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a b s t r a c t

We develop a hybrid boundary feedback law for a class of scalar, linear, first-order hyperbolic PDEs,
for which the state measurements or the control input are subject to quantization. The quantizers
considered are Lipschitz functions, which can approximate arbitrarily closely typical piecewise con-
stant, taking finitely many values, quantizers. The control design procedure relies on the combination
of two ingredients—A nominal backstepping controller, for stabilization of the PDE system in the
absence of quantization, and a switching strategy, which updates the parameters of the quantizer,
for compensation of the quantization effect. Global asymptotic stability of the closed-loop system
is established through utilization of Lyapunov-like arguments and derivation of solutions’ estimates,
providing explicit estimates for the supremum norm of the PDE state, capitalizing on the relation of
the resulting, nonlinear PDE system (in closed loop) to a certain, integral delay equation. A numerical
example is also provided to illustrate, in simulation, the effectiveness of the developed design.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Although for boundary controlled, linear, first-order hyper-
olic PDE systems delay, see, for example, [1–5]; sampling, see,
or instance, [6–9]; and saturation, see, e.g., [10], effects are
ddressed in existing control designs1 and despite the results
15,16], in which practical stabilization is achieved (as the con-
idered quantizers are static and the control design approaches
o not, explicitly, aim at treating state measurements errors due
o quantization), the problem of compensation of quantization
n measurements and control input, achieving global asymptotic
tabilization, has not been, heretofore, investigated. Besides its
heoretical significance, the actual motivation behind studying
his problem is attributed to the aim of addressing yet another
mportant practical issue embedded in actual, feedback control
oops involving PDE systems. In this paper we launch an effort in
his direction considering a specific class of boundary controlled,
calar, first-order hyperbolic PDEs. We aim at providing a first
tep toward systematic treatment of quantization effects in other
potentially, more general) classes of PDE systems, while keeping
he technical burden at a level that does not obscure the key
esign and analysis ideas of the developed approach.
We construct a hybrid feedback law, which is based on com-

ination of two elements—A nominal backstepping control de-
ign [17], which achieves stabilization of the PDE system in the

E-mail address: bekiaris-liberis@ece.tuc.gr.
1 See also, e.g., [11–14] for respective results in the parabolic case.
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absence of quantization, and a switching update law for the tun-
able parameter of the quantizer [18], which achieves compensa-
tion of the quantization effect. The PDE state in the backstepping
controller is replaced by its quantized form, while the so-called
‘‘zoom’’ variable of the dynamic quantizer is updated at discrete
time instants. In particular, the switching strategy consists of two
phases. During the ‘‘zooming out’’ stage, the adjustable parameter
of the quantizer is increasing, in a piecewise constant manner,
until a certain event is detected, using only quantized measure-
ments of the PDE state. From that time instant on is decreasing, in
a piecewise constant fashion, in which switches occur at a priori
specified, equidistant time instants,2 which depend on the plant
parameters, through the backstepping kernels, as well as the fixed
parameters of the quantizer.

Global asymptotic stability of the closed-loop system, in the
supremum norm of the PDE state, is established, capitalizing on
the relation of first-order hyperbolic PDEs to integral delay equa-
tions [19]. Within the presented framework, in which we treat
quantizers in correspondence to the case of finite-dimensional
systems, the choice of the supremum norm is necessary. The rea-
son is that, in both the control design and stability analysis per-
formed, it is crucial to relate the magnitude of the PDE state to the
magnitude of its quantized version and vice versa. This is enabled
(without involving higher, spatial derivatives of the PDE state)

2 Event-based switching, on the basis of the available quantized measure-
ents, is also possible. Nevertheless, such an update law for the adjustable
arameter of the quantizer is not studied here.

https://doi.org/10.1016/j.sysconle.2020.104809
http://www.elsevier.com/locate/sysconle
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2020.104809&domain=pdf
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onsidering the supremum norm of the PDE state. The stability
nalysis is performed dividing the time horizon into two different
ntervals. Within the first, constructing a proper estimate on
pen-loop solutions, it is shown that their exists a time instant
the upper bound of which depends on the plant/quantizer pa-
ameters and size of initial conditions) at which the magnitude
f the quantizer’s adjustable parameter is sufficiently larger than
he size of the state, in the sense of its supremum norm (in
ther words, the PDE state of the system can be adequately
easured as it is within the range of the quantizer). Within the
econd, for each time period in which the zoom variable of the
uantizer remains constant, with the aid of a proper Lyapunov-
ike functional that is constructed, it is shown that the solutions
f the closed-loop system are ultimately bounded, in the sense
f their supremum norm, with a bound that is proportional to
he magnitude of the adjustable parameter of the quantizer. As
he zoom variable, and thus, also the obtained ultimate bounds of
he solutions, decreases, global asymptotic stability can be estab-
ished. In particular, explicit stability estimates in the supremum
orm of the PDE state are derived, which exhibit an exponential
ecay rate (for equidistant switching instants) of the norm of the
olutions, with an overshoot coefficient that depends on a certain
ower (in turn, dependent on the plant/quantizer parameters) of
he norm of initial conditions.

The quantizers considered in the present paper differ from
espective quantizers considered in, e.g., [18,20], in that it is
ssumed they are locally Lipschitz functions, rather than only
iecewise constant, taking values in a finite subset of the real
umbers. The reason for imposing such an assumption is to guar-
nteeing the well-posedness of the closed-loop system, which is
stablished employing the results in [19] (thus without needing
o study the issue of existence and uniqueness of solutions in full
enerality, which would be out of the scope of this paper that
ocuses on the control design and stability analysis). Although
his technical condition may appear as a restrictive requirement,
n practice, it is not. This is illustrated presenting an example
f an approximate quantizer, which may be viewed as a typical
uantizer with rectilinear quantization regions, considered in,
.g., [18,20], with an ε-layer added around the points of discon-
inuity, which could be taken as arbitrarily small. In fact, the
erived stability estimates would be independent of the size of
uch a layer, which suggests that they may remain valid even in
he absence of the layer (this is demonstrated in the simulation
xample, in which the quantizer is chosen only as piecewise
onstant, taking finitely many values).
Although the central design and analysis ideas are similar to

he case of state quantization, we also develop a respective hybrid
eedback law for the case in which state measurements are avail-
ble, yet, the control input signal is subject to quantization. In
uch a case, the hybrid feedback law is expressed as the quantized
orm of the nominal backstepping controller, while the adjustable
arameter of the quantizer is chosen in a way analogous to the
ase of state measurements quantization. Closed-loop stability
an be established in a quite similar manner to the case of state
uantization.
In Section 2 we present the class of systems under inves-

igation and the developed hybrid feedback law. Section 3 in-
orporates the main result of the paper, namely, establishment
f closed-loop stability, under the proposed control law, despite
uantized measurements. Section 4 presents the extension of our
evelopments to the case of input quantization. Section 5 pro-
ides a numerical example and in Section 6 we discuss potential,
uture research extensions.
 c

2

Notation. We denote by L∞(A; Ω) the space of measurable and
bounded functions defined on A and taking values in Ω . For
a given D > 0 and a function u ∈ L∞ ([0,D];R) we define
∥u∥∞ = supx∈[0,D] |u(x)|. For ηt ∈ L∞ ([−D, 0];Rn), the notation
ηt refers to ηt (s) = η(t + s), for s ∈ [−D, 0]. We define ∥ηt∥ =

sup−D≤s≤0 |η(t + s)|. For a given h ∈ R we define its integer part
as ⌊h⌋ = max {k ∈ Z : k ≤ h}.

