
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Parallel sketch algorithms
with Spark, Storm, Akka and Kafka-Streams

Author

Angelos Petheriotis

Thesis committee

Prof. Deligiannakis Antonios
Prof. Samoladas Vasilis
Prof. Garofalakis Minos

January 2021

Abstract

Efficient processing over massive data sets has taken an increasing importance in the last few

decades due to the growing availability of large volumes of data in a variety of applications

in computer science. Typical streaming algorithms use space at most polylogarithmic in the

length of input stream. Using linear space motivates the design for summary data structures

with small memory footprints, also known as synopses. Algorithms such as count min sketch use

parameters error and probability of failure, which are specified by the user, in order to extract

the items that exceed some threshold (support) from an unbounded data stream. Accuracy

guarantees are typically expressed in terms of those parameters (error, probability of failure)

meaning that the error in extracting those frequent items is within a factor of 1 + error of the

true items’ frequency with probability at least 1 − δ. The memory footprint depend on these

parameters.

Since we make only one pass over the unbounded data stream we need to make sure we utilise

the most appropriate frameworks to run our computations on. We introduce Storm, Spark,

Akka and Kafka Streams frameworks which are all real-time, distributed and fault-tolerant

tools. Those four frameworks have a completely different architecture to the batch processing

frameworks that have been established over the years. Furthermore each of these frameworks

have many differences with regards to the architectural aspect between them, aspects which we

try to analyse in this diploma thesis.

We evaluate CMS, ECMS, AMS algorithms at those four frameworks in a multi node cluster

the topology with regards to performance. We observe throughput, the number of processed

items per second while simultaneously we make sure the error guarantees are met.

The data which were used to benchmark the different algorithms on the four frameworks, are

real data from smart thermostats from 50K different units.

i

Περίληψη

Η αποτελεσματική επεξεργασία σε μεγάλα σύνολα δεδομένων έχει αποκτήσει μεγάλη σημασία

τις τελευταίες δεκαετίες, λόγω της συνεχώς αυξανόμενης ροής των δεδομένων καθώς και της

συνεχώς αυξανόμενης ανάγκης για ανάλυση αυτών των δεδομένων. Τυπικοί αλγόριθμοι ροής (

χρησιμοποιούν χώρο πολυλογαριθμικό μήκος στη βέλτιση περίπτωση). Η χρήση γραμμικού χώρου

παρακινεί το σχεδιασμό για συνοπτικές δομές δεδομένων με χαμηλές απαιτήσεις μνήμης, γνω-

στές και ως συνόψεις. Αλγόριθμοι όπως ο υπολογισμός του ελάχιστου σχήματος χρησιμοποιούν

συγκεκριμένες παραμέτρους σφάλματος και πιθανότητας αποτυχίας, τα οποία καθορίζονται από

το χρήστη, προκειμένου να εξαχθούν τα στοιχεία που υπερβαίνουν κάποιο όριο (υποστήριξη) από

μια απεριόριστη ροή δεδομένων. Οι εγγυήσεις ακρίβειας εκφράζονται συνήθως με βάση αυτές

τις παραμέτρους (σφάλμα, πιθανότητα αποτυχίας) που σημαίνει ότι το σφάλμα κατά την εξαγωγή

αυτών των συχνών στοιχείων είναι εντός ενός παράγοντα 1 + error της συχνότητας των πραγ-

ματικών στοιχείων με πιθανότητα τουλάχιστον 1− delta . Το αποτύπωμα μνήμης εξαρτάται από

αυτές τις παραμέτρους.

Δεδομένου ότι κάνουμε μόνο ένα πέρασμα στην ροή των δεδομένων, πρέπει να διασφαλίσουμε

ότι θα χρησιμοποιήσουμε τα καταλληλότερα εργαλεία για την εκτέλεση των υπολογισμών μας.

Παρουσιάζουμε τα frameworks Storm, Spark, Akka Kafka Streams τα οποία είναι εργαλεία

που επεξεργάζονται μια ροή δεδομένων σε πραγματικό χρόνο, ενώ παράλληλα μπορούν εύκολα

να παραλληλοποιηθούν και να ειναι ανθεκτικά σε σφάλματα (διακοπή δικτύου κλπ). Αυτά τα

τέσσερα frameworks έχουν μια εντελώς διαφορετική αρχιτεκτονική σε σχέση με τα υπάρχοντα

frameworks τα οποία απευθύνονται σε offline ανάλυση των δεδομένων. Επιπλέον, κάθε ένα από

αυτά τα frameworks είναι διαφορετικό σε αρχιτεκτονική μεταξύ των άλλων, αρχιτεκτονικές τις

οποίες προσπαθούμε να αναλύσουμε σε αυτή τη διπλωματική εργασία.

Αξιολογούμε τους αλγόριθμους CMS, ECMS, AMS σε αυτά τα τέσσερα frameworks σε ένα σύμ-

πλεγμα πολλαπλών κόμβων. Παρατηρούμε την απόδοση, τον αριθμό επεξεργασμένων μηνυμάτων

ανά δευτερόλεπτο, ενώ παράλληλα εξασφαλίζουμε ότι πληρούνται οι εγγυήσεις σφάλματος.

Τα δεδομένα που χρησιμοποιήθηκαν για τη συγκριτική αξιολόγηση των διαφορετικών αλγορίθμων

στα τέσσερα πλαίσια είναι πραγματικά δεδομένα από έξυπνους θερμοστάτες σε διάστημα 6 μηνών

από 500Κ διαφορετικές μονάδες.

ii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Antonios Deli-

giannakis for the continuous support on my studies and research, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time of research and

writing of this dissertation. I could not have imagined having a better advisor and mentor for

my studies.

Besides my advisor, I would like to thank the rest of my dissertation committee: Prof. Vasilis

Samoladas and Prof. Minos Garofalakis. My sincere thanks also goes to Polyxeni Arapi and

Odysseas Papapetrou for their help during this dissertation.

Nobody has been more important to me in the pursuit of this project than the members of my

family. I would like to thank my parents, whose love and guidance are with me in whatever I

pursue. They are the ultimate role models. Most importantly, I wish to thank my supportive

partner, Ioanna, who provided and still provides unending inspiration.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Objectives . 1

2 Algorithms 4

2.1 CMS . 4

2.1.1 Sketch overview . 4

2.1.2 Implementation . 5

2.1.3 Sketch internals . 6

2.1.4 Discussion and Applications . 7

2.1.5 Real word application . 8

2.1.6 A Few Observations About The Count Min Sketch 9

2.1.7 Implementations of the Sketch . 9

2.1.8 Scala code implementation . 10

2.2 ECMS . 11

v

vi CONTENTS

2.2.1 Sketch overview . 11

2.2.2 Exponential histograms . 12

2.2.3 Implementation . 13

2.2.4 Point query estimation . 14

2.2.5 Merging ECM Sketches . 14

2.2.6 Java code implementation . 15

2.3 AMS . 16

2.3.1 Sketch overview . 16

2.3.2 Implementation . 17

2.3.3 Notes on hash functions . 19

2.3.4 Historical notes . 20

2.3.5 Join size estimation . 20

2.3.6 Inner product estimations . 21

2.3.7 Comparing AMS and Count-Min sketches for join size estimation 21

2.3.8 Scala code implementation . 22

3 Data processing engines 24

3.1 Big data . 24

3.1.1 What is Big Data . 24

3.1.2 Why Is Big Data Different . 24

3.1.3 What kind of datasets are considered big data 25

3.2 Fast data . 26

3.2.1 What is Fast Data . 26

CONTENTS vii

3.2.2 Big Data versus Fast Data . 26

3.2.3 Real world use cases . 27

3.3 Storm . 28

3.3.1 What is storm . 28

3.3.2 Key features . 28

3.4 Akka Streams . 29

3.4.1 What is Akka Streams . 29

3.4.2 Key features . 30

3.5 Spark . 31

3.5.1 Overview . 31

3.5.2 Key features . 32

3.6 Kafka Streams . 33

3.6.1 Overview . 33

3.6.2 Key features . 33

3.7 Kafka . 35

3.7.1 What is kafka . 35

3.7.2 Architecture . 36

4 Deployments 38

4.1 Introduction to deployments . 38

4.1.1 How is a deployment defined . 38

4.1.2 Continuous integration . 38

4.1.3 Continuous delivery . 39

4.1.4 Continuous deployment . 40

4.1.5 Why we need the 3 C’s . 40

4.2 Infrastructure . 41

4.2.1 Docker and Kubernetes . 41

5 Benchmarking 43

5.1 Background info . 43

5.2 CMS . 45

5.2.1 Time performance Results . 45

5.3 ECMS . 48

5.3.1 Time performance Results . 48

5.4 AMS . 50

5.4.1 Time performance Results . 50

6 Conclusion 52

6.1 Summary of Dissertation Achievements . 52

viii

List of Tables

5.1 CMS time performance results . 46

5.2 ECMS time performance results . 49

5.3 AMS time performance results . 50

ix

x

List of Figures

2.1 Count min example . 5

2.2 CMS pseudo algorithm . 10

2.3 Adding an element to the ECMS . 13

3.1 Apache storm ETL example (from [8] . 29

3.2 Akka Streams ETL example (from [9]) . 30

3.3 Spark ETL example (from [8]) . 31

3.4 Kafka Streams ETL example . 33

3.5 Kafka high level view . 36

4.1 Kubernetes example . 41

5.1 Data flow setup . 45

5.2 CMS time performance in different frameworks (config B) 48

5.3 CMS time performance in different frameworks (config B) 49

5.4 AMS time performance in different frameworks (config B) 51

xi

xii

Chapter 1

Introduction

1.1 Motivation and Objectives

Statistical analysis and mining of huge multi-terabyte data sets is a common task nowadays,

especially in the areas like web analytics and Internet advertising. Analysis of such large data

sets often requires powerful distributed data stores like Hadoop and heavy data processing with

techniques like MapReduce. This approach often leads to heavyweight high-latency analytical

processes and poor applicability to realtime use cases. On the other hand, when one is interested

only in simple additive metrics like total page views or average price of conversion, it is obvious

that raw data can be efficiently summarised, for example, on a daily basis or using simple

in-stream counters. Computation of more advanced metrics like a number of unique visitor

or most frequent items is more challenging and requires a lot of resources if implemented

straightforwardly. In the current dissertation, we provide an overview of probabilistic data

structures that allow one to estimate these and many other metrics and trade precision of the

estimations for the memory consumption and latency.

