord(i, j) < x_coord(i, j− 1) (4.2)

Using this condition, the step signifying the beginning of a new walk can be identified.
When a new walk is spotted, the first measurement will be used to calculate the

interarrival time between the first and second step of this walk, while the equivalent
interarrival time will take a nan value.

In order to extract the mean vertical force induced in each step, a similar procedure
will be followed. This indicates that using the force table containing up to 70 measure-
ments for each step of each subject, the mean vertical force induced in each step will
be extracted similarly to the procedure followed for meanTime extraction (Figure 4.7).
Using this method, the meanF table will be constructed.
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FIGURE 4.9: Shifting the nans to the end of each row.

However, in order to keep the necessary correspondence between Dt and meanF,
the values of the first step of each walk will be erased. In other words, in whichever
tuples Dt has the value of nan, meanF will get the nan value as well. Finally, the nan
values of Dt and meanF tables are shifted to the end of each row as shown in Figure 4.9.

4.1.5 Extraction of Length and Angle

Concerning the extraction of length and angle, the x_coord and y_coord tables are
used. More specifically, the length can be calculated as the Euclidean distance between
one step and the next, while the angle is the arctangent of the traversed x and y.

This indicates that the first step of each walk will be used to calculate the length
and angle between the first and second step. Nevertheless, there are no values corre-
sponding to these steps and thus, their values will be ignored and shifted to the end of
each row following the procedure described for Dt and meanF.

Figure 4.10 illustrates the way length and angle are calculated. In this example, 3
consecutive steps of a subject are depicted as circles in the x and y domain based on the
coordinates taken by the x_coord and y_coord tables. x1−2 and y1−2 are the traversed
x and y distances between the first and second step, respectively, and thus:

x1−2 = x2 − x1 and y1−2 = y2 − y1 (4.3)

The distance between the first and the second step i.e., length of the 1st step, can be
calculated using the Euclidean distance as:

length1−2 =
√

x2
1−2 + y2

1−2 (4.4)
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FIGURE 4.10: Calculation of length and angle on 3 steps of a walk.

While the angle (radians) between the first and the second step i.e., direction of the 1st
step, can be calculated as:

angle1−2 = arctan
(x1−2

y1−2

)
(4.5)

Using this procedure, all lengths and angles traversed on each step of a walk can be
determined.

4.1.6 Extraction of The Unified Table

The 4 extracted variables were combined into table X which is a 32x4x215 table includ-
ing meanF, Dt, len and angle for each step of each person. For each person represented
in the 3rd dimension, 1st column represents the Dt while 2nd column is the meanF, 3rd
column is the length and 4th is the angle for the specific step (row). An example of this
table is shown in Figure 4.11.
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FIGURE 4.11: The form of a random pedestrian’s unified table X.
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4.2 Variable Modeling

Fornaciari [17] has concluded that the angle does not present any correlation with the
other three random variables (see subsection 2.2.1). Based on these results, it is clear
that the mathematical model used to describe the human walk will need to encounter
the angle variable separately than Dt, meanF and len. Using this deduction, Caleri [11]
tried to fit a variety of distributions to identify which describes the process of human
walk better (see subsection 2.2.2). He concluded that Gaussian Mixture Models were
a good approach in most cases.

Based on this deduction, we decided to fit two GMMs on each subject i.e., a mul-
tivariate describing the 3 correlated variables and a univariate describing the angle.
This resulted to a total of 430 GMMs to model the variables of walk. However, a deci-
sion on the number of components to use on these GMMs is considered essential.

4.2.1 Estimation of GMM Components

In this section we will present the procedure adopted to estimate the number of com-
ponents used in the multivariate GMMs describing the three correlated variables (Dt,
meanF and len). A similar procedure will be used for the estimation on all following
GMMs. More specifically, the goal is to estimate the optimal number of GMM com-
ponents i.e., the resulting GMMs should describe the variables accurately as well as
minimize the complexity. The AIC and BIC criteria were used for this decision.

