

School of Electrical and

Computer Engineering

Diploma Thesis

Instantiating OpenAPI Descriptions to the

REST Services Ontology

Bouraimis Fotios

Committee

Supervisor: Prof. Euripides G. M. Petrakis

Assoc. Prof. Michail G. Lagoudakis

Assoc. Prof. Samoladas Vasileios

Abstract

 The increasing interest in Web Service architectures over the past years has led to the proliferation of Web ser-
vice offerings over the internet. Consequently, the need for efficient and accurate service discovery based on user
needs has become a significant challenge. In order for services to become understandable and discoverable by hu-
mans and machines they need to be formally described. In this work, we use the OpenAPI Specification (OAS), a
widely used specification for the description of REST APIs. OpenAPI descriptions are mainly understandable by
humans. However, OpenAPI descriptions need to be also understandable by machines so that, the services can be
searched, discovered and used by other services. In order for a machine to understand the meaning of OpenAPI,
service descriptions need to be formally defined and their content be semantically enriched in a way that elimi-
nates ambiguities. Taking into consideration the advantages of OpenAPI 3.0, our approach suggests that in order
to eliminate ambiguities in OpenAPI descriptions, OpenAPI properties must be semantically annotated. Building-
upon the latest version of OpenAPI and taking advantage of Semantic OpenAPI (SOAS 3.0) this work provides a
complete mechanism to transform OpenAPI descriptions to ontologies. As a result, the ontology will make service
discovery possible with the application of query languages (e.g., SPARQL) and reasoning tools for detecting incon-
sistencies and inferred relationships in SOAS descriptions.

Acknowledgments

 I would really like to express my sincere appreciation to my Supervisor, Professor Euripides G. M. Petrakis for
the help and support from the beginning till the end of this thesis. Moreover, I am grateful to Nikos Mainas for his
great suggestions and thoughtful discussions we had together. I would also like to thank Professor Vasileios Sa-
moladas and Professor Michail G. Lagoudakis for their constructive comments and for participating in the evalua-
tion committee. I would also like to thank all the members of the Intelligence Lab for their excellent communica-
tion and generous support.

Contents

Introduction ... 1

1.1 Motivation ... 1

1.2 Problem Definition .. 1

1.3 Proposed Solution ... 1

1.4 Contributions of the Work ... 2

1.5 Thesis Outline .. 2

Background ... 3

2.1 Introduction ... 3

2.2 REST ... 4

2.3 OpenAPI Specification ... 4

2.4 Hydra Core Vocabulary .. 5

2.5 SHACL ... 7

Handling Schema Objects ... 9

3.1 Introduction ... 9

3.2 Schema Object in OpenAPI v3 Ontology ... 9

3.3 Semantic Annotations ... 12

3.4 OpenAPI Keywords .. 14

3.5 Handling Schema Objects without Semantic Annotations .. 19

3.6 Semantically Annotated Schema Objects .. 22

3.7 General Case .. 29

3.8 Composition and Inheritance .. 31

3.9 Semantically Annotated Composed Schema Objects .. 33

3.10 Polymorphism .. 37

3.11 Annotations within Property Schema Components .. 42

3.12 Keyword Not .. 46

3.13 Synopsis ... 48

Instantiation Algorithm .. 53

4.1 Introduction ... 53

4.2 OpenAPI Object ... 54

4.3 Operation Object ... 58

4.4 Parameter Object .. 59

4.5 Response and Request Body Objects .. 62

4.6 Schema Objects ... 63

4.7 Synopsis ... 65

Web Application and SPARQL Results ... 66

5.1 Introduction ... 66

5.2 Web Application .. 66

5.3 Services and SPARQL Queries .. 69

5.4 Run-Time Performance .. 84

Conclusion and Future Work .. 86

6.1 Conclusions .. 86

6.2 Summary .. 86

6.3 Future Work ... 87

OpenAPI Descriptions ... 88

A.1 Google Books API .. 88

A.1.1 Bookself ... 88

A.1.2 PDF .. 90

A.2 Google Blogger API .. 90

A.2.1 Blog.. 90

A.2.2 Comments ... 93

A.2.3 Post.. 95

A.3 YouTube API .. 95

A.3.1 Comments ... 95

A.3.2 Subscription .. 98

A.4 Google Fit API .. 99

A.4.1 UserDataraSourcesResource – Extra .. 99

A.5 Gmail API ... 101

A.5.1 Message, Draft .. 101

A.6 Service Bundle ... 105

A.6.1 Subscription, Post.. 105

References .. 107

1

Chapter 1

Introduction

1.1 Motivation

 The World Wide Web has become an integral part of our daily life. The Web is realized as a composition of Web
services. A Web service is a unit that provides a variety of functions (often referred to as services) which are
activated over HTTP. Web services comprise a great tool for the Web developer community. Typically, Web
services are described in plain text which users have to browse and read, in order to determine whether a service
meets their needs. However, text descriptions are not readable by machines and in some cases are inaccurate or
vague. Web services need to be formally described in a way that is understandable by both humans and machines.
The last requirement would not only improve the accuracy of service descriptions but also, would allow for
services to be discovered by other services and be orchestrated in composite services or applications.
 A Web service description is a document by which the service provider communicates the specification of the
Web service to the service requester. OpenAPI specification (OAS)1 is a widely adopted standard for describing
REST APIs which is supported by large industry users like Google, Microsoft, IBM, Oracle and many others.
However, the problem of inaccuracy remains.

1.2 Problem Definition

 OpenAPI Specification (OAS) is a description format for REST APIs. The descriptions of Web services written in
this format are mainly understandable by humans. However, OpenAPI descriptions must be also understandable
by machines so that, the services can be searched, discovered and used by other services. In order for a machine
to understand the meaning of an OpenAPI description, the OpenAPI properties must be semantically annotated
and mapped to a semantic model. The focus of this work is on improving the description of Web Services in order
to provide descriptions which are both uniquely defined and discoverable.

1.3 Proposed Solution

 In order for a machine to understand the meaning of an OpenAPI service description, a service description needs
to be formally defined and its content semantically enriched. In a previous work [1], we proposed that OpenAPI
service descriptions can be semantically annotated using extension properties. The extended model was the
Semantic OpenAPI Specification (Semantic OpenAPI [2]). Taking a step forward we then created a mechanism
that achieves the association of OpenAPI entities to entities of an Ontology. The present work complements and
improves this approach in certain ways.
 The new ontology instantiation algorithm can handle a wider range of OpenAPI Schema Objects. This is feasible
by supporting the instantiation of new property keywords in Schema Objects that are introduced with OpenAPI
Specification v3.0. Along with the property keywords, the algorithm now supports model composition which
allows the definition of composition Schema. In addition, the algorithm supports model polymorphism which
allows a model to accommodate more than one OpenAPI schemas. Continuing, we introduced the concept of
inheritance between the ontology classes that correspond to OpenAPI Schema Objects. As a last step concerning
the instantiation algorithm, we managed to semantically enrich OpenAPI descriptions in a more efficient way. In
particular, the algorithm creates ontology entities even if a description is not semantically annotated. Therefore,
the newly defined semantic entities can be used in other OpenAPI descriptions. Finally, we provided a Web
Application to the community. The Web Application allows for users to translate their OpenAPI description in to
an ontology and offers several other additional features as well.

1 https://www.openapis.org

2

1.4 Contributions of the Work

The following summarizes the contributions of this work:

• Supports the instantiation of all Schema Object property keywords introduced with OpenAPI Specification

v3.0.

• Improves the existing instantiation algorithm of [1] to support model composition between OpenAPI
schemas. Model composition allows for the combination of OpenAPI schemas.

• Introduces the concept of polymorphism between OpenAPI schemas. Polymorphism allows a model to
accept more than one OpenAPI schemas.

• Introduces the concept of inheritance concerning the entities of the ontology. Inheritance creates relations
between the ontology classes that correspond to OpenAPI schemas.

• Expands the range of service discovery by semantically enriching OpenAPI descriptions in a more efficient

way.

• Provides a Web application to the community, that supports the translation of OpenAPI descriptions to
instances of the OpenAPI ontology as well as making SPARQL queries online to every available ontology on
the server.

• Demonstrates the use of the algorithm for service discovery in several service descriptions which are
available on the Web and also presents the results and benefits that are derived by using our mechanism
for the transformation of a Semantic OpenAPI service description to an ontology.

1.5 Thesis Outline

 In chapter 2 we present the necessary background for this work and we briefly describe technologies that were
used in this thesis. In chapter 3 we describe our method on OpenAPI properties and explain our approach on
every step. Also, we present in an abstract level the part of the algorithm that was created during this thesis and
handles each case presented in chapter 3. Continuing, in chapter 4 we present the whole instantiation algorithm
in order to give the reader the opportunity to have an overview of our mechanism. Chapter 5 contains the results
that were derived by applying our mechanism to Google services and demonstrates real life situations of service
discovery. In addition, in chapter 5 we describe the functionality and user interface of the Web Application.
Finally, chapter 6 presents our conclusions and our plans for future work.

3

Chapter 2

Background

2.1 Introduction

 The Semantic Web is presented as an extension of the World Wide Web following the standards of World Wide
Web Consortium2 (W3C). Information in Semantic Web is offered both in human-readable and machine-readable
data, making the communication between machines possible. It also provides a set of standards and technologies
contributing to an environment where data and their relationships are represented in a common data format.
 The Resource Description Framework (RDF)3 is the heart of Semantic Web. RDF is a data model for expressing
information about resources using statements. A resource is identified by an International Resource Identifier
(IRI). IRIs are global identifiers and can be used to identify the same resource. RDF describes the relationship
between two resources in the form of a triple. A triple contains a Subject connected to an Object with a relation
represented by the Predicate. A collection of triples builds a graph, and a collection of graphs forms a dataset. An
example is given in Figure 2.1.

Figure 2.1: Semantic triple

 RDF Schema (RDFS)4 and Web Ontology Language (OWL)5 provide tools for creating vocabularies as well as
ontologies that capture knowledge in an area of interest. More specifically, ontologies provide the means for
representing high level concepts, their properties and interrelationships. Of course, there are also other ways to
represent knowledge, like vocabularies or logical models but ontologies offer many more advantages. In
ontologies we meet terms such as classes, instance of classes (individuals), properties, attributes, restrictions,
relations as well as axioms and rules. The advantage of ontologies is that they dictate an easy but also formal way
to express relationships and linking data to specific concepts. The difference with RDFS is that RDFS provides a
data-modeling vocabulary for RDF as well as mechanisms for describing classes, class hierarchies, data types or
properties. Unlike RDFS, the Web Ontology Language (OWL) is a family of knowledge representation language
offering increased expressiveness for describing classes and properties. Among others, OWL allows for the
definition of relations between classes (e.g., disjointness), equality, restrictions over properties (e.g., cardinality
restrictions) and partial order or equivalence relations between properties (e.g., transitive, symmetric
properties).
 In order to check the validity of the relations between its entities, the Semantic Web offers tools called Semantic
reasoners. A Semantic reasoner (e.g., Pellet) is a piece of software able to infer logical consequences from a set of
asserted facts or axioms. First, is the most popular of all, the consistency checking. Consistency checking ensures
that ontologies do not contain any contradictory facts. Next is checking a class of an ontology whether it is
possible to have instances. That is called concept satisfiability and if a class is unsatisfiable, defining an instance of
a class will cause an inconsistency problem. Next is the classification, which creates the class hierarchy by
checking classes and their subclasses. Finally, is the realization, which finds the most specific classes of
individuals.

2 https://www.w3.org/
3 https://www.w3.org/RDF/
4 https://www.w3.org/TR/rdf-schema/
5 https://www.w3.org/OWL/

4

 The last piece of Semantic Web is the ability for querying RDF data. SPARQL6 an acronym for Protocol and RDF
Query Language, is the W3C standard recommendation for querying and manipulating RDF data as well as a
protocol to invoke queries over HTTP and a number of result formats (XML, JSON, CSV).

2.2 REST

 REST (Representational State Transfer) is a software architectural style for creating Web Services. All REST-
compliant systems are characterized by five principles (and one optional) that must be met in order to call a Web
Service RESTful. REST is the most dominant architectural style through Web Services since it`s introduction to the
public and that is because it offers great convenience for Web Services to communicate with each other.
 The separation of concerns between client and server in RESTful Web Services is of high importance. Clients
interact with the server through standard operations on resources and they are completely agnostic over the
underlying service logic and implementation. Web resources consist of any object (document, file, etc.) on the
Web and are identified by their URL`s. The communication between a client and a service starts always with the
client`s initiative. The client sends a request to the server asking for a resource and the server responds to this
request. The state of the client does not affect the state of the server. This means, that every request contains the
necessary information to interact with the service, as the service doesn't store any information on previous
requests. Also, in order for their communication the client needs to know what operation to use on the server to
retrieve the requested resource. These operations, are HTTP methods and the most common between them are
the GET, POST, PUT and DELETE method. As well as the operation, the client also needs to know what header to
use inside the request message and the path that leads to the resource.
 After the Client-Server and Statelessness, next is the Cache constraint. The Cache constraint requires the data
sent from the server to be either cacheable or non-cacheable. The first means that the client is allowed to store the
data from a server response and the second does not permit their storage. The need for data storage is to prevent
repeated and unnecessary requests to the server. It is obvious that this constraint improves any Web Service in
terms of performance as it reduces the work load of requests a server has to manage. Next is the Layered
constraint. A layered system is organized hierarchically, each layer providing services to the layer above it and
using services of the layer below it. Layered-client-server adds proxy and gateway components to the client-
server style. These additional mediator components can be added in multiple layers to add features like load
balancing and security checking to the system. Another constraint is the Code-On-Demand. Although it is optional,
it offers the opportunity to the client to download executable code from the server.
 The last and most characteristic constraint that make Web Services RESTful is that of Uniform Interface. The
uniform interface constraint is fundamental to the design of any RESTful system. The Uniform Interface
constraints that exist in REST architecture are four. The first constraint dictates that individual resources are
identified in requests and it is called resource identification in requests. Second is the resource manipulation
through representation which allows the client to modify a resource given that the server permits it. Next is the
self-descriptive messages, which means that messages to and from the server must include all the necessary
information to be efficiently processed. The last interface constraint is that of HATEOAS. This constraint dictates
that a server must provide all the available actions and resources to the client`s disposal through hyperlinks.

2.3 OpenAPI Specification

 OpenAPI Specification is probably the most heavily adopted approach, for the description of RESTful services. It
is an open-source, language agnostic specification, through which a consumer can understand and use a service
by applying minimal implementation logic. Service descriptions are offered in either JSON or YAML format, which
can be produced and served statically, or be generated dynamically from the application. This allows the design
and implementation of APIs to follow either a top-down (the service description is initially created and then the
service is implemented) or bottom-up approach (the service description is generated from the service
implementation).
 Figure 2.2 illustrates the structure of an OAS 3.0 service description. It comprises of many parts (objects). Each
object has a list of properties which can be objects as well. This way, are linked to each other. The Info object

6 https://www.w3.org/TR/rdf-sparql-query/

5

provides non-functional information such as the name of the service, service provider, license information and
terms of the service. The Servers object provides information on where the API’s servers are located. The Servers
object specifies the base-path (the part of the URL that appears before the endpoint) of an API request. There are
also variables that can be populated at run-time. Servers can be defined for different operations (i.e., a Servers
object can be added as property in Path object of an Operation object). These locally declared servers will
override the base (i.e., global) servers.
 The Security requirement object lists the security schemes that the service applies to execute an operation. Its
name must correspond to a security scheme declared in Security Schemes under the Components object. The
specification offers support for basic HTTP authentication, API keys, OAuth2 common flows or grants (i.e., ways of
retrieving an access token) and OpenID Connect. The Paths object describes the available operations (i.e., HTTP
methods) and contains the relative paths for the service endpoints (which is appended to a server URL in order to
construct the full URL of an operation).
 Components object holds a set of reusable objects which can be responses, parameters, schemas, request bodies
and more. Schemas object define data structures that are used to describe the request and response messages. A
Schema object can be a primitive (string, integer), an array or a model. A Schema object may also have properties
of its own accord (i.e., externalDocs) and properties supporting model composition and polymorphism.
 The Responses object describe the expected responses of an operation, by mapping them to a specific HTTP
status code. A response object defines the message content, as well as HTTP headers that a response may contain.
Parameters object describes parameters that operations use. The specification, categorizes parameters into:
 Path parameters are used in cases where the parameter values are part of operation’s path.
 Query parameters are appended to the url when sending a request.
 Header parameters define additional custom headers that may be sent in a request.
 Cookie parameters are passed in the Cookie header.

Figure 2.2: OpenAPI Document Structure

2.4 Hydra Core Vocabulary

 Hydra7 is a set of technologies that simplify the development of interoperable, hypermedia-driver Web APIs.
More specifically, Hydra defines a number of concepts in RDF Schema that allow machines to understand how to
interact with an API. The main purpose is to provide a vocabulary through which the messages from the server
contain enough information that a client can use in order to discover all the available actions and resources it
needs. All the information about the valid state transitions is exchanged in a machine-processable way at runtime
instead of being hardcoded into the client at design time contributing to the separation of concerns between client
and server.
 In the center of the vocabulary (Figure 2.3) is the ApiDocument class which builds the foundation for the
description of a Web API. Hydra, describes an API by giving it a tittle, a short description, and documenting its

7 https://www.hydra-cg.com/spec/latest/core/

6

server-defined main entry point (Entry Point), all the operations (Operation) as well as the entities (Classes) and
their properties (Properies). Also, the classes known to be supported by the Web API and all the addition
information about status codes from response objects can be documented.
 Typically, in Web services, a client decides whether to follow a link or not based on the link relation which
defines its semantics. The Resource class is used to inform a client that an IRI is dereferenceable, meaning that
when an IRI is accessed a representation of a resource is retrieved. This allows a client to distinguish Linked Data
from IRIs that are used exclusively as identifiers. Similarly, the Link class is used in order to define properties
whose properties are known to be dereferenceable IRIs.

Figure 2.3: Hydra Core Vocabulary

However, in some cases the server cannot create links although they are essential for interacting with the Web
service. For example, in order to query a service a link may contain parameters that a client must fill at runtime.
Hydra provides us with the IriTemplate class to handle these cases. An IriTemplate describes a template and a
number of mappings. An IriTemplateMapping maps a variable in the IRI template to a property and may
optionally specify whether that variable is required or not. To better understand this, the example in Figure 2.4
represents a description of an IRI Template. The variable lastname maps to the property givenName from
Schema.org vocabulary. Utilizing this information, the client can fully understand the meaning of variables and
generate a complete URI.

{

 "@context": "http://www.w3c.org/ns/hydra/context.jsonld",
 "@type": "IriTemplate",
 "template": "http://api.example.com/users{?lastname}",
 "mapping": [
 {

 "@type": "IriTemplateMapping",
 "variable": "lastname",
 "property": "schema.org/givenName",
 "required": true
 }

]

}

7

Figure 2.4: Description of an IRI Template

 In addition to IriTemplate, another equally important Hydra class is the Operation class. This class contains all
the necessary information in order for an HTTP request from the client to be valid. The method property specifies
the HTTP method, while the expects and returns properties define the expected data in request and response
messages. Furthermore, the status-Code property specifies a StatusCodeDescription that provides a developer with
information regarding what to expect when invoking an operation.
 Another interesting feature of Hydra is presented via the SupportedProperty Class. Hydra, as well as using
classes to describe information expected or returned by an operation, it also defines a new concept which
describes the properties of a class. More specifically, it is possible to define a property as required, read-only or
write-only depending on which class is associated with. For example, in Figure 2.5 we can define the property
which is supported by a class as required (means that its presence is obligatory in the request), as readable,
(means that the client cannot see its value) and as writeable (means the client cannot change the property`s
value). In a similar manner, Hydra introduces the SupportedOperation property which makes it possible to define
operations supported by all instances of a class.

{

 "@context": "http://www.w3c.org/ns/hydra/context.jsonld",
 "@id": "http://api.example.com/doc/#Comment"
 "@type": "Class",
 "title": "The name of the class",
 "description": "A short description of the class",
 "supportedProperty": [
 ... Properties known to be supported by the class...

 {

 "@type": "SupportedProperty",
 "property": "#property", //The property
 "required": true, // Is the property required in a request to be Valid?
 "readable": false, // Can the client retrieve the property`s value?
 "writeable": true, // Can the client change the property`s value?
 }

]

}

Figure 2.5: Hydra SupportedProperty Class

2.5 SHACL

 SHACL8 stands for Shapes Constraint Language and is an RDF vocabulary that is used to describe and validate
the structure of RDF data. The RDF data, are validated against a set of conditions which are expressed in SHACL as
shapes. The RDF graphs used for providing the constraints are called shapes graphs and the RDF graph that
contains the data to be validated it is called data graph. The SHACL processor accepts as an input the data graph
and the shapes graphs and generates validation reports based on constraints. In SHACL, the nodes of the shapes
graph are divided in two major categories. First is the node shape which contains constraints about a given focus
node. Next, is the property shape which contains constraints about a property and the values of a path for a node.
A node shape contains targets which specify which nodes in the data graph must conform to a shape and
constraint components which determine how to validate a node. For example, in Figure 2.6 a node shape is
presented by the shapes graph and three nodes from the data graph in order to be validated. Due to the
constraints that exist in the node shape, only two nodes from the data graph are valid. The first invalid node,
(:bob) does not have a name property but a firstName property. The second invalid node (:alice), on the email

8 https://www.w3.org/TR/shacl/

8

property has as a string type value and not an IRI one.

Figure 2.6: SHACL validation, sh:targetNode

 Except for the sh:targetNode, which specifies directly the nodes to be validated, there is also the sh:targetClass.
This is encountered in the majority of times as it signifies that all the nodes of a given type need to conform with a
particular shape. In Figure 2.7, an example of the sh:targetClass is presented. Here, the three nodes of the data
graph are all of the same type (:User), meaning that all are instances of the User Class. The ":UserShape” can point
to these nodes for validation, with sh:targetClass. The last two nodes in the data graph remain invalid for the same
reasons as before.

Figure 2.7: SHACL validation, sh:targetClass

 It is necessary to distinguish between the use of SHACL and the use of OWL. Some of the major differences about
their usage is that even though OWL has restrictions, they are not designed to validate data, they are designed to
allow inference of data. Another difference is that OWL adopts the open world assumption. What this means, is
that if a class of Person is defined with properties, surname, name and date of birth and a node from the data graph
has only two of these values, we cannot claim that this node is invalid. In this case we can say that a property is
missing but not that is invalid. On the other hand, SHACL is close world assumption which means that for the
current example the node would be invalid.

9

Chapter 3

Handling Schema Objects

3.1 Introduction

 The Schema Object allows the definition of input and output data types. Schema Objects are placed under the
Components section and can be referenced by every other Object of an OpenAPI document. They are of high
significance due to their frequent appearance in core elements of OpenAPI descriptions such as Responses,
Request Bodies, Parameters etc. A formal procedure for mapping of Schema Objects to the OpenAPI ontology is
presented below.
 OpenAPI v3.0 introduced keywords like anyOf, allOf, oneOf and “not” and allowed for the creation of more
complex schemas with various data types. These properties support and express concepts like model composition
and polymorphism. These new features in conjunction with the usage of semantic annotations brings in more
complexity to our algorithm as well as more capabilities. In this chapter all of these issues are addressed. Schema
Objects need to be semantically enriched in order eliminate ambiguities [2]. In OpenAPI v3.0, Schema Objects are
enhanced with additional properties and offered much more potential for further clarification of their intended
meaning.

3.2 Schema Object in OpenAPI v3 Ontology

 First, we explain how Schema Objects and their structural parts are expressed in the ontology. Schema Objects
are expressed as classes, object and data properties using SHACL vocabulary9. SHACL is an RDF vocabulary that
can be used to describe and validate the structure of RDF data, similarly to XML-Schema or JSON Schema. SHACL
can be used to define classes together with constraints on their properties. It provides built-in types of constraints
(e.g., cardinality: minCount/maxCount) and allows expression of constraints (as well as logical combinations of
such constraints) on the type of properties and on the values the properties can take. Table 1 shows the direct
mapping of Schema Object properties with the SHACL vocabulary.