During this diploma thesis we are going to analyse compact structures that allow one to answer

the following queries:

• How many distinct elements are in the data set (i.e. what is the cardinality of the data

1

2 Chapter 1. Introduction

set)

• What are the frequencies of the most frequent elements ?

• What are the most frequent elements (the terms “heavy hitters” and “top-k elements”) ?

• What is the estimated size of the self join?

For example the frequent items problem is one of the most heavily studied questions in data

stream research, dating back to the 1980s. Finding frequent items has played an essential role in

many important data mining tasks, such as outliers detection, sequential patterns, classification,

clustering, etc. The main goal of a frequent items application is the analysis of vast amounts

of data for discovering useful information.

The challenging part of those applications is the fact that in real life the useful information is

extracted from data sources that are really huge. Web server logs, twitter logs etc. increase

with a significant high rate. This renders the long term storage of data impossible, as it would

cost a lot of memory and time. We thus need to come up with appropriate mechanisms, so as

to avoid storing this vast amount of data. Instead, we have to make algorithms that quickly

process each piece of information quickly. The data processing can, in general, be divided into

batch processing and real-time processing. Batch processing is preferred in cases where data are

preselected (through scripts or shell) and stored in memory. Real-time processing is preferred

in cases where data are processed as they flow through various systems.

We approach this problem with sketch techniques. Sketch techniques, in general, map the input

stream to a small compacted structure from which one can get responses for queries as the ones

mentioned above.

• In chapter 2 we analyse each proposed algorithm individually, so the reader can have a

comprehensive understanding of those sketches.

• In chapter 3 we explain the architecture of some data processing frameworks like Spark

and Kafka streams.

1.1. Motivation and Objectives 3

• In chapter 4 we briefly explain some of the available techniques to create a well defined

development pipeline in order to have faster iterations from development to production.

• In chapter 5 we combine the sketch algorithms with the data frameworks and we run

experiments using multiple different configurations to get a good understanding of their

performance characteristics.

Chapter 2

Algorithms

2.1 CMS

2.1.1 Sketch overview

The Count-Min-Sketch (CMS) is a compact summary data structure capable of representing a

high-dimensional vector and answering queries on this vector, in particular point queries and

dot product queries, with strong accuracy guarantees. Such queries are at the core of many

computations, so the structure can be used to answer a variety of queries, such as frequent

items (heavy hitters), quantile finding, join size estimation, and more.

Since the data structure can easily process updates in the form of additions or subtractions

to dimensions of the vector (which may correspond to insertions or deletions, or other trans-

actions), it is capable of working over streams of updates, at high rates. The data structure

maintains the linear projection of the vector with a number of other random vectors. These vec-

tors are defined implicitly by simple hash functions. Increasing the range of the hash functions

increases the accuracy of the summary, and increasing the number of hash functions decreases

the probability of a bad estimate. These tradeoffs are quantified precisely below. Because of

this linearity, CM sketches can be scaled, added and subtracted, to produce summaries of the

corresponding scaled and combined vectors.

4

2.1. CMS 5

2.1.2 Implementation

At first glance, the sketch looks quite like a Bloom filter [1] , as it involves the use of an array

and a set of hash functions. There are significant differences in the details, however. The sketch

is formed by an array of counters and a set of hash functions that map items into the array.

More precisely, the array is treated as a sequence of rows, and each item is mapped by the

first hash function into the first row, by the second hash function into the second row, and so

on (note that this is in contrast to the Bloom filter, which allows the hash functions to map

onto overlapping ranges). An item is processed by mapping it to each row in turn via the

corresponding hash function and incrementing the counters to which it is mapped.

Given an item, the sketch allows its count to be estimated. This follows a similar outline to

processing an update: inspect the counter in the first row where the item was mapped by the

first hash function, and the counter in the second row where it was mapped by the second hash,

and so on. Each row has a counter that has been incremented by every occurrence of the item.

The counter was also potentially incremented by occurrences of other items that were mapped

to the same location, however, since collisions are expected. Given the collection of counters

containing the desired count, plus noise, the best guess at the true count of the desired item is

to take the smallest of these counters as your estimate.

Figure 2.1: Count min example

Figure 2.1 shows the update process: an item i is mapped to one entry in each row j by the

6 Chapter 2. Algorithms

hash function hj, and the update of c is added to each entry. It can also be seen as modelling

the query process: a query for the same item i will result in the same set of locations being

probed, and the smallest value will be returned as the answer.

2.1.3 Sketch internals

With all data structures, it is important to understand the data organisation and algorithms

for updating the structure, to make clear the relative merits of different choices of structure

for a given task. The Count-Min Sketch data structure primarily consists of a fixed array of

counters, of width w and depth d. All the counters are initialised to zeros. Each row of counters

is associated with a different hash function. The hash function maps items uniformly onto the

range 1, 2, ...w.

The hash functions do not need to be particularly strong (i.e. they are not as complex as

cryptographic hash functions). For items represented as integers i, the hash functions can be of

the form (a∗i + b mod p mod w), where p is a prime number larger than the maximum

i value (say, p = 231 − 1 or p = 261 − 1), and a, b are values chosen randomly in the range 1 to

p − 1. It is important that each hash function is different, otherwise there is no benefit from

the repetition.

Update(i, c) operations update the data structure in a straightforward way. In each row, the

corresponding hash function is applied to i to determine a corresponding counter. Then the

update c is added on to that counter. Figure 2.1 shows an example of an update operation on

a sketch with w = 9 and d = 4. The update of item i is mapped by the first hash function

to an entry in the first row, where the update of c is added on to the current counter there.

Similarly, the item is mapped to different locations in each of the other three rows. So in this

example, we evaluate four different hash functions on i, and update four counters accordingly.

For Estimate(i) operations, the process is quite similar. For each row, the corresponding hash

function is applied to i to look up one of the counters. Across all rows, the estimate is found as

the minimum of all the probed counters. In the example above, we examine each place where

2.1. CMS 7

i was mapped by the hash functions: in Figure 2.1, this is the fourth entry in the first row, the

fourth entry in the second row, the seventh entry in the third row, and so on. Each of these

entries has a counter which has added up all the updates that were mapped there, and the

estimate returned is the smallest of these.

2.1.4 Discussion and Applications

As with the Bloom filter, the sketch achieves a compact representation of the input, with

a tradeoff in accuracy. Both provide some probability of an unsatisfactory answer. With a

Bloom filter, the answers are binary, so there is some chance of a false positive response; with

a Count-Min sketch, the answers are frequencies, so there is some chance of an inflated answer.

What may be surprising at first is that the obtained estimate is very good. Mathematically, it

can be shown that there is a good chance that the returned estimate is close to the correct value.

The quality of the estimate depends on the number of rows in the sketch (each additional row

halves the probability of a bad estimate) and on the number of columns (doubling the number

of columns halves the scale of the noise in the estimate). These guarantees follow from the

random selection of hash functions and do not rely on any structure or pattern in the data

distribution that is being summarised. For a sketch of sizes, the error is proportional to 1/s.

This is an improvement over the case for sampling where, as noted earlier, the corresponding

behaviour is proportional to 1/s.

Just as Bloom filters are best suited for the cases where false positives can be tolerated and

mitigated, Count-Min sketches are best suited for handling a slight inflation of frequency. This

means, in particular, they do not apply to cases where a Bloom filter might be used: if it

matters a lot whether an item has been seen or not, then the uncertainty that the Count-Min

sketch introduces will obscure this level of precision. The sketches are very good for tracking

which items exceed a given popularity threshold, however. In particular, while the size of a

Bloom filter must remain proportional to the size of the input it is representing, a Count-Min

sketch can be much more compressive: its size can be considered to be independent of the

input size, depending instead on the desired accuracy guarantee only (i.e., to achieve a target

8 Chapter 2. Algorithms

accuracy of ε, fix a sketch size of s proportional to 1/ε that does not vary over the course of

processing data).

2.1.5 Real word application

Since their introduction over a decade ago, Count-Min sketches have found applications in sys-

tems that track frequency statistics, such as popularity of content within different groups—say,

online videos among different sets of users, or which destinations are popular for nodes within

a communications network. Sketches are used in telecommunications networks where the vol-

ume of data passing along links is immense and is never stored. Summarising network traffic

distribution allows hotspots to be detected, informing network-planning decisions and allowing

configuration errors and floods to be detected and debugged. Since the sketch compactly en-

codes a frequency distribution, it can also be used to detect when a shift in popularities occurs,

as a simple example of anomaly detection.

A social network such as Twitter may wish to track how often a tweet is viewed when displayed

via an external website. There are billions of web pages, each of which could in principle link to

one or more tweets, so allocating counters for each is infeasible and unnecessary. Instead, it is

natural to look for a more compact way to encode counts of items, possibly with some tolerable

loss of fidelity. Tracking the number of views that a tweet receives across each occurrence in

different websites creates a large enough volume of data to be difficult to manage. Moreover,

the existence of some uncertainty in this application seems acceptable: the consequences of

inflating the popularity of one website for one tweet are minimal. Using a sketch for each tweet

consumes only moderately more space than the tweet and associated metadata, and allows

tracking which venues attract the most attention for the tweet. Hence, a kilobyte or so of space

is sufficient to track the percentage of views from different locations, with an error of less than

one percentage point, say.

2.1. CMS 9

2.1.6 A Few Observations About The Count Min Sketch

Count Min Sketch’s efficiency can be demonstrated by reviewing its requirements. The space

complexity of CMS is the product of w,d and the width of the counters that it uses. For

example, a sketch that has 0.01 error rate at probability of 0.01 is created using 10 hash

functions and 2000-counter arrays. Assuming the use of 16-bit counters, the overall memory

requirement of the resulting sketch’s data structure clocks in at 40KB (a couple of additional

bytes are needed for storing the total number of observations and a few pointers). The sketch’s

other computational aspect is similarly pleasing—because hash functions are cheap to produce

and compute, accessing the data structure, whether for reading or writing, is also performed in

constant time.

