
Tackling Multi-Agent Routing in an
Orienteering Problem Setting

Diploma Thesis

Author :
Stergios Plataniotis

Committee :
Associate Professor Georgios Chalkiadakis (Supervisor)

Associate Professor Michail Lagoudakis
Professor Antonios Deligiannakis

Thesis submitted as partial fulfillment for the degree of Diploma in
Electrical and Computer Engineering

School of Electrical and Computer Engineering
Technical University of Crete

Chania
April 2021

Abstract

The Orienteering Problem is a combinatorial optimization problem which constitutes
a generalization of the Travelling Salesman Problem. It can be presented as a
graph, in which each node is associated with a reward, while each edge is associated
with a cost. With the starting and ending nodes fixed, one has to find a path
that maximizes the cumulative reward (or "score"), while maintaining a budget.
There may also be more limitations, such as an extra cost of visiting each node
or knapsack constraints. Such problems are usually solved via heuristics because
of their NP-hard complexity. To this end, we extend this competitive setting to
a multi-agent routing problem with the addition of congestion-related discounts,
and take advantage of Artificial Intelligence methods to address it. Specifically, we
model our extended problem in two different ways—i.e., as a multi-agent Markov
Decision Process (MDP), and as Partially Observable MDP (POMDP); and employ
multi-agent Reinforcement Learning (MARL) and Partially Observable Monte Carlo
Planning (POMCP), respectively, to find good solutions. Our MARL solution
employs a Coordination Graph communication format and the Sparse Cooperative Q-
learning algorithm. For our POMCP algorithm, we model congestion as uncertainty
countered by belief-particle filtering. Overall, we put forward six different algorithmic
variants to tackle this problem, and provide an analysis of their performance via
experimental simulations.

Περίληψη

Το Πρόβλημα του Προσανατολισμού είναι ένα πρόβλημα συνδυαστικής βελτιστοπο-

ίησης, και αποτελεί γενίκευση του προβλήματος του πλανώδιου πωλητή. Μπορεί να

αναπαρασταθεί σαν πρόβλημα εύρεσης μονοπατιού πάνω σε έναν γράφο, στον οπο-

ίο κάθε κόμβος συνδέεται με μία αμοιβή, ενώ η διάσχιση κάποιας ακμής με κάποιο

κόστος. Γνωρίζοντας τον αρχικό και τον τελικό κόμβο, το ζητούμενο είναι η εύρε-

ση ενός μονοπατιού που να τα συνδέει το οποίο μεγιστοποιεί τις συνολικές απολαβές

(το "σκορ"), χωρίς την υπέρβαση ενός αρχικού προϋπολογισμού. Μπορεί να υπάρ-
χουν και επιπλέον περιορισμοί, όπως κάποιο περαιτέρω κόστος για την επίσκεψη σε

κάθε κόμβο, ή περιορισμοί σακιδίου. Καθώς το πρόβλημα είναι NP-hard, οι διάφο-
ρες παραλλαγές του αντιμετωπίζονται συνήθως με χρήση προσαρμοσμένων σε αυτές

ευρετικές μεθόδους. Στην παρούσα εργασία, επεκτείνουμε αυτό το μοντέλο μετατρέπο-

ντάς το σε ένα πολυπρακτορικό πρόβλημα εύρεσης μονοπατιών, με την προσθήκη μιας

"έκπτωσης αξίας" στη σχετιζόμενη με κάθε κόμβο αμοιβή, ανάλογα με τη συμφόρηση
του εν λόγω κόμβου. Κατόπιν, αντιμετωπίζουμε το νέο αυτό πρόβλημα εφαρμόζοντας

μεθόδους Τεχνητής Νοημοσύνης. Συγκεκριμένα, μοντελοποιούμε το πρόβλημα ως πο-

λυπρακτορική Διαδικασία Αποφάσεων Markov καθώς και ως Μερικώς Παρατηρήσιμη
Διαδικασία Αποφάσεων Markov, και το αντιμετωπίζουμε με τη χρήση μεθόδων πο-
λυπρακτορικής ενισχυτικής μάθησης (multiagent reinforcement learning - MARL)
και σχεδιασμού Monte-Carlo (με τον αλγόριθμο Partially Observable Monte Carlo
Planning - POMCP) αντίστοιχα. Οι μέθοδοι MARL που χρησιμοποιούμε αξιοποιούν
τον αλγόριθμο Sparse Cooperative Q-learning πάνω σε Συνεργατικούς Γράφους. Για
τη λειτουργία του POMCP αλγορίθμου μας, μοντελοποιούμε τη συμφόρηση σε κάθε
κόμβο ως αβεβαιότητα, και την αντιμετωπίζουμε με "φιλτράρισμα σωματιδίων". Συ-
νολικά προτείνουμε έξι διαφορετικές αλγοριθμικές τεχνικές για την αντιμετώπιση του

προβλήματος, και αξιολογούμε την απόδοσή τους πειραματικά με χρήση κατάλληλων

προσομοιώσεων.

Acknowledgements

First, I would like to thank my supervisor, Associate Prof. Georgios Chalkiadakis, for
his guidance throughout this work. I would also like to thank Dimitrios Troullinos,
PhD student at Technical University of Crete, for his contribution with useful
comments and adjustments.

Last but definitely not least, I would like to express my gratitude to my family,
as well as Emmanouela, for their unconditional support and encouragement all these
years.

I dedicate this thesis to my late grandmother, Anastasia.

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Overview . 3

2 Background and Related Work 4
2.1 The Orienteering Problem . 4

2.1.1 Mathematical Formulation . 6
2.1.2 Applications and Solution Approaches 8

2.2 Markov Decision Processes . 8
2.2.1 Collaborative Multi-Agent MDP 9
2.2.2 Partially Observable MDP . 9
2.2.3 Mixed Observability . 10

2.3 Q-Learning . 12
2.3.1 SAS-Q-Learning . 13

2.4 Coordination Graphs . 13
2.5 Decentralized Max-Plus Algorithm 14
2.6 SparseQ: Coordinated Multi-agent Reinforcement Learning 16

2.6.1 Agent-based decomposition 16
2.6.2 Edge-based decomposition . 17

2.7 Partially Observable Monte-Carlo Planning 18
2.7.1 Partially Observable UCT . 19
2.7.2 POMCP . 20

2.8 Related Work . 21

3 Our Approach 25
3.1 Our Extension . 25
3.2 Applying SparseQ . 26

3.2.1 Applying Max-Plus . 27
3.3 Applying POMCP . 28

3.3.1 Particle Initialization . 30
3.3.2 Particle Reinvigoration . 30

3.4 Applying Q-learning . 31
3.5 Further Improvements and Relaxations 31

4 Experimental Evaluation 33
4.1 Setup . 33
4.2 Results . 37
4.3 Applying Improvements . 45

i

Chapter 0 Contents

4.4 Results with Improved Heuristics and New Settings 46

5 Conclusions and Future Work 53

Bibliography 55

Appendices 58

A Instance TOP-66-5 59

B Instance TOP-102-8 61

C Instance TDOP-50-4 64

D Instance TDOP-100-8 66

E Instance MCTOPMTW-48-4 69

F Instance MCTOPMTW-100-8 71

ii

List of Figures

2.1 OP instance on Euclidean space . 5
2.2 Recycling Robot MDP . 9
2.3 Coordination Graph of 6 agents . 14
2.4 Agent-based decomposition on a CG of 3 agents 16
2.5 Edge-based decomposition on a CG of 3 agents 17
2.6 An example of POMCP . 20

4.1 Coordination Graph of 4 agents . 35
4.2 Coordination Graph of 5 agents . 35
4.3 Coordination Graph of 8 agents . 35
4.4 Learning curves for TOP-66-5 file . 38
4.5 Learning curves for TOP-102-8 file 39
4.6 Box plots of discounted rewards for TOP-66-5 and TOP-102-8 39
4.7 Learning curves for TDOP-50-4 file 40
4.8 Learning curves for TDOP-100-8 file 41
4.9 Box plots of discounted rewards for TDOP-50-4 and TDOP-100-8 . . 41
4.10 Learning curves for MCTOPMTW-48-4 file 42
4.11 Learning curves for MCTOPMTW-100-8 file 43
4.12 Box plots of discounted rewards for MCTOPMTW-48-4 and MCTOPMTW-

100-8 . 44
4.13 New Coordination Graph of 4 agents 45
4.14 New Coordination Graph of 5 agents 46
4.15 New learning curves for TOP-66-5 file 47
4.16 New learning curves for TOP-102-8 47
4.17 New box plots of discounted rewards for TOP-66-5 and TOP-102-8 . 48
4.18 New learning curves for TDOP-50-4 file 49
4.19 New learning curves for TDOP-100-8 49
4.20 New box plots of discounted rewards for TDOP-50-4 and TDOP-100-8 50
4.21 New learning curves for MCTOPMTW-48-4 file 51
4.22 New learning curves for MCTOPMTW-100-8 51
4.23 New box plots of discounted rewards for MCTOPMTW-48-4 and

MCTOPMTW-100-8 . 52

iii

List of Tables

3.1 Example use of heuristic from Golden et al., 1987 29

4.1 TOP-66-5 results . 37
4.2 TOP-102-8 results . 38
4.3 TDOP-50-4 results . 40
4.4 TDOP-100-8 results . 40
4.5 MCTOPMTW-48-4 results . 42
4.6 MCTOPMTW-100-8 results . 43
4.7 TOP-66-5 new results . 46
4.8 TOP-102-8 new results . 46
4.9 TDOP-50-4 new results . 48
4.10 TDOP-100-8 new results . 48
4.11 MCTOPMTW-48-4 new results . 50
4.12 MCTOPMTW-100-8 new results . 50

iv

Chapter 1

Introduction

Artificial Intelligence is a vast subfield of Computer Science. It refers to the ability
of machines to solve tasks that typically show of a level of intelligence, and its
applications can be found in a plethora of problems. More notably, AI algorithms
are used to solve problems using natural language processing, planning, knowledge
representation, artificial neural networks and more. Those have led to multiple break-
throughs with autonomous driving, spam mail detection, robots, speech recognition
and personalized advertising, to name a few. The long-term goal of AI is Artificial
General Intelligence (AGI), which aspires to allow an autonomous entity (a rational
autonomous agent) that possesses it to perform any task a human can do. On the
contrary, most AI systems nowadays are designed to solve only a specific problem or
a family of problems, and thus correspond to the so-called narrow AI.

Usually, in some AI applications, we use one agent that acts in a specified,
frequently simulated, environment. But, more often than not, a problem requires
the introduction of more than one agents. This is true for problems in which the
relationship and the interactions between the agents are essential to the problem
itself, or in problems where a decentralized approach is indispensable. The systems
that feature multiple agents are called Multi-Agent Systems (MAS), and have found
application in patrolling and disaster response among others.

A subfield of AI that has been used to tackle multiple problems is Reinforcement
Learning (RL) [Kaelbling et al., 1996]. RL allows an agent to learn in an environment
by repeatedly acting in it. In more detail, the agent observes the representation of
the current environmental state, takes an action, possibly obtains a reward, observes
the current state again and so on. The agent’s goal is to ultimately learn a policy
(mapping of states to actions), that will maximize its cumulative reward. RL is
often paired with the framework of Markov Decision Processes [Kaelbling et al.,
1998], which give a more detailed and rigorous portrayal of the environment and
its dynamics. Another family of algorithms used to tackle problems is Monte Carlo
methods. A popular one is Monte Carlo Tree Search (MCTS) [Coulom, 2006], which
uses a tree representation of the environment and utilizes heuristics and randomness
as well as RL principles in order to find a sufficient solution.

The Orienteering Problem (OP) is a routing problem formally introduced first
with this name by [Golden et al., 1987], but introduced first by [Tsiligirides, 1984]
as the Generalized Traveling Salesman Problem (GTSP). It got its name from a
group of sports, named Orienteering [Orienteering, 2020], that requires navigating
to control points on an uneven terrain with the help of a compass and a special

1

Chapter 1 1.1. Contribution

map. Regarding the difference between TSP and the OP, in the former we search
for a sequence of nodes that minimizes the total travel cost while having to visit
all nodes, whilst in the latter each node is affiliated with a score and we ought to
maximize the total score by visiting only a subset of nodes. The feasibility of a path
for a given OP instance is determined by a starting time budget. As visiting a node
requires a travel time as a cost, the total of travel costs of a path must not exceed
the starting budget. More specifically, the nodes are points on the 2-dimensional
space and the travel time between two points equals the Euclidean distance between
them. A possible obstacle in this setting is that many points can have a large score,
though demand a large amount of resources. Thus, a point with a large score is not
always a good move.

The need to display some problems with more restrictions as OP raised the need
for more OP variations [Fomin and Lingas, 2002; Pěnička et al., 2019; Souffriau et al.,
2013] that arise by just presenting more limitations. Some extra limitations can be
adding an extra constant travel cost to each node as duration, or an extra budget
along with the affiliation of each node with a cost, or by requiring more than one
paths. Some popular variants are presented in Chapter 2.

OP finds application in a number of real world problems, some of them being the
tourist trip design problem [Gavalas et al., 2015], delivery problem [Archetti et al.,
2014], and monitoring [Yu et al., 2016]. There have been some exact algorithms in
the literature used to tackle OP, two of them being branch-and-bound and branch-
and-cut algorithms, but most of them rely on heuristics, mainly since the OP is
NP-hard and an approximative approach is needed. Some algorithms made to tackle
OP variations have also used search algorithms like Variable Neighborhood Search
(VNS) [Sevkli and Sevilgen, 2006] and Iterated Local Search (ILS) [Gunawan et al.,
2015], in addition to Ant Colony Optimization (ACO) [Ke et al., 2008].

1.1 Contribution
Our contribution in this work is the study of multi-agent routing in an OP setting
with the addition of congestion at each node. This is interesting and important for
mainly two reasons. First, the coexistence of many agents can lead to the finding of
multiple good paths, as is the case in the Team Orienteering Problem [Chao et al.,
1996], where the computation of multiple paths is requested instead of just one. As
for congestion, it can be used to describe real life problems in which congestion
opposes efficiency, more accurately, as the patrolling of an area by multiple agents,
traffic flow optimization [Verbeeck et al., 2016; Walraven et al., 2016] or the tourist
trip design problem [Gavalas et al., 2014; Gavalas et al., 2015]. Hence this problem
is interesting to study even though it can be safely considered difficult, since the OP
is proven [Golden et al., 1987] to be difficult (NP-hard) and our extension only adds
in complexity.

To go into some detail, each agent will have to formulate a path (subset of nodes)
in order to maximize its cumulative score while, at the same time, avoiding congested
nodes, which brings a penalty in score of size similar to the level of congestion. Our
goal is to maximize the summation of the total discounted scores of each agent. By
discounted scores we refer to the proportion of the original score an agent receives
by visiting a node. The specific proportion is calculated each time given the exact

2

Chapter 1 1.2. Overview

congestion (agents visiting at the same timestep) at the specific node. We must
emphasize that, in our setting, all agents move at the same time in a synchronous
manner. To be more specific, all agents start from the same starting node and aim
to the same ending node, at each timestep each agent chooses the next node it will
transit to, all agents travel to their respective desired nodes and after that, they
receive the destination’s (possibly) discounted score as a reward. This process repeats
until all agents have reached the goal node. Typically, the agents will frequently face
the dilemma of traveling to an expectedly congested node, versus traveling to a node
that would normally lead to a smaller total score, if it was not for congestion.

