
Technical University of Crete
School of Electrical & Computer Engineering

Reconfigurable Logic Based Second Generation Digital Sound
Processing and Enhancement System

Δεύτερης Γενιάς Σύστημα Επεξεργασίας και Βελτίωσης Ψηφιακού
Ήχου, Βασισμένο σε Αναδιατασσόμενη Λογική

Iraklis-Taxiarchis Kokkinis

Committee

Supervisor: Professor Apostolos Dollas
Committee Member: Professor Michalis Zervakis
Committee Member: Associate Professor Eftychios Koutroulis

Περίληψη

Όσον αφορά τον ψηφιακό ήχο, για μεγάλο χρονικό διάστημα η πιο κοινή μορφή
αποθήκευσης και διανομής μουσικής ήταν η ποιότητα CD με ρυθμό δειγματοληψίας 44,1
kHz και βάθος πληροφορίας τα 16 bit. Για πολλούς λάτρεις της μουσικής, η ποιότητα του
CD δεν μπορεί να προσφέρει την καλύτερη δυνατή ακουστική εμπειρίας, υποστηρίζοντας
την ανωτερότητα των μορφών ήχου υψηλής ανάλυσης. Δεν υπάρχει προς το παρόν κοινή
ετυμηγορία, σχετικά με τις ιδιότητες και τα πλεονεκτήματα των μορφών ήχου υψηλής
ανάλυσης. Αυτή η διπλωματική εργασία στοχεύει στη βελτίωση των τυπικών αρχείων
ποιότητας CD με την εφαρμογή της μαθηματικής μεθόδου cubic spline interpolation σε
ασυμπίεστο αρχείο .wav, βασισμένη σε προηγούμενη εργασία από τον Μουρτζανό
Τριαντάφυλλο [1].

Έχοντας μελετήσει τις δυνατότητες του ανθρώπινου αυτιού και τον ρόλο που έχει η
ψυχοακουστική στην ακουστική εμπειρία, καθώς και τα μαθηματικά πίσω από την
ηχητική μηχανική και τις μεθόδους interpolation, τα μαθηματικά μοντέλα των Linear και
cubic spline interpolation αναδημιουργήθηκαν, χρησιμοποιώντας τη Matlab, όπως
παρατέθηκαν από τον Μουρτζανό Τριαντάφυλλο, που χρησιμοποίησε αριθμητική
κινητής υποδιαστολής. Αυτά τα μοντέλα στη συνέχεια μετατράπηκαν σε μια
αποδοτικότερη από μεριάς υλικού προσέγγιση, χρησιμοποιώντας ένα παράθυρο
τεσσάρων δεδομένων και αριθμητικής σταθερού σημείου. Στη συνέχεια συγκρίθηκαν τα
νέα μοντέλα, με μια ποικιλία αρχείων ήχου ως εισόδους, κρίνοντας τα αποτελέσματα
από τα φασματογραφήματά τους, τις κυματομορφές και την ακρόαση των
παραγόμμενων αρχείων WAVE, επιβεβαιώνοντας τη καταλληλότητα της αριθμητικής
σταθερού σημείου για τα μοντέλα.

Στην συνέχεια, σχεδιάστηκε μια υλοποίηση υλικού που στοχεύει ένα Zedboard FPGA,
χρησιμοποιώντας τα Vivado HLS, Vivado και Vitis, που αναπτύχθηκαν από την Xilinx. Η
προκύπτουσα εφαρμογή συγκρίθηκε με μια προσέγγιση λογισμικού και τα
αποτελέσματα συγκρίθηκαν με το μοντέλο σταθερού σημείου που αναπτύχθηκε στο
Matlab.

Abstract

When it comes to digital audio, for a long time the most common format to store and
distribute music was the CD quality of 44.1 kHz sampling rate and 16 bit depth. For many
music enthusiasts, the CD quality is unable offer the best possible listening experience
possible, supporting the superiority of high-resolution audio formats. The jury is still out, on
the qualities and advantages of high resolution audio formats. This thesis diploma aims to
improve standard CD quality files with the application of the cubic spline interpolation
mathematical method on uncompressed .wav file, based on previous work done by
Triantafillos Mourtzanos[1].

Having studied the capabilities of the human ear and the role played by psychoacoustics on
the auditory experience and the mathematics behind audio engineering as well as
interpolation, the mathematical models of linear and cubic spline interpolation were
recreated, using Matlab, as presented by Triantafillos Mourtzanos, which utilized floating
point arithmetic. These models were then converted to a more hardware efficient approach,
using a four data point window of inputs and fixed-point arithmetic. The new models were
then compared, with a variety of audio files as inputs, judging the results by their
spectrograms, waveforms and the audibility of the resulting WAVE files, confirming the
viability of fixed point arithmetic for the models.

As a follow-up a hardware implementation was was designed targeting a Zedboard FPGA,
using Vivado HLS, Vivado and Vitis, developed by Xilinx. The resulting implementation was
compared to a software adaptation and its results were compared to the fixed point model
developed in Matlab.

Acknowledgments

First of all I would like to thank my family, as through their toil I was able to write this Thesis
in the first place. Then I would like to thank my supervising professor Apostolos Dollas, for
providing the basic idea of the thesis, his numerous contributions through this work, and all
in all, his eagerness to assist in the completion of the thesis any way possible. I would also
like to thank Pavlos Malakonakis for providing crucial assistance with the hardware design
tools used throughout this work. I would also like to thank the other members of the
committee, Eftychios Koutroulis and Michalis Zervakis for their role in my graduation.
Finally, I would like to thank all the my fellow students, with whom I had the honour of
studying with, over the years.

Table of Contents

Περίληψη 2

Abstract 3

Acknowledgments 4

Chapter 1: Introduction 9
 1.1 Motivation…………………………………………………………………………………9
 1.2 Objective…………………………………………………………………………………...9
 1.3 Contribution of the thesis………………………………………………………………...10
 1.4 Structure of the Thesis.…………………………………………………………………...10
Chapter 2 Relative Research 12
 2.1 Introduction to Music and Sound ………………………………………………………12
 2.1.1 Analogue and Digital Audio………………………………………………………...12
 2.1.2 Converting Analogue to Digital…………………………………………………….13
 2.1.3 Nyquist Sampling Theorem…………………………………………………………13
 2.1.4 Quantization…………………………………………………………………………..15
 2.1.5 Quantizing error and Dithering…………………………………………………….15
 2.2 Human Hearing…………………………………………………………………………...17
 2.2.2 Human Hearing Frequency Range…………………………………………………18
 2.2.3 Psychoacoustics………………………………………………………………………19
 2.2.4 The Mayer-Moran Experiment……………………………………………………...19
 2.3 Expressing Audio using Mathematics…………………………………………………..21
 2.3.2 Linear Systems………………………………………………………………………..22
 2.3.1 Sinusoidal Waves……………………………………………………………………..21
 2.4 Oversampling……………………………………………………………………………...22
 2.5 Similar work……………………………………………………………………………….22
 2.5.1 Signal Restoration using a Gabor Regression Model……………………………..22
 2.5.2 Interpolation of Audio Signals Using Linear Prediction………………………….23
Chapter 3 Interpolation 25
 3.1 Interpolation methods……………………………………………………………………25
 3.1.1 Linear Interpolation………………………………………………………………….27
 3.1.2 Spline Interpolation………………………………………………………………….28
 3.2 Mathematical description of Cubic Spline Interpolation……………………………..29
Chapter 4: Modelling and Simulation 35
 4.1 Introducing the model…………………………………………………………………...35
 4.2 First Generation model reproduction…………………………………………………..36
 4.2.1 Resampling…………………………………………………………………………...36
 4.2.2 Linear Interpolation…………………………………………………………………37

 4.2.3 Cubic Spline Interpolation……………………………………………………………...39
 4.2.3.1 The first Algorithm…………………………………………………………………39
 4.2.3.2 The second Algorithm……………………………………………………………...41
 4.2.3.3 The third Algorithm………………………………………………………………..45
 4.3 Adapting the Model for Hardware efficiency…………………………………………….48
 4.4 The Final Model……………………………….……………………………………………..50
 4.5 Frequency domain analysis………………………………………………………………...51
 4.6 Time Domain analysis……………………………………………………………………....61
 4.7 Acoustic Tests………………………………………………………………………………..64
 4.8 Regaining Lost Signal Information………………………………………………………..65
Chapter 5: Embedded System Design 68
 5.1 Hardware and Design Tools……………………………………………………………….68
 5.2 Additional Familiarization………………………………………………………………...75
 5.2.1 AXI Protocol…………………………………………………………………………….76
 5.2.2 Integrating AXI to the design…………………………………………………………78
 5.3 Transitioning the mathematical models to Vivado HLS………………………………..81
 5.4 Finalizing the Hardware Designs on Vivado…………………………………………….82
 5.5 Creating the Host Program on Vitis………………………………………………………82
 5.6 Verification and Results……………………………………………………………………83
 5.7 Hardware and Software timing comparison…………………………………………….86
Chapter 6: Summary, Conclusions and Future Work 87
 6.1 Summary…………………………………………………………………………………….87
 6.2 Conclusions and Commentary……………………………………………………………88
6.3 Future Work…………………………………………………………………………………...89

Bibliography 90

List of Figures

2.1: An example of an audio waveform
2.2: Example of aliased and non aliased signals
2.3: Quantizing Error Comparison
2.4: The structure of the human ear
2.5:Perceived Human Hearing
2.6: The experiment’s setup

3.1: An example of Linear Interpolation
3.2: An example of Cubic Spline Interpolation between 8 points

4.1: The tested sine wave
4.2: Linear interpolation applied on a part of a sine wave
4.3: The results of the second algorithm when applied on a sine wave
4.4: A comparison between cubic spline's second iteration and linear interpolation
4.5: The difference between the two results
4.6: A ten second audio signal, resulting from linear interpolation and cubic spline
4.7: Zooming in on the interpolated audio signal
4.8: Plot comparison of Linear and cubic spline interpolation using the third algorithm
4.9: Comparison of Linear and cubic spline interpolations on an audio file
4.10: The final Matlab model
4.11: The input file for the first round of tests, channel one in blue, two in orange
4.12: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the 1st channel
4.13: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the 2nd channel
4.14: Spectrogram of 48 kHz for Linear Interpolation for both channels
4.15: Spectrogram of 48 kHz for Floating Point Cubic Spline Interpolation for both channels
4.16: Spectrogram of 48 kHz for Full Precision Fixed Point Cubic Spline for both channels
4.17: Spectrogram of 48 kHz for limited precision Fixed Point Cubic Spline for both channels
4.18: Spectrogram of 96 kHz after Resampling
4.19: Spectrogram of 96 kHz for Linear Interpolation for both channels
4.20: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels
4.21: Spectrogram of 96 kHz for Full Precision Fixed Point Cubic Spline for both channels
4.22: Spectrogram of 176.4 kHz after Resampling
4.23: Spectrogram of 176.4 kHz for Linear Interpolation for both channels
4.24: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels
4.25: Spectrogram of 176.4 kHz for Full Precision Fixed Point Cubic Spline for both channels
4.26: Spectrogram of 176.4 kHz for limited precision Fixed Point Cubic Spline for both
channels
4.27: Spectrogram of 176.4 kHz for limited precision Fixed Point Cubic Spline for both
channels

4.28: Spectrogram of 176.4 kHz for Floating Point Cubic Spline and limited precision Fixed
Point Cubic Spline
4.29: Comparison of 176.4 kHz Linear interpolation
4.30: Comparison of 176.4 kHz floating point cubic spline interpolation
4.31: Comparison of 176.4 kHz full precision fixed-point cubic spline interpolation
4.32: Comparison of 176.4 kHz limited precision fixed-point cubic spline interpolation
4.33: All the Cubic Spline algorithms and the original signal
4.34: The original signal
4.35: The damaged signal
4.36: The interpolated signal

5.1: The workflow of the design process
5.2: Processor execution of example code
5.3: FPGA execution of example code
5.4: Loop execution on a processor
5.5: Loop execution on an FPGA
5.6: The Vitis workspace structure
5.7: Zedboard JTAG jumper configuration
5.8: Channel Architecture for Data Reads
5.9: Channel Architecture of Data Writes
5.10: AXI Interconnect Top-Level
5.11: The tutorial's Block Design in Vivado
5.12: The design produced by Vivado HLS
5.13: The pipelined portion of the design
5.14: The combinational portion of the design

List of Tables

5.1: Utilization Report of Hardware Designs

Chapter 1
Introduction

1.1 Motivation

In the last few decades, digital sound has dominated the music industry, due to its low
recording cost, ease of distribution in an increasingly digitalized market and increased audio
processing capabilities. As a result digital sound formats became the most prevalent in our
everyday lives, with a large library of great works being stored first in CDs and later on, with
the advent of the internet, converted to the Mp3 format making music accessible to a level
never before thought possible.

The success of the Mp3 format can be credited to its small space requirement, accomplished
by the omission of sound undetectable by the human ear, compared to other compression
methods. As such Mp3 is the dominant format in platforms like Spotify, and Youtube, the two
most popular and accessible platforms for music.

However, when performing lossy audio encoding, such as creating an MP3 data stream, there
is a trade-off between the amount of data generated and the sound quality of the results[34].
This loss of data leaves something to be desired by more demanding listeners, making CDs a
better option, as far as audio quality is concerned. Unfortunately, CDA (the CD standard) is it
self a lossy compression method, due to the nature of sampling[2].

Consequently, listeners well versed in music, tend to prefer LP (Long Playing) records as a
medium of enjoying their favourite music. LPs are an analogue sound storage mediums and
thus they maintain the sound and feel of live music to a greater extend. This statement
remains the source of heated debate, leading to the emergence of multiple higher frequency
formats, trying to abridge the gap between analogue and digital audio, providing more
samples.

1.2 Objective

Previous, work on the subject used and compared two interpolation methods, linear
interpolation and cubic spline interpolation in order to increase the quality of music tracks,
extracted from CDs using an FPGA. Results were encouraging, achieving an increase in audio
quality, mathematically and acoustically. Thus, in this thesis, a more hardware efficient and
less computation intensive solution was explored and documented, using fixed point
arithmetic and windows of four samples of input data to achieve similar results.

The experiments present in this thesis are conducted using Matlab, in order to estimate the
effectiveness of the proposed solution. An argument could be made for using C/C++ for this

purpose since Matlab is optimized for floating point arithmetic calculations. However Matlab
allows for easy demonstration of results, using plots, spectrograms, resampling and other
functions, which are instrumental to the experiments.

First a floating point model was created to recreate the results of the aforementioned work,
with the extra addition of a data window, as input. After the code for fixed point cubic spline
interpolation was developed in line with the previously mentioned constraints, with the
objective of four times the frequency of CDs and 16 extra bits of data per sample, bringing the
final quality up to 176,4 kHz and 32 bits of depth.

This format may not be in line with the standard of the music industry of: 192kHz and 24 bits,
but it does not diverge significantly from them, and is often preferred by audio engineers.
Finally two FPGA designs were created, one with the purpose of data-point recovery and the
other is focused on upsampling to the aforementioned specifications, using the Xilinx HLS
developing kit. The algorithms tested with Matlab, was translated to HLS friendly C++ code,
in order to be downloaded to a Zedboard FPGA.

