
Technical University of Crete, Greece

School of Electrical and Computer Engineering

An input architecture for hand interaction in
virtual reality applications based on mobile

phone platforms

Methimakis Michalis

Thesis Committee

Associate Professor Mania Katerina (ECE)
Professor Deligiannakis Antonis (ECE)

Professor Samoladas Vasilis (ECE)

Chania, October 2020

http://www.tuc.gr
http://www.ece.tuc.gr

Methimakis Michalis
ii

October 2020

Abstract

The aim of this thesis is to take advantage of modern technologies related to the devel-
opment of virtual reality applications as well as the special features and capabilities of
modern mobile phones, to develop a software that allows the user to interact in virtual
environments based on mobile phone platforms, using his hands.

In order to make this interaction possible, the user needs one or two additional smart-
phones, which are used as controllers. Concerning the software, two applications were
developed. The first application needs to be installed on the controllers and it is pro-
grammed to utilize some of their technological features. More specifically, it "reads" the
required data and then transmits them to the second application which handles them
accordingly. Using this smartphone based connection and communication software as a
core, a user-friendly interface has been implemented which offers the user some options.
The user is able to choose which features of the controller he wants to use, for example
a navigation joystick, adjust their position and size on the smartphone screen, as well as
can save the profile of the controller he/she has just adjusted.

The application that receives the data from the controllers is used in two demo games for
android platforms. The first game challenges the user to transfer some boxes using one
controller to control a virtual hand in the VR environment. The motion of the virtual
hand depends directly and completely on the motion of the user’s real hand which holds
the smartphone. The second demo brings the user in a virtual castle where he has the
opportunity to practise on the sword and the shield. This makes it necessary to use two
smartphones as controllers, one for each hand. Both games were implemented in the
context of this thesis and take full advantage of the functions the controllers can offer.

Acknowledgements

• First of all, i owe my deepest gratitude to my supervisor, Assoc. Prof. Mania
Katerina for providing me the opportunity to work on this thesis, as well as the
guidance needed throughout the process.

• I would like to thank professors Samoladas Vasilis and Deligiannakis Antonis for
their time reading and reviewing this thesis.

• Finally, I would like to express my gratitude to my friends and family for their
endless encouragement and support in many aspects.

Contents

1 Introduction 1

1.1 Brief Description . 1

1.2 Thesis Outline . 4

2 Background 7

2.1 Virtual Reality . 7

2.1.1 Introduction . 7

2.1.2 History . 8

2.1.3 VR Applications . 9

2.2 Frame Rate . 12

2.3 Modern Mobile Phones . 12

2.3.1 What is a smartphone? . 12

2.3.2 Capabilities . 13

2.3.3 Smartphones and Virtual Reality 14

2.3.4 Interaction in Smartphone based VR Applications 16

2.4 Desktop VR Controllers . 18

2.5 3D Graphics . 20

2.5.1 3D Modeling . 21

2.5.2 3D Rendering . 22

2.6 Game Engines . 23

2.6.1 What is a Game Engine? . 23

2.6.2 Popular Game Engines . 24

2.6.3 Comparison/Choosing the Right Engine 26

Methimakis Michalis
v

October 2020

CONTENTS

3 Technological Backround 27
3.1 Unity3D . 27

3.1.1 Brief Description . 27
3.1.2 Project Structure . 28
3.1.3 Scene Window . 28
3.1.4 Canvas . 29
3.1.5 Inspector . 29
3.1.6 Components . 30
3.1.7 Scripting . 33
3.1.8 Game Window . 37
3.1.9 Console . 37

3.2 Android Platform and GoogleVR for Unity 38

4 User’s View 39
4.1 Controllers . 39

4.1.1 User Interface (UI) . 39
4.2 Demo Games . 44

4.2.1 3D Environment . 44

5 Implementation 47
5.1 Unity Scripting API . 47
5.2 Connection Software . 48

5.2.1 Server . 49
5.2.2 Client . 51

5.3 Controllers . 53
5.3.1 Buttons . 53
5.3.2 Navigation Joystick . 54
5.3.3 Sensors . 55
5.3.4 Customization . 57
5.3.5 User’s Profiles . 59

5.4 Demos . 61
5.4.1 3D Environment . 61
5.4.2 User’s Interaction . 61

5.5 Evaluation . 63

Methimakis Michalis
vi

October 2020

CONTENTS

6 Conclusion 69
6.1 Future Work . 70

Methimakis Michalis
vii

October 2020

CONTENTS

Methimakis Michalis
viii

October 2020

List of Figures

2.1 Ivan Sutherland’s head-mounted 3D display (c. 1968). (Left) The system
in use. (Right) The various parts of the three-dimensional display system. 8

2.2 (Left) Sega announced the Sega VR headset in 1993. (Right) Nintendo’s
Virtual Boy released in 1995. 9

2.3 Military’s virtual training environment 10
2.4 Flight Engineer Christina Koch wears a VR headset for the Vection study

that is exploring how microgravity affects an astronaut’s motion, orienta-
tion and distance perception in 2019. 11

2.5 Human eyes Field Of View. 15
2.6 Resolution, a function of distance from eye to display. 16
2.7 Interface Cartridge printed with a conductive pattern into the HMd. . . . 17
2.8 Touch sensitive surface attached to the HMD. 18
2.9 Oculus Touch Controllers preview. 19
2.10 HTC Vive Controllers preview. 20
2.11 (Left) A solid 3d model. (Right) A Shell/Boundary 3d model 21

3.1 Scene Window preview. 29
3.2 Physics components preview. 31
3.3 Rendering components preview. 32
3.4 Script preview. 34
3.5 Unity’s Console Window preview. 38

4.1 Controllers Menu preview. 40
4.2 (Left) Building new profile. (Rifht) Loading an existing profile. 41
4.3 (Left) Layout customization. (Right) Connect and Play. 42

Methimakis Michalis
ix

October 2020

LIST OF FIGURES

4.4 Controller’s final state. 43
4.5 First Demo 3D Environment. 44
4.6 Second Demo 3D Environment. 45

5.1 Applications connection diagram. 49
5.2 Server’s implementation code. 51
5.3 Client’s implementation code. 52
5.4 Joystick movement axis. 55
5.5 Gimbal Lock: (a) All axes are perpendicular to each other. After a rotation

of 90 degrees around the y axis (symbolized by the red arrow), the blue
and the green frame possess the same rotation axis (b). This situation
impedes the clear determination of the rotation axes when subsequently
rotating around the x or z axis. 57

5.6 Saving/Loading Class. 60
5.7 Physic Event example. 62
5.8 Virtual hand’s motion. 64
5.9 Virtual hand’s motion. 65
5.10 Virtual hand’s motion. 66

Methimakis Michalis
x

October 2020

Chapter 1

Introduction

1.1 Brief Description

Virtual reality environments are created and presented to the user in such a way that
they supersede the real world environment, creating suspension of disbelief and helping
the user experience the virtual world as real. By enabling the majority of our senses such
as vision, hearing, touch, even smell, the computer is transformed into a gatekeeper to
this artificial world.

Virtual Reality’s basic component is the head-mounted display (HMD). VR headsets
are becoming more and more advanced and available on the market for anyone who
wants to experience a virtual reality world. Devices such as the HTC Vive Pro Eye,
Oculus Quest and Playstation VR are leading the way. There is a second class of Virtual
Reality HMDs that is really just a shell with special lenses that pairs with a smartphone
to deliver a VR experience. These devices can deliver a scaled down VR experience that
still approaches the immersive experiences generated by computer based HMDs. [1]

VR applications require a different approach and design than the standard applications
and games for 2D computer monitors, due to the nature of VR itself. More specifically,
traditional input methods, such as the keyboard or mouse, are hard to be manipulated
when the user is wearing the Head Mounted Display, so developers have to come up with
new, more suitable input methods. Computer based HMDs come with special designed
controllers so the user is able to interact with the virtual world. Another great approach is

Methimakis Michalis
1

October 2020

1. INTRODUCTION

that of using a hand-tracking hardware as an input method. Concerning the applications
which aim the mobile phone platforms the user can interact with the VR environment
by looking at a specific direction, for example a button he wants to press. Combined
with the fact that the game camera is also controlled by the head, this constant head
movement might be uncomfortable for the user.

The concept of this thesis was to develop a software which allows the user to inter-
act with a mobile platform based virtual environment by using his hands. It is important
to point out that the user will not have to buy any hand tracking hardware, for example
the Leap Motion device. Nowadays smarthphones are everywhere around us. Almost
every family holds two to three smartphones in her possession. Modern smartphones are
so advanced that they go beyond the concept of the phone itself. Their use is not only
for making phonecalls. They are microcomputers with high computing power as well as a
plethora of sensors to work with. The aim of this thesis is to take advantage of the special
features and capabilities of modern mobile phones and use them as hand controllers for
Virtual Reality applications.

The software developed in the context of this project, consists of two individual android
applications. The first application needs to be installed on the controllers (smartphones)
and it is programmed to utilize some of their technological features. More specifically,
it reads the data which are required and then transmits them to the second applica-
tion which handles them accordingly. The transmission happens through a Client-Server
connection. UnityEngine.Networking library is used for the client’s implementation. It
contains a class which starts the client called NetworkClient. This is a class used by the
networking system of Unity.

After the implementation of a NetworkClient instance the client uses the ip address of
the server and the port number he listens to in an attempt of establishing a connection.
If the connection is established successfully the controller gets a corresponding feedback.
At this point the transmission of the data starts. These are the motion of a virtual joy-
stick on the smartphone screen, the pressing of two virtual buttons and the data of the
desired sensors (gyroscope, accelerometer) of the device. The data being transmitted are
being refreshed in every frame. For every feature the controller offers there are at least

Methimakis Michalis
2

October 2020

1.1 Brief Description

two functions. The first function "pulls" the data from the smartphone and the second

one sends them to the server. The transmission functions make use of unique id numbers

defined in the server for each type of data. For example, the client’s function that sends

the gyroscope sensor data is being matched with the server’s function that receives the

gyroscope data.

Using the above software of the client as a core, a user-friendly interface has been im-

plemented which offers some options. The user chooses which features of the controller

he wants to use, for example a navigation joystick, adjusts their position and size on the

smartphone screen, as well as can save the profile of the controller he has just created.

The implementation of the server required the use of the same Networking library of-

fered by Unity. The first thing to be defined here was the port on which the server

listens. When it starts, must be able to handle remote connections and their messages.

In order to do that, a dictionary with unique id numbers for each type of the transmitted

data had to be defined. The dictionary makes it possible for the server to "understand"

and separate the different types of data he receives. Both the client and the server use

a function for each type of data. The first is the transmitter while the second one is the

receiver. These two functions are "paired" with a unique id so the server knows what

messages he receives.

Using the above software of the server as a core, two demo games based on the an-

droid platform were developed. In the first demo the user is placed in an industrial

warehouse. His task is to transport a number of packages from a workbench to another.

The second demo is a simple form of a combat simulator. The user finds his self in a castle

equipped with a sword and a shield ready to defend it. Both of them can be played by

using the 2D screen of the android smartphone as well as in a VR mode. The actual goal

of the two demos is to test the controllers functionality so they utilize all of their features.

