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Περίληψη

Όσον  αφορά  τον  ψηφιακό  ήχο,  για  μεγάλο  χρονικό  διάστημα  η  πιο  κοινή  μορφή
αποθήκευσης και διανομής μουσικής ήταν η ποιότητα CD με ρυθμό δειγματοληψίας 44,1
kHz και βάθος πληροφορίας τα 16 bit. Για πολλούς λάτρεις της μουσικής, η ποιότητα του
CD δεν μπορεί να προσφέρει την καλύτερη δυνατή ακουστική εμπειρίας, υποστηρίζοντας
την ανωτερότητα των μορφών ήχου υψηλής ανάλυσης. Δεν υπάρχει προς το παρόν κοινή
ετυμηγορία, σχετικά με τις ιδιότητες και τα πλεονεκτήματα των μορφών ήχου υψηλής
ανάλυσης. Αυτή η διπλωματική εργασία στοχεύει στη βελτίωση των τυπικών αρχείων
ποιότητας CD με την εφαρμογή της μαθηματικής μεθόδου cubic spline interpolation σε
ασυμπίεστο  αρχείο  .wav,  βασισμένη  σε  προηγούμενη  εργασία  από  τον  Μουρτζανό
Τριαντάφυλλο [1].

Έχοντας  μελετήσει  τις  δυνατότητες  του ανθρώπινου αυτιού και  τον  ρόλο που έχει  η
ψυχοακουστική  στην  ακουστική  εμπειρία,  καθώς  και  τα  μαθηματικά  πίσω  από  την
ηχητική μηχανική και τις μεθόδους interpolation, τα μαθηματικά μοντέλα των Linear  και
cubic  spline  interpolation  αναδημιουργήθηκαν,  χρησιμοποιώντας  τη  Matlab,  όπως
παρατέθηκαν  από  τον  Μουρτζανό  Τριαντάφυλλο,  που  χρησιμοποίησε  αριθμητική
κινητής  υποδιαστολής.  Αυτά  τα  μοντέλα  στη  συνέχεια  μετατράπηκαν  σε  μια
αποδοτικότερη  από  μεριάς  υλικού  προσέγγιση,  χρησιμοποιώντας  ένα  παράθυρο
τεσσάρων δεδομένων και αριθμητικής σταθερού σημείου. Στη συνέχεια συγκρίθηκαν τα
νέα μοντέλα, με μια ποικιλία αρχείων ήχου ως εισόδους, κρίνοντας τα αποτελέσματα
από  τα  φασματογραφήματά  τους,  τις  κυματομορφές  και  την  ακρόαση  των
παραγόμμενων αρχείων WAVE,  επιβεβαιώνοντας τη  καταλληλότητα της αριθμητικής
σταθερού σημείου για τα μοντέλα.

Στην συνέχεια, σχεδιάστηκε μια υλοποίηση υλικού που στοχεύει ένα Zedboard FPGA,
χρησιμοποιώντας τα Vivado HLS, Vivado και Vitis, που αναπτύχθηκαν από την Xilinx. Η
προκύπτουσα  εφαρμογή  συγκρίθηκε  με  μια  προσέγγιση  λογισμικού  και  τα
αποτελέσματα συγκρίθηκαν με  το  μοντέλο σταθερού σημείου  που αναπτύχθηκε  στο
Matlab. 



Abstract

When it  comes  to  digital  audio,  for  a  long  time  the  most  common format  to  store  and
distribute music was the CD quality of 44.1 kHz sampling rate and 16 bit depth. For many
music  enthusiasts,  the  CD  quality  is  unable  offer  the  best  possible  listening  experience
possible, supporting the superiority of high-resolution audio formats. The jury is still out, on
the qualities and advantages of high resolution audio formats. This thesis diploma aims to
improve  standard  CD  quality  files  with  the  application  of  the  cubic  spline  interpolation
mathematical  method  on  uncompressed  .wav  file,  based  on  previous  work  done  by
Triantafillos Mourtzanos[1].

Having studied the capabilities of the human ear and the role played by psychoacoustics on
the  auditory  experience  and  the  mathematics  behind  audio  engineering  as  well  as
interpolation,  the  mathematical  models  of  linear  and  cubic  spline  interpolation  were
recreated,  using Matlab,  as  presented by Triantafillos Mourtzanos,  which utilized floating
point arithmetic. These models were then converted to a more hardware efficient approach,
using a four data point window of inputs and fixed-point arithmetic. The new models were
then  compared,  with  a  variety  of  audio  files  as  inputs,  judging  the  results  by  their
spectrograms,  waveforms  and  the  audibility  of  the  resulting  WAVE files,  confirming  the
viability of fixed point arithmetic for the models.

As a follow-up a hardware implementation was was designed targeting a Zedboard FPGA,
using Vivado HLS, Vivado and Vitis, developed by Xilinx. The resulting implementation was
compared to a software adaptation and its results were compared to the fixed point model
developed in Matlab.
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Chapter 1
Introduction

1.1 Motivation

In  the last  few decades,  digital  sound has dominated the music  industry,  due to  its  low
recording cost, ease of distribution in an increasingly digitalized market and increased audio
processing capabilities. As a result digital sound formats became the most prevalent in our
everyday lives, with a large library of great works being stored first in CDs and later on, with
the advent of the internet, converted to the Mp3 format making music accessible to a level
never before thought possible.

The success of the Mp3 format can be credited to its small space requirement, accomplished
by the omission of sound undetectable by the human ear, compared to other compression
methods. As such Mp3 is the dominant format in platforms like Spotify, and Youtube, the two
most popular and accessible platforms for music.

However, when performing lossy audio encoding, such as creating an MP3 data stream, there
is a trade-off between the amount of data generated and the sound quality of the results[34].
This loss of data leaves something to be desired by more demanding listeners, making CDs a
better option, as far as audio quality is concerned. Unfortunately, CDA (the CD standard) is it
self a lossy compression method, due to the nature of sampling[2].

Consequently, listeners well versed in music, tend to prefer LP (Long Playing) records as a
medium of enjoying their favourite music. LPs are an analogue sound storage mediums and
thus they maintain the sound and feel  of  live music to a greater extend.   This  statement
remains the source of heated debate, leading to the emergence of multiple higher frequency
formats,  trying  to  abridge  the  gap  between  analogue  and  digital  audio,  providing  more
samples.

1.2 Objective

Previous,  work  on  the  subject  used and  compared  two  interpolation  methods,  linear
interpolation and cubic spline interpolation in order to increase the quality of music tracks,
extracted from CDs using an FPGA. Results were encouraging, achieving an increase in audio
quality, mathematically and acoustically. Thus, in this thesis,  a more hardware efficient and
less  computation  intensive  solution  was explored  and  documented, using  fixed  point
arithmetic and windows of four samples of input data to achieve similar results.

The experiments present in this thesis  are conducted using Matlab, in order to estimate the
effectiveness of the proposed solution. An argument could be made for using C/C++ for this



purpose since Matlab is optimized for floating point arithmetic calculations. However Matlab
allows for easy demonstration of results, using plots,  spectrograms, resampling and other
functions, which are instrumental to the experiments.

First a floating point model  was created to recreate the results of the aforementioned work,
with the extra addition of a data window, as input. After the code for fixed point cubic spline
interpolation  was developed  in  line  with  the  previously  mentioned  constraints,  with  the
objective of four times the frequency of CDs and 16 extra bits of data per sample, bringing the
final quality up to 176,4 kHz and 32 bits of depth.

This format may not be in line with the standard of the music industry of: 192kHz and 24 bits,
but it does not diverge significantly from them,  and is often preferred by audio engineers.
Finally two FPGA designs were created, one with the purpose of data-point recovery and  the
other is focused on upsampling to the aforementioned specifications,  using the Xilinx HLS
developing kit. The algorithms tested with Matlab, was translated to HLS friendly C++ code,
in order to be downloaded to a Zedboard FPGA. 

1.3 Contribution of the thesis

The  present  thesis is proposing a  different  method  of  providing  superior  digital  audio
quality,  closer  to  the expectations  of  experienced listeners,  using a design tailored to the
strengths of FPGA technology. 

The IP developed for the purposes of this work, is a resource inexpensive and timing efficient
module,  that  can  be  easily  integrated  in  FPGA  designs  targeting  relatively  inexpensive
platforms but all the while ensuring high performance and minimal power consumption.

Additionally,  this  thesis  tries  to  establish  the  fact  that  there  is  not  always need for  high
arithmetic precision, provided by arithmetic models such as floating-point, as far as audio
engineering is concerned. The fixed point models explained on chapter 4, provide substantial
results while avoiding the intricacies of implementing a floating point arithmetic model.

Finally,  the  thesis  explores  the  viability  of  cubic  spline  interpolation  as  a  standalone
interpolation method for data-point recovery or upsampling applications.

1.4 Structure of the Thesis

The structure of the thesis is as follows:

In  chapter  2,  general  information  about  audio  engineering,  along  with  some of  its  basic
principles is  explained,  along with an explanation of  the human auditory experience and



factors that affect it. Finally chapter 2 presents examples of similar work on the field of audio
interpolation.

Chapter 3 presents the theoretical and mathematical framework of linear and cubic spline
interpolation methods, in order to provide a basis for the algorithms explored and developed
in this thesis.

Chapter  4  explains  the  design  process  of  a  mathematical  model  destined  for  hardware
implementation.  The process  followed in  that  chapter  was to  recreate  the  original  model
presented in the first generation of this work, followed by its conversion to a four data point
input  window  utilizing  fixed-point  arithmetic.  Then  the  models  are  compared  using
spectrograms waveforms and auditory tests.

In chapter 5 the development of a hardware design is presented along with the interfacing
methods utilized to create an efficient embedded FPGA design. This design is then compared
to a C version of the mathematical model. Finally the results are compared to the ones given
by the mathematical model created in Matlab.

Chapter  7  details  a  summary  of  this  thesis  along  with  commentary,  conclusions,  and
possibilities for future research and development.



Chapter 2:
Relative Research 

2.1 Introduction to Music and Sound

Music  is  an  art  form.  Meaning  some  of  its  main  purposes,  among  others,  include  the
expression of human emotion and the exoneration of beauty. The medium of music is sound,
subsequently  in  order  to  properly  understand  and  process  music  one  must  understand
sound, as well as human hearing, by virtue of being the sense by which humans perceive
sound.

2.1.1 Analogue and Digital Audio

Sound is an analogue mechanical wave. It can be mathematically represented by function of
one independent variable, specifically a function of sound pressure in correlation to time[3].
The diversity of sounds in an audio signal is not a result of the mere value of sound pressure,
but it is dependent on the frequency of the waveform. For example, striking the string of a
guitar causes it to oscillate striking the neighbouring molecules of air to oscillate at the same
frequency as the string. The easiest methods of recording, processing and distributing sound
waves involves using the Nyquist sampling theorem in order to produce Digital audio files,
whose quality depends on the particulars of each method.

Figure 2.1: An example of an audio waveform



For  analogue  audio  signals  the  variable  of  time  is  continuous.  As  a  result  there  is  an
interrupted stream of sound data, for a listener to experience. Analogue recordings are more
accurate  and natural  sounding  due to  changes  in  air  pressure  being  captured exactly  as
recorded[22]. 

In contrast, for digital audio signals the variable of time is distinct, meaning that audio signals
have distinct values of sound pressure, that belong to a specific and finite set represented by
bits. However the gaps in the signals only have a small interval between them, undetectable
to humans. Unfortunately, to trained listeners, digital might, sometimes, sound unnatural, too
clean and far too perfect[22], forgoing the “warmth” of analogue sound.

2.1.2 Converting Analogue to Digital

Most commonly a digital audio signal is procured by inputting an analogue audio signal to
an ADC(Analogue to Digital Converter). The ADC, most commonly, is going to apply two
processes to the analogue signal: sampling and quantization [23]. applying sampling on an
analogue  signal,  results  in  values  evenly  distributed  through  time.   In  order  to  procure
accurate results,  so  that  the resulting sequence of  samples uniquely defines  the analogue
signal, the proper sampling rate must be selected[4]. The proper rate is given by the Nyquist
sampling theorem.

2.1.3 Nyquist Sampling Theorem

The  Nyquist  sampling  theorem  states  that:  Any  signal,  regardless  of  its  length,  can  be
considered as consisting of sinusoidal components. Therefore they possess characteristics of
periodic functions such as frequency(f). Being consisted of multiple such signals means that
there is a frequency band(bandwidth) within a given function. The required frequency band
is directly proportional to the signalling speed (fs), and in fact needs to be equal to at least two
times the sampled signal’s bandwidth, in order to maintain all of the signal’s information[5].
Which ultimately means that:

f s≥2W

In case the sampling rate does not satisfy the above expression, there will be overlapping
samples in the produced signal. This phenomenon results in the distortion of the audio signal
resulting in what is called, aliasing. In many instances, before sampling, anti-aliasing, low-
pass filters are used to further limit the bandwidth of the input signal[6].  When sampling
audio signals,  a low pass filter, with a cut-off frequency of 20kHz is used since the preferred



sampling rate of audio signals of 44.1 kHz, already satisfies the Nyquist sampling rate, since
the absolute width of human hearing is 20Hz to 20kHz, with frequencies between 2 kHz and
5 kHz being the most sensitive to human ears.

The typical method of digital representation of sampled analogue audio signals is Pulse-code
modulation (PCM). It is the standard form of digital audio in computers, compact-discs, WAV
files and other digital audio applications. 

Common sample depths for PCM are 8, 16 or 24 bits per sample, with a sampling frequency
depending on the desired format (e.g. CDs have a sampling frequency of 44.1 kHz, while
DVDs have a frequency of 48 kHz)[33]. It  should be noted here that the wikipedia article
includes a small mistake as it  states that 20 bits per sample are possible.  However this is
technically incorrect as the bit-width needs to be a multiple of 8. 

Figure 2.2: Example of aliased and non aliased output signals(image source:
[35])



 In a PCM  stream, the  amplitude of  the analogue signal  is  sampled regularly at  uniform
intervals, after which quantization must be applied.

2.1.4 Quantization

An analogue signal can, in theory, receive infinite amplitude values even if those values are
within a finite range.  If  a signal is  sampled,  the potential  values of  each sample are also
infinite. However human hearing can detect amplitude differences only if they are greater
than a given value.  So in order to  procure a digital  signal  that  is  similar to  its  analogue
counterpart, the difference in amplitude must remain undetected to the listener.[6]. In order
to satisfy this constraint, a processes known as Quantization is applied to the samples of the
analogue signal. 