1.3 Contribution of the thesis

The present thesis is proposing a different method of providing superior digital audio
quality, closer to the expectations of experienced listeners, using a design tailored to the
strengths of FPGA technology.

The IP developed for the purposes of this work, is a resource inexpensive and timing efficient
module, that can be easily integrated in FPGA designs targeting relatively inexpensive
platforms but all the while ensuring high performance and minimal power consumption.

Additionally, this thesis tries to establish the fact that there is not always need for high
arithmetic precision, provided by arithmetic models such as floating-point, as far as audio
engineering is concerned. The fixed point models explained on chapter 4, provide substantial
results while avoiding the intricacies of implementing a floating point arithmetic model.

Finally, the thesis explores the viability of cubic spline interpolation as a standalone
interpolation method for data-point recovery or upsampling applications.

1.4 Structure of the Thesis

The structure of the thesis is as follows:

In chapter 2, general information about audio engineering, along with some of its basic
principles is explained, along with an explanation of the human auditory experience and

factors that affect it. Finally chapter 2 presents examples of similar work on the field of audio
interpolation.

Chapter 3 presents the theoretical and mathematical framework of linear and cubic spline
interpolation methods, in order to provide a basis for the algorithms explored and developed
in this thesis.

Chapter 4 explains the design process of a mathematical model destined for hardware
implementation. The process followed in that chapter was to recreate the original model
presented in the first generation of this work, followed by its conversion to a four data point
input window utilizing fixed-point arithmetic. Then the models are compared using
spectrograms waveforms and auditory tests.

In chapter 5 the development of a hardware design is presented along with the interfacing
methods utilized to create an efficient embedded FPGA design. This design is then compared
to a C version of the mathematical model. Finally the results are compared to the ones given
by the mathematical model created in Matlab.

Chapter 7 details a summary of this thesis along with commentary, conclusions, and
possibilities for future research and development.

Chapter 2:
Relative Research

2.1 Introduction to Music and Sound

Music is an art form. Meaning some of its main purposes, among others, include the
expression of human emotion and the exoneration of beauty. The medium of music is sound,
subsequently in order to properly understand and process music one must understand
sound, as well as human hearing, by virtue of being the sense by which humans perceive
sound.

2.1.1 Analogue and Digital Audio

Sound is an analogue mechanical wave. It can be mathematically represented by function of
one independent variable, specifically a function of sound pressure in correlation to time[3].
The diversity of sounds in an audio signal is not a result of the mere value of sound pressure,
but it is dependent on the frequency of the waveform. For example, striking the string of a
guitar causes it to oscillate striking the neighbouring molecules of air to oscillate at the same
frequency as the string. The easiest methods of recording, processing and distributing sound
waves involves using the Nyquist sampling theorem in order to produce Digital audio files,
whose quality depends on the particulars of each method.

Figure 2.1: An example of an audio waveform

For analogue audio signals the variable of time is continuous. As a result there is an
interrupted stream of sound data, for a listener to experience. Analogue recordings are more
accurate and natural sounding due to changes in air pressure being captured exactly as
recorded[22].

In contrast, for digital audio signals the variable of time is distinct, meaning that audio signals
have distinct values of sound pressure, that belong to a specific and finite set represented by
bits. However the gaps in the signals only have a small interval between them, undetectable
to humans. Unfortunately, to trained listeners, digital might, sometimes, sound unnatural, too
clean and far too perfect[22], forgoing the “warmth” of analogue sound.

2.1.2 Converting Analogue to Digital

Most commonly a digital audio signal is procured by inputting an analogue audio signal to
an ADC(Analogue to Digital Converter). The ADC, most commonly, is going to apply two
processes to the analogue signal: sampling and quantization [23]. applying sampling on an
analogue signal, results in values evenly distributed through time. In order to procure
accurate results, so that the resulting sequence of samples uniquely defines the analogue
signal, the proper sampling rate must be selected[4]. The proper rate is given by the Nyquist
sampling theorem.

2.1.3 Nyquist Sampling Theorem

The Nyquist sampling theorem states that: Any signal, regardless of its length, can be
considered as consisting of sinusoidal components. Therefore they possess characteristics of
periodic functions such as frequency(f). Being consisted of multiple such signals means that
there is a frequency band(bandwidth) within a given function. The required frequency band
is directly proportional to the signalling speed (fs), and in fact needs to be equal to at least two
times the sampled signal’s bandwidth, in order to maintain all of the signal’s information[5].
Which ultimately means that:

f s≥2W

In case the sampling rate does not satisfy the above expression, there will be overlapping
samples in the produced signal. This phenomenon results in the distortion of the audio signal
resulting in what is called, aliasing. In many instances, before sampling, anti-aliasing, low-
pass filters are used to further limit the bandwidth of the input signal[6]. When sampling
audio signals, a low pass filter, with a cut-off frequency of 20kHz is used since the preferred

sampling rate of audio signals of 44.1 kHz, already satisfies the Nyquist sampling rate, since
the absolute width of human hearing is 20Hz to 20kHz, with frequencies between 2 kHz and
5 kHz being the most sensitive to human ears.

The typical method of digital representation of sampled analogue audio signals is Pulse-code
modulation (PCM). It is the standard form of digital audio in computers, compact-discs, WAV
files and other digital audio applications.

Common sample depths for PCM are 8, 16 or 24 bits per sample, with a sampling frequency
depending on the desired format (e.g. CDs have a sampling frequency of 44.1 kHz, while
DVDs have a frequency of 48 kHz)[33]. It should be noted here that the wikipedia article
includes a small mistake as it states that 20 bits per sample are possible. However this is
technically incorrect as the bit-width needs to be a multiple of 8.

Figure 2.2: Example of aliased and non aliased output signals(image source:
[35])

 In a PCM stream, the amplitude of the analogue signal is sampled regularly at uniform
intervals, after which quantization must be applied.

2.1.4 Quantization

An analogue signal can, in theory, receive infinite amplitude values even if those values are
within a finite range. If a signal is sampled, the potential values of each sample are also
infinite. However human hearing can detect amplitude differences only if they are greater
than a given value. So in order to procure a digital signal that is similar to its analogue
counterpart, the difference in amplitude must remain undetected to the listener.[6]. In order
to satisfy this constraint, a processes known as Quantization is applied to the samples of the
analogue signal.

Quantization is the process by which the samples of a given analogue signal receive
amplitude values from within a finite set of values. The set of possible amplitude values is
defined by the bit depth. For example, 8-bit quantization has 28 = 256 possible values, 16 bit
quantization has 216 = 65,536 possible values, and so on[24]. The values are chosen by the
quantizer based on the input voltage it receives, locating the appropriate quantization
interval wherein it resides. It should be noted that the intervals at the extreme ends have no
upper boundary[7].

After the quantization process is complete, the series of produced values must be represented
in a format compatible with the targeted digital equipment. This processes is called encoding.
During encoding, the series of bits is split into words depending on the desired bit depth.

Quantization is obviously quite a necessary, process. However unlike sampling, it is
irreversible and introduces a new type of error, quantizing error, which ultimately means,
that some of the information of the original signal is irrecoverable.

2.1.5 Quantizing error and Dithering

Quantization, introduces a new type of error, known simply as quantizing error, which is
defined as the difference between the analogue, input signal and the quantized output signal
[4]. If the input is represented by m and the output by v, the quantizing error(q) for any given
time, where v is defined, is given by:

q=m−v

The higher the signal level, the more the signal is distorted by the quantizing error, effectively
functioning as noise, since the signal is more strongly correlated with the error. In the music
industry the main method to decorrelate the error from the signal, is dither[7].

Dither makes the quantization process unpredictable and gives the system a noise floor. In
digital audio systems, a dither signal is added to the signal prior to quantization and no
attempt is made in the DAC to subtract it. The effect on the output signal is a slight reduction
to the signal to noise ratio attainable by other dithering methods, however no non-linearities
are introduced, making the noisier output an acceptable trade off. The unpredictability of
quantization results from the fact that by the addition of the dithering function, the sample
find their quantizing intervals in different places[7].

Obviously, dithering does not remove the quantizing error, but rather mitigates it, converting
the unacceptable sounding distortion of simple quantization, into broadband noise which is
more benign to the human ear[7].

Figure 2.3: In this figure the signals m(green) and v(blue) are shown in relation to each other and the
resulting error q(red).

2.2 Human Hearing

 The aforementioned observations of sonic behaviour and the techniques derived from them
raise the question of how exactly does the human ear function and how our perception of
sound is affected by differences between the parameters of each sound wave. The structure of
the ear is one of the prime factors that determine auditory perception.

The visible part of the ear also referenced as outer ear is named pinna. The pinna leads to the
auditory canal, also called meatus, which leads to the eardrum or tympanic membrane. The
area beyond the eardrum is called inner ear which contains the hidden parts of the ear. The
pinna acts as as a sound collector from the outside world, reflecting the wave to the auditory
canal. The auditory canal guides a sound wave, which is proportional to the intensity of the
original sound wave, to the eardrum. Three little bones in the air-filled inner ear, which are
attached to the eardrum, excite vibrations in the cochlea, which is a liquid-filled part of the
inner ear. With the vibrations transmitted in the cochlea, the nerves behind the cochlea are
excited, converting the sound wave into nerve impulses, which will be transferred to the
brain[8].

The sound wave that reaches the cochlea, is affected by the very structure of the auditory
system, and even the head and shoulders. For example the guiding effect of the convolutions
of the pinna increases with increasing frequency. The effects of the aforementioned structures
becomes significant, however, only when their size is comparable to the wavelength of the
sound wave[8].

Figure 2.4: The structure of the human ear (image source:[36])

Sound can consist of multiple frequencies and the difference between these frequencies,
affects how the brain interpretes it. This frequency analysis is performed by the basilar
membrane of the cochlea. For example a sound consisting of two frequencies that are not
widely separated, we perceive it as beats. If they differ by a few cycles we hear a single rising
and falling sine wave[8].

It is even possible to mask a frequency with another frequency that is close to it by adjusting
its intensity. The bandwidth within which it is possible to mask a frequency is called critical
bandwidth. Outside the boundaries of the critical bandwidth it is impossible for the
frequencies to mask one another or even interact, thus they are heard separately [8].

2.2.2 Human Hearing Frequency Range

Audio signals such as music, are limited in the range of 20 Hz to 20 kHz, which is the absolute
border of human hearing, in a non-laboratory environment, with the ear being most sensitive
in the 2 to 5 kHz range. The upper end of the range degrades with age and drops to about 16
kHz. This drop in bandwidth is attributed to the various sonic stimuli a human ear is
subjected to, as they eventually damage the more fragile cells in the cochlea responsible for
the perception of higher frequencies. These cells are irreplaceable. Loudness also affects the
impact of sound to the ear, meaning that the effect of sound to the human ear is determined
by a function of loudness and frequency as represented in the next graph (Figure 2.5). The
range of loudness appears to be as low as 0 dBs and as high as 80dB. However higher values
of the decibel scale are still audible but can potentially cause permanent damage and even
pain to the ear.

The aforementioned values are not absolute, as there are many different attributes that must
be accounted for. Such attributes include genetics, living standards and condition in tandem
with the person’s habitat and environment, combined with the fact that not every aspect of
neither genetics nor hearing is understood perfectly to this day.

2.2.3 Psychoacoustics

Psychoacoustics is the field of study which involves the scientific of sound perception, it is an
interdisciplinary field which includes psychology, acoustics, electronic engineering, physics,
biology, physiology, and computer science. Its contribution to this study concerns the
different ways, different people, depending on their genetics, experiences and intimacy with
music, impact their perception of it. As it was previously stated, sound perception is a
combination of mechanical wave physics and a series of sensory and perceptual events.[25]

Psychoacoustics are often applied in computerized audio. For instance, the lossy mp3 audio
compression method relies on psychoacoustics to maintain the illusion of untampered audio
while drastically increasing information loss. Other applications include the masking of
frequencies that audio producers want to de-emphasize, low quality audio systems etc.

2.2.4 The Mayer-Moran Experiment [9]

As it was stated in the comparison between digital and analogue, there had always been a
debate about wether or not the standard 16-bit/44.1-kHz CD pulse-code modulation format is
sufficient for a complete auditory experience. Furthermore, the perception of audio quality
seems to be non subjective. The Mayer-Moran experiment was an attempt to answer the
question: Does high resolution audio provide any augmentation to the auditory experience,
or is it excessive with no significant benefits?

Figure 2.5 : Perceived Human Hearing (image source:[37])

The experiment is a blind comparison between SACD(Super Audio CD)/DVD-A formatted
audio, which utilizes a frequency of 96 kHz and increased word length, claimed to offer
superior-sounding playback, and standard CD audio. For about a year ABX tests were
conducted with the participants being of various backgrounds but also including people with
significant musical experience such as audio engineers and students of musical technology.

 An ABX test is simply conducted by presenting the subject with two choices of sensory
stimuli to identify detectable differences between them. There are two known samples,
sample A, the first reference, and sample B, the second reference, followed by one unknown
sample X that is randomly selected from either A or B. The subject is then required to identify
X as either A or B. If X cannot be identified reliably with a low probability value in a
predetermined number of trials, then it cannot be proven that there is a perceptible difference
between A and B. All in all the ABX test answers whether or not, under ideal circumstances, a
perceptual difference can be found between the compared samples [26].

The subjects’ upper hearing limits have been measured to spot any correlation between this
parameter and the audibility of differences. The source audio is given by a SACD/DVD-A
player. The CD quality signal is simulated by using a high quality CD recorder as a bottleneck
for the high resolution signal. The levels of both channels were matched to within 0.1 dB.
Audio switching was handled by an ABX CS-5 double-blind comparator. Just before the
playback begins the signal goes through a pee-Amplifier.

Figure 2.6: The experiment’s setup(image source:[9])

2.3 Expressing Audio using Mathematics

As was already stated sound waves are sinusoidal in nature, meaning that they can be
represented, mathematically, as a linear correlation of sine waves. The complexity of sound
waves and music in particular, seems far removed from a linear system. This can be explained
by the fact that sound propagation in air at intensities encountered in musical performances is
a linear phenomenon, as are the vibrations of strings and columns of air, even the vibrations
along the cochlea of the ear ca be approximated by linear systems[8].

2.3.1 Linear Systems

A linear system is a system whose behaviour is described by a linear differential equation or
by a linear partial differential equation. In such an equation constant times partial derivatives
with respect to time and space equals 0 or to an input driving function. For example given
input signals labeled In1 and In2 which produce output signals labeled Out1 and Out2
respectively, the combined input In1+In2 should produce an output equal to Out1+Out2 [8].

2.3.2 Sinusoidal Waves

A true sine wave lasts forever, identical periods are being repeated across past and future. Its
characteristics are given by the following three values: Amplitude(A), frequency(f) and
phase(p), represented as:

Wave=A∗sin (2∗pi∗f∗t + p)

Amplitude represents the highest possible value the wave can reach, frequency represents
how often the wave oscillates, measured in Hertz (cycles per second or s -1) and finaly the
phase describes when the wave reaches its peak amplitude.