Methimakis Michalis
3

October 2020

1. INTRODUCTION

1.2 Thesis Outline

This thesis is divided into six chapters. The first one is an introduction to the thesis.
The second one has an introductory and educative content. The purpose of this chapter
is to help the reader understand concepts like Virtual Reality and VR related hardware,
3D Graphics, Game Engines as well as informs about the evolution of mobile phones over
the years and how they are linked with VR applications. The next three chapters focus
on the development process of the applications as well as the platform used in order to
achieve the final result. Chapter six includes the conclusions of this thesis and future
work suggestions. A detailed explanation of the thesis’s structure follows.

Chapter 2 - Backround:
This chapter defines what exactly Virtual Reality is, it’s history over the years and most
important makes clear that VR applications are not only for entertaining purposes. An-
other important topic of this section is a closer look to modern mobile phones capabilities
and how are they related to Virtual Reality. Basic terminology is being explained here
like the Frame Rate (FPS), 3D modeling, 3D rendering and there is also a subsection
which explains what a Game Engine is, which are the most popular and which is the
most useful for this project.

Chapter 3 - Technological Backround:
Chapter 3 focuses on the platform used during the implementation process. A detailed
description of Unity 3D is provided including its architecture, project structure as well as
the most important tools in building a project. These are the Scene Window, the Canvas,
the Inspector with its components, Scripts, Game Window and Console. Also there is
a brief description of GoogleVR software development kit, an essential tool for our project.

Chapter 4 - User’s View:
Chapter 4 analyzes the User Interface of the applications. There is a brief description of
every feature and virtual button the controllers contain as well as of the virtual environ-
ment of the two demo games.

Methimakis Michalis
4

October 2020

1.2 Thesis Outline

Chapter 5 - Implementation:
This section describes the implementation process. The first subsection defines the Unity
Scripting APIs and explains their importance in this project. Then there is an analysis
of the structure of the server and the client implemented in this project as well as of the
connection between them. The next subsections explain how the controller features are
implemented and parts of the programming code are presented. Also there is a descrip-
tion of how the 3D environment of the demo applications are constructed and how the
user can interact with them. Finally, all the applications were tested by a number of
users and the evaluation results are presented here.

Chapter 6 - Conclusion:
The final chapter contains the main results of this project individually as well as in com-
parison with computer based HMDs. Also, ideas for potential future work on this project
are presented.

Methimakis Michalis
5

October 2020

1. INTRODUCTION

Methimakis Michalis
6

October 2020

Chapter 2

Background

This chapter covers the historical background and the evolution of Virtual Reality and
mobile phones as well as the relation between these two. An evolution that makes us able
to talk about and work with amazing VR systems and VR applications nowadays. Both
of them are topics crucial for the project of this thesis. There is also an analysis of the
most popular desktop VR controllers and how they became an influence for this project.
In addition, in this chapter basic terminology of the 3D Graphics and the Frame Rate
is explained as well as the definition of a Game Engine and its capabilities. All of these
topics hold an important part in the implementation of this project.

2.1 Virtual Reality

2.1.1 Introduction

The virtual reality definition emerges from the definitions of both "virtual" and "reality".
The definition of "virtual" is near and the one of reality is what we experience as human
beings. Thus, the whole term "virtual reality" means more or less "near-reality". This
definition refers to a specific type of reality emulation.

People are aware of the world through their senses and perceptional systems. Besides,
having five senses was taught from the school years and these are taste, touch, smell,
sight and hearing. Although these are only the most apparent sense organs. There are
many more senses, such as a sense of balance. The combination of the above ensures the

Methimakis Michalis
7

October 2020

2. BACKGROUND

multiple ways of the perception of the environment.

Based on that and in the connection to the virtual reality definition, if someone presents
the senses with made-up information, their perception of reality would also change ac-
cordingly. Unreal facts that might be presented as real ones, they can be perceived as real
too. This is what virtual reality represents. Particularly, it describes a three-dimensional,
computer generated environment which can be utilized by people. The user becomes part
of this virtual environment. He/She is immersed there and is able to manipulate objects
or perform various actions. [2]

2.1.2 History

The exact origins are difficult to be addressed because of how difficult it has been to for-
mulate a definition for the concept of an alternative existence. The most simple example
of virtual reality is a three dimensional (3D) movie. An "Experience Theatre" written in
the 1950s by Morton Heilig which could encompass all the senses in an effective manner.
In 1962 he built a prototype of his vision which was called "Sensorama", along with five
short films to be displayed in it using various senses (sight, sound, smell, and touch). In
1968, Ivan Sutherland, having been assisted by Bob Sproull, created the first so-called
head-mounted display system for use in immersive simulation applications.

Figure 2.1: Ivan Sutherland’s head-mounted 3D display (c. 1968). (Left) The system in
use. (Right) The various parts of the three-dimensional display system.

Methimakis Michalis
8

October 2020

2.1 Virtual Reality

The virtual reality industry is really fundamental as it offered VR devices for medical,
flight simulation, automobile industry design, and military training purposes from 1970
to 1990. In 1988, the Cyberspace Project at Autodesk embedded on personal computers
in an economical way. In 1990 the project leader Eric Gullichsen found Sense8 Corpo-
ration and developed the WorldToolKit virtual reality SDK, which provided the PC, for
the first real time in industries and academia, with graphics with Texture mapping.

The 1990s there was the worldwide release of consumer headsets, such as Sega VR headset
for arcade games, Nintendo’s Virtual Boy. The 2000s was a period of relative public and
investment indifference to commercially available VR technologies. Since 2010, VR had a
rapid growth and by 2016, there were at least 230 companies with VR-related products,
such as Amazon, Apple, Facebook, Google, Microsoft, Sony and Samsung.. Nowadays,
there are several Head Mounted Displays like HTC Vive, Oculus rift, PlayStation VR as
well as Smartphone-based headsets. [3]

Figure 2.2: (Left) Sega announced the Sega VR headset in 1993. (Right) Nintendo’s
Virtual Boy released in 1995.

2.1.3 VR Applications

Virtual Reality is directly connected to gaming industry and entertaining objectives. VR
applications compose of various contents, such as:

Methimakis Michalis
9

October 2020

2. BACKGROUND

Flight and vehicular applications:
Flight simulators are a form of VR training. The pilot enters to a fully enclosed module
or uses a computer with monitors which provide the pilot’s point of view. Furthermore,
driving simulators train tank drivers on the basics before they are allowed to operate
the real vehicle. An other similar case is that of truck driving simulators for specialized
vehicles such as fire trucks.

Military:
VR’s sound and visual effects can be massive, and contribute to the improvement of the
realistic feeling of a combat while preparing and training soldiers but without putting
them at risk. Also, Virtual Reality creates a realistic environment without extra cost, by
saving ammunition. It has been utilized for combined arms training and teach soldiers
when to shoot.

Figure 2.3: Military’s virtual training environment

Mental Health:
Virtual reality exposure therapy (VRET) is a form of exposure therapy for the treatment
of anxiety disorders, such as post-traumatic stress disorder and phobias. In this way,
conducted studies have indicated that the combination of this therapy with the physical
one can reduce symptoms to an extent.

Methimakis Michalis
10

October 2020

2.1 Virtual Reality

Space:

NASA’s use of VR technologies is coming from the past which trains astronauts before

flights. Particularly, VR simulations provides exposure to zero-gravity work environments

and training of the walk in space and the use of tools in any case.

Figure 2.4: Flight Engineer Christina Koch wears a VR headset for the Vection study
that is exploring how microgravity affects an astronaut’s motion, orientation and distance
perception in 2019.

Education:

This includes students’ interaction in a 3D way. Virtual field trips to museums, taking

tours of the solar system and going back in time to different eras are some of the examples

of the education experience through VR. Autistic or with other special needs students

can benefit from Virtual reality as they can safely practice social skills for children in

general. Technology company, Floreo, has created a variety of virtual reality scenarios

such as pointing, making eye contact and building social connections in which parents as

well can also follow along and interact with the use of a linked tablet. [4] [5]

Methimakis Michalis
11

October 2020

2. BACKGROUND

2.2 Frame Rate

Frame Rate, commonly measured and referred to as frames-per-second (FPS), is the fre-

quency at which a hardware device is able to draw or capture consecutive images, called

frames. The term refers to technical specifications of film and video cameras, computer

graphics and motion capture systems. It is also a measure of performance of games and

3d applications. Concerning the video, film computer graphics and even more in Virtual

Reality, Frame Rate functions critically, as it decides if the consecutive frames to be per-

ceived by the brain as separate images or not, making so the illusion of physical motion.

Although the process of the human visual system can theoretically comes to 1000 differ-

ent images a second, untrained eyes can hardly tell any difference above 60fps or 100fps

based on studies, depending on the variants of the display device and usage. For example

Virtual Reality devices usually require a higher than usual fps rate to create the pleasant

illusion of a smooth motion, a fact which is difficult to be accomplished, as achieving

high frame rates requires hardware with substantial processing power and thoughtful ap-

plication programming. Especially in the case of smartphone-based applications, like the

project of this thesis, this task is even harder to be achieved because of smartphones’

lower performance compared to desktop computers.

2.3 Modern Mobile Phones

2.3.1 What is a smartphone?

In this day and age, classic mobile phones have been replaced by smartphones. The

latter is a mobile device that combines both cellular and mobile computing functions into

one unit. They are characterized with their strong hardware capabilities and extensive

mobile operating systems, promoting the function of wider software, internet (including

web browsing over mobile broadband), and multimedia functionality (including music,

video, cameras, gaming), alongside core phone functions, such as voice calls and text

messaging much easier. [6]

Methimakis Michalis
12

October 2020

2.3 Modern Mobile Phones

2.3.2 Capabilities

The development of the smartphone emerged by the several key technological advances.
The exponential scaling and miniaturization transistors down to sub-micron levels during
the 1990s-2000s not only contributed to the creation of portable smart devices, such as
smartphones, but also it opened the way to the transition from analog to faster digital
wireless mobile networks. Other important enabling factors include the lithium-ion bat-
tery, an energy source for long battery life, invented in the 1980s and the development of
more mature software platforms. Modern smartphones carry a variety of special traits.
Hence, they have the great ability to provide people with plenty of services and sometimes
things that in another case, that would be impossible to be done through them. Some of
their special features, are shown below:

• CPUs with incredible computing power

• Large amount of RAM memory

• They can run graphically demanding games

• Plenty of memory to store data

• Strong connection to the internet

• Rechargeable, long-lasting batteries

• High resolution widescreens

• Fast, flexible software systems

• Various sensors that can be leveraged by their software (such as a mag-
netometer, proximity sensors, barometer, gyroscope, or accelerometer)

As a result, they can be a very useful tool for our daily life but also for cases in which
they were not intended to be used. One of these cases is the use of a smartphone as a
controller in VR applications, as explained in the concept of this project. [6]

Methimakis Michalis
13

October 2020

2. BACKGROUND

2.3.3 Smartphones and Virtual Reality

With the great and worldwide usage of the smartphones, VR can be easily be adopted
from the people. There are many wearable VR displays on the market which consist of a
head mounted case with focusing lenses, into which the user inserts a smartphone. The
phone plays the role of the computer running the application as well as of the display,
showing a stereo pair of images. How successfully your brain can be tricked into believing
you are actually in another virtual world depends on the quality of the phone, concern-
ing the extent of it to let the VR make the proper impression of your presence in that
world. The following features of a display are essential when the goal is a realistic state
of presence: a large field of view; low image "persistence" and high screen refresh rate in
order to avoid latency effects; high screen resolution. All these are designed in this way
so as to take advantage of the tricks the mind uses to perceive depth of field and focus
and for true 3D vision. More specifically:

Image persistence and the screen refresh rate:
Image persistence and the screen refresh rate are closely associated, and in both cases,
faster is better when refers to the real world replication. Persistence is the term used to
identify the time it takes for a new image to replace the current one. The image appears
sharper as persistence decreases. In the case of a high persistence, the image will seem
blurry.