Quantization  is  the  process  by  which  the  samples  of  a  given  analogue  signal  receive
amplitude values from within a finite set of values.  The  set of possible amplitude  values is
defined by the bit depth. For example, 8-bit quantization has 28 = 256 possible values, 16 bit
quantization  has 216 = 65,536 possible values,  and so on[24].  The values are chosen by the
quantizer  based  on  the  input  voltage  it  receives,  locating  the  appropriate  quantization
interval wherein it resides. It should be noted that the intervals at the extreme ends have no
upper boundary[7].

After the quantization process is complete, the series of produced values must be represented
in a format compatible with the targeted digital equipment. This processes is called encoding.
During encoding, the series of bits is split into words depending on the desired bit depth.

Quantization  is  obviously  quite  a  necessary,  process.  However  unlike  sampling,  it  is
irreversible and introduces a new type of error, quantizing error, which ultimately means,
that some of the information of the original signal is irrecoverable. 

2.1.5 Quantizing error and Dithering

Quantization, introduces a new type of error, known simply as quantizing error, which is
defined as the difference between the analogue, input signal and the quantized output signal
[4]. If the input is represented by m and the output by v, the quantizing error(q) for any given
time, where v is defined, is given by: 

q=m−v



The higher the signal level, the more the signal is distorted by the quantizing error, effectively
functioning as noise, since the signal is more strongly correlated with the error. In the music
industry the main method to decorrelate the error from the signal, is dither[7].

Dither makes the quantization process unpredictable and gives the system a noise floor. In
digital audio systems,  a dither signal is  added to the signal prior to quantization and no
attempt is made in the DAC to subtract it. The effect on the output signal is a slight reduction
to the signal to noise ratio attainable by other dithering methods, however no non-linearities
are introduced, making the noisier output an acceptable trade off. The unpredictability of
quantization results from the fact that by the addition of the dithering function, the sample
find their quantizing intervals in different places[7].

Obviously, dithering does not remove the quantizing error, but rather mitigates it, converting
the unacceptable sounding distortion of simple quantization, into broadband noise which is
more benign to the human ear[7].

Figure 2.3: In this figure the signals m(green) and v(blue) are shown in relation to each other and the 
resulting error q(red).



2.2 Human Hearing

 The aforementioned observations of sonic behaviour and the techniques derived from them
raise the question of how exactly does the human ear function and how our perception of
sound is affected by differences between the parameters of each sound wave.  The structure of
the ear is one of the prime factors that determine auditory perception.

The visible part of the ear also referenced as outer ear is named pinna. The pinna leads to the
auditory canal, also called meatus, which leads to the eardrum or tympanic membrane. The
area beyond the eardrum is called inner ear which contains the hidden parts of the ear. The
pinna acts as as a sound collector from the outside world, reflecting the wave to the auditory
canal. The auditory canal guides a sound wave, which is proportional to the intensity of the
original sound wave, to the eardrum. Three little bones in the air-filled inner ear, which are
attached to the eardrum, excite vibrations in the cochlea, which is a liquid-filled part of the
inner ear. With the vibrations transmitted in the cochlea, the nerves behind the cochlea are
excited,  converting the sound wave into nerve impulses,  which will  be transferred to the
brain[8].

The sound wave that reaches the cochlea, is affected by the very structure of the auditory
system, and even the head and shoulders. For example the guiding effect of the convolutions
of the pinna increases with increasing frequency. The effects of the aforementioned structures
becomes significant, however, only when their size is comparable to the wavelength of the
sound wave[8].

Figure 2.4: The structure of the human ear (image source:[36])



Sound  can  consist  of  multiple  frequencies  and  the  difference  between  these  frequencies,
affects  how  the  brain  interpretes  it.  This  frequency  analysis  is  performed  by  the  basilar
membrane of the cochlea. For example a sound consisting of two frequencies that are not
widely separated, we perceive it as beats. If they differ by a few cycles we hear a single rising
and falling sine wave[8]. 

It is even possible to mask a frequency with another frequency that is close to it by adjusting
its intensity. The bandwidth within which it is possible to mask a frequency is called critical
bandwidth.  Outside  the  boundaries  of  the  critical  bandwidth  it  is  impossible  for  the
frequencies to mask one another or even interact, thus they are heard separately [8].

2.2.2 Human Hearing Frequency Range

Audio signals such as music, are limited in the range of 20 Hz to 20 kHz, which is the absolute
border of human hearing, in a non-laboratory environment, with the ear being most sensitive
in the 2 to 5 kHz range. The upper end of the range degrades with age and drops to about 16
kHz.  This  drop  in  bandwidth  is  attributed  to  the  various  sonic  stimuli  a  human  ear  is
subjected to, as they eventually damage the more fragile cells in the cochlea responsible for
the perception of higher frequencies. These cells are irreplaceable. Loudness also affects the
impact of sound to the ear, meaning that the effect of sound to the human ear is determined
by a function of loudness and frequency as represented in the next graph (Figure 2.5).  The
range of loudness appears to be as low as 0 dBs and as high as 80dB. However higher values
of the decibel scale are still audible but can potentially cause permanent damage and even
pain to the ear. 

The aforementioned values are not absolute, as there are many different attributes that must
be accounted for. Such attributes include genetics, living standards and condition in tandem
with the person’s habitat and environment, combined with the fact that not every aspect of
neither genetics nor hearing is understood perfectly to this day.



2.2.3 Psychoacoustics

Psychoacoustics is the field of study which involves the scientific of sound perception, it is an
interdisciplinary field which includes psychology, acoustics, electronic engineering, physics,
biology,  physiology,  and  computer  science.  Its  contribution  to  this  study  concerns  the
different ways, different people, depending on their genetics, experiences and intimacy with
music,  impact  their  perception  of  it.  As  it  was  previously  stated,  sound perception  is  a
combination of mechanical wave physics and a series of sensory and perceptual events.[25]

Psychoacoustics are often applied in computerized audio. For instance, the lossy mp3 audio
compression method relies on psychoacoustics to maintain the illusion of untampered audio
while  drastically  increasing  information  loss.  Other  applications  include  the  masking  of
frequencies that audio producers want to de-emphasize, low quality audio systems etc.

2.2.4 The Mayer-Moran Experiment [9]

As it was stated in the comparison between digital and analogue, there had always been a
debate about wether or not the standard 16-bit/44.1-kHz CD pulse-code modulation format is
sufficient for a complete auditory experience. Furthermore, the perception of audio quality
seems to  be  non subjective.  The Mayer-Moran experiment  was an attempt  to  answer  the
question: Does high resolution audio provide any augmentation to the auditory experience,
or is it excessive with no significant benefits?

Figure 2.5 : Perceived Human Hearing (image source:[37])



The experiment is a blind comparison between  SACD(Super Audio CD)/DVD-A formatted
audio,  which utilizes a frequency of  96 kHz and increased word length,  claimed to offer
superior-sounding  playback,  and  standard  CD  audio.  For  about  a  year  ABX  tests  were
conducted with the participants being of various backgrounds but also including people with
significant musical experience such as audio engineers and students of musical technology.

 An ABX test  is  simply conducted by presenting the subject  with  two choices of sensory
stimuli  to  identify  detectable  differences  between  them.  There  are  two  known  samples,
sample A, the first reference, and sample B, the second reference, followed by one unknown
sample X that is randomly selected from either A or B. The subject is then required to identify
X as  either  A  or  B.  If  X  cannot  be  identified  reliably  with  a  low probability  value  in  a
predetermined number of trials, then it cannot be proven that there is a perceptible difference
between A and B. All in all the ABX test answers whether or not, under ideal circumstances, a
perceptual difference can be found between the compared samples [26]. 

The subjects’ upper hearing limits have been measured to spot any correlation between this
parameter and the audibility of differences. The source audio is given by a SACD/DVD-A
player. The CD quality signal is simulated by using a high quality CD recorder as a bottleneck
for the high resolution signal. The levels of both channels were  matched to within 0.1 dB.
Audio  switching  was  handled  by  an  ABX CS-5  double-blind  comparator.  Just  before  the
playback begins the signal goes through a pee-Amplifier.

Figure 2.6: The experiment’s setup(image source:[9])



2.3 Expressing Audio using Mathematics

As  was  already  stated  sound waves  are  sinusoidal  in  nature,  meaning  that  they  can  be
represented, mathematically, as a linear correlation of sine waves. The complexity of sound
waves and music in particular, seems far removed from a linear system. This can be explained
by the fact that sound propagation in air at intensities encountered in musical performances is
a linear phenomenon, as are the vibrations of strings and columns of air, even the vibrations
along the cochlea of the ear ca be approximated by linear systems[8].

2.3.1 Linear Systems

A linear system is a system whose behaviour is described by a linear differential equation or
by a linear partial differential equation. In such an equation constant times partial derivatives
with respect to time and space equals 0 or to an input driving function. For example given
input  signals  labeled  In1  and  In2  which  produce  output  signals  labeled  Out1  and  Out2
respectively, the combined input In1+In2 should produce an output equal to Out1+Out2 [8].

2.3.2 Sinusoidal Waves

A true sine wave lasts forever, identical periods are being repeated across past and future. Its
characteristics  are  given  by  the  following  three  values:  Amplitude(A),  frequency(f)  and
phase(p), represented as: 

Wave=A∗sin (2∗pi∗f∗t + p)

Amplitude represents the highest possible value the wave can reach, frequency represents
how often the wave oscillates,  measured in Hertz (cycles per second or s -1) and finaly the
phase describes when the wave reaches its peak amplitude.

It  is  possible  to  express  sine  waves  in  terms  of  relative  amplitudes,  this  is  achieved  by
converting the relative value to decibels (dB). Supposed two sinusoidal waves with the first
have  an  amplitude  of  A1  and  the  second  having  an  amplitude  of  A2.  The  relationship
between the two vibrations, in dBs is given by:

20∗log( A 1/ A 2)

A musical sound wave can be regarded as the summation of different sinusoidal waves as as
stated above the musical instruments, the propagation of their oscillations through the air and
into the human ear is a linear system. Meaning that mathematical processes like interpolation
can be entrusted and utilized to produce accurate results.



2.4 Oversampling

Oversampling means using a sampling rate which is substantially greater than the Nyquist
rate thus as already explained above not required to obtain a given signal. On the other hand
oversampling allows a given signal quality to be reached without the need for expensive
recording equipment. If bandwidth is replaced by sampling rate and SNR is replaced by a
function of word length, the same must be true for a digital signal. Thus raising the sampling
rate potentially allows the word length of each sample to be reduced without information
loss.  Information  theory  predicts  that  if  an  audio  signal  is  spread  over  a  much  wider
bandwidth, oversampling can be used to achieve higher SNR for a given demodulated signal
than that of the channel it passes through whether or not the system is digital or analogue.
Neither sampling theory nor quantizing theory require oversampling to be used to obtain a
given signal quality[7].

2.5 Similar work

There are multiple interpolation methods used for different purposes.  The most common
purpose  of  interpolation applications  appears  to  be the recovery of  lost  data  rather  than
utilizing it for higher quality upsampling. 

2.5.1 Signal Restoration using a Gabor Regression Model

One application for signal restoration is called: Interpolation of missing data values for audio
signal restoration using a Gabor regression model, which aims at the problem of missing data
interpolation  over  repeated  short  gaps  in  audio  signals,  which  for  the  purposes  of  their
application, are assumed to be known a priori. The method is a formalization of the e overlap
and add method commonly used for audio signal analysis and synthesis [10]. 

Garbor analysis is a branch of mathematical theory, which can be used when digital audio
signals are processed. Gabor analysis is based on the idea of representing arbitrary signals of
finite energy in terms of building blocks which have a well-defined “center of gravity” in a
time-frequency sense. Instead of thinking of cutting a signal into pieces, Fourier analysing it
and putting it back together after some processing, the Gabor approach thinks of a signal
being projected onto basic functions, which are concentrated in certain regions of the time-
frequency plane.[11 ] 

The  model  first  divides  the  underlining  audio  signal  into  overlapping  segments  via  the
multiplicative action of a symmetric window g whose effective size is chosen as a function of
the analysis window length so that it lies in the range of 15–40 ms, depending on the time-
varying nature of the audio signal class under consideration.  The analysis coefficients are
calculated as inner products of  the original  audio signal and modulated versions of some



chosen analysis  window. Most audio  signal  processing approaches begin with the Gabor
transform of the noisy data,  given by  G  y∗  according to the chosen Gabor system. Here,
however,  the  synthesis  coefficient  representation  is  directly  estimated.  Finally, Bayesian
estimation is used for the Gabor regression model, in order to calculate the noise variance
appearing in the equations. [10]. 

Overall the researchers conclude that, the suitability of a Gabor regression model is evidenced
by the fact that promising restorations, from both the objective and subjective points of view
may be obtained even in cases where over 35% of the data values are missing. 

2.5.2 Interpolation of Audio Signals Using Linear Prediction

This  application  uses  linear  prediction in  sinusoidal  models  in  order  to  achieve  long
interpolation. The sinusoidal model is used often for musical audio processing purposes such
as  musical  sound  processing  and  audio  coding.  Parameters  of  the  sinusoidal  model  are
extracted from the original sound in a frame-based manner, and a sound that is close to the
original  one  can  be  synthesized  from  the  extracted  parameters.    Often  times,  however
missing  information  about  sinusoids  can  occur,  this  application  aims  at  recovering  this
information.

More  specifically,  sinusoidal  modelling  aims  at  representing  a  sound signal  as  a  sum of
sinusoids of given amplitudes, frequencies,  and phases.  So, after modelling a given audio
signal in this manner, a common practice is for the amplitude to be interpolated linearly, and
cubic interpolation is used for the phase, the frequency can be found by the differentiation of
the cubic phase polynomial. 

The researchers proposed a different approach, since they identify that despite the fact that
the above method, which is  based on a polynomial interpolation of the parameters of the
partials, preserves the harmonic relation among partials,  it does not take into account the
modulations of the parameters of the partials. The modulations are important since the play a
decisive role in audio perception.