It is possible to express sine waves in terms of relative amplitudes, this is achieved by
converting the relative value to decibels (dB). Supposed two sinusoidal waves with the first
have an amplitude of A1 and the second having an amplitude of A2. The relationship
between the two vibrations, in dBs is given by:

20∗log(A 1/ A 2)

A musical sound wave can be regarded as the summation of different sinusoidal waves as as
stated above the musical instruments, the propagation of their oscillations through the air and
into the human ear is a linear system. Meaning that mathematical processes like interpolation
can be entrusted and utilized to produce accurate results.

2.4 Oversampling

Oversampling means using a sampling rate which is substantially greater than the Nyquist
rate thus as already explained above not required to obtain a given signal. On the other hand
oversampling allows a given signal quality to be reached without the need for expensive
recording equipment. If bandwidth is replaced by sampling rate and SNR is replaced by a
function of word length, the same must be true for a digital signal. Thus raising the sampling
rate potentially allows the word length of each sample to be reduced without information
loss. Information theory predicts that if an audio signal is spread over a much wider
bandwidth, oversampling can be used to achieve higher SNR for a given demodulated signal
than that of the channel it passes through whether or not the system is digital or analogue.
Neither sampling theory nor quantizing theory require oversampling to be used to obtain a
given signal quality[7].

2.5 Similar work

There are multiple interpolation methods used for different purposes. The most common
purpose of interpolation applications appears to be the recovery of lost data rather than
utilizing it for higher quality upsampling.

2.5.1 Signal Restoration using a Gabor Regression Model

One application for signal restoration is called: Interpolation of missing data values for audio
signal restoration using a Gabor regression model, which aims at the problem of missing data
interpolation over repeated short gaps in audio signals, which for the purposes of their
application, are assumed to be known a priori. The method is a formalization of the e overlap
and add method commonly used for audio signal analysis and synthesis [10].

Garbor analysis is a branch of mathematical theory, which can be used when digital audio
signals are processed. Gabor analysis is based on the idea of representing arbitrary signals of
finite energy in terms of building blocks which have a well-defined “center of gravity” in a
time-frequency sense. Instead of thinking of cutting a signal into pieces, Fourier analysing it
and putting it back together after some processing, the Gabor approach thinks of a signal
being projected onto basic functions, which are concentrated in certain regions of the time-
frequency plane.[11]

The model first divides the underlining audio signal into overlapping segments via the
multiplicative action of a symmetric window g whose effective size is chosen as a function of
the analysis window length so that it lies in the range of 15–40 ms, depending on the time-
varying nature of the audio signal class under consideration. The analysis coefficients are
calculated as inner products of the original audio signal and modulated versions of some

chosen analysis window. Most audio signal processing approaches begin with the Gabor
transform of the noisy data, given by G y∗ according to the chosen Gabor system. Here,
however, the synthesis coefficient representation is directly estimated. Finally, Bayesian
estimation is used for the Gabor regression model, in order to calculate the noise variance
appearing in the equations. [10].

Overall the researchers conclude that, the suitability of a Gabor regression model is evidenced
by the fact that promising restorations, from both the objective and subjective points of view
may be obtained even in cases where over 35% of the data values are missing.

2.5.2 Interpolation of Audio Signals Using Linear Prediction

This application uses linear prediction in sinusoidal models in order to achieve long
interpolation. The sinusoidal model is used often for musical audio processing purposes such
as musical sound processing and audio coding. Parameters of the sinusoidal model are
extracted from the original sound in a frame-based manner, and a sound that is close to the
original one can be synthesized from the extracted parameters. Often times, however
missing information about sinusoids can occur, this application aims at recovering this
information.

More specifically, sinusoidal modelling aims at representing a sound signal as a sum of
sinusoids of given amplitudes, frequencies, and phases. So, after modelling a given audio
signal in this manner, a common practice is for the amplitude to be interpolated linearly, and
cubic interpolation is used for the phase, the frequency can be found by the differentiation of
the cubic phase polynomial.

The researchers proposed a different approach, since they identify that despite the fact that
the above method, which is based on a polynomial interpolation of the parameters of the
partials, preserves the harmonic relation among partials, it does not take into account the
modulations of the parameters of the partials. The modulations are important since the play a
decisive role in audio perception.

The proposition states that parameters of partials, can be modelled by an AR model and
linear prediction is used in order to predict the parameters of the partials in the missing
region. In linear prediction, the current sample can be approximated by a linear combination
of past samples of the input signal. The first step to interpolate corrupted sinusoidal data in
the missing region is to decide which partial of one side should be linked to which partial of
the other side to form a unique partial. The time interval is so long that the evolution of the
partials within the missing region is taken into account to achieve a good match. The

different variables of the signal, such as amplitude frequency and phase are calculated by
using the original method paired with an AR model.

In that work it is shown that, the parameter of the partials allows those partials to be
interpolated reliably. Partials having simple modulations such as vibrato or tremolo allow
high-quality interpolation for gap sizes up to 1 s, which is a significant data gap. The
researchers had trouble, where more complex modulations were concerned, but their
proposed method shows a significant improvement over a simple polynomial interpolation
method[12].

Chapter 3:

Interpolation

Interpolation is a type of estimation, a method of procuring new data points within the range
of a discrete set of known data points. Often enough, a number of data points, obtained by
sampling or experimentation, which represent the values of a function with a set number of
values of the independent variable, are sometimes insufficient. To overcome this difficulty, it
is often required to estimate the value of that function for an intermediate value of the
independent variable. Thus extrapolating the amount of data available. As already explained,
during audio sampling, data points are lost. Interpolation is going to be utilized in order to
estimate the value of the missing data points increasing audio resolution.

Interpolation and other methods of data recovery are quite necessary because filling data
points in a straight line between the original points causes distortion. Distortion is the
alteration of the original shape or other characteristic of a signal. In audio processing terms, it
means the alteration of the waveform of an audio signal. All in all distortion is undesirable, in
our case, a mathematically acute method such as interpolation is required.

In this chapter the concept and theory behind interpolation is explained, however the
mathematical models developed for the purpose of this thesis have some differences, which
are explained in the next chapter as they come up.

3.1 Interpolation methods

Suppose a set of real values x1,x2,.........,xn and each corresponds to real values y1,y2,........,yn with
the values of yi being often the result of measurements, sampling or other such processes that
do not require or define a proper mathematical function. Here x1<x2,.........<xn and yi is some
observed or mathematically defined real number. One-dimensional interpolation aims to
create a function f(x): so that for each i it is true that: f(xi)=yi. Using this function values of y for
each arbitrary x in between the existing points can be reasonably calculated. The task of
estimating f(x), for an arbitrary value of x can be interpreted as a fitting a smooth curve
through the x axis.[13].

Interpolation methods must model the function, in between the known points, by some
plausible function form. The form should be sufficiently general so as to be able to
approximate large classes of functions which might arise in practice. By far most common
among the functional forms used are polynomials. Other interpolation models include:
rational functions such as quotients of polynomials, trigonometric interpolation, which

utilizes Fourier related methods, as well as linear and spline interpolation. It is worth noting
that interpolation is related to, but ultimately different from, function approximation, which
consists of finding an approximate function to use in place of a more complicated one.[14].

Despite the fact that, there are a number of theorems about what sort of functions can be
recreated to a satisfactory degree, these theorems are not applicable to real problems. If we
know enough about a function to apply a theorem, typically interpolation is not really
needed[14].

As already described, the heart of the interpolation problem is a definition of how a function
will behave between pre- established data points. After all the data points can be interpolated
by an infinite number of different functions, and we must have some criteria to select among
them. The normal criteria are in terms of smoothness and simplicity of the function. Most
functions that result from interpolation processes, are built out of linear combinations of
elementary functions[14].

One historically important type of interpolating function is polynomial interpolation, which
are functions expressed in a set of algebraic polynomials. These functions have the advantage
of being simple to evaluate. Summation, multiplication and integration or even differentiation
is easily applied. Any continuous function f(x) can be a satisfactory approximated on a closed
interval by a polynomial pn(x)[14].

Conceptually, the interpolation process has two stages with them being: the fitting of an
interpolated function to the provided data points and the calculation of the intermediate
points. However this two stage method is considered inefficient as the result becomes more
susceptible to round-off error. A better approach consists of constructing a functional estimate
f(x) from the N tabulated values as needed. The further away the included points from the
area in the x axis, where we want to calculate intermediate values of f(x), the higher the error
percentage. So, given a large signal which is to be interpolated, it is considerably better to use
rather small windows of points in the calculation of the interpolating function f(x)[14].

The number of points used to procure the interpolating function is called the order of the
interpolation. As discussed, increasing the order of the interpolation does not necessarily
increase its accuracy unless the added points are relatively close in regards to scale, as the
true, unknown, function can behave in a considerably different manner as it progresses.
Unless there is solid proof that the interpolating function is close in form to the original,
caution is advised when tampering with high order interpolation. Regardless of the method
interpolations with 4, 5 or 6 points are thought of performing the best[14].

3.1.1 Linear Interpolation

The simplest interpolation method is to locate the nearest data value, and assign the same
value, to the arbitrary point of the x axis. However there is little merit in this approach, as
linear interpolation is almost as simple and yields more accurate results. In mathematics,
linear interpolation is a method of curve fitting using linear polynomials to construct new
data points within the range of a discrete set of known data points. Linear interpolation takes
the approximate first derivative of the data points into consideration. Consider the following
example given two data points ya and yb which correspond to xa and xb respectively with xa< xb

. In order to calculate the value of y in the intermediate point x using linear interpolation[27]:

y= ya+
(yb− ya)(x−xa)

xb−xa

.

Linear interpolation is quick and easy, but it is not very precise. Its major advantage is its
simplicity and the low requirement of two required data points to calculate. Linear
interpolation performs well when the difference between xb and xa is small with regard to the

Figure 3.1: An example of linear
interpolation(image source:[27])

scale, making it a competitive choice for problems where accuracy of the interpolated values
is not paramount.

3.1.2 Spline Interpolation

Remember that linear interpolation uses a linear function for each of intervals [xk,xk+1]. Spline

interpolation uses low-degree polynomials in each of the intervals, and chooses the
polynomial pieces such that they fit smoothly together. The resulting function is called a
spline. In the present work the spline interpolation method uses third-degree polynomials,
this is called cubic spline interpolation[28].

If the spline is a function represented by s(x) and if the slopes are small, the second derivative
s’’(x) approximates the curvature and the differential arc length is approximated by dx. Thus
the energy of such a linearised spline is proportional to:

 ∫(s ' ' (x))2dx .

When the knots (x1,y1),(x2,y2),......,(xn,yn) are given, the linearised interpolating spline s(x) is a
function such that s(xi)=yi , with i=1,2,.....,n and such that the following integral is minimized:

∫
x1

xn

(s ' ' (x))2dx .

Furthermore, the cubic spline function with s’’(x1)=s’’(xn)=0 is called a natural spline or in this
case a natural cubic spline. This is the unique function possessing the minimum curvature
property of all functions interpolating the data and having a square integrable second
derivative. In this regard cubic spline is the smoothest function which can be used for data
interpolation.

In n-1 intervals between nodes there are n-1 separate sections of cubic curves, each with four
parameters, making 4n-4 parameters to be determined. The fact that the function s is
continuous and has continuous first and second derivatives at each of the n-2 interior nodes xi

amount to 3(n-2) conditions on s. Also, the fact that s(xi)=yi for each of n nodes imposes n more
conditions on s, making the number of required conditions equal to 4n-6. As such two more
conditions are needed to completely determine the spline making the minimum required
number of points equal to 4. As already explained we can set the first and last points’ second
derivative to 0 in order to procure the natural spline.

3.2 Mathematical description of Cubic Spline Interpolation

The construction of a cubic spline is a simple and numerically stable process. Given the
subinterval [xi,xi+1] the following are derived:

hi=x i+1−xi ,

w=
x−x i

hi

,

 w '=1−w .

As x is assigned values from the aforementioned subinterval, w ranges from 0 to 1 and w’
from 1 to 0. Then we can represent the spline on this particular subinterval by:

s (x)=wy i+1+w ' y i+hi
2[(w3−w)σ i+1+(w '3−w ')σ i]

where σ is a certain constant that will be elaborated upon shortly. The first two terms of the
expression represent standard linear interpolation as we have already seen, on the other hand
the term in the brackets is, as it is called, a cubic correction term the will provide more
appropriate smoothness to the interpolated data. Notice that the correction term vanishes at
the end points so that:

s (xi)= y i

and

s (x i+1)= y i+1

Figure 3.2: An example of cubic spline interpolation between
8 points(image source:[40])

Thus s(x) interpolates the data regardless of σ. We now differentiate s(x) thrice, using the
chain rule and the fact that w’=1/hi and (w’)’=-1/hi:

s '(x)=
y i+1− y i

hi

+h i[(3w2−1)σ i+1−(3 w ' 2−1)σ i] ,

s ' ' (x)=6 wσ i+1+6 w' σ i ,

s ' ' ' (x)=6
σ i+1−σ i

hi

.

Note that s’’(x) is a linear function which interpolates the values 6σι and 6σι+1 , so as a result:

σ i=
s ' '(x i)

6
.

This summarizes the nature of σ but its value remains to be determined. It should be noted
that s’’’(x) is a constant on each subinterval and as a result the fourth derivative vanishes.
Evaluating s’(x) at the end of the subinterval produces:

s '1(x i)=Δi−hi(σ i+1+2σ i) ,

s '2(x i)=Δi+hi(σ i+1+2 σ i),

where

Δi=
y i+1− y i

hi

.

S1 and S2 are used temporarily because the formula for s(x) holds only on [xi,xi+1], so the
derivatives at the end points are one-sided derivatives. To obtain the desired continuity in
s’(x) we impose the following conditions at the interior knots:

s1(x i)=s2(x i), i=2 ,, n−1.

Although the value of s2 comes from considering the subinterval [xi-1,xi], a formula for it can
be obtained simply by replacing I with i-1 in s’2(xi+1). This leads to:

Δi−1+h i−1(2 σ i+σ i−1)=Δi−hi(σ i+ 1+2σ i)

hence

hi−1 σ i−1+2(hi−1+hi)σ i+σ i+1 hi=Δi−Δi−1 , i=2 ,, n−1.

This is a system of n-2 simultaneous linear equation involving n number of unknowns, σi ,
i=1,2,….,n. Two additional conditions must be specified to uniquely define the interpolating
spline. There are several ways of picking these two conditions, one of which is the following.

Let c1(x) and cn(x), which are unique cubics which pass through the first and last four data
points, respectively. The two end conditions match the third derivatives of these cubics, more
precisely:

s ' ' ' (x1)=c1 ' ' '

and

s ' ' ' (xn)=cn ' ' '

The constants c1’’’ and cn’’’ can be determined from the data without the need to calculate
c1(x) and cn(x) as shown bellow:

Let:

Δi
(1)=

y i+1− y i

x i+1−x i

,

Δi
(2)=

Δ i+1
(1) −Δi

(1)

x i+2−x i

and

Δ i
(3)=

Δi+1
(2) −Δi

(2)

x i+3−xi

The first group of the above values consists of approximations to first derivatives, while the
following two are known as divided differences. 2Δi

(2) and 6Δi
(3) are approximations of second

and third derivatives respectively. So we can deduce that:

c1 ' ' '=6 Δi
(3)

and

cn ' ' '=6 Δn−3
(3) .