The screen refresh rate, is the number of times per second a display screen can up-
date its showing image. Image persistence and refresh rate are inversely proportional.
High screen refresh rate means low image persistence. OLED displays can offer more
than a 1000x faster response rate than LCD displays so they are an excellent choice for a
smartphone VR. Every millisecond plays a crucial role for the achievement of a realistic
status of presence in the virtual world. Simulator sickness is also attributed to motion
blur and jitter, which both are eliminated with OLED screens. In addition, VR-ready
smartphones use OLED screens to reach the highest image quality and power efficiency
(e.g., cooler and longer operation), and smaller form factors.

Another major trait which accomplishes truly realistic virtual reality is latency. La-

Methimakis Michalis
14

October 2020

2.3 Modern Mobile Phones

tency is defined as the time from when you move your head to when you actually see
the correctly rendered view. Low latency is crucial in constructing a believable virtual
space. In virtual reality there is a delay between the movement of your head and the
one of the image in the VR headset. If the delay is too long, the VR immersion will
seem unnatural and most importantly, the disparity with your brain’s understanding of
normal movement can lead to nausea or dizziness.

Figure 2.5: Human eyes Field Of View.

Field of View:
Field of view is the extent of the observable environment at a given moment. It is one of
the most fundamental aspects of VR as the wider the FOV, the more likely the user will
feel as he/she lives the experience like in reality. Depth of focus and 3D vision are fulfilled
with the combination of monocular and binocular vision of the FOV. It is achieved in
smartphone-based VR headsets by placing the phone on a specific and appropriate dis-
tance from the headset’s lenses, and also that the lenses are large enough. If you want to

Methimakis Michalis
15

October 2020

2. BACKGROUND

reach a better FOV, there is either the way for you to get closer to the lenses or increase
their size.

Resolution:
Screen resolution as measured by pixels per inch (ppi) is another essential feature for
smartphone-based VR systems. Because smartphone displays are placed fairly close to
the eye in VR headsets and are magnified by the headset’s lenses, pixels are likely to be
seen. Higher-density OLED screens eliminate this problem. [7]

Figure 2.6: Resolution, a function of distance from eye to display.

2.3.4 Interaction in Smartphone based VR Applications

Interaction amidst the human and the virtual world is the key in virtual reality immersion
as it is indisputable to feel your presence and express your power in it. Does it worth
when being somewhere that the world doesn’t react to you and you can’t interact? A

Methimakis Michalis
16

October 2020

2.3 Modern Mobile Phones

world that ignores your presence will not contribute to make you feel part of him.

So far, there was a great attempt made for the users to utilize their hands while playing.

One way of interaction is the case of putting an interface cartridge printed with a con-

ductive pattern into the mobile HMD. Concerning this interface cartridge, a controller

with particular contents must be used in order to achieve high immersive interactive VR

content. For example, to realize a fishing game, the device can use rotation actions as

the input gesture, to realize a throwing interaction, it can use a swiping hand movement

as the input gesture. As a result, the device needs to be manually adjusted according to

the application as well as this is an outdated technique according to our age.

Figure 2.7: Interface Cartridge printed with a conductive pattern into the HMd.

On the other hand, an interesting and innovative approach is that of the hand gestures.

In January 2017, an algorithm for gesture recognition with First Person View was pre-

sented, with a four swipe model (Left, Right, Up and Down) for smartphones through

single monocular camera vision. Another common way to interact into VR contents is to

use a touch sensitive surface, as an input device. The attachment of this surface can be

done either on the VR case or the user’s hand. [8] [9] [10]

Methimakis Michalis
17

October 2020

2. BACKGROUND

Figure 2.8: Touch sensitive surface attached to the HMD.

2.4 Desktop VR Controllers

The concept of this thesis came after personal experience with computer based virtual
reality applications. As mentioned above, the two most popular Head Mounted Displays
for such applications are the Oculus Rift and the HTC Vive. Both of them come with
a hardware equipment which includes controllers. The user can interact with the virtual
environment using his hands, making so the VR experience more enjoyable. Thus, a need
arises for the creation of controllers for smartphone based VR applications and this is
the purpose of this thesis. During the development of the software that implements the
controllers, a study was made of the external layout of Oculus Touch and HTC Vive hand
controllers.

As shown below, each of the Oculus Rift controllers offers the user plenty of interac-
tion elements. More specifically, it contains a 2-dimensional motion joystick which can
also be used as a button. In addition, it has two buttons the use of which depends on
the game, a start button and a touch sensitive area, so that the controller is able to sense
user’s finger. There the user can rest his thumb without the fear of accidentally pressing
a button. Finally, it offers two triggers, one at the back of the controller and one at the
side. [11]

Methimakis Michalis
18

October 2020

2.4 Desktop VR Controllers

Figure 2.9: Oculus Touch Controllers preview.

Looking at the image below, it’s obvious that the HTC Vive offers a controller with
limited features compared to Oculucs Touch. More specifically, it offers a trigger on the
back, a grip button on the side and the user’s thumb controls a trackpad which is located
on the front of the controller and works like a joystick. Finally, there are 2 buttons to
control the system and display any menu. [12]

Studying the above VR controllers, an attemt was made to create the controllers of this
thesis in such a way as to offer a plethora of features. However, this project remained at
a programming level so trigger-type buttons could not be implemented as they require
physical construction. The buttons that the controllers can support are virtual and lo-
cated at the screen of the smartphone. Adding plenty of buttons was a feasible and easy
process but the smartphone screen is a flat surface, thus creating a problem. The user
can not feel which button is touching, nor see with his eyes as he is in a VR environment.
So the controllers were limited to the menu control buttons and two basic buttons with
which the user can interact with the game.

In addition, a virtual joystick is added which can serve functions similar to the Oculus

Methimakis Michalis
19

October 2020

2. BACKGROUND

Touch Thumbstick and HTC Vive TrackPad. Finally, the user is offered the opportunity
to interact with the virtual environment by using the rotating motion of the smartphone.
In order to do this, the software developed in this thesis utilizes data from the gyroscope
and the accelerometer contained in modern mobile phones. A feature that is also present
in the controllers of the Oculus Rift and HTC Vive.

Figure 2.10: HTC Vive Controllers preview.

2.5 3D Graphics

Computer graphics is a field focusing on generating and displaying three-dimensional ge-
ometric data in a two-dimensional space (e.g., computer monitor, screen). The difference

Methimakis Michalis
20

October 2020

2.5 3D Graphics

between a single point in a two dimensional graphic and a 3D point is that the former
has the properties of position, color, and brightness, whereas the latter shows also a point
on an imaginary Z-axis, giving a depth property. The modeling process with the layout
and interactivity of the modeled objects in a scene is the start of 3D graphics. Then the
3D rendering follows, which refers to the computer calculations required to display the
graphic on a screen.

2.5.1 3D Modeling

3D modeling is the 3D surface formation of an object. The product of this process, the
3D model, is created with a variety of geometric shapes such as lines, triangles, and
curved surfaces which link certain points in a 3D space. This creation is either attributed
manually to a modeling tool, algorithmically or it can be scanned into a computer from
real world objects.

Figure 2.11: (Left) A solid 3d model. (Right) A Shell/Boundary 3d model

The 3D models are devided into two categories. The first one is the solid models, which
define the volume of the object they represent. These are more realistic, and it is required
more effort to build. Solid models are mostly used for non visual simulations, such as

Methimakis Michalis
21

October 2020

2. BACKGROUND

medical and engineering simulations. The second is the shell or boundary models which
represent the surface, the boundary of the object, not its volume. These are easier to
work with than the solid models. Boundary models are the ones that are used mostly in
computer graphics as to make the appearance of an object is directly connected to the
exterior of the object, so shell models are the ones used mostly in entertainment industry.

Vertices that define the shape and form polygons compose a 3D model. A polygon is a
shape consisted from at least three vertices, a triangle, or four vertices, called a quad. A
line which links two vertices is called edge. There are various modeling methods. The
most commonly used ones are:

Polygonal modeling: is a modeling process with the main focus on the polygons of the
object on the surface. The vertices are connected by lines in order to form a polygonal
mesh. The today 3D modeling is greatly associated to textured polygonal models as they
are characterized with flexibility and quick representation. However, many polygons can
reach curved surfaces as polygons by themselves are planar.

Curve modeling: Surfaces are defined by curves, which are determined by weighted
control points. The curve follows but does not necessarily interpolate the points. The
higher the weight of a point is, the more that point will pull the curve closer to it.

Digital sculpting: Still a fairly new method of modeling, 3D sculpting has become
very popular in the last years. In this case, a software is used that offers tools able to
pull, push, smooth, and manipulate in many ways a digital object as if it was made of of a
real-life substance such as clay. It can introduce details to surfaces that would otherwise
have been difficult or impossible to create using traditional 3D modeling techniques. The
downside is that in order to achieve detail with sculpting the models must have a high
number of polygons. [13] [14]

2.5.2 3D Rendering

Converting information about 3D objects into a graphics image that can be displayed
is known as rendering. It usually requires considerable memory and processing power.

Methimakis Michalis
22

October 2020

2.6 Game Engines

Rendering adds realism to computer graphics by adding three-dimensional qualities such
as light, shadows and variations in color and shade. This process is usually performed
using 3D computer graphics software. There are many rendering methods that have been
developed, each one appropriate for specific applications. There is the non photorealistic
rendering, which gives the effect of painting, drawing or cartoons, and the rendering
methods aiming to achieve high photorealism.Another categorization is suitability for
real time rendering and non real time rendering. Non real time rendering is implemented
in non interactive media such as films and video. The rendering process of this kind of
content can be very time consuming. That is because non real time rendering has the
advantage of very high quality even with limited processing power due to the absence of
real time response, which makes the time for the rendering process not considerable. A
method suitable for non real time rendering is ray tracing, which simulates the path of a
single light ray as it would be absorbed or rejected by various objects in the scene. Real
time renderings implemented in interactive media such as games and simulations. The
calculations and the display are happening in real time. The primary goal is to achieve
an as high as possible degree of photorealism at an acceptable rendering speed. This is
24 frames per second, as that is the minimum the human eye needs to see to successfully
create the illusion of movement.