It must be noted here that the SharedCovariance property of the GMM has been
set to true for all GMM fits described in this work, as setting it to false would not
generate the GMM distribution due to the ill-conditioning of the covariance matrix.
Also, the number of iterations performed by the fitting algorithm has been set to 1500.

Definition 11 The Bayesian information criterion (BIC) is a criterion for model selection
among a finite set of models. It is based, in part, on the likelihood function, and it is closely
related to the Akaike information criterion (AIC).

When fitting models, it is possible to increase the likelihood by adding parameters,
but doing so may result in overfitting. The BIC resolves this problem by introducing a
penalty term for the number of parameters in the model. The penalty term is larger in
BIC than in AIC.
Mathematically BIC can be defined as:

BIC = ln(n)k− 2ln(L̂) (4.6)

While AIC can be defined as:

AIC = 2k− 2ln(L̂) (4.7)

Where:

• L̂: The maximized value of the likelihood function of the model.
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• n: The number of data points.

• k: the number of parameters to be estimated.

A lower AIC and BIC value indicates lower penalty terms hence a better model.
Though AIC and BIC are derived from a different perspective, they are closely re-

lated. Apparently, the only difference is that BIC considers the number of observations
in the formula, which AIC does not.

4.2.1.1 The Default Index Method

The default method for the estimation of the optimal number of GMM components
describing the three variables (Dt, meanF, len), is based on fitting the GMMs using a
variety of components. More specifically, each GMM is fitted using 1-15 components.
In each selection, the AIC and BIC scores are extracted. The number of components
that achieve the lowest score describe the best model.

Figure 4.12 depicts the AIC and BIC values for a variety of components on 11 pedes-
trians. As observed, in most cases a bigger number of components leads to smaller
scores. Consequently, the penalty AIC/BIC criteria give to complex models leads to
overfitting. This phenomenon probably occurs due to the impact of noise in the data.
More specifically, the data have an abnormal distribution which leads to overfitting the
model to cover these values. Thus, this method is not optimal for the estimation as it
leads to bigger complexity.

4.2.1.2 Exploring a Solution

Estimating the number of components can be regarded as an important factor in the
accuracy of our model. Thus, it is significant to explore other techniques that will
aid on this quest. By observing Figure 4.12 we notice that the curve follows different
slopes in different part of it. Hence, there is no need to find a global minimum of the
AIC/BIC score and for this reason, we decided to check where the AIC/BIC curve
change slope is big i.e., detect the most drastic change of the AIC/BIC index, as to
signify a change of performance. This should denote the number of components that
drastically impacts the fit and therefore could be accepted as a descent point of focus.
This point will offer better optimality - complexity payoff in the GMMs.

It is important to note that each time a GMM is fitted on data the produced results
will defer i.e., multiple GMMs fitted on the same data with the same number of compo-
nents will produce different results. Therefore, in the selected method, we repeat the
same procedure in order to get more representative results. In this case we abstractly
repeat the fittings 12 times in each case. Thus, we decided to adopt the following tech-
nique:

• First, a GMM is fitted on the data and the AIC/BIC scores on 1-15 components
are extracted.

• Then, a mean index evaluation diagram is created from all the 12 repetitions i.e.,
the mean AIC/BIC scores of the 12 GMMs are calculated for each point (compo-
nent).
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FIGURE 4.12: AIC and BIC values of GMMs varying components fitted on
11 pedestrians.
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FIGURE 4.13: GMM fitted on the unified walk data for 1-15 components
(12 repetitions).

• Lastly, the score difference is computed based on the mean index evaluation di-
agram and is graphically depicted. Note that large improvement in score implies
large negative score difference.

• The lowest pointy in the Score differential diagram, depicting the largest im-
provement on the AIC/BIC scores, denotes the selected number of components.

To evaluate this point of interest we first follow this technique on a GMM fitted on
the unified walk data and then the same procedure is followed on random separate
pedestrians.