To tackle this problem, we use AI methods, in the sense of making the agents
learn better policies in order to find a good solution. In particular, we formulate the
problem as a Partially Observable Markov Decision Process (POMDP) [Kaelbling
et al., 1998] and as a multi-agent Markov Decision Process and employ different
algorithms to solve it. In the POMDP formulation, each agent acts on its own
and models the potential congestion of each node as uncertainty, whereas in the
multi-agent MDP formulation we use the framework of Coordination Graphs (CG)
[Kok and Vlassis, 2006] that enables the agents to collaborate in order to avoid
congested nodes. In the end we utilize six algorithms and measure their performance.
More specifically, two algorithms emerge from SparseQ [Kok and Vlassis, 2006], by
using two different update methods; two from POMCP [Silver and Veness, 2010], by
using the standard version and one exploiting domain-specific knowledge; and also
Q-learning and a naive method choosing vertices at random.

1.2 Overview
We now give an overview of the rest of the thesis. In Chapter 2, we define the OP and
some of its variants in detail, brief-review state-of-the-art work that has been done
to solve OP problems, and present in detail the algorithms SparseQ, POMCP and
Q-learning, as these are the algorithms of choice in this thesis to tackle our problem.
In Chapter 3, we model our problem as a POMDP and as a multi-agent MDP and
describe some problem-specific intricacies. In Chapter 4, we present the performance
of our algorithms, tested on six different datafiles of three different variations of the
OP, along with box plots depicting the variance of cumulative rewards between the
agents, as well as figures that depict the learning process, where needed, and discuss
the results. Finally, in Chapter 5, we wrap up our results and contributions, and
explain how our approach can be extended in the future.

3

Chapter 2

Background and Related Work

In this chapter we present the necessary background for this thesis, and also discuss
related work.

2.1 The Orienteering Problem
The OP [Golden et al., 1987] is a routing problem which can be seen as a combination
of the Knapsack problem and the Travelling Salesman Problem (TSP) [Hoffman
et al., 2013]. Given a set of nodes, a time budget and a starting and ending node, its
goal is to visit a subset of nodes that maximize the total collected score. The time
needed to visit node j from a node i is fixed and, in most cases, symmetric. More
than often the set of nodes are basically points on the Euclidean space and thus the
Euclidean distance between two points is considered as the travel time. In case that
the starting and ending nodes coincide, a tour must be formulated instead of a path.

In summary we have a set on N nodes, where each node i is associated with a
score Si and tij is the travel time from node i to a node j. If, the travel times are
symmetric then tij = tji.

From a different point of view, it can also be seen as a complete and undirected
graph G=(V,A), where each vertex v is associated with a non-negative score and
each arc a is associated with a non-negative cost (travel time).

As OP’s resemblance to the TSP suggests, OP is proven to be NP-hard [Golden
et al., 1987]. That means it is a very hard problem and it is expected that no
algorithm can be designed to find the best possible path in polynomial time. A
difficulty worth noting, is that a node associated with a relatively high score, can be
very expensive to travel to and thus a bad choice.

Besides the classic-vanilla setting described above, there are many extensions
which have been studied throughout the years.

Some of them are:

• Team Orienteering Problem (TOP) [Chao et al., 1996], where a number of
tours to be found is given additionally and thus more than one paths must be
found

• Time Dependent Orienteering Problem (TDOP) [Fomin and Lingas, 2002],
where the travel time between two nodes is neither fixed nor symmetric, and
depends on the departure time

4

Chapter 2 2.1. The Orienteering Problem

• Orienteering Problem with Time Windows (OPTW) [Kantor and Rosenwein,
1992], where each node has a fixed time window (opening and closing time)
in which it operates. Visiting a node before its opening leads to waiting time,
while visiting a node after its closing is infeasible. On top of that, each node
has an extra time cost called duration.

• Multi-Constraint Team Orienteering Problem with Multiple Time Windows
(MCTOPMTW) [Souffriau et al., 2013], where a predetermined budget con-
straint is added along with budget costs for each node and each node has
multiple time windows instead of just one. In addition, a knapsack constraint
separates the nodes in types, and limits the number of nodes we can visit for
each type.

In Figure 2.1 we can see an example of an MCTOPMTW instance. Figure 2.1a
displays the vertices of the file as points on Euclidean space while Figure 2.1b depicts
an example path. In this specific instance the starting and ending nodes coincide
and can be perceived as the red point.

(a) MCTOPMTW instance file points

(b) example solution

Figure 2.1: OP instance on Euclidean space

5

Chapter 2 2.1. The Orienteering Problem

2.1.1 Mathematical Formulation

In this subsection, we provide a formulation of OP as an integer programming model.
Since we cannot possibly provide the formulation for each OP variant, we will only
consider OP and discuss what to be added, mainly for the variants that will be used
for testing in the next chapters.

For convenience, we will determine the following decision variables : xij = 1 if we
visit node j after node i and 0 otherwise, and ui to determine the position of visited
nodes in the path. Additionally, we assume N nodes, where each has a score Si with
i = 1, . . . , N . If the starting node is also the goal node of the instance, we may add a
node N identical to the starting node 1. With respect to that we have the following
rules:

1. max
∑N−1

i=2

∑N
j=2 Sixij

2.
∑N

j=2 x1j =
∑N−1

i=1 xiN = 1

3.
∑N−1

i=1 xik =
∑N

j=2 xkj ≤ 1,∀k = 2, . . . , (N − 1)

4.
∑N−1

i=1

∑N
j=2 tijxij ≤ Tmax

5. 2 ≤ ui ≤ N, ∀i = 2, . . . , N

6. ui − uj + 1 ≤ (N − 1)(1− xij), ∀i, j = 2, . . . , N

Expression (1) ensures that the total score is maximized, constraint (2) that path
starts from node 1 and ends at node N , constraint (3) that each node is visited at
most once, constraint (4) that the total time needed to traverse the path doesn’t
exceed Tmax, and at last constraints (5) and (6) prevent subtours [Miller et al., 1960].
Subtours are essentially cycles in the graph. In our case, the solution must be a
path or, if nodes 1 and N coincide, a tour. In any of those cases the solution cannot
contain subtours.

Since we will use both TOP and MCTOPMTW instances during the experimental
evaluation, it is deemed necessary to provide the mathematical formulations for these
two, as well. For the TOP we need to guarantee that the above constraints apply
for each tour while, in similar fashion, for the MCTOPMTW we need to make sure
that the budget is not exceeded, the knapsack constraints are met, and the nodes
are visited during their time window.

For the TOP format we use the decision variables: xijp, yip and uip. Where xijp
is 1 if in path p a visit in node i is followed by a visit in node j and 0 otherwise, yip
if in path p node i is visited and 0 otherwise, and finally uip equals the position of
node i in path p. In total we need to compute P paths. With that said we have the
following rules:

1. max
∑P

p=1

∑N−1
i=2 Siyip

2.
∑P

p=1

∑N
j=2 x1jp =

∑P
p=1

∑N−1
i=1 xiNp = P

3.
∑P

p=1 ykp ≤ 1,∀k = 2, . . . , n− 1

4.
∑N−1

i=1 xikp =
∑N

j=2 xkjp,∀k = 2, . . . , N − 1,∀p = 1, . . . , P

6

Chapter 2 2.1. The Orienteering Problem

5.
∑N−1

i=1

∑N
j=2 tijxijp ≤ Tmax, ∀p = 1, . . . , P

6. 2 ≤ uip ≤ N, ∀i = 2, . . . , N, ∀p = 1, . . . , P

7. uip − ujp + 1 ≤ (N − 1)(1− xijp),∀i, j = 2, . . . , N, ∀p = 1, . . . , P

Where, expression (1) displays the goal which is to maximize the total score,
constraint (2) ensures that each path has to start in the starting node 1, and end in
the ending node N, constraint (3) ensures that each node cannot be visited 2 times
or more, equation (4) makes certain that the path is connected according to the
order of the nodes, constraint (5) ensures that the total time spent for each path
does not surpass the given time budget Tmax, constraints (6) and (7) are needed to
prevent subtours.

Similarly, for the MCTOPMTW format the variables xijm, yiwm, sim, Oicm, Ciwm,
eimz, Ez, L are employed to make the mathematical rules clearer. In detail, xijm is 1
if in tour m a visit in node i is followed by a visit in node j and 0 otherwise, yiwm is 1
if node i is visited during time window w in tour m and 0 otherwise, sim is the start
of the visit at node i in tour m, Oicm and Ciwm are the opening and closing times
of time window w of node i in tour m, eimz is the corresponding cost regarding the
knapsack constraint z for node i in tour m, Ez is the budget cost for the knapsack
constraint z, and, at last, L is a large constant. The rules are:

1. max
∑M

m=1

∑W
w=1

∑N−1
i=2 Siyiwm

2.
∑M

m=1

∑N
j=2 x1jm =

∑M
m=1

∑N−1
i=1 xinm = M

3.
∑N−1

i=1 xikm =
∑N

j=2 xkjm =
∑W

w=1 ykwm,∀k = 2, . . . , N − 1,∀m = 1, . . . ,M

4. sim + tij − sjm ≤ L(1− xijm),∀i, j = 1, . . . , N, ∀m = 1, . . . ,M

5.
∑M

m=1

∑W
w=1 yiwm ≤ 1, ∀i = 1, . . . , N

6.
∑M

m=1

∑W
w=1

∑N
i=1 eimzyiwm ≤ Ez, ∀z = 1, . . . , Z

7. ∃w ∈ 1, . . . ,W such that Oiwm ≤ sim ≤ Ciwm,∀i = 1, . . . , N, ∀m = 1, . . . ,M

As previously stated, equation (1) sets up the goal of maximizing the total score,
constraint (2) ensures that the starting and ending nodes are 1 and N respectively,
constraints (3) and (4) guarantee the connectivity of each path, rule (5) ensures that
a node cannot be visited more than once, constraint (6) are the knapsack constraints
introduced in this variation, constraint (7) obliges the start of the visit of each node
in respect of its time windows.

Most OP variations’ mathematical formulations can be found in the survey by
[Vansteenwegen et al., 2011]. The formulation specifically for MCTOPMTW can be
found in [Souffriau et al., 2013].

7

Chapter 2 2.2. Markov Decision Processes

2.1.2 Applications and Solution Approaches

OP and its modifications have been applied and used to model and study a plethora
of problems of similar fashion. Some of them being the Tourist Trip Design Problem,
service scheduling, surveillance activities, delivery scheduling and more.

Due to the problem being NP-hard [Golden et al., 1987], as it is expected from
its resemblance to the TSP, it seems more natural for it to be tackled with heuristic
algorithms. Despite that, exact algorithms have also been tested with success mainly
on smaller instances. Some state-of-the-art work uses iterated local search, tabu
search, ant-colony optimization and more [Gunawan et al., 2016].

2.2 Markov Decision Processes
A Markov Decision Process (MDP) [Kaelbling et al., 1996; Sutton and Barto, 2018]
is a mathematical framework used for modelling decision making problems and forms
an extension to Markov Chains. By definition, the MDP is a tuple (S,A, T ,R)
where:

• S is a finite set of states

• A is a finite set of actions

• T (s, a, s′) = Pr(s′|s, a) is the transition function

• R(s, a) is the reward function

• γ is the discount factor

We assume that we have full observability over the MDP. The agent lies in a
state s ∈ S, decides to take an action a ∈ A, results in state s′ ∈ S with probability
T (s, a, s′) and takes an immediate reward R(s, a). The discount factor 0 ≤ γ ≤ 1
determines how much are immediate rewards favored over future rewards. If γ = 0
the agent becomes "myopic", taking only the actions that will maximize its immediate
reward. As γ approaches 1, the agents becomes more far-sighted, taking actions that
maximize its long term reward.

A solution to an MDP consists of a policy, which is basically a mapping from the
state space S to the action space A, so the agent decides its action by choosing the
optimal action for the current state regardless of its past history (Markov property).
Ultimately, the solution maximizes the expected total discounted reward:

E =
∞∑
t=0

γtR(st, at)

Notice how γ makes E finite as it approaches zero given enough timesteps, and
thus makes this definition appropriate even for a potentially infinite horizon.

An example of a small MDP can be seen in Figure 2.2. This MDP has two states
(high, low), two possible actions (wait, search) when in state high and three (wait,
search, recharge) when in state low. There are three different rewards (rwait,rsearch,
-3, 0) and the arrows depict the transition function. For example when in state "high"
and the robot does the action "search", it lands in state "high" with probability α
or in state "low" with probability (1− α).

8

Chapter 2 2.2. Markov Decision Processes

Figure 2.2: Recycling Robot MDP (from [Sutton and Barto, 2018])

2.2.1 Collaborative Multi-Agent MDP

As an MDP is normally used for settings with only one agent, we present an
extension for multiagent collaboration settings, namely Collaborative Multi-Agent
MDP (CMMDP) [Guestrin, 2003]. CMMDP is structured for systems where there
are multiple agents each one with its own set of actions and state variables and each
one receives its own observations and rewards, but all agents need to collaborate
towards their goal. This can be modeled as a 6-tuple (τ, A,Si,Ai, T ,R) where:

• τ = 0,1,2... is the timestep

• A is the set of agents, e.g. for 3 agents A = (α1, α2, α3)

• Si is the set of environmental states for each agent i, the global state S is the
cross product of all Si, e.g. for 3 agents the global state is S1xS2xS3

• Ai is the set of actions for each agent i, the joint action on timestep τ for agent
i is aτi

• T (s, a, s′) is the transition function from a global state s to a global state s′

given a joint action a

• Ri(s, a) is the reward function that provides each agent i with a reward rτi on
timestep τ , the global reward can be regarded as the sum of all rewards

2.2.2 Partially Observable MDP

A partially observable MDP (POMDP) is an MDP generalization for partially
observable environments. This means that the environmental variables cannot be
fully observed. A POMDP is a tuple (S, A, T , R, Ω, O, γ) where [Kaelbling et al.,
1998]:

• S is a finite set of states

• A is a finite set of actions

• T (s, a, s′) is the transition function

9

Chapter 2 2.2. Markov Decision Processes

• R(s, a) is the reward function

• Ω is a finite set of observations

• O is the observation function

• γ is the discount factor

The S,A, T (s, a, s′),R(s, a) elements are the same as before. The difference is
that by lying in a state s and taking an action a, the agent makes an observation
o ∈ Ω with probability O(s, a, o). The discount factor γ, 0 ≤ γ ≤ 1 determines how
much are immediate rewards favored over future rewards. If γ = 0 the agent becomes
"myopic", taking only the actions that will maximize its immediate reward. As γ
approaches 1, the agent becomes more far-sighted taking actions that maximize its
long term reward.
The solution to a POMDP is a policy which maps an optimal action to each state
and maximizes the expected total discounted reward, just as in MDP.