CMS is certainly an excellent sketch, but there is at least one thing that prevent it from achiev-

ing perfection. This is that CMS can be biased, and thus overestimate the frequencies of samples

with a small number of observations. CMS’ bias is well known and several improvements have

been suggested. The most recent is the Count Min Log Sketch [2], which essentially replaces

CMS’ linear registers with logarithmic ones to reduce the relative error and allow higher counts

without increasing the width of counter registers.

2.1.7 Implementations of the Sketch

It is straightforward to implement the sketch in a traditional single CPU environment. Indeed,

several libraries are available for the data structure, in common languages such as C, C++,

Java and Python. Some skeletal pseudocode to initialise and update the sketch is shown in 2.2.

The code in Algorithm 1 initialises the array C of w× d counters to 0, and picks values for the

hash functions based on the prime p.

For each Update(i, c) shown in Algorithm 2, the total count N is updated with c, and the loop

in Lines 2 to 4 hashes i to its counter in each row, and updates the counter there.

The procedure for Estimate(i) shown in Algorithm 3 is almost identical to this loop: given i,

10 Chapter 2. Algorithms

Figure 2.2: CMS pseudo algorithm

we perform the hashing in line 3, and keep track of the smallest value of C[j, hj(i)] over the d

values of j.

But again, having a single thread implementation is not a viable option in systems with large

input volumes that need to respond to queries in a constant and quick manner. We have

addressed the problem of parallesation of CMS and other sketch algorithms in the next chapters.

2.1.8 Scala code implementation

In this chapter we attach the Scala implementation of the CMS Sketch (the very basic compo-

nents/methods of it).
/∗∗
∗ I n i t i a l i s e CMS
∗/
pub l i c CountMinSketchImpl (double eps , double conf idence , i n t seed) {

// 2/w = eps ; w = 2/ eps
// 1/2^depth <= 1−con f idence ; depth >= −l og2 (1− con f idence)
t h i s . eps = eps ;
t h i s . con f idence = con f idence ;
t h i s . width = (in t) Math . c e i l (2 / eps) ;
t h i s . depth = (in t) Math . c e i l (−Math . log (1 − con f idence) / Math . l og (2)) ;
in i tTablesWith (depth , width , seed) ;

}
p r i va t e void in i tTablesWith (i n t depth , i n t width , i n t seed) {

t h i s . t ab l e = new long [depth] [width] ;
t h i s . hashA = new long [depth] ;
Random r = new Random(seed) ;
// We ' re us ing a l i n e a r hash func t i on s
// o f the form (a∗x+b) mod p .
// a , b are chosen independent ly f o r each hash func t i on .

2.2. ECMS 11

// However we can s e t b = 0 as a l l i t does i s s h i f t the r e s u l t s
// without compromising t h e i r un i fo rmity or independence with
// the other hashes .
f o r (i n t i = 0 ; i < depth ; ++i) {

hashA [i] = r . next Int (In t eg e r .MAX_VALUE) ;
}

}

−−
/∗∗
∗ Increment counter o f s p e c i f i c item (a f t e r hashing i t f o r every l i n e)
∗/
pub l i c void addLong (long item , long count) {

f o r (i n t i = 0 ; i < depth ; ++i) {
tab l e [i] [hash (item , i)] += count ;

}
totalCount += count ;

}

−−
/∗∗
∗ Hash given item (us ing a f a s t implementation o f the hashing algor i thm)
∗/
pr i va t e i n t hash (long item , i n t count) {

long hash = hashA [count] ∗ item ;
// A super f a s t way o f computing x mod 2^p−1
// See http ://www. cs . pr ince ton . edu/ cour s e s / arch ive / f a l l 0 9 / cos521 /Handouts/ u n i v e r s a l c l a s s e s . pdf
// page 149 , r i gh t a f t e r Propos i t i on 7 .
hash += hash >> 32 ;
hash &= PRIME_MODULUS;
// Doing "%" a f t e r (i n t) conver s ion i s ~2x f a s t e r than %' ing longs .
re turn ((i n t) hash) % width ;

}
p r i va t e s t a t i c i n t [] getHashBuckets (St r ing key , i n t hashCount , i n t max) {

return getHashBuckets (U t i l s . getBytesFromUTF8String (key) , hashCount , max) ;
}

−−
pr i va t e s t a t i c i n t [] getHashBuckets (byte [] b , i n t hashCount , i n t max) {

i n t [] r e s u l t = new in t [hashCount] ;
i n t hash1 = Murmur3_x86_32 . hashUnsafeBytes (b , Platform .BYTE_ARRAY_OFFSET, b . length , 0) ;
i n t hash2 = Murmur3_x86_32 . hashUnsafeBytes (b , Platform .BYTE_ARRAY_OFFSET, b . length , hash1) ;
f o r (i n t i = 0 ; i < hashCount ; i++) {

r e s u l t [i] = Math . abs ((hash1 + i ∗ hash2) % max) ;
}
return r e s u l t ;

}

−−
/∗∗
∗ Estimate the count by hashing the item and by ge t t i ng the minimum value o f a l l the rows
∗/
pr i va t e long estimateCountForLongItem (long item) {

long r e s = Long .MAX_VALUE;
f o r (i n t i = 0 ; i < depth ; ++i) {

r e s = Math . min (res , t ab l e [i] [hash (item , i)]) ;
}
re turn r e s ;

}
−−

2.2 ECMS

2.2.1 Sketch overview

The ECM sketch was presented from the work of Papapetrou, Garofalakis and Deligiannakis

[3]. It is designed to solve a similar set of problems to CMS but simultaneously being able to

efficiently summarise high-dimensional streaming data over sliding windows.

The ECM-sketch combines the Count-Min sketch structure for conventional streams with state-

of-the art tools for sliding window statistics. The end result is a sliding-window sketch synopsis

that can provide provable, guaranteed-error performance for point and inner-product queries,

12 Chapter 2. Algorithms

and can be employed to address a broad class of queries, such as maintaining frequency statistics,

finding heavy hitters, and computing quantiles in the sliding-window model.

2.2.2 Exponential histograms

In order to succeed queries over sliding windows ECMS combines the functionalities of Count-

Min sketches and exponential histograms [4]. As the CMS has been described in the previous

section, we are going to describe only the histograms and how they have been used in the ECMS

to provide sliding window aspect of the original CMS implementation.

Exponential histograms are a deterministic structure, proposed to address the basic counting

problem, i.e., for counting the number of true bits in the last N stream arrivals. They belong to

the family of methods that break the sliding window range into smaller windows, called buckets

or basic windows, to enable efficient maintenance of the statistics. Each bucket contains the

aggregate statistics, i.e., number of arrivals and bucket bounds, for the corresponding sub-range.

Buckets that no longer overlap with the sliding window are expired and they are not considered

when answering queries. To compute an aggregate over the whole (or a part of) sliding window,

the statistics from all buckets overlapping with the query range are aggregated.

For example, for basic counting, aggregation is a summation of the number of true bits in the

buckets. A possible estimation error can be introduced due to the oldest bucket inside the

query range, which usually has only a partial overlap with the query. Therefore, the maximum

possible estimation error is bounded by the size of the last bucket.

2.2. ECMS 13

Algorithm Steps

Below we provide the high level steps of the algorithm that sustains a exponential histogram

structure.

1. When a new data element arrives, calculate the new expiry time. If the timestamp of the

last bucket indicates expiry, delete that bucket, and update the counter Last containing

the size of the last bucket and the counter Total containing the total size of the buckets.

2. If the new data element is 0, ignore it; otherwise, create a new bucket with size 1 and the

current timestamp, and increment the counter Total.

3. Traverse the list of buckets in order of increasing sizes. If there are k 2 + 2 buckets of the

same size, merge the oldest two of these buckets into a single bucket of double the size.

(A merger of buckets of size 2r may cause the number of buckets of size 2r+1 to exceed

k 2 + 1, leading to a cascade of such mergers.)

2.2.3 Implementation

As discussed previously, ECMS uses CMS and exponential histograms in order to accomplish

queries over sliding windows. In this section we present how the insert(x) works for ECMS.

In order to easily comprehend the structure of ECMS, it is enough to remember the following.

CMS in each cell keeps a counter. ECMS on the other hand, keeps an instance of an exponential

histogram for each cell.

Figure 2.3: Adding an element to the ECMS

Adding an item x to the structure is similar to the case of standard Count-Min sketches. The

14 Chapter 2. Algorithms

process for time-based sliding windows is depicted in 2.3. First, the counters CM [j, hj(x)],

where j ∈ 1...d, corresponding to the d hash functions are detected. For each of the counters,

we register the arrival of the item at time t, and remove all expired information, i.e., the buckets

of the exponential histogram that have no overlap with the sliding window range.

2.2.4 Point query estimation

A point query (x, r) is a combination of an item identifier x, and the query range r defined

either as number of time units or number of arrivals. Point queries are executed as follows. The

query item is hashed to the d counters CM [j, hj(x)] where j ∈ 1...d, and the estimate of each

counter E(j, hj(x), r) for the query range is computed. The estimate value for the frequency of

x is minj=1...dE(j, hj(x), r)

2.2.5 Merging ECM Sketches

Even though ECMS can handle large volumes of data in a compacted way, there are still cases

where the input volume is so large that we need to parallelise/distribute the ECMS instance.

Even though distributing is straightforward, it is enough to start multiple instances of the same

ECMS, it is hard to answer to queries in a distributed fashion. For that reason ECMS needs

to allow merging of the deployed instances so we can then answer the queries.

Suppose ECM-sketches CM1, CM2, ..., CMn, each one corresponding to stream S1, S2, ..., Sn.

The goal is to get a single ECM-sketch CM
⊕
that corresponds to the logical stream S =

S1
⊕
S2

⊕
...

⊕
Sn. The

⊕
operator is defined as a merging operator that preserves the order-

ing and arrival time of the events. Remember that standard Count-Min sketches allow merging,

as long as all sketches are constructed with identical dimensions and hash functions. However,

this does not trivially hold for ECM-sketches, where the counters are not simple numbers but

complex sliding window structures.