4.2.1.3 Fitting on the Unified Walk Data

In this step, a unified table containing all database steps is created for each person.
More specifically, a GMM is fitted on the 3 variables (Dt, meanF, len) and the technique
described at subsubsection 4.2.1.2 is followed. Figure 4.13 depicts the AIC/BIC values
of GMM fitted on the unified walk data for 1-15 components for 12 repetitions while
Figure 4.14 presents the resulting mean index evaluation diagram and the score dif-
ferential diagram. It can be noted that the biggest AIC/BIC score decrease i.e. largest
improvement, is spotted on the GMM using 3 components.

4.2.1.4 Fitting on the Pedestrian Walk Data

The same procedure is followed on random separate pedestrians to verify the selec-
tion of the 3-component model. Figure 4.15 depicts the AIC/BIC values of a GMM
fitted on a random pedestrian’s walk data for 1-15 components using 12 repetitions
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FIGURE 4.14: (a) Mean index evaluation diagram of unified walk data -
(b) Score differential diagram of the unified walk data.
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FIGURE 4.15: GMM fitted on a random pedestrian’s data for 1-15 compo-
nents (12 repetitions).

while Figure 4.16 presents the resulting mean index evaluation diagram and the score
differential diagram.

The results obtained verify that the 3-component GMM offers better payoff and
thus we decided to use 3 components on the fitting of the multivariate model describ-
ing Dt, meanF and len. These experiments were repeated on many random pedestrians
with similar results in most cases.

Note: The procedures described in subsection 4.2.1 are followed before every GMM fit reported
in this work.

4.2.2 Distribution Fitting

Fitting of the 3-component multivariate GMM describing Dt, meanF and len in the
respective walking data is performed in this section. Figure 4.17 depicts this fitting
for a random pedestrian on each variable. More specifically, Figure 4.17a presents the
data fitted on the interarrival time of step, while Figure 4.17b and Figure 4.17c depicts
the fitting on the mean vertical force induced in each step and the length traversed,
respectively.

We note that the fittings presented in this figure are performed accurately on the
significant parts of data while ignoring the values with low density. In this manner,
we consider these values as outliers or noise in the data and we ignore them in the
modeling while simultaneously achieving a low complexity.

Using the technique introduced at subsection 4.2.1, we decided to use a 2-component
GMM for the modeling of data describing the angle of step for each pedestrian. Fig-
ure 4.18 depicts the fitting on the angle of step of a random pedestrian’s data. It can
be inferred that the 2-component GMM presents 2 curves in the form of a bivariate
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FIGURE 4.16: (a) Mean index evaluation diagram of unified walk data -
(b) Score differential diagram of the unified walk data.
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(A) Multivariate GMM of 3 components fitted on interarrival time of step.

(B) Multivariate GMM of 3 components fitted on mean vertical force of step.

(C) Multivariate GMM of 3 components fitted on length of step.

FIGURE 4.17: Multivariate GMM of 3 components fitted in random pedes-
trian’s walk data.
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FIGURE 4.18: Univariate GMM of 2 components fitted in random pedes-
trian’s angle of step.

distribution. This result can be considered sensible as normal human walking is usu-
ally performed in this manner i.e., a footstep in one direction is followed by another
footstep in the opposite direction.

4.3 Parameter Modeling

The final goal of this thesis is to create a simulator which will successfully generate
a random walk with any given number of steps. This simulator must extract the 4
variables for each step similarly to the provided experimental data based on a com-
plete statistical model that describes the human walking process accurately. There-
fore, modeling of the parameters of the GMMs describing the variables of human walk
is performed.

More specifically, each GMM is characterised by 3 parameters. Those in fact are the
mean table (mu), the variance/covariance matrix Σ (Sigma) and the mixing probabil-
ity φ (component proportion coefficient). The parameters of the 215 GMMs fitted on
section 4.2 are mixed and modeling is performed on each using normal distributions
in order to model them as accurately as possible.