Table 3.1: Mapping OpenAPI Schema Object properties to SHACL

Schema Object Property SHACL Property

exclusiveMaximum
sh:exclusiveMaximum if OpenAPI
exclusiveMaximum is true

exclusiveMinimum
sh:exclusiveMinimum if OpenAPI
exclusiveMinimum is true

maxLength sh:maxLength
minLength sh:minLength

pattern sh:pattern
maxItems sh:maxCount
minItems sh:minCount

enum sh:in
allOf sh:and

oneOf sh:xone
anyOf sh:or

9 https://www.w3.org/TR/shacl

10

not sh:not
default sh:defaultValue

 A Schema Object of OpenAPI v3.0 is mapped in Shape Class in the ontology. A Shape Class is distinguished into
NodeShape Class and PropertyShape Class. A shape determines how to validate a focus node (a node from the
data graph) based on the values of properties and other characteristics of the focus node. The two types of shapes
are defined by the SHACL Core language. Shapes about the focus node itself are called node shapes and shapes
about the values of a particular property for the focus node are called property shapes. In OpenAPI ontology, the
NodeShape class represents the classes that describe the models of an OpenAPI v3.0 description (schemas) and
PropertyShape class represents the properties of a class, their datatype and restrictions.
 Listing 3.1 shows the Error model from the Swagger Petstore example. The model is of type object and contains
two required properties code and message. Each one of the properties contains information about the type and
format constrains that follows. Listing 3.2 shows how the Error model of Listing 3.1 is represented in the OpenAPI
ontology. The model will be translated into an instance of the NodeShape Class. Inside the focus node, the
rdfs:label predicate is used to provide human-readable version of the resource`s name. The sh:property declares
that the specified node has one or more property shapes (instances of the PropertyShape class). Also each value
of the sh:property, according to SHACL Core language, is a well-formed property shape. The predicate
sh:targetClass will be explained in detail later on.

Error:
 type: object
 required:
 - code

 - message

 properties:
 code:
 type: integer
 format: int32
 message:
 type: string

Listing 3.1: OAS Model Swagger Petstore Error Schema Object

<ErrorNodeShape> a sh:NodeShape ;
 rdfs:label "ErrorNodeShape" ;
 sh:property <Error_messagePropertyShape> , <Error_codePropertyShape> ;
 sh:targetClass <Error> .

<Error> a owl:Class .

Listing 3.2: Representation of a Schema Object in OpenAPI ontology
(ErrorNodeShape)

 Listing 3.3 shows how both properties of Error model, code and message, are represented in the OpenAPI
ontology. Each one will become an instance of PropertyShape class. The values of sh:datatype come from the type
and format of each property. In particular a property of type integer with format “int32” will give an “xsd:int” value
and one with format “int64” will give an “xsd:long” value. Continuing, predicate openapi:name corresponds to the
OpenAPI property name inside the Schema Object and finally sh:path has a value of an rdf:Property instance. In
particular, sh:path predicate points at the URI of the property that is being restricted.

11

<Error_messagePropertyShape>
 a sh:PropertyShape ;
 rdfs:label “Error_messagePropertyShape” ;
 openapi:name “message” ;
 sh:datatype xsd:string ;
 sh:path <Error_message> .

<Error_message> a rdf:Property .

<Error_codePropertyShape>
 a sh:PropertyShape ;
 rdfs:label “Error_codePropertyShape” ;
 openapi:name “code” ;
 sh:datatype xsd:int ;
 sh:path <Error_code> .

<Error_code> a rdf:Property .

Listing 3.3: Representation of Schema Object properties in OpenAPI ontology
(Error_messagePropertyShape, Error_codePropertyShape)

 In OpenAPI descriptions and services, a variety of properties are defined. As properties are declared, conflicts of
names may often occur because the same property may appear many times in the document with the same or
different meaning. The algorithm handles these issues by prefixing all property shapes with the name of the
schema object that the property belongs to, hence the Error_codePropertyShape which comes from the property
code in the error schema object. The same approach is followed with rdf:Property instances, (i.e. Error_code,
Error_message) which are used as objects to the sh:path predicates.
 Another great example is that of Dog Schema object. The Dog schema in Listing 3.4 has two properties, “bark”
and “packSize” but only “packSize” is required. The “bark” property is of type boolean and “packSize” is of type
integer and as seen in the description value, expresses the size of the dog pack. The example in Listing 3.5 is the
part of the ontology that the Dog Schema object is mapped to. Inside the ontology, a node shape is created for the
Schema object with two property shapes, one for each property. The openapi:description predicate in
Dog_packSizePropertyShape contains the value of the OpenAPI property “description”. Inside
Dog_barkPropertyShape, the value of sh:datatype is xsd:boolean which maps to “boolean”. Lastly, although only the
“packSize” property is required, both properties need to be mapped in property shapes and both individuals (of
the property shapes) need to be included in Dog node shape.

Dog:
 type: object
 properties:
 bark:
 type: boolean
 packSize:
 type: integer
 format: int64
 description: the size of the pack the dog is from
 default: 0
 required:
 - packSize

Listing 3.4: OAS Model Swagger Petstore Dog Schema Object

12

<DogNodeShape> a sh:NodeShape ;
 rdfs:label "DogNodeShape" ;
 sh:property <Dog_packSizePropertyShape> , <Dog_barkPropertyShape> ;
 sh:targetClass <Dog> .

<Dog> a owl:Class .

<Dog_packSizePropertyShape>
 a sh:PropertyShape ;
 rdfs:label "Dog_packSizePropertyShape" ;
 openapi:description "the size of the pack the dog is from" ;
 openapi:name "packSize" ;
 sh:datatype xsd:long ;
 sh:path <Dog_packSize> .

<Dog_packSize> a rdf:Property .

<Dog_barkPropertyShape>
 a sh:PropertyShape ;
 rdfs:label "Dog_barkPropertyShape" ;
 openapi:name "bark" ;
 sh:datatype xsd:boolean ;
 sh:path <Dog_bark> .

<Dog_bark> a rdf:Property .

Listing 3.5: Representation of Dog Schema Object and its properties in the ontology
(DogNodeShape), (Dog_packSizePropertyShape), (Dog_barkPropertyShape)

 It is clear that Instances of PropertyShape Class are created from the name of the Schema Object they belong to
appended with the name of the property and the string “PropertyShape” (i.e., Error_codePropertyShape,
Dog_barkPropertyShape etc.). These Property Shapes are then connected to the Node Shape through the
sh:property predicate. Continuing, the Property Shapes contain the sh:path predicate which takes as an object, an
RDF property. This RDF property is created from the name of the Schema Object appended with the name of the
property (i.e., Error_code, Error_message, Dog_packSize, Dog_bark). This approach is followed in order to avoid
duplication between properties with the same name which are defined in different Schema Objects. This is better
explained in the later sections of this chapter where we describe our algorithm.

3.3 Semantic Annotations

 OpenAPI service documents often obtain elements that share the same semantics. For a human it might be easy
to infer these semantic similarities but a machine needs a formal description. This led to the creation of our
semantic annotations in the form of extension properties inside the OpenAPI service document. Table 3.2
summarizes the extension properties, their scope and their meaning. In this chapter we are mainly interested in
extensions regarding schema objects and more specific in x-refersTo, x-kindOf and x-mapsTo.

13

Table 3.2: OAS extension properties for semantic annotations

Property Applies to Meaning

x-refersTo Schema Object
The concept in a semantic model
that describes an OpenAPI
element.

x-kindOf Schema Object
A specialization between an
OpenAPI element and a concept in
a semantic model.

x-mapsTo Schema Object
An OpenAPI element which is
semantically similar with another
OpenAPI element.

x-collectionOn Schema Object
A model describes a collection over
a specific property.

x-onResource Tag Object
The specific Tag object refers to a
resource described by a Schema
object

x-operationType Operation Object Clarifies the type of operation

 The properties that apply to Schema Objects are, x-refersTo, x-kindOf, x-mapsTo and x-collectionOn. From these
properties, only the first three are analyzed in this chapter because they are the only ones that semantically
influence a Schema Object. The x-collectionOn describes a collection over a specific property of the Schema Object.
The handling of this extension property is explained later in this chapter along with the functions that handle
extension properties in a Schema Object. The x-onResource property is found in a Tag Object and refers to a
Schema Object that describes a resource. The x-operationType is found in an Operation Object and clarifies the
type of an operation. Both these properties, x-onResource and x-operationType, are described in the next chapter
where we present the whole instantiation algorithm.
 The x-refersTo property is responsible for associating OpenAPI elements and concepts in a semantic model.
Listing 3.6 presents the usage of x-refersTo in the Pet model. For demonstration purposes we use the example
domain “https://example.com/ontology”. In this case it associates the Schema Object with the “Pet” class and the
“id” with the “Id” class inside the example domain “https://example.com/ontology”. As shown in the same example
the property x-kindOf has a slightly different meaning. Some models have a narrower meaning and this means
that whenever this extension property is used, will denote the model as a subclass of that semantic concept. In our
example is implied that the Dog model is a subclass of the Animal class. Finally, the extension property x-mapsTo
is destined to define schema object elements that share the same semantics. In Listing 3.6, x-mapsTo property is
used to dictate that “SecondPet” Schema Object refers to “Pet” and “SecondId” to “Pet.id”.

Pet:

 x-refersTo: https://example.com/ontology/Pet
 type: object

 required:
 - id

 properties:

 id:
 x-refersTo: https://example.com/ontology/Id

 type: integer
 format: int64

Dog:
 x-kindOf: https://example.com/ontology/Animal

 description: A representation of a dog
 allOf:
 - $ref: '#/components/schemas/Pet'

 - type: object
 properties:

 packSize:

14

 type: integer
 format: int32

 description: the size of the pack the dog is from
 default: 0

 minimum: 0
 required:
 - packSize

SecondPet:

 x-mapsTo: '#/components/schemas/Pet'
 type: object
 required:

 -secondId

 properties:

 secondId:
 x-mapsTo: '#/components/schemas/Pet.id'
 type: integer

 format: int64

Listing 3.6: OAS model x-refersTo, x-kindOf , x-mapsTo usage example

3.4 OpenAPI Keywords

 In OpenAPI v3.0 the definition of Schema Objects is enhanced with additional properties. Some of these
properties allOf (also existed in OpenAPI v2.0), anyOf, oneOf, and “not”. The purpose of these keywords is to allow
for the creation of more complex schemas and give greater flexibility to users. These four keywords are of high
importance regarding model definitions because they are responsible for model composition and polymorphism.
Also, this work capitalizes of this opportunity and implements the concept of inheritance between classes on the
ontology.
 Very often APIs have schemas that share common properties. Instead of defining these properties for each
schema repeatedly, it is possible to describe the schemas as a composition of the common property set and
schema-specific properties. Using allOf keyword in Listing 3.7, the ExtendedErrorModel schema includes its own
set of properties as well as properties inherited from the BasicErrorModel schema. In order to validate data
against the combined model, a client (or a server) needs to validate against each sub-model it consists of (Listing
3.8).

components:
 schemas:
 ErrorModel:
 type: object
 required:
 - message

 - code

 properties:
 message:
 type: string
 code:
 type: integer
 minimum: 100
 maximum: 600

 ExtendedErrorModel:
 allOf:
 - $ref: '#/components/schemas/ErrorModel'
 - type: object
 required:

15

 - rootCause

 properties:
 rootCause:
 type: string

Listing 3.7: OpenAPI model inheritance example

Valid

{

 "message": "Page Not Found",
 "code": 404,
 "rootCause": "not responding"
}

Invalid (the payload is missing the “message” property although it is a

 required one due to allOf)

{

 "code": 500
 "rootCause": "interval server"
}

Listing 3.8: allOf validation example (JSON data)

 The keywords oneOf and anyOf are mostly used to describe OpenAPI elements that can take one or more of
several alternative schemas. In the following example (Listing 3.9) we present two similar responses. In the first
case, where the keyword oneOf is used, the data needs to be validated with exactly one of the listed schemas. The
data is invalid when matches with more than one of the listed schemas. In contrast to oneOf, the anyOf keyword is
used to validate data against either of the listed schemas, often with all of them simultaneously. By accepting
several alternative schemas, the concept of polymorphism is showcased in OpenAPI v3.0. In Listing 3.10, a
number of JSON data are presented to better understand the validation against these two keywords.

components:
 responses:
 sampleResponse_oneOf:
 content:
 application/json:
 schema:
 oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'
 sampleResponse_anyOf:
 content:
 application/json:
 schema:
 anyOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'
 …

 schemas:
 Dog:
 type: object
 properties:
 bark:
 type: boolean
 breed:
 type: string
 enum: ['Dingo', 'Husky', 'Retriever', 'Shepherd']
 Cat:
 type: object

16

 properties:
 hunts:
 type: boolean
 age:
 type: integer

Listing 3.9: OpenAPI model polymorphism example

Valid (the payload is valid against the Dog schema).

{

 "bark": true,
 "breed": "Dingo"
}

Invalid (the payload is not valid against neither Cat nor Dog schema).

{

 "bark": true,
 "hunts": true
}

Invalid for oneOf (the payload conforms with both schemas and should conform

 with only one).

Valid for anyOf (the payload conforms with both schemas).

{

 "bark": true,
 "hunts": true,
 "breed": "Husky",
 "age": 3
}

Listing 3.10: oneOf, anyOf validation example (JSON data)

 The Listing 3.10 gives us an insight of the keywords anyOf, oneOf. The first example is valid for both Response
Objects (SampleResponse_anyOf and SampleResponse_oneOf). This is because the payload contains the properties
of Dog Schema Object. The next example instead, is not valid. This payload contains one property of each schema
and therefore does not meet the conditions of either anyOf (one or more schemas must conform) or oneOf (only
one schema must conform). The third and final example is a little more complicated. This payload is valid for
anyOf (valid for the Response Object SampleResponse_anyOf) but is invalid for anyOf (invalid for the Response
Object SampleResponse_oneOf). This is because the payload conforms simultaneously to both Cat and Dog Schema
Objects.
 Last but not least the “not” keyword is used to modify a schema and make it more specific. It doesn`t help to
combine any schemas but it declares which type of value is not accepted for a specific property. In Listing 3.11,
the “pet_type” value can be of any type except integer (that is, it should be an array, boolean, number, object or
string).

components:
 schemas:
 Pet:
 type: object
 properties:
 pet_type:
 not:
 type: integer
 required:
 - pet_type

Listing 3.11: OpenAPI model “not” keyword example

17

Valid.

{

 "pet_type": "Cat"
}

Invalid (the payload should not be an integer).

{

 "pet_type": 11
}

Listing 3.12: “not” validation example (JSON data)

 So far, the Schema Objects are translated to an ontology using SHACL as mentioned in previous paragraphs.
SHACL provides us with four logical constraints. These components as well as each of the corresponding property
inside the ontology are shown in Table 3.4. In order to understand the use of these components, we will also
present the usage examples from the SHACL documentation.

Table 3.4: OpenAPI keywords corresponding components and ontology properties

OpenAPI Keyword Ontology Property

allOf sh:and

anyOf sh:or

oneOf sh:xone

not sh:not

 Regarding the logical component sh:and, its value is a SHACL list of shapes and specifies the condition that each
value node conforms to all provided shapes inside that list. This is compatible to conjunction and the logical “and”
operator. In Listing 3.13, the example illustrates the use of sh:and in a shape to specify the condition that certain
focus nodes have exactly one value of ex:property. Inside the bold text, the sh:and value is a list containing two
blank nodes. A blank node is an unnamed node, usually inside square brackets. The first node dictates whatever
value is accepted from the example data graph must have at least one ex:property. In the same way, the second
node dictates that it accepts only values that have at most one ex:property. Consequently, having both nodes in the
sh:and list declares that ex:ExampleAndShape will accept values with exactly one ex:property.

ex:ExampleAndShape
 a sh:NodeShape ;
 sh:targetNode ex:Person ;
 sh:and (
 [
 sh:path ex:property ;
 sh:minCount 1 ;

18

]
 [
 sh:path ex:property ;
 sh:maxCount 1 ;
]
) .

Listing 3.13: SHACL sh:and example

 Similarly with sh:and, sh:or takes as its value a SHACL list of shapes. It is comparable to disjunction and the
logical “or” operator, and dictates that each value node conforms to at least one of the provided shapes. The
example is Listing 3.14 illustrates the use of sh:or in a shape to specify the condition that certain focus nodes have
at least one value of ex:firstName or at least on value of ex:givenName.

ex:OrConstraintExampleShape
 a sh:NodeShape ;
 sh:targetNode ex:Person ;
 sh:or (
 [
 sh:path ex:firstName ;
 sh:minCount 1 ;
]
 [
 sh:path ex:givenName ;
 sh:minCount 1 ;
]
) .

Listing 3.14: SHACL sh:or example

 The last component that accepts a list of shapes as its value is sh:xone. It specifies that each value node conforms
to exactly one of the provided shapes in that list. The example in Listing 3.15 specifies the condition that certain
focus nodes must either have a value for ex:fullName or values for ex:firstName and ex:lastName, but not both.
Inside the sh:xone list there exist two blank nodes, the first accepts a value node with at least one property of
ex:fullName, and the next accepts also a value node with at least one ex:firstName property and at least one
ex:lastName property. Therefore, the value node must conform to either one of the shapes, but not both.

Ex:XoneConstraintExampleShape
 a sh:NodeShape ;
 sh:targetClass ex:Person ;
 sh:xone (
 [
 sh:property [
 sh:path ex:fullName ;
 sh:minCount 1 ;
]
]
 [
 sh:property [

19

 sh:path ex:firstName ;
 sh:minCount 1 ;
] ;
 sh:property [
 sh:path ex:lastName ;
 sh:minCount 1 ;
]
]
) .

Listing 3.15: SHACL sh:xone example

 In contrast with the other components, the sh:not does not have a list of shapes as its value. It accepts one shape,
and specifies the condition that each value node cannot conform to that shape. It is comparable to negation and
the logical “not” operator. The following example, Listing 3.16 illustrates the use of sh:not in a shape to specify the
condition that certain focus nodes cannot have any value of ex:property.

ex:NotExampleShape
 a sh:NodeShape ;
 sh:targetNode ex:Person ;
 sh:not [
 a sh:PropertyShape ;
 sh:path ex:property ;
 sh:minCount 1 ;
] .

Listing 3.16: SHACL sh:not example

3.5 Handling Schema Objects without Semantic Annotations

 A previous work has shown that in order to eliminate ambiguates, OpenAPI properties must be semantically
annotated and mapped to a semantic model. Our approach is that every Schema object and every property (of the
Schema object) acquires a semantic value. Listing 3.17, is a simple version of a Schema object that obtains
property “id”. Pet Schema Object is of type “object” and therefore, as shown in previous paragraphs, it will be
mapped with a node shape. The node shape will be the PetNodeShape. Also, property “id” will be mapped to the
property shape Pet_idPropertyShape. The semantic value for each of our current shapes is presented in bold in
Listing 3.18.

Pet:
 type: object
 required:
 - id

 properties:
 id:
 type: integer
 format: int64

Listing 3.17: Pet Schema Object

20

<PetNodeShape> a sh:NodeShape ;
 rdfs:label "PetNodeShape" ;
 sh:property <Pet_idPropertyShape> ;
 sh:targetClass <Pet> .

<Pet> a owl:Class .

<Pet_idPropertyShape>
 a sh:PropertyShape ;
 rdfs:label "Pet_idPropertyShape" ;
 openapi:name "id" ;
 sh:datatype xsd:long ;
 sh:path <Pet_id> .

<Pet_id> a rdf:Property .

Listing 3.18: Pet Node Shape, Pet_id Property Shape

 For the node shape, we create a class of Pet (given by the name of the schema) and it is used as an object to the
sh:targetClass predicate. According to SHACL, the sh:targetClass10 as well as all target declarations, is used to
produce focus nodes for a shape. A focus node is a node that is validated against the shape where it is used. In our
current example, by creating a Pet class and using it as an object to the sh:targetClass predicate, we declare two
things. First, we justify the Pet class as a semantic value and secondly each node that is an instance of Pet class will
conform to this node shape. As a sidenote for sh:targetClass and focus nodes we cite the following example. In this
example, only ex:Dog and ex:Cat are focus nodes.

ex:PetNodeShape
 a sh:NodeShape ;
 sh:targetClass <Pet> .

ex:Dog a <Pet> .
ex:Cat a <Pet> .
ex:NewYork a <Place> .

Listing 3.19: sh:targetClass usage

 For the property shape, we create a property called Pet_id. In property shapes we use the predicate sh:path to
signify which property is used in the current property shape. By definition, the sh:path predicate takes only one
value. Also, rdf:Property11 is the class of RDF properties and an instance of rdfs:Class.
 In Listing 3.20 and 3.21 we present the algorithms for node and property shape creation respectively. The
“ontModel” argument in both functions represents the ontology model that is created for the Web Service and
where the algorithm writes all the triples. In function CreateNodeShape (Listing 3.20), the “schemaName”
argument contains the name of the schema so for the Pet Schema Object, (Listing 3.17) its value is “Pet”. The
“schemaObject” argument contains the body of the schema (type, property schemas, description etc.) and the
“schemas” argument is a list containing all the schemas that are encountered in the current OpenAPI description

10 https://www.w3.org/TR/shacl/#targetClass
11 https://www.w3.org/TR/rdf-schema/#ch_property

21

document, either Schema Objects or property schemas (Pet, id etc.). In order to instantiate the Pet object to the
Pet class, the function is called as createNodeShape (ontModel, Pet, petBodyObject, schemas).
 In function createPropertyShape, the “ontModel” and “schemas” arguments remain the same. Also, the
“schemaName” contains the name of the schema but in this case the name of the schema property. Therefore,
regarding Pet Schema Object, (Listing 3.17) its value is “id”. The “schemaObject” argument, contains the body of
the property schema (type, format etc.). Finally, the “ownerName” argument (Listing 3.21), represents the name of
the Schema Object which the schema property belongs to (i.e., Pet). In order to instantiate the “id” property
schema, the function is called as createPropertyShape (ontModel, Pet, id, idBodyObject, schemas).
 These two functions are responsible for parsing Schema Objects and their properties and translating them into
shapes. Additionally, they are responsible for handling different situations (annotations, OpenAPI keywords,
inheritance, semantic validation etc.) which are going to be discussed in the following sections. Therefore, the
majority of the following sections contain these two functions. Each time, the corresponding part of each of these
functions is going to be presented. In this section, the simple case of handling Schema Objects and property
schemas without any annotation or OpenAPI v3.0 keywords is showcased. The Listings 3.20 and 3.21 show how
the functions work together to fully map a Schema Object and its properties. Starting from createNodeShape, we
create an ontology class from the “schemaName” argument and we connect it to the node shape. Then, for every
property schema, we call createPropertyShape and we map the returned property shape Individuals with the node
shape Individual. In createPropertyShape, after making an ontology property from the argument “schemaName”
we connect it to the property shape. Finally, we extract and map all the properties (e.g., format, description, name
etc.) to the property shape, before returning it.

Listing 3.20: NodeShape algorithm, no annotation handling

Listing 3.21: PropertyShape algorithm, no annotation handling

 So far, we showcased that a Schema Object and its property schema that are not semantically annotated, will
acquire an ontology class and an ontology property respectively. This means that the node shape of the Schema
Object and the property shape of the property schema will become semantically enriched. This offers some
benefits. The first benefit is that a user does not necessarily need to semantically annotate a Schema Object or a
property schema. Consequently, we introduce new semantic values. The second benefit is that the semantic
values of a Web Service description (i.e., classes and properties) can be used to semantically annotate another
Web Service description. This is presented in chapter 5 where we semantically annotate a custom Web Service
description with ontology classes created for a different Web Service.

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Create an owl class from the schemaΝame.
− Add the class to the ontology (ontModel).

− Add the tripe: NodeShape sh:targetClass class .

− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Create a resource property from the ownerName + “_”+ schemaName.

− Add it to the ontology (ontModel) as an ontology property.

− Add the triple: PropertyShape sh:path property.

− Scan schemaObject (the body of the property schema) for the rest properties (e.g., format) and add

them to the PropertyShape by writing triples with PropertyShape as Subject and the corresponding

Predicate – Object, according to each property.

− Return PropertyShape Individual.

22

3.6 Semantically Annotated Schema Objects

 The semantic annotations that apply in Schema Objects are x-refersTo, x-kindOf and x-mapsTo. With the new
approach, new combinations emerge between semantic values in Schema Objects. In Listing 3.22 both Pet Schema
object and its property “id” are semantically annotated with the use of x-refersTo. The corresponding shapes in the
ontology are presented in Listing 3.23. Both shapes (property and node) are associated with the semantic value
inside their extension property (x-refersTo). The algorithm in Listing 3.24 and Listing 3.25 extracts the referred
string and then assigns it as an object to sh:targetClass or sh:path.

Pet:
 x-refersTo: https://example.com/ontology/Pet
 type: object

 required:
 - id

 properties:
 id:
 x-refersTo: https://example.com/ontology/Id

 type: integer
 format: int64

Listing 3.22: Pet Schema object, x-refersTo

<PetNodeShape> a sh:NodeShape ;

 rdfs:label "PetNodeShape" ;

 sh:property <Pet_idPropertyShape> ;

 sh:targetClass <https://example.com/ontology/Pet> .

<Pet_idPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "Pet_idPropertyShape" ;

 openapi:name "id" ;

 sh:datatype xsd:long ;

 sh:path <https://example.com/ontology/Id> .