2.6 Game Engines

2.6.1 What is a Game Engine?

A game engine is a software frame-work which is designed for the development of video
games. They are used in order to create games for consoles, mobile devices and personal
computers. The main features of a game engine include a rendering engine (renderer)
for 2D or 3D graphics, a physics engine, a collisiondetection (and collision response)
system, scripting, sound, animation, artificial intelligence, memory management, net-
working, streaming, threading, localization support, scene graph, and may includevideo
support for cinematics. The process of game development is often economized, in large
part, by reusing the same game engine to create different types of games. Also one game
engine can be able to build applications for multiple platforms.

Methimakis Michalis
23

October 2020

2. BACKGROUND

The beauty and power of game engines, is that they speed-up the development pro-
cess, by providing a suite of visual development tools, reusable software components and
simplification of frequently used tools, elements and processes. Game Engines are usually
built upon one or multiple rendering application programming interfaces (APIs), such as
Direct3D or OpenGL which provide a software abstraction of the graphics processing unit
(GPU). These APIs are commonly used to interact and communicate with the GPU,to
achieve hardware-accelerated rendering.

Modern game engines are some of the most complex applications written, which is the
result of years and years of improvements, experience and development. Nowadays they
often feature dozens of finely tuned systems interacting to ensure a precisely controlled
user experience. The evolution of game engines has separated concepts like rendering,
scripting, artwork, and level design. Nowadays it is common for a typical game develop-
ment team to have as many artists as actual programmers.

Furthermore, due to the constant growth of the smartphone application market and
increasing competition, popular high-end Game Enginesare proving to be a precious tool
for developers worldwide, to bring theirideas and games to life, in as many platforms as
possible. [15]

2.6.2 Popular Game Engines

In this section, we will take a brief look at 4 of the most popular free gameengines cur-
rently available, and explain which is more suitable for this projectand why.

Unity3D:

Unity 3D, initially released on 2005, is a flexible and powerful de-
velopment platform for creating high quality 2D and3D games. Em-
phasizing on portability, Unity currently supports over 20 platforms,
including PCs, consoles, mobile devices (iOS and Android)and web-
sites. Additionally, many settings can be configured for each platform.
As a result,Unity can detect the best variant of graphic settings for the hardware or plat-
form the game is running, thus optimizing performance and sacrificing visual quality if

Methimakis Michalis
24

October 2020

2.6 Game Engines

necessary. Apart from its next-generation graphical capabilities, Unity also comes with
an integrated physics engine(nVidias PhysX). Much like Unreal Engine, Unity offers de-
velopers an Asset Store to buy re-usable content and assets for use in their project. To
sum up, due to its ability to efficiently target multiple platform at once and user-friendly
environment, this game engine is an ideal choice for a large portion of developers. [16]

CryEngine:
CryEngine is developed by game developer Crytek and has
been used in all of their titles. It is capable of producing stun-
ning, eye-catching graphics and visuals, featuring advanced
shader and lightning systems. Because of this, CryEngine
clearly targets only powerful PCs and high-end consoles. It
comes with VR support and a large amount of advanced visual features, tools, audio/-
physics systems and character and animation systems.CryEngine can be downloaded and
used for free. [17]

Unreal Engine:
Unreal Engine(UE),initially released on 1998, is a complete suite of
game development tools, powering hundreds of games, simulations
and visualizations. It is one of the most advanced engines to date,
delivering top quality visuals while providing users with a large vari-
ety of tools to work with everything they need. Due to its capabilities,
efficient design and ease of use it is well-appreciated engine from hob-
byists to development studios. It is also available for free. Developers
can also port their projects to mobile devices, both iOS and Android.
Unreal Engine also works with Virtual Reality. Finally, UE also gives access to its users
with to a marketplace, to buy re-usable content and add to their project, speeding the
development process. [18]

Amazon Lumberyard:
Amazon Lumberyard is a free game engine developed by Amazon
and based on the architecture of CryEngine. Lumberyard has similar
capabilities to CryEngine and can be used for production of high

Methimakis Michalis
25

October 2020

2. BACKGROUND

quality games targeting high-end platforms. It is remarkable that the
entire source code can be viewed and changed by the developers to suit their needs. This
engine focuses on a fee-based managed system for cloud building and hosting, intended
to allow developers to easily develop games that attract "large and vibrant communities
of fans, as stated by the company. [19]

2.6.3 Comparison/Choosing the Right Engine

Unreal Engine and Unity are currently ahead of the competition as the two most pop-
ular game engines available to the public. They are both capable of providing high-end
graphics, a large variety of usable tools and support for multiple platforms without com-
promising usability and efficiency. It is important to note that these 2 engines offer a large
community support, which is also something that has to be considered when choosing an
engine. CryEngine and Lumberyard provide us with lots of capabilities as well, however
their complicated structure and smaller community excluded them from our considera-
tion.

In conclusion, taking into account the advantages and disadvantages of each engine,
Unity proved to be the ideal choice for this project, mainly due to its efficiency and ease
of use.

Summary:
In this chapter we provided an insightful review of technologies used in 3D Graphics,
from the creation of 3D models, to the rendering of photorealistic scenes. Moreover, we
reviewed and compared today’s most powerful free game engines available to the public.

Methimakis Michalis
26

October 2020

Chapter 3

Technological Backround

3.1 Unity3D

3.1.1 Brief Description

The Android applications developed in this thesis are implemented entirely by using the

Unity 3D game engine. Unity 3D is a powerful cross-platform 3D game engine with a

user friendly development environment. Unity 3D gives developers the capability to cre-

ate applications for mobile, desktop, the web, and consoles. Its editor is very handy and

suitable for creating user interface menus, doing animations, writing scripts, and orga-

nizing projects. Unity is a game engine and its main purpose may be the development of

3D video games, however, it is also suitable to create other kinds of interactive content,

such as animations, simulations or 3D visualizations.Unity is a fully integrated develop-

ment engine that provides functionality to create interactive 3D content. With Unity the

developer can assemble assets into scenes and environments, add lighting, audio, special

effects, physics and animation, simultaneously play, test and edit the application, and

when ready, publish them to a variety of platforms, such as Mac, Windows PC and Linux

desktop computers, the Web, Android, iOS, Blackberry 10, Windows Phone 8, Wii U,

Sony PS and Xbox. Unitys complete toolset, workspace and rapid productive workows

help users to make interactive content faster and with less effort.

Methimakis Michalis
27

October 2020

3. TECHNOLOGICAL BACKROUND

3.1.2 Project Structure

Unity is defined by its component based architecture. Its workflow builds around the

structure of components. Each component has its own specific job, and can generally

accomplish its task or purpose without the help of any outside sources.Each game or

application created in Unity is called a project. Each project consists of one or more

scenes. Scenes contain the objects of the game. Every scene is considered as a unique

level. In each scene, the user can position the 3D models,construct the environment and

essentially design most of the functionality. Every object placed in a scene is considered a

GameObject. GameObject consist of one or more Components. Components are Unity’s

fundamental elements, which are used to define properties, behavior and characteristics

of a GameObject. The user can add a wide variety of components in a GameObject to

achieve the desired functionality.

3.1.3 Scene Window

The Scene window is where the developer constructs the 3D/2D environment of his/her

application. It can be used to select, adjust, scale and position the characters of a

game, cameras, buildings, lights, and all other types of Game Objects. The scene Gizmo

is located at the upper-right corner of the scene. It displays the current orientation

the Scene-View Camera has, and makes the user able to modify the viewing angle and

projection mode with ease. In order to adjust the position, size or the orientation of a

GameObject, the user can use the four Transform tools in the toolbar. Each of them

has a corresponding Gizmo that takes place around the selected object in the scene.

To alter the Transform component of the GameObject, the user can use the mouse as

an input method to manipulate the Gizmo axis, or type the appropriate values directly

into the number input-fields of the Transform component in the Inspector. This project

consists of five scenes. The first scene concerns the functionality of the controllers and

their User’s Interface which is a 2D implementation. The rest of the scenes build the

3D environments of the two demos. Each demo has two scenes, the first implements the

game in normal mode for 2D smartphone screens while the second one concerns the VR

mode of the games.

Methimakis Michalis
28

October 2020

3.1 Unity3D

Figure 3.1: Scene Window preview.

3.1.4 Canvas

The Canvas is the area that all UI elements are inside. Particularly, it is a Game Object
which contains a Canvas component and all UI elements must be children of such a
Canvas. This GameObject is required in order to create UI elements, for example images
or texts. Creating a new UI element automatically creates a Canvas, if there isn’t any
already, and this element is a child to this Canvas. Canvas has a rectangle 2D area in
the Scene View, a fact that makes it easy to position UI elements without needing to
have the Game View visible at all times. The User’s Interface of the controllers is built
entirely by using the Canvas of the scene. [20]

3.1.5 Inspector

Projects in the Unity Editor are using a lot of GameObjects which contain scripts, sounds,
meshes, and other graphical elements such as lights. The Inspector window is located at
the right side of the editor and provides us with detailed information about the selected

Methimakis Michalis
29

October 2020

3. TECHNOLOGICAL BACKROUND

GameObject, including all attached components and their properties, and allows the
developer to modify its functionality in the Scene. The Inspector is used in order to
view and edit the properties of almost every element of the project, including physical
game items such as GameObjects, assets, and materials, as well as in-editor settings
and preferences. When a GameObject is selected in either the Hierarchy or Scene view,
the Inspector shows the properties of all components andmaterials of that GameObject.
Actually, the Inspector can be used to edit the settings of these components and materials.
In this project the Inspector was an essential tool as most of the application components
had to be modified appropriately. [21]

3.1.6 Components

Some of the most commonly used components in Unity are presented next:

Transform:

Every GameObject contains a
Transform component which is
created automatically when the
object is created. It is an essen-
tial component and it can not be
removed. It’s obvious that it is one of the most important components and most fre-
quently accessed Component. It defines a GameObjects position, rotation, and scale in
the game world based on the x, y, z coordinate system. These parameters are initialized
by hand and/or can modified in run-time by script to make objects move,rotate and
more. It is important to note that when scripting functionality such as movement, Unity
considers the Z axis as forward/backwards, Y axis as up/down and X axis as left/right.
During the implementation of this thesis a lot of adjustments were needed concerning the
position, size or rotation of the game components. Most of them were managed through
the Transform component. [22]

Physics:

Physics components allow the developer to give objects a realistic motion and reaction

Methimakis Michalis
30

October 2020

3.1 Unity3D

to collisions by simulating physics laws. Unity has NVIDIA PhysX physics engine built-
in. A physics engine is a computer software that provides an approximate simulation of
physical systems. This allows the game objects to have a realistic behavior. A rigidbody
component makes an object able to be affected by gravity, linear and angular forces and
collide with other objects. There is also a variety of collider components(mesh, box,
sphere, wheel collider) which surround the shape of an object for the purposes of detect-
ing physical collisions. [23]

Figure 3.2: Physics components preview.