The proposition states that  parameters of partials,  can be modelled by an AR model and
linear prediction is used in order to predict  the parameters of the partials in the missing
region. In linear prediction, the current sample can be approximated by a linear combination
of past samples of the input signal. The first step to interpolate corrupted sinusoidal data in
the missing region is to decide which partial of one side should be linked to which partial of
the other side to form a unique partial. The time interval is so long that the evolution of the
partials  within  the  missing  region  is  taken  into  account  to  achieve  a  good match.   The



different variables of the signal, such as amplitude frequency and phase are calculated by
using the original method paired with an AR model.

In  that  work  it  is  shown that,   the  parameter  of  the  partials  allows  those  partials  to  be
interpolated reliably. Partials having simple modulations such as vibrato or tremolo allow
high-quality  interpolation  for  gap  sizes  up  to  1  s,  which  is  a  significant  data  gap.  The
researchers  had  trouble,  where  more  complex  modulations  were  concerned,  but  their
proposed method shows a significant improvement over a simple polynomial interpolation
method[12].  



Chapter 3: 

Interpolation

Interpolation is a type of estimation, a method of procuring new data points within the range
of a discrete set of known data points. Often enough, a number of data points, obtained by
sampling or experimentation, which represent the values of a function with a set number of
values of the independent variable, are sometimes insufficient. To overcome this difficulty, it
is  often  required  to  estimate  the  value  of  that  function  for  an  intermediate  value  of  the
independent variable. Thus extrapolating the amount of data available. As already explained,
during audio sampling, data points are lost. Interpolation is going to be utilized in order to
estimate the value of the missing data points increasing audio resolution.

Interpolation and other methods of data recovery are quite necessary because filling data
points  in  a  straight  line  between  the  original  points  causes  distortion.  Distortion is  the
alteration of the original shape or other characteristic of a signal. In audio processing terms, it
means the alteration of the waveform of an audio signal. All in all distortion is undesirable, in
our case, a mathematically acute method such as interpolation is required.

In  this  chapter  the  concept  and  theory  behind  interpolation  is  explained,  however  the
mathematical models developed for the purpose of this thesis have some differences, which
are explained in the next chapter as they come up.

3.1 Interpolation methods

Suppose a set of real values x1,x2,.........,xn and each corresponds to real values y1,y2,........,yn with
the values of yi being often the result of measurements, sampling or other such processes that
do not require or define a proper mathematical function. Here   x1<x2,.........<xn and yi  is some
observed  or  mathematically  defined  real  number.  One-dimensional  interpolation  aims  to
create a function f(x): so that for each i it is true that: f(xi)=yi. Using this function values of y for
each arbitrary  x in between the existing points  can be reasonably calculated.  The task of
estimating  f(x),  for an arbitrary value of  x can be interpreted as a fitting a smooth curve
through the x axis.[13].

Interpolation  methods  must  model  the  function,  in  between  the  known points,  by  some
plausible  function  form.  The  form  should  be  sufficiently  general  so  as  to  be  able  to
approximate large classes of functions which might arise in practice. By far most common
among  the  functional  forms  used  are  polynomials.  Other  interpolation  models  include:
rational  functions  such  as  quotients  of  polynomials,  trigonometric  interpolation,  which



utilizes Fourier related methods, as well as linear and spline interpolation. It is worth noting
that interpolation is related to, but ultimately different from, function approximation, which
consists of finding an approximate function to use in place of a more complicated one.[14]. 

Despite the fact that, there  are a number of theorems about what sort of functions can be
recreated to a satisfactory degree, these theorems are not applicable to real problems. If we
know  enough  about  a  function  to  apply  a  theorem,  typically  interpolation  is  not  really
needed[14].

As already described, the heart of the interpolation problem is a definition of how a function
will behave between pre- established data points. After all the data points can be interpolated
by an infinite number  of different functions, and we must have some criteria to select among
them. The normal criteria are in terms of smoothness and simplicity of the function.  Most
functions  that  result  from interpolation processes,  are built  out  of  linear  combinations  of
elementary functions[14].

One historically important type of interpolating function is polynomial interpolation, which
are functions expressed in a set of algebraic polynomials. These functions have the advantage
of being simple to evaluate. Summation, multiplication and integration or even differentiation
is easily applied. Any continuous function f(x) can be a satisfactory approximated on a closed
interval by a polynomial pn(x)[14].

Conceptually,  the interpolation process  has two stages  with them being:  the fitting of  an
interpolated function to the provided data  points  and the calculation of  the intermediate
points. However this two stage method is considered inefficient as the result becomes more
susceptible to round-off error. A better approach consists of constructing a functional estimate
f(x)  from the  N tabulated values as needed. The further away the included points from the
area in the x axis, where we want to calculate intermediate values of f(x), the higher the error
percentage. So, given a large signal which is to be interpolated, it is considerably better to use
rather small windows of points in the calculation of the interpolating function f(x)[14].

The number of points used to procure the interpolating function is called the order of the
interpolation. As discussed, increasing  the order of the interpolation does not necessarily
increase its accuracy unless the added points are relatively close in regards to scale, as the
true,  unknown,  function  can behave in  a  considerably  different  manner  as  it  progresses.
Unless there is solid proof that the interpolating function is close in form to the original,
caution is advised when tampering with high order interpolation. Regardless of the method
interpolations with 4, 5 or 6 points are thought of performing the best[14].



3.1.1 Linear Interpolation

The simplest interpolation method is to locate the nearest data value, and assign the same
value, to the arbitrary point of the  x  axis. However there is little merit in this approach, as
linear interpolation is almost as  simple and yields more accurate results.  In mathematics,
linear interpolation is a method of curve fitting using linear polynomials to construct new
data points within the range of a discrete set of known data points. Linear interpolation takes
the approximate first derivative of the data points into consideration. Consider the following
example given two data points ya  and yb which correspond to xa and xb  respectively with xa< xb

. In order to calculate the value of y  in the intermediate point x using linear interpolation[27]:

y= ya+
( yb− ya)( x−xa)

xb−xa

.

Linear interpolation is quick and easy, but it is not very precise. Its major advantage is its
simplicity  and  the  low  requirement  of  two  required  data  points  to  calculate.  Linear
interpolation performs well when the difference between xb and xa  is small with regard to the

Figure 3.1: An example of linear
interpolation(image source:[27])



scale, making it a competitive choice for problems where accuracy of the interpolated values
is not paramount. 

3.1.2 Spline Interpolation

Remember that linear interpolation uses a linear function for each of intervals [xk,xk+1]. Spline

interpolation  uses  low-degree  polynomials  in  each  of  the  intervals,  and  chooses  the
polynomial  pieces such that they fit smoothly together.  The resulting function is called a
spline. In the present work the spline interpolation method uses third-degree polynomials,
this is called cubic spline interpolation[28].

If the spline is a function represented by s(x) and if the slopes are small, the second derivative
s’’(x) approximates the curvature and the differential arc length is approximated by dx. Thus
the energy of such a linearised spline is proportional to:

 ∫(s ' ' (x))2dx .  

When the knots (x1,y1),(x2,y2),......,(xn,yn)  are given, the linearised interpolating spline s(x)  is a
function such that s(xi)=yi , with i=1,2,.....,n and  such that the following integral is minimized:

∫
x1

xn

(s ' ' (x))2dx .

Furthermore, the cubic spline function with s’’(x1)=s’’(xn)=0 is called a natural spline or in this
case a natural cubic spline. This is the unique function  possessing the minimum curvature
property  of  all  functions  interpolating  the  data  and  having  a  square  integrable  second
derivative. In this regard cubic spline is the smoothest function which can be used for data
interpolation.

In n-1 intervals between nodes there are n-1 separate sections of cubic curves, each with four
parameters,  making  4n-4  parameters  to  be  determined.  The  fact  that  the  function  s  is
continuous and has continuous first and second derivatives at each of the n-2 interior nodes xi

amount to 3(n-2) conditions on s. Also, the fact that s(xi)=yi for each of n nodes imposes n more
conditions on s, making the number of required conditions equal to 4n-6. As such two more
conditions are needed to completely determine the spline making the minimum required
number of points equal to 4. As already explained we can set the first and last points’ second
derivative to 0 in order to procure the natural spline.



3.2 Mathematical description of Cubic Spline Interpolation

The construction of  a  cubic  spline  is  a  simple and numerically  stable  process.  Given the
subinterval [xi,xi+1] the following are derived:

hi=x i+1−xi ,

w=
x−x i

hi

,

 w '=1−w .

As x  is assigned values from the aforementioned subinterval,  w ranges from 0 to 1 and  w’
from 1 to 0. Then we can represent the spline on this particular subinterval by:

s (x)=wy i+1+w ' y i+hi
2[(w3−w)σ i+1+(w '3−w ')σ i]

where σ is a certain constant that will be elaborated upon shortly. The first two terms of the
expression represent standard linear interpolation as we have already seen, on the other hand
the term in  the brackets  is,  as  it  is  called,  a  cubic  correction term the will  provide more
appropriate smoothness to the interpolated data. Notice that the correction term vanishes at
the end points so that:

s (xi)= y i

and

s (x i+1)= y i+1

Figure 3.2: An example of cubic spline interpolation between
8 points(image source:[40])



Thus  s(x)   interpolates the data regardless of σ. We now differentiate  s(x)  thrice, using the
chain rule and the fact that w’=1/hi and (w’)’=-1/hi:

s '(x)=
y i+1− y i

hi

+h i[(3w2−1)σ i+1−(3 w ' 2−1)σ i] ,

s ' ' (x)=6 wσ i+1+6 w' σ i ,

s ' ' ' (x )=6
σ i+1−σ i

hi

.

Note that s’’(x) is a linear function which interpolates the values 6σι and 6σι+1 , so as a result:

σ i=
s ' '(x i)

6
.

This summarizes the nature of σ but its value remains to be determined. It should be noted
that  s’’’(x)  is a constant on each subinterval and as a result the fourth derivative vanishes.
Evaluating s’(x) at the end of the subinterval produces:

s '1(x i)=Δi−hi(σ i+1+2σ i) ,

s '2(x i)=Δi+hi(σ i+1+2 σ i),

where

Δi=
y i+1− y i

hi

.

S1  and  S2  are used temporarily  because the formula for  s(x)  holds only on [xi,xi+1],  so  the
derivatives at the end points are one-sided derivatives. To obtain the desired continuity in
s’(x) we impose the following conditions at the interior knots:

s1(x i)=s2(x i), i=2 , ......., n−1.

Although the value of s2  comes from considering the subinterval [ xi-1,xi], a formula for it can
be obtained simply by replacing I with i-1 in s’2(xi+1). This leads to:

Δi−1+h i−1(2 σ i+σ i−1)=Δi−hi(σ i+ 1+2σ i)

hence

hi−1 σ i−1+2(hi−1+hi)σ i+σ i+1 hi=Δi−Δi−1 , i=2 , ......., n−1.

This is a system of  n-2 simultaneous linear equation involving  n  number of unknowns,  σi  ,
i=1,2,….,n. Two additional conditions must be specified to uniquely define the interpolating
spline. There are several ways of picking these two conditions, one of which is the following.



Let  c1(x)  and cn(x), which are unique cubics which pass through the first and last four data
points, respectively. The two end conditions match the third derivatives of these cubics, more
precisely:

s ' ' ' (x1)=c1 ' ' '

and

s ' ' ' (xn)=cn ' ' '

The constants  c1’’’  and cn’’’  can be determined from the data without the need to calculate
c1(x) and cn(x) as shown bellow:

Let:

Δi
(1)=

y i+1− y i

x i+1−x i

,

Δi
(2)=

Δ i+1
(1) −Δi

(1)

x i+2−x i

and

Δ i
(3)=

Δi+1
(2) −Δi

(2)

x i+3−xi

The first group of the above values consists of approximations to first derivatives, while the
following two are known as divided differences. 2Δi

(2) and 6Δi
(3) are approximations of second

and third derivatives respectively. So we can deduce that:

c1 ' ' '=6 Δi
(3)

and

cn ' ' '=6 Δn−3
(3 ) .

Consequently we require that:

Δ1
(3)=

σ2−σ1

h1

,

and

Δn−3
(3) =

σn−σ n−1

hn−1

.



In order to achieve symmetry in the system of equations, these last two equations will be
multiplied by hi

2 and hn-1
2, which yields:

h1
2 Δ1

(3)=h1 σ2−h1 σ1 ,

and

−hn−1
2 Δ1

(3)=−hn−1 σ n+hn−1σ n−1.

For the spline with these end conditions the σ must satisfy the following system of n linear
equations in n unknowns:

(
−h1 h1 0 0 0
h1 2(h1+h2) h2 0
0 h2 2(h2+h3) h3

. . .
. . .

. . .
−hn−2 2(hn−2+hn−1) −hn−1

0 0 −hn−1 −hn−1

)(
σ1

σ 2

σ3

.

.

.
σn−1

σ n

)=(
h1

2 Δ1
(3 )

Δ2−Δ1

Δ3−Δ2

.

.

.
Δn−1−Δn−2

−hn−1
2 Δn−3

(3)

)
The matrix of coefficients has several, special properties. First of all the matrix is tridiagonal,
meaning that it has nonzero elements on the main diagonal, the first diagonal below, and the
first diagonal above the main diagonal,  with the rest of the matrix being filled with zeroes.
The matrix is also symmetric and for any choice of x1<x2<...<xn, the matrix is nonsingular and
diagonally dominant.

Thus a unique solution  σι,…,σn  always exists. It can also be proved that for any reasonable
choice of  x1,x2,…,xn, the coefficient matrix is well conditioned. In conjunction with the fact
that the matrix is diagonally dominant accurate solutions can be calculated using Gaussian
elimination without scaling or pivoting.



 Applying Gaussian elimination to the original system reduces it to upper triangular form:

(
a1 h1 0

a2 h2

a3 h3

. .
. . .
. . .
. . .

. hn

0 an

)(
σ1

σ2

σ3

.

.

.

.

.
σn

)=(
β1

β2

β3

.

.

.

.

.
βn

) .

The elements of the ai group are given by:

a1=−h1 ,

ai=2(hi+hi−1)−
hi−1

2

ai−1

,i=2,3 ,... , n−1 ,

an=−hn−1−
hn−1

2

an−1

,

the elements of the βi  are given by:

β1=h1
2 Δ1

(3) ,

β i=( Δi
(1 )−Δi−1

(1) )−
hi−1 β i−1

αi−1

, i=2,3 , ..., n−1,

βn=−hn−1
2 Δn−3

(3) −hn−1

βn−1

an−1

,

and finally, the coefficients σi can be calculated by back substitution as follows:

σn=
βn

an

,

σ i=
β i−hi σ i+1

ai

, i=n−1 , n−2 , ... ,1.