Consequently we require that:

Δ1
(3)=

σ2−σ1

h1

,

and

Δn−3
(3) =

σn−σ n−1

hn−1

.

In order to achieve symmetry in the system of equations, these last two equations will be
multiplied by hi

2 and hn-1
2, which yields:

h1
2 Δ1

(3)=h1 σ2−h1 σ1 ,

and

−hn−1
2 Δ1

(3)=−hn−1 σ n+hn−1σ n−1.

For the spline with these end conditions the σ must satisfy the following system of n linear
equations in n unknowns:

(
−h1 h1 0 0 0
h1 2(h1+h2) h2 0
0 h2 2(h2+h3) h3

. . .
. . .

. . .
−hn−2 2(hn−2+hn−1) −hn−1

0 0 −hn−1 −hn−1

)(
σ1

σ 2

σ3

.

.

.
σn−1

σ n

)=(
h1

2 Δ1
(3)

Δ2−Δ1

Δ3−Δ2

.

.

.
Δn−1−Δn−2

−hn−1
2 Δn−3

(3)

)
The matrix of coefficients has several, special properties. First of all the matrix is tridiagonal,
meaning that it has nonzero elements on the main diagonal, the first diagonal below, and the
first diagonal above the main diagonal, with the rest of the matrix being filled with zeroes.
The matrix is also symmetric and for any choice of x1<x2<...<xn, the matrix is nonsingular and
diagonally dominant.

Thus a unique solution σι,…,σn always exists. It can also be proved that for any reasonable
choice of x1,x2,…,xn, the coefficient matrix is well conditioned. In conjunction with the fact
that the matrix is diagonally dominant accurate solutions can be calculated using Gaussian
elimination without scaling or pivoting.

 Applying Gaussian elimination to the original system reduces it to upper triangular form:

(
a1 h1 0

a2 h2

a3 h3

. .
. . .
. . .
. . .

. hn

0 an

)(
σ1

σ2

σ3

.

.

.

.

.
σn

)=(
β1

β2

β3

.

.

.

.

.
βn

) .

The elements of the ai group are given by:

a1=−h1 ,

ai=2(hi+hi−1)−
hi−1

2

ai−1

,i=2,3 ,... , n−1 ,

an=−hn−1−
hn−1

2

an−1

,

the elements of the βi are given by:

β1=h1
2 Δ1

(3) ,

β i=(Δi
(1)−Δi−1

(1))−
hi−1 β i−1

αi−1

, i=2,3 , ..., n−1,

βn=−hn−1
2 Δn−3

(3) −hn−1

βn−1

an−1

,

and finally, the coefficients σi can be calculated by back substitution as follows:

σn=
βn

an

,

σ i=
β i−hi σ i+1

ai

, i=n−1 , n−2 , ... ,1.

However it may be preferable, in order to achieve easier manipulations such as derivatives or
integrals, to calculate the actual cubic coefficients bi ,ci , and di , i=1,2,…,n-1,

for each interval [xi,xi+1], where:

s (x)= y i+bi(x−x i)+c i(x−x i)
2+di(x−x i)

3 , x i≤x≤x i+1 .

These coefficients, for the values of i=1,2,…,n-1, are given by:

bi=
y i+1− y i

hi

−hi(σ i +1+2 σ i) ,

c i=3σ i ,

d i=
σ i+1−σ i

hi

.

At this point it is worth noting that nothing, in the mathematics, of cubic splines strictly
forbids the use of a value of x which is greater than xn . However this process is known as
extrapolation and its results become less and less reliable the greater the value of x
becomes[13].

Chapter 4:
Modelling and Simulation

The use of modelling and simulation within engineering is well recognized for its ability to
aid in delivering a better solution to the problem that needs to be addressed. Modelling and
simulation helps to reduce costs, increase the quality of products and systems, and document
and archive lessons learned. Because the results of a simulation are only as good as the
underlying model, and as a result particular attention is required to its development. To
ensure that the results of the simulation are applicable to the real world, a significant amount
of understanding of the implementation’s assumptions, conceptualizations, and constraints.
[29]

Audio models can be handled to a satisfactory degree by Matlab. The most common method
of handling audio in Matlab is storing the audio signal data as a vector of samples, with each
individual value being a double-precision floating point number. A sampled sound can be
completely specified by the sequence of these numbers plus one other item of information:
the sample rate. However the majority of digital audio systems differ from this in one
significant respect, and that is they tend to store the sequence of samples as fixed-point
numbers instead. The present approach will be utilizing a fixed-point data representation, as
the title of this thesis suggests.[15]

On the other hand, this is second generation of a system modelled and implemented using a
floating-point format. As a result a good understanding of the original model is required, in
order to transition it to a fixed-point format. In order to achieve that level of understanding
the first phase of the modelling process will consist of modelling an algorithm for both cubic
spline and linear interpolation, using floating-point arithmetic in Matlab.

4.1 Introducing the model

Any operation that Matlab can perform on a vector can, in theory, be performed on stored
audio. The audio vector can be loaded, saved, processed, and plotted in the same way as any
other Matlab variable. Additionally Matlab offer functions that easily extract the data of a
WAVE file, as well as functions like sound(data, frequency), which immediately plays back the
data. This function can provide an easy method of checking for obvious mistakes either in the
importation of the original data, or the processed result. It should be kept in mind though,
that this is not a reliable measure of testing the results of the model, just a useful method of
probing for large scale inaccuracies. Finally, Matlab offers a large collection of functions for
analysis, in both the time and frequency domains, such as plots or spectrograms which can be
used to determine the quality of the model’s results.

More specifically, the function audioread will be utilized in order to extract the desired data
and the input file’s sampling rate. By default audioread will arrange the data in a double-
precision floating-point vector its dimensions are: Number of Samples by number of
channels. This vector is used as is for the floating-point reproduction of the original model,
but can be easily converted to fixed-point, in order to be compatible with the second
generation model. Finally, the data audioread provides is normalized which allows for higher
data resolution during the model’s mathematical calculations.

Despite its many advantages Matlab has a minor drawback. That being the fact that it is
geared and optimized for floating-point data and calculations. However, it does support
fixed-point mathematics albeit with a relative lack of functions and operators which accept
fixed-point inputs. Another drawback is the fact that fixed-point arithmetic operations are
simulated by functions provided Matlab, resulting in very slow execution times.

4.2 First Generation model reproduction

Typically the input files of the model are of CD quality, meaning uncompressed files
following the WAVE format, with a sampling rate of 44100 Hz, and 16-bit signed integers for
the data. The data will be normalized in order to make higher resolution results, such as 24-
bit and 32-bit resolution, possible.

CD quality WAVE files can be either mono or stereo. As a result, the number of channels is
either one or two, which results in the vector, returned by audioread, having either one or two
columns. It is arguably a better approach, for stereo data, to split the vector in two, process
them separately and merge them back together to procure the final audio signal.

4.2.1 Resampling

One of the methods that will be used to sufficiently test the cubic spline model is resampling.
Resampling or sometimes called sample-rate conversion is the process of changing the
sampling rate of a discrete signal to obtain a new discrete representation of the underlying
continuous signal[30]. It essentially serves the same purpose as interpolation, in the scence
that it attempts to estimate the original signal’s missing points. The method by which it tries
to achieve that goal is to first insert zeros to upsample the signal by the desired amount (p),
followed by the appliance of an FIR anti-aliasing filter to the upsampled signal, and finally
discarding samples to downsample the filtered signal by another amount (q). The ratio of p/q
multiplied by the original sampling rate, which will commonly be 44.1 kHz, together with the
vector of the original data-points, serves as the input for Matlab’s resample function which
will be compared to the primary algorithm for cubic spline and linear interpolations[31].

4.2.2 Linear Interpolation

The first step in reproducing the linear interpolation model is to determine its inputs. The
model’s input should be the vector in which the data is stored(y), the file’s sampling rate(Fs),
and the desired frequency for the new signal. Most tests presented in this chapter will be
aiming for a frequency of 176.4 kHz, but it should be noted that any frequency higher that
44.1 kHz is possible. The next step is to determine the number of data points in the vector (n),
which will be used to determine the time vector t, as follows:

ti=iT s ,i=0,1, ... , n ,

where

T s=
1

F s

.

The same process is used for the result’s time axis, but first the duration of the input is
required, which is given by:

duration= n
F s

,

with knowledge of the duration the number of samples can be calculated as follows:

nnew=duration×F ,

and then:
t j= jT , j=0,1 ,... , nnew .

Then, for every tj in the interval of [t0,tn] with each t corresponding to exactly one y, the linear
interpolation equation is used:

y j= ya+
(yb− ya)(t j−t a)

tb−ta

, ta<t j<t b .

More specifically, linear interpolation only requires two data points, as explained in the
previous chapter. These two data points are represented here by ya and yb whith each
corresponding to ta and tb respectively. So in order to calculate the value of the audio signal at
a point tj the data window must be moved by one data point every time tj becomes greater or
equal to tb .

The only data that needs to be returned by the model is the resulting data vector as the time
axis does not serve any further function. A simple sine pulse, with a frequency of Fs=100 Hz is
used as testing signal. Linear interpolation is then used on that signal to procure additional
data points as shown in the images bellow.

Figure 4.1:The tested sine wave

Figure 4.2 Linear interpolation applied on a part of a sine wave

4.2.3 Cubic Spline Interpolation

Over the development of the model three cubic spline algorithms were implemented and
tested with varying degrees of success. Each algorithm’s inputs are exactly the same as with
linear interpolation. More specifically the inputs are: the data vector (y), the original sampling
rate(Fs), and the model’s target frequency (F). The preferred target frequency for the tests
remains at 176.4 kHz. The values of ti,tj,n,nnew,Ts, are calculated in the same way as linear
interpolation as well, since these values are derived from signal processing and general
interpolation theory and are not bound to any specific interpolation method.

4.2.3.1 The first Algorithm

The first algorithm, which was unable to recreate the desired results, tries to follow a less
direct approach to cubic splines by attempting to calculate the coefficients of the spline
directly. But first some standard values need to be calculated as they are integral to the final
coefficients, the values are:

hi=t i+1−ti ,i=1,2, ... , n

Δi
(1)=

y i+1− y i

h i

,

Δi
(2)=

Δi+1
(1) −Δi

(1)

t i+2−t i

,

which can be written as

Δi
(2)=

Δi+1
(1) −Δi

(1)

t i+2−t i+ ti+1−ti+1

,

and finally as:

Δi
(2)=

Δi+1
(1) −Δi

(1)

hi+1+h i

,

and

Δi
(3)=

Δi+1
(2) −Δi

(2)

t i+3−ti

,

which becomes:

Δ i
(3)=

Δi+1
(2) −Δi

(2)

t i+3−t i+ti+1−t i+1+ ti+2−ti+2

,

and then:

Δi
(3)=

Δi+1
(2) −Δi

(2)

hi+2+hi+1+hi

.

These coefficients are already explained in the previous chapter but for further elaboration
are repeated bellow:

a1=−h1 ,

ai=2(hi+hi−1)−
hi−1

2

ai−1

,i=2,3 ,... , n−1 ,

an=−hn−1−
hn−1

2

an−1

,

β1=h1
2 Δ1

(3) ,

β i=(Δi
(1)−Δi−1

(1))−
hi−1 β i−1

αi−1

, i=2,3 , ... , n−1,

βn=−hn−1
2 Δn−3

(3) −hn−1

βn−1

an−1

.

All the values are know so a simply substitution produces the values of ai and βi. These
coefficients are, in turn, used to calculate the values of σi :

σn=
βn

an

and

σ i=
β i−hi σ i+1

ai

, i=n−1 , n−2 , ... ,1.

Afterwards the final coefficients can be calculated:

bi=
y i+1− y i

hi

−hi(σ i +1+2 σ i) ,

c i=3σ i ,

and

d i=
σ i+1−σ i

hi

.

Which are then substituted on the following equation in order to produce the final result for
each interval of [ti,ti+1]:

s j= y i+bi(t j−t i)+ci(t j−ti)
2+d i(t j−t i)

3 , i=1,2, ... n , j=1,2 ,...nnew .

This algorithm, however was producing non optimal results compared to other algorithms
and compared to the first generation’s model. As a result it was discontinued in favour of less
computation intensive algorithms that calculate a natural spline, meaning the boundary of s
values for t1 and tn are set to zero, reducing workload and increasing the quality of the results.

4.2.3.2 The second Algorithm

The second algorithm, which was ultimately unsuccessful in providing reliable results, is
derived directly from the bibliography and attempts to calculate a natural spline and attempts

a more direct approach by solving the tridiagonal matrix instead of calculating the
coefficients as directly as the previous algorithm. This is achieved by using two vectors
named u and y2, which serve as temporary storage of the decomposed factors, which are
calculated in a decomposition loop for the tridiagonal matrix So the first step in the algorithm
is:

u1= y 21=un= y2n=0.

Of course the result’s time vector (tj) needs to be calculated again, together with the other
basic values required for signal processing, referenced already in the first algorithm.
Additionally, h as defined by the previous algorithm will be needed for the calculation of the
spline:

hi=t i+1− ti ,i=1,2, ... , n−1

The next step is the decomposition loop, which is:

 sigi=
x i−xi−1

x i+1−x1−1

,

pi=sigi× y2i−1+2 ,

y2i=
sigi−1

p i

,

uti=
y i+ 1− y i

x i+ 1−xi

−
y i− y i−1

x i−x i−1

,

ui=6
uti

xi+1−x i−1

−sigi

ut i−1

pi

,

where:
i=1,2 ,... , n .

Now that the decomposed factors have been calculated, the back-substitution for y2, can be
executed:

y2 j= y 2 j× y2 j+1+u j , j=n−1 , n−2 , ... ,1

The follow up is to calculate the spline’s coefficients and the spline itself, for each tj in the
interval of [ti,ti+1]:

a j=
ti+1−t j

hi

and

b j=
x j−x i

hi

,

with these coefficients, the spline can now be calculated:

y j=a j y i+b j y i+1+
hi

2

6
((a j

3−a) y 2i+(b3−b) y 2i+1),

where:
i=1,2 ,... , n

and
j=1,2 , ... , nnew .

Using the same sine wave as the one used for the linear interpolation test the output is close
enough to a proper result.

On further inspection however, the results of the algorithm are almost identical to the results
of linear interpolation, which should not be the case, and as such the algorithm is directly
compared to linear interpolation with the same sine wave as an input as well as a 10 s, audio
signal.

As shown in figure 4.4, cubic spline’s second iteration yields perplexingly similar results to
those of linear interpolation. The value of y at t=2.5s is their common value, derived from the
original signal. In figure 4.5, the results are zoomed in to a point where the two values finally
become distinct to the eye. In order fully test the algorithm’s results, an actual audio signal is
required, thus ushering into another round of tests.