4.3.1 Statistical Description of the Mean Table

The mean table (mu) parameter of a GMM which describes 3 variables with 3 com-
ponents is a 3x3 table (components x variables). Each column corresponds to a differ-
ent variable and each row describes the mean value of each component on a specific
variable. This indicates that each variable (column) must be described by different
Gaussians.
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The procedure followed for the most accurate statistical description of the mu of
each variable, will be illustrated using an example. The tables depicted in Figure 4.21
are an example of the mean tables used as parameters on each subject’s GMM.

Our approach models each of the 3 mean values describing each variable (Dt, meanF,
len) separately e.g., each of the first column’s values corresponds to the mean value of
each GMM component describing Dt. The first step to this approach is to take the 3 or
2 values of each mean table that correspond to the specific variable and put them in
a unified 215x3 or 215x2 table (subjects x components) for the multivariate (Dt, meanF,
len) or univariate (angle) case respectively. We initially fitted a Gaussian on each of
the mean values of the variable. However, the resulted models ignore the low values
which play a significant role in the mean table as depicted in Figure 4.19 for Dt, meanF,
len and Figure 4.20 for angle.

To counteract this problem, we decided to model the values based on their ampli-
tude i.e., separate the mean values in different modes with varying amplitudes. For
instance, the distribution of Dt has 3 modes, leading to 3 mean values in each test
case with varying amplitudes. Thus, we organize 3 groups of test model parameters;
large, medium and small. This is conducted by sorting each variable’s mean values in
ascending order as presented in Figure 4.21.

Consequently, each sorted element is then distributed in a corresponding array thus
creating 3 arrays containing the mu values of each GMM in ascending order. Lastly,
a Gaussian is fitted in each array thus creating a model of 3 normal distributions de-
scribing the mean values of Dt. The aforementioned are depicted in Figure 4.22. The
same procedure is followed for the other 3 variables noting that the angle variable is
described by a model of 2 normal distributions.

In summary, the modeling of the GMMs’ mean table parameter starts at unification
and ascending sorting of the mean values. Then, a Gaussian is fitted for each compo-
nent of each variable. Therefore, Dt, meanF and len are statistically described using
3 normal distributions on each variable while 2 normal distributions are used for the
angle resulting in a total of 11 normal distributions.

Figure 4.23 depicts the Gaussians fitted on Dt, meanF and len. In this figure we
notice that the modeling takes all modes into consideration while the same applies for
Figure 4.24 depicting the Gaussians fitted on angle. Moreover, the bivariate nature of
angle is modeled using this procedure.
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(A) Dt variable.

(B) meanF variable.

(C) len variable.

FIGURE 4.19: Gaussians fitted on mean table for Dt, meanF and len - de-
fault method.
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FIGURE 4.20: Gaussians fitted on mean table for angle - default method.
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FIGURE 4.21: Mean table’s modeling logic for Dt variable - part 1.
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FIGURE 4.22: Mean table’s modeling logic for Dt variable - part 2.



4.3. Parameter Modeling 53

(A) Dt variable.

(B) meanF variable.

(C) len variable.

FIGURE 4.23: Gaussians fitted on mean table for Dt, meanF and len.
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FIGURE 4.24: Gaussians fitted on mean table for angle.
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4.3.2 Statistical Description of the Mixing Probability (Component
Proportion Coefficients)

The mixing probability parameter (Component Proportion Coefficients) of a GMM of
3 components is a 3-tuple array as 3 is the number of GMM’s components. Each tuple
contains the coefficient describing the proportion of each component and is a number
between 0 and 1. The sum of all coefficients is 1. In order to statistically describe this
parameter, a Gaussian will be fitted for each component’s proportion.