Mesh:
3D meshes are the main graphic object primitive of Unity. Various components exist in
Unity game engine to render meshes. Mesh renderer and mesh filter are used the most.
They are both used to display an object on the screen. The mesh filter is responsible of
taking a mesh from the project asset folder and then the mesh renderer takes action. It
takes the mesh from the mesh filter and renders the object on the screen. Furthermore,
the mesh renderer takes the geometry from the mesh filter and renders it at the position
defined by the object’s transform component. When importing mesh assets, Unity au-
tomatically creates a mesh filter along with a mesh renderer. Another component is the

Methimakis Michalis
31

October 2020

3. TECHNOLOGICAL BACKROUND

text mesh which generates 3D geometry in order to display text strings. [24]

Rendering:

In this category we can find components which are responsible for rendering in-game and
user interface elements, as well as lighting and special effects. The camera component is
practically the user’s eyes in the game. It is an essential component as it is used to cap-
ture and display the virtual world to the player. It can be customized and manipulated to
fulfill the requirements of the application. The GUI Texture and GUI Text components
are a useful and easy way of creating user interface elements such as buttons, on-screen
information panels, decorations as well as displaying text on the screen. An other very
important rendering component of a game is the light as it brings a sense of realism.
Lights can be used to illuminate the scenes and objects, to simulate the sun, flashlights,
or explosions just to name a few.

Figure 3.3: Rendering components preview.

Methimakis Michalis
32

October 2020

3.1 Unity3D

Materials and Shaders:
Materials and shaders are crucial components that are categorized in the asset compo-
nent group. They work together and they both play an essential part in defining how
the object is displayed. Materials are used along with mesh renderers and other ren-
dering components. The material properties are determined by the shader the material
uses. A shader is a specialized kind of graphical program that determines how texture
and lighting information are combined to generate the pixels of the rendered object on
screen. In other words, it tells the graphics hardware how to render surfaces.The user
can select which shader each material will use. Specifically, a material defines which
texture and color to use for rendering, whereas the shader defines the method to ren-
der an object. Every object used in the applications of this thesis contains a material.
The source of the materials used are either a normal colour or an image downloaded
from the internet, so the environment looks more realistic. For example, the material
of a wall in the game has as source an image that depicts a wall built from stones. [25] [26]

Audio:
These components are used to implement sound. The most important component here,
is the Audio Source component, which as the name suggests, plays a sound file at the
location of the game object it is attached to. The developer can set parameters such as
sound volume, pitch and change the sound file to be played at any time. These parame-
ters can also be changed by script during run-time. [27]

Script Component:
The script component simply attaches a script onto a game object. Scripts are attached
to objects in order to define their behavior during the game-play process and trigger
effects upon specified conditions. More about scripts in the following section.

3.1.7 Scripting

In order to make the applications of this thesis and their components functional the use of
Scripts was essential. Scripting defines the entire behavior of the application, thus it is an
important feature of Unity game engine. Every application must have at least one script
in order to respond to user’s interaction. They are files that contain lines of code (C# in

Methimakis Michalis
33

October 2020

3. TECHNOLOGICAL BACKROUND

this project) which aim at the execution of specific operations. Scripts can be used for
several reasons such as: to create graphical effects, to control physical behavior of objects
or characters, to trigger effects upon specified conditions. The behavior of GameObjects
is controlled by the Components that are attached to them. Scripts are also attached
on GameObjects as a component and determine their behavior to an extent. Although
Unity’s built-in Components can be very versatile, the programmer will soon find what
he needs to go beyond what they can provide to implement custom game play features.

Figure 3.4: Script preview.

Unity allows the developer to create custom Components using scripts. They can be used
in order to trigger game events, modify Component properties over time and respond to
user input in any way he could probably want to. Unity supports two programming
languages natively, the C#, an object oriented programming language similar to Java
or C++ and the UnityScript, a language designed specifically for use with Unity and
modelled after JavaScript. The scripts can be written and edited in MonoDevelop, which
is an integrated development environment (IDE) within Unity or in any other IDE like
Visual Studio.

An IDE combines a text editor with additional features for debugging, auto-complete

Methimakis Michalis
34

October 2020

3.1 Unity3D

and other project management tasks. A script makes its connection with the internal
workings of Unity by implementing a class which derives from the built-in class called
MonoBehavior. The reader can think of a class as a kind of blueprint for creating a new
Component type that can be attached to GameObjects. When a script component is
added to a GameObject, it creates a new instance of the object defined by the blueprint.
The name of the class is taken from the name that the programmers applied when the
script file was created. The class name and the script file name must be the same to
enable the script component and make it able to be attached to a GameObject.

Scripts are also used to easily access and modify components in order to achieve the
desired behavior and functionality during the game-play process of the game. When a
script is created, there are two functions automatically declared in it, the Start() function
and the Update() function. The Update function contains code that must be executed in
every frame such as movement related code, triggering actions, response to user’s input
and anything that needs to be handled over time during gameplay. Update function
might need some data which must be declared when the application starts. The Start
function will be called by Unity when a script is enabled and will be called only once.
The Start function is the ideal place where initialization occurs. It is used to initialize
an object position, state and properties or load other scripts and GameObjects for later
use.

The Update functions runs in a loop and is executed in every frame but a script may not
contain one. Unity passes control to a script intermittently by calling functions that are
declared within it. Once a function has finished its "job", Unity take over the control
again. These functions are activated when events are occured during the gameplay. Unity
uses a naming scheme to identify which function to call for a particular event. Apart from
the Update and the Start function, many more event functions are available in Unity.
Some of the most common events are explained below:

Regular Update Events:
These events can make changes to position, state and behavior of objects in the game
just before each frame is rendered. Such a code is often written in the Update function.
It is called before the frame is rendered as well as before animations are calculated. For

Methimakis Michalis
35

October 2020

3. TECHNOLOGICAL BACKROUND

physics update, like adding force to a GameObject, the best option is to place the code
in the FixedUpdate function which updates more frequently than the Update function.
Sometimes the best place to write code is the LateUpdate function in order to be able
to make additional changes at a point after the Update and FixedUpdate functions have
finished their "job" and after all animations have been calculated.

Initialization Events:
It is often useful to be able to call initialization code in advance of any updates that occur
during game play. The Start function is called before the first frame or physics update
on an object. The Awake function is called once when the scene starts but it is called
for each object in the scene. Note that all the Awake functions will have finished before
the first Start is called.This means that code in a Start function can make use of other
initialization previously carried out in the awake phase.

GUI Events:
Unity has a system for rendering GUI controls over the main action in the scene and
responding to clicks on these controls. This code is handled some what differently from
the normal frame update and so it should be placed in the OnGUI function, which will
be called periodically. For example, some OnMouseXXX event functions (e.g OnMouse-
Down) are available to allow a script to react when the user actions with the computer
mouse. In the case the mouse button is pressed while the pointer is over a particular
object then an OnMouseDown function in that object’s script will be called if it exists.

Physic Events:
That kind of events were essential for the two demos of this thesis. More specifically,
their use concerns the interaction of the user with some objects of the scene as he col-
lides with them. The physics engine will report collisions against an object by calling
event functions on that object’s script. Some of them are the OnCollisionEnter function,
On-CollisionStay and OnCollisionExit. They will be called as contact is made, held and
broken. The corresponding OnTriggerEnter, OnTriggerStay and On-TriggerExit func-
tions will be called when the object’s collider is configured asa Trigger (a collider that
simply detects when something enters it rather than reacting physically). These func-
tions may be called several times in succession if more than one contact is detected during

Methimakis Michalis
36

October 2020

3.1 Unity3D

the physics update process. A parameter is passed to the function giving the required
information of the collision happened (position, identity of the incoming object, etc.).

Except for the functions that Unity provides, the developer can create his/her own
functions in order to control or determine the behavior of a GameObject, change the
properties of a component and generally manages the behavior of the application. These
function will be executed after being called inside a Unity event function. The most
commonly used functions were presented briefly above, as well as the concept of how
they are used. Each component property corresponds to a script variable and the scripts
can access not only the components of the GameObjects they are attached to, but also
other GameObjects and their components. [28] [29]

3.1.8 Game Window

The Game window is rendered from the Camera of the scene. It is representative of the
final, published game. It is required for the user to use one or more Cameras to control
what the player actually sees when they are playing the game. The game window was
an essential asset for this project as it helped in testing and debugging the code before
the actual applications were built and published.

3.1.9 Console

An other asset ,offered by Unity, which helped in debugging and optimizing the applica-
tions of this thesis is the Console window. The Console Window displays errors, warnings
and other messages generated by Unity. In order to debug the code, the developer can
also display his own messages in the Console using the implemented functions of Unity
(Debug.Log, Debug.Log Warning and Debug.Log Error). The toolbar of the Console
offers a variety of options that affect how messages are displayed. The Clear button
removes any messages generated from user’s code but retains compiler errors. The de-
veloper can also choose if the console will be cleared automatically whenever he runs the
game by enabling the Clear on Play option.

There is also the opportunity to change the way messages are shown and updated in
the console. The Collapse option shows only the first instance of an error message that

Methimakis Michalis
37

October 2020

3. TECHNOLOGICAL BACKROUND

keeps recurring. This can be very useful for runtime errors correction which are some-
times generated identically on every frame update. When Debug.Log.Error is called from
a script then playback will be paused. This will happen when the Error Pause option
is enabled. Finally, some details are recorded by Unity but may not be shown in the
console. The Open Player Log and Open Editor Log items on the console tab menu can
access and display these additional details. [30]

Figure 3.5: Unity’s Console Window preview.

3.2 Android Platform and GoogleVR for Unity

As mentioned before, Unity is a 3D game engine which can build and publish applications
for many software platforms. In order to build this project the Android platform provided
by Unity had to be used. This platform doesn’t differ a lot with the original but it’s use
is essential for the building process of the mobile applications. GoogleVR was an other
necessary software for this thesis. GoogleVR is a Software Development Kit (SDK) witch
holds a set of tools and programs, including libraries, documentation, code samples,
processes, and guides used to create VR applications.

Methimakis Michalis
38

October 2020

Chapter 4

User’s View

4.1 Controllers

4.1.1 User Interface (UI)

In the field of human-computer interaction, a user interface is the environment where
interactions between humans and machines occur. The goal of this interaction is to allow
control of the machine from the user’s side. The machine feeds back information that
help in the users’ decision-making process. [31]

In this thesis, a UI environment is required so the user is able to manipulate the controllers
and hence to interact in the VR application. This environment was created by using the
Unity UI (Unity User Interface). Unity UI is a toolkit for developing user interfaces for
any kind of applications. It is a GameObject based system that uses Components and
the Game View in order to adjust (position, size) and style the interfaces. Some of the
components that are often used are buttons, texts, images, sliders, input fields etc. So
using the client’s implementation code as a core, a 2D environment was created around it
which allows the user to "communicate" with the application and take advantage of the
features it offers. This is achieved by presenting to the user a series of different menus
and interface content, each of which has its own purpose. Of course the user can browse
these menus freely whenever he wants, back and forth.