. Problem formulation and control design

.1. Linear first-order hyperbolic PDEs in strict-feedback form

We consider the following system

t (x, t) = ux(x, t) + g(x)u(0, t) +

∫ x

0
ḡ(x, y)u(y, t)dy (1)

u(D, t) = U(t), (2)

here x ∈ [0,D], with D > 0, is spatial variable, t ≥ 0 is time
ariable, u is scalar state, and U is control input, with g and ḡ
ontinuous functions. System (1), (2) can be transformed to

t (x, t) = wx(x, t) (3)

w(D, t) = U(t) −

∫ D

0
k(D, x)

(
w(x, t)

+

∫ x

0
l(x, y)w(y, t)dy

)
dx, (4)

mploying the backstepping transformation and its inverse, pro-
ided in [17] as

(x, t) = u(x, t) −

∫ x

0
k(x, y)u(y, t)dy (5)

u(x, t) = w(x, t) +

∫ x

0
l(x, y)w(y, t)dy, (6)

atisfying

2∥u∥∞ ≤ ∥w∥∞ ≤ M1∥u∥∞, (7)

here M1, M2 are defined through the continuously differentiable
ernels k and l as

1 = 1 + D max
0≤x≤D

max
0≤y≤x

|k(x, y)| (8)

2 =
1

1 + Dmax0≤x≤D max0≤y≤x |l(x, y)|
. (9)

lthough the procedure involving (3)–(9) is known, we display
hese equations as the hybrid control design relies on the back-
tepping transformation and depends explicitly on parameters
8), (9).

There is no conceptual obstacle to extending the presented
esults to the case of a more general class of scalar, linear, first-
rder hyperbolic PDE systems than (1), (2), as long as there
xists an invertible, integral transformation that maps the original
ystem to the transport PDE system (3) with boundary condition
f the form (4). Such an example could be the class of systems
onsidered in [21], which incorporates non-strict-feedback (and
eaction) terms on the right-hand side of (1), (2), employing
redholm-type integral transformations. However, we sacrifice
enerality, in order to not distract a reader, involving additional
echnical details primarily related to existing results, from the
ain purpose of the paper, which is presentation of the hybrid
ontrol design methodology.
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Fig. 1. The approximate quantizer with ε-layer defined in (11) (where ε = 0.1).

.2. Approximate quantizer with an adjustable parameter

The state u is available only in quantized form, in which the
uantizer qµ is defined as (see, e.g., [18])

µ (u) = µq
(

u
µ

)
, (10)

here µ > 0 can be manipulated and q is a locally Lipschitz
unction that satisfies the following properties

P1: If |u| ≤ M , then |q(u) − u| ≤ ∆.
P2: If |u| > M , then |q(u)| > M − ∆.
P3: If |u| ≤ M̄ , then q(u) = 0,

for some positive constants M , M̄ , and ∆, with M > ∆. In partic-
ular, the fixed parameters M and ∆ are referred to as the range
and quantization error of the quantizer, respectively, whereas the
adjustable parameter µ is referred to as the ‘‘zoom’’ variable.

An example of a quantizer that may arbitrarily closely approx-
imate a typical quantizer with rectilinear quantization regions
(see, e.g., [20]) is given below and shown in Fig. 1

q (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2, u ≥ 3
−2, u ≤ −3

u−k
ε

+ k − 1, k ≤ u ≤ k + ε

k, k + ε ≤ u ≤ k + 1
−k, −(k + 1) ≤ u ≤ −k − ε

u+k
ε

− k + 1, −k − ε ≤ u ≤ −k
0, −1 ≤ u ≤ 1

, (11)

here k = 1, 2. Quantizer (11) satisfies properties P1–P3 (with
= 3, M̄ = 1, and ∆ = 1.05), while being Lipschitz. Given

he parameters M and ∆ of the quantizer, the derived stability
stimates, presented in the next two sections, for the closed-loop
ystem, do not depend explicitly on the value of ε > 0, and thus,
hey hold for an arbitrarily small ε > 0. For this reason, one
ould even argue that the stability analysis would remain valid
or ε = 0. This is demonstrated in Section 5, in which we pro-
ide a specific example of a quantizer, which satisfies properties
1–P3, yet, it is only piecewise constant, taking finitely many
alues. For further examples and details regarding quantizers the
eader is referred to, e.g., [18,20].

.3. Boundary hybrid feedback law using quantized measurements

The hybrid feedback law is based on the quantized version
f the backstepping controller and a suitably chosen piecewise
 r

3

onstant signal µ. It is defined as

(t) =

{
0, 0 ≤ t ≤ t∗1
µ(t)

∫ D
0 k (D, x) q

(
u(x,t)
µ(t)

)
dx, t > t∗1

, (12)

here for some fixed, yet arbitrary, τ , µ0 > 0

µ(t) =

⎧⎪⎨⎪⎩
max

{
1,DM̄1

}
e2M̄1 jτ µ0, (j − 1)τ ≤ t ≤ jτ , 1 ≤ j ≤

⌊
t∗1
τ

⌋
+ 1

µ
(
t∗1
)
, t∗1 < t ≤ t∗1 + T

Ωµ
(
t∗1 + (i − 1) T

)
, t∗1 + (i − 1)T < t ≤ t∗1 + iT , i = 2, . . .

,

(13)

with t∗1 being the first time instant at which the following holds

⏐⏐qµ

(
u
(
x, t∗1

))⏐⏐ ≤

(
M

(1 + λ)ν
M2

M1
− ∆

)
µ
(
t∗1
)
, for all x ∈ [0,D],

(14)

where 0 < ν < 1 and λ > 0 are fixed, yet arbitrary, parameters,
and

M̄1 =
M3

DM2
(15)

3 = D sup
0≤y≤D

|k(D, y)| (16)

Ω =
(1 + λ)1+ν∆M3

M2M
(17)

T = −D
lnΩ

ν ln(1 + λ)
. (18)

vent (14) can be detected using measurements of qµ (u(x)) and
µ only.3 Furthermore, a, potentially, more practical way to de-
tect this event would be to alternatively check whether relationqµ

(
u
(
t∗1
))

∞
≤

(
M

(1+λ)ν
M2
M1

− ∆

)
µ
(
t∗1
)
holds, which guaran-

ees that (14) also holds.
The switching strategy (13) involves, via Ω and T , the fixed

arameters of the quantizer and the plant parameters (through
he backstepping kernels). The parameters ν and λ could be
uned. From the explicit stability estimate for the closed-loop
ystem presented immediately next, it is evident that increasing ν

nd λ guarantees faster decay rate, nevertheless, at the expense of
ncrease in the initial overshoot. Furthermore, relations (17), (18)
lso imply that increasing ν and λ results in faster switching (due

to decrease of T ). The choice of the parameter τ is guided only by
the desirable switching frequency during the initial time interval,
in which the system operates in open loop. Parameter µ0 could be
chosen in order to scale the overshoot coefficient involved in the
response of the system as the increase in the value of µ0 results,
in general, in a decrease in the value of t∗1 .