However it may be preferable, in order to achieve easier manipulations such as derivatives or
integrals, to calculate the actual cubic coefficients bi ,ci , and di  , i=1,2,…,n-1,

for each interval [xi,xi+1], where:



s (x)= y i+bi(x−x i)+c i(x−x i)
2+di(x−x i)

3 , x i≤x≤x i+1 .

These coefficients, for the values of i=1,2,…,n-1,  are given by:

bi=
y i+1− y i

hi

−hi(σ i +1+2 σ i) ,

c i=3σ i ,

d i=
σ i+1−σ i

hi

.

At this  point it  is  worth noting that nothing, in the mathematics,  of  cubic splines strictly
forbids the use of a value of  x  which is greater than xn  .  However this process is known as
extrapolation  and  its  results  become  less  and  less  reliable  the  greater  the  value  of  x
becomes[13].



Chapter 4:
Modelling and Simulation

The use of modelling and simulation within engineering is well recognized for its ability to
aid in delivering a better solution to the problem that needs to be addressed.  Modelling and
simulation helps to reduce costs, increase the quality of products and systems, and document
and archive  lessons learned.  Because the  results  of  a  simulation are only  as  good as  the
underlying model,  and as a result  particular  attention  is  required to its  development.  To
ensure that the results of the simulation are applicable to the real world, a significant amount
of understanding of the  implementation’s assumptions, conceptualizations, and constraints.
[29]

Audio models can be handled to a satisfactory degree by Matlab. The most common method
of handling audio in Matlab is storing the audio signal data as a vector of samples, with each
individual value being a double-precision floating point number. A sampled sound can be
completely specified by the sequence of these numbers plus one other item of information:
the  sample  rate.  However  the  majority  of  digital  audio  systems  differ  from  this  in  one
significant  respect,  and that  is  they  tend to  store  the  sequence  of  samples  as  fixed-point
numbers instead. The present approach will be utilizing a fixed-point data representation, as
the title of this thesis suggests.[15 ]

On the other hand, this is second generation of a system modelled and implemented using a
floating-point format. As a result a good understanding of the original model is required, in
order to transition it to a fixed-point format. In order to achieve that level of understanding
the first phase of the modelling process will consist of modelling an algorithm for both cubic
spline and linear interpolation, using floating-point arithmetic in Matlab.

4.1 Introducing the model

Any operation that Matlab can perform on a vector can, in theory, be performed on stored
audio. The audio vector can be loaded, saved, processed, and plotted in the same way as any
other Matlab variable. Additionally Matlab offer functions that easily extract the data of a
WAVE file, as well as functions like sound(data, frequency), which immediately plays back the
data. This function can provide an easy method of checking for obvious mistakes either in the
importation of the original data, or the processed result. It should be kept in mind though,
that this is not a reliable measure of testing the results of the model, just a useful method of
probing for large scale inaccuracies. Finally, Matlab offers a large collection of functions for
analysis, in both the time and frequency domains, such as plots or spectrograms which can be
used to determine the quality of the model’s results.
 



More specifically,  the function audioread will be utilized in order to extract the desired data
and the input file’s sampling rate.  By default  audioread  will arrange the data in a double-
precision  floating-point  vector  its  dimensions  are:  Number  of  Samples  by  number  of
channels. This vector is used as is for the floating-point reproduction of the original model,
but  can  be  easily  converted  to  fixed-point,  in  order  to  be  compatible  with  the  second
generation model. Finally, the data audioread provides is normalized which allows for higher
data resolution during the model’s mathematical calculations.

Despite its many advantages Matlab has a minor drawback.  That being the fact that it  is
geared and optimized for  floating-point  data  and calculations.  However,  it  does  support
fixed-point mathematics albeit with a relative lack of functions and operators which accept
fixed-point inputs. Another drawback is the fact that fixed-point arithmetic operations are
simulated by functions provided Matlab, resulting in very slow execution times.

4.2 First Generation model reproduction

Typically  the  input  files  of  the  model  are  of  CD  quality,  meaning  uncompressed  files
following the WAVE format, with a sampling rate of 44100 Hz,  and 16-bit signed integers for
the data. The data will be normalized in order to make higher resolution results, such as 24-
bit and 32-bit resolution, possible. 

CD quality WAVE files can be either mono or stereo. As a result, the number of channels is
either one or two, which results in the vector, returned by audioread, having either one or two
columns. It is arguably a better approach, for stereo data, to split the vector in two, process
them separately and merge them back together to procure the final audio signal.

4.2.1 Resampling

One of the methods that will be used to sufficiently test the cubic spline model is resampling.
Resampling  or  sometimes  called  sample-rate  conversion  is  the  process  of  changing  the
sampling rate of a  discrete signal  to obtain a new discrete representation of the underlying
continuous signal[30]. It essentially serves the same purpose as interpolation, in the scence
that it attempts to estimate the original signal’s missing points. The method by which it tries
to achieve that goal is to first insert zeros to upsample the signal by the desired amount (p),
followed by the appliance of an FIR anti-aliasing filter to the upsampled signal, and finally
discarding samples to downsample the filtered signal by another amount (q). The ratio of p/q
multiplied by the original sampling rate, which will commonly be 44.1 kHz, together with the
vector of the original data-points, serves as the input for Matlab’s resample function which
will be compared to the primary algorithm for cubic spline and linear interpolations[31]. 



4.2.2 Linear Interpolation

The first step in reproducing the linear interpolation model is to determine its inputs. The
model’s input should be the vector in which the data is stored(y), the file’s sampling rate(Fs),
and the desired frequency for the new signal. Most tests presented in this chapter will be
aiming for a frequency of 176.4 kHz, but it should be noted that any frequency higher that
44.1 kHz is possible. The next step is to determine the number of data points in the vector (n),
which will be used to determine the time vector t, as follows:

ti=iT s ,i=0,1, ... , n ,  

where

T s=
1

F s

.

The same process is  used for  the result’s  time axis,  but  first  the duration of  the input is
required, which is given by: 

duration= n
F s

,

with knowledge of the duration the number of samples can be calculated as follows:

nnew=duration×F ,

and then:
t j= jT , j=0,1 ,... , nnew .

Then, for every tj in the interval of [t0,tn] with each t corresponding to exactly one y, the linear
interpolation equation is used:

y j= ya+
( yb− ya)(t j−t a)

tb−ta

, ta<t j<t b .

More  specifically,  linear  interpolation  only  requires  two  data  points,  as  explained  in  the
previous  chapter.  These  two  data  points  are  represented  here  by  ya and  yb  whith  each
corresponding to ta and tb respectively. So in order to calculate the value of the audio signal at
a point tj the data window must be moved by one data point every time tj becomes greater or
equal to tb .

The only data that needs to be returned by the model is the resulting data vector as the time
axis does not serve any further function. A simple sine pulse, with a frequency of Fs=100 Hz is
used as testing signal. Linear interpolation is then used on that signal to procure additional
data points as shown in the images bellow.



Figure 4.1:The tested sine wave

Figure 4.2 Linear interpolation applied on a part of a sine wave



4.2.3 Cubic Spline Interpolation

Over the development of the model  three cubic spline algorithms were implemented and
tested with varying degrees of success. Each algorithm’s inputs are exactly the same as with
linear interpolation. More specifically the inputs are: the data vector (y), the original sampling
rate(Fs),  and the model’s target frequency  (F).  The preferred target frequency for the tests
remains at 176.4 kHz. The values of ti,tj,n,nnew,Ts, are calculated in the same way as linear
interpolation  as  well,  since  these  values  are  derived  from signal  processing  and  general
interpolation theory and are not bound to any specific interpolation method. 

4.2.3.1 The first Algorithm

The first algorithm,  which was unable to recreate the desired results, tries to follow a less
direct  approach  to  cubic  splines  by  attempting  to  calculate  the  coefficients  of  the  spline
directly. But first some standard values need to be calculated as they are integral to the final
coefficients, the values are:

hi=t i+1−ti ,i=1,2, ... , n

Δi
(1)=

y i+1− y i

h i

,

Δi
(2)=

Δi+1
(1) −Δi

(1)

t i+2−t i

,

which can be written as

Δi
(2)=

Δi+1
(1) −Δi

(1)

t i+2−t i+ ti+1−ti+1

,

and finally as:

Δi
(2)=

Δi+1
(1) −Δi

(1)

hi+1+h i

,

and

Δi
(3)=

Δi+1
(2) −Δi

(2)

t i+3−ti

,

which becomes:

Δ i
(3)=

Δi+1
(2) −Δi

(2)

t i+3−t i+ti+1−t i+1+ ti+2−ti+2

,

and then:

Δi
(3)=

Δi+1
(2) −Δi

(2)

hi+2+hi+1+hi

.



These coefficients are already explained in the previous chapter but for further elaboration
are repeated bellow:

a1=−h1 ,

ai=2(hi+hi−1)−
hi−1

2

ai−1

,i=2,3 ,... , n−1 ,

an=−hn−1−
hn−1

2

an−1

,

β1=h1
2 Δ1

(3) ,

β i=( Δi
(1 )−Δi−1

(1) )−
hi−1 β i−1

αi−1

, i=2,3 , ... , n−1,

βn=−hn−1
2 Δn−3

(3) −hn−1

βn−1

an−1

.

All  the values  are know so a simply substitution produces  the values of  ai and βi.  These
coefficients are, in turn, used to calculate the values of σi :

σn=
βn

an

 

and

σ i=
β i−hi σ i+1

ai

, i=n−1 , n−2 , ... ,1.

Afterwards the final coefficients can be calculated:

bi=
y i+1− y i

hi

−hi(σ i +1+2 σ i) ,

c i=3σ i ,

and

d i=
σ i+1−σ i

hi

.

Which are then substituted on the following equation in order to produce the final result for
each interval of [ti,ti+1]:

s j= y i+bi(t j−t i)+ci(t j−ti)
2+d i(t j−t i)

3 , i=1,2, ... n , j=1,2 ,...nnew .

This algorithm, however was producing non optimal results compared to other algorithms
and compared to the first generation’s model. As a result it was discontinued in favour of less
computation intensive algorithms that calculate a natural spline, meaning the boundary  of s
values for t1 and tn are set to zero, reducing workload and increasing the quality of the results.

4.2.3.2 The second Algorithm

The second algorithm, which was ultimately unsuccessful  in providing reliable results,  is
derived directly from the bibliography and attempts to calculate a natural spline and attempts



a  more  direct  approach  by  solving  the  tridiagonal  matrix  instead  of  calculating  the
coefficients  as  directly  as  the  previous  algorithm.  This  is  achieved  by  using  two vectors
named u and  y2,  which serve as temporary storage of the decomposed factors, which are
calculated in a decomposition loop for the tridiagonal matrix So the first step in the algorithm
is:

u1= y 21=un= y2n=0.

Of course the result’s time vector (tj)  needs to be calculated again, together with the other
basic  values  required  for  signal  processing,  referenced  already  in  the  first  algorithm.
Additionally, h as defined by the previous algorithm will be needed for the calculation of the
spline:

hi=t i+1− ti ,i=1,2, ... , n−1

The next step is the decomposition loop, which is:

 sigi=
x i−xi−1

x i+1−x1−1

,

pi=sigi× y2i−1+2 ,

y2i=
sigi−1

p i

,

uti=
y i+ 1− y i

x i+ 1−xi

−
y i− y i−1

x i−x i−1

,

ui=6
uti

xi+1−x i−1

−sigi

ut i−1

pi

,

where:
i=1,2 ,... , n .

Now that the decomposed factors have been calculated, the back-substitution for y2,  can be
executed:

y2 j= y 2 j× y2 j+1+u j , j=n−1 , n−2 , ... ,1

The follow up is to calculate the spline’s coefficients and the spline itself, for each  tj in the
interval of [ti,ti+1]:

a j=
ti+1−t j

hi

and

b j=
x j−x i

hi

,

with these coefficients, the spline can now be calculated:

y j=a j y i+b j y i+1+
hi

2

6
((a j

3−a) y 2i+(b3−b) y 2i+1),



where:
i=1,2 ,... , n

and
j=1,2 , ... , nnew .

Using the same sine wave as the one used for the linear interpolation test the output is close
enough to a proper result.

On further inspection however, the results of the algorithm are almost identical to the results
of linear interpolation, which should not be the case, and as such the algorithm is directly
compared to linear interpolation with the same sine wave as an input as well as a 10 s, audio
signal. 

As shown in figure 4.4, cubic spline’s second iteration yields perplexingly similar results to
those of linear interpolation. The value of y at t=2.5s is their common value, derived from the
original signal. In figure 4.5, the results are zoomed in to a point where the two values finally
become distinct to the eye. In order fully test the algorithm’s results, an actual audio signal is
required, thus ushering into another round of tests.

Figure 4.3: The results of the second algorithm when applied on a sine wave



Figure 4.4 A comparison between cubic spline's second iteration and linear 
interpolation.

Figure 4.5: The difference between the two results



Figure 4.6: A ten second audio signal, resulting from linear 
interpolation and cubic spline, with practically identical results

Figure 4.7: Zooming in on the interpolated audio signal, even now the results appear
identical



Inspecting figure 4.6, which depicts an audio signal with a duration of ten seconds, the two
interpolated signals are indistinguishable. This observation is not considered abnormal as the
sampling  rate  of  the  signal  is  44.1  kHz,  meaning  there  is  a  high  density  of  data  points.
Zooming in on the signal the points of the signals are again extremely close in value, and they
seem to ignore the curvature that cubic splines are supposed to provide. 

In conclusion this algorithm provides incorrect results and is more of an equivalent of linear
interpolation than a cubic spline one.

4.2.3.3 The third Algorithm

The third algorithm will be calculating the spline following all the steps underlined in chapter
3, by taking advantage of the Matlab’s backslash(\) operator to solve the tridiagonal matrix.
So once again the values of h,ti,tj,n,nnew,Ts, need to be calculated as was the case with the other
algorithms, the calculation process is the same.

The next step is to set up the group of linear equations, which involve the tridiagonal matrix.
As such Δi is the next value to be calculated:

Δi=
y i+1− y i

hi

, i=1,2 ,... , n−1.

Which is then used to calculate the right part of the linear system as follows:
Ri=6 (Δi+1−Δi) , i=1,2, ... , n−2.