Listing 3.23: Pet NodeShape and Id PropertyShape, x-refersTo

 The handling of the x-refersTo extension property inside Schema Objects and property schemas falls to the same
two functions. Both functions (Listing 3.24 and Listing 3.25) after detecting the extension property, they extract
its value. Afterwards, they create an ontology class (in createNodeShape function) or an ontology property (in
createPropertyShape function) and assign it to the current shape, continuing with the scan of the rest schema
body. Finally, the functions return the Shape Individuals. The function calls for the current example are
createNodeShape (ontModel, Pet, petBodyObject, schemas) and createPropertyShape (ontModel, Pet, id,
idBodyObject, schemas).

23

Listing 3.24: NodeShape algorithm, x-refersTo handling

Listing 3.25: PropertyShape algorithm, x-refersTo handling

 When a Schema object has the extension property x-kindOf, the model (schema), it will become a subclass of the
referred semantic value. Consequently, the Pet class (<Pet>) will become a subclass of Pet class inside the example
domain “https://example.com/ontology” with the IRI “https://example.com/ontology/Pet”. Similarly, the Pet_id
property will become a subproperty of the “Id” property with the IRI “https://example.com/ontology/Id”. The
algorithm in Listings 3.29 and 3.30 creates the semantic values of each shape and then denotes it as a subclass or
a subproperty.

Pet:
 x-kindOf: https://example.com/ontology/Pet

 type: object
 required:
 - id

 properties:
 id:

 x-kindOf: https://example.com/ontology/Id
 type: integer
 format: int64

Listing 3.26: Pet Schema object, x-kindOf

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Scan schemaObject (the body of the property schema) for the x-refersTo extension property.

− Extract string from the x-refersTo property.
− Create a property with the extracted string.
− Add the property to the ontology (ontModel).
− Add the triple: PropertyShape sh:path property .

− Scan schemaObject (the body of the property schema) for the rest properties and add them to the PropertyShape

by writing triples with PropertyShape as Subject and the corresponding Predicate - Object according to each

property.

− Return PropertyShape Individual.

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Scan schemaObject for the x-refersTo extension property.

− Extract string from the x-refersTo property.
− Create a class with the extracted string.
− Add the class to the ontology (ontModel).
− Add the tripe: NodeShape sh:targetClass class.
− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

24

<PetNodeShape> a sh:NodeShape ;

 rdfs:label "PetNodeShape" ;

 sh:property <Pet_idPropertyShape> ;

 sh:targetClass <Pet> .

<Pet> a owl:Class ;

 rdfs:subClassOf <https://example.com/ontology/Pet> .

Listing 3.27: Pet NodeShape, x-kindOf

<Pet_idPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "Pet_idPropertyShape" ;

 openapi:name "id" ;

 sh:datatype xsd:long ;

 sh:path <Pet_id> .

<Pet_id> a rdf:Property ;

 rdfs:subPropertyOf <https://example.com/ontology/Id> .

Listing 3.28: Id PropertyShape, x-kindOf

 The extension property x-kindOf is handled in a similar fashion as the x-refersTo. The functions (Listing 3.29 and
Listing 3.30) detect the extension property and extract its value. Afterwards, they create an ontology class or an
ontology property from this extracted value. Additionally, they create an ontology class or an ontology property
from the “schemaName” argument. The value created from the “schemaName”, will become a subclass or a
subproperty to the value created from the extension property. This is the point where the handling of x-refersTo
and x-kindOf differ. Both functions continue by scanning the rest schema body and mapping any additional
encountered properties. In the end, the functions return the Shape Individuals. Again, the function calls do not
differ from the previous examples, createNodeShape (ontModel, Pet, petBodyObject, schemas) and
createPropertyShape (ontModel, Pet, id, idBodyObject, schemas).

Listing 3.29: NodeShape algorithm, x-kindOf handling

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Scan schemaObject for the x-kindOf extension property.

− Extract string from the x-kindOf property.
− Create a class A with the extracted string.
− Add class A to the ontology (ontModel).

− Create a class B from the schemaName.

− Add class B to the ontology (ontModel).

− Make class B a subclass of A (add the connection triple: B rdfs:subclassOf A to the ontology).

− Add the tripe: NodeShape sh:targetClass class B.
− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

25

Listing 3.30: PropertyShape algorithm, x-kindOf handling

 Next in the series of x-properties is x-mapsTo. When x-mapsTo is used in a Schema object, it points to another
schema object or property schema to dictate that it shares the same semantics. This extension property can be
confused with the property $ref of the OpenAPI, but it differs. The x-mapsTo connects two schemas semantically.
The $ref property is used as an inline substitution. This property allows an OpenAPI Object to refer to other
components inside the OpenAPI description and avoid repetition.
 Continuing with x-mapsTo, in Listing 3.31 inside SecondPet Schema object, SecondPet and Pet share the same
semantic value, as well as “id” and “secondId”. The algorithm that handles this operation, first needs to extract the
value from the x-mapsTo property. Then, extracts the schema name and if this Schema Object has not yet been
created, it calls the createNodeShape to create the Schema Object. Finally, after getting the semantic value, it will
assign it to the current shape.

SecondPet:
 x-mapsTo: '#/components/schemas/Pet'
 type: object
 required:
 -secondId

 properties:
 secondId:
 x-mapsTo: '#/components/schemas/Pet.id'
 type: integer
 format: int64

Listing 3.31: SecondPet Schema object, x-mapsTo

<SecondPetNodeShape> a sh:NodeShape ;
 rdfs:label "SecondPetNodeShape" ;
 sh:property <SecondPet_secondIdPropertyShape> ;
 sh:targetClass <Pet> .

<SecondPet_secondIdPropertyShape>
 a sh:PropertyShape ;

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Scan schemaObject (the body of the property schema) for the x-refersTo extension property.

− Extract string from the x-kindOf property.
− Create a property A with the extracted string.
− Add property A to the ontology (ontModel).
− Create a property B from the ownerName + “_” + schemaName.
− Add property A to the ontology (ontModel).
− Make property B a subproperty of A (add the connection triple: B rdfs:subPropertyOf A to the ontology).
− Add the triple: PropertyShape sh:path property B.

− Scan schemaObject (the body of the property schema) for the rest properties and add them to the PropertyShape

by writing triples with PropertyShape as Subject and the corresponding Predicate - Object according to each

property.

− Return PropertyShape Individual.

26

 rdfs:label "SecondPet_secondIdPropertyShape" ;
 openapi:name "secondId" ;
 sh:datatype xsd:long ;
 sh:path <Pet_id> .

Listing 3.32: SecondPet NodeShape and SecondId PropertyShape, x-mapsTo

 The x-mapsTo is also handled inside the createNodeShape and createPropertyShape functions. This extension
property does not require to create any ontology class or property because it “borrows” them from the referred
shape. After extracting the value of the x-mapsTo property, the algorithm needs to decompose it to find the
referred schema, whether it is an object or a property. After extracting the referred schema name, the algorithm
checks if it is already encountered on another OpenAPI element which means that a shape has already been
created. Then, we can take the value from the sh:targetClass predicate or the sh:path predicate and connect it with
the current shape. If the schema is not already encountered, we call the function createNodeShape to create the
requested shape and then we take its values. The last step is always to return the Shape Individuals so that the
algorithm can carry on with the mapping of the rest OpenAPI Objects. The function calls for the current example
are createNodeShape (ontModel, SecondPet, secondPetBodyObject, schemas) and createPropertyShape (ontModel,
SecondPet, secondIdBodyObject, schemas).

Listing 3.33: NodeShape algorithm, x-mapsTo handling

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Scan schemaObject for the x-mapsTo extension property.

− Extract string from x-mapsTo property.
− Extract the referred schema name from the string.
− Check in the list of schemas (schemas argument) if the Schema object that this schema name is referring to, has

already been created.
− If not, create the Schema object by recursively calling the createNodeShape function, then take it`s semantic

value (class).
− If yes, take the semantic value (class).
− Add the tripe: NodeShape sh:targetClass class.
− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

27

Listing 3.34: PropertyShape algorithm, x-mapsTo handling

 At this point, a reasonable question would be, what happens when a Schema Object should not have a semantic
value. Sometimes, an OpenAPI description contains schemas that are not widely used or they are so uniquely
written that do not contribute to a general purpose. For example, when an author of an API creates a Response
object schema specifically for the debugging of his server, or some other purpose that satisfies only his service
structure. This Response Object does not have any use for other authors of OpenAPI descriptions and therefore is
not necessary to acquire a semantic value. Another reason is that it is pointless to create classes for a Schema
Object that uses polymorphism (this is explained later on). The solution to this problem is the x-refersTo property
with the value of “none”. When “x-refersTo: none” is used in a Schema object, the corresponding node shape in the
ontology will not have an sh:targetClass predicate or if it is a property shape, will not have an sh:path predicate. If
the value of x-refersTo is “none”, the algorithm will not write the triple (NodeShape, sh:targetClass, class) to the
ontology. That means the node shape will not contain an sh:targetClass predicate. In the same way, if a property
contains the “x-refersTo: none” the algorithm will not write the triple (PropertyShape, sh:path, property) and the
corresponding property shape will not contain an sh:path predicate.

Pet:
 x-refersTo: none
 type: object
 required:
 - id

 properties:
 id:
 x-refersTo: none
 type: integer
 format: int64

Listing 3.35: Pet Schema Object, “x-refersTo: none”

<PetNodeShape> a sh:NodeShape ;
 rdfs:label “PetNodeShape” ;
 sh:property <Pet_idPropertyShape> .

<Pet_idPropertyShape>
 a sh:PropertyShape ;
 rdfs:label “Pet_idPropertyShape” ;

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Scan schemaObject (the body of the property schema) for the x-mapsTo extension property.

− Extract string from the x-mapsTo property.
− Extract the referred schema name A (of the Schema object) from the string.
− Extract the referred schema name B (of the property of the Schema object) from the string.
− Check in the list of schemas (schemas argument) if the Schema object that this schema name A is referring to,

has already been created.
− If not, create the Schema object by calling the createNodeShape function, then take from it`s property (with

schema name B) the semantic value (property).
− If yes, take the semantic value from its property (with schema name B).
− Add the triple: PropertyShape sh:path property.

− Scan schemaObject (the body of the property schema) for the rest properties and add them to the PropertyShape

by writing triples with PropertyShape as Subject and the corresponding Predicate - Object according to each

property.

− Return PropertyShape Individual.

28

 openapi:name “id” ;
 sh:datatype xsd:long .

Listing 3.36: Pet NodeShape and Id PropertyShape, “x-refersTo: none”

 The handling of the x-refersTo extension property with the value of “none” is also found inside the
createNodeShape and createPropertyShape functions. When the x-refersTo extension property is detected, before
creating a class or property we check for the “none” value. In that case the shapes, whether it is a node shape or
property shape do not acquire a semantic value and the algorithm continues scanning the rest of the properties
and returns the Shape Individuals. The function calls are createNodeShape (ontModel, Pet, petBodyObject,
schemas) and createPropertyShape (ontModel, Pet, idBodyObject, schemas).

Listing 3.37: NodeShape algorithm, “x-refersTo: none” handling

Listing 3.38: PropertyShape algorithm, “x-refersTo: none” handling

 These features of the algorithm by creating and adding new classes and properties to the ontology, contribute to
ontology expansion. Connecting semantic values and Schema Objects is of high importance for this cause. Creating
semantic values for unannotated schemas is a big step for the algorithm which massively introduces new
semantic values in the semantic web. Nevertheless, due to “x-refersTo: none” this is not a one-way affair. This
addition gives the author the opportunity to skip this step and thus the algorithm offers a lot of flexibility.

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Scan schemaObject (the body of the property schema) for the x-mapsTo extension property.

− Extract string from the x-refersTo property.
− If value is “none” continue without creating a triple.

− Scan schemaObject (the body of the property schema) for the rest properties and add them to the PropertyShape

by writing triples with PropertyShape as Subject and the corresponding Predicate - Object according to each

property.

− Return PropertyShape Individual.

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Scan schemaObject for the x-refersTo extension property.

− Extract string from x-refersTo property.
− If value is “none” continue without creating a triple.

− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

29

3.7 General Case

 In this section we showcase how the functions createNodeShape and createPropertyShape handle all the
extension properties that may exist in a Schema Object. Besides the properties x-refersTo, x-kindOf and x-mapsTo
there is also the x-collectionOn property. This property is handled inside the functions createNodeShape and but
does not semantically affect a Schema Object. It is used to indicate that a Schema Object is actually a collection.
Typically, a collection (or a list) of resources in OpenAPI v3.0 is described using the array type. However, it is very
common a collection’s definition to be encapsulated within an object type with additional properties. Then, x-
collectionOn property is used to denote the data types of the objects of the collection. Listing 3.39 defines a model
as a collection of Pet objects.
 Collections are represented using Collection class. The class PetCollection will become a subclass of Collection
(openapi:Collection) class. This is showcased in Listing 3.40 where we present the mapping of the PetCollection
Schema Object. The PetCollection_petsPropertyShape shape that corresponds with property “pets” of PetCollection,
is defined as a member of a collection because its sh:path predicate has the openapi:member value. Also, this
property shape contains the sh:node predicate which specifies the node shape that a value node conforms to.

PetCollection:
 x-collectionOn: pets
 type: object
 properties:
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Listing 3.39: PetCollection Schema Object, x-collectionOn

<PetCollectionNodeShape>
 a sh:NodeShape ;
 rdfs:label "PetCollectionNodeShape" ;
 sh:property <PetCollection_petsPropertyShape> ;
 sh:targetClass <PetCollection> .

<PetCollection> a owl:Class ;
 rdfs:subClassOf openapi:Collection .

<PetCollection_petsPropertyShape>
 a sh:PropertyShape ;
 rdfs:label "PetCollection_petsPropertyShape" ;
 openapi:name "pets" ;
 sh:node <PetNodeShape> ;
 sh:path openapi:member .

Listing 3.40: PetCollection NodeShape, x-CollectionOn

 The x-collectionOn property can only be found in a Schema Object and not in a property schema. Therefore, the
only function that handles this extension property is the createNodeShape. When the x-collectionOn property is
detected, the algorithm creates an ontology class from the argument “schemaName”. Then, the algorithm will
declare this class as a subclass of the openapi:Collection. Continuing, the algorithm scans and maps the remaining
properties of the Schema Object and returns the node shape Individual. The function call for this example is
createNodeShape (ontModel, PetCollection, petCollectionBodyObject, schemas).

30

Listing 3.41: NodeShape algorithm, x-CollectionOn handling

 At this point, it is necessary to present the two functions in a general form to give the reader an overview. The
general form of createNodeShape is showcased in Listing 3.42. The first step is to create the node shape name
from the argument “schemaName” and the “NodeShape” string. Next, we check the Schema Object for any of our
defined extension properties and we handle them according to what we have seen so far. If there are no extension
properties, we handle the Schema Object as an unannotated one. Continuing, we call createPropertyShape for
every property schema inside the Schema Object and map the returned property shape Individual with the node
shape Individual. This is done with the tripe “NodeShape sh:property ProperyShape”. As a last step we return the
node shape Individual.

Listing 3.42: createNodeShape function

 The general form of createPropertyShape is presented in Listing 3.43. Our first action here is to create the name
of the property shape from the arguments “ownerName”, “schemaName” appended with the string
“PropertyShape”. The next step is to check for extension properties. If the property schema contains any extension
properties, the corresponding actions are performed in each case. However, if there are no extension properties
the property schema is handled as an unannotated one. Continuing, we extract and map all the properties that can
be found in a property schema such as description, format etc. The last step is to return the property shape
Individual.

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− Scan schemaObject for the x-collectionOn extension property.

− Extract string from x-collectionOn property.
− Create a class from the schemaName.

− Add class to the ontology (ontModel).

− Make the class a subclass of openapi:Collection (add the connection triple: class rdfs:subclassOf

openapi:Collection)

− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

function createNodeShape (ontModel, schemaName, schemaObject, schemas)

− Create a NodeShape from schemaName + “NodeShape”.

− If the schemaObject contains any extension properties:

− Check for the extension property x-refersTo

− Check is the value is “none”

− Check for the extension property x-kindOf

− Check for the extension property x-mapsTo

− Check for the extension property x-collectionOn

− If the schemaObject does not contain any extension properties:

− Handle it according to an unannotated Schema Object

− For every property schema inside the schemaObject

− Call createPropertyShape and return the property shape Individual

− Map the property shape Individual to the current node shape Individual:

 NodeShape sh:property PropertyShape

− Return NodeShape Individual.

31

Listing 3.43: createPropertyShape function

3.8 Composition and Inheritance

 In previous paragraphs we described the use of the allOf keyword and its importance for the connection between
schemas. The allOf keyword expresses the concept of inheritance between two schemas. With the help of SHACL
and the logical component “and” (sh:and predicate) we were able to implement the composition logic into a shape.
In Listing 3.44, the Pet Schema object extends the OldPet with the additional property of “id”. Next, in Listing 3.45
we present the node shape of Pet. Inside the sh:and list there is the focus node of OldPetNodeShape which
represents the OldPet Schema object and a blank node that represents the additional properties added to it (inline
Schema Object). That is the formal and practical way to implement the “and” logical constraint and by extension
the concept of composition in the ontology. Also, in the same example, the two classes Pet and OldPet that were
created become the objects of sh:targetClass predicates. The relation between the classes must be the same as the
relation between the schemas. Consequently, in Owl terminology the Pet class inherits the OldPet class as shown
in Listing 3.46.

Pet:
 allOf:
 - $ref: '#/components/schemas/OldPet'
 - type: object
 required:
 - id

 properties:
 id:
 type: integer
 format: int64

OldPet:
 type: object
 required:
 - name

 - tag

 properties:
 name:
 type: string
 tag:
 type: string

Listing 3.44: Pet, OldPet Schema Objects, allOf

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Create a PropertyShape from ownerName + ”_” + schemaName + “PropertyShape”.

− Do semantic validation //This is explained later on

− If the schemaObject (the body of the property schema) contains any extension properties:
− Check for the extension property x-refersTo

− Check is the value is “none”

− Check for the extension property x-kindOf

− Check for the extension property x-mapsTo

− If the schemaObject does not contain any extension properties:

− Handle it according to an unannotated property schema

− Check property schema for OpenAPI keywords (anyOf, oneOf, not) //This is explained later on

− Scan schemaObject (the body of the property schema) for the rest properties and add them to the PropertyShape

by writing triples with PropertyShape as Subject and the corresponding Predicate - Object according to each

property.

− Return PropertyShape Individual.

32

<PetNodeShape> a sh:NodeShape ;
 rdfs:label "PetNodeShape" ;
 sh:and ([a sh:NodeShape ;
 sh:property <Pet_idPropertyShape>
]

 <OldPetNodeShape>
);

 sh:targetClass <Pet>

<OldPetNodeShape> a sh:NodeShape ;
 rdfs:label "OldPetNodeShape" ;
 sh:property <OldPet_tagPropertyShape> , <OldPet_namePropetShape> ;
 sh:targetClass <OldPet>

Listing 3.45: Pet, OldPet nodeshapes, sh:and list

<Pet> a owl:Class ;
 rdfs:subClassOf <OldPet> .

<OldPet> a owl:Class .

Listing 3.46: Pet class and OldPet class relation (Inheritance)

 The function parseSchemaObject in Listing 3.47 is responsible for handling Schema Objects with OpenAPI v3.0
keywords. The arguments of this function have already been explained and discussed as they are the exact
arguments passed on the createNodeShape function. The algorithm that implements the above functionality first
checks if the keyword allOf exists in the Schema Object. If the keyword exists, an empty RDF list will be created.
Continuing, we call the parseSchemaObject function for every schema under the allOf keyword in order to create
node Shape Individuals. These individuals will be inserted inside the list. When we are done adding shape
Individuals, we map the list to the node shape by writing the triple NodeShape sh:and RDF List. Continuing, the
algorithm gets the created classes from every shape Individual and creates the triple where the rdfs:subClassOf
predicate is used to declare the relation between the two classes. Finally, it returns the NodeShape Individual. The
function call of parseSchemaObject for this example is parseSchemaObject (ontModel, Pet, petBodyObject, schemas).
 At this point it is important to make the distinguish between the named Individuals and the blank nodes. Under
the allOf keyword, there are two schemas, the OldPet and one unnamed schema. For each of these, the
parseSchemaObject will be called and will create a node shape. For the OldPet the function call is
parseSchemaObject (ontModel, OldPet, oldPetBodyObject, schemas) and for the unnamed schema the function call is
parseSchemaObject (ontModel, NULL, unnamedBodyObject, schemas). These function calls are placed inside the
first “for loop” of Listing 3.47. The difference is that the body of the named Individual is written as a separate node
and only the name of the Individual is presented in the RDF list. Instead, the body of the other node which is called
blank node, is written inside the RDF list as shown in Listing 3.45 in bold. The Blank node cannot be presented
elsewhere because it has no name to be referenced by. Also, blank nodes do not contain an sh:targetClass
predicate. This is why in the second “for loop” in Listing 3.47 below, we only retrieve the classes of named Shape
Individuals.
 If the Schema Object does not contain the allOf keyword, it is a simple case of mapping any given schema. If the
type of the schema is object, we call createNodeShape. If the type of the schema is either integer, string or boolean
we call the createPropertyShape function. If the type of schema is array then we call createCollectionNodeShape.
This function works similarly to the x-collectionOn property. More specifically, it creates a NodeShape Individual
and creates an ontology class from its schema name. This class later becomes a subclass of the Collection class.
Finally, it calls createPropertyShape to map the body of the array schema. This function is analyzed in the next
chapter.

33

Listing 3.47: parseSchemaObject function, allOf handling

 This section gives us the opportunity to clarify some important differences between property schemas and
Schema Objects. The main reason for creating Schema Objects is to have a group of properties that exist under a
specified schema. This is easy to understand as all of the examples of Schema Objects presented in this chapter
contain property schemas. Therefore, it is valid to say the structural components of a Schema object are it`s
properties. A property schema is a unit. A Schema object is created with at least one unit. A property schema
much like a unit cannot be composed from other units. This is why the keyword allOf is not permitted in a
property schema and therefore composition between property schemas is not supported.

3.9 Semantically Annotated Composed Schema Objects

 In the previous section we analyzed inheritance and composition in Schema Objects that did not contain any
semantic annotations. When we add semantic annotations in composed Schema Objects, we implement
inheritance relations between semantic values. In Listing 3.48, we present two Schema Objects connected with
the keyword allOf. The Pet Schema Object uses the extension property x-refersTo to acquire a semantic value from
the example domain. The algorithm will create a class with the IRI “https://example.com/ontology/Pet” and not a
class with the name Pet because the schema is annotated. In contrast to Pet, OldPet will acquire a class of OldPet
given to it by the functions explained earlier. Consequently, the “https://example.com/ontology/Pet” class will
become a subclass of OldPet class as shown in Listing 3.49.

Pet:
 x-refersTo: https://example.com/ontology/Pet

 allOf:
 - $ref: '#/components/schemas/OldPet'

 - type: object
 required:
 - id

 properties:
 id:

 type: integer
 format: int64

OldPet:
 type: object

function parseSchemaObject (ontModel, schemaName, schemaObject, schemas)

− If the schemaObject has the allOf keyword then:
− Create a NodeShape for the schemaObject by calling createNodeShape with schemaName.
− Create an empty RDF list.

− For every schema under the allOf keyword:

− Call parseSchemaObject and return the node shape (named Shape Individual or blank node).

− Add the returned node shape to the RDF list.

− Connect the NodeShape with the RDF list by writing the triple: NodeShape sh:and RDF list.

− For every named Shape Individual inside the RDF list:

− Extract the class from its sh:targetClass predicate.

− Make the class of the NodeShape a subclass of the extracted class (from the previous step).

− Else if the schemaObject does not contain the allOf keyword then:

− If the type of the schemaObject is “object” then call createNodeShape

− Else if the type of the schemaObject is “array” then call createCollectionNodeShape

− Else call createPropertyShape

− Return Shape Individual.

34

 required:
 - speed

 properties:
 speed:

 type: string
 petType:
 type: string

Listing 3.48: Pet (annotated), OldPet Schema Objects

<PetNodeShape> a sh:NodeShape ;

 rdfs:label "PetNodeShape" ;

 sh:and ([a sh:NodeShape ;

 sh:property <Pet_idPropertyShape>

]

 <OldPetNodeShape>

) ;

 sh:targetClass <https://example.com/ontology/Pet> .

<https://example.com/ontology/Pet>

 a owl:Class ;

 rdfs:subClassOf <OldPet> .

<OldPetNodeShape>

 a sh:NodeShape ;

 rdfs:label "OldPetNodeShape" ;

 sh:property <OldPet_petTypePropertyShape> ,

<OldPet_speedPropertyShape> ;

 sh:targetClass <OldPet> .

<OldPet> a owl:Class .

Listing 3.49: https://example.com/ontology/Pet subclass of OldPet

 Another example, is when only the subschema (a schema under a keyword) has an extension property. In this
situation, the algorithm creates a class for the unannotated Schema Object Pet and registers this class as a
subclass of “https://example.com/ontology/OldPet”. In this example the subschema has an extension property.