Figure 4.3: The results of the second algorithm when applied on a sine wave

Figure 4.4 A comparison between cubic spline's second iteration and linear
interpolation.

Figure 4.5: The difference between the two results

Figure 4.6: A ten second audio signal, resulting from linear
interpolation and cubic spline, with practically identical results

Figure 4.7: Zooming in on the interpolated audio signal, even now the results appear
identical

Inspecting figure 4.6, which depicts an audio signal with a duration of ten seconds, the two
interpolated signals are indistinguishable. This observation is not considered abnormal as the
sampling rate of the signal is 44.1 kHz, meaning there is a high density of data points.
Zooming in on the signal the points of the signals are again extremely close in value, and they
seem to ignore the curvature that cubic splines are supposed to provide.

In conclusion this algorithm provides incorrect results and is more of an equivalent of linear
interpolation than a cubic spline one.

4.2.3.3 The third Algorithm

The third algorithm will be calculating the spline following all the steps underlined in chapter
3, by taking advantage of the Matlab’s backslash(\) operator to solve the tridiagonal matrix.
So once again the values of h,ti,tj,n,nnew,Ts, need to be calculated as was the case with the other
algorithms, the calculation process is the same.

The next step is to set up the group of linear equations, which involve the tridiagonal matrix.
As such Δi is the next value to be calculated:

Δi=
y i+1− y i

hi

, i=1,2 ,... , n−1.

Which is then used to calculate the right part of the linear system as follows:
Ri=6 (Δi+1−Δi) , i=1,2, ... , n−2.

Another step is, of course, to set up the tridiagonal matrix, which is named mT, but without
the first and the last point of the matrix as the spline that the algorithm calculates is a natural
spline. As such the matrix is written as:

mT=(
2(h1+h2) h2 0 0

h1 2(h2+h3) h3

h2 2(h3+h4) h4

. . .
. . .

. . .
hn−3 2(hn−3+hn−2) hn−1

0 0 hn−2 2(hn−2+hn−1)

)
Now the liner system common in cubic spline interpolation is written as:

(
2(h1+h2) h2 0 0

h1 2(h2+h3) h3

h2 2(h3+h4) h4

. . .
. . .

. . .
hn−3 2(hn−3+hn−2) hn−1

0 0 hn−2 2(hn−2+hn−1)

)(
m1

m2

m3

.

.

.
mn−3

mn−2

)=(
R1

R2

R3

.

.

.
Rn−3

Rn−2

),

This system can be solved in Matlab quite easily using the backslash (\) operator, by writing
the system as: m=mT\R. Additionally one zero is added at the beginning and another one at
the end of the m vector, as they represent the boundary conditions for a natural spline.

All that now remains is to calculate the coefficients of the spline, as well as the new data
points:

s 1=Δi−hi(2 mi+mi+1) ,i=0,1,2 , ... , n−1 ,

s 2i=
mi

2
,

s 3i=
mi+1−mi

6hi

, i=0,1 ,... , n−1 ,

s j= y i+s1i(t j−ti)+s2i(t j−ti)
2+s3 i(t j−t i)

3 ,

where tj, is every point, which needs to be associated with a value sj, in the interval [ti,ti+1].

Using the same sine wave to compare the third spline algorithm with the linear algorithm,
plotting them together, and zooming in enough a small difference between the two
algorithms is finally visible in figure 4.8. In this example the cubic spline algorithm provides a
steeper curve to the final result in comparison to the linear algorithm, serving as a good
indication that the algorithm is on the right track, and it is in line with the result of the first
generation’s model.

As a second test, the input is changed from the sine wave to the audio signal used in figure
4.6. As seen, in areas were the curve of the audio signal is supposed to be steeper, cubic spline
provides such a result, while linear provides an angle instead of the desired curve, granting
further confirmation of the algorithm’s validity.

Now that a sufficiently accurate algorithm for cubic spline interpolation has been established,
measures are needed, in order to adapt it for hardware implementation.

Figure 4.8: Plot comparison of Linear and cubic spline interpolation using
the third algorithm

Figure 4.9:Comparison of Linear and cubic spline interpolations on an
audio file

4.3 Adapting the Model for Hardware efficiency

The algorithm described at this stage is using a large matrix and two large vectors before even
calculating the coefficients. For example, suppose a stereo audio signal with a duration of ten
minutes, a sampling frequency of 44.1 kHz and a resolution of 16 bits per sample. This
translates into 26,460,000 data-points per channel. So it becomes obvious that a way to reduce
resources is needed. As already explained there is no need to insert every data point into the
system. Instead a window of data-points which traverses the whole input vector can be
utilized to dramatically decrease hardware resources. The minimum number of data points
needed for cubic spline interpolation is four. A four data point window is a fairly reliable
option, since it is not realistically possible to determine the optimal width of the window
since it varies between audio signals. Again, it is useful to note that adding extra data-points
in the calculations can either increase or reduce the accuracy of the results, depending on the
signal.

Now that the resource requirements have been significantly reduced, and the results yielded
are superior to the linear interpolation’s results, the resources can be reduced even further by
replacing floating-point with fixed-point arithmetic. Matlab, however, struggles with fixed
point arithmetic operations as they are simulated using specific functions such as the fi
function. This function receives three arguments as inputs: the vector to be converted, an
object type returned by the numerictype function, and another object returned by the fimath
function.

Numerictype is used to define the length, in bits, of the fixed point value as well as how many
of these bits are used for the fraction or for the integer part of the number. Fimath is used to
set-up the settings for each value, in this case for example saturation will be used in dealing
with overflow, additionally it provides options concerning the precision of summation and
multiplication. As for the precision of divisions, unfortunately it must be set arbitrarily as
there is no method of determining the optimal bit-depth for every possible pair of numbers.
The way Matlab determines the final precision of a division is by adapting it to the size of the
variable it will be stored in. As a side note, the size of the value divided must be significantly
higher that the divider’s size as Matlab, in an attempt to set a cap to the result’s depth, it will
produce a result with a width equal to the difference of the two numbers’ widths.
Consequently often the algorithm increases the size of values before a division, there is no
carry over of this practice in the hardware implementation discussed in the next chapter.

Adapting to the fact that the input is now a streamed window of four data-points and the fact
that the backslash(\) operator, utilized to solve the linear system, is not supported for fixed

point arithmetic calculations, the algorithm needs a small adaptation, in that particular part of
the code. More specifically n, which denotes the number of inputs is always set to four. This
change affects the algorithm at large and simplifies it on specific key points as follows:

hi=t i+1−ti ,i=1,2,3

and then

Δi=
y i+1− y i

hi

, i=1,2,3 ,

Ri=6 (Δi+1−Δi) , i=1,2.

This change also affect the mT matrix changing it to a 2x2 matrix and the whole linear system
is depicted as:

(2(h1+h2) h2

h1 2(h2+h3))(m1

m2
)=(R1

R2
).

This means the system can be solved by calculating the inverse of mT and multiplying it by
the R matrix, as a first step in calculating the inverse the determinant of the matrix is
calculated:

det= 1
4 (h1+h2)(h2+h3)−h1 h2

,

so in turn the inverse is:

mT T=det(2(h2+h3) −h1

−h2 2(h1+h2)),

and multiplying it by the R matrix, thus providing a solution to the system:

m=mTT×R .

After this step the calculations proceed as expected for both the coefficients of the spline as
well as the new data points.

Finally, the four point input window does bring some changes additional changes to the
algorithm that need to be further explained. The new data-points produced by increasing the
sampling rate of the original audio signal, are always placed between the second and the
third point. As a result in order to achieve proper results, the window needs to progress only
by one data-point thus creating what is called an overlapping window. Although it is possible
to place new data-points in the intervals between all of the points being processed each time,
the results diverge widely, from what is expected by theory, because the ultimate number of
points that are taken into account is reduced, by the nature of the algorithm.

4.4 The Final Model

Having successfully reproduced the algorithms necessary to attain a grasp of the first
generation’s model and implementing necessary changes to make the cubic spline’s algorithm
more hardware friendly, a new model is needed to compare each method with each other.
This model is depicted in figure 4.10.

To elaborate further on the diagram, the value depicted as new F is the new sampling rate and
it must be equal to, or greater than the original sampling rate of Fs . Both fixed point functions
use a 4 data-point window as their input, while linear and floating-point cubic spline, which
is labelled as the first generation’s cubic spline, process all the data points in a large matrix
keeping in line with the first generation. As a reminder this difference does not impact the
accuracy of the new data points, for reasons highlighted earlier. The reason for the existence

Figure 4.10: The final Matlab model

of two different fixed-point cubic spline algorithms is to determine how much accuracy will
impact the results in other to further reduce the resources of the hardware implementation.

The model’s methods will be compared to one another by utilizing tests in both the time and
frequency domains, so that a broad picture of the actual results can be distilled from the
results. The tests that will be conducted involve the recovery of missing data points while
maintaining the original sampling rate as well as the recovery of data-points and bit-depth by
increasing the sampling rate.

4.5 Frequency domain analysis

For the frequency domain analysis two different audio signals will be used as inputs. The first
signal is a 10 second audio signal cut from the song called Book of Souls by Iron Maiden. As
seen in figure 4.11, the audio file is in stereo format, meaning there are two channels to
process separately. The first two seconds of the signal are low a low amplitude, guitar string
vibration, then it transitions into all the organs, such as bass, drums as well as guitars,
producing sound waves all at once. Vocals are missing in this particular input file. All in all
this input covers a significant area of the musical spectrum and will make for relatively
reliable tests.

Figure 4.11: The input file for the first round of tests, channel one in blue, channel
two in orange

Spectrograms will be the main method of comparing the different results of each algorithm.
Spectrograms offer the ability to study the frequency spectrum of each signal by describing its
amplitude for each individual frequency present in the audio signals.

The first step in creating a spectrogram for a given audio signal is by applying discreet
Fourier transformation on a Hamming window of data points, in order to achieve clear
results on the spectrograms. The parameters of the set-up are: a Hamming window with a
width of 1024 data-points, 50% overlap between contiguous sections and the number of
DFT(Discreet Fourier Transformation) points is set at 2048[32].

The ratio of Power(dB) to Frequency(Hz) represents the Power Spectral Density, or PSD for
sort, of the signal during the DFT in relation to the frequency. The smoother the transitions of
the PSD, the smoother the audio will appear to the human ear. The sampling rates that will be
tested in this procedure are: 44.1 kHz, which is the standard CD quality, 48 kHz, which is the
standard DVD quality, 96 kHz, which is the sampling rate of what is called super audio
quality and finally 176,4 kHz a favourite sampling rate among audio engineers because of the
fact that it is a multiple of 44.1 which is known to provide higher quality results.

Figure 4.12: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the first channel

Looking at figure 4.12 and figure 4.13 resampling appears to not provide significant changes
to the spectrum, apart from a relative small increase in the smoothness between transitions.
Over all though the improvement is so minor that significant increase in quality by using the
other methods is not to be expected for a frequency of 48 kHz. Additionally on the lower
frequencies that are placed in the first two seconds of the test file the difference is not visible
whatsoever.

Figure 4.13: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the second
channel

Figure 4.14: Spectrogram of 48 kHz for Linear Interpolation for both channels

Comparing the results for linear interpolation (figure 4.14) the improvements over the
original signal are even lesser, but slightly inferior to the results provided by resampling.
After observing figure 4.15, where floating point cubic spline interpolation was applied, the
results are on par with resampling, and superior to those of linear interpolation. Especially on

higher frequencies, the transition between edges seems to cleared out to a small degree
resulting in a slightly smoother transition.

Figure 4.15: Spectrogram of 48 kHz for Floating Point Cubic Spline Interpolation for both channels

Figure 4.16: Spectrogram of 48 kHz for Full Precision Fixed Point Cubic Spline Interpolation for both
channels

In figure 4.16, the full precision version of the fixed point algorithm is shown to have almost
the same results as its floating point counterpart, with the only difference being that shortly
after two seconds, where the input signal transitions to a more complex and lively tune, the
fixed point algorithm provides a slightly smoother transition. This improvement in the
transitional area can be attributed to the fixed point algorithm’s for point window input due

to the fact that the results of that area are not impacted by points further away, as is the case
with the other algorithms being compared here. Adding the results of the limited precision
cubic spline algorithm to the comparison, as seen in figure 4.17, the results are equivalent to
the full precision algorithm, with the improvement on the transitional area present, although
the rest of the spectrogram is not as clean as the floating point version or the full precision
version of the algorithm.

Figure 4.17: Spectrogram of 48 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Increasing the sampling rate to 96 kHz provides more distinguishable improvements over the
original signal for all methods, with the exception of the linear interpolation method. The
improvements are especially visible when it comes to frequencies above 20 kHz, as the higher
the frequencies the more distinguishable the signal’s amplitude.

Figure 4.18: Spectrogram of 96 kHz after Resampling

Figure 4.19: Spectrogram of 96 kHz for Linear Interpolation for both channels

Looking at the spectrogram resulting from the linear interpolation algorithm it becomes quite
obvious that no significant improvements over the original signal have been made. As for the
new frequencies which are over 20 kHz the power over frequency performance is rather poor.
In contrast, the cubic spline methods provide less blur between power spikes.

Figure 4.20: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels

Comparing the cubic spline methods with linear interpolation the power spikes have been
normalised significantly and are easily distinguishable with the naked eye while at the same
time providing more power on higher frequencies than resampling. When it comes to
comparing the methods between themselves, the same pattern as with 48 kHz can be

observed. More specifically, the floating point algorithm seems to perform very slightly better
than the full precision fixed point algorithm but nothing significant, the same can be said
when comparing the limited precision algorithm with the full precision version.

Figure 4.21: Spectrogram of 96 kHz for Full Precision Fixed Point Cubic Spline Interpolation for both
channels

Figure 4.22: Spectrogram of 96 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Moving on to the final sampling rate being tested, 176.4 kHz, the changes are again in line
with what was previously observed. Resampling once again provides clear, improvements
compared to the original, and linear interpolation seems to be less and less effective as
sampling rates increase. Again the cubic spline algorithms have improved, yet similar

results, and seem to retain the characteristics of previous results, albeit the difference between
them seems more pronounced.

Figure 4.23: Spectrogram of 176.4 kHz after Resampling

Figure 4.24: Spectrogram of 176.4 kHz for Linear Interpolation for both channels

Another bi-product of the increase in sampling rate is that the differences between the almost
identical channels are becoming more pronounced and are more easily distinguishable with
one another, while also retaining their basic structure. Additionally, increasing the sampling
rate had an effect on the bandwidth of the signal proportional to the new Fs/Fs ratio. As
previously stated, despite the fact that the human ear can perceive up to 20 kHz, if ultrasonic

frequencies, actually impact audio perception then there should be an improvement, however
small, on the acoustic experience.

Figure 4.25: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels

Figure 4.26: Spectrogram of 176.4 kHz for Full Precision Fixed Point Cubic Spline Interpolation for
both channels

All in all, as far as spectral analysis is concerned, cubic spline interpolation seems to produce
encouraging prospects, especially when compared to linear interpolation. Linear
interpolation appears to perform best when the sampling rate is relatively low compared to
the original and it is possibly a viable prospect for low cost designs.

