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Nowadays, computationally demanding applications, such as Convolutional
Neural Networks (CNN), are mapped to hardware accelerators like Field Pro-
grammable Gate Arrays (FPGAs) due to customizable datapath with designer-
tunable parallelism and pipelining. Memory is in many cases the limiting factor of
every performance-bound application but its real performance is often overlooked.
Most studies and benchmarks on memory subsystems focus on best-case scenar-
ios for memory access times. Μemory access times and throughput are affected
by such factors as the memory controller’s performance, buffering, the need (or
lack of) a microprocessor for on-FPGA data transfer, and even the capabilities of
Computer-Aided Design (CAD) tools and frameworks. This study, prompted by
CNN applications on mid-range single- and multi-FPGA systems focuses on the
experimental memory evaluation, aiming at providing the designer with realistic
figures which can be used towards on-FPGA buffer sizing, computation-to-memory
I/O estimation to avoid bottlenecks, and even pipeline strategy. Detailed exper-
imental results have been obtained by memory access patterns which represent
realistic scenarios, and these are presented and analyzed in this thesis. One of the
conclusions from this work is that when random accesses are required, large num-
bers of such accesses performed together lead to better results vs. fewer, scattered
accesses. The results of this work not only show a significant deviation from ideal
transfer rates of the DDR memory channel (which can approach 20 GBytes/sec),
but they are also substantially lower than the internal AXI port maximum band-
width of 4.8 GBytes/sec, the degradation being due to internal to the FPGA data
transfers and the DDR controller.
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Σήμερα, επιταχυντές υλικού όπως οι Field Programmable Gate Arrays (FPGAs)
χρησιμοποιούνται σε υπολογιστικά απαιτητικές εφαρμογές, όπως τα Convolutional
Neural Networks (CNN), εξαιτίας της προσαρμοστικότητάς τους και των δυνα-
τοτήτων που προσφέρουν στον σχεδιαστή για παραλληλισμό και pipelining. Η
μνήμη είναι σε πολλές περιπτώσεις ο περιοριστικός παράγοντας για εφαρμογές όπου

η ταχύτητα των επιταχυντών είναι σημαντική, αλλά η πραγματική απόδοσή της συχνά
παραβλέπεται. Οι περισσότερες έρευνες σε υποσυστήματα μνήμης επικεντρώνονται
σε μελέτες όπου οι χρόνοι πρόσβασης στη μνήμη είναι βέλτιστοι. Οι χρόνοι αυτοί
και η απόδοσή της επηρεάζονται από παράγοντες όπως ο controller της μνήμης, το
buffering, η ανάγκη (ή η έλλειψη) ενός μικροεπεξεργαστή για on-FPGA μεταφορά
δεδομένων και από τις δυνατότητες των εργαλείων σχεδίασης. Η παρούσα μελέτη,
παρακινούμενη από εφαρμογές που υλοποιούν CNN αρχιτεκτονικές σε συστήματα
με μια ή περισσότερες FPGA, επικεντρώνεται στην πειραματική αξιολόγηση της
μνήμης, με στόχο να παρέχει στον σχεδιαστή ρεαλιστικά αποτελέσματα που μπορούν
να χρησιμοποιηθούν για την εύρεση του μεγέθους των buffers στις FPGA, την
αποφυγή bottlenecks μέσα από τον υπολογισμό του I/O, ακόμη και την επιλογή της
κατάλληλης pipelining μεθοδολογίας. Τα πειραματικά αποτελέσματα προσομοιώνουν
μοτίβα πρόσβασης της μνήμης που αντιπροσωπεύουν ρεαλιστικά σενάρια, τα οποία
παρουσιάζονται και αναλύονται σε αυτήν την εργασία. ΄Ενα από τα συμπεράσματα από
αυτήν την εργασία είναι ότι όταν απαιτούνται τυχαίες προσβάσεις, μεγάλος αριθμός
τέτοιων προσπελάσεων που εκτελούνται μαζί οδηγούν σε καλύτερα αποτελέσματα

έναντι λιγότερων διάσπαρτων προσβάσεων. Τα αποτελέσματα αυτής της εργασίας
όχι μόνο δείχνουν αξιοσημείωτη απόκλιση από τους ιδανικούς ρυθμούς μεταφοράς

δεδομένων από τη μνήμη (οι οποίοι μπορεί να προσεγγίσουν τα 20 GBytes/sec), αλλά
είναι επίσης σημαντικά χαμηλότερα από το μέγιστο bandwidth της AXI θύρας (4,8
GBytes/sec). H υποβάθμιση αυτή οφείλεται στον τρόπο μεταφοράς δεδομένων στις
FPGA και στον controller της μνήμης.

v

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=5397
https://www.ece.tuc.gr/index.php?id=4481




Acknowledgements
First of all, I would like to thank my supervisor, Prof. Apostolos Dollas, for his

continuous support and insightful guidance throughout this thesis and the course
of my studies in the ECE department. I would also like to express my gratitude
since his knowledge and experiences were one of the reasons I decided to work in
Hardware Architecture design.

Furthermore, I would like to thank the committee, Prof. Michalis Zervakis,
and Assoc. Prof. Sotirios Ioannidis, for evaluating the work of this thesis.

In addition, I would like to express my thankfulness to the CARV team in
FORTH for their guidance throughout this thesis, especially Dr. Aggelos Ioannou,
for his support and expertise in the field of hardware design, Dr. Christos Kozanitis
and, Dr. Gregory Tsagkatakis for their support and insightful inputs.

This work could not have been completed without the TUC MHL laboratory’s
valuable support, especially Ph.D. candidates Pavlos Malagonakis and Andreas
Brokalakis, whose help in understanding and using Xilinx’s tools and the ZEUS
server was invaluable.

I would also like to thank my fellow colleagues of the TUC MHL laboratory,
Charisios Loukas and Tzanis Fotakis, for their help and our excellent collaboration.

Last but not least, I would like to express my deepest gratitude to my family,
especially my parents and my brother, for their continuous support throughout
the years and my friends for their patience and understanding.

Maria Argyriou,
Chania 2021

vii





Contents

Abstract iii

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation and Scientific Contribution . . . . . . . . . . . . . . . . 2
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5
2.1 Memory Organization in Computer Architecture . . . . . . . . . . . 5

2.1.1 Secondary Storage (Auxiliary Memory) . . . . . . . . . . . . 6
2.1.2 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2.1 Random Access Memory . . . . . . . . . . . . . . . 6
2.1.2.2 Read-Only Memory . . . . . . . . . . . . . . . . . 7
2.1.2.3 Memory Access Methods . . . . . . . . . . . . . . . 7

2.1.3 Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3.1 Cache Mapping and Optimization Techniques . . . 9

2.2 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Memory Management and Addressing . . . . . . . . . . . . . . . . . 10

2.3.1 Memory Timings . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 On-Chip Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Block RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Theoretical background sources . . . . . . . . . . . . . . . . . . . . 14

ix



3 Related Work 17
3.1 Memory Allocation techniques on FPGA platforms . . . . . . . . . 17

3.1.1 Memory Partitioning and Mapping scheme . . . . . . . . . . 17
3.1.2 DOMMU architecture . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Multi-ported Memory on FPGA . . . . . . . . . . . . . . . . 21
3.1.4 Memory Partitioning for Multidimensional Arrays . . . . . . 23
3.1.5 Memory evaluation and architectures in stencil computing . 24

3.2 Thesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Tools Used for FPGA Implementaion 29
4.1 Vivado IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Vivado HLS Synthesis Report . . . . . . . . . . . . . . . . . 31
4.2.2 Optimizing the design in HLS . . . . . . . . . . . . . . . . . 31

4.3 Vivado SDK and Xilinx Vitis IDE . . . . . . . . . . . . . . . . . . . 33

5 Memory Subsystem Evaluation 35
5.1 FPGA Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 AMBA - AXI4 Interface Protocol . . . . . . . . . . . . . . . 37
5.1.3 PS-PL AXI Interfaces . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 AXI DMA/CDMA . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.5 The Global Address Space . . . . . . . . . . . . . . . . . . . 39
5.1.6 PS-Side: DDR4 SODIMM Socket . . . . . . . . . . . . . . . 40
5.1.7 DDR controller and physical layer . . . . . . . . . . . . . . . 41
5.1.8 PL-Side: AXI BRAM Controller . . . . . . . . . . . . . . . . 41
5.1.9 PL-Side:Block Memory Generator . . . . . . . . . . . . . . . 42
5.1.10 Memory Subsystems . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Data Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Structure of the Experiments . . . . . . . . . . . . . . . . . . . . . 45
5.4 DDR4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 DDR4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 DDR4 response time for individual accesses . . . . . . . . . 49

5.5 Memory Management Attributes . . . . . . . . . . . . . . . . . . . 52
5.5.1 Normal Memory . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Device Memory . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.3 Cacheable VS Shareable Memory . . . . . . . . . . . . . . . 53

5.6 Block RAM in Cascade Mode . . . . . . . . . . . . . . . . . . . . . 54
5.7 Memory response time for burst data accesses . . . . . . . . . . . . 56

5.7.1 Sequential Burst . . . . . . . . . . . . . . . . . . . . . . . . 58

x



5.7.2 Random Burst . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Results 65
6.1 Results for DDR4 individual accesses . . . . . . . . . . . . . . . . . 65
6.2 Results for burst data accesses . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Results for sequential data accessing . . . . . . . . . . . . . 68
6.2.2 Results for random data accessing . . . . . . . . . . . . . . . 72
6.2.3 Summarizing and Comparing with the Theoretical Results . 76

6.3 Unexpected Port Bandwidth . . . . . . . . . . . . . . . . . . . . . . 77

7 Conclusions and Future Work 79
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 81

xi





List of Figures

2.1 Detail of the back of a section of ENIAC, showing vacuum tubes. . 5
2.2 Memory communication with CPU. . . . . . . . . . . . . . . . . . . 6
2.3 Typical Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Detailed description of a memory’s bank architecture. . . . . . . . . 11
2.5 Simplified timing diagram of a read operation. . . . . . . . . . . . . 13
2.6 Part of the Logic Fabric and its constituents elements. . . . . . . . 14
2.7 Dual Port (A) and Single Port (B) BRAM. . . . . . . . . . . . . . . 14

3.1 DOMMU Architecture. Copyrights to:[22]. . . . . . . . . . . . . . 20
3.2 Architecture of the n bi-directional multi-ported memory design.

Copyrights to:[26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Convey HC-x Architecture. AEH: Application Engine Hub, MC:

Memory Controllers, AE: Application Engine. Copyrights to:[35]. . 25

5.1 Simplified Block Diagram of the UltraScale+ MPSoC Architecure. . 36
5.2 The ZYNQ UltraScale+ MPSoC global address space. . . . . . . . 40
5.3 Memory Architecture of a DDR module. . . . . . . . . . . . . . . . 41
5.4 Memory Subsystems in ZYNQ UltraScale+ Architecture. . . . . . . 44
5.5 Data allocation in a DDR4 memory module. . . . . . . . . . . . . . 47
5.6 Address Bits for the BANK ROW COL memory-mapping scheme. 48
5.7 Address Bits for the ROW BANK COL memory-mapping scheme. 48
5.8 Inner and Outer shareability. . . . . . . . . . . . . . . . . . . . . . 54
5.9 The BRAM cascade architecture. Copyrights to: [48]. . . . . . . . 55
5.10 Block diagram of the experiment. . . . . . . . . . . . . . . . . . . 57
5.11 1 - D Convolutional Neural Network and data allocation in memory. 58
5.12 Sequential access from two BC. . . . . . . . . . . . . . . . . . . . . 59
5.13 2 - D Neural Network and data allocation in memory. . . . . . . . 61
5.14 Multi - dimensional allocation in memory. . . . . . . . . . . . . . . 62
5.15 Example of an architecture that uses BMGs, BC and custom hard-

ware accelerators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Performance of Master HP0, HP1 ports when data transfers are 640
bytes (for each BC). . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



6.2 Performance of Master HP0, HP1 ports when data transfers are 2
KB (for each BC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Performance of Master HP0, HP1 ports when data transfers are 20
KB (for each BC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Results for burst access in sequentially stored data. . . . . . . . . . 71
6.5 Latency results for various burst sizes per BC. . . . . . . . . . . . . 71
6.6 Results for different memory strides when each BC requested 640

Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.7 Results for different memory strides when each BC requested 2 KB. 74
6.8 Results for different memory strides when each BC requested 20 KB. 74
6.9 Results for different memory strides when each BC requested 200 KB. 74
6.10 Results for different memory strides when each BC requested 2 MB. 75
6.11 Measured throughput using two memory attributes. . . . . . . . . . 78

xiv



List of Tables

2.1 Memory hierarchy parameters. . . . . . . . . . . . . . . . . . . . . . 10

3.1 Various multi - dimensional CNNs and their maximum/minimum
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 ZCU102 block features and memory sizes. . . . . . . . . . . . . . . 36

6.1 Average number of cycles for individual read/write operations. . . . 66
6.2 Average number of cycles for individual data requests from the PL. 66
6.3 Utilization report when using MM Xilinx IPs. . . . . . . . . . . . . 67
6.4 Power report when using MM Xilinx IPs. . . . . . . . . . . . . . . . 67
6.5 Transfer size of each BC and total sequential transfer sizes. . . . . . 69
6.6 Average clock cycles per BC per word for different word size bursts 72
6.7 Transfer size of each BC and stride distance per BC. . . . . . . . . 73
6.8 Difference in in MB/s between the two BCs. . . . . . . . . . . . . 73
6.9 Average Clock Cycles per word for various transfer sizes (640 B,

2KB, 20 KB, 200 KB, 2 MB) and strides between BCs . . . . . . . 75
6.10 Throughput in MB/s for sequential and random access for various

burst sizes and strides. . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv





List of Algorithms

1 Measure time for individual access . . . . . . . . . . . . . . . . . . . 51
2 Measure time for sequential burst access from PS to PL . . . . . . . 60
3 Measure time for random burst access from PS to PL . . . . . . . . 63

xvii





List of Abbreviations

AI Artificial Intelligence
APU Application Processing Unit
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
CAS Column Address Strobe
CCL Connected Component Labeling
CPU Central Processor Unit
DDR4 Double Data Rate type 4 memory
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
FPD Full Power Domain
FPGA Field Programmable Logic Design
FSM Finite State Machine
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HLS High Level Synthesis
HPC High Performance Computing
HRPC High Performance Reconfigurable Computer
ILA Integrated Logic Analyzer
IoT Internet of Things
LPD Low Power Domain
MPSoC Multi Processor System on Chip
PE Processing Element
PL Programmable Logic
PS Processing System
QFDB Quad FPGA Daughter Board
RAS Row Address Strobe
RAM Random Access Memory
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory

xix





Dedicated to Carol, whom I will always miss. . .

xxi





Chapter 1

Introduction

In the last decade, the amount of data produced is increased every single day. Ac-
cording to researches, the entire digital universe is expected to reach 46 zettabytes
by 2021, making the need for accurate handling vital. In a span of two years
(2016-2018), 90% of the world’s data was created 1. For example, in 2018, Google
processed 3.5 billion searches every day. It is estimated that by the end of 2020,
more than 20 billion devices will utilize the IoT producing more data than be-
fore. Other computationally demanding areas such as high-speed search, machine
learning, and AI; high-performance computing in data centers; real-time graphics
processing, including virtual reality and video gaming; and, soon, autonomous ve-
hicles are starting or already producing vast amounts of information. Managing
this amount of data seems almost impossible without the use of state of the art
computers and computation methods.

The technological progress that has been made in recent years enables the
processing of a vast amount of information through supercomputer systems and
algorithms. A typical example is neural networks, the usefulness of which covers
a wide range of applications, from the classification of geographical areas through
photographs[1] to the simulation of complex board games[2]. The design of an
application-specific accelerator circuit may be arduous and expensive, but offer
better performance or power consumption vs. CPUs or GPUs. Application Spe-
cific Integrated Circuit (ASIC) is designed for a specific purpose; it cannot be
re-programmed and function the same for their whole operating life. FPGAs are
integrated circuits that can be configured to solve a computational problem. CPUs
and GPUs are instruction-based hardware configured via software, whereas FPGAs
are configured by specifying a hardware circuit. This reconfigurability makes FP-
GAs an excellent choice for applications in which standards are evolving, such as
digital television, consumer electronics, cyber security systems, and wireless com-
munications. Although the systems we have today demonstrate excellent progress,

1https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
?sh=6ee88c2760ba

1

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=6ee88c2760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=6ee88c2760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=6ee88c2760ba


Chapter 1. Introduction

many technological problems remain unresolved, or their solution is yet to be op-
timized. A typical example is that an FPGA can implement a high-speed neural
network, but the rate of data in which they are fed to the network is much slower
than the processing rate meaning that the volume of data and its routing through
the network remains a problem.

1.1 Motivation and Scientific Contribution

Memory is one of the most significant performance limiting factors of FPGA-
based designs. During our research, we realized that the memory subsystem of
modern-day FPGAs is often overlooked; researchers are focused on implementing
fast and efficient hardware accelerators to produce results by neglecting the bot-
tlenecks caused due to memory bandwidth limitations. Our goal is to evaluate
the memory subsystem of a modern and often used FPGA, provide the necessary
information concerning the most efficient memory utilization, and test various tech-
niques using Memory Mapped IPs that simulate FPGA memory resources. This
work was prompted by actual CNN applications which were under development at
ICS/FORTH and the Technical University of Crete.