Pet:
 allOf:

 - $ref: '#/components/schemas/OldPet'
 - type: object
 required:

 - id

 properties:

 id:
 type: integer
 format: int64

OldPet:

 x-refersTo: https://example.com/ontology/OldPet
 type: object
 required:

35

 - speed

 properties:

 speed:
 type: string

 petType:
 type: string

Listing 3.50: Pet, OldPet (annotated) Schema Objects

<PetNodeShape>

 a sh:NodeShape ;

 rdfs:label "PetPetNodeShape" ;

 sh:and ([a sh:NodeShape ;

 sh:property <Pet_idPropertyShape>

]

 <OldPetNodeShape>

) ;

 sh:targetClass <Pet> .

<Pet> a owl:Class ;

 rdfs:subClassOf <https://example.com/ontology/OldPet> .

<OldPetNodeShape>

 a sh:NodeShape ;

 rdfs:label "OldPetNodeShape" ;

 sh:property <Old_petTypePropertyShape> ,

 <OldPet_speedPropertyShape> ;

 sh:targetClass <https://example.com/ontology/OldPet> .

Listing 3.51: Pet subclass of https://example.com/ontology/OldPet

 Finally, the last example contains two schemas enhanced with extension properties. The algorithm then, will
create a subclass relation between the semantic values that the Schema Objects referred to.

Pet:
 x-refersTo: https://example.com/ontology/Pet
 allOf:

 - $ref: '#/components/schemas/OldPet'
 - type: object

 required:
 - id

 properties:

 id:
 type: integer

 format: int64

OldPet:

 x-refersTo: https://example.com/ontology/OldPet
 type: object

 required:
 - speed

 properties:

36

 speed:
 type: string

 petType:
 type: string

Listing 3.52: Pet (annotated), OldPet (annotated) Schema Objects

<PetNodeShape>

 a sh:NodeShape ;

 rdfs:label "PetNodeShape" ;

 sh:and ([a sh:NodeShape ;

 sh:property <Pet_idPropertyShape>

]

 <OldPetNodeShape>

) ;

 sh:targetClass <https://example.com/ontology/Pet> .

<https://example.com/ontology/Pet>

 a owl:Class ;

 rdfs:subClassOf <https://example.com/ontology/OldPet> .

<OldPetNodeShape>

 a sh:NodeShape ;

 rdfs:label "OldPetNodeShape" ;

 sh:property <OldPet_petTypePropertyShape> ,

 <OldPet_speedPropertyShape> ;

 sh:targetClass <https://example.com/ontology/OldPet> .

Listing 3.53: “https://example.com/ontology/Pet” subclass of “https://example.com/ontology/OldPet”

 As a last example of this section, we present the use of x-refersTo with the value of “none” in the current
functionality. Earlier, we explained that with “x-refersTo: none” a semantic value for the current Schema object
will not be created. Inheritance is a relation between two classes, therefore in this situation it cannot exist. This is
why in Listing 3.55 PetNodeShape is missing an sh:targetclass predicate and there is no subclass relation written
to the ontology concerning these node shapes.

Pet:
 x-refersTo: none
 allOf:
 - $ref: '#/components/schemas/OldPet'
 - type: object
 required:
 - id

 properties:
 id:
 type: integer
 format: int64

OldPet:
 type: object
 required:
 - name

 properties:
 name:

37

 type: string
 tag:
 type: string

Listing 3.54: Pet (none), OldPet Schema Objects

<PetNodeShape> a sh:NodeShape ;
 rdfs:label "PetNodeShape" ;
 sh:and ([a sh:NodeShape ;
 sh:property <Pet_idPropertyShape>
]

 <OldPetNodeShape>
) .

<OldPetNodeShape> a sh:NodeShape ;
 rdfs:label "OldPetNodeShape" ;
 sh:property <OldPet_tagPropertyShape> , <OldPet_namePropetShape> ;
 sh:targetClass <OldPet> .

<OldPet> a owl:Class .

Listing 3.55: OldPet, Pet, no subclass relation

 In the previous section we presented the function parseSchemaObject which handles the existence of the allOf
keyword inside a Schema Object. This function (Listing 3.47), creates a shape for each Schema Object involved
with the allOf keyword calls the createNodeShape function. This is where the extension properties (if there are
any) of every Schema Object are handled inside the algorithm. Therefore, the parseSchemaObject function can
handle Schema Objects with the allOf keyword regardless of whether they contain any extension property or not.

3.10 Polymorphism

 It is very often for APIs to have requests and responses that can be described by several alternative schemas.
For this functionality OpenAPI specification provides the keywords oneOf and anyOf as we saw earlier. Schema
Objects that contain these keywords are translated with the use of sh:xone and sh:or respectively. In Listing 3.56,
there is a very representative example for the concept of polymorphism. This unnamed schema representing the
response with code “201” can be described by one of the following schemas, Dog, Cat or Lizard. Because the
schema has no name, a Blank node will be created containing a predicate of sh:xone and an RDF list as an object.
Inside the RDF list, as we can see in Listing 3.57 there are the named Individuals CatNodeShape, DogNodeShape
and LizardNodeShape. For ease of presentation, we show only the value of the openapi:schema predicate which in
this case represents the Schema Object inside the Response Object.

responses:
 "201":
 description: variety
 content:
 application/json:
 schema:
 oneOf:
 - $ref: "#/components/schemas/Cat"
 - $ref: "#/components/schemas/Dog"

38

 - $ref: "#/components/schemas/Lizard"

components:
 schemas:
 Dog:
 type: object
 properties:
 bark:
 type: boolean
 breed:
 type: string

 Cat:
 type: object
 properties:
 hunts:
 type: boolean
 age:
 type: integer

 Lizard:
 type: object
 properties:
 lovesRocks:
 type: boolean

Listing 3.56: Cat, Dog, Lizard Schema Objects, oneOf

openapi:schema [a sh:NodeShape ;
 sh:xone (<LizardNodeShape> <DogNodeShape> <CatNodeShape>)
]

<CatNodeShape> a sh:NodeShape ;
 rdfs:label "CatNodeShape" ;
 sh:property <Cat_agePropertyShape> , <Cat_huntsPropertyShape> ;
 sh:targetClass <Cat> .

<Cat> a owl:Class .

<DogNodeShape> a sh:NodeShape ;
 rdfs:label "DogNodeShape" ;
 sh:property <Dog_breedPropertyShape> , <Dog_barkPropertyShape> ;
 sh:targetClass <Dog> .

<Dog> a owl:Class .

<LizardNodeShape> a sh:NodeShape ;
 rdfs:label "LizardNodeShape" ;
 sh:property <Lizard_lovesRocksPropertyShape> ;
 sh:targetClass <Lizard> .

39

<Lizard> a owl:Class .

Listing 3.57: Cat, Dog, Lizard, shapes, sh:xone

 An unnamed schema is the most common way to express a Schema Object with polymorphism. However, this is
not mandatory. The following example in Listing 3.58 will help to better understand this argument. There, we
present the same Response Object, this time with the named schema ThreePets. When one of the schemas (Cat,
Dog or Lizard) is returned as a value, it will take the place of ThreePets. Consequently, the ThreePets node shape,
has no utility in this case. Another approach on this matter would be to enrich the ThreePets Schema Object with
the extension property x-refersTo with the value of “none”. This way, the ThreePetsNodeShape would not contain
the sh:targetClass predicate and therefore, it would not acquire a semantic value, much like a blank node. The
algorithm supports polymorphism in both named and unnamed Schema Objects.

responses:
 "201":
 description: variety
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/ThreePets"

components:
 schemas:
 ThreePets:
 oneOf:
 - $ref: "#/components/schemas/Cat"
 - $ref: "#/components/schemas/Dog"
 - $ref: "#/components/schemas/Lizard"

Listing 3.58: ThreePets, oneOf

openapi:schema <ThreePetsNodeShape>

<ThreePetsNodeShape> a sh:NodeShape ;
 rdfs:label "ThreePetsNodeShape" ;
 sh:targetClass <ThreePets> ;
 sh:xone (<LizardNodeShape> <DogNodeShape> <CatNodeShape>) .

<ThreePets> a owl:Class .

Listing 3.59: ThreePets node shape, sh:xone

 The semantic annotated Schema Objects with polymorphism fall under the same category. Although they are
supported by the algorithm, the case remains the same. There is no real benefit to semantically annotate the
Schema Object that contains polymorphism (ThreePets in this case) for the same reason as to name this kind of
Schema Object. Also, the semantic values between the shapes are not connected in any way, in contrast to allOf as
we presented in a previous section. So, if any of the Dog, Cat or Lizard were semantically annotated their semantic
values would not have been interrelated.
 In Listing 3.60 we present the part of the algorithm concerning polymorphism implementation in Schema
Objects. This is also handled in parseSchemaObject function therefore the arguments are already explained. The

40

first step is to check if the keywords anyOf or oneOf exist inside the body of the Schema Object. If they exist, we
create an empty RDF list. Continuing, inside the “for loop” we call parseSchemaObject for every one of the Cat, Dog
and Lizard schemas. Then, we add the returned node shapes, which in this case are named Individuals, to the list.
Next, we map the list to the node shape by writing the appropriate triples. The “NodeShape sh:or RDF list” tripe for
anyOf, and the “NodeShape sh:xone RDF list” for oneOf. Finally, we return the NodeShape Individual. The function
call for the unnamed schema in Listing 3.56 would be parseSchemaObject (ontModel, NULL, unnamedBodyObject,
schemas) and for the Threepets Schema Object of Listing 3.58 would be parseSchemaObject (ontModel, Threepets,
threePetsBodyObject, schemas). If the schema does not contain neither anyOf nor oneOf then we call the
appropriate function according to its type and return the Shape Individual.

Listing 3.60: parseSchemaObject, anyOf, oneOf handling

 Polymorphism is also supported in property schemas. Properties can also take alternative schemas, and it is
expressed the same way as in Schema Objects. An example triple would look like “PropertyShape sh:or RDF list” or
“PropertyShape sh:xone RDF list”. Under the keywords anyOf, oneOf, an array of schemas is expected. These
schemas can be either inline or referred, as presented in Listing 3.61. In this example the property “speed” of Pet
Schema Object, is defined by either one of the listed schemas. Consequently, the mapped shape will be a property
shape with the name “Pet_speedPropertyShape” and an object of “Pet_speed” to the sh:path predicate, according to
what we have seen so far. Also, the property shape will contain the RDF list sh:or, with three nodes. The first one
is a node of the SpecifiedPropertyShape and the rest are blank nodes. In Listing 3.62 this part of the ontology is
presented.

Pet:
 type: object
 required:
 - speed

 properties:
 speed:
 anyOf:
 - type: integer
 format: int64
 - type: string
 - $ref: '#/components/schemas/Specified'

components:
 schemas:
 Specified:
 type: integer
 format: int32

function parseSchemaObject (ontModel, schemaName, schemaObject, schemas)

− If the schemaObject has the anyOf or oneOf keyword then:
− Create a NodeShape for the schemaObject by calling createNodeShape with schemaName.
− Create an empty RDF list.

− For every schema under the anyOf or oneOf keyword:

− Call parseSchemaObject and return the node shape (named Shape Individual or blank node).

− Add the returned node shape to the RDF list.

− Connect the NodeShape with the RDF list by writing the triple:

 NodeShape sh:or RDF list or NodeShape sh:xone RDF list

− Else if the schemaObject does not contain the anyOf or oneOf keyword then:

− If the type of the schemaObject is “object” then call createNodeShape

− Else if the type of the schemaObject is “array” then call createCollectionNodeShape

− Else call createPropertyShape

− Return Shape Individual.

41

Listing 3.61: speed property, anyOf

<Pet_speedPropertyShape>
 a sh:PropertyShape ;
 rdfs:label "Pet_speedPropertyShape" ;
 openapi:name "speed" ;
 sh:or (<SpecifiedPropertyShape>
 [a sh:PropertyShape ;
 sh:datatype xsd:string
]

 [a sh:PropertyShape ;
 sh:datatype xsd:long
]

) ;

 sh:path <Pet_speed> .

<SpecifiedPropertyShape>
 a sh:PropertyShape ;
 rdfs:label "SpecifiedPropertyShape" ;
 sh:datatype xsd:int ;
 sh:path <Specified> .

<Specified> a rdf:Property .

Listing 3.62: speed property shape, sh:or

 The function createPropertyShape is responsible for handling the keywords anyOf, and oneOf inside the body of a
property schema. For ease of presentation the Listing 3.63 presents the case in which the keywords exist. In a
similar fashion as the previous cases, the first step is to create an empty RDF list. Then, for every schema under
the keywords we call the parseSchemaObject and create a property shape Individual. Every individual is added to
the list. Continuing, we map the RDF list with the property shape. This is done either with the “PropertyShape
sh:or RDF list” triple or with “PropertyShape sh:xone RDF list”. The function call for the example above would be
createPropertyShape (ontModel, Pet, speed, speedBodyObject, schemas). In addition, inside the “for loop” the
parseSchemaObject would be called three times. For the first inline schema would be
parseSchemaObject(ontModel, NULL, unnamed1BodyObject, schemas) for the second inline schema would be
parseSchemaObject(ontModel, NULL, unnamed2BodyObject, schemas) and for the referenced property schema
Specified would be parseSchemaObject (ontModel, specified, specifiedBodyObject, schemas).

42

Listing 3.63: createPropertyShape algorithm, polymorphism handling

3.11 Annotations within Property Schema Components

 In section 3.8, Composition and Inheritance, we made an important distinction between Schema Objects and
property schemas. Another difference between them is that in contrast to Schema Objects, semantically
annotating polymorphed property schemas is beneficial and not at all pointless. That lies in the nature of property
schemas with polymorphism. A property schema with polymorphism basically means that it accepts alternatives
datatypes. Τhere are two cases. The first is when a semantic value is connected with different schemas through a
property. The second is when a property is connected with semantic values through property attributes (i.e.,
properties of properties). Both categories are introduced in property schemas with polymorphism support along
with semantic annotations.
 When a property is annotated with a semantic value, the schema property and the semantic value are connected.
When a semantically annotated property uses polymorphism, it means that the semantic value is connected to the
schemas represented under the oneOf/anyOf keywords. Such a case, is presented in Listing 3.64 in bold. In Listing
3.65, the mapped property shape “Speed” has the semantic value “https://example.com/ontology/speed”.
Consequently, this semantic value maps with only one (due to oneOf) of the schemas listed inside the sh:xone RDF
list. The value “https://example.com/ontology/speed” can be one of string, long or mapped with the
SpecifiedPropertyShape, which is an int (integer). To better understand this example as well as the following, it is
valid to say that in this case the semantic value uses polymorphism to connect with different schemas.

Pet:
 type: object

 required:
 - speed

 properties:

 speed:
 x-refersTo: https://example.com/ontology/Speed

 oneOf:
 - type: integer
 format: int64

 - type: string
 - $ref: '#/components/schemas/Specified'

components:

 schemas:
 Specified:

 type: integer
 format: int32

Listing 3.64: semantically annotated property with polymorphism

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− If the schemaObject (the body of the property schema) has the anyOf or oneOf keyword then:
− Create an empty RDF list.

− For every schema under the anyOf or oneOf keyword:

− Call parseSchemaObject and return the node shape (named Shape Individual or blank node).

− Add the returned property shape to the RDF list.

− Connect the PropertyShape with the RDF list by writing the triple:

 PropertyShape sh:or RDF list or PropertyShape sh:xone RDF list.

− Return PropertyShape Individual.

43

<Pet_speedPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "Pet_speedPropertyShape" ;

 openapi:name "speed" ;

 sh:path <https://example.com/ontology/Speed> ;

 sh:xone (<SpecifiedPropertyShape>

 [a sh:PropertyShape ;

 sh:datatype xsd:string

]

 [a sh:PropertyShape ;

 sh:datatype xsd:long

]

) .

<SpecifiedPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "SpecifiedPropertyShape" ;

 sh:datatype xsd:int ;

 sh:path <Specified> .

<Specified> a rdf:Property .

Listing 3.60: speed property shape, semantic value

 The second case is when the property attributes are semantically annotated instead of the property. The
property “Speed” does not acquire a semantic value but it`s attributes do. Therefore, in parallel with our previous
saying, this time the schema uses polymorphism to connect with different semantic values. This example is
presented in Listing 3.61 in bold. In Listing 3.62, the mapped property shape of “speed” is presented along with
the semantic value of each of the nodes (bold). Here, because the blank nodes inside the sh:xone RDF list contain
the sh:path predicate, the property shape of “speed” cannot have such a predicate. In the previous example
(Listing 3.60), the blank nodes did not contain the sh:path predicate, therefore validly the property shape has an
sh:path predicate.

Pet:
 type: object
 required:

 - speed

 properties:

 speed:
 oneOf:
 - type: integer

 format: int64
 x-refersTo: https://example.com/ontology/Int64_property

 - type: string
 x-refersTo: https://example.com/ontology/String_property
 - $ref: '#/components/schemas/Specified'

components:
 schemas:
 Specified:

 x-refersTo: https://example.com/ontology/Int32_property
 type: integer

 format: int32

Listing 3.61: semantically annotated attributes in polymorphism

44

<Pet_speedPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "Pet_speedPropertyShape" ;

 openapi:name "speed" ;

 sh:xone (<SpecifiedPropertyShape>

 [a sh:PropertyShape ;

 sh:datatype xsd:string ;

 sh:path <https://example.com/ontology/String_property>

]

 [a sh:PropertyShape ;

 sh:datatype xsd:long ;

 sh:path <https://example.com/ontology/Int64_property>

]

) .

<SpecifiedPropertyShape>

 a sh:PropertyShape ;

 rdfs:label "SpecifiedPropertyShape" ;

 sh:datatype xsd:int ;

 sh:path <https://example.com/ontology/Int32_property> .

Listing 3.62: speed property shape, semantically annotated components

 These are the only examples that represent a valid semantically annotated property schema with polymorphism.
An invalid case of such property, is when all of the components as well as the main property have a semantic
value. The contradiction here is that a semantic value “tries” to be mapped with other semantic values. This is not
permitted. The reason why is that the two semantic values, that of the property and either one of the property
attributes come into conflict. This is always the case as more than one semantic value cannot define a single
model simultaneously. This example is presented in Listing 3.63. In this case the algorithm will exit with the
appropriate message, without making the desired translation.

OtherPet:

 type: object
 required:

 - speed

 properties:
 speed:

 x-refersTo: https://example.com/ontology/Speed
 oneOf:

 - type: integer
 format: int64
 x-refersTo: https://example.com/ontology/Int64_property

 - type: string
 x-refersTo: https://example.com/ontology/String_property

 - $ref: '#/components/schemas/Specified'

components:

 schemas:
 Specified:

 x-refersTo: https://example.com/ontology/Int32_property
 type: integer
 format: int32

45

Listing 3.63: semantic malfunction, conflict

 Another invalid example and an easier to understand is that of semantic inconsistency. In case where the
property is not semantically annotated but it`s property attributes are, all attributes need to be semantically
annotated. Otherwise, if some attributes have and others do not, all of them will not be semantically equivalent.
This case is presented in Listing 3.64. The two inline property schemas obtain a semantic value but the referenced
property schema “Specified” does not.

OtherPet:
 type: object
 required:

 - speed

 properties:

 speed:

 oneOf:
 - type: integer

 format: int64
 x-refersTo: https://example.com/ontology/Int64_property

 - type: string
 x-refersTo: https://example.com/ontology/String_property
 - $ref: '#/components/schemas/Specified'

components:

 schemas:
 Specified:
 type: integer

 format: int32

Listing 3.64: semantic malfunction, inconsistency

 The last convention of the algorithm appears in the case of the annotated components. In Listing 3.61, we
presented a valid example of polymorphism. However, if the type of the “Specified” schema was “object”, then the
example would become invalid as presented in Listing 3.65. In this Listing, it`s semantic value of
“https://example.com/ontology/Specified” characterizes it as a semantically annotated Schema Object and not as a
semantically annotated property schema. Consequently, under property “speed” would result a semantic
inconsistency containing two semantically annotated property schemas (inline schemas) and one semantically
annotated Schema Object which is not equivalent. A method to overcome this stalemate is to allow the Schema
Object “Specified” to be annotated as property schema like in Listing 3.65 (black bold). In this example we present
this exact situation, where the “Specified” schema is double annotated, first as a Schema Object and secondly as
property schema. However, Swagger Parser does not allow this type of format (black bold) because an array
object which is referenced and not inline, cannot have properties (in this case an extension property) outside it`s
referenced body.

OtherPet:
 type: object
 required:

 - speed

 properties:

 speed:
 oneOf:

46

 - type: integer
 format: int64

 x-refersTo: https://example.com/ontology/Int64_property
 - type: string

 x-refersTo: https://example.com/ontology/String_property
 - $ref: '#/components/schemas/Specified'
 x-refersTo: https://example.com/ontology/Annotate_as_Property

components:

 schemas:
 Specified:
 x-refersTo: https://example.com/ontology/Specified

 type: object
 ...

Listing 3.65: semantic malfunction, inconsistency

 In Listing 3.66, we present the algorithm that handles the validity of Schema Object properties. The function
name is semanticValidation and has two arguments. The first argument “schemaObject” contains the body of the
schema property in discuss. The second argument “schemas” contains all the schemas encountered so far in the
OpenAPI document. The algorithm essentially performs a double check. The first check is for the uniformity of
attributes concerning their extension properties. Either all of them will contain an extension property or none of
them. Secondly checks if the “parent” property has an extension and acts appropriately according to the first
check. This function will exit and cause the whole algorithm to stop if the above conditions are not met. In
conclusion, if a rule is violated the function will exit otherwise it returns to the function which called it and the
algorithm continues.

Listing 3.66: algorithm semantic validation handling

3.12 Keyword Not

 In this subsection of the chapter, we study the case of the not keyword provided by the OpenAPI Specification.
The not keyword is used in property schemas and defines what type of values is not acceptable for the current
property. It mainly helps to modify schemas and make them more specific. In particular, in Listing 3.67 we claim
that the property “byType” of the Pet Schema Object can be anything but a string. As mentioned in a previous
section, the SHACL constraint for this keyword is the sh:not. In contrast with the other constraints (sh:or, sh:and,
sh:xone), this one does not accept as a value an RDF list but a single node. This is clear in Listing 3.68 where the
corresponding property shape of property “byType” is presented. There, the sh:not predicate has a single blank
node as an object.

Pet:
 type: object
 required:
 - id

 properties:
 id:

function semanticValidation(schemaObject, schemas)

− Check if the schemaObject (the body of the property schema) contains an extension property.
− Check all the components for extension properties (use the schemas argument for referenced schemas because

they are not contained inside the body of the schemaObject).
− If the property contains an extension property, exit at the first component that will contain an extension

 property.
− If all of the components do not contain extension properties continue.
− If the property does not contain an extension property, check the components.
− If some of the components contain extension properties, exit.

47

 type: integer
 format: int64
 byType:
 not:
 type: string

Lising 3.67: Pet Schema object, byType property, not

<Pet_byTypePropertyShape>
 a sh:PropertyShape ;
 rdfs:label "Pet_byTypePropertyShape" ;
 openapi:name "byType" ;
 sh:not [a sh:PropertyShape ;
 sh:datatype xsd:string
] ;

 sh:path <Pet_byType> .

<Pet_byType> a rdf:Property .

Listing 3.68: byType property shape, sh:not

 In Listing 3.69, we present the same Schema Object of Listing 3.67 with the addition of an extension property
that dictates a semantic value. Although the Schema Object at first seems valid, it is not. That is because if the
property under the not keyword has a semantic value it will designate that only this value is not allowed. So, for
this example, every other string will be permitted except the a string that is semantically enriched with
the ”https://example.com/ontology/SpecificString” value. This negates the universality of the not keyword and its
original purpose. In particular, the keyword not is intended to exclude a whole category of properties (e.g.,
strings, integers etc.) and not only one specific property. So, in these cases we assume it is a misuse of the not
keyword from the author of the OpenAPI description. Therefore, our algorithm will ignore any extension property
and will continue to the translation as presented in Listing 3.70. The mapped shaped as a result from Listing 3.69
is the same as above (Listing 3.68).

Pet:
 type: object
 required:
 - id

 properties:
 id:
 type: integer
 format: int64
 byType:
 not:

 x-refersTo: https://example.com/ontology/SpecificString
 type: string

Listing 3.69: Pet Schema object, byType property, not, x-refersTo

 The OpenAPI keyword “not” is also handled inside the createPropertyShape function. When the keyword is
detected, the function calls the parseSchemaObject function to map the schema under the “not” keyword and
returns the shape Individual. Then. the algorithm write the connection triple “PropertyShape sh:not
ShapeIndividual”. However, before calling schemaObject we set all extension properties to NULL. The last step is to
return the PropertyShape Individual. For the examples above, the function calls would be createPropertyShape
(ontModel, Pet, byType, byTypeBodyObject, schemas) and inside the function, parseSchemaObject (ontModel, NULL,
unnamedBodyObject, schemas).