Figure 4.27: Spectrogram of 176.4 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Floating point cubic spline performed slightly better than its fixed point counterparts. This
can be attributed to two facts: Firstly, the short length of the input which did not allow the
four-point window input of the fixed point algorithms to perform its best by not including
points that would negatively affect the results. Secondly divisions in fixed point arithmetic do
not have a defined full precision depth, as such the precision of divisions is inferior to floating
point divisions. In order to better support this statement a test with a longer audio signal
follows.

The next input signal is called if eternity should fail, by iron maiden. This audio signal is ten
minutes in duration and will allow for more accurate observations. It is difficult to draw
conclusions out of a ten minute spectrogram, as such after the results for the whole signal are
processed only two seconds are displayed.

Figure 4.28: Spectrogram of 176.4 kHz for Floating Point Cubic Spline Interpolation and limited
precision Fixed Point Cubic Spline Interpolation

On figure 4.28 it can be observed that indeed the two signals, which were produced by
floating point cubic spline interpolation and limited precision cubic spline interpolation, with
a four point input window, are seen as more similar than the signals previously tested which
confirms the effectiveness of the four point window, not only as a necessary adaptation for
hardware integration but as a measure that improves numerical accuracy.

4.6 Time Domain analysis

When it comes to analysis of the produced waveforms in the time domain, it will be focused
around the curvature of the signals produced by the model. More specifically an interval of 64
randomly chosen data-points will be plotted each time for the same sampling rates as the
spectrograms, which were discussed previously, namely: the original frequency of 44.1 kHz
and the frequency of 176.4 kHz, since 176.4 kHz stresses out the algorithms the most. As there
is no difference between using different audio channels only one of them will be displayed.
For the purpose of this demonstration a full length version of Transylvania by iron maiden
will serve as input.

In figure 4.29, the results of linear interpolation for a sampling rate of 176.4 kHz are plotted
together with the original signal. Linear interpolation produces results that match the original
perfectly. This is because Matlab just draws straight lines to connect the points of each table
being plotted, and that’s exactly how linear interpolation operates by definition hence the
identical graph.

Moving on to cubic spline interpolation, the floating point results presented in figure 4.30,4.31
and 4.32, are the kind of results expected by cubic spline interpolation. More specifically there
is obvious curve fitting on the part of all three versions of the algorithm, creating the curves
expected of an analogue signal. As with the spectrograms, it appears that as expected the
floating point version provides slightly better results, with the full precision algorithm as a

Figure 4.29: Comparison of 176.4 kHz Linear interpolation in blue and the original in red

close second and the more limited iteration third. It is confirmed that once again the
difference in the results is not significant enough to warrant neither a floating-point with a
full tridiagonal matrix nor a full precision fixed point iteration, since the resources required
for either of these two algorithms will be significantly higher than the more modest limited
precision and four data point input version.

Figure 4.30: Comparison of 176.4 kHz floating point cubic spline interpolation in blue and the
original in red

Figure 4.31: Comparison of 176.4 kHz full precision fixed-point cubic spline interpolation in blue
and the original in red

Finally, all three versions of the cubic spline algorithm are plotted together on a random part,
and compared with the input, which is on red. The results again are similar.

Figure 4.33: All the Cubic Spline algorithms and the original signal

Figure 4.32: Comparison of 176.4 kHz limited precision fixed-point cubic spline interpolation in
blue and the original in red

4.7 Acoustic Tests

After inspecting the behaviour of the algorithms in both time and frequency domains, the
next step is to perform acoustic tests, since the subject of this work primarily concerns music
and audio at large. Normally for this kind of testing requires setting up a proper ABX trial
system. ABX trials require a digital to analogue converter connected with speakers or
headphones, paired with an ABX comparator, to secure unbiased responses by test subjects.
None of these resources were procured and as a result, the data presented here are this
student’s interpretations, using common PC speakers to playback the .wav files. The .wav
files, for resampling linear interpolation and floating point cubic spline interpolation were
created by utilizing Matlab’s writewav() function. The model’s fixed point .wav files were
created by exporting the data to a .txt file, and then importing them on a c++ program to
create .wav files. The original audio files used as inputs are the same files used in previous
tests meaning: Book of Souls, Transylvania and If Eternity should Fail, all three by iron
maiden.

There is not much of a point in listening to only one channel at a time since the songs were
recorded to be played in stereo mode, as such both channels will be listened to as it is
expected. The sampling rates being tested are 48 kHz, 96 kHz and 176.4 kHz. The first track to
be tested is Book of Souls. As with the spectrograms the re was no particular difference
between any algorithm, in fact it was difficult to distinguish it from the original. There are no
noticeable differences with the other two audio signals either.

Increasing the sampling rate to 96 kHz had overall, a larger impact than 48 kHz. Linear
interpolation was indistinguishable from the original, but the cubic spline algorithms and
resampling appear to result in in “deeper” and “fuller” sound, seemingly slightly increasing
the quality, although, it should be noted that such an increase could be the result of
psychoacoustic factors. Finally, there was a slight difference when using headphones, in the
way the lower frequency sounds, like the bass and the bass-drum, sounded like, but it might
not have been consistent because as the song progressed it became less obvious.

Setting the sampling rate at 176.4 kHz there were some small changes as far as linear
interpolation is concerned, since it seemed like it produced a “warmer” sound. In addition,
the other methods managed once again to seemingly produce a “deeper”, “warmer” and
“fuller” sound. In some cases they also seemed to improve the output a bit making it even
“clearer” at times, especially on the song Transylvania which was famously recorded with
lower quality equipment.

To elaborate further on the results, all the algorithms appeared to slightly improve the
acoustic experience. This improvement could very easily be attributed to psychoacoustic
effects that result from increasing the sampling rate of the audio signals, since the higher the

sampling rate is set the more noticeable and improved the results. Resampling and cubic
spline interpolation appeared to provide equivalent acoustic experiences, and where on par
on previous tests. Finally, the results of the acoustic tests are, obviously, not final, since
normally a proper ABX trial with multiple subjects, preferably well versed in music should be
conducted, in order for the results to be entirely legitimate.

4.8 Regaining Lost Signal Information

In order to determine wether or not any information can be recovered by a heavily distorted
audio file, a harsh test was devised. This test includes removing whole data-points from an
original signal. Using cubic spline interpolation the objective is to determine whether or not
any data can be recovered, by comparing the original, the distorted and the interpolated
signal. The solution tested here is a modification of the limited precision cubic spline
interpolation algorithm.

The results of the test are seen in figures 4.33,4.34 and 4.35. Observing figure 4.34, which
depicts the distorted signal, and comparing it to figure 4.33, which displays the original
signal, it becomes clear that the signal was distorted significantly, and reproducing the signal
through speakers yields an unrecognizable sound wave.

Figure 4.34: The original signal

Figure 4.35: The distorted signal

Figure 4.36: The interpolated signal

Comparing figure 4.35, which displays the distorted signal after cubic spline interpolation has
been applied, the results of the signal resemble the original closely albeit with small small
differences, which is to be expected, considering the awful state of the distorted signal. By this
comparison, it can be confirmed that a small amount of the original data can be recovered by
using cubic spline interpolation and perhaps other interpolation methods. However when the
signal is played back is only slightly recognizable, which means that the whole of 16 bits of
missing data every for data-points is out of reach for the algorithm, which is not surprising.

Calculation the nominal SNR of the signals, and considering the original signal as the clean
and pure signal the results are reinforced. The distorted signal, in this case, yields an SNR of
3.5309 while the interpolated signal yields a 17.9001, which represents a considerable
improvement as a result of the appliance of cubic spline interpolation. The SNR was
calculated using Matlab’s snr(x,y) function, where x represents the signal whose SNR needs
to be calculated and y represents the signal’s noise.

Chapter 5:
Embedded System Design

With the development of a fixed-point and hardware friendly, mathematical model for cubic
spline interpolation, the next obvious step is to design an embedded system on an FPGA.
Tools to be used in this thesis are made by Xilinx and are part of their webpack licence. The
design of the module responsible for cubic spline interpolation will be attempted using
Vivado High Level Synthesis (HLS), for no other reason than this student’s lack of prior
experience with the tool.

5.1 Hardware and Design Tools

Embedded systems are complex. Hardware and software portions of an embedded design are
projects in themselves. Merging the two design components so that they function as one
system creates additional challenges. In tandem with an FPGA design project, the overall
complexity of the project increases drastically. For the purposes of this design a Zedboard kit
will be used, which is is a complete development kit utilizing the Xilinx Zynq-7000 all
programmable SoC. Using an SoC in combination with an FPG reduces the overall
complexity of the design process by offering an Arm Cortex-A9 dual core, along with
programmable logic. Thus, the tools necessary for the simplification of the design process are
the Vivado design suite, which includes both regular Vivado and Vivado HLS, and the Vitis
software platform. This combination of tools offers hardware and software application
design, debugging capability, code execution, and transfer of the design onto actual boards
for verification and validation[17].

The first thing needed for a good understanding of the functionality of the tools is a proper
understanding of their workflow, which is shown on figure 5.1. To elaborate further, the first
step is designing the necessary modules in Vivado HLS. Vivado HLS serves as a compiler
providing a programming environment similar to those available for application
development on processors. The main difference is in the execution target of the application,
which in this case is an FPGA. Vivado HLS enables for optimizations for throughput, power,
and latency without the need to address the performance bottleneck of a single memory space
and limited computational resources[17].

The programming language used in the tool is C\C++, with application code targeting the
Vivado HLS compiler using the same categories as any processor compiler. Vivado HLS
analyses all programs in terms of operations, conditional statements, loops and functions[18].

As far as operations are concerned the main difference between normal C\C++ and its version
targeting the Vivado HLS compiler can be seen in a comparison between figures 5.2 and 5.3,
where the same snippet of code is executed on a processor and on an FPGA respectively, with
the snippet being:

A[i]=B[i]*C[i];
D[i]=B[i]*E[i];
F[i]=A[i]*D[i];

Figure 5.1: The workflow of the design process

Figure 5.2: Processor execution of example code(image source:[18])

Figure 5.3: FPGA execution of example code(image source:[18])

The application profile, depicted in figure 5.2, focuses only on the EXE stage of instruction
processing in a central processing unit (CPU). This is the only stage in instruction processing
that is shared between processors and FPGAs. In this example, the execution trace is
sequential due to the execution platform, not the algorithm. Based on the algorithm, the
values of A[i] and D[i] can be computed in any order or at the same time. The only
algorithmic restriction is that both of these values must be computed before F[i].When using
the default settings in Vivado HLS, the resulting execution profile is similar to that of the
processor in that the multiplications and addition occur in sequential order. The reason for
this default behaviour is to minimize the number of building blocks required to implement
the user application. Although an FPGA does not have a fixed processing architecture, each
device has a maximum number of building blocks it can sustain. Even with the default
behaviour, the implementation outperforms the processor execution due to the custom
memory architecture created for the algorithm[18].

When it comes to conditional statements, such as C’s typical if statement, a processor will
have to execute a branch operation, which may or may not result in a context switch, as such
resulting in algorithmic dependencies and impacting performance. In an FPGA, a conditional
statement does not have the same potential impact on performance as in a processor. Vivado
HLS creates all the circuits described by each branch of the conditional statement. Therefore,
the runtime execution of a conditional software statement involves the selection between two
possible results rather than a context switch[18].

Concerning loops, a processor is forced to schedule loop iterations sequentially. As shown in
figure 5.4, a loop that requires four clock cycles per iteration, will approximately need forty
cycles to complete a loop of ten iterations. In contrast, HLS does not have that limitation.
Because HLS creates the hardware for the algorithm, it can alter the execution profile of a
loop by pipelining iterations. Loop iteration pipelining extends the concept of operation
parallelization from within loop iterations to across iterations, by basically performing loop
unrolling, as seen in figure 5.5. With the purpose of reducing iteration latency, the first
automatic optimization applied by Vivado HLS is operator parallelization to the loop
iteration body. The second optimization is loop iteration pipelining. This optimization
requires user input, because it affects the resource consumption and input data rates of the
FPGA implementation. HLS can parallelize or pipeline the iterations of a loop to reduce
computation latency and increase the input data rate. The user controls the level of iteration
pipelining by setting the loop initialization interval (II). The II of a loop specifies the number
of clock cycles between the start times of consecutive loop iterations. However the desired II
cannot always be forced through by HLS, and the user is often called upon to implement
optimizations manually[18].

Of course this is an FPGA design and these principles explain the function of the tool which is
used to develop independent modules. In order for these modules to function properly, they
need to be connected to a more expansive design, and in order to achieve that connection and
communication, an interface between this module and the larger design must be
implemented. In C based design, all input and output operations are performed, in zero time,
through formal function arguments. In an RTL design these same input and output
operations must be performed through a port in the design interface and typically operates
using a specific I/O protocol. There are multiple I/O protocol types, the type chosen for the
present work is provided through SystemC designs, where the I/O control signals are
specified in the interface declaration and their behaviour specified in the code. When the top-
level function is synthesized, the arguments and/or parameters of the function are
synthesized into RTL ports [19].

Most of the interfacing is done using what is called pragmas. Pragmas are directives directly
embedded on the source file. Of course when a directive is applied to an interface, Vivado
HLS applies the directive to the top-level function, because the top-level function is the scope
that contains the interface.

Figure 5.4: Loop execution on a processor(image source:[18])

Figure 5.5: Loop execution on an FPGA(image source:[18])

After the design of the module is complete it can be simulated as a normal C\C++ by using a
C\C++ test bench, which serves as the main of the program and the module as a function.
Vivado HLS offers the ability to execute what is called a hardware co-simulation where the
results of the software simulation are compared to the results of Vivado’s simulation,
complete with waveforms available. Finally the resulting module is exported as a Vivado IP
(intellectual property).

 Moving to Vivado the, the first step is to create a block design where the IP generated by
Vivado HLS is imported. Next the IP’s ports should be suitably connected using Xilin’s or
other custom IPs as required in order connect the design with the FPGA’s SoC, which is
responsible for the interfacing between the RTL design and the FPGA’s DDR and other
peripherals. There will be a short example where this procedure is explored further. Finally a
debug module can be added so that when the design is downloaded on an FPGA the
waveforms can be monitored on Vivado’s hardware manager. Obviously this module must be
removed from the final design.

After the block design is complete, the next step is synthesis and implementation of the
design. During implementation Vivado determines how the design will be placed and routed
on the specified FPGA, and it is during this step that the final resource utilizations are
calculated and the constraints of the design are enforced. If there are not enough resources on
the FPGA to accommodate the design or the timing is not met, then the modules designed by
Vivado HLS need to be adjusted in order satisfy the requirements of the platform. When
dealing with resource overutilization a common method is to try and make the algorithm of
the module more efficient or, when it can’t be improved further on that regard, to reduce
arithmetic precision where it is affordable to do so. When dealing with timing issues the most
common solution is to try and make the pipeline, if present, more efficient by reducing its
critical path.