This parameter needs to be in accordance with the component it describes. Thus the
approach followed for its statistical description will be conducted alongside the statis-
tical description of the mu table parameter presented in subsection 4.3.1. As if not, the
sorting process will ignore the correlation between the component proportions and
their respective mean values. Subsequently, the component proportions are unified in
a 215x3 table for Dt, meanF and len or 215x3 for angle. Then, during the sorting of mu,
the coefficients are shifted to correspond to each component’s mean value as depicted
in figure Figure 4.25. This way, the correlation between the component proportions
and the mean values will remain after performing the sorting. We characterize this
method as index-fixing.

Each element is allocated in an array in the same manner as mean table parame-
ter’s modeling. A Gaussian is fitted in each array thus creating a model of 3 normal
distributions describing the coefficients for Dt, meanF, len and 2 normal distributions
for the angle. The aforementioned are depicted in Figure 4.26.

In summary, modeling component proportion coefficients of the GMMs starts at
unification and index-fixing of the values. Then, a Gaussian is fitted for each compo-
nent. Therefore, Dt, meanF and len are statistically described using 3 normal distribu-
tions while 2 normal distributions are used for the angle resulting in a total of 5 normal
distributions.

Figure 4.27 illustrates the Gaussians fitted on the mixing probabilities for the mul-
tivariate and univariate model. We notice in the latter that the normal distributions are
similar. This result is considered sensible as the probability of a step being performed
on each direction is the same.
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FIGURE 4.25: Mixing probability (Component Proportion Coefficients)
modeling logic - part 1.
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FIGURE 4.26: Mixing probability (component proportion coefficients)
modeling logic - part 2.
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(A) Multivariate model - Dt, meanF, len variables.

(B) Univariate model - angle variable.

FIGURE 4.27: Gaussians fitted on mixing probabilities.
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FIGURE 4.28: Variance/Covariance matrix Σ modeling logic.

4.3.3 Statistical Description of the Variance/Covariance Matrix Σ

The variance/covariance matrix Σ parameter of a 3-variate GMM is a 3x3 symmetric
and positive semi-definite matrix describing the covariance between variables as well
as the variances (matrix diagonal), i.e., the covariance of each random variable with
itself.

Consequently, the critical values of a 3-variate covariance matrix are 6. Those are
the 3 diagonal values i.e., the variance of each variable, as well as the covariances
between the 1st and 2nd variable, the 1st and 3rd variable and finally, the 2nd and
3rd variable. Thus, for the most accurate statistical description of Σ, a unified table
containing the 6 differentiated values of all subjects was created and a Gaussian is
fitted in each, as illustrated in Figure 4.28.
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(A) Multivariate model - Dt, meanF, len variables.

(B) Univariate model - angle variable.

FIGURE 4.29: Gaussians fitted in variance/covariance matrix Σ.

In summary, modeling variance/covariance matrix Σ of the GMMs starts at unifi-
cation of it’s critical values. Then, a Gaussian is fitted for each. Therefore, Dt, meanF
and len are statistically described using 6 normal distributions while 1 more is used
for the angle as a univariate GMM is described only by it’s variance. Thus, a total of 7
normal distributions is required for the modeling of Σ. Figure 4.29 depicts the Gaus-
sians fitted on the critical values of Σ for the multivariate and the univariate model,
respectively.
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4.4 Modeling Overview

The statistical description of the parameters of the Gaussian Mixture Models con-
cludes the process of modeling the human walk. This modeling was, in summary,
implemented following the steps described in the previous sections of chapter 4.

The first step was to extract the necessary variables to describe a human walk us-
ing the data contained in the provided database. These variables where the interarrival
time of each step (Dt), the mean vertical force induced in a step (meanF), the length tra-
versed (len) and the angle of each step. Those variables were extracted for each step of
each person. Then, 2 GMMs were fitted in each person’s walks; a 3-component multi-
variate for Dt, meanF and len and a 2-component univariate for the angle variable.

Finally, the statistical description of the parameters of those GMMs was conducted.
More specifically, each GMM is parameterized by its mixing probability (component
proportion coefficients), mean table (mu) and covariance matrix Σ. Hence, upon some
procedures, these parameters were fitted in GMMs in order to statistically describe
them. The statistical description of the multivariate GMM’s parameters (describing
Dt, meanF, len) resulted in:

• 9 Gaussians to describe the mean table parameter – 3 for each variable as the
GMM consists of 3 components.