48

Listing 3.70: algorithm keyword “not” handling

3.13 Synopsis

 In this chapter we analyzed how we handle the Schema Objects of an OpenAPI description. We also showcased
the different concepts that may exist inside the body of a Schema Object. Composition, polymorphism and
semantic annotations both in Schema Object but also in property schemas create countless combinations. In this
section we present these features along with some basic combinations in a hierarchical way.

1.1 Schema Object to Node Shape (with or without extension properties)

 The OpenAPI Object will call parseSchemaObject (sections 3.8 and 4.6) and if it does not contain any OpenAPI
keywords (allOf, anyOf, oneOf) it will get the type of the Schema Object. Then, it will call the appropriate function.
We assume that the type is ”object”. Then, the function createNodeShape (sections 3.7 and 4.6) will be called. After
handling any extension property inside the body of the Schema Object, then, call createPropertyShape (sections
3.7 and 4.6) and map every property schema to a PropertyShape Individual. Map every PropertyShape Individual
to the NodeShape Individual and return it to parseSchemaObject. The last function, will return the Shape
Individual to the OpenAPI Object.

1.2 Schema Object to Node Shape (with or without extension properties) with OpenAPI keywords

 Again, the handling of this case begins with an OpenAPI Object calling parseSchemaObject (sections 3.8 and 4.6)
to map its schema. Here, at the first decision branch of Figure 3.1 we assume the Schema Object contains either
one of the allOf, anyOf or oneOf. Then, we call createNodeShape (sections 3.7 and 4.6) to make a NodeShape
Individual and handle any extension properties that it might have. We also create an empty RDF list. Then for
every component under the keywords, we call parseSchemaObject in order to create a Shape Individual for each
one of them. In particular, the createNodeShape is called for the Schema Object that contains the mentioned
keywords. Then, we call parseSchemaObject for each of the components because they might also contain one of
these keywords.

function createPropertyShape (ontModel, ownerName, schemaName, schemaObject, schemas)

− Check if the schemaObject has the not keyword.
− If there are any extension properties

− Set extension properties to NULL.

− Call parseSchemaObject to create a shape Individual for the schema under not keyword.

− Write the triple: PropertyShape sh:not shape Individual.

− Add the triple to the ontology (ontModel).

− Return PropertyShape Individual.

49

Figure 3.1: parseSchemaObject flowchart

If the components contain semantic annotations, they will get handled like the case 1.1 above. These Shape
Individuals, will be added to the list and the list will be mapped to the NodeShape Individual (subject), with either
one of the sh:and, sh:or or sh:xone predicates. However, if the keyword is the allOf, we make an additional action in
order to create subclass relations between the classes of the Shape Individuals. When we are done with the RDF
list and its components, we continue in parseSchemaObject and return the NodeShape Individual. In summary,
this is the way we handle composition and inheritance but also polymorphism inside a Schema Object.

50

Figure 3.2: createNodeShape flowchart

2.1 Property Schema to Property Shape (with or without extension properties)

 All property schemas inside the OpenAPI description are handled in createPropertyShape function (sections 3.7
and 4.6). This function can be called by either, parseSchemaObject (sections 3.8 and 4.6), createNodeShape
(sections 3.7 and 4.6) or createCollectionNodeShape (section 4.6). In any case, the function handles a schema with
either one of the types integer, string or boolean. The function starts by handling any extension properties that
may be found inside its schema body. Then, (assuming it does not contain the keywords anyOf, oneOf, or “not”)
maps all its property attributes (e.g., format, description etc.) to the PropertyShape Individual. The last step is to
return the PropertyShape Individual.

2.2 Property Schema to Property Shape (with or without extension properties) with OpenAPI keywords

 For this case, in Figure 3.3 we assume that the property schema indeed has an OpenAPI keyword. At, the start of
the function we handle any extension properties that might exist inside the property schema. Then, if any of the
keywords oneOf, anyOf or “not” is encountered we call parseSchemaObject (sections 3.8 and 4.6) and map the
components under these keywords with Shape Individuals. In case of “not” we have only one component and its
Shape Individual will become an object to the sh:not predicate. If this is not the case, we create an RDF list and
insert the Shape Individuals. The list becomes the object of either sh:or or sh:xone. Finally, we map the list to our
PropertyShape Individual and return it. In conclusion, this is they way a property schema with polymorphism or
the keyword “not” is handled.

51

Figure 3.3: createPropertyShape flowchart

3.1 Array Schema to Node Shape

 In Figure 3.4 we handle any schema that is of type array. This is a very straightforward situation to handle. In
createCollectionNodeShape (section 4.6) we create an Individual of NodeShape and then we make a class from its
schema name. This class will become a subclass of the Collection class. The for the schema inside its “items”
property, we call the createPropertyShape (sections 3.7 and 4.6) and return a PropertyShape Individual. This is
mapped to the NodeShape Individual. As a last step we return the NodeShape Individual. In this case we do not
encounter any semantic annotations.

Figure 3.4: createCollectionNodeShape flowchart

52

 This section sums up the combinations that are presented in this chapter. However, in OpenAPI descriptions
there might be many more combinations. In particular, a Schema Object or a property schema might contain both
polymorphism and composition. Specifically, a schema that exists under an allOf keyword might also contain an
allOf keyword or even an oneOf keyword and so on. This is why for every component under the OpenAPI v3.0
keywords we call the parseSchemaObject (sections 3.8 and 4.6). This function will handle the OpenAPI keywords.
In this way we allow any possible variation concerning composition and polymorphism.

53

 Chapter 4

Instantiation Algorithm

4.1 Introduction

 In this chapter, we present the main idea of mapping an OpenAPI service to the OpenAPI v3 Ontology. Besides
Schema Objects, it is important to showcase the whole algorithm along with our approach on handling OpenAPI
elements. Αs mentioned at the beginning of this thesis, the input of the algorithm is an OpenAPI description
document. The output is an instantiated ontology where all the service properties are represented. The chapter is
divided in sections that contain the most important functions of the algorithm. The functions are analyzed in
terms of their input arguments, their output and the logic that they follow.
 All OpenAPI Objects are mapped to the corresponding class in our OpenAPI v3 Ontology. The main responsibility
of every function presented in this chapter is to map an OpenAPI Object and its properties to the appropriate class
inside the ontology. In order to better comprehend the actions that follow we present the OpenAPI v3 Ontology in
Figure 4.1.

Figure 4.1: OpenAPI Version 3 Ontology

54

4.2 OpenAPI Object

 The algorithm scans the OpenAPI document of a service and instantiates OpenAPI objects to classes of the
ontology. In particular, after uploading the ontology in the memory, the algorithm will scan the OpenAPI file to
extract info, servers, security schemes, tags and paths objects. These objects will become individuals of their
corresponding classes.
 The OpenAPI object (the root object of the OpenAPI document) is mapped to class Document. There may exist
more than one appearance of servers or securiySchemes in an OpenAPI file. Property servers declares server
information which applies across the description (global servers). This will be overwritten by server information
defined in Path or Operations objects. Similarly, Security schemes declared by an operation will also override
global declaration of security schemes. Property Tags contains the Tag objects for operations which are grouped.
Through x-onResource property, Tag objects can associate operations with Schema Objects. Listing 4.1 illustrates
the mapping between OpenAPI Object and the Document Class in the form of a simple algorithm. The input of the
algorithm is the OpenAPI description document.

function parseDocumentObject (OpenAPI Document)
− Initialize the Ontology Model

− Create Document Individual

− Call Info Function and save Info Individual in Document Individual

→ parseInfoObject (infoObject) //Listing 4.2
− Keep a list with all the Global Servers

− For every Server Object in OpenAPI Service:

− Call Server Function and save Server Individual in Document Individual

 → parseServerObject (serverObject) //Listing 4.5
− Add the Server Individual to the list

− For every Security Scheme Object in OpenAPI Service:

− Call Security Scheme Function and save Security Scheme Individual in Document Individual

 → parseSecuritySchemeObject (documentInd, securityObject) //Listing 4.6
− Keep a list (globalSecReqList) with all the Global Security Requirements

− For every Security Requirement Object in OpenAPI Service:

− Call Security Requirement Function and save Security Requirement Individual in Document Individual

 → parseSecurityReqObject (securityReqObject) //Listing 4.7
− Add the Security Requirement Individual to the list.

− Call ExternalDoc Function and save ExternalDoc Individual in Document Individual

→ parseExternalDocObject (externalDocObject) //Listing 4.8
− Extract all Schema Objects from OpenAPI Service

− Keep a list (tagShapeMap) with all pairs of tags and Schemas //used for x-onResource

−

55

Listing 4.1: OpenAPI Object to Document Individual

 In Listing 4.1 we present the main function of the algorithm. Starting from the parseDocument function, we
initialize the ontology (uploading the ontology in the memory) and continue by creating Individuals for several
OpenAPI Objects. The main idea behind every function is to handle one OpenAPI Object and map its properties to
the corresponding Individual. The first Individual is that of the Info Class which is created by calling the function
parseInfoObject presented in Listing 4.2. The Info Object contains the Contact and the License Object which are
mapped to Individuals by calling parseContactObject (Listing 4.3) and parseLicenseObject (Listing 4.4)
respectively.

Listing 4.2: Info Object to Info Individual

Listing 4.3: Contact Object to Contact Individual

− Call Tag Function, return the <Tag, Schema> pairs and add them to the list (tagShapeMap)

→ parseTagObject (tagObject, componentSchemas) //Listing 4.9
− For every Path Object

− Keep a list (pathServersList) with all Path Servers

− For every Path Server:

− Call Server Function and return Server Individual

 → parseServerObject (serverObject) //Listing 4.5
− Add the Server Individual to the list

− Keep a final Server list (Path if not empty, else Global)

− Extract all Parameters from OpenAPI Service and put them in a list (pathParametersList)

− Create Path Individual

− For every Operation Object call Operation Function

 → parseOperationObject (documentId, pathInd, OperationObject, tagShapeMap,

 pathParametersList, pathServersList, globalSecReqlist) //Listing 4.10

function parseInfoObject (infoObject)
− Create Info Individual

− Extract and map all Info’s properties from OpenAPI Service (title, description, termsOfService, etc)

− Call Contact Function

→ parseContactObject (contactObject) //Listing 4.3
− Call License Function

→ parseLicenseObject (licenseObject) //Listing 4.4
− Return Info Individual

function parseContactObject (contactObject)
− Create Contact Individual

− Extract and map all Contact’s properties from OpenAPI Service

− Return Contact Individual

function parseLicenseObject (licenseObject)
− Create License Individual

− Extract and map all License’s properties from OpenAPI Service

− Return License Individual

56

Listing 4.4: License Object to License Individual

 Next, we create a list for global Server Individuals and call the parseServerObject (Listing 4.5) to map all the
properties of a Server Object as well as to create the corresponding Individual. Inside the Server function we
check for server variables which will become Individuals of Server Variable Class and will be stored in the current
Server Individual. As a last step, we return the Server Individual to be added to the list. All functions we have seen
so far take as argument an OpenAPI Object and after mapping all its properties they return an Individual.

Listing 4.5: Server Object to Server Individual

 After dealing with Info and Server Objects, we proceed with Security Schemes and Security Requirements. With
Security Schemes we follow the standard procedure of calling the function parseSecuritySchemeObject (Listing
4.6) and creating one Individual for every Security Scheme Object. A Security Scheme Object becomes an
Individual of a certain class (ApiKEY, HTTP, OpenIDConnect, OAuth2) depending on property type inside the
Security Scheme Object. This Individual is connected to the Document Individual with the property
supportedSecurity. Handling Security Requirement Objects is a case more similar to that of the Server Objects. We
need to keep a list of global Security Requirements which later might be overwritten by a Security Requirement
declared in an operation. The function parseSecurityReqObject in Listing 4.7 maps the properties of the Security
Requirement Object to an Individual and returns this Individual to be added on the list. Continuing inside the
parseDocumentObject function, we need to handle External Document Objects. For these Objects we call the
function parseExternalDocObject (Listing 4.8) and map its properties to an Individual. Finally, we return the
ExternalDoc Individual to the main function.

Listing 4.6: SecurityScheme Object to SecurityScheme Individual

Listing 4.7: Security Req Object to Security Req Individual

function parseServerObject (serverObject)
− Create Server Individual

− Extract and map all Server’s properties from OpenAPI Service

− For every Server Variable Object in Server Object Variables:

− Create Individual Server Variable Class

− Extract and map all Server Variable’s properties from OpenAPI Service

− Save Sever Variable Individual in Server Individual

− Return Server Individual

function parseSecuritySchemeObject (documentInd, securityObject)
− Get “type” of SecurityScheme Object

− Depending on the type, create the corresponding Individual (ApiKEY, HTTP, OAuth2, OpenIDConnect)

− Extract and map the Individual’s properties from OpenAPI Service

− Save the SecurityScheme Individual to “supportedSecurity” property of Document Individual of Document

Individual

function parseSecurityReqObject (securityReqObject)
− Create SecurityReq Individual

− Extract and map all Security Req’s properties from OpenAPI Service

− Return SecurityReq Individual

57

Listing 4.8: External Doc Object to External Doc Individual

 Continuing, we proceed with extracting all Schema Objects from the OpenAPI service which are listed under
Components section of an OpenAPI document. These schemas are placed inside the list “schemas” that we
presented in the previous chapter (Handling Schema Objects). Storing all schemas in one list at the start of the
algorithm contributes a great deal in speed and flexibility when later on we might come across a “$ref” property
which refers to a schema.
 Next, we handle Tag Objects. The x-onResource connects a Tag Object with a Schema Object. To track this
relation between the objects, we keep a list that contains pairs of Tags and Schemas. To add such a pair in the list,
first we need to map it. Consequently, we call the function parseTagObject (Listing 4.9). This function creates a
Tag Individual along with all its properties. Also, checks for the x-onResource property and then, if the extension
property exists, it creates a Shape Individual for the referred schema. To map a Schema Object to a Shape Class we
call parseSchemaObjcet which was thoroughly explained in the previous chapter. Afterwards, the function returns
a pair of Tag – Shape Individual. Otherwise, returns a pair of Tag Individual – Null. The pair is returned to the
main function parseDocumentObject to be added in the appropriate list. Tag Individuals and their associated
Shapes are kept in a Map structure that will be used when instantiating Operation objects in a following section.

Listing 4.9: Tag Object to Tag Individual

 The last OpenAPI object that is handled inside the parseDocumentObject function is the Path Object. For every
Path Object we perform the same steps. Firstly, we extract any defined servers if the server property is set. For
every server inside the Path Object, we call the Server Function and we add the returned Server Individual inside
a list which represents the servers used in the current path. If the property servers is not set, then the list is
replaced by the globalServerList created previously. This simply means that a Path Object can either have servers
defined in its body or the global servers. Continuing, we extract all the parameters inside the current path and we
create a Path Individual.
 The final step for a Path Object is to handle its operations. An Operation Object can overwrite a lot of the
previously mapped OpenAPI objects such as tags, servers, parameters and security requirements. For this reason,
these OpenAPI objects are given as arguments to the parseOperationObject function which is responsible for
handling the Operation Objects.

function parseExternalDocObject (externalDocObject)
− Create ExternalDoc Individual

− Extract and map ExternalDoc’s properties from OpenAPI Service

− Return ExternalDoc Individual

function parseTagObject (tagObject, componentSchemas)
− Create Tag Individual

− Extract and map Tag’s properties from OpenAPI Service

− If x-onResource points to a Schema:

− Find the Schema in componentsSchemas

− Create the Shape individual by calling the Schema Function

 → parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Return Tag Individual – Shape Individual if x-onResource was used, else return Tag Individual - Null

58

4.3 Operation Object

 In Listing 4.10 we present the parseOperationObject function. This function shows how the Individuals of Class
Operation are created. The Operation method can be any of put, get, post, etc. and it is mapped under the property
method of an Operation Individual along with other properties. Among these properties, we map the onPath
property which associates an Operation Individual with a Path Individual. If there is an External Document Object
inside the operation, we call the parseExternalDoc function and save the returned External Document Individual
to Operation Individual. The same logic is followed with any Tag Objects inside the operation. Continuing, in an
Operation Object there might be new Security Requirements as well as new Servers introduced. If this is the case,
we call parseSecurityReqObject and parseServerObject functions respectively to overwrite the global ones. In
addition, in order to connect the Operation Individual with Document Individual we use the supportedOperation
property. The x-operationType extension property which may exist in an Operation Object, clarifies the type of the
current operation. When an Operation Object contains this extension property, its Operation Individual will
become a member of the corresponding operationType class.

Listing 4.10: Operation Object to Operation Individual

function parseOperationObject (documentId, pathInd, OperationObject, tagShapeMap, pathParametersList,

 pathServersList, globalSecReqlist)
− Create Operation Individual

− Extract and map all Operation’s properties from OpenAPI Service

− Save Operation Individual to Path Individual with property onPath

− Call ExternalDoc Function and save ExternalDoc Individual to Operation Individual

→ parseExternalDocObject (externalDocObject) //Listing 4.8
− Call Tag Function and save Tag Individual to Operation Individual.

→ parseTagObject (tagObject, componentSchemas) //Listing 4.9
− Get Operation’s Security Requirements

− If there are no Operation’s SecurityReq, use global ones

− Else, define the SecurityReq for this Operation by calling SecurityReq Function

 → parseSecurityReqObject (securityReqObject) //Listing 4.7
− Get Operation’s Servers from OpenAPI Service

− If there are no Operation’s Servers, use global ones

− Else define the Servers for this Operation by calling Server Function

 → parseServerObject (serverObject) //Listing 4.5
− Save Operation Individual to “supportedOperation” property of Document Individual

− Get the resource where x-operationType points

− Set resource-class as second class of the new Operation Individual

− Extract Parameters from OpenAPI Service

− Keep in a combined Parameters list from Path and from Operation

− Map every parameter depending on the value of property “in” by calling Parameter Function (for each

parameter call one of the functions below)

→ parseCookieParameterObject (cookieObject, componentSchemas) //Listing 4.11
→ parseHeaderParameterObject (headerName, headerObject, componentSchemas) //Listing 4.12
→ parseQueryParameterObject (queryParameter, componentSchemas) //Listing 4.13
→ parsePathParameterObject (pathParameter, componentSchemas) //Listing 4.14

− Call RequestBody Function for every Request Body

→ parseRequestBodyObject (requestObject, componentSchemas) //Listing 4.17
− Call Response Function for every Response

→ parseResponseObject (statusCode, responseObject, componentSchemas)

59

 Other structural elements of an operation are parameters, request bodies and responses. Regarding parameters,
after extracting them from the Operation Object, we need to map each one of them depending on their property
in. Parameter Objects can be any of type Path, Query, Header or Cookie and are instantiated to the corresponding
classes (i.e., PathParameter, Query, Header and Cookie respectively). After creating the Parameter Individuals,
each time by calling the appropriate function, we add properties to the Operation Individual in order to associate
them with it. Parameters, request bodies and responses are going to be explained in the following sections.

4.4 Parameter Object

 As mentioned in the previous section, there are four possible parameter locations specified by the in
field inside the Parameter Object. Path – Where the parameter value is actually part of the operation’s URL. Query
– Parameters that are appended to the URL. Header – Custom headers that are expected as part of the request.
Cookie – Used to pass a specific cookie value to the API. Depending on the in field, the Parameter Object is mapped
to one of the above Classes.
 Each of the Listings 4.11 – 4.14 represent the mapping of the Parameter Class to the Corresponding Class
depending on the value of in property. We start by creating the appropriate Individual. Then extract and map all
of the properties of a Parameter Object (description, explode, name etc.). Next, we need to handle the Schema
Object of the parameter. We do this either by extracting the schema from the Parameter Object body, or by
retracting it from the schemas (componentSchemas argument) when the schema is not placed inside the
Parameter Object body but it is referred with the use of $ref property. Then, we save the Shape Individual to the
Parameter Individual. The last action we take, is to handle the Media Type Objects inside the Parameter Objects.
After extracting all the Media Type Objects from the parameter, we add them to a list and call the
parseMediaTypeObject for each one of them. Finally, we save the MediaType Individuals to the Parameter
Individual under the property content.

Listing 4.11: Parameter Object to Cookie Individual

function parseCookieParameterObject (cookieObject, componentSchemas)
− Create CookieParameter Individual

− Extract and Map CookieParameter’s properties from OpenAPI Service

− Extract Schema Object from CookieParameter Object

− Call Schema Function and return Shape Individual

→ parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Save Shape Individual to “schema” property of CookieParameter Individual

− Extract MediaType Object from CookieParameter Object

− Call MediaType Function and return MediaType Individual

→ parseMediaTypeObject (mediaName, mediaTypeObject componentSchemas) //Listing 4.15
− Add MediaType Individual to MediaType list

− Save MediaType list to “content” property of CookieParameter Individual

− Return CookieParameter Individual

60

Listing 4.12: Parameter Object to Header Individual

Listing 4.13: Parameter Object to Query Individual

Listing 4.14: Parameter Object to Path Individual

function parseHeaderParameterObject (headerName, headerObject, componentSchemas)
− Create HeaderParameter Individual

− Assign “headerName” value from OpenAPI Service to “headerName” property of Header Individual

− Extract and Map HeaderParameter’s properties from OpenAPI Service

− Extract SchemaObject from HeaderParameter Object

− Call Schema Function and return Shape Individual

→ parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Save Shape Individual to “schema” property of HeaderParameter Individual

− Extract Mediatype Object from HeaderParameter Object

− Call MediaType Function and return MediaType Individual

→ parseMediaTypeObject (mediaName, mediaTypeObject componentSchemas) //Listing 4.15
− Add MemberType list to “content” property of HeaderParameter Individual

− Return HeaderParameter Individual

−

function parseQueryParameterObject (queryParameter, componentSchemas)
− Create QueryParameter Individual

− Extract and Map QueryParameter’s properties from OpenAPI Service

− Extract Schema Object from QueryParameter Object

− Call Schema Function and return Shape Individual

→ parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Save Shape Individual to “schema” property of QueryParameter Individual

− Extract MediaType Object from QueryParameter Object

− Call MediaType Function and return MediaType Individual

→ parseMediaTypeObject (mediaName, mediaTypeObject componentSchemas) //Listing 4.15
− Add MediaType Individual to MediaType list

− Save MediaType list to “content” property of QueryParameter Individual

− Return QueryParameter Individual

−

function parsePathParameterObject (pathParameter, componentSchemas)
− Create PathParameter Individual

− Extract and Map PathParameter’s properties from OpenAPI Service

− Extract Schema Object from PathParameter Object

− Call parseSchemaObject Function and return Shape Individual

→ parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Save Shape Individual to “schema” property of PathParameter Individual

− Extract MediaType Object from PathParameter Object

− Call MediaType Function and return MediaType Individual

→ parseMediaTypeObject (mediaName, mediaTypeObject componentSchemas) //Listing 4.15
− Add MediaType Individual to MediaType list

− Save MediaType list to “content” property of PathParameter Individual

− Return PathParameter Individual

61

 In Listing 4.15 we present the parseMediaTypeObject function. We start by creating the MediaType Individual
and mapping the mediaName value of the object to the mediaName property of the MediaType Individual. Then,
we create a Shape Individual by calling the parseSchemaObject function. The schema may exist inside the Media
Type Object or being referred to in the componentSchemas. Continuing, we create a list for all Encoding
Individuals that need to be mapped with the Media Type Individual. The Encoding Objects are mapped with the
use of the parseEncodingObject (Listing 4.16). Finally, we return the Media Type Individual.

Listing 4.15: Media Type Object to Media Type Individual

 The parseEncodingObject function is responsible for handling Encoding Objects in an OpenAPI document.
Following the standard procedure, the first step is to create an Encoding Individual. Then we map the encodName
value to the encodName property of the Encoding Individual. Inside an Encoding Object there might be Header
Objects which are mapped to Header Individuals and assigned to the Encoding Individual through the
encodingHeader property. The Header Objects might be more than one therefore we keep a list and then map the
Header Individuals list to the Encoding Object. Then, we return the Encoding Individual.