The next step is exporting the Vivado design onto Vitis, in the form of a ,XSA file. The Vitis
IDE is designed to be used for the development of embedded software applications targeted
towards Xilinx embedded processors and aids in pairing them with hardware designs
developed in Vivado. Vitis overall serves as an upgrade to the older Xilinx SDK, in this
software platform, two new concepts are introduced in the workspace: the platform project
and the system project. In the SDK workspace, the hardware specification, software board
support package (BSP), and application all live at the top level. The SDK BSP concept is
upgraded to a domain in Vitis. A domain can refer to the settings and files of a standalone
BSP, a Linux OS, a third party OS/BSP like FreeRTOS, the choice of a domain is instrumental
and defining int overall design process. A platform project groups hardware and domains
together. Boot components like FSBL are automatically generated in platform projects. A
system project groups together applications that run simultaneously on the device. Figure 5.6
shows the tool’s workspace structure as described above[20].

Now that the XSA file from Vivado is available a platform project can be created in Vitis. A
platform project is the container for the hardware platform, runtime library, the settings for
each processor, and the bootloader for the device. It can be as simple as a standalone board
support package, or a combination of different kinds of runtime configurations. With the
platform project, containing the hardware established it needs to be pair with an application
project, with one or more contained in a system project, depending on the number of on-
board processors/cores. As such a software application project needs to be created first.
Software application projects are the final application containers. The project directory that is
created contains, or links to, C/C++ source files, executable output file, and associated utility
files, such as the Makefiles used to build the project[20].

Figure 5.6: The Vitis workspace structure(image source:[20])

With this steps done, the host program can now be developed and the design can finally be
used to program the targeted FPGA. In this work, the method of programming the Zedboard
is using two USB cables and setting it to its JTAG configuration, whose jumper configuration
can be seen on figure 5.7.

However, depending on the needs of the application, there might arise the need for extra
heap or stack memory, these sizes can be adjusted by the linker script. To elaborate further,
the application executable building process can be divided into compiling and linking.
Linking is performed by a linker that accepts linker command language files called linker
scripts. The primary purpose of a linker script is to describe the memory layout of the target
machine, and specify where each section of the program should be placed in memory and the
size of other memory regions such as the aforementioned stack and heap[20].

5.2 Additional Familiarization

As first step in putting these design principles in practice a small project that would serve as a
tutorial was designed. The module developed in Vivado HLS is simple, receiving an array of

Figure 5.7: Zedboard JTAG jumper configuration(image source:[40])

integers as input add 100 to that number and have another array as the output. The idea for
this tutorial was to help with familiarization with Vivado HLS and its interfacing practices, as
such a protocol had to be selected to fetch data from the processor and the DDR RAM and
write the results on a different area of the DDR. The protocol chosen was AXI.

5.2.1 AXI Protocol

AXI, or Advanced eXtensible Interface, is part of ARM AMBA, a family of micro controller
buses, with its latest version being AXI4. There are three types of AXI4 interfaces: AXI4,
meant for high-performance memory-mapped requirements, AXI4-Lite, intended for simple,
low-throughput memory-mapped communication, commonly to and from control and status
registers, and AXI4-Stream, used for high-speed streaming data. For the purposes of this
work AXI 4 and AXI-Lite will be the ones used, because the burst of up to 256 data transfer
for AXI4 is enough for the I/O needs of the application and since AXI-Lite, is designed
primarily with control signals and scalar inputs in mind, and thus allows only 1 data transfer
per transaction, which is often enough. [21].

The typical AXI interface consists of a single AXI master and a single AXI slave, representing
IP cores that exchange information with each other. Memory mapped AXI masters and slaves
can be connected together using a structure called an Interconnect block. The AXI
Interconnect IP is sufficient as it already contains AXI-compliant master and slave interfaces
with the option to add more per IP block, and can be used to route transactions between one
or more AXI masters and slaves[21]. This set-up is commonly called AXI-master-slave
protocol or AXI-master, and is the type of interface protocol that will be used in this work.

Both AXI4 and AXI4-Lite interfaces consist of five different channels: Read Address Channel,
Write Address Channel, Read Data Channel, Write Data Channel, Write Response Channel
Data can move in both directions between the master and slave simultaneously, and data
transfer sizes can vary. AXI4 provides separate data and address connections for reads and
writes, which allows simultaneous, bidirectional data transfer. AXI4 requires a single address
and then bursts, as already mentioned, up to 256 words of data. AXI-master is a memory
mapped protocol, which means all transactions involve the concept of a target address within
a system memory space and data to be transferred. Examples of read and write transactions
are show on figures 5.7 and 5.8 respectively[21].

To clarify further, despite the fact that AXI-master supports up to 256 words of data burst, the
high performance AXI slave interface (HP), which is the best available interface on the Zynq-
7000 SoC, used in this work has a bus length of 64 bits, as such only 64 bits are transferred
every cycle, however the fact that only one address is needed for 256 words is still a
considerable advantage. The AXI protocol does not specify or enforce the interpretation of
data, therefore, the data contents must be interpreted by the destination module.

The AXI Interconnect core IP, provided by Xilinx with Vivado, connects one or more AXI
memory mapped master devices to one or more memory-mapped slave devices. The AXI
interfaces conform to the AMBA AXI4 specification from ARM, including the AXI4-Lite
control register interface subset. The AXI Interconnect core consists of the SI, the MI, and the
functional units that comprise the AXI channel pathways between them. The SI accepts Write
and read transaction requests from connected master devices. The MI issues transactions to
slave devices. At the center is the crossbar that routes traffic on all the AXI channels between

Figure 5.8: Channel Architecture for Data Reads(image source:[21])

Figure 5.9: Channel Architecture of Data Writes(image source:[21])

the various devices connected to the SI and MI. The AXI Interconnect core also includes other
functional units located between the crossbar and each of the interfaces that perform various
conversion and storage functions. The crossbar effectively splits the AXI Interconnect core
down the middle between the SI-related functional units and the MI-related units. These units
are depicted in figure 5.9[21].

There are multiple configurations provided by Vivado, the ones that are relevant for this
work are: the pass-through configuration and the N to one configuration. Pass-through
configuration is utilized when there is only one master device and only one slave device
connected to the AXI Interconnect module, and the module is not performing any optional
conversion functions or pipelining, all pathways between the slave and master interfaces
degenerate into direct wire connections with no latency and consuming no logic resources.
However, the interconnect module is still required as it continues to resynchronize the
INTERCONNECT_ARESETN input to each of the slave and master interface clock domains
for any master or slave devices that connect to the ARESET_OUT_N outputs, which
consumes a small number of flip-flops. N to one configurations are used when there are more
than one master interface that need to be connected to exactly one slave interface. In that case,
address decoding logic might be unnecessary and omitted from the AXI Interconnect module,
unless address range validation is needed. Conversion functions, such as data width and
clock rate conversion, can also be performed in this configuration[21].

5.2.2 Integrating AXI to the design

After the small algorithm described previously is implemented in Vivado HLS, the interface
ports need to be added, and this is done by directives, such as pragmas. There only two data
ports in the top function and are declared as pointers a and b, which point to the areas of the
memory which the data is read from or written at. In order to make these ports into AXI4

Figure 5.10: AXI Interconnect Top-Level(image source:[21])

interfaces and be able to read and write from them, in that effect the pragmas are written as
follows:

#pragma HLS INTERFACE m_axi port=a offset=slave bundle=indata
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=outdata

#pragma HLS INTERFACE s_axilite port=return bundle=S_AXI_CONTROL

Note that there is an AXI-Lite slave interface which designates as its port, the function’s
return command. This is done in order merge the control signals in one bundle, that can be
guided by the SoC, additionally it generates an interrupt port, however interrupts are not
utilized neither on this tutorial nor on the two main designs.

Figure 5.10 shows the tutorial’s design. The module created in Vivado HLS is
example_axi_m_3, whose two AXI interfaces need to be connected to the Zynq processing
system through its slave AXI HP interface. To achieve this a two to one AXI Interconnect is
used. As already explained there are control signals that the processing unit must deliver to
the main module’s slave AXI-Lite interface, and as such the processing system’s master AXI
general purpose(GP) interface connects to a pass-through AXI interconnect in order to
connect with the module’s slave interface. The remaining two IPs shown in the figure arer not
of great importance to the overall function, as processing system reset is responsible for
handling the design’s reset function and system ILA is a debug core, whose purpose is to
enable Vivado’s hardware manager to monitor the signals it is attached to through the
hardware manager.

Despite the fact that the module designed in Vivado HLS is very basic, the rest of the design
serves as a framework for the development process of the two main modules discussed in this
chapter, and was instrumental in the learning process required to understand the inner
workings of the AXI4 protocol and its master-slave model, as well as the overall
understanding of the tools mentioned here, their supposed workflow and overall function.

Figure 5.11: The tutorial's Block Design in Vivado

5.3 Transitioning the mathematical models to Vivado HLS

There are two algorithms that will be making the transition from Matlab to hardware, the first
one is the data-point recovery algorithm and the second one is the limited precision fixed
point algorithm. The mathematical models built in Matlab for these two algorithms during
the model phase of this work, were designed with hardware in mind already, in fact the
limited precision fixed point algorithm was developed in parallel with its HLS module in
order to ensure relatively low resource utilization, without sacrificing too much in the way of
high quality results.

Generally both algorithms, follow similar design practices when it comes to their Vivado HLS
adaptations. There is a single main loop which is responsible for retrieving the data from the
DDR memory using AXI-master bursts, calculating all values dependent on the input data
and transferring the results back to the memory with another AXI burst. The “#pragma HLS
pipeline” directive is used in order to create a pipelined design, the iteration interval
achieved is II=4 cycles, as four inputs are read and four outputs are written per loop iteration.

However, not every calculation needs to be incorporated into the pipeline. Some calculations
are independent of the input signal and need to be calculated once. This is true for values
dependent on frequency or period as a result they can be calculated using a simple
combinational circuit and incorporating them into the pipeline would be a waste of resources.
On the other hand, that combinational circuit needs to complete its calculations in a time-
frame of a single cycle to avoid timing issues such as negative slack. To that end, a more
specific design was chosen for the upsampling version of the algorithm, setting its output
sampling rate at 176.4 kHz and simplification to the mathematics of the formula were done
whenever the designed allowed. The sampling rate of 176.4 kHz was chosen as during
modelling and simulation it appeared to provide the best quality as well as being the most
computation intensive input for the model, further justifying its hardware implementation.
The design of the data-point recovery algorithm was already specific about its input and
output sampling rate and no simplifications needed to be made compared to Matlab’s
version.

The most expensive calculations, both resource wise and time wise, are by far divisions,
followed by multiplications. Whenever possible simple multiplications with integers are
replaced with bitwise shifts, although they are not common in the algorithm in the first place.
For example simple multiplications by two are replaced with a single shift left and
multiplications by six can be replaced with shifting the number by one to the left, on a
different register shifting it left by two and adding the result. As for divisions, only a few
division by two are implicated, and replaced by one shift to the right.

With these coding practices implemented the designs can now be synthesized and exported
to Vivado.

5.4 Finalizing the Hardware Designs on Vivado

Both designs have an interface similar to the one used for the tutorial with the extra addition
of the original sampling rate as a scalar input, which is handled by the AXI-Lite slave
interface which is also responsible for the control signals associated with the AXI-master
protocol. As a result, the same framework built around the tutorial design seen, previously on
figure 5.10, can be utilized with no additional changes, the only difference per design being
the central module generated by Vivado HLS.

Name Slice
LUTs

Slice
Register

F7
MUXes

Slice LUT as
Logic

LUT as
Mem

Block
RAM

DSPs Bonded
IOPADs

BUFGCTRL

Available 53200 106400 26600 13300 53200 17400 140 220 130 32
Upsampling 4994 6311 32 2071 4758 236 1 115 130 1
Point
Recovery

4475 4297 2 1722 4271 204 1 79 130 1

Table 5.1: Utilization Report of Hardware Designs(Post Implementation)

The final utilization report can be seen on table 5.1. During the design process, after the
implementation of each design was complete, if the resource or timing constraints were not
met then the HLS module would need further optimization, as suggested by figure 5.1. This is
how these two final designs would be created. More specifically the first implementation was
a full precision model presented in chapter 4. That model was utilizing more resources than
were available on a Zedboard, consequently the limited precision model was co-developed in
Matlab and Vivado HLS. Parallel development was necessary to ensure that the reduction of
resources resulting from the reduction of arithmetic precision, would not be to the detriment
of quality results.

5.5 Creating the Host Program on Vitis

Having finalized both hardware designs it is time to create a host program for each hardware
design. Vitis creates hardware platforms out of the .XSA files, exported by Vivado, host
programs can be written for the Cortex-A9 on-board the Zedboard.

Before developing the host program, there is one more important design choice to be made,
what operating system (OS) will be used. Among the plethora of OS choices that Vtiis
supports two stand out, a Linux OS and a standalone-baremetal application. A Linux OS
would allow for better file management and manipulation, by offer Linux libraries for the
host program, on the other hand it requires some additional development time due to the fact

that boot components would have to be designed using PetaLinux, as well as additional
hardware drivers for the hardware platforms. Standalone offers automatically generated boot
components and hardware drivers, but file management is restricted to FAT file systems(FFS),
done with the use of the xilffs library provided by Xilinx. Since the advantages provided by a
Linux OS, are not essential while FFS is serviceable for the purposes of both designs. As such
a standalone-baremetal approach is chosen.

Both designs follow a similar approach. The host program reads a WAVE file from an SD card
formatted in FAT32 file system, the channels are separated from each other and stored in
matrices A and A2, which are dynamically allocated using the information about the number
of samples found in a WAVE file’s header. Since the sampling rate targeted by the designs is
known, and preset at 176.4 kHz for the upsampling version and at 44.1 kHz for the data-point
recovery version, the result buffers can be dynamically allocated. Next, the inputs can be set
on the correct variable specified by the automatically generated driver and the execution
signal can be sent to the FPGA. After the FPGA has completed its processing the results are
written in a WAVE file with the appropriate modifications to the each header struct. More
specifically the header file required for each design’s result is different, while both use PCM,
data-point recovery has a bit-width of 16 bits and a sampling rate of 44.1 kHz, just like the
supposed input files. The upsampling version has 32 bits of depth and a sampling rate 176.4
kHz, which affects most values of the header file.

On a slightly different note, there is a lot of misinformation about WAVE files, probably as a
result of their under-utilization. For example a lot of sources such as forums and sites as
stackoverflow have discussion threads where it is stated that WAVE files of more than 16 bits
of data per sample need to use the WAVEFORMATEXTENSIBLE header. This is not true as
the normal header is perfectly serviceable and changing values to over 16-bits is recognized
by media players and correctly recognise the encoding. Additionally in questions regarding
24 bit WAVE files no one ever references that a 24 bit file must be written as 32 bit integer just
with zeroes in the place of the integer’s most significant bits. Wave all in all is built with
standard programming languages in mind and does not need custom data types to be written
properly.