2.2.3 Mixed Observability

It is not that rare to have a setting where some elements of the environment are
fully observable, while some others are only partially observable. This directs to
mixed observability. As a consequence, each state s consists of two parts, one fully
observable and one partially observable, such as s = (X ,Y), where X is the fully
observable part and Y the partially observable one.

Belief-State MDP

By introducing the belief notation to a POMDP, we are able to transform it to an
MDP with a continuous state space, by maintaining a belief-state b(s). Formally, a
belief-state b(s) is a function that maps each possible state to a probability and it
can be proven to be a sufficient statistic which encapsulates the history of the agent
[Poupart, 2005]. Like in MDP and POMDP, belief-state MDP can be modeled as a
tuple (B, A, τ , ρ, γ) where:

• B is an infinite set of belief states

• A is a finite set of actions

• τ(b, a, b′) is the transition function between belief states

• ρ(b, a) is the reward function

• γ is the discount factor

, where the reward and the transition functions can be computed using the
functions of the underlying POMDP:

ρ(b, a) =
∑
s∈S

b(s)R(s, a)

10

Chapter 2 2.2. Markov Decision Processes

τ(b, a, b
′
) =

∑
o∈Ω

Pr(b
′|b, a, o)Pr(o|a, b)

given that Pr(o|a, b) =
∑

s′∈S O(o|s′, a)
∑

s∈S T (s′|s, a)b(s) and that Pr(b′|b, a, o) is 1
if by updating belief state b with action a and observation o we get belief state b′,
and 0 otherwise.

We can update b(s) everytime we make an action and receive an observation by
using the following formula:

ba,o
t+1(s) = ηO(s, a, o)

∑
s′∈S

T (s, a, s′)bt(s
′)

, where η =
1

Pr(o|a, b)
is a normalizing constant. This way, we make a more

accurate estimation of what the true world state is each time we receive an observation.
Since we maintain a belief state instead of using states, the optimal policy consists

of a mapping from a belief state to an optimal action.
The main problem with this format is that in most cases an exact solution is

intractable. That is, mainly, due to the "curse of dimensionality", since the size
of the belief space B grows exponentially with the size of the state space |S|. We
address a way to deal with this issue in the next subsection.

Particle Filtering

Here we present the technique of particle filtering [Silver and Veness, 2010; Thrun,
2000], which can be used to approximate the belief described in the previous subsec-
tion. Instead of representing belief as a distribution over all possible states, we can
represent it as a set of particles, with each particle being a possible state. In case of
mixed observability, each particle corresponds to a possible outcome for the partially
observable part of the state only. With that said, if we use K particles, then our
belief is:

B(s, ht) =
1

K

K∑
i=1

δsBit

, where δss′ is the Kronecker delta function.
To update our belief when we make an observation of the environment we use

a black-box simulator G of the world. This simulator receives the current state s
and an action a as inputs and returns a new state s′ and an observation o as if we
made the action in the real environment. So when we make a real action and a real
observation we pass each particle from Bt through the black box, if the state and
the observation returned by G are the same as the real ones, we sustain the tested
particle and insert it in our new set of particles Bt+1. We stop this process when we
have K particles. This method approaches the true belief if K is sufficiently large.

A complication of this method is that after many belief updates, particle depriva-
tion can occur. To mitigate this, we can simply add artificial noise to each particle
to reinvigorate our set.

11

Chapter 2 2.3. Q-Learning

2.3 Q-Learning
Reinforcement Learning (RL) is an area of Machine Learning (ML) concerned with
the maximization of the cumulative reward of an agent, and is quite often used to
solve (PO)MDPs with unknown components.

Although RL is a rich field with a wide range of algorithms, we will focus on the
Q-learning algorithm.

Q-learning [Watkins and Dayan, 1992] is a model free (does not require a model
of the environment) RL algorithm which guides an agent to its next action, based
on the agent’s current state. To achieve this, it maintains a Q-table (SxA) which
holds a Q-value for each state-action pair that represents its quality. The core of the
algorithm is a Bellman equation as an update:

Q(s, a) = Q(s, a) + α(r + γmax
a
Q(s

′
, a)−Q(s, a)) (2.1)

The update takes place in each step, after the agent has made an action a which
led to a new state s′ and an immediate reward r that depends on the current state
and action. The term maxaQ(s′, a) depicts the maximum reward we can get from
the future state and makes the agent choose actions that maximize its total reward
in long term. The degree of how much future rewards matter is tuned by the
parameter γ ∈ [0, 1], as it is also mentioned in the POMDP Section 2.2.2. The
α ∈ [0, 1] parameter is the learning rate of the algorithm, for environments with
high stochasticity a small α would be more suitable, while in more deterministic
environments a higher one would be better, in the case of a fully deterministic
environment the optimal value is 1. The intuition behind α is how much we value
new information compared to older.

One central issue for the proper functioning of Q-learning is sufficient exploration,
and in particular achieving a balance between exploitation and exploration, that is
the balance between exploiting the current best known solution versus exploring new
options to hopefully find a better policy than the best known so far. One approach,
which we also adopt in this thesis, is the so-called ε-greedy exploration, in which
the agent at each step chooses either to explore using a random action with a small
probability ε or to exploit the best action (with the highest Q-value) with probability
1− ε. This will help the agent get unstuck from a possible local optimum by keep
searching for a better strategy.

Algorithm 1 Q-learning
Initialize Q(s,a)
for each episode do
initialize s
repeat {for each step in episode}
choose a

′ for s′ using policy derived from Q
take action a and observe r and s′

Q(s, a)← Q(s, a) + α(r + γmaxa′Q
′
(s

′
, a

′
)−Q(s, a))

s← s′

until s is terminal
end for

12

Chapter 2 2.4. Coordination Graphs

2.3.1 SAS-Q-Learning

In [Boutilier et al., 2018], the authors address the issue of not having all actions always
available due to stochasticity. For such environments, they introduce a framework,
namely Stochastic Action Set MDP (SAS-MDP), and present a Q-learning variant
named SAS-Q-learning, among others, as an algorithm to tackle this kind of problems.
It is also clarified that the set of available actions witnessed each time are independent
of the agents history.

According to the said work, we can achieve convergence of the Q-values as
long as the optimal action chosen at each step is the maximizing action of the
available actions, and the Q-value update is done using the next state optimal action
considering only the next state available actions as well. Putting this in mathematical
terms, we need to select the optimal action as argmaxa∈At Q(s, a), where At is the
set of valid actions at timestep t, and the update function:

Q(st, at) = Q(st, at) + a(R + γmaxat+1∈At+1Q(st+1, at+1)−Q(st, at))

is used. Of course, the Q-value of an action is independent to the other available
actions. The only limitation for this technique to work, is that the available actions
at each step must be provided additionally. Essentially, SAS-Q-learning ranks the
actions available based on their respective Q-values and chooses the highest ranking
action. It should also be mentioned that, [Chandak et al., 2020] comment that
SAS-Q-learning can be unstable in practice.

While our domain does not have SAS, since the set of valid actions at each
timestep depends on the agent’s history and is computed in a deterministic way, we
still employ this technique (with additional details given in Section 3.5 and Section
4.3) and achieve good results as seen in Section 4.4.

2.4 Coordination Graphs
In order to reduce complexity and make our problem more scalable, we make use of
Coordination Graphs (CGs) [Guestrin et al., 2002]. This framework, consists of an
undirected graph G=(V,E) in which each node i ∈ V represents an agent, and each
edge (i, j) ∈ E depicts a dependency between two nodes i and j. This assumes that
each agent i affects, with its actions, a subset Γ(i) ⊆ V \ i of the remaining agents,
which forms the "neighborhood" of agent i. The agents which are connected must
cooperate on the action selection process.

Via CGs, one can convert the problem of global optimization to multiple smaller
problems of local optimization. More specifically, the global payoff u(a) of the joint
action a can be decomposed to a linear combination of local payoffs:

u(a) =
n∑
i=1

fi(ai) (2.2)

, where ai is the set of i’s action and the actions of its neighbors Γ(i). If we assume
that the payoff functions are described over two agents at most, we can further
decompose the utility function as:

u(a) =
∑
i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj) (2.3)

13

Chapter 2 2.5. Decentralized Max-Plus Algorithm

, where fi is the payoff function regarding an agent’s individual action, while fij
is the local payoff function corresponding to a pair of actions of two coordinating
agents. Note that the assumption of at most two agents per payoff function does not
restrict this framework because each agent can have multiple dependencies.
In Figure 2.3 we can see an example of a CG of 6 agents with their dependencies
and payoff functions.

Figure 2.3: Coordination Graph of 6 agents - payoff functions fij between each pair
of agents is depicted

One method to find a maximizing joint action a∗ by utilizing the CG structure, is
the Variable Elimination algorithm (VE) [Guestrin et al., 2002]. Although VE is an
exact algorithm and obtains the optimal joint action, it does not scale well with the
density of the CG. In fact, the complexity grows exponentially, making VE infeasible
for a CG with many agents and dependencies [Kok and Vlassis, 2006]. In the next
section, we describe a much faster (albeit approximate) algorithm for our problem.

2.5 Decentralized Max-Plus Algorithm
Besides VE, another way to compute the joint action a that scales linearly with the
number of agents and exploits the nature of a CG, is Max-Plus [Kok and Vlassis,
2006]. Max-Plus is a message passing algorithm, which requires each agent to
exchange messages with its neighbors over each edge, and propagates the payoff. In
particular, each agent i sends a message:

µij(aj) = maxai{fi(ai) + fij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)}+ cij (2.4)

to each of its neighbors j ∈ Γ(i) in the CG. Note that cij is a normalizing constant
and the term

∑
k∈Γ(i)\j µki(ai) sums all incoming messages except that from agent j.

For agent i each message µij maps each action aj of its neighbor j to a real value
that quantifies the effect of j’s action aj to the best payoff that agent i observes for
the total utility of all other incoming messages and the corresponding local utility
functions. Normally, all agents keep exchanging messages based on the CG they
form, until the messages converge or until an external signal is received. Bear in

14

Chapter 2 2.5. Decentralized Max-Plus Algorithm

mind that before convergence, µij is an approximation of the conditional payoff, since
it uses the incoming-unconverged messages from its neighbors.

The nature of the Max-Plus algorithm enables it to be implemented in an anytime
form. That means that the agents will keep sending messages and store the best
action found so far. So upon the termination, it will report the best joint action
found. Although this is an approximate algorithm, and does not guarantee that the
optimal action will be found like VE, it is superior in terms of speed at completion
and convergence.

Regarding convergence guarantees, max-plus is guaranteed to converge for acyclic
graphs, namely trees, after a finite number of iterations. For graphs that contain
cycles, max-plus is not theoretically proven to converge, but in practice it has been
used in such problems successfully. A key issue is that an agent’s outgoing messages
can ultimately be incoming messages, due to cycles. This can lead to the values
rising up to very large numbers. A way to mitigate this problem, is by subtracting
the average of all outgoing messages of agent i to all its neighbors j ∈ Γ(i), that can
be achieved by using the normalizing constant like:

cij = − 1

|Ak|
∑
k

µik(ak)

with |Ak| being the number of different actions ak.
Essentially, for an agent i, the incoming message µji is an assessment of how good

each of its actions are, from the perspective of neighboring agent j. Following this
we derive that:

gi(ai) = fi(ai) +
∑
j∈Γ(i)

µji(ai)

Ultimately, gi(ai) is being used by each agent to update its current optimal action
a′i, where a′i = arg maxaigi(ai). As is evident, gi(ai) corresponds to each agent’s
individual utility function fi(ai) plus the sum of incoming messages for action ai.

Although max-plus can work as a centralized algorithm, it is much more efficient to
implement it in a distributed manner. Unfortunately, this yields two main problems,
concerning the global payoff and the evaluation process, since several changing
attributes can no longer be considered common knowledge among the agents. To
mitigate this, each agent must maintain a representative of the global payoff value as
well as be able to tell when to unilaterally start the evaluation process. Subsequently,
when certain circumstances are met, and an agent thinks that starting an evaluation
is worthwhile, it triggers a chain reaction by sending an evaluation message to all of
its neighbors on a prefixed spanning tree (ST). When an agent receives an evaluation
message, it locks its best individual action and propagates the message to its children
according to the ST. If the agent has no children, which means it is a leaf node in
the ST, it computes its participation in the global payoff and propagates it back to
its parent by sending an accumulate_payoff message. When an agent receives an
accumulate_payoff message, it adds the payoff of its child to its own and propagates
it up to the root. When the root is reached, the payoff of the joint action has
been calculated through propagation and a new sequence to determine if it is better
than the previous stored is initiated. For that matter, when an agent receives a
global_payoff message, it compares the payoff of the current optimal action to that
of the previous (which is already stored). If the global payoff is improved, the agent
stores the new payoff as the highest attained so far.

15

Chapter 2 2.6. SparseQ: Coordinated Multi-agent Reinforcement Learning

Algorithm 2 depicts the pseudocode for Max-Plus.

2.6 SparseQ: Coordinated Multi-agent
Reinforcement Learning

Here we present the Sparse Cooperative Q-learning algorithm, or simply SparseQ
[Kok and Vlassis, 2006]. SparseQ is a cooperative multi-agent RL framework that
utilizes CGs. For this purpose, we first have to approximate the global Q-function
by decomposing it to a linear combination of local Q-functions. In the work [Kok
and Vlassis, 2006], the authors achieve this with two different decompositions, one
agent-based and one edge-based. The former associates a Q-value Qi to each agent i,
while the latter associates a Q-value Qij to each edge between two agents i, j.

2.6.1 Agent-based decomposition

According to the agent-based decomposition, each agent i is associated with a local
Q-function Qi(si, ai), as seen in Figure 2.4. As the Q-functions reference a CG, the
set of actions ai and the subset of the global state si relevant to agent i. So instead of
using the global joint action and the global state of the environment, we use only the
states and actions of agent i and its neighbors. To compute the global Q-function,
we simply add all the local Q-functions Q(s, a) =

∑n
i=1Qi(si, ai). With this, we can

rewrite equation (2.1):

n∑
i=1

Qi(si, ai) =
n∑
i=1

Qi(si, ai) + α[
n∑
i=1

Ri(s, a) + γ
n∑
i=1

Qi(s
′, a∗i)−

n∑
i=1

Qi(si, ai)]

(2.5)
We can approximate the optimal actions a∗i in state s′ by using the VE algorithm.

Therefore, from (2.5) we get a local update for each local Q-function, as:

Qi(si, ai) = Qi(si, ai) + α[Ri(s, a) + γQi(s
′

i, a
∗
i)−Qi(si, ai)] (2.6)

Figure 2.4: Agent-based decomposition on a CG of 3 agents

Clearly, this decomposition scales exponentially with the number of neighbors for
each agent. To mitigate this, each edge, instead of agent, can be associated with a
pairwise Q-function to achieve linear scaling, leading to an edge-based decomposition.