3. Stability analysis of the hybrid backstepping controller un-
der state quantization

Theorem 1. Consider the closed-loop system consisting of the plant
(1), (2) and the hybrid feedback law (12), (13) with parameters
15)–(18). If ∆ and M satisfy ∆

M <
M2

M1(1+λ)ν max{1+λ,2} , then for all

u(·, 0) ∈ L∞ ([0,D];R) there exists a unique solution u (·, t) ∈

L∞ ([0,D];R), which satisfies

∥u(t)∥∞ ≤ γ ∥u(0)∥
2+ ν ln (1+λ)

DM̄1
∞ e−

ν ln (1+λ)
D t , t ≥ 0, (19)

3 The requirement of (14) to hold for all x should be understood as a
equirement for all x for which the solution exists.
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=
max

{
1,DM̄1

}
M2

max
{
M2M
Ω

e2M̄1τµ0,M1

}
max

×

⎧⎨⎩ M1

µ0M2

(
M

(1+λ)ν
M2
M1

− 2∆
) , 1

⎫⎬⎭
×

⎛⎝ M1

µ0M2

(
M

(1+λ)ν
M2
M1

− 2∆
)
⎞⎠1+ ν ln (1+λ)

DM̄1

. (20)

For given data of the plant, i.e., for given parameters M1,
2, and M3 (which depend on the plant parameters through

he kernels of the backstepping transformation and its inverse,
ccording to definitions (8), (9), and (16), respectively), in order
or the condition of Theorem 1 to be satisfied the parameters
f the quantizer ∆ and M should be such that ∆ is sufficiently
maller than M . We note that this condition also implies ∆M3

M2M
<

1
(1+λ)1+ν , as M3 < M1, which guarantees that Ω < 1. In particular,

s long as the parameters of the plant and quantizer satisfy the
ondition ∆M1

MM2
< 1

2(1+c) , for some c > 0, there always exist

< ν < 1 and λ > 0 such that the condition of Theorem 1
holds. The conservatism of this condition may be interpreted
qualitatively from the viewpoint of the degree of restriction of the
allowable range of the quantizer parameters, for given data of the
plant. For instance, an increase in the magnitude of g (potentially
considering a more unstable plant), results in a decrease on the
allowable range of ∆

M as M1 increases and M2 decreases.
The specific power involved in the supremum norm of the

nitial state in estimate (19) arises from derivation of an upper
ound on open-loop solutions of exponential type together with
he derivation of an upper bound for time instant t∗1 , which
epends on a logarithmic function of the magnitude of the initial
tate. The particular decay rate obtained for the supremum norm
f the solutions arises from the equidistant switching instants
within time interval t > t∗1 ) and the fact that µ is decreasing
y a factor of Ω at each switching instant.
To avoid incorporating, unnecessarily, additional notational

urden in the statement of Theorem 1, it is tacitly assumed that
∗

1 > 0, which represents the most difficult and generic case.
n the occasion where t∗1 = 0, estimate (19) could be replaced

y the simplest expression ∥u(t)∥∞ ≤ max
{

µ0 max{1,DM̄1}Me2M̄1τ

Ω
,

∥u(0)∥∞

}
e−

ν ln (1+λ)
D t , which further implies from (17) and the

condition on ∆
M within the statement of Theorem 1 that ∥u(t)∥∞

µ0 max{1,DM̄1}Me2M̄1τ

Ω
e−

ν ln (1+λ)
D t , as the initial state satisfies rela-

tion (21).
The proof of Theorem 1 is based on the following two lemmas

and capitalizes on the relation of the first-order hyperbolic PDE
(3), (4), under (12), to a specific integral delay equation [19]
(see also, e.g., [22–24]). The first lemma deals with the so-called
‘‘zooming out’’ phase [18], in which it is established that the
state is within the range of the quantizer at time t∗1 , whereas the
econd lemma deals with the ‘‘zooming-in’’ phase, establishing,
or fixed µ, a certain ultimate boundedness property, which in
urn is employed for piecewise constant µ, in each time interval
f the form

(
t∗1 + (i − 1)T , t∗1 + iT

]
, i = 1, 2, . . ., for showing

symptotic stability of the closed-loop system.

emma 1. Under the constraint for ∆ and M stated in Theorem 1,

there exists a time instant t∗1 , satisfying t∗1 ≤
1
M̄

ln
M1
µ0

∥u(0)∥∞(
M M2

) ,

1 M2 (1+λ)ν M1

−2∆

4

such that (14) holds, and hence, the following also holds⏐⏐u (x, t∗1 )⏐⏐ ≤
M

(1 + λ)ν
M2

M1
µ
(
t∗1
)
, for all x ∈ [0,D]. (21)

Proof. Using the equivalent representation of the transformed
system (3), (4) through an integral delay equation and setting
w(x, t) = η(t + x−D), we obtain with (12) the following integral
delay equation for 0 < t ≤ t∗1

η(t) = −

∫ 0

−D

(
k(D, s + D) +

∫ 0

s
k(D, r + D)l(r + D, s + D)dr

)
×η(t + s)ds. (22)

Using the left-hand side of (7) together with (15) we get from
(22) that

|η(t)| ≤ M̄1

∫ t

t−D
|η(s)| ds. (23)

Hence, we obtain the following two relations

|η(t)| ≤ M̄1

(∫ 0

−D
|η(s)| ds +

∫ t

0
|η(s)| ds

)
, 0 < t ≤ D, (24)

and

|η(t)| ≤ M̄1

(∫ D

0
|η(s)| ds +

∫ t

D
|η(s)| ds

)
, t > D. (25)

Relation (24) implies (see, e.g., [25]) that

|η(t)| ≤ DeM̄1tM̄1∥η0∥, 0 < t ≤ D, (26)

and hence, we obtain using (25)

|η(t)| ≤ DM̄1

(
eM̄1D − 1

)
∥η0∥eM̄1(t−D), t > D. (27)