This thesis has experimental work which was performed in order to quantify
memory subsystem performance in two platforms, the widely-used Xilinx ZCU-
102[3] and the proprietary EuroEXA-project developed QFDB[4]. Both use a very
common mid-size FPGA, whereas the CAD tools that we used are most typical
of the entire gamut of Xilinx FPGAs. It was mandated by the need to schedule
accesses and size BRAM buffers in signal classification with CNNs [5] applications,
however, there are many more applications that require multi-dimensional memory
access patterns, in which only one of the dimensions can be conveniently mapped
to the DDR row and hence benefit from burst transfers. This work’s contribution
is the experimental quantification of memory subsystem performance on a mid-
scale Xilinx FPGA coupled to a corresponding DDR main memory and with a
very recent version of the Vivado[6] CAD tool suite. This evaluation accounts
for all internal and external interfaces, as well as the effect of CAD tools in the
design. Thus, it can be used towards on-FPGA BRAM buffer sizing, computation-
to-memory I/O ratio to avoid bottlenecks, and pipeline strategy.

The goal of this thesis is to evaluate the memory subsystem of an FPGA that
is used by architects to deploy various computationally demanding architectures.
For this purpose we performed:

• Timing tests and evaluation of the on-chip memory module and controller of
a specific FPGA architecture

2



1.2. Thesis Outline

• Experiments using different memory access methods and their trade-offs,
from sequential to random memory access using various techniques

• Ways to transfer data from the main memory to the on-chip memory that re-
sides inside the FPGA, maintaining low energy consumption and the highest
achievable memory bandwidth

• Modelization of the effect of access patterns on memory performance and
provided and explanation on how it can be exploited by the designers

Our experiments revealed how the memory controller interacts with the main
memory module and the memory that resides in the programmable logic part of an
FPGA. Furthermore, we gained hardware expertise since we deduced information
on how the memory operates, how memory is affected by different types of mem-
ory access and how the controller receives and handles these requests. What is
more, details on how to improve PS memory utilization and mapping are presented
along with efficient ways to use the memory controller, helping future hardware
developers.

1.2 Thesis Outline

Below we present the thesis outline, per chapter:

• Chapter 2 - Theoretical Background: In this chapter, the theoretical
background of Memory components and organization in an FPGA is de-
scribed.

• Chapter 3 - Related Work: Related work and scientific contributions are
described.

• Chapter 4 - FPGA Implementation: In this chapter we explain the
tools we used in our experiments.

• Chapter 5 -Memory Subsystem Evaluation: The memory subsystem is
evaluated, from sequential to random access using various memory attributes
and techniques.

• Chapter 6 - Results: Metrics, such as throughput, latency, and power
consumption, are presented alongside the results of each type of memory
access. Sequential and random (using memory strides) access is evaluated,
simulating computationally demanding small and large CNNs.

• Chapter 7 - Conclusions and Future Work: This thesis is being con-
cluded and we present directions and ideas for future work or possible ex-
tensions.

3





Chapter 2

Theoretical Background

This chapter describes the theoretical background of memory architecture, the
types of memory that exist nowadays, the memory components, and their organi-
zation in the current FPGA’s.

2.1 Memory Organization in Computer Architec-

ture

ENIAC was the first programmable digital computer that could perform simple
calculations using 20 numbers with ten decimal digits, which were held in the
vacuum tube accumulators.

Figure 2.1: Detail of the back of a section of ENIAC, showing
vacuum tubes:URL

One of the essential parts of a computer is the memory component. Com-
puter memory is a physical device that can store information either temporarily
or permanently. Volatile memory loses its contents when the hardware device is
switched off, whereas non-volatile memory (which was introduced in the late 40s
- early 50s and quickly became the dominant form of memory) keeps its contents
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even if the power is lost. Since CPU must operate at maximum speed for the
highest performance, uninterrupted high-speed access is required.

Figure 2.2: Memory communication with CPU.

2.1.1 Secondary Storage (Auxiliary Memory)

This memory component is at the bottom of the hierarchy, it is not directly con-
nected to the CPU, and it trades slower access rates (its access time is 1000 times
the access time of the main memory) for higher storage capacity and data stability.
Since it is a non-volatile memory type, it holds data that are not needed by the
main memory for future use. It can either be accessed sequentially or directly.
The hard disk drive is a type of auxiliary memory.

2.1.2 Main Memory

Main or central memory is directly connected to the CPU, auxiliary memory, and
cache. It is used to store software applications and other information for the CPU
to have fast and direct access when needed. The main memory consists of RAM
and ROM.

2.1.2.1 Random Access Memory

Data items are read and written in the same amount of time regardless of the
physical location of the data. RAM devices have a set of address lines, and a set
of memory cells is activated for each combination of bits (due to this RAM chip
has a capacity that is a power of two). Each cell has a unique address that can be
found by counting across columns and then counting down by row. This memory
type is volatile and can be divided into dynamic RAM (DRAM) and static RAM
(SRAM).

6
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• SRAM is more expensive, faster to access, and requires more space (meaning
that for the same amount of transistors, DRAM will have 4x - 6x the capacity
of SRAM) for a given amount of data than DRAM. It is used for L1 and
L2 caches, and the typical access time is 10 ns. SRAM modules consume
less power than DRAM modules since they require small and steady current.
Power consumption increases when SRAM is operated at higher frequencies.

• On the other hand, the controller (either CPU or memory) must recharge
the capacitors before they discharge in order to maintain the data in a
DRAM chip, meaning that the memory controller reads and rewrites the
data. This refreshing technique occurs thousands of times per second, caus-
ing the DRAM chip to be slower than SRAM. The average access time is
about 60 ns.

2.1.2.2 Read-Only Memory

This type of memory is non-volatile, and its contents have been prerecorded. ROM
is used to store the instruction required during bootstrap of the computer, and
its speed is much slower than RAM. CPU is not directly connected with ROM,
and in order to access its data, they must be transferred to the RAM compo-
nent. ROM has three types, PROM (Programmable read-only memory), EPROM
(Erasable Programmable read-only memory) and EEPROM (Electrically erasable
programmable read-only memory).

• PROM can be programmed by the user and data cannot be changed.

• EPROM can be reprogrammed and in order to erase data from it, the chip
must be exposed to ultra violet light.

• EEPROM can be reprogrammed and in order to do so, electric field must be
applied (only portions of the chip are erased).

2.1.2.3 Memory Access Methods

A hardware function’s performance and the data transfer rate between PS and
PL depend on accessing the memory efficiently. There are four types of memory
access methods, as presented below.

• Sequential Access: In sequential access, the data are retrieved in a specific
linear manner (like accessing data stored in a single Linked List), and their
location affects access time.

• Random Access: This method provides the ability to access any arbitrary
element of a sequence at the same access time no matter how many elements
may be in the set.
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• Direct Access: Data retrieved with direct access can be obtained by di-
rectly referring to where they are physically located on the memory. Direct
access is a combination of sequential and random access, and the access time
depends on the characteristics of the storage technology and the memory
organization.

• Associate Access: In this memory access type, the stored data can be
identified for access by the content of the data itself rather than by an address
or memory location.

We experimented with sequential and random data access in ZCU102, mea-
suring the access time for small and big chunks of data retrieved from the DDR.
The results are presented in Chapter 6.

2.1.3 Cache Memory

Cache is a high-speed memory component, and it is either built into a computer’s
CPU or located next to it on a separate chip. Cache memory is used to store
instructions that are repeatedly required to run programs, improving overall speed
and the performance of multi-core systems. It is not as costly as registers but faster
when compared to main memory. This means that the CPU does not have to use
the bus on the motherboard for data transfer, because whenever data must be
passed through the system bus, the data transfer speed slows the motherboard’s
capability. In computer architecture, Level 1 (L1) cache is built into the CPU, and
Level 2 (L2) resides on a separate chip next to the CPU. Some CPUs have both
L1 and L2 cache built-in and designate separate cache chip as Level 3 (L3). Since
built-in cache runs at the microprocessor’s speed, it is faster than the separate
one, meaning that cache at first level is fastest and smallest. However, a separate
cache is still faster than RAM.

In general, L1 instruction and data caches are up to 64 KB per core, L2 up to
512 KB per core (or shared up to two cores) and deliver data with a latency of 5
to 10 CPU cycles, and L3 may vary from 8MB to 32MB (shared across all cores
or sliced to multiple instances to be associated per core) with a latency of 10 to
20 CPU cycles [7]. In some architectures, there is a Level 4 (L4) cache, which is
also called DRAM buffer, offering an additional cache size of 128MB.

Hit and miss ratio are two critical definitions in cache memory since they are
directly connected with the cache’s performance and are defined as follows in 2.1
and 2.2:

Hit ratio =
# of cache hits

(# of cache hits+# of cache miss)
(2.1)

Miss ratio = 1−Hit ratio (2.2)
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2.1.3.1 Cache Mapping and Optimization Techniques

Data from the main memory are brought into the cache memory using a technique
called cache mapping. There are three cache mapping techniques, Direct, Fully
associative, and K-way set-associative Mapping [8]. To attain an optimized usage
of the cache, several replacement algorithms [9] can be implemented based on
frequency, recency, frequency and recency, application, level of cache, e.t.c [10].
Cache optimization is accomplished with the reduction of hit time and miss penalty
and increased cache bandwidth. A multi-level cache is used to minimize the gap
between memory latency and CPU bandwidth.

2.2 Memory Hierarchy

In most systems, memory hierarchy [11] starts with a small, fast, expensive cache
component, and main memory follows since it is larger, slower, and cheaper. A set
of parameters are important in order to characterize the hierarchy:

• Latency: Time elapsed between the request of information and access to
the first bit of the received data.

• Bandwidth: The rate at which data can be read from or stored into memory
by a processor.

• Capacity: The amount of information in bytes the memory can store.

• Cycle time: The time between a read operation started and the beginning
of the next one.

Figure 2.3: Typical Memory Hierarchy

Computers were initially designed without any memory hierarchy, increasing
the speed gap between CPU registers and main memory due to large differences
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in access time, resulting in lower performance. System performance is greatly
improved by storing information into the fastest memory parts and accessing it
many times before its replacement. This principle, called locality of reference,
exists in two forms; spatial and temporal. Spatial locality occurs when a given
address referenced before is likely to be re-accessed in a short period. In contrast,
temporal locality occurs when a particular memory segment that has been accessed
is most likely to be referenced next. The different levels of memory, as mentioned
above, exploit both spatial and temporal locality to reduce memory access time.

In table 2.1 we present the memory hierarchy parameters found in standard
systems nowadays and their typical values for various memory components.

Access
Type Capacity Latency

(Avg) Bandwidth

CPU Registers Random 8∼1024 bytes 0.3 ns System Clock
Rate

Cache Random 256 KB∼8 MB 1∼13 ns 120∼175 GB/s
Physical Memory Random 2∼64 GB 70∼100 ns 19∼35 GB/s
Solid State Drives Random 128 GB∼2 TB 7∼150 μs 200∼550 MB/s
Hard Disk Drives Random 500GB∼10TB 1∼10 ms 50∼120 MB/s

Table 2.1: Memory hierarchy parameters.

2.3 Memory Management and Addressing

The CPU is not directly connected with the system’s main memory but through
another chip called the Memory Controller Chip (MCC). The MCC contains all
the necessary logic for the read/write operation and is responsible for refreshing
the memory module. During a refresh, the memory controller sends a pulse of
electronic current through the RAM chips. Memory modules, such as those inside
an FPGA, are volatile, meaning that they will lose all their data without constant
electricity. The logical address containing the requested data issued by the CPU is
converted to a Physical Address by the controller. The MCC, which is connected
to the memory module by a multiplexer, locates the memory information and
sends it back to the CPU.

Memory architecture consists of multiple arrays of single-bit storage arranged
in a two-dimensional structure. This structure is formed by individual rows (Word
line) and columns (the width of the column is called Bit Line) intersecting with
each other and is often referred to as a memory bank. The banks that exist in
the same chip form a bank group. Multiple chips that share the same address
lines form a memory rank, and a memory module may consist of more than one
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rank. For example, if a module has chips on both sides, then it is a Double Rank
memory module.

Figure 2.4: Detailed description of a memory’s bank architecture.

Read and write operations are a 2-step process. The first step, also called RAS,
selects the bank group, bank, and row. The second step, also called CAS, uses
the address bits registered with the Read/Write command to select the starting
column location for the burst operation. The number of bits per row indicates
a memory page. In order to achieve Read/Write operations, the memory issues
specific commands:

• Activation Command (ACT): With this command a bank opens a row
for read/write operation and the row remains open until the self-refresh
command. If a bank needs to access a different row the already open row
must be closed.

• Refresh Command: In order to issue a refresh command all rows must be
deactivated. After the command, all banks are in idle state.

• Self-Refresh Command: This command is required so that data are main-
tained inside the SDRAM module. This is done automatically and affects
all rows in all memory banks.

11



Chapter 2. Theoretical Background

• Precharge Command (PRE): With this command an already open row
in a bank closes. This row can not be accessed again for a certain time
period.

2.3.1 Memory Timings

One of the most fundamental features of memory is timing. When a request is
issued by the CPU, memory requires some time in order to retrieve the requested
data.

• CAS Latency - tCL: This is the most crucial timing. It represents the time
frame between sending a column address to the memory controller and the
appearance of that memory’s first data bit, provided that the correct row is
already chosen.

• Row Address to Column Address Delay - tRCD: The minimum time
required in order to choose a row and access the columns within. The number
of cycles needed to retrieve the first bit of information without having selected
a row is tRCD + tCL.

• Row Precharge Time - tRP : This timing represents the number of clock
cycles between the precharge command and the correct row’s opening. To
read the first bit of data, provided that the wrong row is chosen, tRP +tRCD+

tCL number of cycles will pass.

• Row Active Time - tRAS: This timing represents the number of clock
cycles spent between the activation of a row and the precharge command,
overlapping with tRCD. Since the row is refreshed, tRAS equals tRCD + tCL.
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Figure 2.5: Simplified timing diagram of a read operation.

2.4 On-Chip Memories

2.4.1 Block RAM

Inside the fabric of an FPGA various memory elements are embedded and can
be used as random-access memory, read-only memory, and shift registers. These
elements are block RAMs (BRAM), Look Up Tables (LUT), Flip-Flops, Digital
Signal Processors (DSP), and shift registers. BRAMs are a discrete part of an
FPGA and are used to store data on the PL side of an FPGA allowing data to
be transferred to the hardware accelerators (which also reside on the PL side) at
much higher speeds than a DDR. On the other hand, BRAM recourses are limited;
sometimes, only several KB of space is available to be used. The most recent and
more expensive FPGAs come with 4-6 MB of Block RAM, since BRAM size is
directly connected with the cost; larger and more expensive FPGAs include more
space, providing more flexibility.

Block RAMs come in a finite size; 4/8/16/32 Kb (Kilobits) are common. They
have a customizable width and depth and each FPGA has a certain amount of such
BRAM modules that can be configured. The most common ways to use a BRAM
are to transfer data between multiple clock domains using local FIFOs, between an
FPGA target and a host processor using DMA FIFO, and between FPGA targets
using peer-to-peer FIFO.

This memory module is used as Single Port, Dual Port or FIFO BRAM. The
Single Port Block RAM configuration is useful when there is just one interface
that needs to retrieve data. Dual Port BRAMs are available on modern FPGAs
and can be used as a Memory Mapped I/O [12], providing a more comfortable
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Figure 2.6: Part of the Logic Fabric and its constituents elements.

and low-cost solution. The dual-port nature of these memories allows for parallel,
same-clock-cycle access to different locations. Finally, in the FIFO configuration,
one port is used to write data and one to read them.

(a) (b)

Figure 2.7: Dual Port (A) and Single Port (B) BRAM.

2.5 Theoretical background sources

A considerable part of the information presented above was acquired from the
Computer Architecture and Reconfigurable Computing Systems courses of Elec-
trical and Computer Engineering school at the Technical University of Crete. Fur-
thermore, the book Fundamentals of Computer Organization and Architecture [11]
was an insightful guide and provided useful knowledge concerning memory organi-
zation and computer systems. Moreover, the book Exploring Zynq MPSoC With
PYNQ and Machine Learning Applications [13] provides an extensive analysis of
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the ZYNQ FPGA family which is evaluated in this thesis. Finally, the doctoral the-
sis of Dr. Aggelos Ioannou [14] provided useful spot-on information about memory
components and their purpose and acted as a guide, especially in the early stages
of this thesis.
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Chapter 3

Related Work

In this chapter, we present some of the most notable scientific contributions related
to our research. Most of the work presented here is based on published papers.

3.1 Memory Allocation techniques on FPGA plat-

forms

Nowadays, FPGA’s have limited on-chip memory resources, which makes efficient
handling of those resources vital. FPGAs have been used in high-level image pro-
cessing due to their power efficiency and customization abilities. Relatively simple
algorithms that perform local region operators (sliding window filters [15], for ex-
ample) can be implemented as line buffers. On the other hand, algorithms that
use global operators require complete frames to be stored in situ (identification,
object detection, etc.).