16

Chapter 2 2.6. SparseQ: Coordinated Multi-agent Reinforcement Learning

2.6.2 Edge-based decomposition

According to the edge-based decomposition, each local Q-function Qij represents a
dependency on the CG between two agents i and j and maps their combined state
sij and both of their actions ai and aj to a real value Qij(sij, ai, aj). The sum of all
local functions approximates the global Q-function:

Q(s, a) =
∑

(i,j)∈E

Qij(sij, ai, aj) (2.7)

where E is the set of all edges of the CG. An example of an edge-based decomposition
on a CG can be seen in Figure 2.5.

Figure 2.5: Edge-based decomposition on a CG of 3 agents

A problem with this decomposition would be to find the optimal joint action that
maximizes the global Q-function by maximizing each local Qij function. Thankfully,
since each Qij is a pairwise function, we can employ the max-plus algorithm described
earlier to do that quickly and efficiently. What we do is simply use the Qij function
as the payoff function, but since in the Qij function exactly two agents take part, we
can slightly alter the messages µij:

µij(aj) = maxai{Qij(sij, ai, aj) +
∑

k∈Γ(i)\j

µki(ai)}+ cij (2.8)

and the gi function:
gi(ai) =

∑
j∈Γ(i)

µji(ai) (2.9)

as in [Vlassis, 2007].
There are two methods of updating the Qij functions after each joint action. The

first one is agent-based and the second one is edge-based.

agent-based update

In order to identify the agent-based update for the edge-based decomposition, we
define the local function Qi for each agent i, as:

Qi(si, ai) =
1

2

∑
j∈Γ(i)

Qij(sij, ai, aj) (2.10)

17

Chapter 2 2.7. Partially Observable Monte-Carlo Planning

We basically assume that each pair of agents, who are dependent to each other,
contribute equally. With that noted, we can naturally obtain from Equation 2.6:

1

2

∑
j∈Γ(i)

Qij(sij, ai, aj) =
1

2

∑
j∈Γ(i)

Qij(sij, ai, aj) + α[Ri(s, a) + γQi(s
′

i, a
∗
i)−Qi(si, ai)]

(2.11)
by substitution.

In order to derive a local update for each Q-function, Qij , we rewrite the temporal-
difference error as:

Ri(s, a) + γQi(s
′

i, a
∗
i)−Qi(si, ai) =

∑
j∈Γ(i)

Ri(s, a) + γQi(s
′
i, a
∗
i)−Qi(si, ai)

|Γ(i)|
(2.12)

and by substituting 2.11 to 2.10 and adding the contribution of each agent to the
edge, we get the local update method:

Qij(sij, ai, aj) = Qij(sij, ai, aj) + α
∑
k∈{i,j}

Rk(s, a) + γQk(s
′

k, a
∗
k)−Qk(sk, ak)

|Γ(k)|
(2.13)

During the update, the temporal-difference error is backpropagated from the two
agents forming the edge, while utilizing all of the specific agents’ dependencies to do
so. Max-plus can be used to attain the optimal actions at each state.

edge-based update

In order to obtain the edge-based update rule, we substitute (2.10) to (2.5) and get:

1
2

∑
j∈Γ(i) Qij(sij, ai, aj) = 1

2

∑
j∈Γ(i) Qij(sij, ai, aj)+

α[
∑

j∈Γ(i)
Ri(s,a)
|Γ(i)| + γ 1

2

∑
j∈Γ(i)Qij(s

′
ij, a

∗
i , a
∗
j)− 1

2

∑
j∈Γ(i)Qij(sij, ai, aj)]

(2.14)
But since we need a method to update each local Q-function Qij individually we
remove the sums from (2.14) and because agent i and agent j both update the
function Qij , we can add the two parts to finally obtain the update rule for each Qij :

Qij(sij, ai, aj) = Qij(sij, ai, aj)+α[
Ri(s, a)

|Γ(i)|
+
Rj(s, a)

|Γ(j)|
+γQij(s

′

ij, a
∗
i , a
∗
j)−Qij(sij, ai, aj)]

(2.15)
Note that each agent’s reward is normalized according to the number of its neighbors,
as we assume that they all contribute equally. In addition, the optimal joint action
(a∗i , a

∗
j) in the next state s

′
ij can be computed using max-plus.

2.7 Partially Observable Monte-Carlo Planning
In this section we examine the Partially Observable Monte-Carlo Planning (POMCP)
[Silver and Veness, 2010] algorithm in order to portray the OP as a tree associating
each node with a history of actions and observations, and represent the not observable

18

Chapter 2 2.7. Partially Observable Monte-Carlo Planning

congestion in nodes as a set of particles (belief). The set of particles is initialized
by selecting random hidden states uniformly, over all possible hidden states. Then,
simulations are performed to generate a policy for the current step, given a particle
sampled from the current history’s belief. For a history outside the tree, a uniformly
random policy can be used as an estimated evaluation. After doing an action in
the real world and acquiring a real observation, the tree is pruned suitably and the
belief is updated by moving particles to the new root. In case of a lack of particles,
new fabricated ones are made by applying local transformations on current particles.
Intuitively, the authors combine two known methods; MCTS and Monte-Carlo
updates for the belief state. The two techniques are merged in such an efficient way,
that makes the algorithm thrive even in large POMDPs [Silver and Veness, 2010]. It
is also important to note that POMCP does not need to know the dynamics of the
environment rather than use a black-box simulator G, which is utilized to generate
series of actions, observations and rewards.

2.7.1 Partially Observable UCT

In POMCP, we use Upper Confidence bounds applied to Trees (UCT) [Kocsis and
Szepesvári, 2006], with a few tweaks to deal with the partially observable environment.
UCT maintains a tree to represent the environment and analyzes the most promising
actions. Each node of the tree T (h) represents a history h and contains information
〈N(h), V (h)〉, where N(h) is the counter for the number of times history h has been
visited and V (h) is the value of the history. Each node is initialized to 〈0, 0〉 but
domain-specific knowledge can be exploited during initialization in order to direct
the search to more promising subtrees.

At the start of each simulation we use a sampled state from the root’s belief B
as the initial state. Just like the fully observable UCT, actions are selected using a
heuristic and specifically UCB1 [Auer et al., 2002]:

V (ha) = V (ha) + c ∗

√
log(N(h))

N(ha)

N(ha) is the number of times the node with history ha has been visited, and
N(h) is the number of times the node’s parent has been visited. The whole term
c ∗

√
log(N(h))
N(ha)

gives an exploration bonus that is higher for rarely visited nodes. This
bonus is tuned by parameter c, the higher c is, the more explorative the algorithm.
When c = 0 the algorithm acts greedily, exploiting the best action every time. The
parameter c can be given a value based on the specific problem, for example a higher
c could be used for a large environment as exploration would be crucial.

While selecting actions/nodes using the above heuristic, when a leaf is reached
we use a rollout policy based on the given history, π(h, a) to choose actions. Exactly
one node is added to the tree after a simulation.

When a number of simulations has been ran, the action with the highest value
V(ha) is selected.

19

Chapter 2 2.7. Partially Observable Monte-Carlo Planning

2.7.2 POMCP

POMCP [Castellini et al., 2019; Silver and Veness, 2010] is essentially the PO-UCT
algorithm with the addition of Monte-Carlo belief state updates , and that is achieved
by using the same simulations for both. We add an extra element to each node
of our tree, namely a set of belief particles B(h). So now each node of the tree is
represented as T (h) = 〈N(h), V (h),B(h)〉.

POMCP consists of three main functions: Search, Simulate and Rollout. In
Search, given the current history ht, we sample a starting state as described for PO-
UCT or, if history is empty, we sample uniformly from all possible states/particles.
During simulation, if the corresponding node exists in the tree, we use UCB1 to
choose an action a and then pass it along with the current state through our black
box simulator to obtain a new state, an observation and an immediate reward. Then,
Simulate is called recursively until we reach a maximum depth or a leaf of the tree.
The relative nodes’ counters and values are updated properly and the total reward
(immediate reward + delayed reward) is returned. On the contrary, if the node
doesn’t exist in the tree, we expand it by all available actions and return the result
of Rollout.

In Rollout we do a random walk starting from a leaf of the tree recursively, in
similar fashion with Simulate, and return the total reward. Fundamentally, this
means taking an initial guess for the value of a node.

The above repeats for a predefined number of times or until a time limit is reached.
When the search procedure completes, we choose the action from the root with the
highest value and receive an observation from the environment. After that, the root
moves from T (ht) to T (htatot) and we sample a new state from B(htatot) to run the
algorithm again. As expected, the rest of the tree is pruned since it can no longer be
reached.

Figure 2.6: An example of POMCP, in an environment with 2 actions (from [Silver
and Veness, 2010])

Figure 2.6 depicts a tree maintained by POMCP (left), as well as making a real
action followed by a real observation (middle) which leads to the moving of the root

20

Chapter 2 2.8. Related Work

and the pruning of the tree (right). The pseudocode of POMCP can be seen at
Algorithm 3.

After pruning the tree and setting the new root, there is a chance that its number
of particles is very low. A difficulty like this can be quite common in large POMDPs
that can also have a large number of available actions, as in our problem. To alleviate
this issue, a particle reinvigoration technique can be used that adds noisy particles
in the root’s belief. Such particles are obtained by applying a local transformation
to an already existing particle.

In [Castellini et al., 2019] they extend POMCP to exploit prior knowledge in
problems that pose constraints. They do so with the use of two methods; Constraint
Network Initialization (CNI) and Markov Random Field Initialization (MRFI), in
order to alter the process of belief particle initialization as well as the process of
particle reinvigoration. CNI uses a hard constraint representation whereas MRFI
uses a probabilistic one. Even though we do not explicitly use the techniques
described in their work, the constraints, of our problem in study, are taken into
consideration during the initialization and reinvigoration processes, as described in
detail in subsection 3.3.1 and subsection 3.3.2 respectively.

2.8 Related Work
Our work in this thesis was mainly motivated by three papers:

1. DIRECT: A scalable approach for route guidance in selfish orienteering problems
[Varakantham et al., 2015]

2. A reinforcement learning framework for trajectory prediction under uncertainty
and budget constraint [Le et al., 2016]

3. Multi-agent Orienteering Problem with Time-Dependent Capacity Constraints
[Chen et al., 2014]

In [Varakantham et al., 2015], the authors combine the OP and Selfish Routing
to create a Selfish OP setting. With that said, there are multiple agents traversing
a graph while respecting individual limitations and act selfishly. There also are
different types of agents with each type having its own latency function which show
the tolerance of each type’s towards congestion on an edge. On top of it, each agent
type has a set of specific nodes that aspires to visit, and a budget that consists of the
restrictions. Budget could be the minimum number of nodes from each type’s desired
nodes or the maximum time an agent has in its disposal, among others. Eventually,
each agent’s goal is to formulate a path that has the minimum total latency from
start to end node, and satisfy the budget limitation. For a solution they compute and
employ Nash equilibrium. In order to do so, and since a direct approach cannot scale,
they utilize a scalable non-pairwise formulation to enforce the equilibrium condition,
and introduce a master-slave decomposition (DIRECT) approach to compute an
approximate equilibrium. And, actually, despite associating congestion with edges,
for one of the experimentation instances, they associate congestion with nodes , just
like in this work. They also state that instead of the goal being the finding of path(s)
for each agent that minimize(s) the latency based on the agent’s type, a goal of

21

Chapter 2 2.8. Related Work

maximizing utility could also be used. It is clear that SeOP proves to be relatively
close to this work both intuitively and technically. A number of differences can be
summed up to the key difference of all the agents being identical and equivalent in
this thesis. This, in our perception, makes our setting a bit more competitive, as
each agent has the exact same constraints and is interested at each node as much as
the others. In addition, there are no latency functions, as agents are penalized even
for the smallest fraction of congestion (i.e. two agents visiting the same node). Also,
the solution techniques we adopt are entirely different.

In (2) above, the authors use RL to model the agent’s sequential decision making
while incorporating stochasticity of rewards and a budget constraint. The goal is to
predict the following trajectory, given the current trajectory and observed ones of
other similar agents. Their algorithm was used in a real theme park to guide tourists,
with each trajectory being a sequence of location visits. Their approach is basically
a combination of learning and prediction. With respect to learning, they divide
the agents into clusters and use Hidden Markov Models to transform states into
trajectory of sequences, then model them as an MDP and use Inverse RL to model
the utility function of each state. Regarding prediction, they use Viterbi’s algorithm
to compute the most plausible sequence of states for the observed trajectory and the
agent’s type, then they predict the next sequence of visits that can meet the goal.
Comparing [Le et al., 2016] with this thesis, a few differences stand out. First, they
utilize different types of agents, while in this thesis all agents are identical. Secondly,
they use inverse RL to learn the reward function, while in this thesis the reward of
visiting a node is the node’s fixed score with a congestion-driven discount. Finally,
they use a partial trajectory of an agent to predict the destinations to be visited
and the reward to be expected in the future while in our setting, each agent has to
compose a path from the starting node to the ending node with no prior information
required.

Finally, in [Chen et al., 2014] the authors introduce a multi-agent modification to
the OP with capacitated nodes. Each node has a capacity and exceeding it will lead
to waiting times for each agent involved. The agents affect each other when they
arrive in the same node simultaneously and the paper uses game theory, and more
specifically fictitious play [Brown, 1951; Lambert Iii et al., 2005], to find good joint
actions. In contrast to that approach, we do not use capacitated nodes, instead each
node can host any number of agents but at the same time penalizes them depending
on the congestion of each node at each timestep. Also, instead of using time penalties
to punish the agents, we use score discounts. Again, the solution techniques we use
in this thesis are entirely different to those of [Chen et al., 2014].

Other related work can be seen in [Best et al., 2020; Gama and Fernandes, 2020]
as well, where they employ Monte-Carlo tree search and RL, respectively, to tackle
OP variants.