Therefore, using the fact that sup−D≤s≤0 |η(t + s)| ≤ max {∥η0∥,

sup0<s≤t |η(s)|
}
, for 0 < t ≤ D, we get from (26) that

∥ηt∥ ≤ max
{
1,DM̄1

}
∥η0∥eM̄1t , 0 ≤ t ≤ D. (28)

Similarly, using the fact that sup−D≤s≤0 |η(t + s)| ≤ max{
sup0≤s≤D |η(s)| , supD<s≤t |η(s)|

}
, for t > D, we obtain from (26),

(27)

∥ηt∥ ≤ DM̄1∥η0∥eM̄1t , t > D. (29)

ence, combining (28), (29) we get

ηt∥ ≤ max
{
1,DM̄1

}
∥η0∥eM̄1t , 0 ≤ t ≤ t∗1 , (30)

hich also implies that

w(t)∥∞ ≤ max
{
1,DM̄1

}
eM̄1t∥w(0)∥∞, 0 ≤ t ≤ t∗1 . (31)

In the above analysis we tacitly assume that t∗1 > D. However,
estimate (31) still holds in the case where t∗1 ≤ D as one could
directly derive it considering only the case 0 ≤ t ≤ t∗1 ≤

D. Choosing the switching signal µ according to (13) one can
conclude that there exists a time t∗1 , which is at most equal to
1
M̄1

ln
∥w(0)∥∞

µ0

M2

(
M

(1+λ)ν
M2
M1

−2∆
) , such that

∥w
(
t∗1
)
∥∞

µ
(
t∗1
) ≤ M2

(
M

(1 + λ)ν
M2

M1
− 2∆

)
, (32)

nd hence, in view of property P1 of the quantizer and the fact
hat for all 0 ≤ x ≤ D it holds that |u(x,t∗1)|

µ(t∗1)
≤

∥u(t∗1)∥∞

µ(t∗1)
≤

1 ∥w(t∗1)∥∞

∗ ≤
1

ν M
M2 −2∆, where M2 ≤ M1, we obtain, using
M2 µ(t1) (1+λ) M1
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riangular inequality, that the following holds

q

(
u
(
x, t∗1

)
µ
(
t∗1
) )⏐⏐⏐⏐⏐ ≤

M
(1 + λ)ν

M2

M1
− ∆, for all x ∈ [0,D]. (33)

Equivalently, at time t∗1 relation (14) holds. We then show that
detecting the event (14) in combination with the properties of
the quantizer implies that at t∗1 relation (21) also holds. Given that
(33) holds, we first check whether there could be some x ∈ [0,D],
say x∗

1, such that relation |u(x∗1,t∗1)|
µ(t∗1)

> M holds. If that was the

ase, then from property P2 of the quantizer one gets that relation
q
(

u(x∗1,t∗1)
µ(t∗1)

)⏐⏐⏐ > M−∆ would hold. However, since M2 ≤ M1, one

an conclude that relation
⏐⏐⏐q( u(x∗1,t∗1)

µ(t∗1)

)⏐⏐⏐ >
M2
M1

M
(1+λ)ν − ∆ would

lso hold, which contradicts (33), and hence, for all x ∈ [0,D]

it holds that |u(x,t∗1)|
µ(t∗1)

≤ M . We next check whether relation
M2
M1

M
(1+λ)ν <

|u(x∗1,t∗1)|
µ(t∗1)

≤ M could hold. In that case, property P1

f the quantizer would imply that the following would hold

q

(
u
(
x∗

1, t
∗

1

)
µ
(
t∗1
) )

−
u
(
x∗

1, t
∗

1

)
µ
(
t∗1
) ⏐⏐⏐⏐⏐ ≤ ∆, (34)

nd hence, using the fact that
⏐⏐⏐ u(x∗1,t∗1)

µ(t∗1)

⏐⏐⏐ −

⏐⏐⏐q( u(x∗1,t∗1)
µ(t∗1)

)⏐⏐⏐ ≤

q
(

u(x∗1,t∗1)
µ(t∗1)

)
−

u(x∗1,t∗1)
µ(t∗1)

⏐⏐⏐, which follows from triangular inequality,
we arrive at⏐⏐⏐⏐⏐u
(
x∗

1, t
∗

1

)
µ
(
t∗1
) ⏐⏐⏐⏐⏐−

⏐⏐⏐⏐⏐q
(
u
(
x∗

1, t
∗

1

)
µ
(
t∗1
) )⏐⏐⏐⏐⏐ ≤ ∆. (35)

elation (35) in combination with M2
M1

M
(1+λ)ν <

|u(x∗1,t∗1)|
µ(t∗1)

would
mply that

M2

M1

M
(1 + λ)ν

− ∆ <

⏐⏐⏐⏐⏐q
(
u
(
x∗

1, t
∗

1

)
µ
(
t∗1
) )⏐⏐⏐⏐⏐ , (36)

hich contradicts (33), establishing the validity of (21). □

emma 2. Under the constraint for ∆ and M stated in Theorem 1,
the solutions of the transformed closed-loop system (3), (4), (12), for
fixed µ > 0, which satisfy

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t∗1

)⏐⏐⏐ ≤
1

(1 + λ)ν
M2Mµ, (37)

they also satisfy for t∗1 < t < t∗1 + T

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w(x, t)

⏐⏐⏐ ≤ max
{

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t∗1

)⏐⏐⏐ ,
Ω

(1 + λ)ν
M2Mµ

}
. (38)

oreover, the following holds

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t∗1 + T

)⏐⏐⏐ ≤
1

(1 + λ)ν
ΩM2Mµ. (39)

Proof. Under the feedback law (12) for t > t∗1 (where u is
expressed in terms of w via (6)) and since µ is fixed within the
interval t∗1 < t ≤ t∗1 + T we get the following integral delay
equation equivalent to (3), (4)

η(t) = f η , µ , (40)
( t ) c

5

where

f (ηt , µ) = µ

∫ 0

−D
k (D, s + D)

(
q
(

1
µ
G(t, s)

)
−

1
µ
G(t, s)

)
ds (41)

G(t, s) = η(t + s) +

∫ s

−D
l(s + D, r + D)η(t + r)dr. (42)

Defining V1 (η) = sup−D≤s≤0 e
s ν ln(1+λ)

D |η(s)| we get for sufficiently
small h > 0

V1 (ηt+h) = sup
−D≤s≤0

es
ν ln(1+λ)

D |η(t + s + h)|

≤ max
{

sup
−D≤s≤−h

es
ν ln(1+λ)

D |η(t + s + h)| ,

sup
−h≤s≤0

es
ν ln(1+λ)

D |η(t + s + h)|
}

≤ max
{
e−h ν ln(1+λ)

D sup
h−D≤s≤0

es
ν ln(1+λ)

D |η(t + s)| ,

sup
0≤s≤h

|η(t + s)|
}

, (43)

nd hence, with definition for V1 we arrive at

1 (ηt+h) ≤ max
{
e−h ν ln(1+λ)