So in order to succeed merging ECMS instances we need to examine merging exponential

2.2. ECMS 15

histograms. Consider a set of exponential histograms EH1, EH2, ..., EHn, summarising time-

based sliding windows. All are configured to cover a sliding window of N time units. The

merging operation is denoted with
⊕
. To construct EH

⊕
, ECMS algorithm considers the

individual exponential histograms as logs. The basic idea is to reconstruct EH
⊕

by assuming

that half of the elements arrive at the starting time of each bucket, and the remaining at the

ending time of the bucket. We are not going to describe the detailed approach of merging

ECMs but the high level idea is that a new empty histogram is created and then the entries

from each EHj get replayed in the order defined by the starting and ending timestamps of the

buckets

2.2.6 Java code implementation

In this chapter we attach the Java implementation of the ECM Sketch (the very basic compo-

nents/methods of it).
/∗∗
∗ Add value to EMS. Tr igge r s the `addOne` method o f the histogram . See below f o r the implementation o f

`addOne` method
∗
∗ @param value the value to add
∗ @param time the time the value added
∗/
pub l i c i n t [] add (long value , i n t time) {

i n t [] hashes = hash (value , d , w) ;
f o r (i n t depth = 0 ; depth < d ; depth++) {

sl idingWindows [hashes [depth]] [depth] . addAOne(time) ;
}
lastUpdateTime = time ;
numberOfTotalProcessedEvents++;
return hashes ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ Add a One f o r a s p e c i f i c time
∗
∗ @param time the time to add the One
∗/
@Override
pub l i c void addAOne(i n t time) {

currentRea l t ime = time ;
lastOneUpdate = time ;
lastSyncedTime = time ;
removeExpiredWithExpiryTime (currentRea l t ime − windowSize) ;
bucketWallclockTimes [0] . addLast (currentRea l t ime) ; // BUCKET 0 i s tmp by convent ion
numberOfBuckets++;
mergeIfNeeded () ; // This i s where the merging takes p lace
updateTr iggers () ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ Estimate value from CMS within a time range
∗
∗ @param value the value to es t imate
∗ @param queryRange how many times be f o r e lastSyncTime to query f o r
∗ @return the est imated value
∗/

pub l i c double getEst imat ion (i n t value , i n t queryRange) {
i n t [] hashes = hash (value , d , w) ;
double va l = Double .MAX_VALUE;
f o r (i n t depth = 0 ; depth < d ; depth++) {

in t w = hashes [depth] ;
double e s t = slidingWindows [w] [depth] . getEstimationWithinRange (queryRange) ;
va l = Math . min (val , e s t) ;

}
re turn va l ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pub l i c SlidingCMSketch mergeSlidingCMSketches (SlidingCMSketch [] dws , double de l ta , double eps i l on , i n t

windowSize) {

16 Chapter 2. Algorithms

// The new s l i d i n g sketch that w i l l populated with data
SlidingCMSketch scm = new SlidingCMSketch (de l ta , eps i l on , windowSize) ;
// Fr each c e l l / po int o f the new s l i d i n g sketch
f o r (i n t i = 0 ; i < scm .w; i++) {

f o r (i n t j = 0 ; j < scm . d ; j++) {
in t c = 0 ;
// Create a l i s t with a l l the Exponentia l Histogram to merge
Exponent ia lHi s togramCircu lar Int [] a l = new Exponent ia lHis togramCircu lar Int [dws . l ength] ;
f o r (SlidingCMSketch s i n g l e : dws) {

a l [c++] = (Exponent ia lHis togramCircu lar Int) s i n g l e . s l idingWindows [i] [j] ;
}
// Merge a l l exponent ia l histogramms f o r t h i s po int
scm . sl idingWindows [i] [j] = new Exponent ia lHi s togramCircu lar Int (epsilonSW ,

windowSize) . mergeEHs (al , epsilonSW , windowSize) ;
}

}
return scm ;

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ Get the value ' s e s t imat ion from a s p e c i f i c s t a r t time
∗
∗ @param startTime the point in time to s t a r t querying from
∗ @return the est imated r e s u l t
∗/

@Override
pub l i c double getEstimationFromStartTime (i n t startTime) {

double e s t = 0 ;
i n t l e v e l = 0 ;
i n t pow = 1 ;
whi le (bucketWallclockTimes [l e v e l] != nu l l

&& bucketWallclockTimes [l e v e l] . s i z e () > 0
&& bucketWallclockTimes [l e v e l] . g e tF i r s t () >= startTime) {

e s t += pow ∗ bucketWallclockTimes [l e v e l] . s i z e () ;
l e v e l++;
pow ∗= 2;

}
// at t h i s l e v e l , i need to f i nd the proper element
i n t o r i g i na lPo s = −1;
i f (bucketWallclockTimes [l e v e l] != nu l l) {

o r i g i na lPo s = bucketWallclockTimes [l e v e l] . b inarySearch (startTime) ;
}
i n t pos = o r i g i na lPo s ;
i f (pos < 0) pos = −pos − 1 ;
i n t l ev e lBucke tS i z e = pow ;
i f (bucketWallclockTimes [l e v e l] == nu l l | | pos == bucketWallclockTimes [l e v e l] . s i z e ()) {

i f (bucketWallclockTimes [l e v e l] != nu l l && bucketWallclockTimes [l e v e l] . s i z e () > 0)
e s t += leve lBucke tS i z e / 2 ;

re turn e s t ;
} e l s e {

i f (o r i g i na lPo s < 0)
pos−−;

whi le (bucketWallclockTimes [l e v e l] . get (pos) == startTime) pos−−;
pos++;// f i nd the f i r s t element with t h i s time .
e s t += (bucketWallclockTimes [l e v e l] . s i z e () − pos) ∗ l e v e lBucke tS i z e ;
i f (l e v e lBucke tS i z e != 1) e s t += leve lBucke tS i z e / 2 ;
re turn e s t ;

}
}
−−

2.3 AMS

2.3.1 Sketch overview

The AMS sketch was first presented in the work of Alon, Matias and Szegedy [5]. It was

proposed to solve a different problem, to estimate the value of F2 of the frequency vector, the

sum of the squares of the frequencies. Although this is straightforward if each frequency is

presented in turn, it becomes more complex when the frequencies are presented implicitly, such

as when the frequency of an item is the number of times it occurs within a long, unordered,

2.3. AMS 17

stream of items.

Frequency Moments

Consider a stream S = a1, a2, ..., am with elements from a domain D = v1, v2, ..., vn. Let mi

denote the frequency (also sometimes called multiplicity) of value viD; i.e., the number of times

vi appears in S. The kth frequency moment of the stream is defined as:

Fk =
n∑

i=1

mk
i

Estimating Fk may seem like a somewhat obscure goal in the context of approximate query

processing. However, frequency moments have a number of applications.

F0 represents the number of distinct elements in the streams (which the FM-sketch from last

class estimates using O(log n) space. F1 is the number of elements in the stream m. F2 is

used in database optimisation engines to estimate self join size. Consider the query, “return

all pairs of individuals that are in the same location”. Such a query has cardinality equal to∑
im

2
i /2, where mi is the number of individuals at a location. Depending on the estimated size

of the query, the database can decide (without actually evaluating the answer) which query

answering strategy is best suited. F2 is also used to measure the information in a stream.

In general, Fk represents the degree of skew in the data. If Fk/F0 is large, then there are some

values in the domain that repeat more frequently than the rest. Estimating the skew in the

data also helps when deciding how to partition data in a distributed system.

2.3.2 Implementation

We revert to the sketch data structure of the Count-Min sketch as the basis of the AMS sketch,

to emphasise the relatedness of all these sketch techniques.

The AMS summary maintains an array of counts which are updated with each arriving item.

It gives an estimate of the l2-norm of the vector v that is induced by the sequence of updates.

The estimate is formed by computing the norm of each row, and taking the median of all

18 Chapter 2. Algorithms

rows. Given parameters ε and δ, the summary uses space O(1ε2log1/δ), and guarantees with

probability at least 1− δ that its estimate is within relative ε− error of the true l2-norm.

Initially, v is taken to be the zero vector. A stream of updates modifies v by specifying an index

i to which an update w is applied, setting vi ← vi + w. The update weights w can be positive

or negative.

The AMS summary is represented as a compact array C of d × t counters, arranged as d

rows of length t. In each row j, a hash function hj maps the input domain U uniformly

to 1, 2, ...t. A second hash function gj maps elements from U uniformly onto −1,+1. For

the analysis to hold, we require that gj is fourwise independent. That is, over the random

choice of gj from the set of all possible hash functions, the probability that any four distinct

items from the domain get mapped to −1,+1 is uniform: each of the 16 possible outcomes is

equally likely. This can be achieved by using polynomial hash functions of the form gj(x) =

2((ax3 + bx2 + cx+ d mod p)mod 2)− 1, with parameters a, b, c, d chosen uniformly from

the prime field p.

The sketch is initialised by picking the hash functions to use, and initialising the array of

counters to all zeros. For each update operation to index i with weight w (which can be either

positive or negative), the item is mapped to an entry in each row based on the hash functions

h, and the update applied to the corresponding counter, multiplied by the corresponding value

of g. That is, for each 1 ≤ j ≤ d, hj(i) is computed, and the quantity wgj(i) is added to entry

C[j, hj(i)] in the sketch array. Processing each update therefore takes time O(d), since each

hash function evaluation takes constant time.

The sketch allows an estimate of ‖ v ‖22, the squared Euclidean norm of v, to be obtained. This

is found by taking the sum of the squares of row of the sketch in turn, and finds the median of

these sums. That is, for row j, it computes
t∑

k=1

C[j, k]2 as an estimate, and takes the median

of the d such estimates. The query time is linear in the size of the sketch, O(td), as is the time

to initialise a new sketch. Meanwhile, update operations take time O(d).

The analysis of the algorithm follows by considering the produced estimate as a random variable.

2.3. AMS 19

The random variable can be shown to be correct in expectation: its expectation is the desired

quantity, ‖ v ‖22. This can be seen by expanding the expression of the estimator. The resulting

expression has terms
∑
i

v2i , but also terms of the form vivj for i 6= j. However, these “unwanted

terms” are multiplied by either +1 or -1 with equal probability, depending on the choice of the

hash function g. Therefore, their expectation is zero, leaving only ‖ v ‖2.