Another step is, of course, to set up the tridiagonal matrix, which is named mT, but without
the first and the last point of the matrix as the spline that the algorithm calculates is a natural
spline. As such the matrix is written as:

mT=(
2(h1+h2) h2 0 0

h1 2(h2+h3) h3

h2 2(h3+h4) h4

. . .
. . .

. . .
hn−3 2(hn−3+hn−2) hn−1

0 0 hn−2 2(hn−2+hn−1)

)
Now the liner system common in cubic spline interpolation is written as:



(
2(h1+h2) h2 0 0

h1 2(h2+h3) h3

h2 2(h3+h4) h4

. . .
. . .

. . .
hn−3 2(hn−3+hn−2) hn−1

0 0 hn−2 2(hn−2+hn−1)

)(
m1

m2

m3

.

.

.
mn−3

mn−2

)=(
R1

R2

R3

.

.

.
Rn−3

Rn−2

),

This system can be solved in Matlab quite easily using the backslash (\) operator, by writing
the system as: m=mT\R. Additionally one zero is added at the beginning and another one at
the end of the m vector, as they represent the boundary conditions for a natural spline.

All that now remains is to calculate the coefficients of the spline, as well as the new data
points:

s 1=Δi−hi(2 mi+mi+1) ,i=0,1,2 , ... , n−1 ,  

s 2i=
mi

2
,

s 3i=
mi+1−mi

6hi

, i=0,1 ,... , n−1 ,

s j= y i+s1i(t j−ti)+s2i(t j−ti)
2+s3 i( t j−t i)

3 ,

where tj, is every point, which needs to be associated with a value sj,  in the interval [ti,ti+1].

Using the same sine wave to compare the third spline algorithm with the linear algorithm,
plotting  them  together,  and  zooming  in  enough  a  small  difference  between  the  two
algorithms is finally visible in figure 4.8. In this example the cubic spline algorithm provides a
steeper curve to the final result  in comparison to the linear algorithm, serving as a good
indication that the algorithm is on the right track, and it is in line with the result of the first
generation’s model. 

As a second test, the input is changed from the sine wave to the audio signal used in figure
4.6. As seen, in areas were the curve of the audio signal is supposed to be steeper, cubic spline
provides such a result, while linear provides an angle instead of the desired curve, granting
further confirmation of the algorithm’s validity.



Now that a sufficiently accurate algorithm for cubic spline interpolation has been established,
measures are needed, in order to adapt it for hardware implementation. 

Figure 4.8: Plot comparison of Linear and cubic spline interpolation using
the third algorithm

Figure 4.9:Comparison of Linear and cubic spline interpolations on an
audio file



4.3 Adapting the Model for Hardware efficiency

The algorithm described at this stage is using a large matrix and two large vectors before even
calculating the coefficients. For example, suppose a stereo audio signal with a duration of ten
minutes,  a  sampling frequency  of  44.1  kHz and a  resolution of  16  bits  per  sample.  This
translates into 26,460,000 data-points per channel. So it becomes obvious that a way to reduce
resources is needed. As already explained there is no need to insert every data point into the
system.  Instead  a  window of  data-points  which  traverses  the  whole  input  vector  can  be
utilized to dramatically decrease hardware resources. The minimum number of data points
needed for cubic spline interpolation is four. A four data point window is a fairly reliable
option, since it is not realistically possible to determine the optimal width of the window
since it varies between audio signals. Again, it is useful to note that adding extra data-points
in the calculations can either increase or reduce the accuracy of the results, depending on the
signal.

Now that the resource requirements have been significantly reduced, and the results yielded
are superior to the linear interpolation’s results, the resources can be reduced even further by
replacing floating-point with fixed-point arithmetic.  Matlab, however,  struggles with fixed
point  arithmetic  operations  as  they  are  simulated  using  specific  functions  such  as  the  fi
function. This function receives three arguments as inputs:  the vector to be converted,  an
object type returned by the  numerictype  function,  and another object returned by the  fimath
function.

Numerictype is used to define the length, in bits, of the fixed point value as well as how many
of these bits are used for the fraction or for the integer part of the number. Fimath is used to
set-up the settings for each value, in this case for example saturation will be used in dealing
with overflow,  additionally it provides options concerning the precision of summation and
multiplication. As for the precision of divisions, unfortunately it must be set arbitrarily as
there is no method of determining the optimal bit-depth for every possible pair of numbers.
The way Matlab determines the final precision of a division is by adapting it to the size of the
variable it will be stored in. As a side note, the size of the value divided must be significantly
higher that the divider’s size as Matlab, in an attempt to set a cap to the result’s depth, it will
produce  a  result  with  a  width  equal  to  the  difference  of  the  two  numbers’  widths.
Consequently often the algorithm increases the size of values before a division, there is no
carry over of this practice in the hardware implementation discussed in the next chapter.

Adapting to the fact that the input is now a streamed window of four data-points and the fact
that the backslash(\) operator, utilized to solve the linear system, is not supported for fixed



point arithmetic calculations, the algorithm needs a small adaptation, in that particular part of
the code. More specifically n, which denotes the number of inputs is always set to four.  This
change affects the algorithm at large and simplifies it on specific key points as follows:

hi=t i+1−ti ,i=1,2,3

and then

Δi=
y i+1− y i

hi

, i=1,2,3 ,

Ri=6 (Δi+1−Δi) , i=1,2.

This change also affect the mT matrix changing it to a 2x2 matrix and the whole linear system
is depicted as:

(2(h1+h2) h2

h1 2(h2+h3))(m1

m2
)=(R1

R2
).

This means the system can be solved by calculating the inverse of mT and multiplying it by
the  R  matrix,  as  a  first  step  in  calculating  the  inverse  the  determinant  of  the  matrix  is
calculated:

det= 1
4 (h1+h2)(h2+h3)−h1 h2

,

so in turn the inverse is:

mT T=det(2(h2+h3) −h1

−h2 2(h1+h2)),

and multiplying it by the R matrix, thus providing a solution to the system:

m=mTT×R .

After this step the calculations proceed as expected for both the coefficients of the spline as
well as the new data points.

Finally,  the four point input window does bring some changes additional changes to the
algorithm that need to be further explained. The new data-points produced by increasing the
sampling rate of the original audio signal, are always placed between the second and the
third point. As a result in order to achieve proper results, the window needs to progress only
by one data-point thus creating what is called an overlapping window. Although it is possible
to place new data-points in the intervals between all of the points being processed each time,
the results diverge widely, from what is expected by theory, because the ultimate number of
points that are taken into account is reduced, by the nature of the algorithm.



 

4.4 The Final Model

Having  successfully  reproduced  the  algorithms  necessary  to  attain  a  grasp  of  the  first
generation’s model and implementing necessary changes to make the cubic spline’s algorithm
more hardware friendly, a new model is needed to compare each method with each other.
This model is depicted in figure 4.10.

To elaborate further on the diagram, the value depicted as new F is the new sampling rate and
it must be equal to, or greater than the original sampling rate of Fs . Both fixed point functions
use a 4 data-point window as their input, while linear and floating-point cubic spline, which
is labelled as the first generation’s cubic spline, process all the data points in a large matrix
keeping in line with the first generation. As a reminder this difference does not impact the
accuracy of the new data points, for reasons highlighted earlier. The reason for the existence

Figure 4.10: The final Matlab model



of two different fixed-point cubic spline algorithms is to determine how much accuracy will
impact the results in other to further reduce the resources of the hardware implementation.

The model’s methods will be compared to one another by utilizing tests in both the time and
frequency domains, so that a broad picture of the actual results can be distilled from the
results.  The tests that will be conducted involve the recovery of missing data points while
maintaining the original sampling rate as well as the recovery of data-points and bit-depth by
increasing the sampling rate.

4.5 Frequency domain analysis

For the frequency domain analysis two different audio signals will be used as inputs. The first
signal is a 10 second audio signal cut from the song called Book of Souls by Iron Maiden. As
seen in figure 4.11,  the audio file is  in stereo format,  meaning there are two channels  to
process separately. The first two seconds of the signal are low a low amplitude, guitar string
vibration,  then  it  transitions  into  all  the  organs,  such  as  bass,  drums  as  well  as  guitars,
producing sound waves all at once. Vocals are missing in this particular input file. All in all
this  input  covers  a  significant  area  of  the  musical  spectrum and will  make for  relatively
reliable tests.

Figure 4.11: The input file for the first round of tests, channel one in blue, channel
two in orange



Spectrograms will be the main method of comparing the different results of each algorithm.
Spectrograms offer the ability to study the frequency spectrum of each signal by describing its
amplitude for each individual frequency present in the audio signals. 

The first  step  in  creating a  spectrogram for  a  given  audio  signal  is  by applying  discreet
Fourier  transformation  on a  Hamming window of  data  points,  in  order  to  achieve  clear
results on the spectrograms. The parameters of the set-up are: a Hamming window with a
width  of  1024  data-points,  50% overlap  between  contiguous  sections  and  the  number  of
DFT(Discreet Fourier Transformation) points is set at 2048[32].

The ratio of Power(dB) to Frequency(Hz) represents the Power Spectral Density, or PSD for
sort, of the signal during the DFT in relation to the frequency. The smoother the transitions of
the PSD, the smoother the audio will appear to the human ear. The sampling rates that will be
tested in this procedure are: 44.1 kHz, which is the standard CD quality, 48 kHz, which is the
standard DVD quality,  96 kHz, which is the sampling rate of what is  called super audio
quality and finally 176,4 kHz a favourite sampling rate among audio engineers because of the
fact that it is a multiple of 44.1 which is known to provide higher quality results. 

Figure 4.12: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the first channel

Looking at figure 4.12 and figure 4.13 resampling appears to not provide significant changes
to the spectrum, apart from a relative small increase in the smoothness between transitions.
Over all though the improvement is so minor that significant increase in quality by using the
other methods is not to be expected for a frequency of 48 kHz. Additionally on the lower
frequencies that are placed in the first two seconds of the test file the difference is not visible
whatsoever.



Figure 4.13: Spectrogram of 44.1 kHz of the original and 48 kHz after resampling for the second
channel

Figure 4.14: Spectrogram of 48 kHz for Linear Interpolation for both channels

Comparing  the  results  for  linear  interpolation  (figure  4.14)  the  improvements  over  the
original signal are even lesser,  but slightly inferior to the results provided by resampling.
After observing figure 4.15, where floating point cubic spline interpolation was applied, the
results are on par with resampling, and superior to those of linear interpolation. Especially on



higher  frequencies,  the  transition  between  edges  seems to  cleared  out  to  a  small  degree
resulting in a slightly smoother transition.   

Figure 4.15: Spectrogram of 48 kHz for Floating Point Cubic Spline Interpolation for both channels

Figure 4.16: Spectrogram of 48 kHz for Full Precision Fixed Point Cubic Spline Interpolation for both
channels

In figure 4.16, the full precision version of the fixed point algorithm is shown to have almost
the same results as its floating point counterpart, with the only difference being that shortly
after two seconds, where the input signal transitions to a more complex and lively tune, the
fixed  point  algorithm  provides  a  slightly  smoother  transition.  This  improvement  in  the
transitional area can be attributed to the fixed point algorithm’s for point window input due



to the fact that the results of that area are not impacted by points further away, as is the case
with the other algorithms being compared here. Adding the results of the limited precision
cubic spline algorithm to the comparison, as seen in figure 4.17, the results are equivalent to
the full precision algorithm, with the improvement on the transitional area present, although
the rest of the spectrogram is not as clean as the floating point version or the full precision
version of the algorithm.

Figure 4.17: Spectrogram of 48 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Increasing the sampling rate to 96 kHz provides more distinguishable improvements over the
original signal for all methods, with the exception of the linear interpolation method. The
improvements are especially visible when it comes to frequencies above 20 kHz, as the higher
the frequencies the more distinguishable the signal’s amplitude.

Figure 4.18: Spectrogram of 96 kHz after Resampling



Figure 4.19: Spectrogram of 96 kHz for Linear Interpolation for both channels

Looking at the spectrogram resulting from the linear interpolation algorithm it becomes quite
obvious that no significant improvements over the original signal have been made. As for the
new frequencies which are over 20 kHz the power over frequency performance is rather poor.
In contrast, the cubic spline methods provide less blur between power spikes.

Figure 4.20: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels

Comparing the cubic spline methods with linear interpolation the power spikes have been
normalised significantly and are easily distinguishable with the naked eye while at the same
time  providing  more  power  on  higher  frequencies  than  resampling.  When  it  comes  to
comparing  the  methods  between  themselves,  the  same  pattern  as  with  48  kHz  can  be



observed. More specifically, the floating point algorithm seems to perform very slightly better
than the full precision fixed point algorithm but nothing significant, the same can be said
when comparing the limited precision algorithm with the full precision version.

Figure 4.21: Spectrogram of 96 kHz for Full Precision Fixed Point Cubic Spline Interpolation for both
channels

Figure 4.22: Spectrogram of 96 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Moving on to the final sampling rate being tested, 176.4 kHz, the changes are again in line
with what was previously observed. Resampling once again provides clear,  improvements
compared  to  the  original,  and  linear  interpolation  seems  to  be  less  and  less  effective  as
sampling  rates  increase.  Again  the  cubic  spline  algorithms  have  improved,  yet  similar



results, and seem to retain the characteristics of previous results, albeit the difference between
them seems more pronounced.

Figure 4.23: Spectrogram of 176.4 kHz after Resampling

Figure 4.24: Spectrogram of 176.4 kHz for Linear Interpolation for both channels

Another bi-product of the increase in sampling rate is that the differences between the almost
identical channels are becoming more pronounced and are more easily distinguishable with
one another, while also retaining their basic structure. Additionally, increasing the sampling
rate had an effect  on the bandwidth of  the signal proportional to  the  new Fs/Fs  ratio.  As
previously stated, despite the fact that the human ear can perceive up to 20 kHz, if ultrasonic



frequencies, actually impact audio perception then there should be an improvement, however
small, on the acoustic experience.

Figure 4.25: Spectrogram of 96 kHz for Floating Point Cubic Spline Interpolation for both channels

Figure 4.26: Spectrogram of 176.4 kHz for Full Precision Fixed Point Cubic Spline Interpolation for
both channels

All in all, as far as spectral analysis is concerned, cubic spline interpolation seems to produce
encouraging  prospects,  especially  when  compared  to  linear  interpolation.  Linear
interpolation appears to perform best when the sampling rate is relatively low compared to
the original and it is possibly a viable prospect for low cost designs. 