Processing-specific architectures have shown inadequate BRAM utilization re-
sulting in various architectures such as the mirroring memory system [16], which
prohibits scaling for higher frame sizes, the neighborhood loader [17]which does
not support random access, and the spatial parallelism [18] which does not sup-
port real-time streaming. Off-chip memory access by storing image frames into
peripheral memory components solves the capacity barrier but decreases perfor-
mance. Parallel matching arrays [19] for accelerating computation can hold only
one row each time; the remaining frame is still stored off-chip. Vector memories for
accelerating vector processing [20] on FPGA rely on random access to peripheral
memory components.

3.1.1 Memory Partitioning and Mapping scheme

The work of P.Garcia, D. Bhowmik et al. [21] provides insight into partitioning
image frames into BRAMs to minimize the number of required on-chip memories.
Assuming a BRAM of C storage capacity and i the number of possible BRAM
configurations then we have a vector Cfg of i elements such as :
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Cfg =


(M1, N1)

(M2, N2)

.

.

(Mi, Ni)


where Mi, Ni are the width and height of each BRAM configuration and only

one pair of Mi, Ni is non-zero. Their work focuses on image frames; 3-D arrays are
presented as 2-D arrays of Width (columns), Height (rows) dimensions, and each
cell of the 2-D array represents the pixel bit width, Bw. Their goal is to find the
appropriate amount of BRAMs needed, which are represented as a 2-D array of
BRAMs. Given a 2-D image frame of dimensions x = Bw, y = Wimage×Himage, a
partioning scheme which assigns pixels accross a× b BRAMs is given by:

p(x, y) = Cfg ∗ ((a1, b1), ..., (ai, bi)) (3.1)

where * stands for linear combination and only one (ai, bi) pair has non-zero com-
ponents. Finally, they map the 2-D array into row-major or column-major 1-D
arrays. Their goal is to maximize utilization efficiency using these two formulas:

Maximize E =
x× y

ap × bp × C
(3.2)

((ap ×Mp ≥ x) ∩ ((bp ×Np ≥ y) (3.3)

where x = Bw, y = Wimage×Himage, ap and bp are the array of BRAMs con-
figurations, C is the BRAM capacity, Mp = BRAMheight and Np = BRAMwidth.

For example, if (x, y) = (8, 76800), then for a Xilinx Virtex 7 BRAM config-
uration of (Mp, Np) = (1, 16384) the BRAM usage count is 64 ( (ap, bp) = (8, 8)),
which is the minimum number of BRAMs needed in order to store the image frame
and achieve maximum utilization efficiency. Their experiments showed that par-
titioning data unevenly (meaning that ap 6= bp ) utilized less amount of BRAMs
and increased utilization efficiency. Furthermore, they addressed the power impli-
cations of each BRAM configuration. BRAM static power is directly proportional
to utilization and increased per read/write operation. Their results show that
minimizing the horizontal usage of BRAMs (meaning that BRAM width is in-
creased but the number of BRAMs in the x axis is decreased) is more suitable for
clock gating. Their algorithm selects the optimized utilization solution by iterating
over wider BRAMs. They implemented frame buffers in Verilog, creating BRAMs
according to the desired configurations and compared them with strategies em-
ployed by commercial HLS tools. Their experiments included a sequential read of
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the whole frame and a sliding window of 3× 3 read of the frame for monochrome
and RGB images.

The results revealed a reduction in BRAM utilization of up to 41.4% for both
monochrome and RGB images when using their hand-coded modifications and
appropriate BRAM configurations (BRAM width, height, and array BRAM width,
height) comparing to Vivado HLS results. Static power consumption was slightly
higher than the Vivado HLS. Albeit, their method showed excellent results in total
dynamic power consumption (in sequential and sliding window experiments) and
BRAM power consumption.

3.1.2 DOMMU architecture

Dynamic memory management is crucial and enhances reconfigurable computing
gains since it can avoid static memory allocations when implementing a design.
Ghada Dessouky, Michael J. Klaiber et al. [22] proposed a Dynamic On-chip
Memory Management Unit (DOMMU) which targets the dynamic management of
BRAMs during run-time. Dedicated hardware solutions have presented excellent
performance but low flexibility and run-time adaptivity. Their work focuses on
four critical topics as presented below:

• Dynamic Memory (De) Allocation: Since static memory allocation re-
serves enough BRAM to cover worst-case scenarios, previously allocated
memory regions remain unused. Unused memory segments can be shared
and allocated through different PEs. This dynamic sharing and allocation
reduces memory requirements and improves BRAM utilization; allocation
must occur faster than access to the PE to ensure that data access is correct
and updated.

• Transparecy: DOMMU’s configurations have to be identical to BRAM
accessing, achieved by virtual address mapping whilst maintaining single-
cycle latency.

• Scalability: DOMMU’s design accepts user configurations in order to be
scalable, concerning the number of BRAMs, BRAM’s number of ports, and
types. Furthermore, the unit provides support for BRAM sharing between
PEs by using dual-port BRAM access.

• Optimal point in design: Bandwidth, latency, and hardware resources
are concerns that the unit must meet. Dedicated channels between PEs
and their corresponding BRAMs assure latency of one clock cycle; hard-
ware resources must be kept to a minimum by dynamically reserving and
deallocating memory regions.
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Each PE is assigned with one or more memory ports that interface with
DOMMU for BRAM allocation/deallocation and access in their architecture. Each
PE holds information regarding BRAM configurations, which BRAM is assigned
to the PE, the frequency of accesses, and the amount of BRAM required by each
PE. BRAM elements are arranged as logical pages that are assigned to memory
ports. Logical pages are assigned up to N BRAM elements, which in turn acquire
a logic identifier. At runtime, the logical identifier is associated with a physical
identifier so that each memory port knows its logical page. Since the PEs commu-
nicate with BRAMs by logical addresses, each memory port is assigned a translator
which performs the aforementioned procedure.

Figure 3.1: DOMMU Architecture. Copyrights to:[22].

The XBAR switch allows bi-directional communication between BRAM and
PE to support read/write operations. The access controller receives and handles
BRAM (de)allocation requests and is implemented as an FSM.Every memory port
has a priority assigned either at design-time (which remains unchanged) or run-
time(which can change according to needs). The arbiter selects which memory
port to serve in every cycle, according to their priority. Dynamic priority is es-
sential in real-time systems since some applications are more time-critical than
others. Every PE memory port consists of a dedicated BRAM port, which sup-
ports read/write operations and a control port. The control port is assigned a
memory manager that matches the requested BRAM type, width, height to the
closest BRAM configuration.

This architecture allows for additional BRAM space to be dynamically allo-
cated when the memory port’s BRAM is wholly utilized. Their results showed that
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for a configuration of 8 memory ports and 40 BRAMs, LUT utilization reached 17%
(9% was associated with the XBAR switch) of available resources in Xilinx Virtex-
5 LX110T. Increasing the number of memory ports or BRAMs, they observed a
linear increase in resource utilization since the XBAR switch crosspoints were also
increased as well as the number of arrays required to handle more memory ports or
BRAM elements. To be more specific, increasing the number of BRAMs has less
impact on utilization than increasing the number of PEs. Increasing the number
of memory ports or BRAM elements slows down the design, which is operated at a
maximum of 140 MHz. It is worth mentioning that a typical frequency of Virtex-5
FPGAs is 450 MHz.

Finally, to test their dynamic allocation design and compare it to static allo-
cation, they used a CCL [23] algorithm that labels image pixels into independent
components based on pixel connectivity. Their architecture proved that only 3%
of the static allocated memory is needed, providing them with a factor of 33 in
BRAM utilization.

3.1.3 Multi-ported Memory on FPGA

Multi-ported memory architectures are often used in FPGA designs, offering high
bandwidth and demanding more BRAM space, which results in BRAM lacking for
other parts of the design. Several techniques implement multi-ported memories on
FPGA. Replication of data into multiple memory banks so that the architecture
can support multiple concurrent reads and writes (when a write occurs, data in
all memory banks are updated) is a simple, logic-free solution requiring more
BRAM space directly proportional to the number of memory banks. Using Live
Value Table as a technique, the architecture supports multiple writes into different
memory banks simultaneously. However, extra logic is needed in order to select
the appropriate memory module for the read operation. Another approach is the
XOR-based architectures, which implement the XOR of two instances of the same
location to return the most recent data as described in 3.4. This method achieves
higher bandwidth (since it does not use the logic the LVT method does) but
increases memory utilization since it adds more memory ports. A more detailed
presentation of different multiported memory designs is given in [24].

R0 = (Anew ⊕ Adirty)⊕ Adirty = Anew (3.4)

In [25] an XOR-based architecture is proposed in order to implement multi-
ported memory on FPGA. They implement a 2R1W (2 reads, one write) memory
structure that can support multiple reads/writes using multiple parallel-access
banks. They use four memory banks and one XOR bank, which stores the XOR-
ed value of the data with the same offset in every memory bank. If two reads
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target the same bank, then the first one will gain access to the memory bank
while the second one will XOR the data at the same offset of other banks and the
XOR-bank. The write operation includes two steps; firstly, the data are written
directly to the appropriate bank, and data at the same offset in different banks are
read and XOR-ed. Secondly, the XOR-ed value is stored back at the XOR bank
(total_memory_depth/number_of_banks in size).

By implementing more 2R1W blocks, they acquired more read ports without
slowing the design. To support more write operations, they use multiple banks,
a remap table, and an additional bank that keeps the latest data written. If two
writes occur at the same bank, then the first one will be written directly to the
corresponding memory address. In contrast, the second one will be written at the
additional bank at the same offset, and the memory map will keep the location of
the second write. This architecture requires less memory space than the LVT but
utilizes more registers.

In their experiments, they used a Virtex-7 FPGA and implemented a 4R2W
memory architecture. Their results showed a 37.5% reduction in BRAM usage
compared with replication techniques and a 25% BRAM usage reduction compared
with LVT. However, they experienced a slight frequency decrease in their design
compared to the aforementioned methods.

As it is clear from the previous chapter, BRAMs are not multi-ported by
default; they have only two ports and can perform 2 read and 1 write operation
per cycle. Today’s designs contain multi-ported BRAM modules that are created
by combining many single or dual ported BRAMs. 2W2R (2 writes/ 2 reads)
BRAM combinations provide multiple read/write ports but data are fragmented;
every BRAM module contains its own information and data can not be shared
throughout the BRAM modules. In [26] an n bi-directional port multi-ported
memory design using BRAM modules is presented. They offer an almost logic-free
design, implementing multi-ported BRAM modules. They use dual-port BRAMs
that are organized in memory banks controlled by decision making modules. These
modules store information about the last written data and provide their contents
when a read operation is executed. Figure 3.2 presents the architecture of the n
bi-directional multi-ported memory design.
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Figure 3.2: Architecture of the n bi-directional multi-ported mem-
ory design. Copyrights to:[26].

3.1.4 Memory Partitioning for Multidimensional Arrays

Data partitioning is an expensive task, and FPGAs are used in order to accelerate
this procedure [27]. FPGAs provide enough computational power and are exten-
sively used in parallelized designs. High-speed data streams are required in order
to supply computational units, and many applications require multiple access to
arrays in a single cycle using one memory port, requiring pipelining execution,
and memory partitioning architectures [28], [29]. Methods for partitioning data
structures into multiple memory banks for increased parallelism and performance
are presented in [30]. As we mentioned before, memory partitioning algorithms
target 1-D arrays. Multidimensional arrays (image, video) are flattened before a
partition takes place. In [31] the MemGuard architecture is presented, a memory
bandwidth reservation system that supports efficient memory performance isola-
tion on multi-core platforms. The work of Yuxin Wang et al. [32] provides a

23



Chapter 3. Related Work

partitioning algorithm for linear transformation of multidimensional arrays, an
offset generator scheme, and a heuristic solution based on memory padding. Data
elements are located on new memory banks after memory partition takes place
based on the following formula:

If M is the data domain then ∀d1, d2εM

d1 6= d2 ⇔ (f(d1), g(d1)) 6= (f(d2), g(d2)) (3.5)

where f(d), g(d) are mapping functions for the bank number and the bank
offset, respectively. They compared their architecture with state-of-the-art 1-D
array flattening techniques using Richian-denoise algorithms, a Sobel edge detec-
tion algorithm, and different loop kernels of motion compensation from an H.264
decoder. Their results showed a 21% reduction in BRAM utilization, 19% reduc-
tion in slices, and 46% reduction in DSPs. However, they experienced a small
increase of 0.6% in CP. The bank count decreased with their proposed method,
but power consumption was higher (when compared to the power consumption of
flattening techniques) in almost every experiment.

3.1.5 Memory evaluation and architectures in stencil com-

puting

Stencil computing is used in a wide range of applications, from physical simula-
tions to machine learning. Their computing time is occupied by the kernels of
stencil computation, and acceleration techniques are needed. In [33], a scalable
streaming array (SSA) is designed using multiple FPGAs. They also create an
in-depth pipelining approach over consecutive iterations achieving linear scalabil-
ity for multiple devices and constant memory bandwidth. In their experiments,
they used 2-D and 3-D Jacobi computations, a Master FPGA of 128 PEs in both
cases, and a slave FPGA with 128 and 120 PEs for the 2-D and 3-D case, respec-
tively. They achieved a peak performance of 297.5 GFlops/s for the 2-D and 280.9
GFlops/s for the 3-D Jacobian computation while maintaining a 2 GB/s memory
bandwidth. Finally, they measured that the power consumption of the SSA for
the 2-D and 3-D case is 1.3 GFlops/sW and 1.07 GFlops/sW, respectively. They
also experimented with other FPGAs and estimated that 100 Stratix V FPGAs
achieve sustained performances of 17 TFlops/s for 2-D and 17.7 TFlops/s for 3-
D Jacobian computations. The work mentioned in [34] represents an extensive
analysis of stencil optimizations and performance modeling on microprocessors,
experimenting with various algorithmic approaches and architectural platforms.

The work of Konstantinos Kalaitzis et al. [35] focuses on the memory perfor-
mance of a hybrid supercomputer such as the Convey HC-x in memory patterns
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found in stencil computations where a large amount of data is needed from external
memory. This HRPC technology includes a scalar instruction set, coherent cache
connection to the host processor, and a high bandwidth local memory system.

Figure 3.3: Convey HC-x Architecture. AEH: Application Engine
Hub, MC: Memory Controllers, AE: Application Engine. Copy-

rights to:[35].

Their design frequency was set at 150 MHz, and their focus was centered
around bandwidth and latency measurements of the Convey HC-x memory sub-
system. Latency is measured by when the AE sends a read request and the time
data reach the AE. Their results showed 120 clock cycles on average. As it was
expected, when the read address is between 8 to 64 bytes, the variance of latency
is low, whereas when data are located in other DIMMs and served by a different
port, latency is increased. Furthermore, they concluded that increasing the num-
ber of memory controllers raises the variance of latency. Since Convey architecture
is designed for a considerable amount of requests from memory, this latency is not
a barrier; MCs hold the whole block of each DIMM used each time, meaning
that consecutive requests that concern data in the same memory space are served
quickly. Bandwidth was measured at 1.2 GB/s when only one memory port is
used, and data are in burst mode and increases as MC ports increase, reaching 9.6
GB/s for 16 MC ports. Their results did not match the theoretical expectations
since each memory controller port did not have a dedicated FSM that sends re-
quests independently. They also experimented with data strides concluding that
in strides that get mapped into different DIMMs, the performance is identical to
sequential memory bursts. In contrast, in strides that are mapped into the same
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DIMMs, the performance decreases. Finally, they experimented with irregular
data accesses using Zuker’s algorithm reaching a bandwidth of 1.2 GB/s.

3.2 Thesis Approach

This thesis goal is to evaluate the main memory module’s behavior using existing
IP cores provided by Xilinx that simulate various Processing Elements (PEs). We
evaluate an existing FPGA’s memory behavior, providing the foundations of a
platform that can be easily scaled up to be used in more advanced FPGA systems
(for example, FPGAs with more ports at the PS side) with minor modifications.
We also aim to categorize memory access methods by determining the optimal
transfer data size for each subcategory. This work can be used in the future
alongside hardware accelerators in order to expedite their process further.

For the purposes of this thesis, we tested how memory behaves in sequential
and random access. To be more specific, 1-D CNNs, such as the one presented in
[36] require data that reside in consecutive memory addresses and can be efficiently
accessed with the use of DMAs. Data are stored in sequential addresses in memory
and can be obtained with bursts without accessing different rows every few cycles.
Algorithm 2 in Chapter 5 simulates these applications where multiple processing
elements (PEs) require data that can be obtained without strides in memory. For
small burst sizes (meaning that the network requires a small amount of data in
order to produce a single output), both PEs access the same row. On the other
hand, multi-dimensional CNNs require data that reside in different rows accessed
by striding in memory. Algorithm 3 in Chapter 5 simulates a multi-dimensional
CNN memory access pattern by creating requests that correspond to different
layers of a neural network.