22

Chapter 2 2.8. Related Work

Algorithm 2 MAXPLUS [Kok and Vlassis, 2006]
threshold = 0, ai_lock =false,g = 0, p = 0,m = −∞
Function maxplus(msg,ST,CG)

if msg.type == maxplus then
value = max(msg.value)
j ∼ Γ(i) {prioritize neighbors to whom we have not sent yet}
for all aj ∈ j.actions {use j’s available actions, as in SAS-Q-learning} do

µij(aj) = maxai(Qij(ai, aj) +
∑

k∈Γ(i)\j µki(ai)) + cij
end for
send(µij , j)
if value > threshold and receivedAll(Γ(i), maxplus) then

send(evaluate(), i) {to self}
threshold = 1.02 ∗ value

end if
else if msg.type == evaluate then

if ai_lock ==false then
a
′
i = argmaxai(

∑
j∈Γ(i) µji(ai))

ai_lock = true
else

return
end if
send(evaluate(), i) {to all neighbors except j}
if ST.isLeaf(i) then

send(accumulate(0), i)
end if

else if msg.type == accumulate then
pi = pi +msg.value
if receivedAll(ST.children(i), accumulate) then

gi =
∑
j∈Γ(i) Qij(a

′
i,a

′
j)

2
if i == ST.root then

send(global_payoff(gi + pi),i)
else

send(accumulate(gi + pi),ST.parent(i))
end if

end if
else if msg.type == global_payoff then

if msg.value > m then
a∗i = a

′
i

m = g
end if
for all child ∈ ST.children(i) do

send(global_payoff(g),child)
end for
ai_lock =false

end if

23

Chapter 2 2.8. Related Work

Algorithm 3 POMCP [Silver and Veness (2010)]
Function search(h, n):

i = 0
while i < n do

if h == [] then
s ∼ I {sample from uniform distribution}

else
s ∼ B(h) {sample from current belief}

end if
simulate(s, h, 0)
i = i+ 1

end while
return argmaxa V (h, a)

Function simulate(s, h, depth):
valid_actions = compute_actions(h)
if valid_actions == [] then

return 0
end if
if γdepth < ε then

return 0
end if
if isLeaf (h) then

for all a ∈ valid_actions do
T (h, a) = (0, 0, [])

end for
return rollout(s, h, depth)

end if
a = argmaxa V (ha) + c

√
logN(h)
N(ha

s′, o, r ∼ G(s, a)
R = r + γsimulate(s′, hao, depth+ 1)
B(h).append(s)
N(h) = N(h) + 1
N(h, a) = N(h, a) + 1

V (h, a) = V (h, a) + R−V (h,a)
N(h,a)

return R
Function rollout(s, h, depth):

valid_actions = compute_actions(h)
if valid_actions == [] then

return 0
end if
if γdepth < ε then

return 0
end if
if informed() == true then
favored_actions = best_actions(h, valid_actions)

else
favored_actions = valid_actions

end if
a ∼ I(favored_actions) {Sample uniformly from favored_actions}
s′, o, r ∼ G(s, a)
return r + γrollout(s′, hao, depth+ 1)

24

Chapter 3

Our Approach

In this chapter we provide a formulation of our setting and explain the core of our
work, namely the use of SparseQ and POMCP to address the multiagent Orienteering
Problem. To be able to do so, we also had to come up with two distinct formulations
of our setting, first as a Collaborative Multiagent MDP and then as a POMDP.

3.1 Our Extension
In our modification of OP we adopt a multi-agent setting which can be thought
as TOP but with more tours, as well as the addition of congestion in each node.
Ultimately, this extension can be used in any OP variant. More rigorously, we have a
set of P agents p = 1, . . . , P on top of an OP setting and its attributes. At timestep
0, all agents coexist in the starting node and are called to choose which node they
will visit in the next timestep. Once the timestep advances each agent is moved
to its desired node and receives a discounted score dependent on the number of
agents visiting the same node on the same timestep. Eventually, all agents after a
finite number of steps and while abiding by the constraints and limitations of the
underlying OP instance, land in the ending node. Naturally, when an agent visits
the ending node, it can no longer move and has completed its run. Essentially, the
goal of this variation is to maximize the summation of the total scores, similarly to
the OP variants that require the computation of multiple paths. Mathematically the
objective function goal is:

max

P∑
p=1

N−1∑
i=2

yipτSid
(Qiτ−1)
f

, where yipτ is 1 if agent p is in node i during timestep τ and 0 otherwise, Si is the
score of node i, Qiτ equals the number of agents in node i during timestep τ , N is
the number of nodes and lastly, df ∈ (0, 1) is the congestion coefficient 1. A df close
to 0 is very punishing, while a df close to 1 is very forgiving.

The main difference regarding the mathematical formulation of this setting
compared to that of other variants is the goal function already stated. The rest of
rules can be easily derived from the already existing ones. As a matter of reference
we provide the formulation for this extension on the TOP format (see Section 2.1.1)

1discount severity due to congestion

25

Chapter 3 3.2. Applying SparseQ

given the extra decision variable xijp on top of yipτ , Si, Qiτ and df , where xijp is 1
when a visit to node i is followed by a visit in node j in agent p’s path. In addition,
variable uip node’s i place in agent’s p path (i.e. the order in which node i is visited),
and tij is the time needed to travel to node j starting from node i.

1.
∑P

p=1

∑N
j=2 x1jp =

∑P
p=1

∑N−1
i=1 xiNp = P

2.
∑P

p=1 ykpτ ≤ 1,∀k = 2, . . . , N − 1,∀τ = 1, 2, . . .

3.
∑N−1

i=1 xikp =
∑N

j=2 xkjp,∀k = 2, . . . , N − 1,∀p = 1, . . . , P

4.
∑N−1

i=1

∑N
j=2 tijxijp ≤ Tmax,∀p = 1, . . . , P

5. 2 ≤ uip ≤ N, ∀i = 2, . . . , N, ∀p = 1, . . . , P

6. uip − ujα + 1 ≤ (N − 1)(1− xijp),∀j = 2, . . . , N, ∀p = 1, . . . , P

Constraint (1) ensures that each agent’s path has to start and end in the starting
and goal node respectively by ensuring that there is only one node that succeeds
node 1 and only one node that precedes node N, constraint (2) ensures that each
node must be visited at most once by ensuring that no node can show up more than
once in a path, equation (3) makes certain that the path is connected with respect
to the order of the nodes by ensuring that the number of nodes preceding a node
k must be equal to the number of nodes succeeding node k, constraint (4) makes
sure that each agent’s path is limited by the time budget Tmax by comparing it with
the total travel time needed to traverse the path, and finally, constraints (5) and (6)
prevent subtours. Constraint (6) specifically, ensures that if node j succeeds node i
in agent’s p path (xijp = 1), then the order of visit to node j must be greater than
that of node i, ujp ≥ uip + 1.

The notion of computing multiple paths that is included in some OP variants
(Section 2.1), is replaced here by the existence of multiple agents.

The above constraints hold for the OP and TOP files, for the MCTOPMTW
files there need to be added rules for the extra limitations, such as the knapsack
constraints and the extra duration associated with each node.

An example application of this setting could be the Tourist Trip Design Problem
(TTDP) [Gavalas et al., 2014; Gavalas et al., 2015], where each agent in our setting
represents a group of tourists and the nodes represent the Points of Interest (POI).
The score of each node may represent the quality or significance of each POI. Our
setting could be used in order to avoid overcrowding, which can occur when multiple
groups of tourists (i.e. agents) visit the same POI at the same timestep.

3.2 Applying SparseQ
Regarding SparseQ, we use the edge-based decomposition and both the edge-based
and agent-based update methods as they are already described in Section 2.6.2.
The agent-based decomposition of the Q-values was deemed inappropriate for our
problem since it scales exponentially with the number of neighbors and can be proven
cumbersome.

To apply SparseQ, we model our setting as a CMMDP [Guestrin, 2003]:

26

Chapter 3 3.2. Applying SparseQ

• τ = 0, 1, 2, . . ., the timestep

• P = {p1, p2, . . . , pn}, a group of n agents

• S = {S1 × S2 × . . . × Sn}, the global state as a cross-product of all agents’
states, the state an agent is in, is the set of the current valid actions

• Api , is the set of actions for each agent pi, the size of the action set varies since
some actions may be unavailable due to the constraints applied

• T , the state transitions function, since the transitions are completely determin-
istic, the transition from a state to another will be either 1 or 0 depending on
the limitations

• R, the reward function, the reward for an action a is the node’s discounted
score. The function used is d|Qnτ |−1

f score(a), where Qnτ is the set of agents
in node n at timestep τ and 0 < df < 1 is the congestion coefficient that
represents the severity of the congestion at the node. Evidently, when |Qnτ | = 1
the reward is the original score of node n

Regarding the reward function, R, we empirically chose to use df = 0.8.
We construct a CG for any given number of agents. It would be ideal for the

CG to be a complete graph, so that every agent would have to collaborate with
every other agent. Unfortunately, this would be really slow in practice and max-plus
would have a hard time converging. For example, for 6 agents the CG would have a
branching factor of 5 and 15 edges in total, in addition to the large size of the state
and action spaces early on. To mitigate this, we add an edge with a probability,
while ensuring that the branching factor will not exceed 3. The number 3 was chosen
according to the benchmarks presented in [Kok and Vlassis, 2006] for max-plus for
different branching factors.

We are in the special case of not having all the actions available at any time, due
to the nature of the OP. For this matter, we use the set of valid actions at a timestep
to represent the state. Certainly, this will lead in the blow up of the state space. To
try to alleviate this issue along with the large set of actions early on, we initialize
every Qij-value according to the undiscounted score of the resulting nodes:

Qij(sij, ai, aj) = score(ai) + score(aj)

This will encourage each agent to favor most rewarding actions first.

3.2.1 Applying Max-Plus

We apply max-plus as in Algorithm 2, with a few remarks. First, we assume that each
agent is able to know its neighbors available actions. Secondly, an agent reaching
the goal node will still keep coordinating with its neighbors in order to suggest their
actions’ values, until its neighbors have reached the ending node as well.

27

Chapter 3 3.3. Applying POMCP

3.3 Applying POMCP
We apply the vanilla POMCP algorithm as introduced in Section 2.7.2 (as in the
original paper [Silver and Veness, 2010]), and also use POMCP with the addition
of domain-specific knowledge as a separate algorithm. In order to so, we model our
problem as a POMDP:

• S: Each state is the unfactored representation of the congestion level at each
node along with the history of actions. Congestion is partially observable
as each agent can only observe the congestion in the current node while the
agent’s history is fully observable, e.g. for a problem with 100 nodes we have a
100-tuple of integers and a tuple of the actions done so far as the state.

• A: each node is an action. Since constraints limit our actions, the set of viable
ones at each time may vary, e.g. for a problem instance of 50 nodes set of
actions is 50 at start but keeps decaying as the agent does more actions.

• O: an observation is the number of agents in a node, for example, for 4 agents
the set of possible observations is (0,1,2,3).

• Z: we model the observation function as a Cauchy distribution

• R, T are the same as described in Section 3.2.

Each agent runs POMCP independently and tries to maximize its own cumulative
reward. A serious problem with this, is that the full history tree will be really large,
even for small instances. For a datafile with 50 nodes, the root of the tree will
have up to 49 children, and each one of them will have up to 48 children and so on.
Essentially, the tree will be extremely dense near the root and sparse near the leaves.
This raises the need to utilize a set of preferred actions.

To decide which nodes should be favored we employ a heuristic presented in
[Golden et al., 1987]:

WR(i) = aSR(i) + bCR(i) + cER(i) (3.1)

for each node i, where SR is the ranking of the node depending on its undiscounted
score, CR is the ranking of the node depending on its distance from the center of
gravity, and ER is the ranking of the node depending on the sum of distances to
the start and goal nodes. As the center of gravity we use the average coordinations
of all nodes if the agent has no history, otherwise the average coordinations of the
nodes visited so far. The resulting ranking WR of all the nodes is the weighted sum
of all 3 rankings SR, CR and ER, where a+ b+ c = 1. The weights can be chosen
empirically.

We now provide further details on each ranking metric. For further detail about
the ranking of each metric; for the metric SR the rank of 1 is assigned to the node
that has the largest score and the ranks increase as the scores decrease, for CR
rank 1 is assigned to the node that is closer to the center of gravity and the ranks
increase as the distances increase, and for ER a rank of 1 is given to the node with
the smallest sum of distances from the starting and ending nodes with the ranks
increasing as the sum of distances increase. We use the resulting rankings to obtain
WR(i), for each node i, and rank all the nodes based on WR in ascending order.

28

Chapter 3 3.3. Applying POMCP

The node with the lowest WR(i) will be the most promising option according to the
heuristic. In any case of tie, in any of the aforementioned metrics, we assign the
same rank.

To allow for a better understanding of this method, we consider a toy example of
6 nodes. In Table 3.1 we can see each node’s information along with the respective
ranking for each metric (SR, CR, ER) and finally the final ranking (WR) of the
considered nodes. Node 0 and node 5 are the starting and goal node respectively,
and thus were not considered. Each node’s information consists of its identification
code (id), its coordinations (x and y) and its score. The values of CR(id), ER(id)
and WR(id) are also provided to make the table more comprehensive. In particular;
CR(id) is the distance of node id from the center of gravity , ER(id) is the sum of
distances from the starting and goal nodes and WR(id) is the result of Equation
(3.1) for each node. For reference, the coordinations of the center of gravity is (2, 3.5)
and the parameters used regarding the Equation (3.1) were a = 0.3, b = 0.35 and
c = 0.35. As is evident, node 1 is proposed as the best option since it achieves rank
1 in WR, despite having the lowest score.

Table 3.1: Example use of the heuristic
id x y score SR CR(id) CR ER(id) ER WR(id) WR
0 0 0 0 - - - - - - -
1 2 3 10 4 0.5 1 7.2 1 1.9 1
2 1 3 20 1 1.11 2 7.63 3 2.05 3
3 2 4 12 3 0.5 1 7.63 3 2.3 4
4 3 4 15 2 1.11 2 7.23 2 2 2
5 5 5 0 - - - - - - -

The obvious way would be to initialize preferred actions with an optimistic value
Vinit and a non-zero initial counter Ninit, as well as sampling from this set of actions
during rollouts, as in [Silver and Veness, 2010]. But, since we have the notion of
congestion, and the agents have no communication whatsoever, we need a more
subtle approach. Ultimately, we choose to do only one part and sample from a set of
the 20% of the highest ranking actions, depending on the path so far. We decided to
do this with the hope of reducing the percentage of congestion. Since, otherwise, the
heuristic would dictate very specific actions to each agent and would certainly lead
to the agents visiting the same nodes, and thus get discounted rewards. As stated
in Section 4.1, we use a version of POMCP with this feature (POMCP-inf) and a
version that does not use domain specific information.

Furthermore, to initialize the exploration parameter c, used by the UCB1 heuristic,
we run POMCP once and set c according to c = Rhi −Rlo, where Rhi is the highest
reward returned during the sample run, and Rlo the lowest reward returned during
the rollouts. We initialize each node equally to 〈Ninit = 0, Vinit = 0〉. In Algorithm 3
a pseudocode for POMCP is provided.

Finally, to model the observations and state transition in the black-box simulator
G, we sample from a mixture of Cauchy(loc,scale) distributions with scale = 1 and:

loc = max(O) ∗ score(ai)− arg mina(score(a))

arg maxa(score(a))− arg mina(score(a))

We decided to use a heavy tailed distribution in order to model the congestion

29

Chapter 3 3.3. Applying POMCP

at each node since this type of distributions have successfully been employed to
model network traffic [Li, 2018; Paxson and Floyd, 1994]. After testing with different
heavy tail distributions (Weibull, Pareto and t-distribution among others) we chose
to use the Cauchy. As we can see the distribution we sample from depends on the
normalized score of the action. Moreover, since it is possible that we sample numbers
outside of the set [min(O),max(O)], we could simply reject any sample that is out
of bounds. A more efficient strategy though is that of inverse transform sampling.