Figure 4.27: Spectrogram of 176.4 kHz for limited precision Fixed Point Cubic Spline Interpolation for
both channels

Floating point cubic spline performed slightly better than its fixed point counterparts. This
can be attributed to two facts: Firstly, the short length of the input which did not allow the
four-point window input of the fixed point algorithms to perform its best by not including
points that would negatively affect the results. Secondly divisions in fixed point arithmetic do
not have a defined full precision depth, as such the precision of divisions is inferior to floating
point divisions. In order to better support this statement a test with a longer audio signal
follows.

The next input signal is called if eternity should fail, by iron maiden. This audio signal is  ten
minutes in duration and will  allow for more accurate observations. It  is  difficult to draw
conclusions out of a ten minute spectrogram, as such after the results for the whole signal are
processed only two seconds are displayed. 

Figure 4.28: Spectrogram of 176.4 kHz for Floating Point Cubic Spline Interpolation and limited
precision Fixed Point Cubic Spline Interpolation



On figure 4.28  it  can be observed that  indeed the two signals,  which were  produced by
floating point cubic spline interpolation and limited precision cubic spline interpolation, with
a four point input window, are seen as more similar than the signals previously tested which
confirms the effectiveness of the four point window, not only as a necessary adaptation for
hardware integration but as a measure that improves numerical accuracy.

4.6 Time Domain analysis

When it comes to analysis of the produced waveforms in the time domain, it will be focused
around the curvature of the signals produced by the model. More specifically an interval of 64
randomly chosen data-points will be plotted each time for the same sampling rates as the
spectrograms, which were discussed previously, namely: the original frequency of 44.1 kHz
and the frequency of 176.4 kHz, since 176.4 kHz stresses out the algorithms the most. As there
is no difference between using different audio channels only one of them will be displayed.
For the purpose of this demonstration a full length version of Transylvania by iron maiden
will serve as input.

In figure 4.29, the results of linear interpolation for a sampling rate of 176.4 kHz are plotted
together with the original signal. Linear interpolation produces results that match the original
perfectly. This is because Matlab just draws straight lines to connect the points of each table
being plotted, and that’s exactly how linear interpolation operates by definition hence the
identical graph.

Moving on to cubic spline interpolation, the floating point results presented in figure 4.30,4.31
and 4.32, are the kind of results expected by cubic spline interpolation. More specifically there
is obvious curve fitting on the part of all three versions of the algorithm, creating the curves
expected of an analogue signal. As with the spectrograms, it appears that as expected the
floating point version provides slightly better results, with the full precision algorithm as a

Figure 4.29: Comparison of 176.4 kHz Linear interpolation in blue and the original in red



close  second  and  the  more  limited  iteration  third.  It  is  confirmed  that  once  again  the
difference in the results is not significant enough to warrant neither a floating-point with a
full tridiagonal matrix nor a full precision fixed point iteration, since the resources required
for either of these two algorithms will be significantly higher than the more modest limited
precision and four data point input version.

Figure 4.30: Comparison of 176.4 kHz floating point cubic spline interpolation in blue and the
original in red

Figure 4.31: Comparison of 176.4 kHz full precision fixed-point cubic spline interpolation in blue
and the original in red



Finally, all three versions of the cubic spline algorithm are plotted together on a random part,
and compared with the input, which is on red. The results again are similar.

Figure 4.33: All the Cubic Spline algorithms and the original signal

Figure 4.32: Comparison of 176.4 kHz limited precision fixed-point cubic spline interpolation in
blue and the original in red



4.7 Acoustic Tests

After inspecting the behaviour of the algorithms in both time and frequency domains, the
next step is to perform acoustic tests, since the subject of this work primarily concerns music
and audio at large. Normally for this kind of testing requires setting up a proper ABX trial
system.  ABX  trials  require  a  digital  to  analogue  converter  connected  with  speakers  or
headphones, paired with an ABX comparator, to secure unbiased responses by test subjects.
None of  these resources  were procured and as  a result,  the data  presented here are this
student’s interpretations, using common PC speakers to playback the .wav files. The .wav
files, for resampling linear interpolation and floating point cubic spline interpolation were
created by utilizing Matlab’s writewav() function. The model’s fixed point .wav files were
created by exporting the data to a .txt file, and then importing them on a c++ program to
create .wav files. The original audio files used as inputs are the same files used in previous
tests  meaning:  Book of  Souls,  Transylvania  and If  Eternity  should Fail,  all  three  by  iron
maiden.

There is not much of a point in listening to only one channel at a time since the songs were
recorded to  be  played in  stereo  mode,  as  such  both channels  will  be  listened to  as  it  is
expected. The sampling rates being tested are 48 kHz, 96 kHz and 176.4 kHz. The first track to
be tested is  Book of  Souls.  As with the spectrograms the re  was no particular  difference
between any algorithm, in fact it was difficult to distinguish it from the original. There are no
noticeable differences with the other two audio signals either.

Increasing the sampling rate  to  96 kHz had overall,  a  larger  impact  than 48 kHz. Linear
interpolation was indistinguishable from the original,  but the cubic spline algorithms and
resampling appear to result in in “deeper” and “fuller” sound, seemingly slightly increasing
the  quality,  although,  it  should  be  noted  that  such  an  increase  could  be  the  result  of
psychoacoustic factors. Finally, there was a slight difference when using headphones, in the
way the lower frequency sounds, like the bass and the bass-drum, sounded like, but it might
not have been consistent because as the song progressed it became less obvious.

Setting  the  sampling  rate  at  176.4  kHz  there  were  some  small  changes  as  far  as  linear
interpolation is concerned, since it seemed like it produced a “warmer” sound.  In addition,
the other methods managed once again to seemingly produce a “deeper”,  “warmer” and
“fuller” sound. In some cases they also seemed to improve the output  a bit making it even
“clearer” at times, especially on the song Transylvania which was famously recorded with
lower quality equipment.  

To  elaborate  further  on  the  results,  all  the  algorithms  appeared  to  slightly  improve  the
acoustic  experience.  This  improvement  could  very  easily  be  attributed  to  psychoacoustic
effects that result from increasing the sampling rate of the audio signals, since the higher the



sampling rate is  set the more noticeable and improved the results.  Resampling and cubic
spline interpolation appeared to provide equivalent acoustic experiences, and where on par
on previous  tests.  Finally,  the  results  of  the  acoustic  tests  are,  obviously,  not  final,  since
normally a proper ABX trial with multiple subjects, preferably well versed in music should be
conducted, in order for the results to be entirely legitimate.

4.8 Regaining Lost Signal Information

In order to determine wether or not any information can be recovered by a heavily distorted
audio file, a harsh test was devised. This test includes removing whole data-points from an
original signal. Using cubic spline interpolation the objective is to determine whether or not
any data  can be recovered,  by comparing the original,  the distorted and the interpolated
signal.  The  solution  tested  here  is  a  modification  of  the  limited  precision  cubic  spline
interpolation algorithm.

The results of the test are seen in figures 4.33,4.34 and 4.35.  Observing figure 4.34, which
depicts  the  distorted signal,  and comparing it  to  figure  4.33,  which  displays  the  original
signal, it becomes clear that the signal was distorted significantly, and reproducing the signal
through speakers yields an unrecognizable sound wave.

Figure 4.34: The original signal



Figure 4.35: The distorted signal

Figure 4.36: The interpolated signal



Comparing figure 4.35, which displays the distorted signal after cubic spline interpolation has
been applied, the results of the signal resemble the original closely albeit with small small
differences, which is to be expected, considering the awful state of the distorted signal. By this
comparison, it can be confirmed that a small amount of the original data can be recovered by
using cubic spline interpolation and perhaps other interpolation methods. However when the
signal is played back is only slightly recognizable, which means that the whole of 16 bits of
missing data every for data-points is out of reach for the algorithm, which is not surprising.  

Calculation the nominal SNR of the signals, and considering the original signal as the clean
and pure signal the results are reinforced. The distorted signal, in this case, yields an SNR of
3.5309  while  the  interpolated  signal  yields  a  17.9001,  which  represents  a  considerable
improvement  as  a  result  of  the  appliance  of  cubic  spline  interpolation.  The  SNR  was
calculated using Matlab’s snr(x,y) function, where x represents the signal whose SNR needs
to be calculated and y represents the signal’s noise.



Chapter 5:
Embedded System Design

With the development of a fixed-point and hardware friendly, mathematical model for cubic
spline interpolation, the next obvious step is to design an embedded system on an FPGA.
Tools to be used in this thesis are made by Xilinx and are part of their webpack licence. The
design  of  the  module  responsible  for  cubic  spline  interpolation  will  be  attempted  using
Vivado High Level  Synthesis  (HLS),  for no other reason than this  student’s  lack of  prior
experience with the tool.

5.1 Hardware and Design Tools

Embedded systems are complex. Hardware and software portions of an embedded design are
projects  in themselves.  Merging the two design components so that they function as one
system creates additional challenges.  In tandem with an FPGA design project,  the overall
complexity of the project increases drastically. For the purposes of this design a Zedboard kit
will  be  used,  which  is  is  a  complete  development  kit  utilizing  the  Xilinx  Zynq-7000  all
programmable  SoC.  Using  an  SoC  in  combination  with  an  FPG  reduces  the  overall
complexity  of  the  design  process  by  offering  an  Arm  Cortex-A9  dual  core,  along  with
programmable logic. Thus, the tools necessary for the simplification of the design process are
the  Vivado design suite, which includes both regular Vivado and Vivado HLS, and the Vitis
software  platform.   This  combination  of  tools  offers  hardware  and  software  application
design, debugging capability, code execution, and transfer of the design onto actual boards
for verification and validation[17].

The first thing needed for a good understanding of the functionality of the tools is a proper
understanding of their workflow, which is shown on figure 5.1. To elaborate further, the first
step is designing the necessary modules in Vivado HLS. Vivado HLS serves as a compiler
providing  a  programming  environment  similar  to  those  available  for  application
development on processors. The main difference is in the execution target of the application,
which in this case is an FPGA. Vivado HLS enables for optimizations for throughput, power,
and latency without the need to address the performance bottleneck of a single memory space
and limited computational resources[17].

The programming language used in the tool is C\C++, with application code targeting the
Vivado HLS compiler  using the  same categories  as  any  processor  compiler.  Vivado HLS
analyses all programs in terms of operations, conditional statements, loops and functions[18].



 

As far as operations are concerned the main difference between normal C\C++ and its version
targeting the Vivado HLS compiler can be seen in a comparison between figures 5.2 and 5.3,
where the same snippet of code is executed on a processor and on an FPGA respectively, with
the snippet being:

A[i]=B[i]*C[i];
D[i]=B[i]*E[i];
F[i]=A[i]*D[i];

Figure 5.1: The workflow of the design process



Figure 5.2: Processor execution of example code(image source:[18])

Figure 5.3: FPGA execution of example code(image source:[18])



The application profile, depicted in figure 5.2, focuses only on the EXE stage of instruction
processing in a central processing unit (CPU). This is the only stage in instruction processing
that  is  shared  between  processors  and  FPGAs.  In  this  example,  the  execution  trace  is
sequential  due to  the execution platform,  not  the algorithm.  Based on the  algorithm,  the
values  of  A[i]  and  D[i]  can  be  computed  in  any  order  or  at  the  same  time.  The  only
algorithmic restriction is that both of these values must be computed before F[i].When using
the default settings in Vivado HLS, the resulting execution profile is similar to that of the
processor in that the multiplications and addition occur in sequential order. The reason for
this default behaviour is to minimize the number of building blocks required to implement
the user application. Although an FPGA does not have a fixed processing architecture, each
device has a maximum number of  building blocks it  can sustain.   Even with the default
behaviour,  the  implementation  outperforms  the  processor  execution  due  to  the  custom
memory architecture created for the algorithm[18]. 

When it comes to conditional statements, such as C’s typical if statement, a processor will
have to execute a branch operation, which may or may not result in a context switch, as such
resulting in algorithmic dependencies and impacting performance. In an FPGA, a conditional
statement does not have the same potential impact on performance as in a processor. Vivado
HLS creates all the circuits described by each branch of the conditional statement. Therefore,
the runtime execution of a conditional software statement involves the selection between two
possible results rather than a context switch[18]. 

Concerning loops, a processor is forced to schedule loop iterations sequentially. As shown in
figure 5.4, a loop that requires four clock cycles per iteration, will approximately need forty
cycles to complete a loop of ten iterations. In contrast, HLS does not have that limitation.
Because HLS creates the hardware for the algorithm, it can alter the execution profile of a
loop  by  pipelining  iterations.  Loop  iteration  pipelining  extends  the  concept  of  operation
parallelization from within loop iterations to across iterations, by basically performing loop
unrolling,  as  seen  in  figure  5.5.  With  the  purpose  of  reducing  iteration  latency,  the  first
automatic  optimization  applied  by  Vivado  HLS  is  operator  parallelization  to  the  loop
iteration  body.  The  second  optimization  is  loop  iteration  pipelining.  This  optimization
requires user input, because it affects the resource consumption and input data rates of the
FPGA implementation.  HLS can parallelize  or  pipeline  the iterations  of  a  loop to  reduce
computation latency and increase the input data rate. The user controls the level of iteration
pipelining by setting the loop initialization interval (II). The II of a loop specifies the number
of clock cycles between the start times of consecutive loop iterations. However the desired II
cannot always be forced through by HLS, and the user is often called upon to implement
optimizations manually[18]. 



Of course this is an FPGA design and these principles explain the function of the tool which is
used to develop independent modules. In order for these modules to function properly, they
need to be connected to a more expansive design, and in order to achieve that connection and
communication,  an  interface  between  this  module  and  the  larger  design  must  be
implemented. In C based design, all input and output operations are performed, in zero time,
through  formal  function  arguments.  In  an  RTL  design  these  same  input  and  output
operations must be performed through a port in the design interface and typically operates
using a specific I/O protocol. There are multiple I/O protocol types, the type chosen for the
present  work  is  provided  through  SystemC  designs,  where  the  I/O  control  signals  are
specified in the interface declaration and their behaviour specified in the code. When the top-
level  function  is  synthesized,  the  arguments  and/or  parameters  of  the  function  are
synthesized into RTL ports [19].  