CNN Minimum
#params Layer Maximum

#params Layer

AlexNet 34.944 Conv1 37.752.832 FC6
VGGNet16 1.792 Conv3-64 102.764.544 FC
ResNet18 9.472 Conv1 2.359.808 Cov5-(2-4)
GoogLeNet

(Inception v1) 4.160 Conv1x1 1.353.968 Inception (5b)

Table 3.1: Various multi - dimensional CNNs and their maxi-
mum/minimum parameters.

Table 3.1 depicts the maximum/minimum number of parameters (and the
corresponding layer) for four CNNs : AlexNet [37], VGGNet [38], ResNet [39], and
GoogleNet [40]. Given a representation of single-precision floating-point, VGGNet
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requires 7.1 KB of data to complete Conv3-64 layer and 411 MB to complete FC
layers. Since we have limited on-chip memory resources we can safely assume that
each request will not be bigger than 1-2 MB (2 MB is the worst-case scenario, most
of the time requests are in hundreds of KB and less even for larger layers). Having
this information as a starting point, we chose different burst and memory stride
sizes to simulate as accurately as possible the memory requirements of various
CNNs.
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Chapter 4

Tools Used for FPGA
Implementaion

The architectures presented in Chapter 5 were implemeted using the Xilinx Vivado
Design Suite - HL System Edition 2019.2 1 developed by Xilinx for synthesis and
analysis of HDL designs, written in VHDL or Verilog. It is superseding Xilinx ISE
2 and it can sypport System-On-Chip designs providing additional features. The
tools we used are the Xilinx Vivado IDE, Xilinx Vivado HLS, and Xilinx SDK.

4.1 Vivado IDE

Xilinx Vivado Integrated Design Environment (IDE) is the GUI for the Vivado
Design Suite. Its main feature is the Intellectual Property (IP) Integrator, which
allows its users to instantiate and connect different IP cores, either using its GUI
interface or using Tool Command Language (Tcl), a programming interface. The
Tcl commands can be written in the Tcl console in the Vivado IDE or using the
Vivado Design Suite Tcl Shell. IP cores can be designed using Vivado HLS, or
they can be a part of the Vivado IP catalog. The IPs can be graphically connected
and configured using Vivado’s GUI interface, and the process is accelerated with
Vivado’s auto-connect feature. Vivado IDE can synthesize, implement, place and
route designs written in HDL languages like Verilog or VHDL containing IP blocks
created using Xilinx HLS for C/C++ designs.

The design process begins by adding all the necessary IPs to the design and
connecting the appropriate ports by hand or using the auto-connect feature. Every
module in the design has a clock and reset signal, and many modules have a
base address assigned to them. After the design’s validation is complete, the
project is synthesized; the RTL design is turned into a logic gate schematic. A
successful synthesis means that implementation can occur; the placing and routing
of the synthesized design in an FPGA of our choice. After completing these two

1https://www.xilinx.com/products/design-tools/vivado.html
2https://www.xilinx.com/products/design-tools/ise-design-suite.html
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steps, the user is provided with a report[41] containing critical warnings, messages,
and/or errors. The most important information presented in this report concerns
timing, utilization, and power. Timing information is critical since it estimates
the net delays based on connectivity and fanout. The utilization report presents
the design’s utilization based on the resource type (Flip- Flops, BRAMs, LUTs,
and DSPs). Finally, the power report depicts the estimated power consumption
and the thermal effects of the device’s design. If the implementation results match
our expectations, then the bitstream file is generated to program the FPGA. An
essential feature of the Vivado IDE, which was extensively used in our experiments,
is the Integrated Logic Analyzer, which can be used to record signal values between
IP cores and deploy triggers that notify the user when something specific happens.

4.2 Vivado HLS

Xilinx’s Vivado HLS is used to synthesize programs written in C, C++, OpenCL,
and SystemC. This tool allows the user to target specific FPGAs and create a
design without an RTL schematic. The user can write functions in their chosen
language, and HLS synthesizes them into IP blocks by generating low-level VHDL
or Verilog programs, according to features and constraints set by the user. The
primary purpose of Vivado HLS is to optimize code generated for hardware plat-
forms and provide the user with the capability to create their custom IP. The
generated blocks can be integrated into hardware systems using the Vivado IDE.

The user creates a project with all the necessary libraries and designs the IP
block according to their needs. The tool accepts, most of the time, non-optimized
code and adds constraints to the exported hardware-specific IP block. The di-
rective’s purpose is to implement an optimized code, direct the synthesis process
to implement a specific behavior, and maintain a high resource management level
without changing its function in the project’s simulation part. Moreover, clock
uncertainty, FPGA target, and clock period are added as constraints to the syn-
thesized IP block. To further optimize the code, pragmas can be used as commands
to modify the generated code. Finally, the user can write a test bench in C/C++
language to test the written code and identify errors. The exported IP block is
verified by a process called C/RTL Cosimulation. The testbench is used once
again, but this time the function is replaced with the exported IP.The last step
is to synthesize the written code and produce the VHDL/Verilog function. The
tool allows the user to directly write in VHDL/Verilog or edit the generated HDL
code. In this case no synthesis step is required.
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4.2.1 Vivado HLS Synthesis Report

After synthesis is complete, the user is presented with a report containing the
information presented below. The two most important reports are timing and
utilization.

Timing presents information about the design’s clock frequency and latency
estimations per loop per module for the entire design.

• Latency: The number of cycles required for the function or loop to complete
all output values.

• Initiation interval (II): Number of cycles need in order for a function to
accept new data.

• Loop iteration latency: The time required by a loop to complete its
iteration.

• Loop initiation interval: The number of clock cycles before the next
iteration of the loop starts to process data.

• Loop latency: Number of cycles to execute all iterations of the loop.

The utilization report depicts the percentage of resources of the selected device
that are utilized in our project.

• Area: This metric presents the percentage of LUTs, BRAMs, FFs, and
DSPs used in our design. Every hardware component (Multiplexers, FIFOs,
Instances, Memories, Registers) type requires resources mentioned in the
utilization report.

4.2.2 Optimizing the design in HLS

The UG902 [42] reference guide from Xilinx provides detailed and insightful infor-
mation on optimizing the design in Vivado HLS. As we mentioned before, directives
are optional, and they aim to reduce latency, area, and resource utilization and
improve throughput. The directives can be added as pragmas into the input code
or in multiple solutions. Each solution may contain a different set of directives
providing a better understanding and allowing the user to experiment and find
the optimal solution. Xilinx provides us with 24 optimization directives, and we
present the ones used frequently.

• Allocation: This limits the number of operations, cores, or functions used
and forces the sharing of hardware resources resulting in a latency increase.
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• Array Map: Multiple smaller arrays are combined into a single large array
in order to reduce BRAM usage.

• Array Partition: Large arrays are partitioned into multiple, smaller ones
or individual registers. This improves data access and removes bottlenecks
caused in BRAM. Arrays are, by default, implemented as a single port
BRAM unit. Partitioning arrays increases the number of read/write ports al-
lowing parallelism. Albeit, memory instances are increased, but throughput
is improved in these applications.

• Array Reshape: The specified array is reshaped into a greater word-width
array, improving block ram accesses without utilizing more BRAM.

• Interface: Specifies each argument’s port type. The arguments of the top-
level function are mapped into RTL ports.

• Latency: Sets a max and min latency constraint.

• Loop Flatten: Perfectly nested loops collapse into a single loop with im-
proved latency.

• Loop Merge: Overall latency is reduced by merging consecutive loops.
Logic optimization is improved, and sharing is increased.

• Stream: Specifies that a specific array is to be implemented as a FIFO
instead of the RAM channel initially implemented. When using hls::stream,
the STREAM optimization directive is used to override the configuration of
the hls::stream.

• Top: The top-level function for synthesis is specified in the project settings.
This directive may be used to specify any function as the top-level for syn-
thesis.

• Unroll: Unroll for-loops to create multiple instances of the loop body and
its instructions that can then be scheduled independently.

In addition to the directives mentioned above, Vivado HLS provides a number
of configurations that are used to change the default behavior of the synthesis. The
user can configure how the arrays are partitioned, the default memory channel and
FIFO depth, the I/O ports not associated with the top level function arguments
etc.
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4.3 Vivado SDK and Xilinx Vitis IDE

Software Development Kit (SDK) is an IDE tool used to develop embedded soft-
ware applications that target Xilinx’s ARM processors, like Zynq UltraScale+
MPSoC, Zynq-7000 SoCs, and the Microblaze microprocessor. SDK is an Eclipse-
based application, including a C/C++ editor and compiler, build configurations,
and automatic Makefile generation. Debugging and profiling software code is also
available through the SDK tool. In Vivado Design Suite version 2019.2, SDK is
unified with SDSoC and SDAccel into Vitis Unified Software Platform. Applica-
tions can run on the ARM cores either on the MPSoCs or external to the FPGA.
The applications created in this tool act as a director and configure the targeted
FPGA. Applications like data transfers to and from storage devices or Ethernet
to and from other memory components (sometimes located on the PL side), ini-
tialization of IPs, DMAs, and other instances, are examples of the tool’s usage.
Moreover, bare-metal applications can utilize multi-core processors that run con-
currently using a scheduler. Embedded Linux applications can be built on Linux
operating systems using Petalinux tools 3. Since it interfaces directly with Vivado
IDE, useful tools like the Xilinx Software Command Tool (XSCT) 4.

SDK can be launched through Vivado IDE or as a standalone application.
After a successful implementation, the generated hardware is exported, including
the generated bitstream, used to program the target FPGA. SDK imports the gen-
erated hardware wrapper and creates the Board Support Package, which includes
all the suitable device drivers of the hardware design and several libraries that can
configure the FPGA. The SDK prompts two pages every time a new project is
created. The system.mss page contains information about the target device, op-
erating system, peripheral drivers, and libraries included in the BSP. The second
one, lscript.ld (Linker Script) is used to control where different executable sections
are placed in memory. Thus the user can define new memory regions, change the
assignment of memory sections, and alter stack and heap sizes. SDK offers the
ability to launch an application on an FPGA using System Debbuger, enabling
excellent debugging features. One of them, which was extensively used in our ex-
periments, is the memory view. This feature provides the user with a large array;
every cell corresponds to an address of the available memory space. The user can
access both PL and PS addresses and validate that data are written in the correct
memory sections.

The SDK tool can create three types of applications. First Stage Boot Loader
(FSBL) is an application that resides in the root folder of the board’s primary

3https://www.xilinx.com/products/design-tools/embedded-software/
petalinux-sdk.html

4https://www.xilinx.com/html_docs/xilinx2018_1/SDK_Doc/xsct/intro/xsct_
introduction.html
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storage device (SD card in our example). These files are read during the boot of
the system, triggering a boot loader sequence. Most of the time, switches must be
configured in order for the board to read the FSBL files. In this case, the target
FPGA can be programmed through the primary memory storage (our case) and
not using a JTAG cable. Bare-metal applications are utilized through the SDK,
which programs the PL part of the FPGA and are loaded into the ARM core using
the JTAG port. Finally, Linux applications require a Linux operating system to
run on the processor. The Linux operating system is loaded through the primary
memory storage and can program the FPGA through the console window.

The Hardware manager tool of the Vivado GUI can be used to program the
PL side directly. The PL side can also be programmed through the SDK by setting
the path to the bitstream file in the Run Configurations window. Vivado’s IDE
Hardware Manager connects to the design’s ILAs, providing the user with real-
time monitoring. Finally, the SDK input/output values can be given/read through
a console window using the UART port in all application types.
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Memory Subsystem Evaluation

A balance between performance and cost can be provided by Multi-Processor
System-on-Chip (MPSoC) since they feature a plethora of memory components,
such as DRAMs, Block RAMs, and multiple levels of cache. Studies that target the
various subsystems of those FPGAs are vital in order to increase their computing
abilities and contribute to more efficient use.

Optimizing data transfer speed is crucial since, in many applications, the exe-
cution time of an algorithm implemented in a hardware accelerator is less than the
time required for the I/O to supply the data to the PL part of an FPGA. A typi-
cal neural network consists of millions of parameters needed in order to compute
the result. A typical FPGA has enough GΒ of D-RAM to store these data but
has limited bandwidth and just a few MB of B-RAM, which is extremely fast. In
our case, we have 62 million (64-bit double-precision floating-point) numbers that
represent the weights of a neural network. This means that we have 248 MB of
input data (without considering the MB of image data) that can be easily stored
in DDR on the PS side of the FPGA.

In this chapter we present in detail the FPGA platform used in our experiments
describing all the necessary systems and peripherals that are used and evaluated.
We describe how data are obtained from the SD card and why they need to be
stored in the external main memory module. Furthermore, we evaluate the DDR4
module using experiments that simulate different access patterns of various CNNs.
At first, we evaluated the DDR alone to test its behavior in sequential and random
access patterns from single access (retrieving few bytes of data) to row-bursting
(retrieving few KB or MB of data). Since different applications require different
access patterns we simulate applications that require both small and large amount
of data, that could be multidimensional. We measured the system’s performance
using only master AXI (described in section 5.1.2) ports to transfer data from the
DDR to the BRAMs on the PL side using ready-made IP cores provided by Xilinx.
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5.1 FPGA Platform

The architectures implemented and the evaluation process targets Xilinx ZCU102
1 evaluation board.

Processing System Programmable Logic
APU Freq. 1.5 GHz Flip -Flops 548160
L1 cache 32 KiB Block RAM 4 MB
L2 cache 1 MiB Logic Cells 599550
PS DDR 4 GB LUTs 274080
DDR throughput 2400MT/s× 64− bit DSP Slices 2520

BRAMS 912
PL DDR 512 MB

Table 5.1: ZCU102 block features and memory sizes.

This specific FPGA is a general-purpose evaluation board for rapid prototyping
based on the Zynq UltraScale+ XCZU9EG-2FFVB1156E-2-i MPSoC with Cortex
-A53 + R5 processing system. High-speed DDR4 SODIMM and component mem-
ory interfaces, FMC expansion ports, multi-gigabit per second serial transceivers,
various peripheral interfaces, and FPGA logic for user-customized designs provide
a flexible prototyping platform. The board uses a Quad-core Cortex-A53 MPCore
as an APU, a Dual-core Arm Cortex-R5 as an RPU, and an Arm Mali-400 MP2
as a GPU.

Figure 5.1: Simplified Block Diagram of the UltraScale+ MPSoC
Architecure.

1https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
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5.1.1 I/O

In order to test and implement different data transfer methods, we have to un-
derstand how the PS↔PL data transfer is achieved. After passing the data from
the DDR of the processing system, we have to choose which of the three following
categories is the most efficient one, based on our application.

Memory Mapped I/O

This method performs the I/O connection between the PS and PL using the same
global address space for the memory (DDR) and the I/O extensions, mapping every
component to its own address. It is observed that even though the implementation
part is relatively easy, we have to pay almost 50 clock cycles per request to initialize
the DDR when accessing it randomly. Sequential access, on the other hand, seems
to have an advantage when using this method. Furthermore, write/read operations
always need to include an address in order to be completed (the master must send
the address to read/write the data to the slave).

AXI-4 Stream Interface

This method provides the opportunity to create a continuous communication, in a
FIFO form, between the DDR and the PL side components. This technique hides
the DDR initialization cost, and components are connected through a channel
using the DMA IP (described in section 5.1.4) by Xilinx.

BRAM

In this method we use BRAM IPs (described in sections 5.1.8 and 5.1.9) to transfer
data from the DDR to on-chip BRAM memory modules. Data can be transferred
with or without a DMA(described in section 5.1.4) (it depends on the amount of
data we need to transfer). BRAM offers huge bandwidth opportunities, but the
size of the components is relatively small (only a few MB). This method gives the
user the opportunity to choose address, registers and BRAM areas. However, it
is observed that the BRAM controller itself has to be instantiated in the design,
which means that BRAM utilization increases.

5.1.2 AMBA - AXI4 Interface Protocol

AXI [43] (Advanced eXtensible Interface ) is part of ARM AMBA, a family of
microcontroller buses, and almost all Xilinx’s IPs implement this protocol. It
is beneficial for IPs that require user configuration and are used to transfer large
amounts of data. IP cores that exchange information with each other are connected
using AXI master and AXI slave interfaces. Furthermore, the AXI protocol offers
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various infrastructure IPs (such as the AXI Interconnect and AXI SmartConnect)
to route transactions between multiple AXI master or slave interfaces. The AXI4
protocol offers three types of interfaces:

• AXI-Full: Used for high-performance memory applications and supports
up to 256 burst transactions.

• AXI4-Lite: Low-throughput memory-mapped communication used mainly
to access registers.

• AXI4-Stram: This AXI4 variation, as mentioned before, provides high-
speed streaming and supports multiple data streams that use the same set
of wires and various stream types.

5.1.3 PS-PL AXI Interfaces

PS and PL communication is achieved through multiple interfaces and signals, al-
lowing the implementation of various user-created hardware designs and functions
in the PL that communicate with the processor and the PS side’s memory re-
sources. The ZYNQ UltraScale+ MPSoC architecture provides the following types
of AMBA AXI ports that connect the processing system with the programmable
logic and vice versa:

• Two High Performance (HP) Master AXI interfaces from PS to PL.