In short, we generate a random number u ∼ I[min(O),max(O)], and we use
the inverse of the Cumulative Density Function (CDF) of the Cauchy distribution,
also known as the quantile function, F−1

x (X) = loc + scale ∗ tan(π ∗ (x− 1/2)) to
calculate X = F−1

x (u). The random variable X is our sample and will inevitably lie
in (min(O),max(O)]; we finally round X to the closest integer and thus obtain our
sample observation in [min(O,max(O)].

3.3.1 Particle Initialization

When running POMCP for the first time, running simulations from the root associated
with an empty history, we need to initialize a set of particles to represent the initial
belief. For this purpose, we have to take into account the constraints of the specific
problem in study. With that said, we must sample a particle where the sum of
congestion over all nodes equals the total number of agents. Given a set of nodes N
and a number of agents A, we choose randomly from a uniform distribution a set of
A nodes, N ′ (each node can be sampled more than once). Subsequently, we set each
node’s congestion to be equal to the number of times it appears in N ′. For example,
if we have 6 nodes and 3 agents, a suitable particle could be 〈0, 0, 2, 0, 1, 0〉.

3.3.2 Particle Reinvigoration

As mentioned in Section 2.7.2, after doing an action in the real world and obtaining
an observation, we move the root and prune the rest of the tree. We also add
a number of noisy particles in the new root by applying local transformations to
existing ones. To transform a particle, we simply transfer an agent from its respective
node to a new one. For the transformation to be considered valid, the new, artificial,
particle must be in line with the observation just made. Although with this method,
the limitation expressed in Section 3.3.1 (i.e. the sum of congestion over all nodes
equals the total number of agents), is adhered, we need to put up two more rules
in order to be consistent with the conditions of our problem. To this end, we also
ensure that the agents that exist in the goal node in the particle cannot be moved in
another node and that if a number n of agents exist in a node i, then the number of
agents in that node in the new particle can be at most N − n− 1, with N being the
total number of agents. The last constraint is natural as agents cannot visit nodes
they have already been to in the past. Of course we can choose to do a random
(small) number of transformations at each time, instead of just one depending on
the number of agents. An example transformation given a particle 〈0, 0, 2, 0, 1, 0〉
and an observation 0 at node 2, could be 〈0, 0, 1, 1, 1, 0〉. After this step, k/16 are
added to the new root’s belief, where k is the number of simulations ran.

30

Chapter 3 3.4. Applying Q-learning

3.4 Applying Q-learning
We use a straightforward application of Q-learning with an ε-greedy strategy to our
problem as a baseline method. Each agent runs the algorithm independently, having
no communication or coordination with the other agents whatsoever. Nevertheless,
everyone will still be affected by each others’ moves and experience discounts on
their individual rewards. Inevitably, this will lead to the agents receiving different
rewards for the same action on the same state on different occasions, during training.

3.5 Further Improvements and Relaxations
This problem as presented, naturally has large action and state spaces, even for
a single agent, let alone for multiple ones. For example, a graph that consists of
only 20 vertices can have up to 204 different joint actions for just 4 agents, at each
timestep. To mitigate this, we utilize Golden’s heuristic as presented in Sections 3.3
and 4.1 in order to consider a subset of most promising actions instead of all available
actions. More specifically, we take into account the top 20% if it is more than two
times the number of total agents, otherwise the top (2 ∗#agents) actions are used.
Considering the aforementioned example, the number of distinct joint actions would
be up to 84, which is a substantial difference compared to 204. It should be noted
that this method reiterates each time an agent performs an action, as it calls this
method based on its own path so far. With this relaxation, the agents can find the
optimal paths even though we expect the learning process to be more sensitive. This
sensitivity is due to a severely pruned number of actions for each agent, and thus
potentially leading to more congested nodes. However, in practice, we obtain a boost
in performance.

To deal with the state space size, we employ SAS-Q-learning (Section 2.3.1).
Considering the adaption of this technique for SparseQ-edge and SparseQ-agent,
each agent simply uses the subset of available actions when running the maxplus
algorithm, in order to find the estimated optimal joint action. Again, we assume
that the agents know, or at least can communicate, their neighbors’ available actions.
With these said, we can avoid embedding the set of valid actions in the state, and
use just the current node to represent the state instead. Although in [Boutilier et al.,
2018] it is stated that the set of valid actions is independent of the agent’s history, in
our setting it is clear that the valid actions at each step are dependent on the past
actions in a deterministic way. Nevertheless, we argue that this choice of ours will
work, since each agent can witness different sets of available actions every time it
transits to the same state. In the end, this choice is indeed justified by the results.
So, for a dataset with 20 nodes, each agent has 20 different states it can be in.

However, when opting to use the current node only in order to represent the
state, a problem emerges with respect to the employment of the SparseQ method, as
SparseQ cannot readily use this new representation. Specifically, the fact that agents
can reach the destination vertex in different timesteps, and each edge’s Q-value is
updated using the Q-values of the neighbors of the agents forming the edge, leads to
inconsistent behavior during training. Of course this problem existed before applying
this change, but it did not matter as much when the state space was so large that
the negative values affected only a small portion of the total states. With this new

31

Chapter 3 3.5. Further Improvements and Relaxations

change in effect , we apply a simple solution by disconnecting an agent from the
CG when it reaches the destination node. When the episode is over the agents form
again the original CG. Of course, this is done in a deterministic manner, so as to
make sure that the resulting graph will always be the same. Another measure taken
is ensuring that there must be at least two nodes in the graph at any time in order
to be able to run maxplus.

The above methods are expected to enhance SparseQ-edge and SparseQ-agent,
to achieve better results, and on top of that, enable maxplus to run much faster
than before, mainly because of the relaxation in the action space. With these
modifications, we can use denser CGs, especially for the instances that 4 and 5 agents
were used, which in turn will yield additional benefits in the performance of SparseQ
algorithms.

32

Chapter 4

Experimental Evaluation

In this chapter, we present problem instances we experimented with in detail, along
with choices and assumptions made, before displaying the test results and concluding
with the discussion of them.

4.1 Setup
To test the algorithms we use six data files of three different variants of the OP. The
first two are from the TOP variant [Chao, 1993; Chao et al., 1996], the next two is
from the TDOPTW [Verbeeck et al., 2017b], and the last two are MCTOPMTW
[Souffriau, 2010; Souffriau et al., 2013] datasets.

Regarding the TOP instance (Appendix A and Appendix B), in the first line
we are given a single number that represents the number of nodes, in second line
the number of paths to be computed, in third line the time budget (tmax). Each
remaining line represents the information of a node, giving the x-coordinate, the
y-coordinate and the score.

Regarding the TDOP instances (Appendix C and Appendix D), in the first line
we are given the number of nodes. Each remaining line represents the information
of a node; the node’s id, its coordinates, its score, and its opening and closing
windows of service. In this one the distances are given on separate files in a
time-dependent and time-independent manner respectively. Thus, the problem is
essentially interpreted as OPTW. In our case, the time-independent files were used
and thus the problem is essentially interpreted as OPTW. It should be highlighted
that in these datafiles the distances are not symmetric, that means for two nodes ni
and nj, dist(ni, nj) = dist(nj, ni) does not hold necessarily.

Finally, regarding the more complex MCTOPMTW files (Appendix E and Ap-
pendix F), in the first line we are given general information; namely the number
of paths to be computed, the number of vertices, the (fee) budget limitation and a
number of knapsack constraints defining the maximum number of vertices of each
type that can be visited. The second line contains the information of the starting
point (which is also the ending point) and specifically giving the point’s id, its
coordinates, the visiting duration, its score, and the opening and closing times of its
time window. The starting node’s closing time is also the time budget of the instance.
Each remaining line represents a regular point and contains the following data: i, x,
y, d, s, O1, O2, O3, O4, C4, E, b, ez. Where i is the point’s id, x is the x-coordinate,
y is the y-coordinate, d is the visiting duration, s is the score, O1 is the opening time

33

Chapter 4 4.1. Setup

of the first window, O2 is the opening time of the second window and at the same
time the closing time of the first one, O3 is the opening time of the third window
and the closing time of the second one, O4 is the opening time of the fourth window
and the closing time of the third one, C4 is the closing time of the fourth window, E
is a binary value; if 1 the windows used are 1 and 3, otherwise windows 2 and 4 are
used, and finally each remaining binary values ez dictates whether or not the node is
of type z. We used only one time window per vertex, with the opening time being
the opening of the first time window, and the closing time being the closing of the
last time window.

To be more specific, we used p5.3.z and p7.4.k datafiles from [Chao et al., 1996],
50.4.3 and 100.4.3 from [Verbeeck et al., 2017a] and pr01 and c101 from [Souffriau
et al., 2013]. p5.3.z has 66 nodes and 5 agents were used, p7.4.k has 102 nodes and
8 agents were used, 50.4.3 has 50 nodes and 4 agents were used, 100.4.3 has 100
nodes and 8 agents were used, pr01 has 48 nodes and 4 agents were used, and c101
has 100 nodes and 8 agents were used. For the file names to be more representative
we use the format "type-#nodes-#agents" to rename the files. From now on we
refer to p5.3.z as TOP-66-5, p7.4.k as TOP-102-8, 50.4.3 as TDOP-50-4, 100.4.3 as
TDOP-100-8, pr01 as MCTOPMTW-48-4 and c101 as MCTOPMTW-100-8.

On every datafile we run SparseQ using the edge-based decomposition of the
Q-values and both the edge-based decomposition and agent-based decomposition
for the updates, resulting in two algorithms SparseQ-Edge and SparseQ-Agent. We
also run classic POMCP and domain informed POMCP-inf where preferred actions
are sampled during Rollout, other than sampling from all possible actions. For
reference, we also ran the vanilla Q-learning algorithm with each agent independently
learning on its own, and a Random algorithm where each agent does a uniformly
sampled action from all available actions at each step. In total we tested 6 algorithms,
SparseQ-Edge, SparseQ-Agent, POMCP, POMCP-inf, Q-learning and Random.

SparseQ-Edge,SparseQ-Agent and Q-learning, agents were trained for 2000
episodes and tested every 50 episodes, by interrupting the training process to monitor
the learning process, with ε decaying exponentially from 1.0 to 0.01 and α decaying
from 1.0 to 0.1. The discount factor, γ was fixed at 0.9. An episode consists of all the
agents doing a complete run and finishing at the goal node and resetting for the next
one. The performance depicted in the results tables in Section 4.2 references the ones
achieved after the last episode. Specifically for SparseQ-Edge and SparseQ-Agent,
we estimate the optimal joint action at each step, by running Max-Plus at most 50
times. Each agent calls for evaluation after it has received at least one Max-Plus
message from each neighbor, and afterwards it evaluates only when its maximum
score is improved by at least 2%. At this point, we present the fixed CGs used for
Max-Plus during testing in Figures 4.1, 4.2 and 4.3. Note that the vertices were
connected randomly while ensuring that the branching factor will always lie in [2,3]
and using a seed for reproducibility. For reference, the CG of 4 agents has branching
factor of 2, the CG of 5 agents a branching factor of 2.4, and the one with 8 agents,
has a branching factor of 2.75.

The actual number of agents used here was ultimately chosen with two things
in mind (on top of the application on TTDP as described in Section 3.1). First,
for the algorithms, and especially Max-Plus, to be able to run in a reasonable time
on a regular machine. Second, and to a lesser extend, for the number of agents to
be proportionate to the number of total nodes of each dataset (approximately 0.08

34

Chapter 4 4.1. Setup

agents per node were used). Obviously, this setting can be used, as is or slightly
modified, to model other problems as well.

Figure 4.1: Coordination Graph of 4 agents

Figure 4.2: Coordination Graph of 5 agents

Figure 4.3: Coordination Graph of 8 agents

Regarding POMCP, we run 4000 simulations for each agent independently and
before running for the first time, we do 50 sample simulations and 50 sample rollouts
to specify the exploration parameter as described in detail in Section 3.3. We fix
the parameters γ and ε to 0.95 and 0.01 respectively. For the informed version
of POMCP, POMCP-inf, we use Golden’s heuristic as introduced in Section 3.3,

35

Chapter 4 4.1. Setup

but since this was made for OP and TOP, we introduce some new metrics for the
MCTOPMTW files. So, for MCTOPMTW we use:

WR(i) = a ∗ SR(i) + b ∗ CR(i) + c ∗ ER(i) + d ∗DR(i) + e ∗ FR(i) (4.1)

for each node i with DR being the duration ranking, and FR being the ranking
relative to the fees paid. In both DR and FR, we assign rank 1 to the node with
the lowest value and incremental ranks as the values increase. Of course, every other
metric (WR, SR, CR, ER) remain the same, as explained in Section 3.3. Had we not
modified equation 3.1, agents could end up favoring nodes really costly and ending
their runs prematurely. To estimate the best constants a, b, c, d, and e for each
problem we should ideally run for different sets and keep the best performing one.
As a rule of thumb, we use the normalized counter of distinct ranks for each ranking.

a =
|SR|

|SR|+ |CR|+ |ER|+ |DR|+ |FR|

b =
|CR|

|SR|+ |CR|+ |ER|+ |DR|+ |FR|

c =
|ER|

|SR|+ |CR|+ |ER|+ |DR|+ |FR|

d =
|DR|

|SR|+ |CR|+ |ER|+ |DR|+ |FR|

e =
|FR|

|SR|+ |CR|+ |ER|+ |DR|+ |FR|

With this technique, we aim to get a good estimation of the ideal (in term of
performance) parameters. Intuitively, we ought to give a greater weight to the metrics
that offer the better divisibility between the nodes. For example, we would want
to give a greater weight to a node ranking higher in a metric that distinguishes all
nodes in 20 distinct ranks, over a metric that distinguishes the nodes in just 8 ranks.
We do similarly for the TOP files. For the TDOP files the only information provided
for each vertex is the score, and there are no coordinations associated with each one.
There was an attempt to use the score along with the distance of each node from the
last node visited but it produced very poor results during testing and was decided to
not use POMCP-inf on these files.

Finally, in Section 4.2 we can see tables with the performance of each algorithm
for each problem instance depicting the maximum, minimum and average reward
achieved as well as their discounted counterparts, and the average amount of steps
the agents did. Furthermore, a box plot graph is provided that serves as a visual
representation of the span of discounted rewards, while also depicting the average and
median along with possible outliers. This can provide a visual perspective and more
information than simply the average, like how the rewards spread between the agents
and whether there are heavy overperformers or underperformers. There are also
individual figures (specifically Figure 4.4, Figure 4.5, Figure 4.7, Figure 4.8, Figure
4.10 and Figure 4.11) showing the learning process of SparseQ-edge, SparseQ-agent
and Q-learning. A good performance of an algorithm would need a high average

36

Chapter 4 4.2. Results

cumulative reward along with some "uniformity" among the distinct agents’ scores;
in particular no agent should be performing much worse than the average.