Most of the interfacing is done using what is called pragmas. Pragmas are directives directly
embedded on the source file. Of course when  a directive  is applied to an interface, Vivado
HLS applies the directive to the top-level function, because the top-level function is the scope
that contains the interface. 

Figure 5.4: Loop execution on a processor(image source:[18])

Figure 5.5: Loop execution on an FPGA(image source:[18])



After the design of the module is complete it can be simulated as a normal C\C++ by using a
C\C++ test bench, which serves as the main of the program and the module as a function.
Vivado HLS offers the ability to execute what is called a hardware co-simulation where the
results  of  the  software  simulation  are  compared  to  the  results  of  Vivado’s  simulation,
complete with waveforms available.  Finally the resulting module is exported as a Vivado IP
(intellectual property).

 Moving to Vivado the, the first step is to create a block design where the IP generated by
Vivado HLS is imported. Next the IP’s ports should be suitably connected using Xilin’s or
other custom IPs as required in order connect the design with the FPGA’s SoC, which is
responsible  for  the  interfacing  between  the  RTL design  and the  FPGA’s  DDR and other
peripherals. There will be a short example where this procedure is explored further.  Finally a
debug  module  can  be  added  so  that  when  the  design  is  downloaded  on  an  FPGA  the
waveforms can be monitored on Vivado’s hardware manager. Obviously this module must be
removed from the final design.

After  the  block design is  complete,  the  next  step  is  synthesis  and implementation of  the
design. During implementation Vivado determines how the design will be placed and routed
on  the  specified  FPGA,  and  it  is  during  this  step  that  the  final  resource  utilizations  are
calculated and the constraints of the design are enforced. If there are not enough resources on
the FPGA to accommodate the design or the timing is not met, then the modules designed by
Vivado HLS need to be adjusted in order satisfy the requirements of the platform. When
dealing with resource overutilization a common method is to try and make the algorithm of
the module more efficient or, when it can’t be improved further on that regard, to reduce
arithmetic precision where it is affordable to do so. When dealing with timing issues the most
common solution is to try and make the pipeline, if present, more efficient by reducing its
critical path.

The next step is exporting the Vivado design onto Vitis, in the form of a ,XSA file.  The Vitis
IDE is designed to be used for the development of embedded software applications targeted
towards  Xilinx  embedded  processors  and  aids  in  pairing  them  with  hardware  designs
developed in  Vivado.  Vitis  overall  serves  as  an upgrade to  the older  Xilinx SDK,  in  this
software platform, two new concepts are introduced in the workspace: the platform project
and the system project. In the SDK workspace, the hardware specification, software board
support package (BSP),  and application all  live at the top level.   The SDK BSP concept is
upgraded to a domain in Vitis. A domain can refer to the settings and files of a standalone
BSP, a Linux OS, a third party OS/BSP like FreeRTOS, the choice of a domain is instrumental
and defining int overall design process.  A platform project groups hardware and domains
together.  Boot  components  like FSBL are  automatically  generated in  platform projects.  A
system project groups together applications that run simultaneously on the device. Figure 5.6
shows the tool’s workspace structure as described above[20].



Now that the XSA file from Vivado is available a platform project can be created in Vitis. A
platform project is the container for the hardware platform, runtime library, the settings for
each processor, and the bootloader for the device. It can be as simple as a standalone board
support  package,  or a combination of different kinds of  runtime configurations.  With the
platform project, containing the hardware established it needs to be pair with an application
project, with one or more contained in a system project, depending on the number of on-
board  processors/cores.  As  such  a  software  application  project  needs  to  be  created  first.
Software application projects are the final application containers. The project directory that is
created contains, or links to, C/C++ source files, executable output file, and associated utility
files, such as the Makefiles used to build the project[20]. 

Figure 5.6: The Vitis workspace structure(image source:[20])



With this steps done, the host program can now be developed and the design can finally be
used to program the targeted FPGA. In this work, the method of programming the Zedboard
is using two USB cables and setting it to its JTAG configuration, whose jumper configuration
can be seen on figure 5.7.

However, depending on the needs of the application, there might arise the need for extra
heap or stack memory, these sizes can be adjusted by the linker script. To elaborate further,
the  application  executable  building  process  can  be  divided  into  compiling  and  linking.
Linking is performed by a linker that accepts linker command language files called linker
scripts. The primary purpose of a linker script is to describe the memory layout of the target
machine, and specify where each section of the program should be placed in memory and the
size of other memory regions such as the aforementioned stack and heap[20]. 

5.2  Additional Familiarization

As first step in putting these design principles in practice a small project that would serve as a
tutorial was designed. The module developed in Vivado HLS is simple, receiving an array of

Figure 5.7: Zedboard JTAG jumper configuration(image source:[40])



integers as input add 100 to that number and have another array as the output. The idea for
this tutorial was to help with familiarization with Vivado HLS and its interfacing practices, as
such a protocol had to be selected to fetch data from the processor and the DDR RAM and
write the results on a different area of the DDR. The protocol chosen was AXI.

5.2.1 AXI Protocol

AXI, or  Advanced eXtensible Interface,  is part of ARM AMBA, a family of micro controller
buses,  with its latest version being AXI4. There are three types of AXI4 interfaces:   AXI4,
meant for high-performance memory-mapped requirements, AXI4-Lite, intended for simple,
low-throughput memory-mapped communication, commonly to and from control and status
registers,  and AXI4-Stream,  used for  high-speed streaming data.  For the purposes of  this
work AXI 4 and AXI-Lite will be the ones used,  because the burst of up to 256 data transfer
for  AXI4  is  enough for  the  I/O needs  of  the  application  and  since  AXI-Lite,  is  designed
primarily with control signals and scalar inputs in mind, and thus allows only 1 data transfer
per transaction, which is often enough. [21]. 

The typical AXI interface consists of a single AXI master and a single AXI slave, representing
IP cores that exchange information with each other. Memory mapped AXI masters and slaves
can  be  connected  together  using  a  structure  called  an  Interconnect  block.  The  AXI
Interconnect IP is sufficient as it already contains AXI-compliant master and slave interfaces
with the option to add more per IP block, and can be used to route transactions between one
or  more  AXI  masters  and  slaves[21].  This  set-up  is  commonly  called  AXI-master-slave
protocol or AXI-master, and is the type of interface protocol that will be used in this work.

Both AXI4 and AXI4-Lite interfaces consist of five different channels: Read Address Channel,
Write Address Channel, Read Data Channel, Write Data Channel, Write Response Channel
Data can move in both directions between the master and slave simultaneously, and data
transfer sizes can vary. AXI4 provides separate data and address connections for reads and
writes, which allows simultaneous, bidirectional data transfer. AXI4 requires a single address
and then bursts, as already mentioned, up to 256 words of data. AXI-master is a memory
mapped protocol, which means all transactions involve the concept of a target address within
a system memory space and data to be transferred. Examples of read and write transactions
are show on figures 5.7 and 5.8 respectively[21].



To clarify further, despite the fact that AXI-master supports up to 256 words of data burst, the
high performance AXI slave interface (HP), which is the best available interface on the Zynq-
7000 SoC, used in this work has a bus length of 64 bits, as such only 64 bits are transferred
every  cycle,  however  the  fact  that  only  one  address  is  needed  for  256  words  is  still  a
considerable advantage.  The AXI protocol does not specify or enforce the interpretation of
data, therefore, the data contents must be interpreted by the destination module. 

The AXI Interconnect core IP, provided by Xilinx with Vivado, connects one or more AXI
memory mapped master devices to one or more memory-mapped slave devices. The AXI
interfaces  conform  to  the  AMBA  AXI4  specification  from  ARM,  including  the  AXI4-Lite
control register interface subset. The AXI Interconnect core consists of the SI, the MI, and the
functional units that comprise the AXI channel pathways between them. The SI accepts Write
and read transaction requests from connected master devices. The MI issues transactions to
slave devices. At the center is the crossbar that routes traffic on all the AXI channels between

Figure 5.8: Channel Architecture for Data Reads(image source:[21])

Figure 5.9: Channel Architecture of Data Writes(image source:[21])



the various devices connected to the SI and MI. The AXI Interconnect core also includes other
functional units located between the crossbar and each of the interfaces that perform various
conversion and storage functions. The crossbar effectively splits the AXI Interconnect core
down the middle between the SI-related functional units and the MI-related units. These units
are depicted in figure 5.9[21]. 

There are multiple configurations provided by Vivado,  the ones that are relevant for this
work  are:  the  pass-through  configuration  and  the  N  to  one  configuration.  Pass-through
configuration is utilized when there is only one master device and only one slave device
connected to the AXI Interconnect module, and the module is not performing any optional
conversion functions  or  pipelining,  all  pathways between the slave and master  interfaces
degenerate into direct wire connections with no latency and consuming no logic resources.
However,  the  interconnect  module  is  still  required  as  it  continues  to  resynchronize  the
INTERCONNECT_ARESETN input to each of the slave and master interface clock domains
for  any  master  or  slave  devices  that  connect  to  the  ARESET_OUT_N  outputs,  which
consumes a small number of flip-flops. N to one configurations are used when there are more
than one master interface that need to be connected to exactly one slave interface. In that case,
address decoding logic might be unnecessary and omitted from the AXI Interconnect module,
unless address range validation is needed.  Conversion functions,  such as data width and
clock rate conversion, can also be performed in this configuration[21]. 

5.2.2 Integrating AXI to the design

After the small algorithm described previously is implemented in Vivado HLS, the interface
ports need to be added, and this is done by directives, such as pragmas. There only two data
ports in the top function and are declared as pointers a and b, which point to the areas of the
memory which the data is read from or written at. In order to make these ports into AXI4

Figure 5.10: AXI Interconnect Top-Level(image source:[21])



interfaces and be able to read and write from them, in that effect the pragmas are written as
follows:

#pragma HLS INTERFACE m_axi port=a offset=slave bundle=indata
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=outdata

#pragma HLS INTERFACE s_axilite port=return bundle=S_AXI_CONTROL

Note that there is  an AXI-Lite  slave interface which designates  as  its  port,  the function’s
return command. This is done in order merge the control signals in one bundle, that can be
guided by the SoC, additionally it generates an interrupt port, however interrupts are not
utilized neither on this tutorial nor on the two main designs.

Figure  5.10  shows  the  tutorial’s  design.  The  module  created  in  Vivado  HLS  is
example_axi_m_3, whose two AXI interfaces need to be connected to the Zynq processing
system through its slave AXI HP interface. To achieve this a two to one AXI Interconnect is
used. As already explained there are control signals that the processing unit must deliver to
the main module’s slave AXI-Lite interface, and as such the processing system’s master AXI
general  purpose(GP)  interface  connects  to  a  pass-through  AXI  interconnect  in  order  to
connect with the module’s slave interface. The remaining two IPs shown in the figure arer not
of  great  importance  to  the  overall  function,  as  processing system reset  is  responsible  for
handling the design’s reset function and system ILA is a debug core, whose purpose is to
enable  Vivado’s  hardware  manager  to  monitor  the  signals  it  is  attached  to  through  the
hardware manager.

Despite the fact that the module designed in Vivado HLS is very basic, the rest of the design
serves as a framework for the development process of the two main modules discussed in this
chapter,  and  was  instrumental  in  the  learning  process  required  to  understand  the  inner
workings  of  the  AXI4  protocol  and  its  master-slave  model,  as  well  as  the  overall
understanding of the tools mentioned here, their supposed workflow and overall function.



Figure 5.11: The tutorial's Block Design in Vivado



5.3 Transitioning the mathematical models to Vivado HLS

There are two algorithms that will be making the transition from Matlab to hardware, the first
one is the data-point recovery algorithm and the second one is the limited precision fixed
point algorithm. The mathematical models built in Matlab for these two algorithms during
the model phase of this work, were designed with hardware in mind already, in fact the
limited precision fixed point algorithm was developed in parallel  with its HLS module in
order to ensure relatively low resource utilization, without sacrificing too much in the way of
high quality results.

Generally both algorithms, follow similar design practices when it comes to their Vivado HLS
adaptations. There is a single main loop which is responsible for retrieving the data from the
DDR memory using AXI-master bursts, calculating all values dependent on the input data
and transferring the results back to the memory with another AXI burst. The “#pragma HLS
pipeline”   directive  is  used  in  order  to  create  a  pipelined  design,  the  iteration  interval
achieved is II=4 cycles, as four inputs are read and four outputs are written per loop iteration. 

However, not every calculation needs to be incorporated into the pipeline. Some calculations
are independent of the input signal and need to be calculated once. This is true for values
dependent  on  frequency  or  period  as  a  result  they  can  be  calculated  using  a  simple
combinational circuit and incorporating them into the pipeline would be a waste of resources.
On the other hand, that combinational circuit needs to complete its calculations in a time-
frame of a single cycle to avoid timing issues such as negative slack. To that end, a more
specific design was chosen for the upsampling version of the algorithm, setting its output
sampling rate at 176.4 kHz and simplification to the mathematics of the formula were done
whenever  the  designed  allowed.  The  sampling  rate  of  176.4  kHz  was  chosen  as  during
modelling and simulation it appeared to provide the best quality as well as being the most
computation intensive input for the model, further justifying its hardware implementation.
The design of  the data-point recovery algorithm was already specific about its  input and
output  sampling  rate  and  no  simplifications  needed  to  be  made  compared  to  Matlab’s
version.

The most  expensive  calculations,  both resource  wise  and time wise,  are  by far  divisions,
followed  by  multiplications.  Whenever  possible  simple  multiplications  with  integers  are
replaced with bitwise shifts, although they are not common in the algorithm in the first place.
For  example  simple  multiplications  by  two  are  replaced  with  a  single  shift  left  and
multiplications  by six  can be replaced with shifting the number by one to  the left,  on a
different register shifting it left by two and adding the result. As for divisions, only a few
division by two are implicated, and replaced by one shift to the right.



With these coding practices implemented the designs can now be synthesized and exported
to Vivado.

5.4 Finalizing the Hardware Designs on Vivado

Both designs have an interface similar to the one used for the tutorial with the extra addition
of  the  original  sampling  rate  as  a  scalar  input,  which  is  handled  by  the  AXI-Lite  slave
interface which is  also  responsible  for  the control  signals  associated with the AXI-master
protocol. As a result, the same framework built around the tutorial design seen, previously on
figure 5.10, can be utilized with no additional changes, the only difference per design being
the central module generated by Vivado HLS.