• Six HP Slave AXI ports from PL to PS:

– Four HP AXI ports from PL to PS DDR.

– Two HP Coherent (HPC) ports from PL to cache coherent interconnect.

• One port from PL to RPU (PS) for low latency access to OCM.

• One AXI interface from RPU in PS to PL for low latency access to PL.

• One AXI interface (ACP port) for I/O coherent access from PL to Cortex-
A53 cache memory.

• One AXI interface (ACE Port) for Fully coherent access from PL to Cortex-
A53.

The HP Master AXI ports present higher performance and lower latency for
transactions from the PS to PL. However data coherency must be maintained
through software. The ports can be used by the Full Power-DMA for data move-
ment between the PS-DDR and PL. However, the FP-DMA is not coherent. For
transactions from PL to PS we can choose the ACE port for fully hardware co-
herency and the ACP port (lower performance) for I/O coherency.
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5.1.4 AXI DMA/CDMA

The AXI Direct Memory Access (DMA) IP core provides high bandwidth memory
access between AXI4 Memory Mapped and AXI4 Stream IP cores. This high-
speed module connects Memory-Mapped to Stream (MM2S) Master interfaces
with and Stream to Memory-Mapped (S2MM) Slave interfaces. Both channels
operate independently, providing automatic burst mapping and queuing of multi-
ple data requests. It consists of two data movers, one for read and one for write
operations, that operate independently. Furthermore, the DMA IP core can be
configured to work in polling, interrupt, or scatter-gather mode (instead of writ-
ing memory addresses to registers, the DMA controller grabs them from a linked
list in DDR memory) and is connected through AXI Interconnects (or in recent
versions of Vivado through AXI SmartConnect) to other IPs. In simple mode
(polling/interrupt), the processor configures the DMA, and the transaction starts
by writing data at the DMA’s registers. As parameters, it accepts the source
and destination address and the access pattern and, when configured in interrupt
mode, sends an interrupt at the processor that the transaction is complete. The
integrated Scatter-Gather (SG) engine coordinates data transfers between AXI
IPs and the DDR4. The SG operation mode provides the user with the ability
to store/request headers from a location in memory and then store/request pay-
load from a different memory location, improving the system’s throughput.The
maximum memory bus that DMA can support is 1024 Bits in one cycle.

On the other hand, the AXI Central Direct Memory Access (CDMA) IP
core provides high-bandwidth Direct Memory Access (DMA) between a memory-
mapped (MM) source address and a memory-mapped destination address using
the AXI4 protocol. Its function does not differ from the DMA, but it is specially
designed for MM to MM transactions.

5.1.5 The Global Address Space

As shown in figure 5.2, the global address space stretches over 1TB, suitable for
both 32-bit and 64-bit processors.

The address space’s design allows 32-bit processors to communicate with the
majority of the board’s memories, on-chip peripherals, and other elements. The 36-
bit address space allows 64-bit master elements to optimize their access to shared
resources such as the DDR or the PL. Finally, 40-bit addresses provide access to
the board’s processing resources.
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Figure 5.2: The ZYNQ UltraScale+ MPSoC global address space.

5.1.6 PS-Side: DDR4 SODIMM Socket

This memory module can achieve nearly twice the bandwidth since it transfers
data on both the rising and falling edges of the clock signal (also called and double
pumping). Assuming that transferring data are 64 bits wide (which is the most
common transfer size nowadays), the DDR’s transfer rate (in bytes/s) is estimated
as follows:

Transfer Rate (B/s) =
Memory Bus Clock Rate× 2× 64

8
(5.1)

A typical DDR4 memory structure is listed below (note that the dimensions
and architecture correspond to the memory module we are using[44]):
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Figure 5.3: Memory Architecture of a DDR module.

5.1.7 DDR controller and physical layer

The user interface sends burst transactions to the controller, which in turn gener-
ates transactions to/from the SDRAM, taking into consideration timing configu-
rations and refresh actions. Read and write operations are combined in order to
reduce dead cycles. The DDR controller, which operates with a system clock to
DRAM ratio of 1:4, is also responsible for reordering the commands to improve
SDRAM’s data bus utilization.The memory controller implements an aggressive
precharge policy where it scans the queue of requests as each transaction completes.
In case there are no requests for the currently open bank/row, the controller closes
it to minimize latency.

The physical layer equips the SDRAM with a high-speed interface. This com-
ponent includes all the hard blocks (data capture, transmission, serialization, high-
speed clock generation) and the soft blocks (memory initialization and calibration)
inside the FPGA. The physical layer takes DRR4 commands (active, read/write,
precharge, refresh e.t.c.) as inputs and issues them directly to the DRAM bus.

5.1.8 PL-Side: AXI BRAM Controller

This IP [45] provides an AXI4 (memory mapped) slave interface for low latency
control of the BRAM resources. Through dual-port FPGA BRAM technology,
it provides separate read and write channel interfaces. This core supports 256
beats for INCR bursts and 16 beats for FIXED and WRAP bursts. In INCR
bursts the next address is incremented by the data size and is used for a normal
memory device while FIXED bursts are used for an address fixed I/O port to make
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continual access. WRAP bursts are suitable for cache aligned accesses. It has two
BRAM ports that can connect to the same or different Block Memory generators.
By default, Port A is designed as the write port and port B as the read port.
This means that with the same controller, we can read and write to different
BRAM addresses, providing us with more flexibility (i.e., the first port is writing
to a separate block generator than the second one, which reads from a different
module). In case only one BRAM port is utilized, it can be used for both read and
write operations. The most notable drawback of this module is that read/write
collisions are not detected to minimize memory resource utilization further. In
single-port BRAM utilization, all read and write operations are performed on the
read and write address channels, and only one operation is supported per cycle,
giving high priority to the read operations. It is clear that with two BRAM
interfaces, we can double the bandwidth of the write operation. This comes with
a cost; the BRAM controller has to be instantiated on the design, meaning that
memory resource utilization increases. The BRAM controller is connected with the
ZYNQ processing system using one of the HP master AXI interfaces. By default,
Vivado will create an AXI SmartConnect [46] module between the ZYNQ and the
BRAM controller when the connection is automatic. This SmartConnect module
can be neglected by hand connecting the BRAM controller with the ZYNQ.

5.1.9 PL-Side:Block Memory Generator

The Xilinx Block Memory Generator (BMG) [47] core is an advanced memory
module that generates area and performance-optimized memories using embedded
block RAM resources in Xilinx FPGAs. Both ports have a read/write interface,
are entirely independent, and access shared memory space. Through this mod-
ule, the BRAM can be configured as a single-port RAM/ROM or true dual-port
RAM/ROM. The true dual-port RAM is identical for multi-processor storage ap-
plications, while the single-port RAM is best suitable for LUTs. In order to achieve
maximum throughput, the write port must not receive single write bursts. Fur-
thermore, each port can be assigned a different operating mode :

• Write First: In this mode, input data is simultaneously written into mem-
ory and driven on the data output. We chose to use this method since
collisions might occur when a read/write operation targets the same port.

• Read First: Input data are stored in memory while previously-stored data
appear on the output. This method guarantees no collisions, and read oper-
ation will access already stored data with safety. However, when this mode
is enabled, BRAM consumes more power.
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• No Change: This is the lowest power consumption method, but collisions
are possible when both ports access the same address simultaneously.

In the UltraScale+ Architecture a Block RAM stores up to 36 Kbits of data
and can be configured as either two independent 18 Kb RAMs or one 36 Kb RAM
[48] . Each block RAM has two write and two read ports (data can be written
to or read from either two ports). A 36 Kb block RAM can be configured with
independent port widths for each of those ports as 32K x 1, 16K x 2, 8K x 4, 4K
x 9, 2K x 18, or 1K x 36 (when used as true dual-port memory). A configuration
of 512 x 72 port width bits can be implemented when only one read and write
port is enabled. Both read and write ports are independent, sharing only the
stored data. Each port accesses the same set of memory cells using an addressing
scheme. The following formulas determine the physical RAM locations addressed
for a particular width:

END = ((ADDR + 1)×Width)− 1 (5.2)

START = ADDR×Width (5.3)

5.1.10 Memory Subsystems

There are three memory subsystems [13] in the ZYNQ MPSoC architecture. The
first level consists of the Cortex A-53 cores, which contain two level 1 cache, one
for instructions and one for data storing, a Translation Lookaside Buffer, which
contains the most recent memory translations, the Instruction Fetch Unit, and
the Data Processing Unit. The second level consists of 1 MB of level 2 cache and
the Snoop Control Unit (SCU) responsible for cache coherence maintenance. The
SCU is connected with the L1 data cache, has information about the data that
exist in the cache lines and copies the data form the cache of one core to another.
Finally, the level 3 memory subsystem contains the DDR memory controller, the
PL memory modules, and the of-chip DDR4 memory. The Cache Coherent Inter-
connect (CCI) of the MPSoC together with the AXI interconnect allow hardware
coherency to be achieved. The CCI is responsible for data maintenance between
cache, cores, PL and, DDR.

For simplicity reasons, in the next sections, the DDR4 memory module and
the controller will be presented as one. The APU and its peripherals will contain
only the four A-53 Cortex cores.
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Figure 5.4: Memory Subsystems in ZYNQ UltraScale+ Architec-
ture.

5.2 Data Allocation

CNNs require a large amount of data for processing (images, videos - image frames,
etc.) and information regarding the network’s initialization (weights, parameters,
labels) to be stored and used frequently throughout the computation process.
FPGAs often come with some GBs of DDR memory, storing data in the PS side
throughout the computation period. We can use an SD card to load the parameters
(through the ARM cores) on the PS DDR4 memory module. However, SATA hard
drives or other storage devices can connect to the device using the SATA or the
USB2/3 port. The ethernet or the JTAG port can also be utilized to feed data to
the PS DDR4 memory component. Even though SD cards have limited bandwidth,
transferring data to the primary storage component is a one time task, happening
after the device’s boot-up. Since the initialization parameters fit at the DDR4
module, leaving enough space, it is a common technique to load the input data
as well. This saves enough time since all the necessary data for the hardware
accelerators to perform are located on the DDR on the PS side (which has higher
bandwidth than SD cards) and are fed to the rest of the platform using high
bandwidth interconnects. We measured that it takes 20.12 sec to transfer 248 MB
of parameters from the SD card to the DDR4 memory, an amount of time that can
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easily be ignored. However, the SD card would not be an option when we employ
CNNs with larger data sets that require more storage space. Moreover, SD cards
are useless when hardware accelerators on FPGA systems are used remotely since
the files on the SD card have to be frequently updated.

5.3 Structure of the Experiments

The FPGA platform described in section 5.1 has been/is being used in many ap-
plications, either in single or multi-FPGA systems. Vivado HLS tool, which is
used to implement the hardware accelerators, provides the designer with estima-
tions about each function’s latency and clock cycles. The information provided
to the designer by such tools alongside the figures presented in this thesis can be
used towards FPGA buffer sizing and decisions concerning pipelining parts of the
design. Depending on the latency and memory performance results, the designer
can decide whether pipelining parts of the design is efficient. To be more specific,
depending on the access pattern, it might be more beneficial to request all the
parameters concerning a small layer with a single transaction instead of having
more scattered accesses in memory.

In order to simulate memory access patterns, we evaluated how memory be-
haves in individual accesses first. Algorithm 1 presented in Section 5.4.2 calculates
the average clock cycles required to read/write a value in specific memory loca-
tions. Depending on the byte difference between these locations, a different part of
the address bits is changed. However, this experiment does not exploit the burst
abilities of the DDR4 memory module. This experiment has three forms:

• At first, each memory location is read 500 times (data read are of no im-
portance) without any writes in memory to test how the memory controller
behaves in individual read-only requests which is a common characteristic of
CNNs.

• The second form of this experiment includes 500 writes followed by 500 reads
of these locations.

• The final form of this experiment includes 500 writes in a location followed
by 500 reads of the same memory address, then 500 writes of the second
location followed by 500 reads of the second location, etc.

Memory access patterns vary depending on the structure of each application.
In 1-D CNNs, such as the one presented in [5], data are stored in consecutive mem-
ory addresses. Algorithm 2 presented in Section 5.7.1 simulates the memory access
pattern of such applications with data stored and accessed sequentially. Depend-
ing on each application’s size, we can have multiple Processing Elements (PEs)
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requesting data without implementing strides in memory. For these applications,
each row can be conveniently mapped to the DDR row and benefit from burst
transfers. To evaluate memory’s performance in such access patterns and applica-
tions, we utilized two PEs that continuously request various data sizes, simulating
different layer sizes and applications.

Algorithm 3 presented in Section 5.7.2 simulates the memory access patterns
of multi-dimensional CNNs such as the ones presented in Section 3.2 and [49].
These applications require data that reside in non-consecutive memory locations
meaning that striding in memory is necessary and only one of the dimensions can
be mapped to the DDR row. We implemented an algorithm that sends multiple
requests in memory, selecting different stride and transfer sizes for this experiment
set. Transfer size varies from several bytes to MB, simulating even bigger layers
while keeping in mind the limitations set to us by the hardware resources. Since
on-chip memory resources are limited, such requests can not exceed the threshold
of 2 MB per transaction, especially when pipelining strategies are implemented.
In every iteration of this algorithm, the first PE is assigned with an address and
the request size, transferring the required parameters to the corresponding BRAM
locations. The second PE is assigned its request size (which can be the same or
different as the previous size) starting from a different memory location which
corresponds to the stride size. This location can be before or after the first PE’s
starting address, but both transactions do not overlap. This is done to simulate
pipelined architectures where different layers compute simultaneously, and data
are needed to be transferred to multiple hardware accelerators.

The results presented in Chapter 6 can be used towards BRAM buffer sizing
and pipelining techniques. However, utilizing a different platform mandates an
evaluation of the new memory subsystem. The benchmarks presented in this
study can guide these evaluations. Characteristics such as the AXI bus width, the
DDR4 clock speed, and the memory controller can affect and increase/decrease
the performance of such a system.

5.4 DDR4 Evaluation

In this section, we are going to describe all the tests and evaluation techniques we
used to obtain as much information we could on how the ZYNQ UltraScale+ MP-
SoC DDR4 memory subsystem behaves. Contrary to other published researches
in the same field [50], [51] which is mostly concerned with DRAM evaluation and
effects on memory, we test the DDR itself, observing its behavior on random and
sequential accesses, connecting different IPs, and measuring data transfer time.
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5.4.1 DDR4 Mapping

In order to proceed to test our memory, we had to study in detail how memory
mapping is achieved in the DDR4 module and the UltraScale+ architecture. As
we described in section 5.1.6, the DDR4 SODIMM module is internally organized
in ranks, bank groups, banks, row, and columns. To access a row and a column
and consequently the data within, we have to "pay" a penalty for the activate,
read, and precharge commands to access our data. Since we are dealing with
multidimensional data, we know that the desired information is not always stored
in a sequential manner, or our computational modules require data that reside in
different rows, we end up accessing different row addresses every few cycles. This
is the easiest way to achieve poor performance. However, there is a solution to
this problem(also referred to as ping-pong scheme). By storing data to different
banks and bank groups and accessing different banks and bank groups instead of
different rows, we are able to hide these protocol hits by masking them with bank
switching. So the DDR4 controller can be opening or closing a row in one bank
while accessing another bank. In this case, the column address does not matter.

Figure 5.5: Data allocation in a DDR4 memory module.

The architecture that we evaluated provides two memory-mapped options on
how to access data. Keep in mind that when an address is sent to the DDR from
the controller, the bits’ position reveals the row, column, bank, and bank group
(and rank if the SODIMM module is double-sided). The system uses a two-level
interleaving method, where the eight banks are separated into two bank groups,
of four banks each. Firstly, the controller chooses the bank group and then the
appropriate bank. Even though the memory module has four chips (each chip
contains two banks and two chips form a bank group), there are no extra bits to
choose between banks in a bank group that resides in different chips. This means
that when a bank group is selected, the desirable bank can be found on either two
chips that form the bank group.

For the BANK ROW COL memory mapping scheme, the two bank bits are the
MSBs, followed by the two bank group bits, followed by 16 row address bits, and
finally, the ten column address bits as presented in figure 5.6. This scheme keeps
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the bank group and bank address bits as the MSBs, meaning that data are allocated
more in rows and columns rather than in banks and bank groups. The CAS/RAS
timings are the biggest percentage of the total access time, since we always pay
for active and precharge commands when reading and writing sequentially.

Figure 5.6: Address Bits for the BANK ROW COL memory-
mapping scheme.

On the other hand, the ROW BANK COL memory mapping scheme is almost
the same as the previous one, but the row and the bank group and bank address
bits are switched. This method is efficient when most of the requested data tar-
get column addressing bits, meaning that the requested data reside in different
columns. However, this is not always the case since, to fully utilize the memory
bus, CAS delays of the module have to be minimum. In general, to achieve max-
imum performance and bus utilization, we have to be aware of our application’s
address sequence and add logic to map our address bits with the highest toggle
rate to the LSBs of the memory address.

Figure 5.7: Address Bits for the ROW BANK COL memory-
mapping scheme.