To emphasize; besides the average number of steps for each algorithm, the
contents of the tables (Table 4.1, Table 4.2, Table 4.3, Table 4.4, Table 4.5 and Table
4.6), are separated into two sections, one with congestion discounts applied and
one without. In the latter we can see the undiscounted maximum total score, the
undiscounted minimum total score, and the undiscounted average total score. As the
term "undiscounted" suggests, these are the scores the agents would have achieved
had it not been for congestion (which occurs when two or more agents visit the same
node at the same timestep). Next to them, we can see their discounted counterparts
after applying congestion penalties; since when an agent visits a congested node,
it receives a percentage of the node’s original score, proportionate to the degree
of congestion. Naturally, the agents can have (often significant) portions of their
scores reduced by congestion. The comparison between undiscounted and discounted
scores can serve as a visualization of how well each algorithm performs in terms of
congestion control. To be exact, the undiscounted total score of an agent is computed
as

∑
i∈P score(i) given the agent’s path P . The respective undiscounted total score is

computed as
∑

i∈P,c∈C 0.8c−1score(i) (see the reward function in Section 3.2), given
the vector of congestion observed at each section of the path; C, in addition to the
path P . Obviously these values can also be calculated in an online manner as the
agent traverses the graph.

4.2 Results

Table 4.1: TOP-66-5 results
TOP-66-5 - 5 agents

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 308 220 253.2 315 220 256 10.2
SPARSEQ-Agent 305 208 242.2 305 215 245 9.2

Q-learning 305 238 276.2 305 245 279 10.8
POMCP-inf 557 499.2 530.12 575 515 544 19.4
POMCP 580 445 519 580 445 519 18
Random 167 99 139.8 175 100 143 7.6

Regarding the first TOP file, TOP-66-5, both POMCP versions outperform by
far all other algorithms, scoring more than double the average score of SparseQ-
Edge and SparseQ-Agent, as seen in Table 4.1. More specifically, POMCP-inf,
does slightly better than classic POMCP, and SparseQ-Edge does better than
SparseQ-Agent. Evidently Q-learning performs noticeably better than both SparseQ
variants. From the box plot in Figure 4.6 we can see that POMCP-inf and Q-
learning present no outliers, and all others present at least one outlier agent. Namely,
POMCP and SparseQ-Edge have two outliers each, while SparseQ-Agent has only
an overperforming one. We notice that (Figure 4.4) Q-learning’s learning curve is
smooth enough, while the other two have more bumpy curves but definitely improve
over time.

37

Chapter 4 4.2. Results

Figure 4.4: Learning curves for TOP-66-5 file

Table 4.2: TOP-102-8 results
TOP-102-8

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 169.24 105.04 135.2 193 136 161.375 7.375
SPARSEQ-Agent 161 109.36 126.23 161 124 150.62 6.875

Q-learning 157.88 140.48 151.2 184 151 170.62 8.125
POMCP-inf 178.8 93.83 110.62 193 173 180.625 8.625
POMCP 164.6 125.05 136.82 193 173 185 8.875
Random 96 16 47.75 96 16 47.75 3.625

For the second TOP file which has more (102) nodes, TOP-102-8, we get from
the results in Table 4.2 that Q-learning achieves the best average total score. A
thing worth mentioning is that although POMCP does slightly better than SparseQ-
Edge, the latter does almost as well with less congestion, and in fewer average steps.
Interestingly enough, both POMCP and POMCP-inf achieve a better undiscounted
average score than Q-learning, but lose a significant portion of this due to congestion.
This is the reason behind the change in ranking of algorithms between discounted
and undiscounted average scores. If we disregard congestion, POMCP performs the
best, but since POMCP agents create congestion by visiting the same nodes at the
same timestep, they lose a large portion of the total score they would otherwise
get. Additionally, each algorithm has at least one outlier, except for SparseQ-Agent
as is evident from the relative box plot 4.6. In detail, Q-learning’s, POMCP’s and
POMCP-inf’s maximum achieved total scores are outliers whilst SparseQ-Edge has
one of each outliers, one for the minimum total score, and one for the maximum one.
The learning curves in Figure 4.5 are kind of similar to the ones of file TOP-66-5.

38

Chapter 4 4.2. Results

Figure 4.5: Learning curves for TOP-102-8 file

Figure 4.6: Box plots of discounted rewards for TOP-66-5 and TOP-102-8

Concerning the TDOP datafile, TDOP-50-4, and its corresponding Table 4.3,
Q-learning achieves the best average score here as well, although POMCP has a

39

Chapter 4 4.2. Results

Table 4.3: TDOP-50-4 results
TDOP-50-4

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 173.8 151 164.9 181 151 168.5 6.25
SPARSEQ-Agent 171 116.4 142.2 171 124 146 5.25

Q-learning 207 177 196.75 207 177 196.75 7.25
POMCP 197.2 180.32 188.94 232 205 217.75 8
Random 119.8 31 81.4 124 31 84 4.75

Figure 4.7: Learning curves for TDOP-50-4 file

better undiscounted score, again. Likewise, SparseQ algorithms do a better job at
maintaining low levels of congestion, but fall behind in score. The box plot of this
file 4.9 shows no outliers in any algorithm.

Table 4.4: TDOP-100-8 results
TDOP-100-8

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 198.2 125 165.07 215 125 181 6.5
SPARSEQ-Agent 218.6 127.48 167.4 234 167 193 6.625

Q-learning 257.2 192.6 220.83 277 208 242.62 8.5
POMCP 286.2 194.15 232.61 299 220 254.75 9.625
Random 145 28.4 78.69 145 29 79.75 4.875

Regarding dataset TDOP-100-8, POMCP achieves the best performance surpass-
ing that of Q-learning. In addition, POMCP also appears to do better regarding
congestion control, as depicted in Table 4.4. SparseQ-Agent and SparseQ-Edge again

40

Chapter 4 4.2. Results

Figure 4.8: Learning curves for TDOP-100-8 file

Figure 4.9: Box plots of discounted rewards for TDOP-50-4 and TDOP-100-8

very close to each other in terms of performance, with SparseQ-Agent doing better
this time, but nonetheless they both are underperforming in this file too. In the

41

Chapter 4 4.2. Results

corresponding box plot 4.9 we witness two outliers for Q-learning, and unfortunately
an underperforming one too.

Table 4.5: MCTOPMTW-48-4 results
MCTOPMTW-48-4

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 182 106 135.55 187 106 140.25 8
SPARSEQ-Agent 153.6 94 127.5 158 94 131 7.5

Q-learning 220 152 181.5 220 152 181.5 10.75
POMCP-inf 227 184.8 214.3 255 217 239 13.5
POMCP 189.79 168.6 177.2 240 181 225.25 12.25
Random 90 56.2 71.85 90 59 73.25 6.5

Figure 4.10: Learning curves for MCTOPMTW-48-4 file

With respect to the MCTOPMTW problem instance, MCTOPMTW-48-4, POMCP-
inf is the best performing algorithm as we can see from Table 4.5. Specifically, it
does significantly better than vanilla POMCP and Q-learning. It is remarkable
that even the worst performing POMCP-inf agent is doing better than the average
POMCP and Q-learning ones. Both SparseQ agents are once again relatively close
with SparseQ-Edge prevailing. A feature that Q-learning prevails in is the congestion
levels, as the algorithm attains zero congestion, which can be derived from the fact
that the average undiscounted total reward is equal to the discounted one (Table
4.6). SparseQ-edge and SparseQ-agent also do quite well, losing only a small margin.
On the other hand, both POMCP variants lose a significant margin to congestion
penalties. Box plot 4.12 depicts that SparseQ algorithms as well as Q-learning have

42

Chapter 4 4.2. Results

no outliers. Oppositely, POMCP has a best performing outlier and POMCP-inf has
a worst performing one, but despite that, they achieve good results as the agents’
scores are close to the average values. Conversely to the other files’ learning curves,
Figure 4.10 depicts a smoother learning process for both SparseQ algorithms and
especially for SparseQ-agent.

Table 4.6: MCTOPMTW-100-8 results
MCTOPMTW-100-8

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 242 146.48 176.24 270 160 215 7.75
SPARSEQ-Agent 226 148 173.08 260 180 210 7.5

Q-learning 240 180 207.7 260 210 236.25 8.75
POMCP-inf 233.6 149.76 176.18 280 170 230 9.125
POMCP 206 148.64 182.82 290 210 250 9.25
Random 94 40 64.5 100 40 67.5 5.25

Figure 4.11: Learning curves for MCTOPMTW-100-8 file

Finally, in connection with file MCTOPMTW-100-8 and Table 4.6, Q-learning
accomplished the best average score. If not for Q-learning and Random, the remaining
algorithms show relatively close performance with POMCP leading by a small
margin. Once more, POMCP has the best undiscounted score but conclusively loses
a 182.82

250
= 23.4% 23.4% of it to congestion, where 182.82 is the average discounted total

score while 250 is the undiscounted one (Table 4.6). Concerning the MCTOPMTW-
100-8’s box plot 4.12, POMCP’s minimum score and SparseQ-Agent’s maximum
score are both outliers, but in spite of that they both show off well distributed values.
Also, Q-learning exhibits two outliers.

43

Chapter 4 4.2. Results

Figure 4.12: Box plots of discounted rewards for MCTOPMTW-48-4 and
MCTOPMTW-100-8

In general, POMCP, POMCP-inf and Q-learning rank high in all problem in-
stances. Actually, non-informed POMCP seems to perform better than POMCP-inf
in the files when 8 agents were used; this must be due to the heuristic’s influence
in larger problems. Most certainly, if the heuristic’s parameters were fine tuned by
hand for each dataset, along with the number of top actions provided, POMCP
would attain even higher scores.

Concerning SparseQ-edge and SparseQ-agent, they seem to perform almost the
same, with the former being slightly better in most cases. The discrepancies shown
in the learning curves are mainly due to the Max-Plus algorithm not being always
able to find the best action, mainly because of the large number of joint actions and
states, and secondly because of the not-complete CGs used.

Actually, Q-learning performs very well in all datafiles, in respect to the average
scores, as well as congestion control and smoothness during training. The only
negative aspect is the existence of outliers as shown in the respective box plots
that are more common in Q-learning than other algorithms. Despite each agent’s
negligence of other agents and their impact on its rewards, each one is able to find a
good path eventually through exploration. The single agent problem is also much
simpler as the state and action spaces are significantly smaller than the multiagent
one. This size of the problem from a multiagent perspective is troublesome for
SparseQ and we address it in Section 4.4 where we address these limitations and
propose solutions.

44

Chapter 4 4.3. Applying Improvements

4.3 Applying Improvements
Here, we detail changes and heuristics used to obtain further improvements in our
results as first mentioned in Section 3.5.

Specifically, regarding the heuristic from Section 3.3, the parameters used for
each type of OP are the same as those mentioned in Section 4.1. For the TDOP
datasets we use only the distance of each node from the last node visited, as well as
each available node’s score as metrics. Giving:

WR(i) = a ∗ SR(i) + b ∗DSR(i)

with:
a =

|SR|
|SR|+ |DSR|

b =
|DSR|

|SR|+ |DSR|
for each node i where DSR is the distance ranking. Despite the evident lack of
information, and the fact that we deemed this inappropriate for POMCP due to poor
performance, SparseQ algorithms and Q-learning achieved good results. Finally, we
run all the tests again specifically for SparseQ-agent, SparseQ-edge and Q-learning,
with the said adjustments implemented. The parameters used are an exponentially
decayed ε from 1 to 0.05 is used, along with a learning rate α decaying from 1 to 0.1,
and a learning factor γ fixed at 0.9. We run 20000 training episodes, and run one
fully exploitative episode every 50 ones (which results in 20400 episodes), in order to
monitor the performance. Nonetheless, for the plots to be clearer we use the average
score every 100 episodes starting from episode 50. We also add previous results by
Q-learning, in the learning curves, as a reference point. These results are depicted
as a red line which reflects the performance achieved by the end of training. The
CGs used for 4 and 5 agents can be seen at Figures 4.13 and 4.14. It is clear that
these graphs are denser than before, having 2.5 and 2.8 average branching factors
respectively. For reference the previous CGs’s corresponding branching factors were
2 and 2.5. On top of that, we ensure this time that each node not only has at most
3 neighbors, but also has at least 2. The new results are portrayed and discussed in
Section 4.4.

Figure 4.13: New Coordination Graph of 4 agents

45

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.14: New Coordination Graph of 5 agents

4.4 Results with Improved Heuristics and New
Settings

Here, we present and discuss the results achieved by SparseQ-agent, SparseQ-edge
and Q-learning, after applying the changes analyzed in Section 4.3.

Table 4.7: TOP-66-5 new results
TOP-66-5 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 466 426 443.2 485 445 466 17.4
SPARSEQ-Agent 464 348 413.8 485 360 425 16.8

Q-learning 460 405 429 460 405 429 16.4

Starting with the TOP files, for file TOP-66-5 SparseQ-edge achieves the best
average score, followed by Q-learning and then SparseQ-agent, even though the
differences are rather small. In Figure 4.15 we can see that SparseQ-agent reaches
and converges to its peak very early on and that Q-learning shows divergent behavior
on the first half of episodes but improves in the second half rapidly and surpasses
SparseQ-agent. It is also noteworthy that Q-learning achieves zero congestion by the
end of the training. As emerges from the box plot in Figure 4.17, SparseQ-edge has
the best quality of rewards, even though there exists an outlier. Q-learning performs
very well too, and SparseQ-agent, despite not having any outliers, has more spread
rewards among the agents.

Similarly, in the second TOP file, TOP-102-8 SparseQ-edge performs best with
the other two falling behind. As shown in Figure 4.16, SparseQ-agent converges

Table 4.8: TOP-102-8 new results
TOP-102-8 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 189.4 143.24 164.76 196 158 182.25 8.875
SPARSEQ-Agent 162.48 109.21 133.76 193 155 173.12 8.125

Q-learning 161.84 133.44 145.38 191 141 173 8.75

46

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.15: New learning curves for TOP-66-5 file

Figure 4.16: New learning curves for TOP-102-8

really fast while Q-learning is more stable in this one. From TOP-102-8’s box plot in
Figure 4.17 we can conclude that all algorithms do well in terms of fairness among

47

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.17: New box plots of discounted rewards for TOP-66-5 and TOP-102-8

Table 4.9: TDOP-50-4 new results
TDOP-50-4 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 205.6 175.6 188.7 213 183 196 6.75
SPARSEQ-Agent 207.8 176.8 193.2 215 184 200.5 7

Q-learning 207.8 167.6 179.95 215 175 187.25 6.5

the agents, with SparseQ-agent doing a little worse than the other two.
In dataset TDOP-50-4, SparseQ-agent is prevailing. SparseQ-edge follows in close

distance and Q-learning lags behind. On top of that, SparseQ-agent is again more
stable, with SparseQ-edge being the most unstable algorithm, as evident in Figure
4.18. From Figure 4.20, we get that all algorithms do well enough, with Q-learning
being the worst from this perspective.