Note that since the updates to the AMS sketch can be positive or negative, it can be used to

measure the Euclidean distance between two vectors v and u: we can build an AMS sketch of

v and one of −u, and merge them together by adding the sketches. Note also that a sketch of

−u can be obtained from a sketch of u by negating all the counter values.

2.3.3 Notes on hash functions

Although the terminology of pairwise and four-wise independent hash functions may be unfa-

miliar, they should not be thought of as exotic or expensive. A family of pairwise independent

hash functions is given by the functions h(x) = ax + b mod p for constants a and b chosen

uniformly between 0 and p1, where p is a prime. Over the random choice of a and b, the

probability that two items collide under the hash function is 1/p.

Similarly, a family of four-wise independent hash functions is given by h(x) = ax3 + bx2 +

cx mod p for a, b, c, d chosen uniformly from [p] with p prime. As such, these hash functions

can be computed very quickly, faster even than more familiar cryptographic hash functions

such as MD5 or SHA-1.

Consequently, this sketch can be very fast to compute: each update requires only d entries in

the sketch to be visited, and a constant amount of hashing work done to apply the update to

each visited entry. The depth d is set as O(log1/δ), and in practice this is of the order of 10-30,

although d can be set as low as 3 or 4 without obvious problem.

20 Chapter 2. Algorithms

2.3.4 Historical notes

Historically, the AMS Sketch was the first to be proposed as such in the literature, in 1996.

The “Random Subset Sums” technique can be shown to be equivalent to the AMS sketch for

estimating single frequencies. The Count-Sketch idea was presented first in 2002. Crucially,

this seems to be the first work where it was shown that hashing items to w buckets could be

used instead of taking the mean of w repetitions of a single estimator, and that this obtains

the same accuracy. Drawing on this, the Count-Min sketch was the first to obtain a guarantee

in O(1/ε) space, albeit for an F1 instead of F2 guarantee. Applying the “hashing trick” to the

AMS sketch make it very fast to update seems to have been discovered in parallel by several

people.

2.3.5 Join size estimation

Given two frequency distributions over the same domain, f and f ′ , their inner product is

defined as:

f(i) · f ′(i) =
M∑
i=1

f(i) ∗ f ′(i)

This has a natural interpretation, as the size of the equi-join between relations where f denotes

the frequency distribution of the join attribute in the first, and f ′ denote the corresponding

distribution in the second. In SQL, this is:

SELECT COUNT(*) FROM D, D’ WHERE D.id = D’.id

The inner product also has a number of other fundamental interpretations that we shall discuss

below. For example, it can be used when each record has an additional “measure” value, and

the query is to compute the sum of products of measure values of joining tuples (e.g. finding

the total amount of sales given by number of sales of each item multiplied by price of each

item). It is also possible to encode the sum of those f(i)s where i meets a certain predicate as

an inner product where f ′(i) = 1 if and only if i meets the predicate, and 0 otherwise.

2.3. AMS 21

2.3.6 Inner product estimations

Using the AMS Sketch to estimate inner products. Given AMS sketches of f and f ′, C and C ′

respectively, that have been constructed with the same parameters (that is, the same choices

of w, d, hjandgj, the estimate of the inner product is given by

f(i) · f ′(i) =
M∑
i=1

f(i) ∗ f ′(i)

That is, the row estimate is the inner product of the rows. The bounds on the error follow for

similar reasons to the F2. Expanding out the sum shows that the estimate gives f · f ′, with

additional cross-terms due to collisions of items under hj. The expectation of these cross terms

in f(i)f ′(i′) is zero over the choice of the hash functions, as the function gj is equally likely to

add as to subtract any given term.

2.3.7 Comparing AMS and Count-Min sketches for join size estima-

tion

The analysis shows the worst case performance of the two sketch methods can be bounded in

terms of N or F2. To get a better understanding of their true performance, Dobra and Rusu

performed a detailed study of sketch algorithms [6]. They gave a careful statistical analysis of

the properties of sketches, and considered a variety of different methods to extract estimates

from sketches. From their empirical evaluation of many sketch variations for the purpose of

join-size estimation across a variety of data sets, they arrive at the following conclusions:

• The errors from the hashing and averaging variations of the AMS sketches are comparable

for low-skew (near-uniform) data, but are dramatically lower for the hashing version (the

main version presented in this chapter) when the skew is high.

• The Count-Min sketch does not perform well when the data has low-skew, due to the

impact of collisions with many items on the estimation. But it has the best overall

22 Chapter 2. Algorithms

performance when the data is skewed, since the errors in the estimation are relatively

much lower.

• The sketches can be implemented to be very efficient: each update to the sketch in their

experiments took between 50 and 400 nanoseconds, translating to a processing rate of

millions of updates per second.

As a result, the general message seems to be that the (fast) AMS version of the sketches are to

be preferred for this kind of estimation, since they exhibit fast updates and accurate estimations

across the broadest range of data types.

2.3.8 Scala code implementation

In this chapter we attach the Scala implementation of the AMS Sketch (the very basic compo-

nents/methods of it).
/∗∗
∗ re turn a hash o f x us ing a and b mod (2^31 − 1) may need to do another mod
∗ afterwards , or drop high b i t s depending on d , number o f bad guys
∗ 2^31 − 1 = 2147483647
∗/

pub l i c s t a t i c long hash31 (long a , long b , long x) {
long r e s u l t = (a ∗ x) + b ;
r e s u l t = ((r e s u l t >> HL) + r e s u l t) & MOD;
return r e s u l t ;

}

−−
/∗∗
∗ r e tu rns va lues that are 4−wise independent by repeated c a l l s to the
∗ pa i rw i s e indpendent rout ine .
∗/

pub l i c s t a t i c long fourw i s e (long a , long b , long c , long d , long x) {
long r e s u l t = hash31 (hash31 (hash31 (x , a , b) ,x , c) ,x , d) ;
r e turn r e s u l t ;

}

−−
pub l i c boolean add (Long item , long incrementCount) {

i n t o f f s e t = 0 , hash , mult ;
count += incrementCount ;
f o r (i n t j =0; j<depth ; j++) {

hash = (in t) HashUti ls . hash31 (t e s t [0] [j] , t e s t [1] [j] , item) ; // Hash us ing 4−pa i r wise
hash = hash % buckets ;
mult = (i n t) HashUti ls . f ou rw i s e (t e s t [2] [j] , t e s t [3] [j] , t e s t [4] [j] , t e s t [5] [j] , item) ;
i f ((mult&1)==1) // increment or not counter , accord ing to the hashing r e s u l t

counts [o f f s e t+hash] += incrementCount ;
e l s e

counts [o f f s e t+hash]−= incrementCount ;
o f f s e t += buckets ;

}
re turn true ;

}

−−
/∗∗
∗ Estimate the count o f an i nd i v i dua l item
∗/
pub l i c long estimateCount (Long item) {

in t o f f s e t = 0 , hash , mult , e s t imate ;
i n t [] e s t imate s = new in t [depth +1] ;
f o r (i n t i =1; i<=depth ; i++) {

hash = (in t) HashUti ls . hash31 (t e s t [0] [i −1] , t e s t [1] [i −1] , item) ;
hash = hash % buckets ; // Hash us ing 4−pa i r wise
mult = (i n t) HashUti ls . f ou rw i s e (t e s t [2] [i −1] , t e s t [3] [i −1] , t e s t [4] [i −1] , t e s t [5] [i −1] , item) ;
i f ((mult&1)==1)

e s t imate s [i] = counts [o f f s e t+hash] ;
e l s e

e s t imate s [i] = −counts [o f f s e t+hash] ;

2.3. AMS 23

o f f s e t += buckets ;
}
i f (depth == 1)

est imate = es t imate s [1] ;
e l s e i f (depth == 2)

est imate = (e s t imate s [1]+ es t imate s [2]) /2 ;
e l s e

es t imate = ArrayUt i l s . medSelect (1+depth /2 , depth , e s t imate s) ;
r e turn est imate ;

}
−−
/∗∗
∗ es t imate the F2 moment o f the vector (sum of squares)
∗/
pub l i c long est imateF2 () {

i n t r = 0 ;
long [] e s t imate s = new long [depth +1] ;
long r e su l t , z ;
f o r (i n t i =1; i<=depth ; i++) {

z=0;
f o r (i n t j =0; j<buckets ; j++) {

z += counts [r] ∗ counts [r] ; // Estimate the 2nd frequency moment
r++;

}
e s t imate s [i]=z ;

}
i f (depth == 1)

r e s u l t = es t imate s [1] ;
e l s e i f (depth == 2)

r e s u l t = (e s t imate s [1]+ es t imate s [2]) /2 ;
e l s e

r e s u l t = ArrayUt i l s . longMedSelect (1+depth /2 , depth , e s t imate s) ;
r e turn r e s u l t ;

}
−−

Chapter 3

Data processing engines

In this chapter we are presenting the concepts of big data and fast data. We give some real

world use cases where fast data is currently used. We describe the frameworks that have been

used in fast data problems.

3.1 Big data

3.1.1 What is Big Data

Big data is a term used to describe the collection, processing and availability of huge volumes

of streaming data in real-time. The three V’s are volume, velocity and variety. Companies

are combining marketing, sales, customer data, transactional data, social conversations and

even external data like stock prices, weather and news to identify correlation and causation

statistically valid models to help them make more accurate decisions.

3.1.2 Why Is Big Data Different

In the old days, a few years ago, we would utilise systems to extract, transform and load data

ETL into giant data warehouses that had business intelligence solutions built over them for

24

3.1. Big data 25

reporting. Periodically, all the systems would backup and combine the data into a database

where reports could be run and everyone could get insight into what was going on.

The problem was that the database technology simply couldn’t handle multiple, continuous

streams of data. It couldn’t handle the volume of data. It couldn’t modify the incoming data

in real-time. And reporting tools were lacking that couldn’t handle anything but a relational

query on the back-end. Big Data solutions offer cloud hosting, highly indexed and optimized

data structures, automatic archival and extraction capabilities, and reporting interfaces have

been designed to provide more accurate analyses that enable businesses to make better decisions.