The most efficient memory mapping scheme is the ROW COL BANK scheme,
where row bits occupy the MSBs and the bank and bank group occupy the least
significant bits. This particular scheme is ideal for applications that require data
that reside in addresses that increment linearly by a constant step size of hex 8 for
long periods. This ensures that the transactions are evenly interleaved across the
controller, and the controller resources are optimally utilized. Note that the three
LSBs that belong to column address bits (as depicted in the previous images) cor-
respond to SDRAM burst ordering, and since it is not supported by the controller
they are ignored.

It is worth mentioning that in Vivado IDE there is an extra option, in the
properties panel of the ZYNQ IP which sets the bank group bits as the two LSBs
of the memory address bits. By default this is not enabled and it is highly rec-
ommended for applications that want to minimize latency to set this particular
setting to 1 (allowing the address registers to map the bank group bits to the LSBs
of the memory address bits.
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5.4.2 DDR4 response time for individual accesses

Our first step was to evaluate the DRR module on the PS side without utilizing
the PL memory resources at all. For this purpose, we instantiated only the ZYNQ
UltraScale+ module in Vivado IDE, synthesized, and implemented the design as
described in Chapter 4. In Vivado IDE, we are allowed to customize the DDR
module according to our needs. Throughout the rest of our experiments, we choose
to keep the DDR controller enabled in order to achieve maximum performance. It
is worth mentioning that Vivado IDE provides us with the expected CAS, RAS to
CAS, and Precharge time, which is valuable since we can compare our experimental
results with the theoretical ones.

Knowing how the DDR4 is mapped, we wanted to test the two memory map-
ping schemes using a simple data access pattern. For this purpose we allocated
data in different parts of the DDR4 module and accessed them 500 times in order
to obtain more reliable results. Every time, we changed a different part of the
memory address and kept the rest of the bits. Every word in the UltraScale+
architecture is 8 bytes (64 bits).

For this group of experiments, we randomly selected a basic address in memory
where we wrote and read the first number 500 times (this number was chosen
randomly as it gives us confidence that the measurements we take correspond
to reality). We then measured the write/read time of these individual addresses
in clock cycles, and we kept the average measured time for each access. The
addressing was based on the ROW BANK COL memory mapping scheme. For
these experiments, we chose to increase the memory address by several bytes in
each measurement so that only one part of the address changes each time (row,
column, bank, and bank group). It is noted that because the memory module
of our system consists of only one rank and a DIMM, we know in advance that
different memory buses will not be needed. To be more specific:

• 8 bytes distance: If the addresses are 8 bytes the data are in consecutive
address spaces, in the same bank group, bank and row.

• 64 bytes distance: If the addresses are up to 64 bytes apart then the data
are stored in different columns but in the same bank group, bank and row.

• 128 bytes distance:If the addresses are up to 128 bytes apart the the data
reside in different columns, and bank groups but in the same bank and, row.

• 256 bytes distance: The data stored with 256 bytes between them reside in
the different column, bank group, and bank but they are still in the same
row.
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• 2048 bytes distance: Data that are 2048 bytes apart reside in different
columns, bank groups, banks, and rows.

It is worth mentioning that the board presets that we have applied to our
DDR4 module are 15 bits for row addressing, 2 bits for bank addressing, 1 bit for
bank group addressing, and 10 bits for column addressing. These are predefined
and are related to the DDR clock that we choose. The DDR module in ZCU102
can achieve a theoretical maximum frequency of 2666 MHz (with a 1333 MHz
clock). However, in Vivado IDE, we have tried to clock this device in 2666 MHz,
but Vivado would not allow it. So we managed to achieve 2400 MHz frequency
with a 1200 MHz clock. That is the maximum achievable DDR clock that is used
for the rest of our experiments.

The algorithm below is a simplified representation of our access pattern. To
ensure that we read and write in the DDR4 memory, we looked at the global ad-
dressing space map and chose an address that corresponds to the DDR4 controller.
Then we proceed to write and read the same address 500 times to make sure that
the reported clock cycles are accurate. Then we changed the address in which data
are stored and written in order to evaluate how the DDR4 controller behaves in
different scenarios. We noticed that when we disabled the cache, both read and
write operations doubled in latency as was expected. The cache can be useful
when enabled for short bursts of data immediately required to be sent to the PL.
We also made sure that read/write timings are independent; we wrote at a specific
address and read it, or we wrote at all the addresses and read them at the end,
and we even read unwritten addresses (their content was irrelevant). The results
were the same in all the cases.
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Algorithm 1 Measure time for individual access
1: procedure Set Address

2: write_addr ← base_addr
3: read_addr ← base_addr
4: Calculate_Time(write_addr, read_addr)

5: write_addr ← base_addr + 8 bytes . Choose the next address
6: read_addr ← write_addr
7: Calculate_Time(write_addr, read_addr)

8: write_addr ← base_addr + 64 bytes . Choose different column
9: read_addr ← write_addr
10: Calculate_Time(write_addr, read_addr)

11: write_addr ← base_addr + 128 bytes . Choose different column and
bank group

12: read_addr ← write_addr
13: Calculate_Time(write_addr, read_addr)

14: write_addr ← base_addr + 256 bytes . Choose different column, bank
group and bank

15: read_addr ← write_addr
16: Calculate_Time(write_addr, read_addr)

17: write_addr ← base_addr + 1024 bytes . Choose different column, bank
group, bank and row

18: read_addr ← write_addr
19: Calculate_Time(write_addr, read_addr)

20: procedure Calculate_Time(write_addr, read_addr )
21: for i:=1 to 500 do
22: t1← start_time
23: write_data_to_mem(write_addr, data)
24: t2← stop_time
25: total_time_w ← t2− t1

26: for i:=1 to 500 do
27: t1← start_time
28: data← read_data_from_memory(read_addr)
29: t2← stop_time
30: total_time_r ← t2− t1

31: return total_time_r, total_time_w
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Furthermore, Vivado IDE provides us with the opportunity to configure the
DDR4 controller address map as BANK ROW COL. We tested this configuration,
but this time the address "jumps" were higher, since to change bank group we had
to move 4.2 MB of addresses. This did not affect the performance of the DDR4
memory module and execution of read/write operations resulted in similar num-
ber of cycles, which corresponds with recent publications [50]. Read latency is not
affected and changing the memory address map is useful only in very small bursts.
If a memory module is organized in bank groups then a decrease in throughput
is expected when we choose the BANK ROW COL mapping scheme. Taking
into consideration the fact that address mapping does not seem to have posi-
tive/negative results on our performance for individual accesses and that CNN’s
memory access patterns require row bits at the MSBs of the address to achieve
better performance, we choose the ROW BANK COL memory address mapping
scheme (which is the default in Vivado IDE) for the rest of our experiments.

5.5 Memory Management Attributes

The ordering of access in a memory space is defined by the memory attributes
which can be proven useful depending on how we are planning to use the memory
locations. To further speed the transactions, we used memory attributes that en-
abled us to use cache for the DDR and the BRAM. The Memory Management Unit
(MMU) can be enabled/disabled as wished, and further configurations regarding
the memory can be applied.

5.5.1 Normal Memory

This attribute applies to most memory systems, which allow unaligned accesses.
This memory type is appropriate for locations where multiple read access returns
the last value stored in these locations or when we can issue repeated write access
if the contents of the location do not change between the write operations. This
memory type can be Inner (innermost caches)/Outer(outermost caches) shareable
or non-shareable. Designers can use this attribute to specify locations of memory
where coherency is crucial. If a Normal memory is marked as non-shareable, it
can be accessed by one processing element. Besides shareability, normal memory
locations are also cacheable. The normal memory attribute can be configured
alongside write-through cacheable, write-back cacheable, and non - cacheable. In
write-through, data are simultaneously written to the cache and memory, and this
method is best used when data are not frequently written to the cache. The data
are updated only in the cache in the write-back mode. The data are written in main
memory only when the cache line is ready to be replaced. These attributes provide
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coherency controls and using the write-through, or non-cacheable attributes is
better for controlling coherency than using hardware coherency methods. If a
piece of memory is not going to be accessed shortly after, then a non-cacheable
attribute must be enabled.

5.5.2 Device Memory

This type of memory attribute is ideal for MM peripherals where the access to a
location returns values that depend on the number of accesses performed before.
There are three types of device memory; gathering (G), reordering (R) and, early
write acknowledgment(EWA). A memory location that corresponds to peripherals
is ideal for write acknowledgment. When a memory location performs gathering, it
also performs reordering and EWA. This memory type is Outer shareable, meaning
that accesses are coherent and all accesses are aligned. Furthermore, there is no
cacheability in this type of memory; cache can not hold a memory location that
is configured with this attribute. Gathering allows multiple writes/reads (as long
it is only writes or only reads) to the same location to be merged in a single
transaction. Reading data from a non-Gathering memory region does not come
from cache or buffers; it refers directly to physical locations.

5.5.3 Cacheable VS Shareable Memory

The shareable attribute is used to define whether a location is shared with multiple
cores. By default (looking at the translation table files in Vivado SDK) the DDR
is mapped as Normal Write Back Cacheable memory while PL is initiated as
strongly ordered memory (shareable but not cacheable). This means that the
DDR is shareable (whether parts of it are shared by one or all cores can be defined
by specific attributes) and cacheable meaning that data are stored in the cache
before accessed by other elements. The PL BRAM is outer shareable, meaning
that all devices can perform read/write operations.
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Figure 5.8: Inner and Outer shareability.

5.6 Block RAM in Cascade Mode

Since today’s computationally demanding applications require a considerable amount
of data fast, deep memory capabilities must be exploited. This is achieved by cas-
cading multiple BRAM modules. In order to do so, the requested BRAM must
be less than 72 bits in width and more than 512 bits in height. In that case, the
BRAM instances will be automatically placed in the same block RAM column. In
the UltraScale architecture, the output data of one RAMB36E2 module will be
connected to the input data of the next RAMB36E2 module, creating a deeper
block of RAM. Data flows from the lower BRAM to the upper BRAM, and all the
block RAM modules are connected to the same clock source. The cascade mode
offers great performance and power optimization.

In the image 5.9, we can see how the cascade mode is implemented in hardware
using multiplexers and registers. This register is utilized only when we chose to
operate the BRAM in pipelined mode. Data from previous BRAMs are connected
to the first multiplexer of the next BRAM to be pipelined in the current stage or
to the final multiplexer of the current BRAM module, which decides the output;
either the current BRAM’s data, the cascaded data from the previous BRAM or
the data from the current BRAM module before the register (this particular action
is also known as fall-through, were the data of a memory module are forwarded to
the output before written to the pipelined register to gain one clock cycle). There
are three types of cascade mode available:

• Standard Data Output: In this type of cascade the data from the lower
BRAM are only connected to the final multiplexer of the current BRAM
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Figure 5.9: The BRAM cascade architecture. Copyrights to: [48].

(and not in the first one) and can be applied to the entire column creating a
very deep memory structure with only a few logic resources.

• Pipelined Data Output: In this method the cascaded data are connected
to the first multiplexer (before the optional register) and there is no fall-
through. This means that the output data are always pipelined whether
they are comming from the lower or the current BRAM module.

• BRAM Array Matrix in Systolic Mode: In the final type of the cascade
mode, the cascaded data are connected to the first multiplexer (before the
optional register). Cascaded data are always pipelined (meaning that they
go through the register) whereas the data from the current BRAM are not;
they can either be pipelined or fall-through to the output.

BRAM can be accessed by the Block Memory Generator (BMG) or by infer-
ring BRAM in HDL code; we chose the first option. BMG is connected with a
BRAM Controller (BC), which allows the BRAM interface to be connected with
the ZYNQ AXI ports. Since BMG acts as a slave in this setup and the BC as the
master, all the BC configurations are propagated to the BMG. In order to change
configurations, as a workaround, we can set the BMG’s mode into standalone,
configure the width and depth of our BRAM and change back to the BRAM con-
troller mode. In this way, we managed to create larger BRAMs in depth. The
default algorithm used to concatenate the block ram primitives is the Minimum
Area algorithm, providing an optimized design with a minimum number of BRAM
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primitives and reduced output multiplexing. Vivado IDE offers the opportunity
to change the cascade height of the RAMB36E2 BRAM modules used in a design.
By default, if the user takes no action, Vivado will decide the cascade height.

When expanding the schematic created by our design, we noticed a slight
difference between what is depicted in [48] and in this video 2. The latter represents
a slightly altered version of the BRAM cascade scheme where the cascaded output
from the lower BRAMs is also written in the upper BRAMs, besides being passed
in the multiplexers after the BRAM module. Our schematic is identical with the
one presented in 5.9. Due to lack of information on the subject, we posted in
Xilinx’s forums 3 to clarify the matter. It appears that in order to gain direct
control over cascading (meaning that we decide the cascade height), we have to
discard the BMG and, in its place, instantiate an XPM memory. XPM memories
are part of Vivado’s XPM libraries[52], which can be instantiated in our design
by selecting the appropriate XPM template. In contrast to BMG, a pre-defined
IP core, XPM libraries are parameterizable and allow the user to create larger
cascaded BRAM blocks. Vivado already offers an optimized solution with the
BMG, so if the application requires data cascading, the XPM memory template
must be used instead of BMG.

5.7 Memory response time for burst data accesses

We then expanded our study to see how DDR4 responds when mass amounts
of data are requested. Up to this point we did not utilize the PL side at all to
request data and we kept everything in a software level. In order to test how
memory responds to burst data accessing we requested multiple KB or MB of
data that reside in sequential or random rows. The ARM CPU cache line has a
size of 64 bytes in the UltraScale+ architecture, and since the ARM also controls
the DDR4 controller, the burst size of any transaction should be a multiple of 64
bytes in order to achieve maximum performance from the controller.

To test all those cases we utilized the BRAM controller (BC) and the Block
Memory Generator (BMG). The BMG’s interface corresponds to a typical BRAM
module and has no AXI ports to connect directly with the ZYNQ PS. Considering
this, the BC is responsible for receiving information through its AXI ports and
sending the information through its BRAM interface connected with the BMG.
We connected the two modules together and then with the PS using the two master
AXI ports, without any interconnects as intermediary (to avoid any unnecessary

2https://www.xilinx.com/video/fpga/optimize-ultrascale-architecture-block-rams-low-power-high-performance.
html

3https://forums.xilinx.com/t5/Xilinx-IP-Catalog/BRAM-in-cascade-mode/td-p/
1199261#M9276
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multiplexing in PL that could slow the design). We used both ports of the BMG,
and configured it so both port A and B are in Write First mode (Vivado IDE does
not provide the opportunity to configure the BMG ports in other modes when we
connect it with the BC, it has to be in standalone mode in order to configure the
ports which was not our case).

Figure 5.10: Block diagram of the experiment.

Each BMG module occupies 1MB of BRAM space. The available BRAM is
4MB, so we chose to utilize 2 MB of BRAM to test our cases. Our DDR4 module
was clocked at 2400 MHz DDR frequency, which means we had a 1200 MHz clock.
The DDR to PL clock ratio is 1:4, so the PL fabrick clock was set to 300 MHz to
achieve the maximum throughput. The DDR module has 64 pins, which means
that at 2400 MHz, it can provide a theoretical peak throughput of 19.2 GB/s.

At first we repeated the previous test described in 5.4.2 case where we chose
random addresses that reside in different columns, banks, bank groups and rows
and transferred data from the DDR to the BRAM using the two Memory Mapped
(MM) modules. Then we tested how memory behaves in burst transactions, writ-
ing data from the PS to the two BMGs and vice-versa. We ensure that we access
different rows, columns, banks, and bank groups with different access times to
evaluate how DDR4 behaves when data are needed at high speeds. The data are
loaded in the cache and then flushed to specific BRAM addresses. It is important
to mention that when we transfer data from PS to PL, meaning that PS is writing
the data and the PL is reading them, only flush is required in order for data to be
written in the physical addresses. However, when data are written by the PL and
read from the PS, then a space of destination address + offset (where the offset is
the number of bytes we transferred) needs to be invalidated. It is vital that when
we use the cache, buffers are cache-aligned; in ZYNQ, UltraScale + cache line is
64 bytes, and the buffers need to be aligned with the cache line; otherwise, the
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cache might end up contain stale data. If both PS and PL write at the same time
then we can not use the cache.

We used some of the memory attributes we mentioned in order to speed up
our design. To be more specific, we experimented with data cache disabled and en-
abled. Additionally, we used the memory attributes to the memory space reserved
by the BMGs, using the normal write-through and write-back inner shareable and
cacheable attributes of the normal memory type. What is more, the designer
must know where the memory accessed resides in the global address space; if the
memory is less than 4GB then the attribute is set for a section of 2 MB memory,
starting from the base address. Whereas, if the memory is larger than 4 GB then
the attribute is set for a section of 1 GB, starting from the base address. If we
need to store data in a region that resides more than 2 MB of the base address,
then have to configure the memory attributes for that region as well. We need to
know that when we place an attribute on a memory section, then we cannot apply
a different attribute for 2MB or 1GB after the base address. In case we need to
change our access pattern (and subsequently the memory attribute ) to exploit its
capabilities fully, we must reserve address space that does not reside in the already
attributed memory region.