Listing 4.16: Encoding Object to Encoding Individual

 A Header Object according to the OpenAPI Specification 3.0 has the same properties as a Parameter Object which
contains the value header inside the in property. Therefore, the actions we make for a Header Object are the same
as that of a Parameter Object of type header. The handling of this OpenAPI Object is already described in Listing
4.12.

function parseMediaTypeObject (mediaName, mediaTypeObject componentSchemas)
− Create MediaType Individual

− Assign “mediaName” value from OpenAPI Service to “mediaName” property of MediaType Individual

− Call Schema Function and return Shape Individual

→ parseSchemaObject (schemaName, schemaObject, componentSchemas) //Listing 4.19
− Create a list for Encoding Individuals

− For each Encoding Object in MediaType Object:

− Call Encoding Function and return Encoding Individual

 → parseEncodingObject (encodName, encodingObject, componentSchemas) //Listing 4.16
− Add the Encoding Individual to the list

− Assign the list to the “encoding” property of MediaType Individual

− Return MediaType Individual

−

function parseEncodingObject (encodName, encodingObject componentSchemas)
− Create Encoding Individual

− Assign “encodName” value from OpenAPI Service to “encodName” property of Encoding Individual

− Extract and map Encoding’s poperties from OpenAPI Service

− Create a list for Header Individuals

− For each Header Object in Encoding Object:

− Call Header Function and return Header Individual

 → parseHeaderParameterObject (headerName, headerObject, componentSchemas) //Listing 4.12
− Add the Header Individual to the list

− Assign the list to the “encodingHeader” property of Encoding Individual

− Return Encoding Individual

−

62

4.5 Response and Request Body Objects

 Both of these OpenAPI Objects can be found inside an Operation Object. Request bodies and responses are
structural components of an operation. They are widely used inside an API to either declare the payloads that an
action requires, or what a client receives after an action.
 The parseRequestObject function (Listing 4.17) is called by the parseOperationObject (Listing 4.10) in order to
handle the Request Body Object inside an operation. After creating a Request Body Individual, the function maps
all the properties of the current Object from the OpenAPI Service. Then, it creates a list of MediaType Individuals
and calls the Media Type function for each one. The list with the Individuals is mapped to the content property of
the RequestBody Individual.

Listing 4.17: Request Body Object to Request Body Individual

 In Listing 4.18 we present the function parseResponseObject. Depending on the value statusCode of the Response
Object, we create an Individual of the corresponding Class. Then, we map all the properties of the Response Object
and we create one list for the Header Individuals and one list for the Media Type Individuals. In order to fill these
lists, we call the Header function as well as the Media Type function. The Header list of Individuals is mapped to
the responseHeader property and the Media Type list of Individuals is mapped to the content property of the
Response Individual. As a final step, we return the Response Individual to the parseOperationObject (Listing 4.10)
where was originally called.

Listing 4.18: Response Object to Response Individual

function parseRequestBodyObject (requestObject, componentSchemas)
− Create RequestBody Individual

− Extract and Map RequestBody’s properties from OpenAPI Service

− Create MediaType list

− For ever MediaType Object in RequestBody Object:

− Call MediaType Function and return MediaType Individual

 → parseMediaTypeObject (mediaName, mediaTypeObject, componentSchemas) //Listing 4.15
− Add MediaType Individual to MediaType list

− Save MediaType list to “content” property of RequestBody Individual

− Return RequestBody Individual

function parseResponseObject (statusCode, responseObject, componentSchemas)
− Depending on the “statusCode”, the corresponding Individual is created

− Extract and Map Response’s properties from OpenAPI Service

− Create a Headers list

− For each Header Object in Response Object

− Call Header Function and return header Individual

 → parseHeaderParameterObject (headerName, headerObject, componentSchemas) //Listing 4.12
− Add Header Individual to the list

− Add the Headers list to the property “responseHeader” of Response Individual

− Create MediaType list

− For ever MediaType Object in Response Object:

− Call MediaType Function and return MediaType Individual

 → parseMediaTypeObject (mediaName, mediaTypeObject, componentSchemas) //Listing 4.15
− Add MediaType Individual to MediaType list

− Save MediaType list to “content” property of Response Individual

− Return Response Individual

63

4.6 Schema Objects

 As we have seen so far, almost every OpenAPI Object contains a Schema Object. Some, contain a Schema Object
directly (parameters, media type etc.) or through another OpenAPI Object (request bodies, responses, paths etc.).
Consequently, the modification that took place in Schema Objects have a great impact on every OpenAPI Object
and therefore the whole ontology.
 In the previous sections we mentioned that Schema Objects become Individuals of Shape Class with the help of
parseSchemaObject. This function calls either createNodeShape or createPropertyShape depending on the
property type of a Schema Object. Although these three functions have already been analyzed in chapter 3, here
we present them in a more spherical way to give the reader a better overview.
 The parseSchemaObject function is presented in Listing 4.19. The first step is to check if the Schema Object with
the current schema name (schemaName argument) has already been mapped with an Individual in a previous
OpenAPI Object. If this is the case, we return the already created Shape Individual. Else, we proceed by checking
the body of the Schema Object for OpenAPI keywords (allOf, anyOf, oneOf). The function then will handle the
Schema Object (this case has already been analyzed in Chapter 3) and will return the Shape Individual. If the
Schema Object is neither already created nor contains OpenAPI keywords, we check its type property and we call
the appropriate function. As a last step we return the Shape Individual which we received from either
createNodeShape, createPropertyShape or createCollectionNodeShape.

Listing 4.19: parseSchemaObject function

 The algorithm in Listing 4.20 sums up the functionality of createNodeShape. After creating a Node Shape
Individual and extracting all the properties (description etc.) we then check for any extension properties. The
handling of extension properties for Node Shapes has already been analyzed in Chapter 3. Continuing, for every
property schema inside the Schema Object we call the createPropertyShape function to create the Property
Shapes. Finally, we return the Node Shape Individual.

Listing 4.20: Schema Object to Node Shape Individual

function parseSchemaObject (schemaName, schemaObject, componentSchemas)
− If there is a Shape Individual with this schemaName, return it

− Else check the Schema Object for the keywords allOf, anyOf, oneOf, handle them and call createNodeShape

→ createNodeShape (schemaName, schemaObject, componentSchemas) //Listing 4.20

− For every component under the keywords, call parseSchemaObject
→ parseSchemaObject (compSchemaName, compSchemaObject, componentSchemas)

− Else check the property “type” of the Schema Object

− If the property “type” is “object” call createNodeShape

 → createNodeShape (schemaName, schemaObject, componentSchemas) //Listing 4.20
− If the property “type” is “int”, “boolean” or “string” call createPropertyShape

 → createPropertyShape (ownerName, schemaName, schemaObject, componentSchemas) //Listing 4.21
− If the property “type” is “array” call createCollectionNodeShape

 → createCollectionNodeShape (schemaName, schemaObject, componentSchemas) //Listing 4.22
− Keep schemaName in property “label” if Shape Individual

− Return Shape Individual

function createNodeShape (schemaName, schemaObject, componentSchemas)
− Create Node Shape Individual

− Extract and map Schema’s properties from OpenAPI Service

− Check the Schema Object for extension properties

− For every property schema inside the Schema Object

− Call createPropertyShape

 → createPropertyShape (ownerName, schemaName, schemaObject, componentSchemas) //Listing 4.21
− Return Shape Individual

64

 The createPropertyShape function is already explained in detail in Chapter 3. After creating the Property Shape
Individual, we make a semantic validation on it. Then we continue by checking for extension properties and any
OpenAPI keywords that may exist in it. Continuing, we map all its properties (description, tittle, pattern etc) with
the Individual. Finally, if there exists an External Doc or an XML Object, we call the corresponding functions and
we map the returned Individuals to the Property Shape Individual. An XML Object can be found only in a property
schema, and its function is presented below in Listing 4.21

Listing 4.21: Property Schema to Property Shape Individual

Listing 4.21: XML Object to XML Individual

 The createCollectionNodeShape function is the last function presented in this chapter. This function is
responsible for handling Schema Objects that are of type array. This is a very simple function which creates an
ontology class from the schema name of the Schema Object. Then, makes this class a subclass of the Collection
Class. Next, it calls createPropertyShape for the schemas under the items property and maps them with the
current Node Shape Individual. Finally, it returns the Node Shape Individual.

Listing 4.22: Schema Object to Shape Individual with Collection Class

function createPropertyShape (ownerName, schemaName, schemaObject, componentSchemas)
− Create Property Shape Individual using Schema and OwnerName

− Do semantic validation on the property schema

− Check property schema for extension properties

− Check property schema for OpenAPI keywords (anyOf, oneOf, not)

− Extract and map property schema’s properties from OpenAPI Service

− Call External Doc Function and save it to the Property Shape Individual

→ parseExternalDocObject (externalDocObject) //Listing 4.8
− Call XML Object Function and save it to the Property Shape Individual

→ parseXMLObject (xmlObject) //Listing 4.21
− Return Property Shape Individual

function parseXMLObject (xmlObject)
− Create XML Individual

− Extract and map XML’s properties from OpenAPI Service

− Return XML Individual

function createCollectionNodeShape (schemaName, schemaObject, componentSchemas)
− Create Node Shape Individual

− Create a class from the schemaName and make it a subclass of the Collection Class

− Call createPropertyShape for items in array

→ createPropertyShape (ownerName, schemaName, schemaObject, componentSchemas) //Listing 4.21
− Map the returned Property Shape Individual to the Node Shape Individual

− Return Node Shape Individual

−

−

65

4.7 Synopsis

 The last section of this chapter provides an overview of the instantiation algorithm. In Figure 4.2, we present the
flowchart of the instantiation algorithm. Starting with the parseDocument function, we extract and map the
following OpenAPI Objects: Info, License, Contact, Server, Security Scheme, Security Requirement, External
Document and Tag. Then, for every Path Object inside the OpenAPI description we call parseServerObject to map
any newly defined servers inside each path. Continuing, we call the parseOperationObject to map the operations
inside a Path Object. Inside parseOperationObject we extract any Tag and External Document Objects that the
Operation Object might contain. In addition, the Operation Object might contain new servers and security
requirements. If this is the case, we call parseServerObject and parseSecurityReqObject respectively. Otherwise, we
use the global servers and security requirements. Then, we map the defined parameters for operation according
to the type of each parameter (Header, Query, Path, Cookie). Finally, we map the Request Body and Response
Object of the operation.
 The parseSchemaObject function handles a Schema Object inside an OpenAPI Object. In particular, this function is
called by all the parameter functions, the parseTagObject and the parseMediaTypeObject. Then the
parseSchemaObject depending on the type of the schema will call either createNodeShape, createPropertyShape or
createCollectionNodeShape.

Figure 4.2: Instantiation Algorithm flowchart

66

Chapter 5

Web Application and SPARQL Results

5.1 Introduction

 In this chapter we present our work aside the Instantiation algorithm. We create a Web Application with the
implementation of the algorithm and we expose it on the Web (http://www.intelligence.tuc.gr/semantic-open-
api/) so that other investigators and practitioners can test it with real life examples. Along with our Web
Application, in this chapter we also present the results from SPARQL Queries on several Google APIs that are
instantiated to the OpenAPI ontology.

5.2 Web Application

 The Web Application disposes a very simple user interface. Our purpose was to avoid an unnecessary and
complex user interface so as not to repel users and confuse them about the purpose of the Web Application. The
system first of all provides an uploading mechanism where the user can upload an OpenAPI description. A user
may upload an OpenAPI description in YAML12 format. When the description is uploaded, the system will
automatically take the user to the Ontologies page where the instantiated description is placed.

Figure 5.1: User Interface Upload

 The ontology is available on TTL13 (turtle) format. The name of the file where the ontology exists, consists of the
original name of the OpenAPI description appended with the upload date and time. The system also provides
information about the size of the file in kilobytes (ΚΒ). In addition, aside from the description that a user has
uploaded, the user may also browse through all ontologies available in the database. In Figure 5.2 an example of
the Ontologies page is presented.

12 https://en.wikipedia.org/wiki/YAML
13 https://en.wikipedia.org/wiki/Turtle_(syntax)

67

Figure 5.2: User Interface Ontologies

 In addition, our system offers the opportunity to perform SPARQL Queries on all ontologies that our Web
Application has stored. For this purpose, we added a Virtuoso Universal Server14 which contains all the ontologies
previously created with the Web Application in the form of graphs. When navigating to Queries page, a list of data
graphs is listed. The graphs represent the ontologies inside the Virtuoso Database15. This way the user is able to
inspect the graphs that desires, and perform SPARQL Queries on a specific graph. In Figure 5.3 the graphs list is
presented.

Figure 5.3: User Interface Graphs

14 https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
15 https://virtuoso.openlinksw.com/

68

 Next to the data graphs list, a user can find a text area where a SPARQL Query can be written. After writing the
SPARQL Query, a user can submit it with the Submit Query button under the text area. Upon submitting the query,
next to the SPARQL Query text area, another one will show up containing the results of the Query. If the user has
made a mistake inside the Query, an appropriate message with the exact error will get returned as the answer.
Also, the user does not have to rewrite the entire SPARQL Query from scratch as the Query will not get erased
upon returning the answer. If the SPARQL Query is correct, the answer is divided in the variables that the user
chose inside the SELECT clause of the Query. As we previously mentioned, the SPARQL Queries are performed
inside the Virtuoso Database. However, the return format might be confusing for new users. This is why we chose
to return the answer as a key – value pair. This gives the opportunity to work faster and perform many SPARQL
Queries as well as receive the answer in a clear text format. In Figure 5.4 we showcase a Query where it returns
all the service titles from the available graphs inside the database.

Figure 5.4: User Interface Queries

 Finally, we present the menu of the Web Application. The Home page is where a user can upload a REST service
description. The Ontologies page is where all the available ontologies are listed and the Queries page is where a
user can perform SPARQL Queries. The Paper option allows the user to download the published article of the
present work.

Figure 5.5: User Interface Menu

69

5.3 Services and SPARQL Queries

 In this section we present realistic examples of using the algorithm. In order to show a full representation of our
work we chose some of the most mainly used services of Google taken from the Google APIs Explorer16. The
Google services first were written in an OpenAPI description and then partially annotated to show the full
potential of the algorithm. All of the OpenAPI descriptions were loaded in our Web Application. In addition, the
SPARQL Queries took place in the Web App in order to simulate the use of the system for a developer who is in
search of generic service information or specific endpoints of services.
 Most of our SPARQL Queries follow the same logic. The scenario is that a developer is looking for a Web Service
by searching a semantic value which should be related with the relevant Web Service description. The user in
most cases first retrieves some generic information about the Web Service which is related to the semantic value
and then proceeds with more informative SPARQL Queries. We chose this approach in order to go step by step on
the complexity of SPARQL Queries presented in this section and also, to follow a realistic scenario for new users.
Although, this is not mandatory. A user can perform all types of SPARQL Queries and retrieve as many data as
possible. Also, for ease of presentation and in order to avoid duplication we present in Listing 5.1 the prefixes for
every SPARQL Query used in this section. The prefixes listed below are pretty common. Firstly, we define our
OpenAPI ontology with the prefix openapi. Then, we continue with the well-known ontologies of rdf (RDF), rdfs
(RDF Schema), sh (SHACL) and owl (OWL).

PREFIX openapi: <http://www.intelligence.tuc.gr/ns/open-api#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

Listing 5.1: SPARQL Prefixes

 The first service we present is the Google Books API17. This Web API allows a developer to bring Google Books
features to a site or an application. Among other endpoints, the Google Books API contains an endpoint where a
user can reach and retrieve a specific BookSelf (a Schema Object in the OpenAPI document) which represents a
collection of data about several books. The Schema Object BookSelf is annotated with the https://schema.org/Book
semantic value. This Schema Object is returned as response to a GET method on path
/users/{userID}/bookshelves/{shelf}. In Figure 5.6 we present the details of the API endpoint under examination.

16 https://developers.google.com/apis-explorer
17 https://developers.google.com/books/docs/overview

70

Figure 5.6: Google Books BookSelf

 In Listing 5.2 we present the SPARQL Query along with the returned answer. The SELECT clause of the Query
asks for the name and external URL of the Web Service that contains the semantic value https://schema.org/Book.
Also, it retrieves the method and path of the endpoint related to the semantic value. In this case the semantically
annotated Schema Object is return as a response. As we can see in Appendix A.1.1, the BookSelf Schema Object
contains an x-kindOf property and as a value the https://schema.org/Book. This means that the class created for
the BookSelf Schema Object will become a subclass of the semantic value. This class is addressed in Line 3 of the
SPARQL Query below. We then proceed to return the service name using the openapi:serviceTitle property as well
as the external document of the Web Service using the openapi:url property. Continuing, we address the Node
Shape (line 7) created for the current Schema Object which is the openapi:schema of the response’s content.
Working our way up, from content to response and from response to operation, we retrieve the operation method
as well as the path of the endpoint. In the last lines of Listing 5.2 we can see the returned answer which is
consistent with the information of the endpoint as seen in Figure 5.6.

1: SELECT ?name ?externalURL ?method ?pathName

2: WHERE {
3: GRAPH ?g {?class rdfs:subClassOf <https://schema.org/Book> .
4: ?service_info openapi:serviceTitle ?name .
5: ?service_externalDoc a openapi:ExternalDoc .
6: ?service_externalDoc openapi:url ?externalURL .
7: ?node sh:targetClass ?class .
8: ?content openapi:schema ?node .
9: ?response openapi:content ?content .
10: ?operation openapi:response ?response .
11: ?operation openapi:method ?method .
12: ?operation openapi:onPath ?path .
13: ?path openapi:pathName ?pathName} }

Answer:

Name: Google Books

ExternalURL: https://developers.google.com/books/docs/v1/reference

Method: GET

PathName: /users/{userId}/bookshelves/{shelf}

Listing 5.2: https://schema.org/Book name, extURL, method, path

 The next SPARQL Query is based on the same semantic value as the previous. Although, this time we retrieve

71

more information about the specified endpoint. The SELECT clause in line 1 asks for parameter name and
parameter description of the endpoint related to the semantic value. This Query is similar to the previous one, for
the most part. After, retrieving the operation (line 7) we then proceed with its parameters line 8 – 10. In line 11,
we narrow our returned answer to only required parameters. This is why the parameter source as seen in Figure
5.6 is missing from our answer. In the last lines of Listing 5.3 we can see the returned answer which contains the
name and description of the two required parameters for the endpoint.

1: SELECT ?paramName ?paramDescription

2: WHERE {
3: ?class rdfs:subClassOf <https://schema.org/Book> .
4: ?node sh:targetClass ?class .
5: ?content openapi:schema ?node .
6: ?response openapi:content ?content .
7: ?operation openapi:response ?response .
8: ?operation openapi:parameter ?parameter .
9: ?parameter openapi:description ?paramDescription .
10: ?parameter openapi:name ?paramName .
11: ?parameter openapi:required true } }

Answer:

1. Parameter Name: userId

 Parameter Description: ID of user for whom to retrieve bookshelves.

2. Parameter Name: shelf

 Parameter Description: ID of bookshelf to retrieve.

Listing 5.3: https://schema.org/Book parameter name and description

 Another endpoint of the Google Books API allows the user to retrieve a volume resource. A volume resource
contains information about a single book. The Schema Object Volume is returned as a response to the endpoint in
Figure 5.7. The path of the endpoint is the /volumes/{volumeId} which contains the required parameter volumeId.
Also, the method for the endpoint is the GET method. In Appendix A.1.2, we can see the Volume Schema Object.
This Schema Object, contains a nested property PDF which is annotated with the
https://schema.org/DigitalDocument semantic value through the extension property x-kindOf.

Figure 5.7: Google Books Volume

 As the previous examples, the SPARQL Query in Listing 5.4 searches for a Web Service related to semantic value.
This semantic value is https://schema.org/DigitalDocument and exists in the property PDF of the Volume Schema
Object. The SELECT clause in line 1 contains several variables. First, asks for the name and external URL of the
Web Service. Next, it retrieves information about the response containing the Schema Object as well as the

72

method, the path and the summary of the endpoint. In line 3 of the Query, we target the graph (ontology) which
contains the semantic value as a subproperty. This is because the PDF property contains an x-kindOf and
therefore, the property created for PDF will become a subproperty of the semantic value. Continuing, in line 4 – 6
we retrieve the external document and name of the Web Service. Because the PDF property is a nested property,
this means that one or more Schema Objects are placed between the property and the original Schema Object.
This is showcased in lines 7 – 10. Finally, we are able to reach the content of the response and from there the
operation so as to retrieve all the needed information. The answer at the bottom of Listing 5.4 is consistent with
the information of the endpoint in Figure 5.7.

1: SELECT ?name ?externalURL ?respDescription ?respStCode ?method ?pathName ?summary

2: WHERE {
3: GRAPH ?g {?property rdfs:subPropertyOf <https://schema.org/DigitalDocument> .
4: ?service_info openapi:serviceTitle ?name .
5: ?service_externalDoc a openapi:ExternalDoc .
6: ?service_externalDoc openapi:url ?externalURL .
7: ?propertyShape sh:path ?property .
8: ?node sh:property ?propertyShape .
9: ?upperNode sh:node ?node .
10: ?schemaNode sh:node ?upperNode .
11: ?content openapi:schema ?schemaNode .
12: ?response openapi:content ?content .
13: ?response openapi:description ?respDescription .
14: ?response openapi:statusCode ?respStCode .
15: ?operation openapi:response ?response .
16: ?operation openapi:method ?method .
17: ?operation openapi:summary ?summary .
18: ?operation openapi:onPath ?path .
19: ?path openapi:pathName ?pathName .
20: ?operation openapi:summary ?summary} }

Answer:

Name: Google Books

externalURL: https://developers.google.com/books/docs/v1/reference

Response Description: Volume resource

Response Status Code: 200

Method: GET

Path: /volumes/{volumeId}

Summary: Retrieves a Volume resource based on ID.

Listing 5.4: https://schema.org/DigitalDocument name, extURL, response description, code
method, path name, summary

 The next Web Service we present in this chapter is the Google Blogger API18. According to its description, the
Google Blogger API allows client applications to view and update Blogger content. The endpoints that concern us
are the ones that return a blog resource as a response. The paths of these endpoints are /blogs/{blogId} and
/blogs/byurl and are presented in Figure 5.8 and 5.9 respectively. In the Figures below, we can see that both
endpoints are accessible by the GET operation method. The first endpoint retrieves a blog by its id and the second
retrieves a blog by URL. The response that a client gets by calling these endpoints is a Schema Object with the name
Blog. The Blog Schema Object is semantically annotated with the value https://schema.org/Blog through the x-
kindOf property as we can see in Appendix A.2.1.

18 https://developers.google.com/blogger/docs/3.0/reference

73

 Figure 5.8: Google Blogger Blog by ID Figure 5.9: Google Blogger Blog by URL

 As we can see, both endpoints require a parameter in order to return the blog resource. Although, the blogId
parameter of the first endpoint is a path parameter and the URL parameter of the second endpoint is a header
parameter. In order to get both parameters from a single SPARQL Query we need to use the UNION keyword. That
is because an operation contains all its path parameters under the openapi:parameter property and all its header
parameters under the openapi:requestHeader parameter. In Listing 5.5 we present the Query under examination.
 The SELECT clause of the SPARQL Query returns general information about the Web Service as well as specific
information about the endpoints. In line 1 of Listing 5.5 we have variables about the name and external URL of the
service, the method, the path name and the summary of the operation and also the name and the description of
the parameters. In lines 3 we specify the semantic value we are interested in and we use the rdfs:subClassOf
predicate because the Blog Schema Object contains the x-kindOf property and therefore its class is a subclass of
the semantic value. Continuing, in lines 4 – 6 we retrieve the name and external URL of the Web Service. Next, by
specifying the Node Shape created for the Schema Object (line 7) we get to the content and response that this
Schema Object is used (line 8 – 9). Continuing, in lines 10 – 14 we get the information about the path name, the
summary and method of the operation. Next, is the point where the two operations of the two endpoints differ
and the reason we use the keyword UNION in the Query. In the first part of the Query, in lines 15 – 17 we get the
name and description of the path parameter using the predicate openapi:parameter which detects only path
parameters. In the second part of the Query instead, we get information about the parameter with the
openapi:requestHeader predicate which is used for header parameters.
 The answer lies within the last lines of Listing 5.5. The information we get from the SPARQL Query is consistent
with the information from Figures 5.8 and 5.9. In particular, we get the path of the endpoints which are
/blogs/{blogId} and /blogs/blogurl and also, we get the request method which is GET for both endpoints. In
addition, we get the parameter variables blogId and URL along with their descriptions and also the summary of
each operation.

1: SELECT ?name ?externalURL ?method ?pathName ?summary ?paramName ?paramDescription

2: WHERE {

3: GRAPH ?g {?class rdfs:subClassOf <https://schema.org/Blog> .

4: ?service_info openapi:serviceTitle ?name .

5: ?service_externalDoc a openapi:ExternalDoc .

6: ?service_externalDoc openapi:url ?externalURL .

7: ?node sh:targetClass ?class .

8: ?content openapi:schema ?node .

74

9: ?response openapi:content ?content .

10: ?operation openapi:response ?response .

11: ?operation openapi:method ?method .

12: ?operation openapi:summary ?summary .

13: ?operation openapi:onPath ?path .

14: ?path openapi:pathName ?pathName .

15: {?operation openapi:parameter ?parameter .

16: ?parameter openapi:name ?paramName .

17: ?parameter openapi:description ?paramDescription}

18: UNION

19: {?operation openapi:requestHeader ?parameter .

20: ?parameter openapi:name ?paramName .

21: ?parameter openapi:description ?paramDescription} } }

Answer:

Name: Google Blogger

External URL: https://developers.google.com/blogger/docs/3.0/reference

1. Method: GET

 Path name: /blogs/{blogId}

 Summary: Retrieves a blog by its ID.