• 3 Gaussians to describe the mixing probability (component proportion coeffi-
cients) parameter as the GMM consists of 3 components.

• 6 Gaussians to describe the Σ parameter - each Sigma is a 3x3 symmetric matrix
as the GMM describes 3 variables and thus, there are 6 critical values.

While the statistical description of the univariate GMM describing the angle variable
resulted in:

• 2 Gaussians to describe the mean table parameter as the GMM consists of 2 com-
ponents.

• 2 Gaussians to describe the mixing probability (component proportion coeffi-
cients) parameter as the GMM consists of 2 components.

• 1 Gaussian to describe the Σ parameter as the GMM describes 1 variable.

The diagram of Figure 4.30 shows an overview of this procedure.
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FIGURE 4.30: An overview of modeling human walk.
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4.5 The Simulator

The scope of the simulator is to describe a random human walk accurately by extract-
ing n sets of the 4 variables for n desired finite number of steps. In order to achieve this,
a reversed procedure than the one followed for the modeling will be conducted. More
specifically, the goal is to extract a random walk using the statistical description of the
parameters acquired through the modeling, as input. Thus, a random generation of
the parameters is performed using the models describing them. Then, a multivariate
and a univariate GMM is fitted using the respective parameters. These GMMs will
be used as distributions that best describe the process of human walk. Consequently,
using these GMMs, n sets of the Dt, meanF, len and angle random variables will be
acquired. Those sets will describe a random walk of n steps. This process is depicted
graphically in the diagram of Figure 4.35.

4.5.1 Parameter Estimation

The first step of our implementation is to generate a set of parameters to use on the
GMM statistically describing the human walk. In the same manner, the multivariate
GMM’s variables i.e., Dt, meanF, len will be extracted first.

Consequently, using the 3 Gaussians describing the mean values of each variable
i.e., 9 Gaussians in total, a random value is generated using each one. Thus, the 3
Gaussians produce 3 random values for each of the three random variables and the
unification of those produces the final mean table which will be used as a parameter in
the simulated GMM (Figure 4.31).

Likewise, the mixing probability or component proportion coefficients parameter
of the simulated GMM is generated using the 3 Gaussians created in the modeling.
Thus, 3 values are generated and are used as parameters in the simulated GMM (Fig-
ure 4.32). Note that the mixing probabilities must sum to 1. However, since these are
randomly generated, this constraint is not always satisfied and therefore, a normaliza-
tion in the generated mixing probabilities is performed.

FIGURE 4.31: Generating a random mean table.
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FIGURE 4.32: Generating random mixing probability (component propor-
tion coefficients).

FIGURE 4.33: Generating a random variance/covariance matrix Σ.

Finally, the variance/covariance matrix Σ of the simulated GMM is generated using
the 6 Gaussians created in the modeling. More specifically, the 6 critical values are
randomly generated by these Gaussians. The first 3 values describe the diagonal values
of the matrix i.e., variance of each variable, while the fourth describes the covariance
between the first and second variable i.e., the values (1,2) and (2,1) of the Σ matrix.
Finally, the fifth describes the covariance between the first and the third variable i.e.,
values (1,3) and (3,1) of the Σ matrix and finally, the sixth describes the covariance
between the second and the third variable i.e., values (2,3) and (3,2) of the Σ matrix.
This way, a symmetrical covariance matrix is generated (Figure 4.33).

The only constraint in this procedure is that, as it is known by the theory, a co-
variance matrix, apart from symmetrical, is also positive semi-definite. However, the
random generation does not guarantee this. To confront this, a workaround has been
implemented and therefore, the random generation is performed in a loop that breaks
when the generated matrix is positive semi-definite.