5.7.1 Sequential Burst

For this set of experiments, we initialized the DDR memory with 64-bit double-
precision floating-point data. Then we proceeded to sequential bursts, starting
from some Bytes to some MB. The DDR4 module that we use has 2 KB of page
size (number of bits per row). This means that when a row is activated, 2 KB of
data are loaded into the Sense Amps. When accessing data in consecutive memory
addresses, the CAS delay plays a vital role since column switching is done much
more than row (RAS) switching.

Figure 5.11: 1 - D Convolutional Neural Network and data allo-
cation in memory.
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Sequential data access is ideal for 1-D CNNs (depicted in 5.11 where the filter
(kernel) moves in one direction (in this example vertical). Data are stored in
consecutive addresses and can be obtained with a single burst (depending on the
input image’s size and the kernel’s height). The filters’ parameters are located in
consecutive memory locations, and the use of a DMA is ideal for maximizing the
throughput of the design.

To test the memory response in sequential accesses we transferred data from
the PS to the PL using both BMGs. The first BC is assigned an address, the base
address of the DDR and the second BC is assigned with the base address + offset,
where the offset depends on the number of bytes we want to transfer each time.
This means that for small bursts (smaller than the page size) both BCs are going
to access the same memory row. Then the data are transferred in two different
addresses in the PL (since we have two BCs). This means that the hardware
accelerator can read data from both adddresses simultaneously.

Figure 5.12: Sequential access from two BC.

In this experiment, we accessed the memory 100 times, bursting some bytes
each time. We started from a base address where we sent 640 bytes to BC0,
then we sent 640 bytes to BC1 from base address+640 bytes. Then BC0 received
another 640 bytes from the base address + 2×640 bytes, e.t.c. Then we proceeded
to increase the transfer data size to 2KB (page size), 20 KB, 200 KB, 2 MB for
every BC. In order to simulate large data requests (for example a layer in a CNN
needs 150 MB of data) we ran iterations. In every iteration each BC transfers 2
MB of data (total 4 MB for an iteration). We requested 50 iterations (totaling
200 MB of sequentially stored data transferred to the PL). These are transfer sizes
that represent the memory footprint of various applications, from smaller to larger
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ones. Note that since we have only 2 MB of BRAM space available, data in bigger
transfer sizes are overwritten.

Algorithm 2 Measure time for sequential burst access from PS to PL
1: procedure Burst Data

2: Set_attribute(bmg0_addr,MEMORY_ATTRIBUTE)
3: Set_attribute(bmg1_addr,MEMORY_ATTRIBUTE)
4: for i=1 to number_of_iterations do
5: Bytes← set number of bytes . this depends on the transfer we do

every time
6: t1 ← start_time
7: burst_data(from_ddr_addr, to_bmg0_addr, Bytes)
8: flush_memory(bmg0_addr, Bytes)
9: t2 ← stop_time
10: get_results(t2 − t1, Bytes)

11: Bytes← set number of bytes

12: t1 ← start_time
13: burst_data(from_ddr_addr +Bytes ∗ i, to_bmg1_addr,Bytes)
14: flush_memory(bmg1_addr,Bytes)
15: t2 ← stop_time
16: get_results(t2 − t1, Bytes)

17: ddr_addr ← ddr_addr[Bytes ∗ (i+ 1)]

18: procedure GET RESULTS(time, Bytes)
19: Throughput← (Bytes ∗ CPU_CLock)/(2 ∗ time)
20: Latency(us)← (time ∗ 1000000)/(Counts_per_second)
21: cpu_clocks_per_word← time/(word) . word = Bytes / 4
22: fpga_clocks_per_word← fpga_clock/(cpu_clock ∗ cpu_clocks_word)

23: return (Throughput, Latency, cpu_clocks_per_word, fpga_clocks_per_word)

In the 13th line the second BC requests data that reside after the bytes trans-
ferred from the first BC. For example, if the first BC starts from the address 0x0
and transfers 640 Bytes then the second BC will start from the address 0x0 +
640 Bytes and end at 0x0 + 2× 640Bytes address. Note that the time it took to
transfer data is multiplied by two in the 19th line since the counter counts every
two clock cycles and the measured time provided by the software equals half the
actual transfer time.
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5.7.2 Random Burst

In this set of experiments memory accesses are not consecutive. Every access
contains a stride in addresses that depends on the size of each application. Data
can be stored in different banks, bank groups or rows.

Figure 5.13: 2 - D Neural Network and data allocation in memory.

In the 2-D category, we can assume that in most implementations, data reside
in random addresses. The architect must decide whether to configure the access
pattern as sequential or random. A 2D convolution layer means that the input of
the convolution operation is three-dimensional, for example, a color image which
has a value for each pixel across three layers: red, blue and green. However, the
movement of the filter across the image happens in two dimensions. The filter is
run across the image three times, one for each of the three layers. In this section,
we requested data that reside in non-consecutive memory addresses. When we
have CNNs with multiple filters, and dimensions data reside in addresses that are
far from each other. This makes the use of a DMA difficult and slows down the
design. We requested data that are far away (more than one row) and tested the
memory response. Moving in strides is usual in large CNNs where the input image
is filtered in many dimensions (many filters in each layer).

The image 5.14 depicts the data allocation in memory for a multidimensional
application where each filter has its own data sequentially stored (a typical case).
But in order to pipeline the architecture and optimize it, we have calculate different
pixel results in parallel.

In this set of experiments we accessed the memory in strides. We started at
the DDR base address where we burst 640 Bytes with the first BC, then move
1KB (less than the page size) to burst another 640 Bytes with the second BC.
Depending on the size of the stride the data can be obtained from different banks
or bank groups. If the stride is more than 2 KB (page size) then we need to access
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Figure 5.14: Multi - dimensional allocation in memory.

a new row. Accessing a new row (RAS) is costly and is the main reason why
random access patterns have high latency.
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Algorithm 3 Measure time for random burst access from PS to PL
1: procedure Burst Data

2: Set_attribute(bmg0_addr,MEMORY_ATTRIBUTE)
3: Set_attribute(bmg1_addr,MEMORY_ATTRIBUTE)
4: for i=1 to number_of_iterations do
5: Bytes← set number of bytes . this depends on the transfer we do

every time
6: Stride← set stride length . This depends on the stride we choose

each time
7: t1 ← start_time
8: bust_data(from_ddr_addr, to_bmg0_addr, Bytes)
9: flush_memory(bmg0_addr, Bytes)
10: t2 ← stop_time
11: get_results(t2− t1, Bytes) . Presented in algorithm 2

12: Bytes← set number of bytes

13: Stride← set stride length

14: t1 ← start_time
15: bust_data(from_ddr_addr+ Stride+Bytes, to_bmg1_addr,Bytes)
16: flush_memory(bmg1_addr,Bytes)
17: t2 ← stop_time
18: get_results(t2− t1, Bytes)

19: ddr_addr ← ddr_addr([2 ∗Bytes+ Stride] + 1)

Finally, in figure 5.15 we present an example of how the BCs and BMGs can be
used alongside hardware accelerators. The BMG must have both its ports (portA
and portB) enabled whereas the BC needs to enable only one (if only one port is
enabled then it is a read/write port). The first BC can use its portA (which is
a write/read port) to connect to portA of the BMG (each port of the BMG has
a read and write channel) and write data. The second port of the BMG can be
connected to the read port of a different BC with two ports enabled. Port A of
the second BC (the write port) can be connected to the hardware accelerator in
order to write the data from the BRAM. In this way, we can use one port of the
BC to write the data to BRAM and the other to read the BRAM data and send
them to the accelerator.

The purpose of the controller and the BMG is to act as intermediaries so that
the hardware accelerators do not have to access the DDR every time they require
data. Instead, they can search the BRAM, which the PS will write the data as the
computations are calculated simultaneously. The BMG (which instantiates BRAM
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Figure 5.15: Example of an architecture that uses BMGs, BC and
custom hardware accelerators.

modules that are very fast) can act as an intermediary, where the data required
for various computations are stored. That way, by bursting a considerable amount
of data to the BMG, the memory accesses from the accelerators are reduced (the
accelerators do not have to communicate with the PS at all, only PL to PL transfers
are required). In our case, this is difficult to implement due to a lack of BRAM
resources. Modern FPGAs have more FPGA memory resources and are ideal for
this kind of proposed method. Instantiating BRAM through BMG and using it
as a temporary storage unit (combined with faster DDR memory controllers) is
worth exploring.
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Results

As it is clear from Chapter 5, our implementation is highly connected with the
FPGA platform that we use. A bigger FPGA (meaning more BRAM and many
ports from PS/PL to PS/PL) will provide better results and memory bandwidth.
Our job was to evaluate the memory subsystem of ZCU102 with Xilinx IPs for
various data access patterns utilizing the FPGA to the maximum of its potential
while at the same time maintaining low energy consumption and low resource uti-
lization. The work of Georgios Pitsis [36] gave excellent results in one-dimensional
data handling in both ZCU102 FPGA and QFDB [4], but this time we are dealing
with multidimensional data.

6.1 Results for DDR4 individual accesses

The most essential element of the ZCU102 is the DDR4 memory module, since
due to its large capacity, it is ideal for storing many data that can then be fed
to the PL part of the FPGA. For this reason, we have looked at this element
extensively to know exactly how it can behave when used as a storage element for
a computationally demanding network. Note that the DDR4 module is clocked at
1200 MHz for this set of experiments.

Initially, our first test cases involved accessing memory in individual addresses
to get a first-hand look at how memory and its controller behave in individual data
accessing that reside in different locations. For this reason, we do 500 reads/writes
in specific memory locations, each time changing an item from its address (row,
column, bank group, bank). Νote that we measured the time for read/write with
and without cache enabled. The table below refers to the average of the measured
clock cycles for each read/write. For this particular set of experiments we did not
utilize the PL part. The results presented below utilize only the software part.
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Addr.
Distance Base Addr. Diff. Col.

(64 bytes)
Diff. B.G.
(128 bytes)

Diff. Bank
(256 bytes)

Diff. Row
(2048 bytes)

Read
/w cache 64 63 63 63 63

Write
/w cache 64 64 64 64 64

Read
w/o cache 118 118 119 119 119

Write
w/o cache 117 118 119 119 119

Table 6.1: Average number of cycles for individual read/write
operations.

From the table above, we can see that for individual read/write operations
the memory controller is efficiently handling the requests we made. The above
experiment was implemented many times, and every time we got almost the same
results. The variation of the above presented results were minor and they did
not need to be presented. Note that since we did not use the PL, all the on-chip
memory resources remain non-utilized. The number of clock cycles presented is
an estimation; memory controllers present various stalls, which can reduce our
measurements’ preciseness.

We repeated the experiments when we request 8 bytes (1 word), 500 times
from the PS to the PL. Data are stored in different banks, rows, columns and,
bank groups. The results are presented below:

Addr.
Distance Base Addr. Diff. Col.

(64 bytes)
Diff. B.G.
(128 bytes)

Diff. Bank
(256 bytes)

Diff. Row
(2048 bytes)

PS→ PL
/w cache 102 103 103 103 103

PS→ PL
w/o cache 122 122 124 125 130

Table 6.2: Average number of cycles for individual data requests
from the PL.

This experiment was conducted multiple times and we noticed that the location
of data did not affect the transfer time; which can be confirmed by 6.1; DDR
controller is effectively handling the requests. For this experiment we disabled the
cache (again) to make sure that we read and write to physical addresses. After
analyzing the results (we used an ILA core to examine how data are transferred
from the PS to the PL and when the read/write signals are enabled) we noticed
a 3 cycle loss per transfer from the BC. This means that the BC can achieve only
25 % of the available throughput. However the BMG can achieve 100 % on both
channels (read and write). With no cache involved we would be able to write one
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word every 4 cycles. Since the BMG has higher capabilities than the BC in the
future we can create a custom full AXI slave controller (such as the one presented
here 1).

The tables 6.1 and 6.2 depict the difference in clock cycles between the DDR
to DDR transfers and the DDR to PL transfers. We can understand that in order
to write one word from the PS to the PL, we need 102 (on average) clock cycles.
The difference that cache makes can be understood when we measured the data
transfer time without the cache enabled. The slight increase in transfer time when
data are stored in different rows reveals that the DDR memory controller and the
cache work together when we request data from a specific memory address and
assume that the following addresses will be requested. So in order to increase
performance, the row buffers are loaded into the cache lines.

6.2 Results for burst data accesses

In this particular set of experiments we utilized the PL by creating two Block
Memory Generators (BMG) and two BRAM Controllers (BC) that configure the
BRAM. Our design is clocked at 2400 MHz,(with a 1200 MHz clock) and the PL
fabric clock’s frequency is set to 300 MHz. Each HP Master AXI port has 128
bit width meaning that the maximum achievable throughput for each port is 4.8
GB/s. Vivado’s reports on utilization and power consumption are presented in the
tables below.

Resource Utilization Available Utilization %
LUT 2636 274080 0.96
FF 1702 548160 0.31
BRAM 512 912 56.14

Table 6.3: Utilization report when using MM Xilinx IPs.

Dynamic (3.45 W ' 83%) Static (0.73 ' 17%)
Clocks, Signals, Logic BRAM PS PL PS
0.17 W ('6%) 0.521 W(15%) 2.764 W(79%) 0.63 W(87%) 0.1 W(13%)

Table 6.4: Power report when using MM Xilinx IPs.

Note that the 512 BRAM blocks correspond to 512 RAMB36E2. BMG pro-
vides a report at the early stages of the design (before Synthesis and Implemen-
tation) that depicts how the BRAM is allocated (either using RAMB36E2 or

1https://zipcpu.com/blog/2019/05/29/demoaxi.html
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RAMB18E2 modules). Each BMG utilized 256 of such blocks, a number that
is a power of 2. As it appears, Vivado will always utilize N BRAMs where N
is a power of 2; even it means that more BRAM than requested is utilized. In
our case Vivado utilized 512 × 36Kbit = 2.3MB when in fact it should utilize
444 × 36Kbit = 2MB a 15.32% increase in BRAM utilization (approximately 50
KB more memory space than requested). This percentage might appear relatively
small, but since BRAM space is extremely scarce, we have to consider the pos-
sibility for improvement in memory allocation by the tool. A similar topic was
discussed here 2 community forums where if the width of a BRAM was not a
power of 2, then Vivado would allocate N BRAM modules, where N is a power
of 2, utilizing more memory than requested. Note that for all our experiments, in
order to avoid this problem, we set BRAM’s width and height as a power of 2.

6.2.1 Results for sequential data accessing

In this set of experiments, we read consecutive data addresses and store the data to
the PL. The amount of data acquired by each BC depends on the kernel window’s
size and the application in general. We observed the throughput of both BCs at
various times. We saw that although BC0 does not show large fluctuations, BC1
initially seems to have a larger throughput, which decreases until it stabilizes.
When we burst small amounts of data (less than a page size), we noticed that the
second BC completed the transaction much faster than the first BC (sometimes
BC1’s latency was half the latency of the BC0). This happens because data are
stored in the cache line, and when the second BC begins, the burst transaction data
are loaded from the cache and not the actual DDR memory. However, as the total
bytes transferred increased, we noticed that the second BC’s throughput dropped
until it reached a steady point. We calculated the average throughput and latency
of each BC and the total average throughput and latency. We transferred 640 bytes
in each transaction (640 bytes for each BC), totaling around 64 KB of sequentially
stored data per BC. Then we expanded our experiments and in each transaction
we transferred 2 KB of data, meaning that in every iteration of algorithm 2 we
transferred 4 KB of sequentially stored data in the BRAMs, totaling (after 100
iterations) 200 KB of transferred data. Then we did the same thing, changing the
burst size to 20 KB, 200 KB, 2 MB for every BC. The sequential access from each
BC is utilized as it is presented in 5.12.

After the transfer size of 20 KB for every BC (totaling 40 KB of sequentially
stored data for every iteration) we noticed that both AXI ports produced similar
throughput that did not vary as the total transfer size increased meaning that the

2https://forums.xilinx.com/t5/Synthesis/Problems-with-inferring-RAM-with-a-depth-which-is-not-a-power-of/
td-p/1044294
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Transfer Size
for each BC

Number of
iterations

Total Bytes
transferred

640 Bytes 100 64 KB
2 KB 100 200 KB
20 KB 100 2 MB
200 KB 100 20 MB
2 MB 100 200 MB

Table 6.5: Transfer size of each BC and total sequential transfer
sizes.

Figure 6.1: Performance of Master HP0, HP1 ports when data
transfers are 640 bytes (for each BC).

system reached a steady point from the start. Below we present the metrics(latency
and throughput) for the rest of the experiments. We used two memory attributes
to make the BRAM cacheable, normal write-through and normal write-back. We
saw an improvement when using these attributes (making the BRAM cacheable
is also recommended by Xilinx to increase throughput). We flushed the memory
and checked through the ILA core to make sure that the write did happen.

Figure 6.4 presents the results of sequential data access with different transfer
sizes. In the last case (2 MB per BC), we transferred a total of 400 MB to the
BRAM. Since BRAM only has 2 MB of space, data were overwritten. In the future,
when we obtain FPGAs with more BRAM space, we can repeat the calculations
so that data are not overwritten to obtain more accurate throughput results.