 Parameter Name: blogId

 Parameter Description: The ID of the blog to get.

2. Method: GET

 Path name: /blogs/byurl

 Summary: Retrieves a blog by URL.
 Parameter Name: URL

 Parameter Description: The URL of the blog to retrieve.

Listing 5.5: https://schema.org/Blog name, extURL, method,

path name, summary, parameter name
and description

 The next SPARQL Query is based on the semantic value https://schema.org/comment. This semantic value is used
to annotate the Schema Object Comments (Appendix A.2.2). This Schema Object is returned as a response on
several endpoints of the Google Blogger API. Although, this semantic value is commonly used on other Web
Service descriptions which contain some kind of comment resource. Another API which contains this semantic
value to annotate a Schema Object is the YouTube API19. This API contains the Comment Schema Object (Appendix
A.3.1) which is also returned as a response on some endpoints. The two Schema Objects, Comments of Google
Blogger and Comment of YouTube API have different properties but are annotated with the same semantic value.
This gives us the opportunity to perform a SPARQL Query and get as a return value information about both Web
Services.
 In Figures 5.10 and 5.11 we present the endpoints associated with the semantic value under examination. For
ease of presentation, in the following Figures we present only the path, the method and the summary of the
endpoints and the rest information (the response of each endpoint) are available on the Appendix. Inside the
body of the Schema Objects, we notice a difference in relation to the previous examples. The Schema Objects use
the x-refersTo property instead of x-kindOf.

19 https://developers.google.com/youtube/v3/docs

75

Figures 5.10: Google Blogger Comments

Figure 5.11: YouTube API Comment

 The SELECT clause of the SPARQL Query below provides information about endpoints as well as the entire Web
Services. In line 1 of Listing 5.6 we ask for name and external URL of each Web Service. In addition, we retrieve
information about the operations of the endpoints such as summary, path name and operation method. Starting in
line 3 inside the WHERE clause we specify the semantic value https://schema.org/comment as a direct class of the
Node Shape of the Schema Object. We do this with the predicate sh:targetClass. This is because the Schema
Objects related to this semantic value have an x-refersTo extension property and therefore, the semantic value
becomes a direct class of the Node Shape. In lines 4 – 6 we retrieve general information about the Web Services
(name and external URL). Then, we reach the content of the response through the Node Shape (line 7) with the
openapi:schema predicate. From there, we get to response and then operation where we are able to retrieve the
operation summary, path name and method.
 The returned values of the Query are placed at the bottom of the Listing. There we can observe four endpoints
from the Google Blogger API and two from the YouTube API. Along with the information about the endpoints, path
name, summary, method, we also get the name and external URL for each one of the Web Services. The
information inside the returned answer is consistent with Figures 5.10 and 5.11.

1: SELECT ?name ?externalURL ?summary ?pathName ?method

2: WHERE {
3: GRAPH ?g {?node sh:targetClass <https://schema.org/comment> .
4: ?service_info openapi:serviceTitle ?name .
5: ?service_externalDoc a openapi:ExternalDoc .
6: ?service_externalDoc openapi:url ?externalURL .
7: ?content openapi:schema ?node .
8: ?response openapi:content ?content .
9: ?operation openapi:response ?response .
10: ?operation openapi:method ?method .
11: ?operation openapi:onPath ?path .
12: ?operation openapi:summary ?summary .
13: ?path openapi:pathName ?pathName} }

Answer:
Name: Google Blogger

External URL: https://developers.google.com/blogger/docs/3.0/reference

1. Summary: Retrieves one comment resource by its commentId.

 Path name: /blogs/{blogId}/posts/{postId}/comments/{commentId}

 Method: GET

76

2. Summary: Marks a comment as not spam.

 Path name: /blogs/{blogId}/posts/{postId}/comments/{commentId}/approve

 Method: POST

3. Summary: Marks a comment as spam.

 Path name: /blogs/{blogId}/posts/{postId}/comments/{commentId}/spam

 Method: POST

4. Summary: Removes the content of a comment.

 Path name: /blogs/{blogId}/posts/{postId}/comments/{commentId}/removecontent

 Method: POST

Name: YouTube API

External URL: https://developers.google.com/youtube/v3/docs

1. Summary: Modifies a comment.

 Path name: /comments

 Method: PUT

2. Summary: Creates a reply to an existing comment.

 Path name: /comments

 Method: POST

Listing 5.6: https://schema.org/comment name, extURL, method,
path name and summary

 Leaving the Google Blogger and YouTube API we continue with the Google Fit API. This Web Service gives us the
opportunity to demonstrate the significance of the keyword allOf in a REST API description. As mentioned in
previous chapters, the allOf keyword creates relations between the classes of Schema Objects that are involved
with this particular keyword. When we search for a class that is created under these conditions, we can retrieve
information about all the Schema Objects involved. This means, we get a wider range of information that can help
the client decide which endpoint is more suitable for every given situation. It also provides more information for
the particular Web Service.
 In this case, the semantic value that we are interested in, is the https://schema.org/UserInteraction. This
semantic value helps to determine user actions on a web page. Inside the Google Fit API description, the Schema
Object UseDataSourcesResource (Appendix A.4.1) uses the x-kindOf property to refer to this semantic value. This
Schema Object is provided as a request body for the endpoint with path /users/{userId}/dataSources and
operation method POST. In addition to this particular Schema Object, another one is useful to us. This is the
UseDataSourcesResourceExtra Schema Object (Appendix A.4.1). The UseDataSourcesResourceExtra contains the
allOf keyword and listed under it, the UseDataSourcesResource. According to what we have seen so far, the classes
of these Schema Objects are related. The UseDataSourcesResourceExtra is also used as request body payload with
the method PUT on the path users/{userId}/dataSources/{dataSourceId}. All the endpoints mentioned in this
paragraph are presented in Figure 5.12 and the request bodies of the endpoints are available on the Appendix.

Figure 5.12: Google Fit API UserDataSourcesResource-Extra

 The SPARQL Query presented in Listing 5.7 is similar to the previous ones. The variables in the SELECT clause
retrieve information about the name and external URL of the Web Service as well information about each
operation. Starting the usual way, we define the semantic value https://schema.org/UserInteraction as a subclass
of the node (UseDataSourcesResource) class. Continuing, we get the class of the UseDataSourcesResourceExtra
Schema Object which is a subclass (due to allOf) of the previous class. Then, after getting name and external URL,
we work our way up the operation through content and request body. There, we get the rest information we

77

specified in the SELECT clause. Finally, at the bottom of the Listing, we present the returned answer which is
matching with what we discussed in the previous paragraph.

1: SELECT ?name ?exteranlURL ?summary ?pathName ?method WHERE {

2: GRAPH ?g { ?class rdfs:subClassOf <https://schema.org/UserInteraction> .

3: ?node sh:targetClass ?class .

4: ?classExtra rdfs:subClassOf ?class .

5: ?nodeExtra sh:targetClass ?classExtra .

6: ?service_info openapi:serviceTitle ?name .

7: ?service_externalDoc a openapi:ExternalDoc .

8: ?service_externalDoc openapi:url ?externalURL .

9: {?content openapi:schema ?node .}

10: UNION

11: {?content openapi:schema ?nodeExtra .}

12: ?reqBody openapi:content ?content .

13: ?operation openapi:requestBody ?reqBody .

14: ?operation openapi:summary ?summary .

15: ?operation openapi:onPath ?path .

16: ?path openapi:pathName ?pathName .

17: ?operation openapi:method ?method } }

Answer:

Name: Google Fit

External URL: https://developers.google.com/fit/rest/v1/reference

1. Summary: Updates the specified data source.

 Path name: /users/{userId}/dataSources/{dataSourceId}

 Method: PUT

2. Summary: Creates a new data source that is unique across all data sources belonging to

 this user.

 Path name: /users/{userId}/dataSources

 Method: POST

Listing 5.7: https://schema.org/ UserInteraction name, extURL, method,

path name, summary and status code

 The last API we used to present our results is the Gmail API20. We use this example in order to demonstrate again
the usage of the allOf keyword but this time in a wider range. Inside the Gmail API description we observe a
Schema Object named Message (Appendix A.5.1). This Schema Object is semantically annotated with the value
https://schema.org/EmailMessage. Also, the Message Schema Object is used in another Schema Object, the Draft.
The Draft contains the keyword allOf and the Message is listed under it. The two schemas together, make up for
the most responses inside the Gmail API. Also, because the two schemas are related through the allOf keyword we
are able to get all of these responses along with other information. This information is accessible to us through a
single SPARQL Query.

20 https://developers.google.com/gmail/api/reference/rest

78

Figure 5.13: Gmail API, Draft Message

 The SPARQL Query for the Gmail API is listed below. Here, we use the same structure as our previous examples
and also, we retrieve the same information. The returned answer of the SPARQL Query, contains all eight API
endpoints we presented in the Figure above. This demonstrates the benefits we gain from the existence of the
allOf inside a Schema Object.

1: SELECT ?name ?exteranlURL ?summary ?pathName ?method WHERE {

2: GRAPH ?g { ?class rdfs:subClassOf <https://schema.org/EmailMessage> .

3: ?node sh:targetClass ?class .

4: ?classDraft rdfs:subClassOf ?class .

5: ?nodeDraft sh:targetClass ?classDraft .

6: ?service_info openapi:serviceTitle ?name .

7: ?service_externalDoc a openapi:ExternalDoc .

8: ?service_externalDoc openapi:url ?externalURL .

9: {?content openapi:schema ?node .}

10: UNION

11: {?content openapi:schema ?nodeDraft .}

12: ?response openapi:content ?content .

13: ?operation openapi:response ?response .

14: ?operation openapi:summary ?summary .

15: ?operation openapi:onPath ?path .

16: ?path openapi:pathName ?pathName .

17: ?operation openapi:method ?method } }

Answer:

Name: Gmail API

External URL: https://developers.google.com/gmail/api/reference

1. Summary: Gets the specified message.

 Path name: /users/{userId}/messages/{id}

 Method: GET

2. Summary: Sends the specified message to the recipients in the To, Cc, and Bcc headers.

 Path name: /users/{userId}/messages/send

 Method: POST

3. Summary: Creates a new draft with the DRAFT label.

 Path name: /users/{userId}/drafts

 Method: POST

79

4. Summary: Directly inserts a message into only this user`s mailbox.

 Path name: /users/{userId}/messages

 Method: POST

5. Summary: Gets the specified draft.

 Path name: /users/{userId}/drafts/{id}

 Method: GET

6. Summary: Replaces a draft`s content.

 Path name: /users/{userId}/drafts/{id}

 Method: PUT

7. Summary: Modifies the labels on the specified message.

 Path name: /users/{userId}/messages/{id}/modify

 Method: POST

8. Summary: Sends the specified, existing draft to the recipients in the To, Cc, and Bcc

 headers.

 Path name: /users/{userId}/drafts/send

 Method: POST

Listing 5.8: https://schema.org/EmailMessage name, extURL, method,
path name and summary

 In addition to the Google APIs, we also created a custom API with the title “Service Bundle” for demonstration
purposes. The description of this API contains Schema Objects that are annotated with semantic values from other
API ontologies and not from vocabularies, in contrast to what we have seen so far. In chapter 3 we presented our
approach on Schema Objects that do not contain any extension properties and therefore they are not semantically
annotated. These Schema Objects, even if they are not semantically annotated, they acquire an ontology class that
comes from the name of each schema. One of the benefits of this approach is that a Web Service description can
be annotated with ontology classes created for another Web Service. Such cases are going to be discussed in the
following examples.
 In our custom API, the first example that concerns us is that of the Subscription Schema Object (Appendix A.6.1).
This Schema Object is returned as a response on the API endpoint with the path /{userId}/subscription_info. This
endpoint is reached with the GET method and it contains one path parameter the userId parameter. Information
for this endpoint can be found below, in Figure 5.14 and in the Appendix. The Subscription Schema Object contains
the x-kindOf property with the value of “https://www.example.com/service/youtube_API#Subscription”. This value
is divided in two parts. The first part (before the hash mark) refers to the YouTube ontology inside our Web
Application. The second part (after the hash mark) refers to the Subscription Schema Object inside the YouTube
ontology. The Subscription Schema Object (Appendix A.3.2) is used in the request body as well as the response
body of an endpoint inside the YouTube API. The endpoint is reachable with the POST method on the
/subscriptions path (Figure 5.15). It also requires a query parameter with the name of part and is responsible for
adding a subscription to a user’s channel. It is important to emphasize that the Subscription Schema Object of the
YouTube API does not contain any extension properties that semantically enrich it. Therefore, the class that is
created for this Schema Object is not related to any external semantic value (i.e., from schema.org vocabulary).

80

Figure 5.14: Service Bundle API, Subscription

Figure 5.15: YouTube API, Subscription

 The SPARQL Query for the endpoints mentioned in the previous paragraph is listed below (Listing 5.9). This
Query is rather long. In line 1 of the Query, we define another prefix in addition to the prefixes we already use
(Listing 5.1) in order to avoid rewriting the entire IRI in lines 3, 6 and 19. Consequently, the value

81

“https://www.example.com/service/youtube_API#Subscription” is replaced by the val:Subscription value. The
SELECT clause of the Query returns plenty of information. It contains variables for the name of the graph, the title
of the Web Service as well as necessary information about the operation, such as path name, method, summary
and parameters. In lines 3 and 4 we look for an Owl class defined by the value we mentioned earlier and return
any graph that contains this class along with the corresponding title of the Web Service.
 Continuing, we have two OPTIONAL keywords (line 5 and line 18). We use the OPTIONAL keyword for two
reasons. Firstly, we want to return the variables outside the keywords (i.e., graph and service name) regardless of
the variables inside the keywords. Secondly, because the bodies of the Query inside the two OPTIONAL keywords
differ. The lines 6 – 17 are responsible for retrieving information about the YouTube API. This is clear because the
val:Subscription is a targetClass of the Node Shape (line 6). On the other hand, the body on the second OPTIONAL
keyword is responsible for retrieving information about the Service Bundle API. This is also showcased in lines 19
and 20 where the class of the Node Shape is a subclass of val:Subscription due to the x-kindOf property inside the
Subscription Schema Object (Service Bundle API). Besides this variation, both bodies return information about the
endpoints as seen in the SELECT clause.

1: PREFIX val: <https://www.example.com/service/youtube_API#>

2: SELECT ?graph ?service_name ?summary ?method ?pathName ?paramName ?paramDesc
3: WHERE {GRAPH ?graph {val:Subscription a owl:Class .
4: ?service_info openapi:serviceTitle ?service_name .
5: OPTIONAL {
6: ?node sh:targetClass val:Subscription .
7: ?content openapi:schema ?node .
8: ?reqBody openapi:content ?content .
9: ?operation openapi:requestBody ?reqBody .
10: ?operation openapi:summary ?summary .
11: ?operation openapi:method ?method .
12: ?operation openapi:parameter ?parameter .
13: ?parameter openapi:name ?paramName .
14: ?parameter openapi:description ?paramDesc .
15: ?operation openapi:onPath ?path .
16: ?path openapi:pathName ?pathName .
17: }
18: OPTIONAL {
19: ?class rdfs:subClassOf val:Subscription .
20: ?node sh:targetClass ?class .
21: ?content openapi:schema ?node .
22: ?response openapi:content ?content .
23: ?operation openapi:response ?response .
24: ?operation openapi:summary ?summary .
25: ?operation openapi:method ?method .
26: ?operation openapi:parameter ?parameter .
27: ?parameter openapi:name ?paramName .
28: ?parameter openapi:description ?paramDesc .
29: ?operation openapi:onPath ?path .
30: ?path openapi:pathName ?pathName .}}}

Answer:

1. Graph Name: http://example/youtube_API

 Service Name: Youtube API

 Summary: Adds a subscription for the authenticated user's channel.

 Method: POST

 Path Name: /subscriptions

 Parameter Name: part

 Parameter Description: The part parameter identifies the properties that the

 API response will include.

2. Graph Name: http://example/custom_API

 Service Name: Service Bundle

 Summary: Gets subscription info.

 Method: GET

 Path Name: /{userId}/subscription_info

 Parameter Name: userId

 Parameter Description: The id of the user.

82

Listing 5.9: https://www.example.com/service/youtube_API#Subscription

 The Service Bundle API also contains a Schema Object related to the Google Blogger API. The Post Schema Object
(Appendix A.6.1) is returned as a response to the /{userId}/post/{postId} endpoint with the DELETE method. This
endpoint contains two required parameters, the userId and the postId path parameters and it aims to delete a
post. This endpoint is presented in Figure 5.16. The Post Schema Object contains the x-refersTo property with the
value “https://www.example.com/service/googleBlogger_API#Post”. The first part of this value refers to the
ontology created for the Google Blogger and the second part refers to the Post Schema Object (Appendix A.2.3)
inside the Google Blogger. The Post Schema Object inside the Google Blogger is also returned as a response to an
API endpoint. This endpoint has the path /blogs/{blogId}/posts/{postId} and it is reachable with the operation
method GET. To sum up, the current example differs from the previous one mainly in terms of the extension
property. The previous Schema Object in our Service Bundle (Subscription) used the x-kindOf property to refer to
another Schema Object in YouTube API. The current Schema Object (Post) is using the x-refersTo extension
property to refer to the Post Schema Object of the Google Blogger API. This difference is showcased inside the
SPARQL Query in Listing 5.10.

Figure 5.16: Service Bundle API, Post

83

Figure 5.17: Google Blogger API, Post

 In a similar manner as the previous SPARQL Query, we add an extra prefix to the existing ones (Listing 5.1). In
line 1, we assign the “val” variable to the “https://www.example.com/service/googleBlogger_API#” value in order
to search the corresponding class of the Node Shape by using the term ”val:Post”. In line 2 we present the SELECT
clause which returns the graph name, the service name as well as information about the operation and
parameters of the endpoint related to the current value. In line 5 we search for the value under examination as a
sh:targetClass of the Node Shape. This is because in the Service Bundle it is used inside an x-refersTo property and
in Google Blogger it represents the Node Shape class. Continuing, we get all the necessary information and when it
comes to parameters, we return only the required ones (line 16). The answer at the bottom of the Listing is
consistent to the data of the two endpoints above.

1: PREFIX val: <https://www.example.com/service/googleBlogger_API#>

2: SELECT ?graph ?service_name ?summary ?method ?pathName ?paramName

3: WHERE {
4: GRAPH ?graph {
5: ?node sh:targetClass val:Post .
6: ?service_info openapi:serviceTitle ?service_name .
7: ?content openapi:schema ?node .
8: ?response openapi:content ?content .
9: ?operation openapi:response ?response .
10: ?operation openapi:summary ?summary .
11: ?operation openapi:method ?method .
12: ?operation openapi:onPath ?path .
13: ?path openapi:pathName ?pathName .
14: ?operation openapi:parameter ?parameter .
15: ?parameter openapi:name ?paramName .
16: ?parameter openapi:required true .
17: }
18: }

84

Answer:

1. Graph Name: http://example/googleBlogger_API

 Service Name: Google Blogger

 Summary: Retrieves one post by post ID.

 Method: GET

 Path Name: /blogs/{blogId}/posts/{postId}

 a. Parameter Name: blogId

 b. Parameter Name: postId

2. Graph Name: http://example/custom_API

 Service Name: Service Bundle

 Summary: Deletes a post.

 Method: DELETE

 Path Name: /{userId}/post/{postId}

 a. Parameter Name: userId

 b. Parameter Name: postId

Listing 5.10: https://www.example.com/service/googleBlogger_API#Post

5.4 Run-Time Performance

 In this section we analyze the run-time performance of several SPARQL Queries that were executed inside our
Web Application. According to this paper [3], the run time efficiency of a SPARQL Query depends two factors. The
first is the size of the dataset (i.e., the size of the ontology graph). The second factor is the pattern of the SPARQL
Query (i.e., the SPARQL expression). Consequently, the larger the graph and the larger the query pattern, the
longer it will take for the answer to return.
 In Table 5.1 we present the run-time performance of all the above SPARQL Queries. At the time the SPARQL
Queries were performed the database of our Web Application contained 20 graphs (ontologies). The OpenAPI
description that were instantiated to ontologies were taken from the Google API Explorer as well as the source for
REST API specifications for Microsoft Azure21. The table contains the Listings where every SPARQL Query is
presented along with their response time. In addition, it contains the number of triples of each pattern, and also
any SPARQL operator that was used.

Table 5.1: SPARQL Queries run-time performance

SPARQL Query Time (ms) Triples Operator

Listing 5.2 568 11 –

Listing 5.3 240 9 –

Listing 5.4 800 18 –

Listing 5.5 1600 18 UNION

Listing 5.6 400 11 –

Listing 5.7 3460 15 UNION

Listing 5.8 3470 15 UNION

Listing 5.9 1260 25 OPTIONAL

Listing 5.10 384 12 –

21 https://github.com/Azure/azure-rest-api-specs

85

 From the above table, some of the SPARQL Queries stand out. Starting with the Query of Listing 5.4, its pattern
contains 18 triples that define the SPARQL expression. Next, is the Query of Listing 5.5 which has the keyword
UNION in it. According to the paper, the keywords UNION and OPTIONAL (among others) need more time to be
processed, therefore the answer is delayed. This is also the case in Listings 5.7 and 5.8. Additionally, in Listing 5.9
where the keyword OPTIONAL is used, we also observe some delay. In conclusion, with our Queries we managed
to show the response times of both conjunction (triples that are connected with the period symbol) and
disjunction (keyword UNION).

86

Chapter 6

Conclusion and Future Work

6.1 Conclusions

 Improving the instantiation algorithm of [1] is the main focus of this work. Our approach introduces many
modifications and additions. By implementing the newly introduced keywords of OpenAPI Specification v3.0 we
were able to provide more flexibility and accuracy for describing OpenAPI services. With the current algorithm,
users are able to take advantage of the full potential of the OpenAPI format. In addition, they are able to combine
OpenAPI schemas for model composition, a feature that it is often necessary on modern Web service descriptions.
 Concerning the ontology, we introduced the concept of polymorphism and the concept of inheritance. These
features have a great impact on our ontology since they explore the full potential of classes, entities and
properties that are created by the algorithm. In addition, we implemented a more efficient way to semantically
enrich an OpenAPI description. With the current work, the classes which originate from a Web service description
can be used to semantically annotate another. This feature, contributes to the expansion of the Ontology
Vocabulary and widens the range of discoverability for Web Services.
 In addition to the instantiation algorithm, we made a Web Application where our mechanism can be tested by
the community and give us feedback and evaluation of our work. It is a useful tool for developers who wish to
implement endpoints of other APIs on their application as well as providing their own to the community. Also, the
Web Application will give us the direction of our future strategy upon this work.

6.2 Summary

 In this section we summarize the contributions of this work and we discuss certain aspects of the OpenAPI
Specification v3.0 that are not yet supported by our algorithm. Regarding OpenAPI Schema Objects we showcased
a variety of new additions, some, in combination with our extension properties. The following list presents all the
modifications that took place in this work.

• Instantiation of keywords allOf, anyOf, oneOf in Schema Objects. This includes model composition,
inheritance and polymorphism support. This category also includes all the possible combinations
between these keywords and the extension properties that concern Schema Objects such as x-refersTo, x-
kind-Of and x-mapsTo.

• Instantiation of keywords anyOf, oneOf and “not” in the property schemas of an OpenAPI Object. This
includes polymorphism support. Also in this category, all the possible combinations between the
keywords and the extension properties x-kindOf, x-refersTo and x-mapsTo are included.

 In conclusion, we managed to fully support the instantiation of a Schema Object inside an OpenAPI description.
Not only with the keywords that the OpenAPI Specification v3.0 provides, but also in combination with our
extension properties. In particular, the algorithm can handle any case of model composition or model
polymorphism with or without the extension properties.
 Additionally, we created a Web Application that puts our algorithm to use and manages to support the
translation of OpenAPI descriptions to instances of the OpenAPI ontology. The Web Application takes as input an
OpenAPI description and produces the corresponding instance of the OpenAPI Ontology. This Web Application
has been tested on several Google and Azure API Services. Also, it provides a mechanism that supports SPARQL
Queries on all available ontologies stored inside the Web Application Database. Lastly, in this thesis we
showcased all the OpenAPI Objects that our algorithm handles such as Operation, Parameter, Response etc.

87

6.3 Future Work

 Regarding the OpenAPI Specification v3.0 the Link Object and the Callback Object are transferred for future
work. Callbacks are asynchronous requests that the server service will send to some other service in response to
certain events. This feature improves the workflow that the server API offers to its clients. Links, enable the
description of how various values returned by one operation can be used as input for other operations. Both these
new features make the enrichment of our proposed mechanism - in order to support HATEOAS - possible. By
doing that, we might take advantage of the possibilities that OpenAPI has to offer such as explorable API -
meaning the ability to browse around the data. This makes it a lot easier for the client developers to build a
mental model of the API and its data structures.
 This work has already proved its usefulness on service discovery through SPARQL queries. A query language
that simplifies the complex SPARQL queries will become a great addition to our service discovery purpose. In this
way the task of finding appropriate endpoints for a Web service will become much easier and approachable for a
developer.