D V1 (ηt) , sup
0≤s≤h

|η(t + s)|
}

. (44)

s long as 1
(1+λ)ν ΩM2Mµ ≤ ∥η∥ ≤ M2Mµ, using the property P1

in Section 2.2 of the quantizer and the left-hand side of bound (7)
we arrive using (41) at

|f (η, µ)| ≤ µM3∆

≤
(1 + λ)νM3∆

ΩM2M
∥η∥, (45)

nd thus, employing definition (17) we get that

f (η, µ)| ≤
1

1 + λ
∥η∥. (46)

Therefore, along the solutions of (40), using (46) we obtain

|η(t + q)| ≤
1

1 + λ
max

{
sup

−D+q≤s≤0
|η(t + s)| , sup

0≤s≤q
|η(t + s)|

}
,

(47)

for 0 ≤ q ≤ h, and hence, since V1 (η) ≥ e−ν ln(1+λ) sup−D≤s≤0
|η(s)|, we get that

sup
0≤q≤h

|η(t + q)| ≤
1

1 + λ
max

{
eν ln(1+λ)V1 (ηt) , sup

0≤s≤h
|η(t + s)|

}
.

(48)

Thus,

sup
0≤s≤h

|η(t + s)| ≤
1

1 + λ
eν ln(1+λ)V1 (ηt) . (49)

ombining (44), (49) we get that for all h such that 0 < h ≤

min
{
D
( 1

ν
− 1

)
, T
}
the following holds

V1 (ηt+h) ≤ e−h ν ln(1+λ)
D V1 (ηt) . (50)

By induction4 we obtain for t∗1 < t ≤ t∗1 + T

1 (ηt) ≤ e−
ν ln(1+λ)

D (t−t∗1)V1

(
ηt∗1

)
, (51)

4 In more detail, we express time as t = t∗1 + ih + q, where 0 ≤ i ≤
⌊ T

h

⌋
is

nteger and q is a real number such that 0 ≤ q ≤ h (see, e.g., [19] for detailed
omputations).
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nd hence, from the definition of V1 we get that

ηt∥ ≤ eν ln(1+λ)e−
ν ln(1+λ)

D (t−t∗1) sup
−D≤s≤0

es
ν ln(1+λ)

D
⏐⏐η (t∗1 + s

)⏐⏐ , (52)

hich implies from (37) that ∥ηt∥ ≤ M2Mµ, t∗1 < t ≤ t∗1 + T .
urthermore, using (51), from the definition of V1 and (18) we
et that

sup
D≤s≤0

es
ν ln(1+λ)

D
⏐⏐η (t∗1 + T + s

)⏐⏐ ≤ Ω sup
−D≤s≤0

es
ν ln(1+λ)

D
⏐⏐η (t∗1 + s

)⏐⏐ ,
(53)

nd hence, employing (37) we obtain (39), which also implies the
ollowing ultimate bound

ηt∗1+T∥ ≤ ΩM2Mµ. (54)

he analysis, in fact, provides an upper bound on the time for
hich relation (39) is satisfied, while it remains valid (and thus,
o it remains estimate (51)) as long as the solutions satisfy
1

(1+λ)ν ΩM2Mµ ≤ ∥ηt∥ (and thus, based on the preceding analysis,

hey also satisfy ∥ηt∥ ≤ M2Mµ). In the case where the solutions
atisfy ∥ηt1∥ ≤

1
(1+λ)ν ΩM2Mµ = (1 + λ)∆M3µ for some t1

uch that t∗1 ≤ t1 ≤ t∗1 + T , then they also satisfy ∥ηt∥ ≤
1

(1+λ)ν ΩM2Mµ, for t1 ≤ t ≤ t∗1 + T , fact which, in combination

ith (51) and the fact that V1 (η) ≤ ∥η∥, establish bound (38).
This is shown exploiting the form of the integral delay equation
(40) noting from the first equation in (45) that the implication
∥η∥ ≤ (1 + λ)∆M3µ H⇒ |f (η, µ)| ≤ µM3∆ holds. □

The Lyapunov-like functional employed within the proof of
emma 2 for establishing an ultimate boundedness property of
he target system, is defined as V1 (η) = sup−D≤s≤0 e

s ν ln(1+λ)
D |η(s)|,

otivated by Theorem 2.6 in [19] (for the case of no input),
tilizing the particular integral delay equation representation
40)–(42). However, as in Lemma 2 the goal is to establish an
ltimate boundedness property for the target system, rather
han asymptotic stability, one cannot directly apply Theorem 2.6
n [19]. Instead, we properly adapt its proof strategy for establish-
ng an ultimate boundedness property, in principle, also inspired
y a respective analysis for finite-dimensional systems. Further-
ore, as we are not aware of an off-the-shelf, Lyapunov-like

heorem that we could employ for directly establishing the re-
uired ultimate boundedness property for system (40)–(42) and
ince it is crucial to provide a constructive way for deriving an es-
imate of time T (i.e., an upper bound of the time interval needed
or the solutions to enter a desired region), we explicitly derive
tability estimates through evaluation of V1 along the solutions of
40)–(42), providing several steps (even though some of which
ay be similar to the ones from the proof of Theorem 2.6 in [19]),
hich are detailed within Eqs. (43)–(51).

roof of Theorem 1. Employing Lemma 1 one can conclude from
7) that bound (37) holds with µ = µ

(
t∗1
)
. Applying Lemma 2,

here µ is updated according to (13) (and thus, it is fixed on
any interval of the form

(
t∗1 + (i − 1)T , t∗1 + iT

]
, i = 1, 2, . . .), one

an conclude that at time instant t∗1 + T relation (39) holds with
= µ

(
t∗1
)
. One could then apply again Lemma 2 for t∗1 + T <

≤ t∗1 + 2T since from (13) it follows that µ(t) = Ωµ
(
t∗1
)
,

∗

1 + T < t ≤ t∗1 +2T . In fact, the above procedure shows that the
ollowing holds

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t∗1 + iT

)⏐⏐⏐ ≤
1

(1 + λ)ν
M2MΩ iµ

(
t∗1
)
,

i = 1, 2, . . . . (55)
6

From estimate (38) in Lemma 2 it then follows for t∗1 + (i−1)T <

t ≤ t∗1 + iT , i = 1, 2, . . ., that

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w(x, t)

⏐⏐⏐ ≤ max
{

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D

× w
(
x, t∗1 + (i − 1)T

)⏐⏐ , ΩM2Mµ(t)
(1 + λ)ν

}
. (56)

sing (55) and (13) (which implies that µ(t) = Ω i−1µ
(
t∗1
)
,

∗

1 + (i − 1)T < t ≤ t∗1 + iT ) we arrive at

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w(x, t)