More specifically when the application starts, the user is being asked to select the con-

Methimakis Michalis
39

October 2020

4. USER’S VIEW

troller (left hand or right hand) which is being implemented by the specific application.
As mentioned above, both controllers are implemented by the same application so there is
a need to define which controller is being implemented each time. After this definition is
made, the appropriate initializations are made within the application so that it executes
as the selected controller. The user is then asked to choose between creating a new profile
or uploading an existing one in case he wants to play the same game again.

Figure 4.1: Controllers Menu preview.

Depending on the user’s choice, in the first case a menu appears in which he chooses

Methimakis Michalis
40

October 2020

4.1 Controllers

which functions of the controller he wants to use while in the second case the application
takes the user to a selection menu of the already saved profiles. As shown below the user
can save up to three profiles. The options given for a new profile build are the use of
gyroscope sensor, accelerometer sensor, navigation joystick and two virtual buttons.

Figure 4.2: (Left) Building new profile. (Rifht) Loading an existing profile.

The next step is to adjust the objects selected by the user, on the screen of the smart-
phone. The term adjustment refers both to the final position of the objects, for example
the navigation joystick, and their size. This is a necessary process because both the
smartphones on the market and the hands of random users have different sizes. The

Methimakis Michalis
41

October 2020

4. USER’S VIEW

user should feel comfortable when using the controller. The customization of the objects
therefore comes to alleviate this problem and make the final result of the controller easy
to use. When the customization process is complete, the user can save the profile he has
created, for future use, or proceed with the connection process to the server. The connec-
tion interface presents the user an input field, in which the ip address of the server must
be indicated, and a Play button which deactivates the adjustment ability of the objects,
activates their functions and calls the function which is responsible for the connection of
the controller to the server.

Figure 4.3: (Left) Layout customization. (Right) Connect and Play.

Methimakis Michalis
42

October 2020

4.1 Controllers

During the whole process of adjusting the controller the user can freely go back in case
of decision changing. Also useful messages for the user are displayed related with the
connection status of the controller as well as whether the sensors have been selected and
are supported by the device on which the application is running. There are also tips
for the adjustment of the objects on the screen and for the connection process of the
controller. As soon as the connection is established, the layout of the controller locks
and it can not be modified for functionality reasons. The final state of the application is
shown below.

Figure 4.4: Controller’s final state.

Methimakis Michalis
43

October 2020

4. USER’S VIEW

4.2 Demo Games

4.2.1 3D Environment

Within the framework of this thesis, two 3D games were designed which are based on the
Android mobile platform. In the first demo the user is placed in an industrial warehouse.
His task is to transport a number of packages from a workbench to another. In order
to do that, a virtual hand is used. Its motion is controlled by the orientation of the
smartphone used as controller. The second demo is a simple form of a combat simulator
and requires the use of two controllers. The user finds his self in a castle equipped with
a sword and a shield ready to defend it. In this case, two virtual hands are appeared on
the user’s eyes. The right is holds the sword while the other holds the shield. Both of
them are moving according to the orientation of the smartphones the user holds. In both
games the user has a realistic view of 360 degrees of the virtual environment and is able
to navigate in it.

Figure 4.5: First Demo 3D Environment.

Methimakis Michalis
44

October 2020

4.2 Demo Games

Figure 4.6: Second Demo 3D Environment.

Methimakis Michalis
45

October 2020

4. USER’S VIEW

Methimakis Michalis
46

October 2020

Chapter 5

Implementation

5.1 Unity Scripting API

Generally an application programming interface (API) is defined as a computing interface
that defines interactions between multiple software intermediaries. It defines the different
types of calls or requests that can be made, the way to make them, the data formats
which should be used, the conventions to follow, etc. Also it provides capabilities for
extending existing functionality in many ways and to varying degrees. [32]

Unity Scripting API is a collection of namespaces which allow us to work with the vari-
ous features of Unity game engine and extend Unity editor. A namespase is a collection
of prebuilt classes, interfaces, structures, enumerations, events, delegates etc meant to
handle a specefic task. The basic namespaces used in this project are:

UnityEngine:

This namespace is the main port of call for most users as it allows us to work with basic
and necessary features of Unity game engine like Physics, Particles, Animations, User
Interface, Rendering, Audio, etc.

System:

This namespace allows us to create and use most commonly data structures like List,
Stack, Queue, Dictionary, etc. [33]

Methimakis Michalis
47

October 2020

5. IMPLEMENTATION

5.2 Connection Software

As mentioned in previous chapters, two applications have been developed in the context
of this thesis. The first implements the controllers and the other is the Virtual Reality
application, for example a game or an educational application. The user interacts with
the virtual environment through the controllers which holds with his hands. This creates
the need to establish a connection between the devices that run the applications so that
their communication and the transmission of the necessary data is possible.

Nowadays, in almost every home there is a network router which offers wireless con-
nection (WIFI). Modern mobile phones also have wifi antennas so that they can connect
to a router, therefore to the internet. However, a network can operate locally. It does
not need internet access and the devices that are connected to it communicate with each
other. To successfully connect a device to a network, the device must receive an IP
address. An Internet Protocol address is a numerical label assigned to each device con-
nected to a network.

The applications developed utilize the above technologies in order to connect and com-
municate with each other. More specifically, they use the antenna of the home router
as an access point without requiring the router to provide an internet connection. As
mentioned above, connecting to a network requires an IP address. The application that
implements the controllers uses the IP address of the device to which the VR application
is running in order to connect to it and start transmitting the necessary data.

Methimakis Michalis
48

October 2020

5.2 Connection Software

Figure 5.1: Applications connection diagram.

5.2.1 Server

The first step of the connection process was the implementation of the server. In order to
achieve that an extension of UnityEngine namespace was used, the UnityEngine.Networking.
This extension includes and gives access to classes which are related to network setup
and functionality.

Methimakis Michalis
49

October 2020

5. IMPLEMENTATION

More specifically, the class that starts the server is the NerworkServer class provided
by Unity’s namespace. This class uses a NetworkServerSimple class for basic network
functionality and adds more game-like functionality. The NetworkServerSimple is a basic
server class that doesnt contain the "game" related functionality that the NetworkServer
class has. It doesnt have features like scene management, spawning, player objects, ob-
servers, or static interface.. It is only a server which is able to listen on a port, manages
connections, and handles messages.

The first thing to be defined was the port on which the server listens. In our case
that port is the port 4444. NetworkServer class can handle remote connections from
clients, using a NetworkServerSimple instance. Through those connections messages are
being transmitted, so the server must be able to handle them. In order to do that, a
dictionary for the transmitted messages had to be defined . The function used to define
the dictionary is the RegisterHandler(id, exampleFunction) function.

The dictionary makes it possible for the server to "understand" and separate the different
types of data he receives. In our case, the data being transmitted vary from a simple
integer to a pack of four floats separated with a blank space. Due to this data type
variety the easiest way to transmit them was to convert them to string type before the
departure of the message. Server receives the string message, converts the data to their
original type and then stores them into variables which are ready to be used in either way.

The function that registers the different types of data in the dictionary needs a unique id
number being matched with a function that receives one specific type of data.For exam-
ple, the receipt of a simple integer happens in the ReceiveInteger(NetworkMessage msg)
function and the id for simple integers is 100. Then, the format of the register function
will be RegisterHandler(100, ReceiveInteger).

A small part of the server’s implementation code is being shown below. The first function
starts the server and registers the different data types in the dictionary. The second func-
tion receives the data of a smartphone gyroscope sensor. The format in which the data
arrive is: (0.0, 1.1, 2.2, 3.3). The function firstly reads the value of the string message,

Methimakis Michalis
50

October 2020

5.2 Connection Software

then removes the parentheses, it splits the message value with the comma as a reference
point and stores the actual data in a string array. In the end, it converts each single
value of the array from string to float and stores them in a variable.

Figure 5.2: Server’s implementation code.

5.2.2 Client

UnityEngine.Networking namespace used also for the client’s implementation. In this
case the class which starts the client is the NetworkClient class. This is a class used by
the networking system. It contains a NetworkConnection the use of which is to connect to
a server. The NetworkClient is able to manage the connection state, messages handlers,
and connection configuration. There can be many NetworkClient instances in a process
at the same time.

Methimakis Michalis
51

October 2020

5. IMPLEMENTATION

Firstly, a NetworkClient instance had to be created. Then, the function that connects the

client to the server is called. This function uses the ip address of the server and the port

number he listens to. As soon as the client connects to the server successfully, the smart-

phone vibrates so the user understands that the connection is established. The next step

is the implementation of the functions that send the necessary data. These functions are

being called through the User’s Interface, manually (case of a button) or in every frame

(case of gyroscope sensor data), which runs parallel to the client. They make use of the

unique id numbers defined in the server for each type of data. For example, the client’s

function that sends the gyroscope sensor data is being matched with the server’s function

that receives the gyroscope data. Finally as mentioned, before sending the messages the

data are converted to a string type as shown in the example below.

Figure 5.3: Client’s implementation code.

Methimakis Michalis
52

October 2020

5.3 Controllers

5.3 Controllers

5.3.1 Buttons

A convenient and extremely fast way for creating a button in Unity is to use the IMGUI
toolkit. IMGUI stands for Immediate Mode Graphical User Interface and it’s a code-
driven UI toolkit that uses the OnGui function (and scripts that implement the OnGUI
function) to draw and manage its user interface. IMGUI can be used in order to create
in-game debugging displays, custom Inspectors for script components, and windows or
tools that extend the Unity Editor. Although, it’s not the best option for building the
UI of your game or application because the OnGui functions are being executed in every
frame so it has high performance cost.

In this project, the buttons of the UI are created by using the UnityUI toolkit. As
mentioned before, this is a GameObject-based UI system and not code-driven like the
IMGUI, so the buttons are created through the Unity Editor under the Gameobject hier-
archy of the project. By default, a Button gameobject consists of the Button itself and a
child Text component. The Text is a standard Unity UI text that is used to render text
messages on the screen for various purposes such as labels, buttons, and other information.

On the Button object itself, the two most important components are the Image and
the Button component. The Image component is one of the main graphic elements of
the UI system in Unity. It is used for many features such as buttons and panel back-
grounds, slider handles, speedometers. It is a non-interactive control that displays a
sprite, with many options for customization. For example, colour can be applied to the
image, assign a material to it, control how much of the image displays or even animations.

The Button component is responsible for the functionality of the button it’s attached
to. The first options of the component focus on the Button transition, or how it responds
when it’s interacted with. By default, this transition is set to Colour Tint so it changes
colour when interacted, but it can be set to Sprite Swap or Animation. Sprite Swap
will change the actual backround image of the Button while the Animation will allow
different animations to play depending on what the Button is doing. The Transition can

Methimakis Michalis
53

October 2020

5. IMPLEMENTATION

also be set to None, but it is recommended to keep at least the default, as it gives the
user a visual cue that they clicked the Button successfully. The bottom section of the
component is dedicated to creating OnClick interactions. In other words, the Button can
be clicked in order to trigger an event. It is designed to initiate an action when the user
clicks or releases it. If the mouse or finger is moved off the button control before the click
is released, the action does not take place.