Better business decisions mean that companies can reduce the risk of their decisions, and make

better decisions that reduce costs and increase marketing and sales effectiveness.

3.1.3 What kind of datasets are considered big data

The uses of big data are almost as varied as they are large. Prominent examples you’re probably

already familiar with including social media network analyzing their members’ data to learn

more about them and connect them with content and advertising relevant to their interests, or

search engines looking at the relationship between queries and results to give better answers to

users’ questions.

But the potential uses go much further! Two of the largest sources of data in large quantities are

transactional data, including everything from stock prices to bank data to individual merchants’

purchase histories; and sensor data, much of it coming from what is commonly referred to as

the Internet of Things IoT . This sensor data might be anything from measurements taken from

robots on the manufacturing line of an automaker, to location data on a cell phone network,

to instantaneous electrical usage in homes and businesses, to passenger boarding information

taken on a transit system.

By analyzing this data, organizations are able to learn trends about the data they are measuring,

as well as the people generating this data. The hope for this big data analysis are to provide

26 Chapter 3. Data processing engines

more customized service and increased efficiencies in whatever industry the data is collected

from.

3.2 Fast data

3.2.1 What is Fast Data

Big data is a term used to describe the collection, processing and availability of huge volumes

of streaming data in real-time. The three V’s are volume, velocity and variety. Companies

are combining marketing, sales, customer data, transactional data, social conversations and

even external data like stock prices, weather and news to identify correlation and causation

statistically valid models to help them make more accurate decisions.

3.2.2 Big Data versus Fast Data

A stream processing solution has to solve different challenges compared to big data:

• Processing massive amounts of streaming events (filter, aggregate, rule, automate, predict,

act, monitor, alert)

• Real-time responsiveness to changing market conditions

• Performance and scalability as data volumes increase in size and complexity

• Rapid integration with existing infrastructure and data sources: Input (e.g. market

data, user inputs, files, history data from a DWH) and output (e.g. trades, email alerts,

dashboards, automated reactions)

• Fast time-to-market for application development and deployment due to quickly changing

landscape and requirements

3.2. Fast data 27

• Developer productivity throughout all stages of the application development lifecycle by

offering good tool support and agile development

• Analytics: Live data discovery and monitoring, continuous query processing, automated

alerts and reactions

• Community (component / connector exchange, education / discussion, training / certifi-

cation)

• End-user ad-hoc continuous query access

• Alerting

• Push-based visualization

3.2.3 Real world use cases

Stream processing found its first uses in the finance industry, as stock exchanges moved from

floor-based trading to electronic trading. Today, it makes sense in almost every industry -

anywhere where you generate stream data through human activities, machine data or sensors

data. Assuming it takes off, the Internet of Things will increase volume, variety and velocity

of data, leading to a dramatic increase in the applications for stream processing technologies.

Some use cases where stream processing can solve business problems include:

• Network monitoring

• Intelligence and surveillance

• Risk management

• E-commerce

• Fraud detection

• Smart order routing

28 Chapter 3. Data processing engines

• Transaction cost analysis

• Pricing and analytics

• Market data management

• Algorithmic trading

• Data warehouse augmentation

• Let’s discuss one use case in more detail using a real world example.

3.3 Storm

3.3.1 What is storm

Apache Storm is one of the pioneering projects for real-time distributed computing. Incubated

by Apache Foundation and open sourced during 2007, Storm received a lot of attraction and

was quickly adopted by many organisations.

3.3.2 Key features

Storm is similar to most of the distributed tools we discuss during this dissertation, with regards

to the way it manages it’s own status. Storm has at least one master node, called Nimbus,

and many workers nodes. Coordination for all these nodes masters and workers is handled

with zookeeper. processing actions are handled by the workers. Processing actions called tasks

chunks of a processing pipeline get assigned to workers through Nimbus.

Nimbus is responsible for coordinating the tasks to the workers. If a new job is submitted to

the cluster, Nimbus will balance the tasks to the workers based on many factors, like load of a

node, health of node and data locality. Except the occasions where everything runs smoothly

on the cluster, Nimbus also tries to guarantee that the application will still run even after a

3.4. Akka Streams 29

failure. For example if a node is not healthy at some point (network issues etc), Nimbus will try

to rebalance the load to different nodes to avoid downtime. In order to distribute the workload

of a process using Storm, we need to use Storm’s API.

It’s API is composed by Spouts, Bolts and the topology declaration.

To make things clear we provide an example of a Storm process. Figure 3.1 provides the key

components of a Storm topology that reads from Kafka, applies a simple transformation to the

input data and writes to another topic in Kafka.

Figure 3.1: Apache storm ETL example (from [8]

As shown on the picture above, workers are assigned tasks. A worker may have one or more

tasks. A worker can run on one machine but also many workers can run on multiple machines.

3.4 Akka Streams

3.4.1 What is Akka Streams

Akka-Streams provide a higher-level abstraction over Akka’s existing actor model. The Actor

model provides an excellent primitive for writing concurrent, scalable software, but it still is a

primitive; it’s not hard to find a few critiques of the model.

30 Chapter 3. Data processing engines

Figure 3.2: Akka Streams ETL example (from [9])

3.4.2 Key features

As mentioned earlier and as shown in 3.2, Akka streams have been designed using a higher

level approach to the problem of stream processing. Thus, Akka streams allows data to flow

within the processing engine. Even though the akka streams API might a seem a bit complex

to start with, at the end it compensates the developer, since it removes low level complexity

and finally results in writing very compact code blocks.

One point where Akka streams lacks in features compared to the other frameworks we are going

to evaluate, is the out of the box distributed mode. Since it is a fairly new project, the main

efforts have been focused around the API and the parallelisation on a local machine. In order

to distribute the workload and the processing across a cluster we need to use some custom

configuration, which we are going to go through in the next chapters.

But even though the previous point might seem a huge drawback, there is a huge benefit using

Akka streams. The community has put a lot of effort in order to create an API that allows the

developer to fine tune the execution of a flow. That is, one can change the parallelisation of

the flow which results in taking full advantage of a machine’s resources. For example compared

3.5. Spark 31

to Spark, the developer cannot control the cpu/thread usage of an app.

3.5 Spark

3.5.1 Overview

Apache Spark is an open source big data processing framework built around speed, ease of use,

and sophisticated analytics. It was originally developed in 2009 in UC Berkeley’s AMPLab,

and open sourced in 2010 as an Apache project.

Spark has several advantages compared to other big data and MapReduce technologies like

Hadoop and Storm. It gives a comprehensive, unified framework to manage big data processing

requirements with a variety of data sets that are diverse in nature (text data, graph data etc)

as well as the source of data (batch v. real-time streaming data).

Figure 3.3: Spark ETL example (from [8])

32 Chapter 3. Data processing engines

3.5.2 Key features

It exposes APIs for Java, Python, and Scala and consists of Spark core and several related

projects:

• Spark SQL - Module for working with structured data. Allows you to seamlessly mix

SQL queries with Spark programs.

• Spark Streaming - API that allows you to build scalable fault-tolerant streaming appli-

cations.

• MLlib - API that implements common machine learning algorithms.

• GraphX - API for graphs and graph-parallel computation.

Furthermore, since the community has broadly adopted Spark, many submodules have been

developed for it. For example, a developer can use existing modules to load data from Kafka

or any database but also load data to them. Thus, starting with Spark requires almost no time

and zero surprises with regards to extracting/loading data to/from it correspondingly.

Spark versus Storm

As mentioned before Storm was the very first project that allowed scalable processing of

real-time input stream and it was the project that triggered the created the notion of

distributed processing. Spark community having identified the drawbacks of Storm, developed

Spark in a more developer friendly way. They created an easy to use API that allowed the fast

adoption by the community.

We are not going to go through every single point of the Storm and Spark at this point but

we have to mention that one huge benefit of Spark, is that it allowed data engineers and data

scientists to start working on ML algorithms easily. That was succeeded by the creation of the

Python API!

3.6. Kafka Streams 33

3.6 Kafka Streams

3.6.1 Overview

Kafka Streams is a client library for processing and analyzing data stored in Kafka and either

write the resulting data back to Kafka or send the final output to an external system. It builds

upon important stream processing concepts such as properly distinguishing between event time

and processing time, windowing support, and simple yet efficient management of application

state. It is based on many concepts already contained in Kafka, such as scaling by partitioning

the topics. Also for this reason it comes as a lightweight library, which can be integrated into

an application. The application can then be operated as desired: standalone, in an application

server, as docker container or via a resource manager such as Kubernetes.

Figure 3.4: Kafka Streams ETL example

3.6.2 Key features

Kafka Streams directly addresses a lot of the difficult problems in stream processing:

34 Chapter 3. Data processing engines

• Highly scalable, elastic, distributed, and fault-tolerant application.

• Stateful and stateless processing.

• Event-time processing with windowing, joins, and aggregations.

• We can use the already-defined most common transformation operation using Kafka

Streams DSL or the lower-level processor API, which allow us to define and connect

custom processors.

• Low barrier to entry, which means it does not take much configuration and setup to run

a small scale trial of stream processing; the rest depends on your use case.

• No separate cluster requirements for processing (integrated with Kafka).

• Employs one-record-at-a-time processing to achieve millisecond processing latency, and

supports event-time based windowing operations with the late arrival of records.

• Supports Kafka Connect to connect to different applications and databases.

• Supports KTable and GlobalKTable which eases the joining of an input stream with

external data.

3.7. Kafka 35

Kafka streams versus Spark and Storm

At this point we would like to draw the attention to one very strong point of kafka streams

compared to other frameworks. The lack of a master or a coordinator node. It might seem

not important at the very beginning, but having not to worry about a master node is a big

benefit especially when deploying production applications. That means we don’t have to setup

a custom framework (i.e. Spark) in our machines. It is enough for Kafka Streams to start an

instance of each app using the simplest approach (i.e. java -jar myapp.jar) and that is enough

for the app to start processing the input stream data.

Furthermore the fact that kafka streams can scale itself using just the consumer groups on each

kafka topic, removes the dependency on applications like zookeeper etc. Again, the benefit

might not be visible at the very beginning, but since anything can go wrong (i.e. network

connections, disks etc) it is always preferable to have as little dependencies as possible.