The same procedure is performed for the extraction of the parameters characteriz-
ing the simulated univariate GMM describing the random variable of angle. In this
case, the mean table parameter is determined by randomly generating the 2 necessary
values using the 2 Gaussians describing it. The same applies to the extraction of the
mixing probability, whereas the 2 values are generated and normalised in order to sum
to 1. Finally, the Gaussian describing the variance of the variable is used to randomly
generate the value of σ. This procedure is depicted in Figure 4.34

4.5.2 Extraction of the Random Walk

In the final step, two GMMs i.e., a multivariate for Dt, meanF, len and a univariate
for the angle, are fitted using the random parameters generated in subsection 4.5.1
as input. Using these GMMs, the random walk is extracted. The multivariate GMM



4.5. The Simulator 65

FIGURE 4.34: Generating random parameters for the angle variable.

generates n sets of Dt, meanF and len variables while the GMM describing the angle
generates n values of the angle variable. The merging of those describes a random
walk of n steps.
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FIGURE 4.35: An overview of the simulator.
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Chapter 5

Experimental Setup

5.1 Instruments Used for the Analysis

The data used in this work have been acquired through an experimental campaign [17,
39] conducted at the University of Modena and Reggio Emilia, Department of Engi-
neering “Enzo Ferrari” (Modena, Italy) and were provided beforehand. More specifi-
cally, an instrumented floor equipped with a sensor system has been exploited to mea-
sure the force, time, and position of each step. The setup used to make the measure-
ments consists of 10 plates that occupy an area of 1m2, each, placed sequentially in a
horizontal formation yielding an area of 2x5 for a total of 10m2 of available surface on
the walkway, as illustrated in Figure 5.1. These plates are constructed of stainless steel
and covered with waterproof mats made of synthetic material steel.

It is worth pointing out that this approach allows to acquire the quantity of interest
directly. Other available methods used in the literature indeed involve uncertainties.
An example of this is if, the measurement of the acceleration was acquired using an
accelerometer constrained to a foot. In fact, the human body is not a rigid system and
the force applied to the floor cannot be simply inferred from the acceleration and the
static mass of the person.

Force sensors are installed beneath each vertex of the plates (Figure 5.2) so that the
induced force can be measured. Additionally, the position of the applied force can be
inferred through simple trigonometric manipulation. The output of the force sensors is
acquired through an acquisition system that consists of a control unit and a computer
and is manufactured by National Instrument.

It is important to note that the algorithms, diagrams and extracted results described
in chapter 4 and chapter 6 were implemented using MATLAB R2019b Update 7 [29].
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FIGURE 5.1: The instrumented floor used in the experiments. [17, 39]

FIGURE 5.2: Force sensors installed beneath the vertices of the plates. [17,
39]
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5.2 Critical Factors in the Analysis

The data collected in this study are conditioned by several factors. More specifically,
the data relating to the right and left plates were acquired separately. Therefore, the
gait of each subject was "guided" towards the center line of the floor.

Secondly, it is important to note that the plates of the instrumented floor could pro-
duce noise during the experiments due to the extreme sensitivity of the data. Actually,
the software used for the data processing showed some small abnormal variations in
the force induced on certain plates.

Thirdly, the subjects tested differed in height and weight i.e. the speed varies on
each subject. As known from the literature, as speed varies, the shape of the step
changes, hence, a metronome was used to obtain time histories of the step at a fixed
rate.

Lastly, the experiments were designed for individuals walking at a normal tempo
and thus, the presence of other pedestrians in the walkway, the resonance phenomenon,
the contingency of a collision, a random roaming, jogging, running, etc. are not taken
into consideration, as a real-world example would require.
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Chapter 6

Simulations & Evaluation

Similarly to Figure 4.11, Figure 6.1 depicts an instance of the table extracted by the sim-
ulator describing a randomly generated human gait of 30 steps. The columns of the
table correspond to the variables of interarrival time (Dt), mean vertical force induced
(meanF), length (len) and angle of each step, respectively.