In this project, Buttons are using both PointerDown and PointerUp events. That means,
two actions take place when the user presses the button, the first when he presses and the
second when he releases. Button events call custom functions from the project scripts.
More specifically, Buttons related to controller customization need only one event while
those with which the user interacts in a game use both events. This is essential beacause
the game must "know" when the player either presses or releases a button.

5.3.2 Navigation Joystick

A virtual joystick is a useful input method for a game. It can be used to navigate a
first person character in the game environment, to drive a motorized vehicle, to pilot a
helicopter, to move a player in a football game, etc. Such an input method is an essential
tool for the controller of this project.

For the joystick implementation, two images were created through the UnityUI toolkit.
The first one represents the joystick base and delimits its movement based on the image
boundaries while the second image is the mobile part of the joystick. The second image
is located inside the first one and its movement is limited from its initial position to the
boundaries of the first image. Regarding the hierarchy of objects in the scene of the
Unity Editor, the second image is child of the first.

Since the graphical environment of the application is 2d, the position of the joystick
can be represented in a two-axis system, Vertical axis and Horizontal axis. Once the con-
troller is connected to the game, the original position of the mobile part of the joystick is
stored in a variable. This is necessary for the monitoring of its movement. Its movement

Methimakis Michalis
54

October 2020

5.3 Controllers

is calculated in each frame by comparing its current position with the original one. When
the user touches and drags the joystick then the deviation of its position compared to
the initial one is calculated, both for the vertical axis and the horizontal axis. The two
separate deviations are stored in two variables and sent via the client functions to the
game. Nevertheless, these data are raw numbers that represent distance units. For their
proper utilization they need to be adjusted, something that will be analyzed in the next
chapter.

Figure 5.4: Joystick movement axis.

5.3.3 Sensors

The sensors used by the controller are the accelerometer and the gyroscope. Accelerom-
eters in mobile phones are used to detect the orientation of the phone.. That means it
uses a three dimensional system. The gyroscope uses an additional dimension compared
to the accelerometer. This extra dimension is added by tracking rotation or twist. It

Methimakis Michalis
55

October 2020

5. IMPLEMENTATION

simply measures the angular rotational velocity. In contrast with the gyroscope, an ac-

celerometer measures the linear acceleration of movement. Actually, that means it is able

to measure the directional movement of a device but it can not resolve its lateral orienta-

tion or tilt during that movement accurately unless a gyroscope is there to fill in that info.

UnityEngine namespace provides us with functions that can access the smartphone sen-

sors and read their data. Accelerometer data are recognized by Unity as a Vector3. A

Vector3 is a 3-tuple struct that contains three float variables. Vector3 is also used to

store the gyroscope rotation rate data. On the other hand gyroscope attidute data are

presented as a Quaternion. Quaternions are used to represent rotations. They are really

usefull beacuse they are compact, don’t suffer from gimbal lock and can easily be interpo-

lated. Gimbal lock is defined as the loss of one degree of freedom in a three-dimensional

mechanism that occurs when the axes of two of the three dimensions are driven into a

parallel configuration. Thus, the system is "locked" into rotation in a degenerate two-

dimensional space. Unity internally uses Quaternions to represent all rotations. Due

to the fact that they are based on complex numbers, Quaternions are not easy to be

understood. [34] [35]

The first step of the implementation was to check if the device running the application

supports the sensors. If the gyroscope and accelerometer are supported and functional

then it starts reading their data. The application "pulls" new data in each frame but

the transmission doesn’t take place immediately. In one way, the data are sent to each

frame, which is fast, but there is large deviation between the values of each frame if the

user rotates the smartphone very fast. This may not be very functional for the game

that receives the data. The other way of transmitting the data is slower, it does not take

place in every frame but normalizes the sensor values. This is achieved by storing data

samples and calculating their average value. When the average value calculation process

is completed it is sent to the server.

Methimakis Michalis
56

October 2020

5.3 Controllers

Figure 5.5: Gimbal Lock: (a) All axes are perpendicular to each other. After a rotation
of 90 degrees around the y axis (symbolized by the red arrow), the blue and the green
frame possess the same rotation axis (b). This situation impedes the clear determination
of the rotation axes when subsequently rotating around the x or z axis.

5.3.4 Customization

As mentioned in previous chapters, there was a need for the user to be able to adjust the
controller. This need comes from the fact that smartphones on the market and random
users hands have different sizes. The user should feel comfortable handling the controller.
In addition, each game requires different features from a controller.

Thus, the application offers the user the capability, not only to select the features of
the controller, but also to adjust their position on the screen of the mobile phone and
their size according to his needs. In order to do this, the UnityEngine.EventSystems
extension of the UnityEngine namespace was used. The EventSystem is responsible for
processing and handling events in a Unity scene. It is a way of sending events to objects
in the application based on input. Inputs methods are a keyboard, mouse, touch, other
custom methods.

Methimakis Michalis
57

October 2020

5. IMPLEMENTATION

Drag a Gameobject:
Regarding the change of position of an object on the screen, the OnDrag () function was
used, which uses PointerEvent data. Such events are triggered when the user touches the
screen of the device or left-clicks with the computer mouse.

The position of each UI element on the Canvas is determined by a reference point. For
example, two images which are visually in the same position on the screen but have
different reference points, their position is different on the application canvas. The UI
objects of the controller also have their own reference points. When the user touches an
object and slides his finger on the screen the object must follow its movement. Thus the
position of the reference point of this object is updated in every frame with the position
of the user’s finger.

One issue addressed with this procedure is that the user should be able to drag the
object by touching it at any random point of its surface. However, as mentioned above,
the position of the object is determined by its reference point and its position is au-
tomatically updated with the position of the user’s finger. Thus, as soon as the user
touched the surface of the object in order to drag it on the screen, the reference point
and consequently the whole object was instantly transferred to the contact position. As
a result, there was no complete control of the object position on the screen.

To deal with this problem, an offset variable had to be calculated. As soon as the
user touches an object, the deviation of the contact position with that of the reference
point of the object is calculated. Then, the object position is updated in every frame
according to the contact position of the user but subtracted with the deviation (the offset
variable) that has been calculated. Thus the object remains still on the first touch and
starts moving smoothly when the user slides his finger on the screen.

Scale a Gameobject:
In the Scale process of an object we study the case where the user touches the screen of
the smartphone with two fingers. In this case of course, at least one of the two contacts
must be on the surface of the object he/she wants to adjust. In this way, the application
"understands" whether it will scale an object and which object is that. Given the above,

Methimakis Michalis
58

October 2020

5.3 Controllers

as soon as there is a second contact on the screen, the initial distance between the two
contacts is calculated. In the next step of the implementation, the application checks
in every frame if the user moves at least one of his fingers and if so, then the distance
between the two contacts is calculated again. At the same time, the object scales ac-
cordingly. Its scale is determined by a scalefactor. This factor is calculated, also in every
frame, based on the initial and current distance of the two contacts on the screen.

5.3.5 User’s Profiles

One capability the controller offers is that it can be used in various types of games. Every
game is different, so it requires the controller to have different features. The application
developed in this thesis allows the user to adapt the controller to the needs of the game
by building a certain controller profile and also to save the profile he made for future use.

To do this, a class named ClientsData was created which contains a data structure with
all the necessary informations. As mentioned above, the user can choose to use a gy-
roscope sensor, an accelerometer sensor, one virtual navigation joystick and two virtual
buttons. So, the application saves in the data storage of the device information about
the features selected by the user and in the case of the joystick and the buttons, there is
also information about the position in which he placed them on the screen as well as the
size he gave to them.

At the top of the data structure class, the System.Serializable code is displayed. This
makes the whole class serializable. Generally in computing, serialization is the process of
translating a data structure or object state into a format that can be stored (for example,
in a file or memory data buffer) or transmitted (for example, across a computer network)
and reconstructed later. This definition is also applied for Unity game engine.

The client data structure is being saved in a binary file which is stored in the stor-
age of the device. To achieve this, two libraries of the Unity System namespace were
used. The System.IO which is a code library to handle (create, open, read, write, delete,
etc) files and the System.Runtime.Serialization.Formatters.Binary library which handles
binary conversions.

Methimakis Michalis
59

October 2020

5. IMPLEMENTATION

Figure 5.6: Saving/Loading Class.

After the construction of the data structure class, an other class was implemented which

handles the saving and the loading process of the data. The SaveProfile function of this

class implements the saving process. More specifically, it creates a blank file with a de-

sired name in a path inside the device storage. Then it constructs the structure with the

desired data using the ClientsData class and finally it serializes the whole data structure

into the binary file and terminates the procedure. Respectively the LoadProfile func-

tion is responsible for the loading process of the data. In this case, the function checks

Methimakis Michalis
60

October 2020

5.4 Demos

whether the requested data recovery file exists. If it does, then the context of the file
is deserialized into a data structure again. Then, the loaded data structure is used as a
source of information for the variables related to the controller features. As a result, the
model of the controller being built is the same as that stored in the user’s profile.

5.4 Demos

5.4.1 3D Environment

One of the basic parts of a game is its environment. In order to construct its environ-
ment, the basic models offered by the Unity game engine were used, such as 3d cubes,
spheres, terrain, as well as 3d models which are available for free on the internet. Each
of these models was adjusted (placed and resized) appropriately inside the game scene.
Then materials were added to them to make them more realistic.

Materials are responsible for the look of an object in the game. They manage the texture
of the object, the color, the reflectiveness, how transparent it is. They are assets that
take on the properties of something called a Shader. A Shader is a set of code that defines
how the game engine renders an object on your screen. It takes into consideration the
viewing angle, the lighting and many others properties such as color, texture. The shader
"runs" that object through a specific shade and presents what it looks like to your screen.
Unity has its own standard shader, that allows us to change many different things. We
can add textures, color, transparency, emission, etc.

5.4.2 User’s Interaction

In order to make the user able to interact with the objects of the two games, both of
them contain and use the server which was built at the beginning of the implementation
of this thesis. All the interactios, except the motion of the camera of the game which
is the user’s eyes in the virtual world, are done through the controllers. The use of the
server is essential as all the data transmitted by the controllers are received from the
server. Then, each application makes use of these data accordingly.

Methimakis Michalis
61

October 2020

5. IMPLEMENTATION

In both games the user is able to navigate in the virtual environment by using the
navigation joystick offered by the controller. Concerning the user’s visual contact with
the virtual world, the camera that plays the role of his/her eyes rotates based on the
gyroscope of the smartphone that "runs" the game and it’s mounted inside the VR head-
set. Thus, the user has a realistic view of 360 degrees of the game. Apart from the
player’s navigation, the user interacts with specific objects of the scene. In order to do
that, Physic Events were used. That kind of events are explained in subsection 3.1.7. An
example is shown below:

Figure 5.7: Physic Event example.

As mentioned in the previous subsection, the user has some simple taks within the vir-

Methimakis Michalis
62

October 2020

5.5 Evaluation

tual environment. In the first demo, he/she has to transfer some packages from one
workbench to another. In order to be able to do this, a virtual hand was created which
is initially aligned with the controller the user holds in his hand. Then, in each frame,
the virtual hand rotates based on the controller gyroscope and consequently the smart-
phone. The orientation of the hand is being updated in each frame in a smooth way in
order to give as much realism as possible to the game. Finally, a virtual button is re-
quired which is used in order to leave the package the user holds on the second workbench.