Name Slice 
LUTs

Slice 
Register

F7 
MUXes

Slice LUT as 
Logic

LUT as 
Mem

Block 
RAM

DSPs Bonded 
IOPADs

BUFGCTRL

Available 53200 106400 26600 13300 53200 17400 140 220 130 32
Upsampling 4994 6311 32 2071 4758 236 1 115 130 1
Point 
Recovery

4475 4297 2 1722 4271 204 1 79 130 1

Table 5.1: Utilization Report of Hardware Designs(Post Implementation)

The final  utilization report  can be seen on table  5.1.  During the design process,  after the
implementation of each design was complete, if the resource or timing constraints were not
met then the HLS module would need further optimization, as suggested by figure 5.1. This is
how these two final designs would be created. More specifically the first implementation was
a full precision model presented in chapter 4. That model was utilizing more resources than
were available on a Zedboard, consequently the limited precision model was co-developed in
Matlab and Vivado HLS. Parallel development was necessary to ensure that the reduction of
resources resulting from the reduction of arithmetic precision, would not be to the detriment
of quality results.

5.5 Creating the Host Program on Vitis

Having finalized both hardware designs it is time to create a host program for each hardware
design.  Vitis  creates  hardware  platforms out  of  the  .XSA files,  exported by  Vivado,  host
programs can be written for the Cortex-A9 on-board the Zedboard.

Before developing the host program, there is one more important design choice to be made,
what  operating  system  (OS)  will  be  used.  Among  the  plethora  of  OS  choices  that  Vtiis
supports two stand out,  a Linux OS and a standalone-baremetal application. A Linux OS
would allow for better file management and manipulation, by offer Linux libraries for the
host program, on the other hand it requires some additional development time due to the fact



that  boot  components  would have to  be designed using PetaLinux,  as  well  as  additional
hardware drivers for the hardware platforms. Standalone offers automatically generated boot
components and hardware drivers, but file management is restricted to FAT file systems(FFS),
done with the use of the xilffs library provided by Xilinx. Since the advantages provided by a
Linux OS, are not essential while FFS is serviceable for the purposes of both designs. As such
a standalone-baremetal approach is chosen.

Both designs follow a similar approach. The host program reads a WAVE file from an SD card
formatted in FAT32 file system, the channels are separated from each other and stored in
matrices A and A2, which are dynamically allocated using the information about the number
of samples found in a WAVE file’s header. Since the sampling rate targeted by the designs is
known, and preset at 176.4 kHz for the upsampling version and at 44.1 kHz for the data-point
recovery version, the result buffers can be dynamically allocated. Next, the inputs can be set
on the correct  variable  specified by the automatically  generated driver  and the execution
signal can be sent to the FPGA. After the FPGA has completed its processing the results are
written in a WAVE file with the appropriate modifications to the each header struct. More
specifically the header file required for each design’s result is different, while both use PCM,
data-point recovery has a bit-width of 16 bits and a sampling rate of 44.1 kHz, just like the
supposed input files. The upsampling version has 32 bits of depth and a sampling rate 176.4
kHz, which affects most values of the header file.

On a slightly different note, there is a lot of misinformation about WAVE files, probably as a
result of their under-utilization. For example a lot of sources such as forums and sites as
stackoverflow have discussion threads where it is stated that WAVE files of more than 16 bits
of data per sample need to use the WAVEFORMATEXTENSIBLE header. This is not true as
the normal header is perfectly serviceable and changing values to over 16-bits is recognized
by media players and correctly recognise the encoding. Additionally in questions regarding
24 bit WAVE files no one ever references that a 24 bit file must be written as 32 bit integer just
with zeroes in the place of the integer’s most significant bits.  Wave all in all is built with
standard programming languages in mind and does not need custom data types to be written
properly. 

5.6 Verification and Results

The design’s results were compared to the results of Vivado HLS’ C simulation results and
the  mathematical  model’s  results.  The simulated results  and the  hardware’s  results  were
identical due to the obvious fact that Vivado HLS’ C debugger and simulator tries to simulate
the design as closely as is possible. Matlab’s results were identical in most cases, with the
results produced by the other two methods, with the only divergence happening in one or
two least significant bits. This divergence can be attributed fact that, in order for the bit length



of the variables to be accurately portrayed some bits needed to be removed manually, by
reapplying the fi() function, as described in chapter 4.

The  fact  that  the  results,  produced  by  all  three  methods,  are  matching  should  not  be  a
surprise considering the fact  that  the Vivado HLS module and the Matlab model,  where
designed simultaneously, in order to achieve this level of validity for their results.

The  design  generated,  by  Vivado  HLS  was  also  validated  and  examined  in  regard  to
efficiency. The designs presented in figures 5.12,  5.13,  and 5.14 are  derived from the RTL
design given by Vivado and simplified, in order to be easier to understand the way the design
operates.

On  figure  5.12,  a  high  level  block  diagram  of  the  module  is  depicted,  the  memory  and
pipeline  control  module  is  responsible  for  I/O  operations  as  well  as  the  control  for  the
pipeline. The combinational part, referenced earlier and depicted in figure 5.14, is receiving
the scalar  input  Fs  which is  the sampling rate,  and calculates  all  the static  values  of  the
algorithm.

Figure 5.13 depicts the pipelined portion of the algorithm, whose results depend on the data-
points read from the DDR-RAM. The module rhs, represents the value of R as referenced in
theory, s1, s2 and s3 represent the different coefficients needed for the final calculations.

Figure 5.12: The design produced by Vivado HLS



Figure 5.13: The pipelined portion of the design

Figure 5.14: The combinational portion of the design



5.7 Hardware and Software timing comparison

In order to measure the performance of the designs, two algorithms designed in c, and meant
to run on a common processor were designed, utilizing floating point arithmetic. The libraries
time.h and xtime_l.h were used, on the C program and the Vitis host program respectively, in
order to measure execution times. The file chosen as input had a size of  30.186 Megabytes.
The  execution  time  on  hardware  for  the  upsampling  algorithm was  1.5  seconds  and  0.5
seconds for the data-point recovery algorithm,  in contrast their software counterparts had
average execution times of  0.7  and 0.14  seconds,  when ran on an Intel  i3-2370 processor
operating at 2.4 GHz. For reference the FPGA’s clock is set at 10 ns or 100 MHz. 

Judging by the results it would appear that that there is not much of an incentive to design a
hardware implementation for the cubic spline algorithm since it appears that common PC
processors  can  execute  the  algorithm  faster.  Even  if  the  II  of  the  hardware  design  was
dropped to  two,  down from four,  the  results  would have a  similar  performance  but  the
advantage would still lie with the software versions. The addition of a DMA module and the
implementation of an AXI-stream interface instead of  an AXI-master interface would also
help improve the design’s timing but not to a significant enough degree.

However,  when  factoring  in  the  cost  of  a  processor,  the  FPGA  solution  becomes  more
appealing, since the module developed in this thesis could be used for an FPGA design with
significantly lower cost, especially when energy consumption costs are factored in as well.

These results are not surprising, due to the fact that multiplications and especially divisions
are expensive operations and cubic spline requires a lot of them to perform its calculations. It
should  also  be  noted  that  a  lot  of  effort  has  gone  into  reducing  the  impact  of  the
aforementioned operations and their impact is minimized as much as possible. On the other
hand,  it  would appear  that  cost-wise  the  hardware  implementation  has  the  upper  hand,
significantly reducing cost with only a minimal trade-off performance wise.



Chapter 6:
Summary, Conclusions and Future Work

6.1 Summary

In the present thesis, the idea of a more hardware efficient cubic spline interpolation model,
using fixed-point arithmetic, was explored and developed, based on previous work done by
Triantafillos Mourtzanos[1]. As a result the first step in the creation of this endeavour was
studying his thesis and most of his cited sources, in an effort to build up understanding for
the mathematics used and a general knowledge of audio-engineering. More specifically, the
first step was understanding the basic principles of digital audio processing, signal theory
and their  mathematical concepts,  as well  as psychoacoustics and human sound cognition,
followed  by  the  mathematics  of  interpolation  methods  and  the  approach  chosen  in  the
Mourtzanos’ thesis. Other applications of interpolation methods were also researched along
with other methods of data-recovery by other researchers. 

When it came to development, the first step was recreating the models of the previous work,
using Matlab,  and especially the model  for cubic  spline interpolation,  to  that  effect  three
different models were developed with only the third presenting results in line with what was
expected. The criteria were mainly two: the recovery of some lost information from damaged
audio signals and the capacity of the algorithm to increase the quality of an existing audio
signal by increasing the sampling rate and the bit-depth form 16 bits to 32 bits. The models
presented had the capacity to produce a signal with any sampling rate above 44.1 kHz, which
is the standard for CD quality, however the sampling rates that were primarily tested where:
48  kHz,  96  kHz  and 176.4  kHz.  After  ensuring  the  competence  of  the  algorithm  it  was
converted to a full-precision fixed point algorithm which received four data-points of input
per  iteration,  which  is  the  minimum  amount  of  data-points  required  for  cubic  spline
interpolation. 

The  full  precision  version  of  the  algorithm  had  an  unreasonable  demand  on  hardware
resources.  As  a  result,  a  more  limited  precision  model  was  developed  by  systematically
reducing arithmetic precision without impacting the results in any significant degree.  This
was achieved by developing the hardware implementation in parallel with the Matlab model.
Spectrograms,  waveforms  and  audio  resulting  from each  Matlab  model  were  tested  and
compared, resulting in the limited precision algorithm proving its competence by providing
results in line with the other more resource demanding algorithms. 

Finally two hardware designs were implemented one aiming at recovering lost data-points
and the other increasing the sampling-rate and bit-depth. A lot of familiarization was needed
with the design tools, namely: Vivado HLS, Vivado, and Vitis. The AXI protocol was studied
extensively and was used to connect the board’s SoC to the main module. A software version



of the two algorithms was designed and proved superior to the hardware designs, albeit not
by a large degree. 

6.2 Conclusions and Commentary

In this thesis the cubic spline interpolation algorithm was greatly improved when it comes to
hardware integration and was tested as both an upsampling, bit-depth increasing method
and as data recovery method with regard to audio signals. Its results were in line with what
was  described  in  Mourtzanos’  thesis[1],  all  the  while  drastically  improving  resource
consumption and timing using a relatively common and cheap FPGA(Zedboard), bringing it
on  relative  parity  with  software  implementations.  Although  it  should  be  noted  that  the
performance of C versions of the algorithms, which were developed in an afternoon’s time,
was still better, making processors the better platform for cubic spline interpolation.

The huge discrepancy in timing between these two designs and the original floating point
design,  reinforces  the  position  that  significant  improvements  have  to  be  implemented  in
hardware implementations of floating point arithmetic, for them to compete with fixed-point
designs,  which  generally  appear  to  be  more  resource  efficient,  for  less  than  64  bits  of
precision, and often enough faster than floating point designs.

A minor critique of Mourtzanos’ thesis, is necessary here. The thesis promises and proclaims
encouraging  results  for  the  cubic  spline  interpolation  algorithm,  when  it  comes  to  its
application  in  audio  engineering.  It  is  this  student’s  opinion  that  despite  the  fact  that
improvements  were  seen  in  signals  during  tests,  the  point  of  reference  was  another
interpolation method, namely linear interpolation. Linear interpolation is an overall cheaper
method than cubic  spline  interpolation,  both  resource  wise  and time wise,  and  thus  the
comparison is unfair. Linear interpolation can be easily developed on an even cheaper FPGA,
or for that mater a relatively old microcontroller.  Furthermore, there are other mathematical
models that provide better results than cubic spline interpolation, such as the tried and true
method of  sinusoidal  modelling,  to  separate  the  audio  signal  in  basic  sinusoids  and use
different interpolation methods for a sinusoid’s different attributes, managing to recover data
of several micro-seconds more reliably than cubic spline interpolation. Overall,  the results
were mediocre compared to more complex techniques already developed. 

In hindsight, the mediocrity of the results, when it came to data-point recovery, was to be
expected. Interpolation and extrapolation methods were primarily designed and developed
for  curve  fitting  and  prediction  of  measurements  and  statistics.  As  such,  cubic  spline
interpolation was developed to encompass a large variety of different data, resulting in a jack
of all trades, master of none, model. This is incredibly evident in the bibliography, by the fact
that there were no publications about the use of a standalone cubic spline interpolation model
on audio engineering, it had to always be supplemented by other models, to bring it more in



line  with  the  challenges  of  audio  engineering.  The  only  instances  where  cubic  spline
interpolation was used as a standalone model were related to scientific measurements and not
audio.

All in all cubic spline interpolation performed its best when used to increase sampling rates
and bit-depth,  but  this  was easily  done in  C as  well,  performing slightly  better than the
hardware design.

As  a  final  remark  it  should  be  noted  that,  Matlab  while  serviceable  and  accurate,  was
extremely slow when it came to fixed-point arithmetic calculations. This was because Matlab
is  optimized  for  floating  point  arithmetic  and  fixed  point  was  an  afterthought.  Matlab
simulates fixed point numbers and operations by a series of function calls, slowing down its
calculations  by a  considerable  degree.  In  hindsight,  a  better  way to  compare  the  models
presented  in  this  work  would  have  been  to  have  Vivado  HLS,  handle  the  fixed  point
calculations  through its  C\C++ simulator,  have  them exported  to  a  file  and  imported to
Matlab in order to compare waveforms and spectrograms.

6.3 Future Work

As already mentioned the most probable application for a cubic spline interpolation design, is
upsampling and increasing bit-depth simultaneously, as such there might be merit in the idea
of integrating the design as a cloud service. Additionally the design could be moved to more
modern FPGA and have it process both channels of an audio file simultaneously, or used on a
smaller FPGA without an SoC, dramatically reducing costs at the cost of having to implement
an Ethernet connection and slight changes to the module’s interface.

The most exciting idea that came to mind during the final stages of writing this thesis was to
have a distributed system of microcontrollers that would utilize sinusoidal modelling and
various interpolation methods as described in chapter 2. The objective of the system would be
to bridge gaps in audio files. Sinusoidal attributes would have to be calculated separately,
amplitude would have to be interpolated linearly, while cubic interpolation is used for the
phase, the frequency can be found by the differentiation of the cubic phase polynomial. 

Alternatively the same objective can be achieved with another method referenced in chapter
2,  namely:  interpolation  of  missing  data  values  using  a  Garbor  regression  model[10].
However this model might be better suited for software platforms rather than hardware.
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