3.7 Kafka

In this section we are going to provide a quick overview of the Kafka messaging framework. We

haver skipped the low level details since in the next chapters it is going to become clear to the

reader how kafka is used and what benefits it offers compared to old messaging systems.

3.7.1 What is kafka

Apache Kafka is a distributed publish-subscribe messaging system designed to replace tradi-

tional message brokers.

Originally created and developed by LinkedIn, then open sourced in 2011, Kafka is currently

developed by the Apache Software Foundation to exploit new data infrastructures made possible

by massively parallel commodity clusters.

Message brokers are a type of middleware that translates messages of one language to another,

usually more commonly-accepted language. Message brokers can also be used to decouple data

36 Chapter 3. Data processing engines

streams from processing and buffer unsent messages. Apache Kafka improves on traditional

message brokers through advances in throughput, built-in partitioning, replication, latency and

reliability.

Kafka can be used for a number of purposes: Messaging, real time website activity track-

ing, monitoring operational metrics of distributed applications, log aggregation from numerous

servers, event sourcing where state changes in a database are logged and ordered, commit logs

where distributed systems sync data and restoring data from failed systems.

3.7.2 Architecture

Kafka stores messages which come from arbitrarily many processes called "producers". The

data can thereby be partitioned in different "partitions" within different "topics". Within a

partition the messages are indexed and stored together with a timestamp. Other processes

called "consumers" can query messages from partitions. Kafka runs on a cluster of one or more

servers and the partitions can be distributed across cluster nodes.

Figure 3.5: Kafka high level view

Apache Kafka efficiently processes the real-time and streaming data when used along with

Apache Storm, Apache HBase and Apache Spark. Deployed as a cluster on multiple servers,

Kafka handles its entire publish and subscribe messaging system with the help of four APIs,

namely, producer API, consumer API, streams API and connector API. Its ability to deliver

3.7. Kafka 37

massive streams of message in a fault-tolerant fashion has made it replace some of the conven-

tional messaging systems like JMS, AMQP, etc.

The major terms of Kafka’s architecture are topics, records, and brokers. Topics consist of

stream of records holding different information. On the other hand, Brokers are responsible for

replicating the messages. There are four major APIs in Kafka:

Producer API - Permits the applications to publish streams of records. Consumer API - Permits

the application to subscribe to the topics and processes the stream of records. Streams API

– This API converts the input streams to output and produces the result. Connector API –

Executes the reusable producer and consumer APIs that can link the topics to the existing

applications.

Chapter 4

Deployments

In this chapter we are going to briefly describe what is a deployment and why we needed to

have a well defined pipeline for the purpose of this dissertation.

4.1 Introduction to deployments

4.1.1 How is a deployment defined

Deployment refers to getting your program to a running state on a server. It doesn’t need to be

the production server. You can deploy an application/module to a testing server that is running

on your own workstation or on a testing machine. You might perform many deployments during

the development and testing stages of a module or application.

4.1.2 Continuous integration

Continuous integration is a practice that encourages developers to integrate their code into a

main branch of a shared repository early and often. Instead of building out features in isolation

and integrating them at the end of a development cycle, code is integrated with the shared

repository by each developer multiple times throughout the day.

38

4.1. Introduction to deployments 39

The idea is to minimize the cost of integration by making it an early consideration. Developers

can discover conflicts at the boundaries between new and existing code early, while conflicts are

still relatively easy to reconcile. Once the conflict is resolved, work can continue with confidence

that the new code honors the requirements of the existing codebase.

The end goal of continuous integration is to make integration a simple, repeatable process

that is part of the everyday development workflow in order to reduce integration costs and

respond to defects early. Working to make sure the system is robust, automated, and fast while

cultivating a team culture that encourages frequent iteration and responsiveness to build issues

is fundamental to the success of the strategy.

4.1.3 Continuous delivery

Continuous delivery is an extension of continuous integration. It focuses on automating the

software delivery process so that teams can easily and confidently deploy their code to pro-

duction at any time. By ensuring that the codebase is always in a deployable state, releasing

software becomes an unremarkable event without complicated ritual. Teams can be confident

that they can release whenever they need to without complex coordination or late-stage test-

ing. As with continuous integration, continuous delivery is a practice that requires a mixture

of technical and organisational improvements to be effective.

On the technology side, continuous delivery leans heavily on deployment pipelines to automate

the testing and deployment processes. A deployment pipeline is an automated system that

runs increasingly rigorous test suites against a build as a series of sequential stages. This

picks up where continuous integration leaves off, so a reliable continuous integration setup is a

prerequisite to implementing continuous delivery.

Continuous delivery is attractive because it automates the steps between checking code into the

repository and deciding on whether to release well-tested, functional builds to your production

infrastructure. The steps that help assert the quality and correctness of the code are automated,

but the final decision about what to release is left in the hands of the organization for maximum

40 Chapter 4. Deployments

flexibility.

4.1.4 Continuous deployment

Continuous deployment is an extension of continuous delivery that automatically deploys each

build that passes the full test cycle. Instead of waiting for a human gatekeeper to decide

what and when to deploy to production, a continuous deployment system deploys everything

that has successfully traversed the deployment pipeline. Keep in mind that while new code is

automatically deployed, techniques exist to activate new features at a later time or for a subset

of users.

Continuous deployment also allows organisations to benefit from consistent early feedback.

Features can immediately be made available to users and defects or unhelpful implementations

can be caught early before the team devotes extensive effort in an unproductive direction.

Getting fast feedback that a feature isn’t helpful lets the team shift focus rather than sinking

more energy into an area with minimal impact.

4.1.5 Why we need the 3 C’s

Someone might wonder why we need the 3 C’s, even though this dissertation was developed by

one individual. Did it worth the effort and the cost of the learning curve. The answer is Yes.

It might not be very obvious in the very beginning, but having a well defined CI/CD pipeline

means that a developer/researcher has less things to worry. For this specific case, having the

CI/CD in a stable and well defined pipelined, allowed us to concentrate on the actual algorithm

implementation and benchmarking instead spending time on the tools and the deployments.

4.2. Infrastructure 41

4.2 Infrastructure

Since the scope of this dissertation is benchmarking sketch algorithms on top of fast data

frameworks, there is no reason going into details about the infrastructure. Instead we are just

going to give a high level description so the reader is aware of the underlying implementation.

4.2.1 Docker and Kubernetes

For the purpose of this dissertation we decided to implement the sketch algorithms in scala

and java. That allowed us to easily run the algorithms in all the fast data frameworks we

analysed in chapter 4. For the deployment of the algorithms, we did not setup anything in our

local machines (i.e. no spark standalone cluster or kafka). Instead we used a cluster of virtual

machines and on top of them we created a Kubernetes cluster.

Kubernetes, in short, is an open source system for managing clusters of containers. To do

this, it provides tools for deploying applications, scaling those application as needed, managing

changes to existing containerized applications, and helps you optimize the use of the underlying

hardware beneath your containers. Kubernetes is designed to be extensible and fault-tolerant

by allowing application components to restart and move across systems as needed.

Figure 4.1: Kubernetes example

42 Chapter 4. Deployments

So by having a Kubernetes cluster for our tests, it allowed us to test many different frameworks

with ease but we could also benchmark each algorithm under different conditions. For example

we can determine how CMS behaves with less CPU, more memory etc. We are going to describe

in details the different configurations in the next chapter.

Chapter 5

Benchmarking

Having described all three sketch algorithms but also all four data frameworks, in this chapter

we present the results of each algorithm running on every different framework.

5.1 Background info

Before analyzing the performance of each of the algorithms it is mandatory to describe the

setup of the infrastructure we used.

Figure 5.1 shows a high level approach to the setup. The setup consists of:

• Kafka cluster

We feed the data to the Kafka cluster. For the purpose of this dissertation we have loaded

10M entries to the kafka topic and we force our apps to start reading from earliest offset

(that is first entry of the topic)

Kafka cluster uses 5 brokers in total, each one with 12GB total memory and 4 CPUs

The input kafka topic topic consists of 10 partitions. That allowed us to run at most 10

sketches in parallel each one reading from one partition.

The data have been hashed based on the hubid key. So the data from one hub always end

43

44 Chapter 5. Benchmarking

up in the same partition. This allows us to lower the collisions while at the same time we

can process more data.

• Deployment and Parallelisation

We have created a Kubernetes cluster on which we deployed our apps. We did not have

a fixed limit of instances per sketch. Instead we altered the number of running instances

many times and the results are presented in the next sections.

To simplify the analysis for every instance of every sketch we provide the same configura-

tion with regards to memory and cpu. The limits are 4GB of memory and 2 CPUs. That

means we just scale up/down the number of running instances(horizontally) instead of

the allocated resources (vertically).

• Answering to point queries

In the case we want to answer point queries (i.e. what is the frequency of hubid = 12)

then we just need to hash the hubid so we get to know to what partition the hub id is

mapped to. After that we can direct our query to that specific instance and ask for the

frequency.

Since spark/storm do not have an embedded HTTP Rest server that would allows us to

address them, we created a wrapper HTTP service that allows us to directly query them

• Merging instances

Since all the sketches we are studying support merging it’s really easy to implement that

functionality. That is from every sketch every sketch, every X seconds we take a snapshot

from the sketch and we persist it to a new kafka topic (Check figure 5.1).

Since we have the latest snapshot from each instance available, we can easily merge them

(using the existing functionality of the sketch) and then reply to queries such as the total

F2 estimation.

Spark configuration

Spark is the only frameworks, from the ones we examine in this dissertation that it’s not

completely real time. Instead it has the notion of micro batching. That is it buffer messages

every X seconds and then applies the required transformation and then again it moves to the

next batch. To simplify our experiment analysis and to constrain the number of variables that

affect our results, we set the micro-batching interval to 5 seconds, for every experiment.

Figure 5.1: Data flow setup

5.2 CMS

Not only for CMS but for every sketch we are studying in this dissertation, there is no difference

with regards to quality of the results across running the algorithm in different frameworks. The

different results we get, are related to the processing time in each case.

Why there is no difference with regards to quality of the results? This is related to the fact

that the sketch algorithm in every framework is exactly the same. Furthermore the input data

in each framework are again the same. So it should be obvious now, that if the quality results

where different that would indicate a badly written implementation of the sketches.