⏐⏐⏐ ≤
1

(1 + λ)ν
M2MΩ i−1µ

(
t∗1
)
,

t∗1 + (i − 1)T < t ≤ t∗1 + iT , (57)

or i = 1, 2, . . ., where we used the fact that Ω < 1. Therefore,

w(t)∥∞ ≤
M2M
Ω

Ω
t−t∗1
T µ

(
t∗1
)
, t > t∗1 , (58)

which in turn implies that

∥w(t)∥∞ ≤
M2M
Ω

µ
(
t∗1
)
e

lnΩ
T (t−t∗1), t > t∗1 . (59)

urthermore, using (13) we have that µ
(
t∗1
)

≤ max
{
1,DM̄1

}
2M̄1τe2M̄1t∗1 µ0, and hence,

w(t)∥∞ ≤ µ0 max
{
1,DM̄1

} M2M
Ω

e2M̄1τe
(
2M̄1−

lnΩ
T

)
t∗1 e

lnΩ
T t ,

> t∗1 . (60)

stimate (31) and relation (7) imply that

w(t)∥∞ ≤ max
{
1,DM̄1

}
M1eM̄1t∗1 ∥u(0)∥∞, 0 ≤ t ≤ t∗1 . (61)

ombining estimates (60), (61), we arrive with the help of (7) at

u(t)∥∞ ≤ max
{
eM̄1t∗1 , ∥u(0)∥∞

}
M̄2eM̄1t∗1 e−

lnΩ
T t∗1 e

lnΩ
T t , t ≥ 0,

(62)

where M̄2 =
max{1,DM̄1}

M2
max

{
M2M
Ω

e2M̄1τµ0,M1

}
. Since from

emma 1 t∗1 ≤
1
M̄1

ln
M1
µ0

∥u(0)∥∞

M2

(
M

(1+λ)ν
M2
M1

−2∆
) and as −

lnΩ
T > 0 (since

0 < Ω < 1) we get using the properties of the logarithmic

function and defining M̄3 =

M1
µ0

M2

(
M

(1+λ)ν
M2
M1

−2∆
) that

eM̄1t∗1 ≤ M̄3∥u(0)∥∞ (63)

−
lnΩ
T t∗1 ≤ e

ln

(
(M̄3∥u(0)∥∞)

−
lnΩ
T

1
M̄1

)

≤ M̄
−

lnΩ
T

1
M̄1

3 ∥u(0)∥
−

lnΩ
T

1
M̄1

∞ . (64)

herefore, using (63), (64) we obtain

ax
{
eM̄1t∗1 , ∥u(0)∥∞

}
≤ max

{
M̄3, 1

}
∥u(0)∥∞ (65)

eM̄1t∗1 e−
lnΩ
T t∗1 ≤ M̄

1− lnΩ
T

1
M̄1

3 ∥u(0)∥
1− lnΩ

T
1
M̄1

∞ . (66)

ince from (18) it follows that lnΩ
T = −

ν ln(1+λ)
D , from (62) we

arrive, combining (65), (66) with the definitions of M̄2, M̄3, at (19).

Existence and uniqueness of solutions are shown capitalizing
on the relation of first-order hyperbolic PDEs to integral delay
equations [19,23]. Thus, utilizing the invertibility of the backstep-
ping transformation and the regularity properties of the kernels,
it suffices to show existence and uniqueness in variable η. In
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articular, for 0 ≤ t ≤ t∗1 Eq. (22) satisfies all assumptions of
Theorem 2.1 in [19], and hence, employing estimate (30) there
exists a unique solution η ∈ L∞

([
−D, t∗1

]
;R
)
. For t > t∗1 , in

ach of the intervals
(
t∗1 + (i − 1)T , t∗1 + iT

]
, i = 1, 2, . . ., where

is constant, the transformed closed-loop system is equivalent
o (40)–(42). Therefore, as the initial condition η̄t∗1

= η
(
t∗1 + s

)
,

D ≤ s ≤ 0, satisfies η̄t∗1
∈ L∞ ([−D, 0];R), one can employ

heorem 2.1 in [19] in each of the intervals
(
t∗1 + (i−1)T , t∗1 + iT

]
,

= 1, 2, . . . (since for fixed and bounded µ > 0, the mapping f
as the particular form (41) with q being locally Lipschitz and
atisfying q(0) = 0), which, in combination with the stabil-
ty estimate (19), guarantee existence and uniqueness of η ∈

L∞
((
t∗1 , +∞

)
;R
)
. In fact, those properties of q and the forms

(22), (41) of f guarantee that η is continuous on each interval of
the form

(
t∗1 + (i − 1)T , t∗1 + iT

)
, i = 1, 2, . . ., as well as on

(
0, t∗1

)
(and left continuous at t∗1 + (i − 1)T , i = 1, 2, . . .). □

4. Extension to input quantization

In the case where the control input is subject to quantization,
while measurements of the PDE state are available, the hybrid
feedback law is modified to

U(t) =

{
0, 0 ≤ t ≤ t̄∗1
µ(t)q

(
1

µ(t)

∫ D
0 k(D, x)u(x, t)dx

)
, t > t̄∗1

, (67)

where the tuning strategy for µ is given as

µ(t) =

⎧⎪⎪⎨⎪⎪⎩
max

{
1,DM̄1

}
e2M̄1 jτ µ0, (j − 1)τ ≤ t ≤ jτ , 1 ≤ j ≤ ⌊

t̄∗1
τ ⌋ + 1

µ
(
t̄∗1
)
, t̄∗1 < t ≤ t̄∗1 + T

Ωµ
(
t̄∗1 + (i − 1) T

)
, t̄∗1 + (i − 1)T < t ≤ t̄∗1 + iT , i = 2, . . .

,

(68)

nd t̄∗1 is the first time instant at which the following holds

u
(
x, t̄∗1

)⏐⏐ ≤
M

(1 + λ)ν
M2

M1M3
µ
(
t̄∗1
)
, for all x ∈ [0,D]. (69)

vent (69) can be detected using the available measurements of
he PDE state. Alternatively, one could verify whether relation
∥u(t̄∗1)∥∞

µ(t̄∗1)
≤

M
(1+λ)ν

M2
M1M3

is satisfied, which implies that (69) holds.

The form of the tuning strategy for µ is identical to the case of
measurements quantization. The difference lies in the fact that
the switching instant t̄∗1 is now characterized by the detection of
event (69).

Theorem 2. Consider the closed-loop system consisting of the
plant (1), (2) and the hybrid feedback law (67), (68) with param-
ters (15)–(18). If ∆ and M satisfy ∆

M <
M2

M3(1+λ)ν+1 , then for all

(·, 0) ∈ L∞ ([0,D];R) there exists a unique solution u (·, t) ∈

L∞ ([0,D];R), which satisfies

∥u(t)∥∞ ≤ γ̄ ∥u(0)∥
2+ ν ln (1+λ)

DM̄1
∞ e−

ν ln (1+λ)
D t , t ≥ 0, (70)

here γ̄ =
max{1,DM̄1}

M2
max

{
M2M
ΩM3

e2M̄1τµ0,M1

}
max

{
M2

1 (1+λ)νM3

µ0MM2
2

,

1
}(

M2
1 (1+λ)νM3

µ0MM2
2

)1+ ν ln (1+λ)
DM̄1 .