5.6 Verification and Results

The design’s results were compared to the results of Vivado HLS’ C simulation results and
the mathematical model’s results. The simulated results and the hardware’s results were
identical due to the obvious fact that Vivado HLS’ C debugger and simulator tries to simulate
the design as closely as is possible. Matlab’s results were identical in most cases, with the
results produced by the other two methods, with the only divergence happening in one or
two least significant bits. This divergence can be attributed fact that, in order for the bit length

of the variables to be accurately portrayed some bits needed to be removed manually, by
reapplying the fi() function, as described in chapter 4.

The fact that the results, produced by all three methods, are matching should not be a
surprise considering the fact that the Vivado HLS module and the Matlab model, where
designed simultaneously, in order to achieve this level of validity for their results.

The design generated, by Vivado HLS was also validated and examined in regard to
efficiency. The designs presented in figures 5.12, 5.13, and 5.14 are derived from the RTL
design given by Vivado and simplified, in order to be easier to understand the way the design
operates.

On figure 5.12, a high level block diagram of the module is depicted, the memory and
pipeline control module is responsible for I/O operations as well as the control for the
pipeline. The combinational part, referenced earlier and depicted in figure 5.14, is receiving
the scalar input Fs which is the sampling rate, and calculates all the static values of the
algorithm.

Figure 5.13 depicts the pipelined portion of the algorithm, whose results depend on the data-
points read from the DDR-RAM. The module rhs, represents the value of R as referenced in
theory, s1, s2 and s3 represent the different coefficients needed for the final calculations.

Figure 5.12: The design produced by Vivado HLS

Figure 5.13: The pipelined portion of the design

Figure 5.14: The combinational portion of the design

5.7 Hardware and Software timing comparison

In order to measure the performance of the designs, two algorithms designed in c, and meant
to run on a common processor were designed, utilizing floating point arithmetic. The libraries
time.h and xtime_l.h were used, on the C program and the Vitis host program respectively, in
order to measure execution times. The file chosen as input had a size of 30.186 Megabytes.
The execution time on hardware for the upsampling algorithm was 1.5 seconds and 0.5
seconds for the data-point recovery algorithm, in contrast their software counterparts had
average execution times of 0.7 and 0.14 seconds, when ran on an Intel i3-2370 processor
operating at 2.4 GHz. For reference the FPGA’s clock is set at 10 ns or 100 MHz.

Judging by the results it would appear that that there is not much of an incentive to design a
hardware implementation for the cubic spline algorithm since it appears that common PC
processors can execute the algorithm faster. Even if the II of the hardware design was
dropped to two, down from four, the results would have a similar performance but the
advantage would still lie with the software versions. The addition of a DMA module and the
implementation of an AXI-stream interface instead of an AXI-master interface would also
help improve the design’s timing but not to a significant enough degree.

However, when factoring in the cost of a processor, the FPGA solution becomes more
appealing, since the module developed in this thesis could be used for an FPGA design with
significantly lower cost, especially when energy consumption costs are factored in as well.

These results are not surprising, due to the fact that multiplications and especially divisions
are expensive operations and cubic spline requires a lot of them to perform its calculations. It
should also be noted that a lot of effort has gone into reducing the impact of the
aforementioned operations and their impact is minimized as much as possible. On the other
hand, it would appear that cost-wise the hardware implementation has the upper hand,
significantly reducing cost with only a minimal trade-off performance wise.

Chapter 6:
Summary, Conclusions and Future Work

6.1 Summary

In the present thesis, the idea of a more hardware efficient cubic spline interpolation model,
using fixed-point arithmetic, was explored and developed, based on previous work done by
Triantafillos Mourtzanos[1]. As a result the first step in the creation of this endeavour was
studying his thesis and most of his cited sources, in an effort to build up understanding for
the mathematics used and a general knowledge of audio-engineering. More specifically, the
first step was understanding the basic principles of digital audio processing, signal theory
and their mathematical concepts, as well as psychoacoustics and human sound cognition,
followed by the mathematics of interpolation methods and the approach chosen in the
Mourtzanos’ thesis. Other applications of interpolation methods were also researched along
with other methods of data-recovery by other researchers.

When it came to development, the first step was recreating the models of the previous work,
using Matlab, and especially the model for cubic spline interpolation, to that effect three
different models were developed with only the third presenting results in line with what was
expected. The criteria were mainly two: the recovery of some lost information from damaged
audio signals and the capacity of the algorithm to increase the quality of an existing audio
signal by increasing the sampling rate and the bit-depth form 16 bits to 32 bits. The models
presented had the capacity to produce a signal with any sampling rate above 44.1 kHz, which
is the standard for CD quality, however the sampling rates that were primarily tested where:
48 kHz, 96 kHz and 176.4 kHz. After ensuring the competence of the algorithm it was
converted to a full-precision fixed point algorithm which received four data-points of input
per iteration, which is the minimum amount of data-points required for cubic spline
interpolation.

The full precision version of the algorithm had an unreasonable demand on hardware
resources. As a result, a more limited precision model was developed by systematically
reducing arithmetic precision without impacting the results in any significant degree. This
was achieved by developing the hardware implementation in parallel with the Matlab model.
Spectrograms, waveforms and audio resulting from each Matlab model were tested and
compared, resulting in the limited precision algorithm proving its competence by providing
results in line with the other more resource demanding algorithms.

Finally two hardware designs were implemented one aiming at recovering lost data-points
and the other increasing the sampling-rate and bit-depth. A lot of familiarization was needed
with the design tools, namely: Vivado HLS, Vivado, and Vitis. The AXI protocol was studied
extensively and was used to connect the board’s SoC to the main module. A software version

of the two algorithms was designed and proved superior to the hardware designs, albeit not
by a large degree.

6.2 Conclusions and Commentary

In this thesis the cubic spline interpolation algorithm was greatly improved when it comes to
hardware integration and was tested as both an upsampling, bit-depth increasing method
and as data recovery method with regard to audio signals. Its results were in line with what
was described in Mourtzanos’ thesis[1], all the while drastically improving resource
consumption and timing using a relatively common and cheap FPGA(Zedboard), bringing it
on relative parity with software implementations. Although it should be noted that the
performance of C versions of the algorithms, which were developed in an afternoon’s time,
was still better, making processors the better platform for cubic spline interpolation.

The huge discrepancy in timing between these two designs and the original floating point
design, reinforces the position that significant improvements have to be implemented in
hardware implementations of floating point arithmetic, for them to compete with fixed-point
designs, which generally appear to be more resource efficient, for less than 64 bits of
precision, and often enough faster than floating point designs.

A minor critique of Mourtzanos’ thesis, is necessary here. The thesis promises and proclaims
encouraging results for the cubic spline interpolation algorithm, when it comes to its
application in audio engineering. It is this student’s opinion that despite the fact that
improvements were seen in signals during tests, the point of reference was another
interpolation method, namely linear interpolation. Linear interpolation is an overall cheaper
method than cubic spline interpolation, both resource wise and time wise, and thus the
comparison is unfair. Linear interpolation can be easily developed on an even cheaper FPGA,
or for that mater a relatively old microcontroller. Furthermore, there are other mathematical
models that provide better results than cubic spline interpolation, such as the tried and true
method of sinusoidal modelling, to separate the audio signal in basic sinusoids and use
different interpolation methods for a sinusoid’s different attributes, managing to recover data
of several micro-seconds more reliably than cubic spline interpolation. Overall, the results
were mediocre compared to more complex techniques already developed.

In hindsight, the mediocrity of the results, when it came to data-point recovery, was to be
expected. Interpolation and extrapolation methods were primarily designed and developed
for curve fitting and prediction of measurements and statistics. As such, cubic spline
interpolation was developed to encompass a large variety of different data, resulting in a jack
of all trades, master of none, model. This is incredibly evident in the bibliography, by the fact
that there were no publications about the use of a standalone cubic spline interpolation model
on audio engineering, it had to always be supplemented by other models, to bring it more in

line with the challenges of audio engineering. The only instances where cubic spline
interpolation was used as a standalone model were related to scientific measurements and not
audio.

All in all cubic spline interpolation performed its best when used to increase sampling rates
and bit-depth, but this was easily done in C as well, performing slightly better than the
hardware design.

As a final remark it should be noted that, Matlab while serviceable and accurate, was
extremely slow when it came to fixed-point arithmetic calculations. This was because Matlab
is optimized for floating point arithmetic and fixed point was an afterthought. Matlab
simulates fixed point numbers and operations by a series of function calls, slowing down its
calculations by a considerable degree. In hindsight, a better way to compare the models
presented in this work would have been to have Vivado HLS, handle the fixed point
calculations through its C\C++ simulator, have them exported to a file and imported to
Matlab in order to compare waveforms and spectrograms.

6.3 Future Work

As already mentioned the most probable application for a cubic spline interpolation design, is
upsampling and increasing bit-depth simultaneously, as such there might be merit in the idea
of integrating the design as a cloud service. Additionally the design could be moved to more
modern FPGA and have it process both channels of an audio file simultaneously, or used on a
smaller FPGA without an SoC, dramatically reducing costs at the cost of having to implement
an Ethernet connection and slight changes to the module’s interface.

The most exciting idea that came to mind during the final stages of writing this thesis was to
have a distributed system of microcontrollers that would utilize sinusoidal modelling and
various interpolation methods as described in chapter 2. The objective of the system would be
to bridge gaps in audio files. Sinusoidal attributes would have to be calculated separately,
amplitude would have to be interpolated linearly, while cubic interpolation is used for the
phase, the frequency can be found by the differentiation of the cubic phase polynomial.

Alternatively the same objective can be achieved with another method referenced in chapter
2, namely: interpolation of missing data values using a Garbor regression model[10].
However this model might be better suited for software platforms rather than hardware.

Bibliography

Books and Papers

[1] Mourtzanos Triantafillos, Embedded Processing System for Digital Sound, Techical
University of Crete, 2016

[2] Lynn Blair. Data Interpolation and Its Effects on Digital Sound Quality, McMurry
University, 2008.

[3] Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Second
Edition

[4] Simon S. Haykin, Digital Communication Systems

[5] H. Nyquist, Certain Topics in Telegraph Transmission Theory, 1928

[6] G.K. Karagiannidis and K. N. Pappi, Telecommunication Systems, Third Edition

[7] John Watkinson , The Art of Digital Audio, Third Edition

[8] Perry R. Cook, Music, Cognition, and Computerized Sound. An introduction to
Psychoacoustics

[9] E.Brad, Meyer,David, R.Moran, Audibility of a CD-Standard A/DA/A Loop Inserted into
High-Resolution Audio Playback. Boston Audio Society, Lincoln, MA, USA, 2007

[10] P. J. Wolfe and S. J. Godsill, "Interpolation of missing data values for audio signal
restoration using a Gabor regression model," Proceedings. (ICASSP '05). IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005., Philadelphia, PA, USA, 2005,
pp. v/517-v/520 Vol. 5, doi: 10.1109/ICASSP.2005.1416354

[11] Doerfler, Monika. (2001). Time-Frequency Analysis for Music Signals: A Mathematical
Approach. Journal of New Music Research. 30. 3-12. 10.1076/jnmr.30.1.3.7124.

[12] A. Lukin, and J. Todd, "Parametric Interpolation of Gaps in Audio Signals," Paper 7512,
(2008 October.).

[13] George E.Forsythe, Michael A. Malcomlm, Cleve B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall series in Automatic Computation

[14] William H. Press, Brian R. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical
Recipes in C, the art of Scientific Computing, Cambridge University Press, 1988

[15] Ian McLoughlin, Applied Speech and Audio Processing: With Matlab Examples,
Cambridge University Press, 2009

Manuals

[17] Xilinx,Zynq-7000 SoC: Embedded Design TutorialA Hands-On Guide to Effective
Embedded System Design, ug1165

[18] Xilinx, Introduction to FPGA Design with Vivado High-Level Synthesis, ug998

[19] Xilinx, Vivado Design Suite User Guide: High Level Synthesis, ug902

[20] Xilinx, Vitis Unified Software Platform Documentation, Embedded Software
Development, ug1400 (v2019.2)

[21] Xilinx, AXI reference guide, ug761

Links

[22] https://charmain2010.wordpress.com/2014/05/01/analogue-vs-digitaladvantages-vs-
disadvantages/

[23] http://musicweb.ucsd.edu/
(http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Analog_Digital_Conversion.html)

[24] https://www.mediacollege.com/glossary/q/quantization.html

[25] https://en.wikipedia.org/wiki/Psychoacoustics

[26] https://en.wikipedia.org/wiki/ABX_test

[27] https://en.wikipedia.org/wiki/Linear_interpolation

[28] https://en.wikipedia.org/wiki/Interpolation

[29] https://en.wikipedia.org/wiki/Modeling_and_simulation

[30] https://en.wikipedia.org/wiki/Sample-rate_conversion

https://charmain2010.wordpress.com/2014/05/01/analogue-vs-digitaladvantages-vs-disadvantages/
https://charmain2010.wordpress.com/2014/05/01/analogue-vs-digitaladvantages-vs-disadvantages/
https://en.wikipedia.org/wiki/Sample-rate_conversion
https://en.wikipedia.org/wiki/Modeling_and_simulation
https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Linear_interpolation
https://en.wikipedia.org/wiki/ABX_test
https://en.wikipedia.org/wiki/Psychoacoustics
https://www.mediacollege.com/glossary/q/quantization.html
http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Analog_Digital_Conversion.html
http://musicweb.ucsd.edu/

[31] https://www.mathworks.com/help/signal/ref/resample.html#mw_7adbf990-9b5e-4677-ac50-
8997f886114c

[32] https://www.mathworks.com/help/signal/ref/spectrogram.html

[33] https://en.wikipedia.org/wiki/Pulse-code_modulation

[34] https://en.wikipedia.org/wiki/MP3

[35] http://pilot.cnxproject.org/content/collection/col10064/latest/module/m34847/latest

[36] https://www.researchgate.net/figure/Diagram-showing-the-structure-of-the-human-ear-
detailing-the-parts-of-the-outer_fig1_324547019

[37] https://chromatone.center/apps/sound-and-tone-perception/

[38] https://en.wikipedia.org/wiki/Interpolation

[39] https://en.wikipedia.org/wiki/Spline_interpolation

[40] https://reference.digilentinc.com/learn/programmable-logic/tutorials/zedboard-
programming-guide/start

https://reference.digilentinc.com/learn/programmable-logic/tutorials/zedboard-programming-guide/start
https://reference.digilentinc.com/learn/programmable-logic/tutorials/zedboard-programming-guide/start
https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wikipedia.org/wiki/Interpolation
https://chromatone.center/apps/sound-and-tone-perception/
https://www.researchgate.net/figure/Diagram-showing-the-structure-of-the-human-ear-detailing-the-parts-of-the-outer_fig1_324547019
https://www.researchgate.net/figure/Diagram-showing-the-structure-of-the-human-ear-detailing-the-parts-of-the-outer_fig1_324547019
http://pilot.cnxproject.org/content/collection/col10064/latest/module/m34847/latest
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://www.mathworks.com/help/signal/ref/spectrogram.html
https://www.mathworks.com/help/signal/ref/resample.html#mw_7adbf990-9b5e-4677-ac50-8997f886114c
https://www.mathworks.com/help/signal/ref/resample.html#mw_7adbf990-9b5e-4677-ac50-8997f886114c