88

Appendix A

OpenAPI Descriptions

A.1 Google Books API

A.1.1 Bookself

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Google Books
 description: The APIs in the Google Books API Family let you bring Google Books features

to your site or application
 termsOfService: https://developer.google.com/books/terms.html
 license:
 name: Apache 2.0
 url: https://creativecommons.org/licenses/by/4.0
externalDocs:
 description: Find more info here
 url: https://developers.google.com/books/docs/v1/reference/bookshelves
servers:
 - url: https://www.googleapis.com/books/v1
paths:
 /users/{userId}/bookshelves/{shelf}:
 get:
 summary: Retrieves a specific Bookshelf resource for the specified user.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/shelfParam"
 - $ref: "#/components/parameters/sourceParam"
 responses:
 "200":
 description: BookShelf resource
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/BookSelf"
components:
 parameters:
 userIdParam:
 name: userId
 description: ID of user for whom to retrieve bookshelves.
 in: path
 required: true
 schema:
 type: string

 shelfParam:
 name: shelf
 description: ID of bookshelf to retrieve.
 in: path
 required: true
 schema:
 type: string

 sourceParam:
 name: source

89

 description: String to identify the originator of this request.
 in: header
 required: false
 schema:
 type: string

 schemas:
 BookSelf:
 x-kindOf: https://schema.org/Book
 type: object
 description: A Bookshelf resource represents the metadata for a bookshelf, it does

 not include the volumes in the bookshelf.
 required:
 - kind

 - id

 - title

 - description

 - access

 - updated

 - created

 - volumeCount

 - volumesLastUpdated

 - selfLink

 properties:
 kind:
 description: Resource type for bookshelf metadata.
 type: string
 id:
 description: ID of this bookshelf.
 type: integer
 title:
 description: Title of this bookshelf.
 type: string
 description:
 description: Description of this bookshelf.
 type: string
 access:
 description: Whether this bookshelf is PUBLIC or PRIVATE.
 type: string
 updated:
 description: Last modified time of this bookshelf (formatted UTC timestamp with

 millisecond resolution).
 type: string
 format: date-time
 created:
 description: Created time for this bookshelf (formatted UTC timestamp with mil

 lisecond resolution).
 type: string
 format: date-time
 volumeCount:
 description: Number of volumes in this bookshelf.
 type: integer
 volumesLastUpdated:
 description: Last time a volume was added or removed from this bookshelf (for

 matted UTC timestamp with millisecond resolution).
 type: string
 format: date-time
 selfLink:
 description: URL to this resource.
 type: string

90

A.1.2 PDF

...

 /volumes/{volumeId}:
 get:
 summary: Retrieves a Volume resource based on ID.
 parameters:
 - $ref: "#/components/parameters/volumeIdParam"
 responses:
 "200":
 description: Volume resource
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Volume"
components:
 schemas:
 Volume:
 type: object
 description: A Volume collection is used to perform a search or listing the con

 tents of a bookshelf. This collection is a read-only collection.
 properties:
 ...

 pdf:
 x-kindOf: https://schema.org/DigitalDocument
 description: Information about pdf content. (in LITE projection).
 type: string
 ...

A.2 Google Blogger API

A.2.1 Blog

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Google Blogger
 description: The Blogger API v3 allows client applications to view and update Blogger

 content. Your client application can use Blogger API v3 to create new blog

 posts, edit or delete existing posts, and query for posts that match par

 ticular criteria.
 termsOfService: https://developer.google.com/books/terms.html
 license:
 name: Apache 2.0
 url: https://creativecommons.org/licenses/by/4.0
externalDocs:
 description: Find more info here
 url: https://developers.google.com/blogger/docs/3.0/reference
servers:
 - url: https://www.googleapis.com/blogger/v3
paths:
 /blogs/{blogId}:
 get:
 summary: Retrieves a blog by its ID
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 responses:
 "200":
 description: Blog Resource

91

 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Blog"
 /blogs/byurl:
 get:
 summary: Retrieves a blog by URL.
 parameters:
 - name: url
 description: The URL of the blog to retrieve.
 in: header
 required: true
 schema:
 type: string
 responses:
 "200":
 description: Blog Resource
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Blog"
components:
 parameters:
 blogIdParam:
 name: blogId
 description: The ID of the blog to get.
 in: path
 required: true
 schema:
 type: string
 schemas:
 Blog:
 x-kindOf: https://schema.org/Blog
 type: object
 description: A blog is the root data class for the Blogger API. Each blog has a

 series of posts and pages, and each post has a series of comments.
 required:
 - kind

 - id

 - name

 - description

 - published

 - updated

 - url

 - selfLink

 - posts

 - locale

 - customerMetaData

 - pages

 properties:
 kind:
 type: string
 description: The kind of this entry. Always blogger#blog.
 id:
 type: string
 description: The ID for this resource.
 name:
 type: string
 description: The name of this blog, which is usually displayed in Blogger as

 the blog's title. The title can include HTML.
 description:
 type: string
 description: The description of this blog, which is usually displayed in

 Blogger underneath the blog's title. The description can include

 HTML.
 publised:
 x-kindOf: https://schema.org/datePublished
 type: string

92

 format: date-time
 description: RFC 3339 date-time when this blog was published.
 updated:
 type: string
 format: date-time
 description: RFC 3339 date-time when this blog was published.
 url:
 type: string
 description: The URL where this blog is published.
 selfLink:
 type: string
 description: The Blogger API URL to fetch this resource from.
 posts:
 type: object
 description: The container for this blog's posts.
 required:
 - totalItems

 - selfLink

 - items

 properties:
 totalItems:
 type: integer
 description: The total number of posts on this blog.
 selfLink:
 type: string
 description: The URL of the collection of posts for this blog.
 items:
 type: array
 description: The list of posts for this Blog.
 items:
 type: object
 locale:
 type: object
 description: The locale this blog is set to, as broken out below.
 required:
 - language

 - country

 - variant

 properties:
 language:
 type: string
 description: The language this blog is set to, for example "en" for Eng

 lish.
 country:
 type: string
 description: The country variant of the language, for example "US" for

 American English.
 variant:
 type: string
 description: The language variant this blog is set to.
 customMetaData:
 type: string
 description: The JSON custom metadata for the blog.
 pages:
 type: object
 description: The container for this blog's pages.
 required:
 - totalitems

 - selfLink

 properties:
 totalItems:
 type: integer
 description: The total number of pages for this blog.
 selfLink:
 type: string
 description: The URL of the pages collection for this blog.

93

A.2.2 Comments

...
/blogs/{blogId}/posts/{postId}/comments/{commentId}:
 delete:
 summary: Delete a comment by ID.
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 - $ref: "#/components/parameters/postIdParam"
 - $ref: "#/components/parameters/commentIdParam"
 responses:
 "200":
 description: If successful, this method returns an empty response body.
 get:
 summary: Retrieves one comment resource by its commentId.
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 - $ref: "#/components/parameters/postIdParam"
 - $ref: "#/components/parameters/commentIdParam"
 responses:
 "200":
 description: If successful, this method returns a response body with the follow

 ing structure.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comments"
/blogs/{blogId}/posts/{postId}/comments/{commentId}/approve:
 post:
 summary: Marks a comment as not spam.
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 - $ref: "#/components/parameters/postIdParam"
 - $ref: "#/components/parameters/commentIdParam"
 responses:
 "200":
 description: If successful, this method returns a response body with the follow

 ing structure.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comments"
/blogs/blogId/posts/postId/comments/commentId/removecontent:
 post:
 summary: Removes the content of a comment.
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 - $ref: "#/components/parameters/postIdParam"
 - $ref: "#/components/parameters/commentIdParam"
 responses:
 "200":
 description: If successful, this method returns a response body with the follow

 ing structure.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comments"
components:
 schemas:
 Comments:
 x-refersTo: https://schema.org/comment
 type: object
 properties:
 kind:
 description: The kind of this resource. Always blogger#comment.

94

 type: string
 id:
 description: The ID for this resource.
 type: string
 post:
 description: Data about the post containing this comment.
 type: object
 properties:
 id:
 description: The identifier of the post containing this comment.
 type: string
 blog:
 description: Data about the blog containing this comment.
 type: object
 properties:
 id:
 description: The identifier of the blog containing this comment.
 type: string
 published:
 description: RFC 3339 date-time date-time when this comment was published, for

 example "2012-04-15T19:38:01-07:00".
 type: string
 format: date-time
 updated:
 description: RFC 3339 date-time when this comment was last updated, for example

 "2012-04-15T19:43:21-07:00".
 type: string
 format: date-time
 selfLink:
 description: The Blogger API URL to fetch this resource from.
 type: string
 context:
 description: The content of the comment, which can include HTML markup.
 type: string
 author:
 type: object
 description: The author of this comment.
 properties:
 id:
 description: The identifier of the comment creator.
 type: string
 displayName:
 description: The comment creator's display name.
 type: string
 url:
 description: The URL of the comment creator's profile page.
 type: string
 image:
 description: The container for the creator's avatar URL.
 type: object
 properties:
 url:
 description: The URL of the comment creator's avatar image.
 type: object
 inReplyTo:
 description: Data about the comment this is in reply to.
 type: object
 properties:
 id:
 description: The ID of the parent of this comment.
 type: string
 status:
 description: The status of the comment. The status is only visible to users who

 have Administration rights on a blog.
 type: string

95

A.2.3 Post

...
/blogs/{blogId}/posts/{postId}:
 get:
 summary: Retrieves one post by post ID.
 parameters:
 - $ref: "#/components/parameters/blogIdParam"
 - $ref: "#/components/parameters/postIdParam"
 - $ref: "#/components/parameters/maxCommentsParam"
 - $ref: "#/components/parameters/viewParam"
 responses:
 "200":
 description: If successful, this method returns a Post resource in the response

 body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Post"

components:
 schemas:
 Post:
 type: object
 properties:
 kind:
 description: The kind of this resource. Always blogger#post.
 type: string
 id:
 description: The ID for this post.
 type: string

A.3 YouTube API

A.3.1 Comments

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Youtube API
 description: The YouTube Data API lets you incorporate functions normally executed on

 the YouTube website into your own website or application.
 termsOfService: https://developer.google.com/books/terms.html

96

 license:
 name: Apache 2.0
 url: https://creativecommons.org/licenses/by/4.0
externalDocs:
 description: Find more info here
 url: https://developers.google.com/youtube/v3/docs
servers:
 - url: https://www.googleapis.com/youtube/v3
paths:
 /comments:
 post:
 summary: Creates a reply to an existing comment.
 parameters:
 - $ref: "#/components/parameters/partParam"
 requestBody:
 description: Provide a comment resource in the request body
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comment"
 responses:
 "200":
 description: If successful, this method returns a comment resource in the re

 sponse body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comment"
 put:
 summary: Modifies a comment.
 parameters:
 - $ref: "#/components/parameters/partParam"
 requestBody:
 description: Provide a comment resource in the request body
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comment"
 responses:
 "200":
 description: If successful, this method returns a comment resource in the re

 sponse body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Comment"
components:
 parameters:
 partParam:
 name: part
 description: The part parameter identifies the properties that the API response will

 include.
 in: query
 required: true
 schema:
 type: string
 enum: [id, snippet]

 schemas:
 Comment:
 x-refersTo: https://schema.org/comment
 type: object
 properties:
 kind:
 description: Identifies the API resource's type. The value will be youtube#com

 ment.
 type: string
 id:

97

 description: The ID that YouTube uses to uniquely identify the comment.
 type: string
 snippet:
 type: object
 description: The snippet object contains basic details about the comment.
 properties:
 authorDisplayName:
 description: The display name of the user who posted the comment.
 type: string
 authorProfileImageUrl:
 description: The URL for the avatar of the user who posted the comment.
 type: string
 authorChannelUrl:
 description: The URL of the comment author's YouTube channel, if available.
 type: string
 authorChannelId:
 description: This object encapsulates information about the comment author's

 YouTube channel, if available.
 type: object
 properties:
 value:
 description: The ID of the comment author's YouTube channel, if availa

 ble.
 type: string
 channelId:
 description: The ID of the YouTube channel associated with the comment.
 type: string
 videoId:
 description: The ID of the video that the comment refers to.
 type: string
 textDisplay:
 description: The comment's text. The text can be retrieved in either plain

 text or HTML.
 type: string
 textOriginal:
 description: The original, raw text of the comment as it was initially

 posted or last updated.
 type: string
 parentId:
 description: The unique ID of the parent comment.
 type: string
 canRate:
 description: This setting indicates whether the current viewer can rate the

 comment.
 type: string
 viewerRating:
 description: The rating the viewer has given to this comment.
 type: string
 enum: [like, none]
 likeCount:
 description: The total number of likes (positive ratings) the comment has

 received.
 type: integer
 moderationStatus:
 description: The comment's moderation status.
 type: string
 enum: [heldForView, likelySpam, published, rejected]
 publishedAt:
 description: The date and time when the comment was orignally published.
 type: string
 format: date-time
 updatedAt:
 description: The date and time when the comment was orignally published.
 type: string
 format: date-time

98

A.3.2 Subscription

...
/subscriptions:
 post:
 summary: Adds a subscription for the authenticated user's channel.
 parameters:
 - $ref: "#/components/parameters/partParam"
 requestBody:
 description: Provide a subscription resource in the request body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Subscription"
 responses:
 "200":
 description: If successful, this method returns a subscription resource in the

 response body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Subscription"

components:
 schemas:
 Subscription:
 type: object
 properties:
 kind:
 description: Identifies the API resource's type. The value will be youtube#sub

 scription.
 type: string
 etag:
 description: The Etag of this resource.
 type: string
 id:
 description: The ID that YouTube uses to uniquely identify the subscription.
 type: string
 snippet:
 description: The snippet object contains basic details about the subscrip

 tion,including its title and the channel that the user subscribed

 to.
 type: object
 properties:
 publishedAt:
 description: The date and time when the comment was orignally published.
 type: string
 format: date-time

99

A.4 Google Fit API

A.4.1 UserDataraSourcesResource – Extra

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Google Fit
 description: This API reference is organized by resource type. Each resource type has

 one or more data representations and one or more methods.
 termsOfService: https://developer.google.com/books/terms.html
 license:
 name: Apache 2.0
 url: https://creativecommons.org/licenses/by/4.0
externalDocs:
 description: Find more info here
 url: https://developers.google.com/fit/rest/v1/reference
servers:
 - url: https://www.googleapis.com/fitness/v1
paths:
 /users/{userId}/dataSources:
 post:
 summary: Creates a new data source that is unique across all data sources belonging

 to this user.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 requestBody:
 description: In the request body, supply a Users.dataSources resource.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResource"
 responses:
 "200":
 description: If successful, this method returns a Users.dataSources resource in

 the response body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResource"
 /users/{userId}/dataSources/{dataSourceId}:
 delete:
 summary: Deletes the specified data source.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/dataSourceIdParam"
 responses:
 "200":
 description: If successful, this method returns a Users.dataSources resource in

 the response body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResource"
 get:
 summary: Returns the specified data source.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/dataSourceIdParam"
 responses:
 "200":
 description: If successful, this method returns a Users.dataSources resource in

 the response body.

100

 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResource"
 put:
 summary: Updates the specified data source.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/dataSourceIdParam"
 requestBody:
 description: In the request body, supply a Users.dataSources resource with the

 following properties.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResourceExtra"
 responses:
 "200":
 description: If successful, this method returns a Users.dataSources resource in

 the response body.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/UserDataSourcesResource"
components:
 parameters:
 userIdParam:
 name: userId
 description: The data stream ID of the data source to delete.
 in: path
 required: true
 schema:
 type: string

 dataSourceIdParam:
 name: dataSourceId
 description: Retrieve a data source for the person identified. Use me to indicate

 the authenticated user. Only me is supported at this time.
 in: path
 required: true
 schema:
 type: string
 schemas:
 UserDataSourcesResource:
 x-kindOf: https://schema.org/UserInteraction
 type: object
 required:
 - application

 - dataType

 - device

 - type

 properties:
 application:
 description: Information about an application which feeds sensor data into the

 platform.
 type: object
 required:
 - name

 properties:
 name:
 description: The name of this application. This is required for REST cli

 ents, but we do not enforce uniqueness of this name. It is pro

 vided as a matter of convenience for other developers who would

 like to identify which REST created an Application or Data

 Source.
 type: string
 dataType:

101

 description: The data type defines the schema for a stream of data being col

 lected by, inserted into, or queried from the Fitness API.
 type: object
 required:
 - field

 - name

 properties:
 field:
 description: A field represents one dimension of a data type.
 type: array
 items:
 type: object
 required:
 - format

 - name

 properties:
 format:
 description: The different supported formats for each field in a data

 type.
 type: string
 enum:
 [

 blob,

 floatList,

 floatPoint,

 integer,

 integerList,

 map,

 string,

]

 name:
 description: Defines the name and format of data. Unlike data type

 names, field names are not namespaced, and only need to

 be unique within the data type.
 type: string
 ...

 UserDataSourcesResourceExtra:
 allOf:
 - $ref: "#/components/schemas/UserDataSourcesResource"
 - type: object
 properties:
 dataStreamId:
 description: A unique identifier for the data stream produced by this data

 source
 type: string

A.5 Gmail API

A.5.1 Message, Draft

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Gmail API
 description: The Gmail API lets you view and manage Gmail mailbox data like threads,

 messages, and labels.
 termsOfService: https://developer.google.com/books/terms.html
 license:
 name: Apache 2.0
 url: https://creativecommons.org/licenses/by/4.0

102

externalDocs:
 description: Find more info here
 url: https://developers.google.com/gmail/api/reference/rest
servers:
 - url: https://gmail.googleapis.com/gmail/v1/
paths:
/users/{userId}/drafts:
 post:
 summary: Creates a new draft with the DRAFT label.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 requestBody:
 description: The request body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 responses:
 "200":
 description: If successful, the response body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 get:
 summary: Lists the drafts in the user's mailbox.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - name: maxResults
 description: Maximum number of drafts to return.
 in: query
 required: false
 schema:
 type: integer
 format: int32
 - name: pageToken
 description: Page token to retrieve a specific page of results in the list.
 in: query
 required: false
 schema:
 type: string
 - name: q
 description: Only return draft messages matching the specified query.
 in: query
 required: false
 schema:
 type: string
 - name: includeSpamTrash
 description: Include drafts from SPAM and TRASH in the results.
 in: query
 required: false
 schema:
 type: boolean
 responses:
 "200":
 description: If successful, the response body contains data with the following

 structure.
 content:
 application/json:
 schema:
 ...

 /users/{userId}/drafts/{id}:
 delete:
 summary: Immediately and permanently deletes the specified draft. Does not simply

 trash it.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"

103

 responses:
 "200":
 description: If successful, the response body will be empty.
 get:
 summary: Gets the specified draft.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"
 - name: format
 description: The format to return the draft in.
 in: query
 required: false
 schema:
 $ref: "#/components/schemas/Format"
 responses:
 "200":
 description: If successful, the response body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 put:
 summary: Replaces a draft's content.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"
 requestBody:
 description: If successful, the response body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 responses:
 "200":
 description: If successful, the response body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"

 /users/{userId}/drafts/send:
 post:
 summary: Sends the specified, existing draft to the recipients in the To, Cc, and

 Bcc headers.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 requestBody:
 description: The request body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 responses:
 "200":
 description: If successful, the response body contains an instance of Draft.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Draft"
 /users/{userId}/messages/{id}:
 delete:
 summary: Immediately and permanently deletes the specified message.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"
 responses:
 "200":
 description: If successful, the response body will be empty.

104

 get:
 summary: Gets the specified message.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"
 responses:
 "200":
 description: If successful, the response body contains an instance of Message.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
 /users/{userId}/messages:
 post:
 summary: Directly inserts a message into only this user's mailbox.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/internalDateSourceParam"
 - $ref: "#/components/parameters/deletedParam"
 requestBody:
 description: The request body contains an instance of Message.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
 responses:
 "200":
 description: If successful, the response body contains an instance of Message.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
 /users/{userId}/messages/{id}/modify:
 post:
 summary: Modifies the labels on the specified message.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/idParam"
 requestBody:
 description: The request body contains data with the following structure.
 content:
 application/json:
 schema:
 type: object
 properties:
 addLabelIds:
 type: array
 items:
 type: string
 removeLabelIds:
 type: array
 items:
 type: string
 responses:
 "200":
 description: If successful, the response body contains an instance of Message.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
 /users/{userId}/messages/send:
 post:
 summary: Sends the specified message to the recipients in the To, Cc, and Bcc head

 ers.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 requestBody:
 description: The request body contains an instance of Message.

105

 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
 responses:
 "200":
 description: If successful, the response body contains an instance of Message.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Message"
components:
 parameters:
 ...

 schemas:
 Draft:
 description: A draft email in the user's mailbox.
 allOf:
 - $ref: "#/components/schemas/Message"
 - type: object
 required:
 - id

 properties:
 id:
 description: The immutable ID of the draft.
 type: string
 Message:
 description: An email message.
 x-kindOf: https://schema.org/EmailMessage
 allOf:
 - $ref: "#/components/schemas/MessagePart"
 - type: object
 properties:
 id:
 description: The immutable ID of the message.
 type: string
 threadId:
 description: The ID of the thread the message belongs to
 type: string
 labelIds:
 description: List of IDs of labels applied to this message.
 type: array
 items:
 type: string
 ...

A.6 Service Bundle

A.6.1 Subscription, Post

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Service Bundle
 description: Custom service for demonstration purposes
 termsOfService: https://developer.google.com/books/terms.html
servers:
 - url: http://www.intelligence.tuc/custom-service
paths:
 /{userId}/post/{postId}:

106

 delete:
 summary: Deletes a post.
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 - $ref: "#/components/parameters/postIdParam"
 responses:
 "200":
 description: Returns a post instance.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Post"
 /{userId}/subscription_info:
 get:
 summary: Gets subscription info
 parameters:
 - $ref: "#/components/parameters/userIdParam"
 responses:
 "200":
 description: Returns a Subscription instance.
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Subscription"
components:
 parameters:
 postIdParam:
 name: postId
 description: The ID of the post to fetch comments from.
 in: path
 required: true
 schema:
 type: string

 idParam:
 name: id
 description: The ID of the draft to get.
 in: path
 required: true
 schema:
 type: string

 userIdParam:
 name: userId
 description: The id of the user
 in: path
 required: true
 schema:
 type: string

 schemas:
 Post:
 x-refersTo: https://www.example.com/service/googleBlogger_API#Post
 type: object
 properties:
 type:
 type: string

 Subscription:
 x-kindOf: https://www.example.com/service/youtube_API#Subscription
 type: object
 properties:
 theme:
 type: string
 pages:
 type: integer

107

References

[1] Karavasileiou A.: An ontology for describing OpenAPI version 3 services in the cloud, Diploma Thesis,
 School of Electrical and Computer Engineering, Technical University of Crete, November 2019.

[2] Nikolaos Mainas, Euripides G.M. Petrakis, "SOAS 3.0: Semantically Enriched OpenAPI 3.0 Descriptions and
Ontology for REST Services", 14th IEEE International Conference on Semantic Computing (ICSC 2020), San
Diego, California, February 3-5, 2020

[3] Semantics and Complexity of SPARQL Jorge P´erez , Marcelo Arenas, and Claudio Gutierrez

[4] N. Mainas, E.G.M. Petrakis and S. Sotiriadis, "Semantically enriched OpenAPI service descriptions in the
cloud," in 8th IEEE International Conference on Software Engineering and Service Science, 2018, pp. 66-69.
doi: 10.1109/ICSESS.2017.8342865

[5] “Automated Ontology Instantiation of OpenAPI REST Service Descriptions” Aikaterini Karavisileiou, Nikolaos
Mainas, Fotios Bouraimis, and Euripides G.M. Petrakis Future of Information and Communications Conference

[6] Semantic Web, Wikipedia

[7] What Is the Semantic Web, ontotext

[8] Ontology (information science), Wikipedia

[9] What are ontologies?, ontotext.com

[10] OWL, w3.org

[11] Apache Jena, jena.apache.org

[12] Pellet: A Practical OWL-DL Reasoner

[13] OpenAPI Spec and Swagger, idratherbewriting.com

[14] OpenAPI Specification, swagger.io

[15] Web Service Description, IBM.com

[16] Why Web Services?, tutorialspoint.com

[17] Why Web Services are important, flylib.com

[18] Hydra Core Vocabulary, hydra-cg.com

[19] Hydra: Hypermedia-Driven Web APIs, markuslanthaler.com/hydra/

[20] Roy Fielding. REST dissertation. 2000

https://dias.library.tuc.gr/view/83891
https://dias.library.tuc.gr/view/68267
https://dias.library.tuc.gr/view/68267
https://dias.library.tuc.gr/view/83173
https://dias.library.tuc.gr/view/83173