For specified data of the plant, i.e., for specified parameters
M1, M2, and M3, the condition of Theorem 1 is more restrictive, as
ompared with the respective condition in Theorem 2, in terms of
he allowable range of the quantizer parameters (expressed as the
llowable range of quantity ∆

M ), since M3 < M1 and (1 + λ)ν+1
≤

1 + λ)ν max{1 + λ, 2} (for 0 < ν < 1 and λ > 0). In both cases,
7

he degrees of freedom for satisfying the respective conditions are
dentical and, specifically, dependent on the choice of parameters
and ν.
The proof of Theorem 2 is based on the following two lem-

as, whose proofs employ similar arguments to the case of
easurements quantization.

emma 3. There exists a time instant t̄∗1 , satisfying t̄∗1 ≤
1
M̄1

ln
M1
µ0

∥u(0)∥∞

M
(1+λ)ν

M2
2

M1M3

, such that relation (69) holds.

Proof. Employing the backstepping transformation (5) and its
inverse (6) together with the feedback law (67), for 0 ≤ t ≤ t̄∗1 the
transformed closed-loop system is identical to the transformed
closed-loop system to the case of state quantization, defined in
(3), (4), with U ≡ 0, and hence, proceeding exactly as in the proof
of Lemma 1 we obtain

∥w(t)∥∞ ≤ max
{
1,DM̄1

}
eM̄1t∥w(0)∥∞, 0 ≤ t ≤ t̄∗1 . (71)

Choosing the switching signal µ according to (68) one can con-
clude that there exists a time instant t̄∗1 such that

∥w
(
t̄∗1
)
∥∞

µ
(
t̄∗1
) ≤

M
(1 + λ)ν

M2
2

M1M3
, (72)

and hence, since from (7) for all 0 ≤ x ≤ D it holds that
|u(x,t̄∗1)|
µ(t̄∗1)

≤
∥u(t̄∗1)∥∞

µ(t̄∗1)
≤

1
M2

∥w(t̄∗1)∥∞

µ(t̄∗1)
, we obtain that relation (69)

holds. □

Lemma 4. Under the constraint for ∆ and M stated in Theorem 2,
the solutions of the transformed closed-loop system (3), (4), (67), for
ixed µ > 0, which satisfy

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t̄∗1

)⏐⏐⏐ ≤
1

(1 + λ)νM3
M2Mµ, (73)

hey also satisfy for t̄∗1 < t < t̄∗1 + T

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w(x, t)

⏐⏐⏐ ≤ max
{

sup
0≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t̄∗1

)⏐⏐⏐ ,
ΩM2Mµ

(1 + λ)νM3

}
. (74)

oreover, the following holds

sup
≤x≤D

⏐⏐⏐e(x−D) ν ln(1+λ)
D w

(
x, t̄∗1 + T

)⏐⏐⏐ ≤ ΩM2Mµ
1

(1 + λ)νM3
. (75)

roof. Under the feedback law (67) for t̄∗1 < t ≤ t̄∗1 +T and fixed
we get the following integral delay equation

(t) = f̄ (ηt , µ) , (76)

here

¯ (ηt , µ) = µ

(
q

(∫ 0
−D k(D, s + D)G(t, s)ds

µ

)

−
1
µ

∫ 0

−D
k(D, s + D)G(t, s)ds

)
, (77)

and G is defined in (42), which is equivalent to the transformed
system (3), (4), under the control law (67) (where u is expressed
in terms of w through (6)). As long as Ω

(1+λ)ν
M2
M3

Mµ ≤ ∥η∥ ≤

M2 Mµ, using the property P1 in Section 2.2 of the quantizer and
M3
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Fig. 2. Left: The norm ∥u(t)∥∞ (solid line) of the closed-loop system (1), (2), with parameters D = 1, ḡ ≡ 0, and g(x) = g = 1.25, for all x ∈ [0, 1], under the
feedback law (12), (13), (15)–(18), (81), with parameters M = 2, ∆ =

M
40 , λ = ν =

3
4 , M1 = 1 + geg , M2 =

1
1+g , and µ0 = 1. The switching signal µ(t) MM2

M1(1+λ)ν

(dashed line) is also shown, with Ω = 0.65 and T = 1.01. Right: The corresponding state of the closed-loop system. The control effort is shown for x = 1.
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the left-hand side of bound (7) we arrive with (77) at⏐⏐f̄ (η, µ)
⏐⏐ ≤ µ∆

≤
(1 + λ)νM3∆

ΩM2M
∥η∥. (78)

Proceeding as in the case of the corresponding part of the proof
of Lemma 2 we arrive at (51), and hence, with the definition of
V1 we obtain from (73) that ∥ηt∥ ≤

M2
M3

Mµ, t̄∗1 < t ≤ t̄∗1 + T .

oreover, using (51), from the definition of V1 and (18) we get
hat

sup
D≤s≤0

es
ν ln(1+λ)

D
⏐⏐η (t̄∗1 + T + s

)⏐⏐ ≤ Ω sup
−D≤s≤0

es
ν ln(1+λ)

D
⏐⏐η (t̄∗1 + s

)⏐⏐ ,
(79)

nd hence, employing (73) we obtain (75), which also implies the
ollowing ultimate bound

ηt̄∗1+T∥ ≤ Ω
M2

M3
Mµ. (80)

he rest of the proof employs identical arguments to the proof of
emma 2. □

roof of Theorem 2. The proof of Theorem 2 follows the same
ines as the corresponding part of the proof of Theorem 1, em-
loying Lemmas 3 and 4. □

5. Simulation results

We consider system (1), (2) with D = 1, f ≡ 0, and g(x) = g =

1.25, for all x ∈ [0, 1]. Computing the eigenvalues of the generator
associated with the open-loop system, it is shown that there is a
real, positive eigenvalue σ ≈ 0.46, satisfying eσ (σ − g) + g = 0.
The quantizer is defined component-wise for each x ∈ [0, 1]
as

q
(
u(x)
µ

)
=

⎧⎪⎨⎪⎩
M,

u(x)
µ

> M
−M,

u(x)
µ

< −M

∆

⌊
u(x)
µ∆

+
1
2

⌋
, −M ≤

u(x)
µ

≤ M
, (81)

ith M = 2 and ∆ =
M
40 . The switching signal µ is updated ac-

ording to (13) with λ = ν =
3
4 . The initial condition is chosen, for

implicity, as constant, namely, u(x, 0) = 10, for all x ∈ [0, 1]. At
ime t∗ = 0.14 ‘‘capture’’ is guaranteed, i.e., event