Figure 6.5 depicts the average latency, the average time it took to transfer
data from the PS to the PL. We can see that up to 20 KB of the burst size, the
latency is relatively low (no more than 100 us). This is because all accesses are
made in the L1 cache and not the actual DDR. However, after 20 KB, we see
that latency increases because all accesses are made in the L2 shared cache (which
has higher access latency). Finally, after 1 MB of the burst size, we see an acute
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Figure 6.2: Performance of Master HP0, HP1 ports when data
transfers are 2 KB (for each BC).

Figure 6.3: Performance of Master HP0, HP1 ports when data
transfers are 20 KB (for each BC).

increase in latency; memory accesses are made in the actual DDR, not the cache.
This means that the DDR controller does not load the cache only with the line
buffers, as originally thought, but with 32 KB of data that reside in the following
addresses from the one we requested.

The results provide a clear image of how the memory operates in sequential
data accessing and how we should request data from the DDR. For sequential burst
sizes of 32 KB and less (32 KB is the size of L1 cache), data are retrieved from
the cache. Requesting data with cache enabled achieves higher throughput and
less latency by prefetching data since the access pattern is sequential. Increasing
the requested amount of data per burst or disabling the cache can lead to actual
DDR accesses, drastically decreasing throughput and increased latency. When
requesting sequentially stored data, we should aim for cache prefetching, with
burst sizes up to 32 KB or in worst cases 1 MB. We also experimented with write
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Figure 6.4: Results for burst access in sequentially stored data.

Figure 6.5: Latency results for various burst sizes per BC.

transactions from PL to PS, confirming the results presented in [51]. Writing (to
the DDR) with cache disabled is faster than writing with cache enabled since,
in the first case, the system does not wait for the data to be committed to the
memory.

Table 6.6 depicts the average clock cycles per BC for different burst sizes. We
see that clock cycles are on par with the throughput results. BC1 appears to be
completing transactions faster than BC0. Moreover, we see that as we increase
each transaction’s burst size, the average clock cycles drop until they reach a
saturation point of 3.1 clock cycles per word.
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Transfer Size
(in words) BC0 BC1

80 5.2 4.77
250 3.92 3.82
2500 3.2 2.87
25000 3.12 3.12
250000 3.11 3.11

Table 6.6: Average clock cycles per BC per word for different word
size bursts

6.2.2 Results for random data accessing

In this set of experiments, we read data that reside in non-consecutive addresses.
Starting from a base address, we requested 640 bytes of data from the first BC.
Then we moved 1 KB of data addresses and requested another 640 bytes with
the second BC. This is done to simulate multiple PEs that request data from the
main memory at different times and in different addresses. Since in real-world
applications, a memory request is usually followed by many data that reside in
consecutive addresses, we do not measure latency and throughput for a single
word but many words. This random address request experiment involves random
access at an address and sequential accesses at the following addresses. This is
done to fully simulate a demanding hardware accelerator that requires data at
specific memory addresses to start computations in different dimensions. We can
understand that if we utilize more ports that address the DDR for data, then the
overall memory subsystem will require more transactions to be completed faster.
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Transfer Size
for each BC

Number of
iterations

Stride between
BC access

640 Bytes 100 1 KB, 2KB, 20 KB, 200 KB, 2MB
2 KB 100 1 KB, 2KB, 20 KB, 200 KB, 2MB
20 KB 100 1 KB, 2KB, 20 KB, 200 KB, 2MB
200 KB 100 1 KB, 2KB, 20 KB, 200 KB, 2MB
2 MB 50 1 KB, 2KB, 20 KB, 200 KB, 2MB

Table 6.7: Transfer size of each BC and stride distance per BC.

Figure 6.6: Results for different memory strides when each BC
requested 640 Bytes.

In the images 6.6 to 6.10 we present the results for different data transfer
sizes and different stride sizes. Table 6.8 summarizes the throughput differences
between the two controllers based on the stride size. As we can see, random access
has a huge impact on the second BC who requests data that are far from the data
requested from the BC0. As the stride increases, the throughput gap between the
two BCs increases as well. We can see that for request sizes smaller than the page
size (2 KB), the gap is smaller than for bigger request sizes. Stride distance also
plays an important role since as we increased the stride distance, the difference in
throughput between the two BCs increased. This happens because data no longer

Stride
distance Data / BC

640 Bytes 2 KB 20 KB 200 KB 2 MB
1 KB 322 MB/s 164.6 MB/s 298.34 MB/s -269.55 MB/s 136.92 MB/s
2 KB 453,57 MB/s 585,01 MB/s 450,93 MB/s 524,63 MB/s 514,27 MB/s
20 KB 200,18 MB/s 699,18 MB/s 1050,13 MB/s 1049,81 MB/s 969,92 MB/s
200 KB 441,02 MB/s 485,74 MB/s 1311,63 MB/s 1284,1 MB/s 1433,94 MB/s
2 MB 1197,4 MB/s 1325,83 MB/s 1427,77 MB/s 1425,51 MB/s 1421,44 MB/s

Table 6.8: Difference in in MB/s between the two BCs.
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Figure 6.7: Results for different memory strides when each BC
requested 2 KB.

Figure 6.8: Results for different memory strides when each BC
requested 20 KB.

Figure 6.9: Results for different memory strides when each BC
requested 200 KB.
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Figure 6.10: Results for different memory strides when each BC
requested 2 MB.

Transfer Size 640 Bytes 2 KB 20 KB 200 KB 2 MB
Stride BC0 BC1 BC0 BC1 BC0 BC1 BC0 BC1 BC0 BC1
1 KB 5.2 6.3 3.25 3.84 2.31 3.16 2.15 3.06 2.11 3.06
2 KB 5.4 5.95 4 7.2 2.35 3.12 2.16 3.05 2.1 3.05
20 KB 4.95 5.85 3.18 3.74 2.32 3.11 2.16 3.06 2.1 3.05
200 KB 6.4 5.4 3.15 3.8 2.31 3.11 2.16 3.05 2.1 3.05
2 MB 5.6 10.9 3.25 3.94 2.34 3.11 2.1 3.06 2.1 3.05

Table 6.9: Average Clock Cycles per word for various transfer
sizes (640 B, 2KB, 20 KB, 200 KB, 2 MB) and strides between BCs

resides in the cache, and the DDR controller must fetch them from the DDR itself.
The negative value represents a particular case where transfer from BC1 achieved
higher throughput. However, this was a local peak and is not does not represent
how memory responds.

From the tables 6.8, 6.9 and the charts, we conclude that we must request a
larger amount of data each time we access the DDR in random accesses. Accessing
the DDR and requesting only 20 KB while accessing again but 2 MB of address
further lowers the second BC performance by 1.5 GB/s. This is the same as
requesting 2 MB of data with BC0, having a stride of 2 MB, and requesting 2MB
with the second BC. Both cases have the same drop in performance between the
requests, but we have transferred 100 times more data in the second case. However,
this can be a problem for this particular FPGA since BRAM space is only 4 MBs,
and we can not store 2 MB of data in the BRAM per memory request without
having data overwritten or extremely fast accelerators. We believe that in modern
FPGAs, with more memory resources, this will not be a problem. Furthermore,
bursting more significant amounts of data increases throughput and lowers the
required clock cycles per word, as shown in table 6.9.
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6.2.3 Summarizing and Comparing with the Theoretical Re-

sults

In order to understand how the controller and the memory behave in various
requests, we performed two types of experiments. With the sequential data access,
we simulated 1-D applications where strides in memory are not required, and data
can be obtained using single bursts. To fully optimize the design, the use of
DMAs is necessary. Albeit, in multi-dimensional applications, DMAs are useful in
only one dimension, and memory access is achieved in strides hence lowering the
system’s performance. As we mentioned before, the maximum theoretical DDR4
bandwidth is 19.2 GB/s whereas the maximum AXI4 bandwidth per port
is 4.8 GB/s. Table 6.10 summarizes the results of our experiments, comparing
them with the theoretical ones.

Sequential Access Random Access
Stride Lenght

Size per BC 1 KB 2KB 20 KB 200 KB 2 MB
640 B 1954.55 1845.96 1777.6 1932.2 1499.85 1828.38
2 KB 2630.12 2948.1 2984.77 3014.77 3045.38 2948.1
20 KB 3079.39 3200.85 3150.14 3150.25 3250.26 3120.12
200 KB 3141.57 3456.71 3441.86 3438.57 3425.8 3564.38
2 MB 3140.8 3728.48 3666.81 3567.96 3565.71 3562.69

Table 6.10: Throughput in MB/s for sequential and random ac-
cess for various burst sizes and strides.

From the table above, we can see the vast impact the AXI4 port’s bandwidth
has on the system’s performance. Even though the DDR4 module can support up
to 19.2 GB/s in memory bandwidth, the AXI4 bandwidth per port is 4.8 GB/s.
Even the best achievable throughput (per port) of 3.14 GB/s in sequential access
is 34.55 % decreased when compared with the maximum AXI4 port throughput. A
6.28 GB/s can be achieved for two ports, providing a 67.29 % decrease compared
to the DDR4 maximum available throughput. For random access, the maximum
achievable throughput per port was 3.77 GB/s, which is 21.45 % smaller than the
maximum AXI4 throughput, and for two ports, a 7.54 GB/s throughput can be
achieved which is 60.72 % decreased when compared with the maximum DDR4
throughput. Utilizing more ports (for example, the four AXI slave ports of ZYNQ)
produces 10.2 GB/s throughput, which is still 46.87 % smaller than the DDR4
maximum throughput when the memory module is running at a 1200 MHz clock.

Considering the information mentioned above and the tables 3.1 and 6.9, we
can estimate the system’s performance for an application. Given a representation
of single-precision floating-point and no parallelism at any level (meaning that the
next layer will start executing as soon as the previous layer completes the last
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calculation), the Conv3-64 layer of VGGNet16 requires 7.1 KB of data or 1775
words.

Since we do not have parallelism, the data required for this layer is stored in
sequential memory locations and accessed by the first BC. This means that for
a burst of 7.1 KB, the total amount of clock cycles required to fetch the data is
between 2.31 and 3.25 clock cycles per word, meaning that for 1775 words we need
4100.25 - 5768.75 clock cycles. However, this concerns only the network’s param-
eters and not the input data. The second BC will need to make a stride of 553.69
MB (since VGGNet16 has 138, 423, 208 parameters× 4 Bytes each) to access the
input data. As we mentioned above, after a certain threshold (most of the time be-
tween the mark of 2-5 MB), the memory access time is the same, meaning that for
a stride of 20 MB or a stride of 500 MB, the memory controller will have the same
response (in clock cycles). For an input image of 224×224×3 = 602.1 KB/image,
the second BC will require 3.05 clock cycles (because the second BC will make a
stride of 553.69 MB and fetch an amount between 200 KB and 2 MB of data).
This means that to calculate all the outputs from the first convolutional layer of
VGGNet16, we will need 5.36 - 6.03 clock cycles per word. It is worth mentioning
that for this example, we do not have memory considerations meaning that both
the input image and the layer can fit in the BRAM available, which is true since
7.1KB of parameters + 602.1KB for the image < 4MB of available BRAM .
However, in real-world applications, this will not be the case since the designs most
of the time are pipelined, and we need to fit multiple layers, their outputs, and
the parameters in the BRAM available, meaning that we will need to do multiple
smaller bursts.

The next layer, Conv3064 3 requires 147.712 KB of data or 36928 words. If we
assume that the design is pipelined, then the second BC can start fetching small
amounts of data from the DDR4 as soon as the first few calculations of Conv3-64
are completed. The second BC will need a memory stride of 7 KB to access the
parameters for the second layer. Assuming that our design does not fit in the
FPGA (which is the most usual case), we can access 1-2 KB of data for the first
layer, stride 7 KB, and access another 1-2 KB for the second layer. This means
that to produce the first results of the first two layers of VGGNet16, we will need
3.18 - 7.2 clock cycles per word (since the stride size is between 2 and 20 KB).

6.3 Unexpected Port Bandwidth

As we mentioned in 5.5, we used memory attributes as described in the Mem-
ory Management Unit (MMU) file in Vivado SKD. These attributes change the

3https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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cacheability and shareability of a specified memory region according to our needs.
During the sequential data access experiment, we used two of these attributes
making the BRAM space we were going to write the data cacheable. The memory
in that region is outer shareable but not cacheable.

Figure 6.11: Measured throughput using two memory attributes.

In figure 6.11 we present the system’s throughput by using default configura-
tions (meaning that data cache is enabled and BRAM is non-cacheable) and with
the data cache disabled. As was expected, the performance drops since all accesses
hit the physical address of the DDR and not the cache lines. However, when we
set BRAM cacheable (normal write-back and normal write-through cacheable and
outer shareable), we noticed that the throughput exceeded the upper limit of 4.8
GB/s. To be more specific, for 640 bytes burst per BC, we notice a 14.51 % in-
crease in performance when using the write-back attribute and a 33.44 % increase
when using the write-through memory attribute. However, as we increased the
transfer size to 20 KB, 200 KB, and 2 MB, we noticed that throughput soared,
surpassing the upper throughput limit of 4.8 GB/s set by the AXI ports. Of
course, this can not be achieved, and we are not sure if the controller does not
consider some accesses providing us with false calculations since we do not have
access to Xilinx’s IP cores. This example depicts how even the results of an ex-
perimental calculation can be questioned, and the designer can not rely on these
outcomes. We have discussed these findings with designers from FORTH, con-
firming their questionability, but we did not manage to conclude with a possible
explanation. Furthermore, we have created a post in Xilinx’s forums 4, describing
the experiment and our findings, hoping to elaborate on this unusual behavior.

4https://forums.xilinx.com/t5/Other-FPGA-Architecture/Make-BRAM-cacheable/
m-p/1215637
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Chapter 7

Conclusions and Future Work

In this chapter, we will sum up and evaluate the information presented and the
work that has been completed in this thesis. We will also discuss possible oppor-
tunities that might arise and how this thesis can be used and expanded in the
future. We will also present extensions and optimizations.

7.1 Conclusions

FPGAs are frequently used in Convolutional Neural Networks since they pro-
vide hardware acceleration and vast configuration abilities while maintaining high
power efficiency. Memory is the limiting factor of FPGAs’ extensive use, and the
memory subsystem and data obtain mechanism requires further research. This
study used the ZCU102 FPGA, a Zynq UltraScale+TM MPSoC with a quad-
core Arm Cortex-A53. Even though modern FPGAs consist of dozens of GB
in DDR memory (which is relatively slow), the small amount of memory in the
Programmable Logic (which is a few MB and very fast) requires excellent handling
of memory resources when creating hardware accelerators. Whether we want to
implement applications that consist of 1-D or multi-dimensional computations, we
must know the memory system’s limits and exploit them.

Knowing how the external memory module of any given FPGA system is
mapped, we can configure our system based on the application’s needs. Reorga-
nizing the address bit registers to minimize row access provides better performance
results, depending on each application. Bank switching is better than row switch-
ing. Hence, putting the bank group bits at the LSBs of the memory address hides
RAS since the DDR4 controller can be opening or closing a row in one bank group
while accessing another bank group. Memory management attributes are required
in order to speed our design. Based on the frequency of accesses in memory space,
we can configure the memory to be cacheable or not and even choose the share-
ability across different PEs. Memory attributes can configure the PL BRAM, and
changing the main memory configurations does not optimize the design. Further-
more, BRAM is very fast and can be cascaded according to our needs. BRAM
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utilization is not optimal by the tools and is something that requires further op-
timization. Moreover, in a design with modules that access the same external
memory subsystem, the second module will experience an increase in throughput
when transferring data to the PL if the data are sequentially stored. In sequential
accesses, burst sizes smaller than the L1 cache provide the most optimal latency
solution, whereas bursts larger than the L2 cache access the DDR directly, and la-
tency drastically increases. In random access, bursts should request large amounts
of data, especially if the stride in memory is significant (something that happens
in multidimensional applications with many filters and layers). However, this can
be a problem in FPGAs where on-chip memory resources are limited.

7.2 Future Work

This work provides an insightful evaluation of a memory subsystem and the ways
we can exploit the hardware capabilities to their maximum. However, there are
some improvements and suggestions to further optimize memory transfers in any
given memory subsystem:

• Connecting the PL BRAM through AXI BRAM Controller is not optimal
when speed is essential. To further speed the design, we need to create a
custom AXI slave controller that exploits the memory capabilities.

• The need to further explore problems that cause idle states, data collisions,
or memory misses is vital to fully understand how the memory subsystem of
a given architecture operates.

• Furthermore, future work can research the way data are transferred from the
PL to the PS, efficient ways to store data in the DDR, and even explore the
possibilities of an efficient memory controller that writes data from the PL
to the PS.

• By exploiting the results provided in this thesis, one can design an optimized
and accurate application or algorithm. This thesis results provide guidelines
on how to retrieve data from memory system efficiently for future designs.

• Since the QFDB features 4 ZCU102 FPGAs and many capabilities, the next
step is to evaluate this board’s memory subsystem. Since data are stored
in different DIMMS, it would be very beneficial to measure the memory’s
abilities and study how data are stored and retrieved.
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