5.2.1 Time performance Results

In this section we are analysing the results with regards to total processing time of the input

stream, for each one of the four frameworks. An aggregated view of the results is given in table

5.1.

45

CMS time performance results
Config A
(1 instance)

Config B
(2 instances)

Config C
(4 instances)

Config D
(10 instances)

Storm 3K mgs/s
(55.5 minutes in total)

6K mgs/s
(27.7 minutes in total)

11.8K mgs/s
(14.1 minutes in total)

25.5K mgs/s
(6.5 minutes in total)

Spark 6K mgs/s
(28 minutes in total)

12K mgs/s
(13.8 minutes in total)

23.5K mgs/s
(7.09 minutes in total)

43K mgs/s
(3.9 minutes in total)

Akka 6.5K mgs/s
(25.6 minutes in total)

13K mgs/s
(12.8 minutes in total)

26K mgs/s
(6.41 minutes in total)

48K mgs/s
(3.4 minutes in total)

KStreams 6.8K mgs/s
(24.5 minutes in total)

13.6K mgs/s
(12.2 minutes in total)

27.1K mgs/s
(6.15 minutes in total)

51K mgs/s
(3.2 minutes in total)

Table 5.1: CMS time performance results

Storm

• Config A (1 instance of the CMS processing the whole input stream)

Time to process all data: 55 minutes. That is 3000 entries per second. Note that in

this case we utilised only one CMS instance. Of course, this will result to having more

collisions since all the data (10B entries) would be processed by the same ECM instance.

• Config B (10 instances of the CMS processing the whole input stream)

Time to process all data: 6.5 minutes. Even though we provided x10 times the initial

resources we did not manage to process the input stream in 1/10th of the initial time

(that would be 2 minutes). This happens because there is an initial cost to i.e. setup the

sketch, start consumers etc, that cannot be avoided at any cost.

Spark

• Config A (1 instance/worker of the CMS processing the whole input stream)

Time to process all data: 28 minutes. That is 6000 entries per second (almost twice the

performance of Storm for 1 instance setup)

• Config B (10 instances/workers of the CMS processing the whole input stream)

Time to process all data: 3.9 minutes. Again, even though we provided x10 times the

initial resources we did not manage to process the input stream in 1/10th of the initial

time (3 minutes). This happens because there is an initial cost to i.e. setup the sketch,

46

start consumers, workers etc, that cannot be avoided at any cost.

As expected, the results in the case of Spark are better than the Storm implementation. That

is related to how Storm has been architected. Recall that in Storm a topology is composed

of spouts and bolts and has a dependency on Nimbus and zookeeper. All these dependencies

add some overhead to each processed event enough to make a difference at the end. But the

part that adds the most significant overhead in this experiment is that data being moved from

spouts to bolts which results into intermediate data being written and then read from the disk.

Akka

• Config A (1 instance/actor of the CMS processing the whole input stream)

Time to process all data: 25.6 minutes.

• Config B (10 instances/actors of the CMS processing the whole input stream)

Time to process all data: 3.4 minutes.

Using this config and Akka Actors there is an interesting case we should point out. As discussed

previously Spark is based on AKKA actors. Then why in this case Spark seems slower than

AKKA streams provided Spark is written using Akka Actors. The answer is simple. Spark

offers more guarantees while processing the stream than Akka streams. For example it offers

back pressure (Add a refenrece here), exception recovery, monitoring etc. For each of these

guarantees a small overhead is added enough to make a difference!

Kafka Streams

• Config A (1 instance of the CMS processing the whole input stream)

Time to process all data: 24.5 minutes.

• Config B (10 instances of the CMS processing the whole input stream)

Time to process all data: 3.2 minutes.

47

storm

2

4

6

#
m
in
ut
es

storm spark akka kafka

Figure 5.2: CMS time performance in different frameworks (config B)

It seems that kafka streams offers the best possible results (along with Akka Streams) compared

to the other frameworks examined above. That is because kafka streams is one of the most

lightweight framework. It has zero dependencies to external tools (that is no zookeeper is

needed). Furthermore the fact that it is just a library you embedded in a project but also the

fact that is has a simple and clean API makes itself an attractive tool to work with

5.3 ECMS

In this section we measure the performance of ECM sketch on the four frameworks. It is ex-

pected that the performance of ECMS to be worst than ECM because of the multiple operations

it performs compared to CMS

5.3.1 Time performance Results

Again, we are only analysing the results with regards to total processing time of the input

stream, for each one of the four frameworks. An aggregated view of the results is given in table

5.2.

48

ECMS time performance results
Config A
(1 instance)

Config B
(2 instances)

Config C
(4 instances)

Config D
(10 instances)

Storm 2.6K mgs/s
(64.1 minutes in total)

5.2K mgs/s
(32 minutes in total)

10.5K mgs/s
(15.8 minutes in total)

22K mgs/s
(7.5 minutes in total)

Spark 5.5K mgs/s
(30.3 minutes in total)

11K mgs/s
(15.1 minutes in total)

21.8K mgs/s
(7.6 minutes in total)

38K mgs/s
(4.4 minutes in total)

Akka 5.9K mgs/s
(28.3 minutes in total)

11.9K mgs/s
(14 minutes in total)

23.9K mgs/s
(6.9 minutes in total)

43K mgs/s
(3.8 minutes in total)

KStreams 6K mgs/s
(27.5 minutes in total)

12 mgs/s
(13.8 minutes in total)

24K mgs/s
(6.9 minutes in total)

47K mgs/s
(3.5 minutes in total)

Table 5.2: ECMS time performance results

storm
2

4

6

8

#
m
in
ut
es

storm spark akka kafka

Figure 5.3: CMS time performance in different frameworks (config B)

As expected once again, it takes more time to process the stream with ECMS instead of CMS.

That is due to the more operations that take place when an update(i) is performed for the ith

element. Remember that ECMS adds/removes/merges buckets on every update. Of course by

using ECMS we have the ability to introduce sliding windows in our queries.

Why not use the window operations that are provided by spark and kafka streams? After

having analysed the ECMS algorithm it is easy to answer the question. The reason is that

on every update ECMS decides whether to expire data on some specific rules. And spark and

kafka streams frameworks cannot understand those rules (e.g. bucket size) in order to apply

them internally to the CMS structure.

49

AMS time performance results
Config A
(1 instance)

Config B
(2 instances)

Config C
(4 instances)

Config D
(10 instances)

Storm 3K mgs/s
(55.5 minutes in total)

6K mgs/s
(27.7 minutes in total)

11.8K mgs/s
(14.1 minutes in total)

25.5K mgs/s
(6.5 minutes in total)

Spark 6K mgs/s
(28 minutes in total)

12K mgs/s
(13.8 minutes in total)

23.5K mgs/s
(7.09 minutes in total)

43K mgs/s
(3.9 minutes in total)

Akka 6.5K mgs/s
(25.6 minutes in total)

13K mgs/s
(12.8 minutes in total)

26K mgs/s
(6.41 minutes in total)

48K mgs/s
(3.4 minutes in total)

KStreams 6.8K mgs/s
(24.5 minutes in total)

13.6K mgs/s
(12.2 minutes in total)

27.1K mgs/s
(6.15 minutes in total)

51K mgs/s
(3.2 minutes in total)

Table 5.3: AMS time performance results

5.4 AMS

In this section we measure the performance of AMS sketch on the four frameworks. It is

expected that the performance of AMS to similar to CMS if not the same

5.4.1 Time performance Results

Again, we are only analysing the results with regards to total processing time of the input

stream, for each one of the four frameworks. An aggregated view of the results is given in table

5.3.

Based on the table 5.3 our assumptions were correct. The results are similar with the count-min

sketch implementation. That is related to the fact that AMS algorithm has similar implemen-

tation to the CMS with the only major difference that AMS hashes the input element using 2

functions twice. So the overhead added is not significant and can only be observed in really

large datasets after processing them for a significant amount of time.

50

storm

2

4

6

#
m
in
ut
es

storm spark akka kafka

Figure 5.4: AMS time performance in different frameworks (config B)

51

Chapter 6

Conclusion

6.1 Summary of Dissertation Achievements

During the current dissertation we evaluated three algorithms running on four different data

processing frameworks. Our analysis of the results shows that the four frameworks can have

significant impact on the total processing time. As discussed previously this impact is related

mostly to the guarantees each framework provides (i.e. exactly once delivery, error recovery,

state recovery).

With regards to the algorithm development and portability of the algorithms, we did not face

any significant problems since all the sketches supported the ‘merge‘ operator. That allowed

us to easily fade out our processing phase (distribute the workload in many parallel units) and

later merge the results from all the instances (scatter, gather pattern) in a seam

So, our conclusion on the choice of framework, it is up to the architectural requirements

- Portability of algos - Diff result tming accross frameworks

- because of the design of tje algos. distrubution was easy (due to ++ merge functions)

52

Bibliography

[1] Bloom, B. Space/time Trade-offs in Hash Coding with Allowable Errors. Communications

of the ACM, 13 (7). 422-426.

[2] Guillaume Pitel, Geoffroy Fouquier Count-Min-Log sketch: Approximately counting with

approximate counters. 17 Feb 2015

[3] O. Papapetrou, M. Garofalakis and A. Deligiannakis. Sketching distributed sliding-window

data streams. The VLDB Journal, 24(3), 2015.

[4] Cormode, G., Yi, K.: Tracking distributed aggregates over timebased sliding windows. In

SSDBM, pp. 416–430 (2012).

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. In ACM Symposium on Theory of Computing, 1996.

[6] A. Dobra and F. Rusu. Statistical analysis of sketch estimators. ACM Transactions on

Database Systems, 33(3), 2008.

[7] Graham Cormode and Minos Garofalakis. Approximate Continuous Querying over Dis-

tributed Streams. ACM Transactions on Database System, 33(2) 2008.

[8] Tathagata Das. Spark Streaming description. https://www.datanami.com/2015/11/30/spark-

streaming-what-is-it-and-whos-using-it/.

[9] Akka streams. https://www.slideshare.net/ktoso/reactive-integrations-with-akka-streams.

53