⏐⏐q (
u
(
x, t∗

))⏐⏐

1 µ 1

8

≤

(
M

(1+λ)ν
M2
M1

− ∆

)
µ
(
t∗1
)
, for all x ∈ [0, 1], is detected, through

verifying that relation
qµ

(
u
(
t∗1
))

∞
≤

(
M

(1+λ)ν
M2
M1

− ∆

)
µ
(
t∗1
)

olds.
We show in Fig. 2 the supremum norm of the state of the

losed-loop system together with the switching signal µ(t)
MM2

M1(1+λ)ν , as well as the response of the state, where, in particular,
at x = 1 we show the control input signal. The response of
the closed-loop system is computed numerically employing a
Lax–Friedrichs scheme (see, e.g., [26]) with time- and spatial-
discretization steps equal to 0.005 and 0.02, respectively. The
integral incorporated in the backstepping controller (12) is com-
puted numerically using a left endpoint rule, while the back-
stepping kernels are given explicitly as k(x, y) = −geg(x−y) and
(x, y) = −g .

In order to further illustrate the significance of the proposed
ontrol design methodology, we show in Figs. 3 and 4 the re-
ponses of the closed-loop systems in the case in which the
ominal backstepping controller is employed, i.e., when the effect
f state measurements quantization is left uncompensated. For a
ixed, small value of µ, namely µ = 0.5, the state of the closed-
oop system, under the nominal control law, grows unbounded,
s shown in Fig. 3, since the initial condition is outside the range
f the quantizer, which is equal to Mµ. For a fixed, large value of
, namely µ = 100, the state of the closed-loop system, under
he nominal control law, remains bounded, which may be also
ttributed to the input-to-state stability (with respect to a bound-
ry disturbance) property of the nominal backstepping controller
see, e.g., Section 4 in [19]). Nevertheless, asymptotic stabilization
s not possible, as shown in Fig. 4, since the quantization error
s large, in particular, equal to ∆µ. In fact, it appears as though
he system goes into a limit cycle, since, due to quantization
ffect, the control input vanishes when the state lies within a
ertain region around zero, which results in the state to grow
as the open-loop system is unstable), until the quantizer may
witch to a non-zero value. Such a closed-loop system behavior
s consistent both with results reported in the finite-dimensional
ase, see, e.g., [18,27], as well as with the results for hyperbolic
ystems in [15,16] (which do not explicitly aim at compensa-
ion of the quantization effect in order to achieving asymptotic
tabilization).
Last but not least, in Fig. 5 we also show the corresponding

losed-loop response in the case of input quantization, i.e., under
he feedback law (67)–(69), where the quantizer q in this case is
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Fig. 3. Left: The norm ∥u(t)∥∞ of the closed-loop system (1), (2), with parameters D = 1, ḡ ≡ 0, and g(x) = g = 1.25, for all x ∈ [0, 1], under the nominal feedback
law U(t) = µ

∫ D
0 k (D, x) q

(
u(x,t)

µ

)
dx, for fixed µ = 0.5 and q defined in (81), with parameters M = 2, ∆ =

M
40 . Right: The respective state of the closed-loop system.
Fig. 4. Left: The norm ∥u(t)∥∞ of the closed-loop system (1), (2), with parameters D = 1, ḡ ≡ 0, and g(x) = g = 1.25, for all x ∈ [0, 1], under the nominal feedback
law U(t) = µ

∫ D
0 k (D, x) q

(
u(x,t)

µ

)
dx, for fixed µ = 100 and q defined in (81), with parameters M = 2, ∆ =

M
40 . Right: The respective state of the closed-loop system.
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efined as

(
Ū
µ

)
=

⎧⎪⎪⎨⎪⎪⎩
M, Ū

µ
> M

−M, Ū
µ

< −M

∆

⌊
Ū

µ∆
+

1
2

⌋
, −M ≤

Ū
µ

≤ M
, (82)

nd, in particular, it has only one component (since it takes as
rgument the value of the scalar quantity Ū

µ
=

∫ D
0 k(D,x)u(x)dx

µ
).

6. Future work

Although the update law for the zoom variable of the quan-
tizer is based on time-dependent switching, a, potentially, more
robust strategy would be to design a state-dependent switching
rule (see, e.g., [28], for design of a state-dependent switching
strategy in boundary controlled, hyperbolic PDE systems), on the
basis of the available quantized measurements, for determining
when the state enters a certain region. For a control strategy
that would be based on state-dependent switching, one would
determine the switching instants, say t∗i , i = 2, 3, . . ., at which
he value of µ is updated, based on the satisfaction of an event-
based criterion indicating when the state enters a desired region.
In the case of state measurements quantization such events could
 b

9

be determined for i = 1, 2, . . . employing conditions of the form⏐⏐⏐qµ(t∗i )

(
u
(
x, t∗i+1

))⏐⏐⏐ ≤

(
M

(1 + λ)ν
M2

M1
Ω − ∆

)
µ
(
t∗i
)
,

for all x ∈ [0,D], (83)

(or, alternatively, utilizing conditions
qµ(t∗i )

(
u
(
t∗i+1

))
L∞

≤(
M

(1+λ)ν
M2
M1

Ω − ∆

)
µ
(
t∗i
)
), which would also guarantee (using the

rguments within the proof of Lemma 1 and relation (7)) that
ound (39) holds (with µ replaced by µ

(
t∗1
)
and t∗1 + T replaced

y t∗2 ). Such an approach could be suitable for a continuously
djusted control input. Furthermore, employment of such a strat-
gy, would potentially also require establishment of avoidance of
eno behavior in the closed-loop system.
As the issue of existence and uniqueness of closed-loop solu-

ions in the case in which the quantizer is only piecewise constant
unction, taking finitely many values, may, potentially, become
ore tractable when the control input is applied through a zero-
rder hold (see, e.g., [8]), which may also be the case in more
ealistic, practical scenarios, a potential next step would be to
onsider, simultaneously, the effect of sampling and quantiza-
ion. In the case in which an event-triggered mechanism may
e utilized, updating the values of control input at discrete time
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T

Fig. 5. Left: The norm ∥u(t)∥∞ of the closed-loop system (1), (2), with parameters D = 1, ḡ ≡ 0, and g(x) = g = 1.25, for all x ∈ [0, 1], under the feedback law (67),
(68), (15)–(18), (82), with parameters M = 2, ∆ =

M
40 , λ = ν =

3
4 , M1 = 1 + geg , M2 =

1
1+g , and µ0 = 1. Right: The corresponding state of the closed-loop system.

he control effort is shown for x = 1.
instants, one may have to combine the event-based strategy for
updating the values of µ (e.g., according to (83)), with an event-
triggered strategy, potentially based on an approach as the ones
presented in, e.g., [7,29], for updating the values of the control
input U , possibly employing a different criterion for deriving the
triggering instants.
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