In the matter of the second demo the user uses the smartphones to control the mo-
tion of a shield and a sword. His task is to "kill" some static enemies who are being
around him. As soon as he approaches and hits one of them with the sword then the
enemy object is destroyed. However, each enemy hides a trap from which the user must
protect his virtual self by using his shield for cover. The motion of the weapons is realistic
and corresponds to the motion that one would make in a real battle. For example, in
order to be covered by an object falling from the sky the user must raise above his head
the hand with which he holds the controller that represents the shield.

5.5 Evaluation

The results of the implemented applications meet the initial expectations of this diploma
thesis. Firstly, the controllers connect to the demos without problems and the connection
remains stable and without interruptions. Their response is immediate and quite accu-
rate. Of course, this depends on the quality of the smartphones in which the applications
run, both in terms of the processing power of their units and in terms of the quality of
the sensors they contain. The smartphones in which the applications were tested are of
mid-range according to today’s market. Nevertheless, the applications ran at satisfactory
fps (58 - 64 fps) and their sensors are quite accurate and meet the expectations of the
two demo games.

The demos have been implemented for normal use on 2D screens but also for virtual
reality mode. In the first case the user can navigate freely in the virtual environment
and interact with it. Regarding the virtual reality mode there is a limitation due to

Methimakis Michalis
63

October 2020

5. IMPLEMENTATION

the nature of the library used for its implementation. More specifically, as mentioned
in a previous chapter there is a camera in the game which plays the role of the user’s
eyes in the virtual world. Thus, when the user navigates through the 3D space what is
really happening is a translation to the camera, according to the user’s input. The term
"translation" in Unity game engine means the change of the position of an object.

Figure 5.8: Virtual hand’s motion.

Methimakis Michalis
64

October 2020

5.5 Evaluation

The GoogleVR library offered by Google for the purpose of creating VR applications
on the Unity platform was used in order to "build" the two demos. The limitation men-
tioned earlier is that when the application is intended for Virtual Reality use, the game
camera is completely controlled by this library. The camera can rotate 360 degrees but
its position remains stable. A a result, the user has a complete, 360 picture of the virtual
environment but can not navigate through it.

Figure 5.9: Virtual hand’s motion.

Methimakis Michalis
65

October 2020

5. IMPLEMENTATION

Figure 5.10: Virtual hand’s motion.

Comparing to Desktop HMDs:
Head Mounted Displays for desktop VR applications come with their own specially de-
signed controllers. Such controllers hold a gyroscope and an accelerometer in order to
calculate the orientation of the controllers but not their position in space. In order to
make this possible, they also contain special sensors which can track the position they
have each time. This is a big advantage that we do not find in smartphones. In the case
of the two demo games of this thesis, the motion of the virtual hands is adjusted accord-
ingly in order to be able to move through the virtual space and not only rotate. Their
entire motion depends on the gyroscope orientation. Nevertheless, due to this limitation
smartphones function as controllers is significantly limited.

In addition, a gaming controller is allowed to use more buttons as its surface is em-
bossed and the user easily understands which buttons he touches and which he does not,
in contrast to a smartphone screen where the use of virtual buttons is limited. Also, the

Methimakis Michalis
66

October 2020

5.5 Evaluation

shape of such controllers is not random. They are specially designed to fit in every hand
and make the user feel comfortable while holding them. The flat, rectangle shape of a
smartphone might be uncomfortable for some users when they hold it. In general, the
use of a smartphone as a controller for VR applications lags behind the specially designed
controllers of concepts like the Oculus Rift, HTC Vive, Playstation VR, etc, but let us
not forget that the purpose for which they were built is by no means to play the role of
a controller in a game.

Evaluation from random users:
The applications were tested by former students of the Technical University of Crete and
by some people of my social circle. They reported that the response of the controllers in
the game is very fast and accurate. In addition the user’s interface is very easy in use
and well made. Another important fact they mentioned is that the feature which allows
the user to adjust the position and size of the virtual buttons and the navigation joystick
on the screen of their smartphone seemed very useful as the personal preferences and the
size of the hands changes from user to user. As a negative feature, they reported that
the graphics of the two demo games are sketchy and made the VR experience unpleas-
ant. Nevertheless, this thesis did not focus on creating a complete, perfect game but on
creating software that allows the use of a smartphone as a controller for a Virtual Reality
application based on mobile platforms.

Methimakis Michalis
67

October 2020

5. IMPLEMENTATION

Methimakis Michalis
68

October 2020

Chapter 6

Conclusion

Virtual Reality is getting more and more advanced over the years. Nowadays it is used in

many aspects of our lives, not only for entertainment reasons. This is a reason why keep

working on VR related technologies is important. Modern impressive computer graphics

alongside with hand input technologies have made VR applications very convincing to

people. The challenge of this project was to give users the opportunity to use their hands

in order to interact in a smartphone based VR application without the need of additional,

special hardware. All they need to have is one or more additional smartphones.

The concept of this thesis was to develop a software that consists of two individual

android applications connected through a WiFi antenna. The first application needs to

be installed on the controllers (smartphones) and it is programmed to utilize some of

their technological features. It transforms the mobile phones to hand controllers by read-

ing the required data and then transmits them to the second application which handles

them accordingly. As a result the user is able to interact and manipulate an application

running on a smartphone by using an other smartphone as hand controller. This is very

useful for smartphone based Virtual Reality applications because the user is not able to

touch the device running the VR app. The results of the implemented applications meet

the initial expectations of this project. The connection of the devices is stable and the

controllers’ response is immediate and accurate.

Methimakis Michalis
69

October 2020

6. CONCLUSION

6.1 Future Work

This project is implemented in such a way to be functional, easy in use and to offers
the user a variety of choices. Although, like all projects this one can be extended and
improved in many aspects too. Some improvement suggestions are shown below:

• Improve the graphics of the games so the VR experience is more pleasant

• Improve the user’s interface of the controllers (e.g appearance, ease of use)

• Improve performance so the applications run at higher FPS

• Add some controller functions (e.g slider, more buttons if possible, volume +/-
buttons)

• Offer more customization choices (e.g colours, shapes of the virtual objects)

• Use Wifi Direct in order to connect the smartphones directly

• Use a BlueTooth connection in order to connect the smartphones

• Latency and accuracy measurements

• Develop a multiplayer game for the controllers

• Use a UDP connection protocol for the applications

Methimakis Michalis
70

October 2020

References

1. https://www.marxentlabs.com/what-is-virtual-reality
2. https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
3. https://en.wikipedia.org/wiki/Virtual_reality
4. https://en.wikipedia.org/wiki/Virtual_reality_applications
5. https://www.fdmgroup.com/5-exciting-uses-for-virtual-reality/
6. https://en.wikipedia.org/wiki/Smartphone
7. https://www.appliedmaterials.com/en-il/node/3354511
8. https://www.researchgate.net/publication/302074437_FaceTouch_Touch_Interaction_for
_Mobile_Virtual_Reality
9. https://www.researchgate.net/publication/301462099_Creating_a_Mobile_Head-mounted
_Display_with_Proprietary_Controllers_for_Interactive_Virtual_Reality_Content
10. https://ieeexplore.ieee.org/document/7926626
11. https://docs.unity3d.com/2019.2/Documentation/Manual/OculusControllers.html
12. https://docs.unity3d.com/2019.2/Documentation/Manual/OpenVRControllers.html
13. http://www.3ddatabase.com/3d-models.html
14. http://korichambo.blogspot.com/2016/10/unit-6667-understand-theory-and.html
15. https://en.wikipedia.org/wiki/Game engine
16. https://en.wikipedia.org/wiki/Unity_(game_engine)
17. https://www.cryengine.com/
18. https://www.unrealengine.com/unreal-engine-4
19. https://aws.amazon.com/lumberyard/faq/
20. https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
21. https://docs.unity3d.com/Manual/UsingTheInspector.html
22. https://docs.unity3d.com/Manual/class-Transform.html

Methimakis Michalis
71

October 2020

REFERENCES

23. https://docs.unity3d.com/560/Documentation/Manual/PhysicsSection.html
24. https://docs.unity3d.com/Manual/comp-MeshGroup.html
25. https://docs.unity3d.com/2020.1/Documentation/Manual/Materials.html
26. https://titanwolf.org/Network/Articles/Article?AID=8daed109-76b3-4ec3-bb32-b82daca7ec75
#gsc.tab=0
27. https://docs.unity3d.com/2019.3/Documentation/Manual/class-AudioSource.html
28. https://docs.unity3d.com/2017.2/Documentation/Manual/CreatingAndUsingScripts.html
29. https://docs.unity3d.com/560/Documentation/Manual/EventFunctions.html
30. https://docs.unity3d.com/Manual/Console.html
31. https://en.wikipedia.org/wiki/User_interface
32. https://en.wikipedia.org/wiki/API
33. https://www.youtube.com/watch?v=7B7uehNBLRY&ab_channel=Chidre%27sTechTutorials
34. https://en.wikipedia.org/wiki/Quaternion
35. https://en.wikipedia.org/wiki/Gimbal_lock#: :text=Gimbal%20lock%20is%20the%20loss,
misleading%3A%20no%20gimbal%20is%20restrained.

Methimakis Michalis
72

October 2020

	1 Introduction
	1.1 Brief Description
	1.2 Thesis Outline

	2 Background
	2.1 Virtual Reality
	2.1.1 Introduction
	2.1.2 History
	2.1.3 VR Applications

	2.2 Frame Rate
	2.3 Modern Mobile Phones
	2.3.1 What is a smartphone?
	2.3.2 Capabilities
	2.3.3 Smartphones and Virtual Reality
	2.3.4 Interaction in Smartphone based VR Applications

	2.4 Desktop VR Controllers
	2.5 3D Graphics
	2.5.1 3D Modeling
	2.5.2 3D Rendering

	2.6 Game Engines
	2.6.1 What is a Game Engine?
	2.6.2 Popular Game Engines
	2.6.3 Comparison/Choosing the Right Engine

	3 Technological Backround
	3.1 Unity3D
	3.1.1 Brief Description
	3.1.2 Project Structure
	3.1.3 Scene Window
	3.1.4 Canvas
	3.1.5 Inspector
	3.1.6 Components
	3.1.7 Scripting
	3.1.8 Game Window
	3.1.9 Console

	3.2 Android Platform and GoogleVR for Unity

	4 User's View
	4.1 Controllers
	4.1.1 User Interface (UI)

	4.2 Demo Games
	4.2.1 3D Environment

	5 Implementation
	5.1 Unity Scripting API
	5.2 Connection Software
	5.2.1 Server
	5.2.2 Client

	5.3 Controllers
	5.3.1 Buttons
	5.3.2 Navigation Joystick
	5.3.3 Sensors
	5.3.4 Customization
	5.3.5 User's Profiles

	5.4 Demos
	5.4.1 3D Environment
	5.4.2 User's Interaction

	5.5 Evaluation

	6 Conclusion
	6.1 Future Work