As a first deduction by comparing the two tables, the values generated can be con-
sidered comparable to the values of a random person from the database. The only
remarkable difference spotted is in the meanF variable. Figure 4.11 is probably de-
scribing a human with large weight whose walking induces a big force on each step.
However, the database includes measurements for a variety of body types and sexes
and as a result, the simulated values of force contain values with great modulation.

To deepen our understanding about the outcome of the simulator, the mean speed
of gait was calculated in order to compare it with the theoretical mean speed of human
walking at a normal tempo. Using the len and Dt variables, speed can be calculated as:

speed =
length

Dt
(6.1)

Equation 6.1 produces the speed of each step. The mean speed 1000 random walk
simulations of n = 30 steps, was calculated as:

mean speed = 5.2 km/h

The average speed of human walk at a normal tempo is ranging from 4.51 km/h
to 4.75 km/h for older individuals and from 5.32 km/h to 5.43 km/h for younger
individuals [56, 3]. Thus the simulated walk’s speed approximates the expected value.

Finally, using the length and the angle of each step acquired by the simulated walk,
the x and y positions of each step j were calculated as:

xj =

{
xj−1 + len cos (angle), if j > 1
len cos (angle), if j = 1

}
and yj = len sin (angle) (6.2)

These positions were scattered in Figure 6.2 in order to visualise the simulated human
walk on the walkway.

Finally, Figure 6.3 depicts the first (out of two) walk of the subject of Figure 4.11.
Note that the randomly generated walk approximates the pattern of the experimental.
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FIGURE 6.1: A random walk generated for n = 30 steps.
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FIGURE 6.2: Scattering a random walk.

FIGURE 6.3: First walk of the random subject described in Figure 4.11.
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In conclusion, it can be inferred that the outcome of the simulator is promising as
the data generated match the properties of the experimental quite efficiently. Thus, this
simulator is capable of supplementing the experimental procedure in future research.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this thesis, we presented an innovative algorithm for modeling and simulation of
human gait using Gaussian Mixture Models and Normal Distributions. More specifi-
cally, we presented a practical model to use at the design stage of a walkway that sat-
isfies the requirements of simplicity i.e., the GMMs and Gaussians used require simple
calculations, ease of use by engineers as well as accuracy i.e., a large number of ex-
perimental samples is used. Furthermore, this algorithm can be considered innovative
i.e., we used GMMs and conceived the human walk as a random process, while only a
few past researches with a small number of data have done so. Lastly, in the proposed
model we accounted the intersubject and intrasubject variability model.

We also implemented a simulator that can be used to provide reliable prediction
and assessment of floor vibrations under human actions, using the developed mod-
els. Thus, using this approach, the experimental procedure can be omitted in future
researches.

7.2 Future Work

We conclude this thesis by presenting possible future extensions of this work. The next
step to our research is to apply the simulator at a digital pedestrian walkway in order
to conduct research on bridge oscillations and the resonance effect using simulated
walks. This digital pedestrian walkway is developed by the Civil and Environmental
Engineering Department of the University of Modena & Reggio Emilia (Dipartimento
di Ingegneria "Enzo Ferrari”).

Moreover, it would be practical to repeat the experimental campaign using a big-
ger instrumented floor that approximates the dimensions of a real footbridge, thus
allowing for more steps at each stride. In this case, the experimental procedure would
preferably include more information about the characteristics of the subjects e.g., gen-
der, physical characteristics, nation, culture, the environment, etc. These parameters
influence the intersubject variability of human walking process as suggested by sev-
eral researches [23, 62, 66] presented in section 3.3.

Using these information, the model can be extended to include real world occasions
e.g., the presence of many pedestrians in the walkway, the synchronization of step
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within groups, the contingency of a collision, a random roaming, jogging, running,
etc.
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[69] Stana Živanović and A Pavic. “Probabilistic approach to subjective assessment of
footbridge vibration”. In: The 42rd UK Conference on Human Responses to Vibration.
2007.
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