Table 4.10: TDOP-100-8 new results
TDOP-100-8 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 253 182.6 212.95 267 199 231.75 8
SPARSEQ-Agent 229.64 179.2 204.09 275 217 249.25 8.375

Q-learning 260.8 187.2 220.59 282 201 247.75 8.25

Regarding TDOP-100-8, all algorithms achieve very similar performance as is
obvious from the respective table and Figure 4.19. It is notable that Q-learning
achieves both the highest maximum score and the highest minimum score. The only

48

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.18: New learning curves for TDOP-50-4 file

Figure 4.19: New learning curves for TDOP-100-8

algorithm having an outlier is SparseQ-edge (Figure 4.20).
Considering file MCTOPMTW-48-4, Q-learning is the best performing agent

49

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.20: New box plots of discounted rewards for TDOP-50-4 and TDOP-100-8

Table 4.11: MCTOPMTW-48-4 new results
MCTOPMTW-48-4 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 219.2 181 197.6 231 181 203.5 11.75
SPARSEQ-Agent 191.12 134 164.14 200 134 169.75 10.5

Q-learning 225.2 211.39 217.6 241 221 228 14

followed by SparseQ-edge and then SparseQ-agent. This time, Q-learning does
significantly more steps by average than the other two algorithms, and also achieves
a very high minimum score, it is remarkable that the best performing SparseQ-agent
agent does worse than the worst performing Q-learning one. The learning curves
(Figure 4.21) appear to be the smoothest ones so far. Q-learning does extremely well
in the uniformity of the scores too, as shown in Figure 4.23.

Table 4.12: MCTOPMTW-100-8 new results
MCTOPMTW-100-8 - new results

congestion discounts applied congestion discounts not applied
Algorithm Max Min Avg Max Min Avg Steps

SPARSEQ-Edge 240 160 196.3 250 160 227.5 8.875
SPARSEQ-Agent 189.6 125.84 152.51 230 160 211.25 7.75

Q-learning 230 168 193.2 240 220 230 9.375

Finally, we have have new results for dataset MCTOPMTW-100-8. In this
problem instance, Q-learning does very well but slightly worse than SparseQ-edge.

50

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.21: New learning curves for MCTOPMTW-48-4 file

Figure 4.22: New learning curves for MCTOPMTW-100-8

On the other hand, SparseQ-agent exhibits a disappointing performance. But,
apparently all of them have rather smooth learning curves in comparison to previous

51

Chapter 4 4.4. Results with Improved Heuristics and New Settings

Figure 4.23: New box plots of discounted rewards for MCTOPMTW-48-4 and
MCTOPMTW-100-8

ones (Figure 4.22). Unfortunately, Figure 4.23 depicts the existence of two outliers
for Q-learning, and one of them being an underperforming one.

Generally, the changes caused a significant boost in the performance of SparseQ-
edge and SparseQ-agent. The only instance where we witness a reduction in score is
for SparseQ-agent in the MCTOPMTW-100-8 file. Q-learning improved its results
in half of the files, but then again, the changes were targeted mainly for SparseQ.
Since the number of available actions is significantly reduced, Q-learning finds more
difficulty in finding the best paths, as it does not use cooperation or modeling of the
other agents’ impact. Generally, the performance of these algorithms relies notably
on the efficiency of the heuristic, along with the choice of its parameters, in finding
the best actions. This can explain why the baseline was not surpassed in some of
the datasets.

52

Chapter 5

Conclusions and Future Work

In this thesis we introduce a new extension to the OP, viewing it as a multi-agent
environment and imposing congestion-driven discounts on the rewards. Furthermore,
we modeled the problem as both a multi-agent MDP and a POMDP, and solved
it using AI methods, like SparseQ and POMCP. Six algorithms were used in total,
namely SparseQ with edge decomposition and both agent and edge based updates,
classic POMCP and a version of POMCP utilizing problem specific information,
Q-learning, and one performing uniformly random actions.

These algorithms were tested on six different problem instances of three different
types, OPTW, TOP, and MCTOPTW. Due to the complexity of these problems,
this proves to be a non-trivial task, but some of the algorithms tested give promising
results. In particular, the large size of the state space and the action space, as
initially defined, was a challenging issue especially for the Q-learning variants. To
mitigate this problem, a relaxation to the action set was employed along with the
simplification of the state representation, drastically improved the performance. We
also used the heuristic introduced in [Golden et al., 1987] both in the informed
version of POMCP and in SparseQ and Q-learning algorithms. It would definitely
prove beneficial to consider a smarter way to select the heuristic’s parameters or, at
least, fine tune them by hand.

Another promising idea is to embed rollouts in SparseQ and Q-learning. More
specifically, we could run a few rollouts for each state-action pair in order to gain a
good initial estimate for the respective Q-value. As expected, this technique would
cause the training process to be much slower, but we foresee that it could achieve
good results with fewer episodes. It would prove interesting to test these algorithms
in more challenging problems, with a much higher agents to node ratio. Additionally,
closely related problems can be taken into consideration, such as the Vehicle Routing
Problem (VRP) [Gunawan et al., 2019], the Selfish Orienteering Problem (SOP)
[Varakantham et al., 2015] and the Multi-Agent Orienteering Problem with Time
Capacity Constraints (MOPTCC) [Chen et al., 2014]. It would be interesting to
study how this work compares against known methods for these problem variants.

Looking into further extensions, a technique from a recent work using a pol-
icy gradient algorithm, namely Stochastic Action Set Policy Gradient (SAS-PG)
[Chandak et al., 2020] could be proven promising, especially since it has been tested
with success on a routing problem. Finally, another popular solver, Determinized
Sparse Partially Observable Tree (DESPOT) [Somani et al., 2013], could be tried and
compared to POMCP. As a matter of fact, the two algorithms have many similarities,

53

Chapter 5

with DESPOT using a belief tree with action and observation nodes but evaluating
policies using sampled scenarios.

54

Bibliography

Archetti, C., Bianchessi, N., Speranza, M. G., & Hertz, A. (2014). The split delivery
capacitated team orienteering problem. Networks, 63 (1), 16–33.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47 (2-3), 235–256.

Best, G., Cliff, O. M., Patten, T., Mettu, R. R., & Fitch, R. (2020). Decentralised
Monte Carlo tree search for active perception. Algorithmic Foundations of
Robotics XII (pp. 864–879). Springer.

Boutilier, C., Cohen, A., Daniely, A., Hassidim, A., Mansour, Y., Meshi, O., Mladenov,
M., & Schuurmans, D. (2018). Planning and learning with stochastic action
sets. arXiv preprint arXiv:1805.02363.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis
of production and allocation, 13 (1), 374–376.

Castellini, A., Chalkiadakis, G., & Farinelli, A. (2019). Influence of state-variable
constraints on partially observable monte carlo planning. Proceedings of 28th
International Joint Conference on Artificial Intelligence (IJCAI 2019), 5540–
5546.

Chandak, Y., Theocharous, G., Metevier, B., & Thomas, P. S. (2020). Reinforcement
Learning When All Actions Are Not Always Available. AAAI, 3381–3388.

Chao, I.-M. (1993). Algorithms and solutions to multi-level vehicle routing problems.
University of Maryland at College Park.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem.
European journal of operational research, 88 (3), 464–474.

Chen, C., Cheng, S.-F., & Lau, H. C. (2014). Multi-agent orienteering problem with
time-dependent capacity constraints. Web Intelligence and Agent Systems:
An International Journal, 12 (4), 347–358.

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree
search. International conference on computers and games, 72–83.

Fomin, F. V., & Lingas, A. (2002). Approximation algorithms for time-dependent
orienteering. Information Processing Letters, 83 (2), 57–62.

Gama, R., & Fernandes, H. L. (2020). A Reinforcement Learning Approach to the
Orienteering Problem with Time Windows. arXiv preprint arXiv:2011.03647.

Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). A survey on
algorithmic approaches for solving tourist trip design problems. Journal of
Heuristics, 20 (3), 291–328.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015).
Heuristics for the time dependent team orienteering problem: Application to
tourist route planning. Computers & Operations Research, 62, 36–50.

55

Chapter 5 Bibliography

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research
Logistics (NRL), 34 (3), 307–318.

Guestrin, C. (2003). Planning under uncertainty in complex structured environments
(Doctoral dissertation). Stanford University.

Guestrin, C., Koller, D., & Parr, R. (2002). Multiagent planning with factored MDPs.
Advances in neural information processing systems, 1523–1530.

Gunawan, A., Lau, H. C., & Lu, K. (2015). An iterated local search algorithm for
solving the orienteering problem with time windows. European conference on
evolutionary computation in combinatorial optimization, 61–73.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A
survey of recent variants, solution approaches and applications. European
Journal of Operational Research, 255 (2), 315–332.

Gunawan, A., Vincent, F. Y., Widjaja, A. T., & Vansteenwegen, P. (2019). Simulated
Annealing for the Multi-Vehicle Cyclic Inventory Routing Problem. 2019
IEEE 15th International Conference on Automation Science and Engineering
(CASE), 691–696.

Hoffman, K. L., Padberg, M., Rinaldi, G., et al. (2013). Traveling salesman problem.
Encyclopedia of operations research and management science, 1, 1573–1578.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101 (1-2),
99–134.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of artificial intelligence research, 4, 237–285.

Kantor, M. G., & Rosenwein, M. B. (1992). The orienteering problem with time
windows. Journal of the Operational Research Society, 43 (6), 629–635.

Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem.
Computers & Industrial Engineering, 54 (3), 648–665.

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. European
conference on machine learning, 282–293.

Kok, J. R., & Vlassis, N. (2006). Collaborative multiagent reinforcement learning
by payoff propagation. Journal of Machine Learning Research, 7 (Sep), 1789–
1828.

Lambert Iii, T. J., Epelman, M. A., & Smith, R. L. (2005). A fictitious play approach
to large-scale optimization. Operations Research, 53 (3), 477–489.

Le, T. V., Liu, S., & Lau, H. C. (2016). A Reinforcement Learning Framework
for Trajectory Prediction Under Uncertainty and Budget Constraint. ECAI,
347–354.

Li, Y. (2018). Queuing theory with heavy tails and network traffic modeling.
Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation

of traveling salesman problems. Journal of the ACM (JACM), 7 (4), 326–329.
Orienteering. (2020). Orienteering — Wikipedia, The Free Encyclopedia [[Online;

accessed 19-January-2021]]. https://en.wikipedia.org/w/index.php?title=
Orienteering&oldid=989257992

Paxson, V., & Floyd, S. (1994). Wide-area traffic: the failure of Poisson modeling.
ACM SIGCOMM Computer Communication Review, 24 (4), 257–268.

Pěnička, R., Faigl, J., & Saska, M. (2019). Physical orienteering problem for unmanned
aerial vehicle data collection planning in environments with obstacles. IEEE
Robotics and Automation Letters, 4 (3), 3005–3012.

56

https://en.wikipedia.org/w/index.php?title=Orienteering&oldid=989257992
https://en.wikipedia.org/w/index.php?title=Orienteering&oldid=989257992

Chapter 5 Bibliography

Poupart, P. (2005). Exploiting structure to efficiently solve large scale partially
observable Markov decision processes. Citeseer.

Sevkli, Z., & Sevilgen, F. E. (2006). Variable neighborhood search for the orienteering
problem. International Symposium on Computer and Information Sciences,
134–143.

Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs.
Somani, A., Ye, N., Hsu, D., & Lee, W. S. (2013). DESPOT: Online POMDP planning

with regularization. Advances in neural information processing systems, 1772–
1780.

Souffriau, W. (2010). Automated tourist decision support. Katholieke Universiteit
Leuven, Mar.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden, D. (2013).
The multiconstraint team orienteering problem with multiple time windows.
Transportation Science, 47 (1), 53–63.

Sutton, R. S., & Barto, m., Andrew G. (2018). Reinforcement learning: An introduc-
tion.

Thrun, S. (2000). Monte carlo pomdps. Advances in neural information processing
systems, 1064–1070.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the
Operational Research Society, 35 (9), 797–809.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering
problem: A survey. European Journal of Operational Research, 209 (1), 1–10.

Varakantham, P., Mostafa, H., Fu, N., & Lau, H. C. (2015). DIRECT: A scalable
approach for route guidance in selfish orienteering problems.

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2016). Solving the stochastic
time-dependent orienteering problem with time windows. European Journal
of Operational Research, 255 (3), 699–718.

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2017a). The Time-Dependent
Orienteering Problem with Time Windows: A Fast Ant Colony System. Annals
of Operations Research, 254 (1-2), 481–505. $$Uhttps://lirias.kuleuven.be/
retrieve/430946$$DTDOPTW_final_preprint.pdf%20[freely%20available]

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2017b). The time-dependent
orienteering problem with time windows: a fast ant colony system. Annals of
Operations Research, 254 (1), 481–505.

Vlassis, N. (2007). A concise introduction to multiagent systems and distributed
artificial intelligence. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 1 (1), 1–71.

Walraven, E., Spaan, M. T., & Bakker, B. (2016). Traffic flow optimization: A
reinforcement learning approach. Engineering Applications of Artificial Intel-
ligence, 52, 203–212.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8 (3-4), 279–292.
Yu, J., Schwager, M., & Rus, D. (2016). Correlated orienteering problem and its

application to persistent monitoring tasks. IEEE Transactions on Robotics,
32 (5), 1106–1118.

57

$$Uhttps://lirias.kuleuven.be/retrieve/430946$$DTDOPTW_final_preprint.pdf%20[freely%20available]
$$Uhttps://lirias.kuleuven.be/retrieve/430946$$DTDOPTW_final_preprint.pdf%20[freely%20available]

Appendices

58

Appendix A

Instance TOP-66-5

66
m 3
tmax 43.3
-0.500 0.000 0
-7.000 -7.000 35
-7.000 -5.000 35
-7.000 -3.000 35
-7.000 -1.000 35
-7.000 1.000 35
-7.000 3.000 35
-7.000 5.000 35
-7.000 7.000 35
-5.000 -7.000 35
-5.000 -5.000 25
-5.000 -3.000 25
-5.000 -1.000 25
-5.000 1.000 25
-5.000 3.000 25
-5.000 5.000 25
-5.000 7.000 35
-3.000 -7.000 35
-3.000 -5.000 25
-3.000 -3.000 15
-3.000 -1.000 15
-3.000 1.000 15
-3.000 3.000 15
-3.000 5.000 25
-3.000 7.000 35
-1.000 -7.000 35
-1.000 -5.000 25
-1.000 -3.000 15
-1.000 -1.000 5
-1.000 1.000 5
-1.000 3.000 15
-1.000 5.000 25

59

Chapter 1

-1.000 7.000 35
1.000 -7.000 35
1.000 -5.000 25
1.000 -3.000 15
1.000 -1.000 5
1.000 1.000 5
1.000 3.000 15
1.000 5.000 25
1.000 7.000 35
3.000 -7.000 35
3.000 -5.000 25
3.000 -3.000 15
3.000 -1.000 15
3.000 1.000 15
3.000 3.000 15
3.000 5.000 25
3.000 7.000 35
5.000 -7.000 35
5.000 -5.000 25
5.000 -3.000 25
5.000 -1.000 25
5.000 1.000 25
5.000 3.000 25
5.000 5.000 25
5.000 7.000 35
7.000 -7.000 35
7.000 -5.000 35
7.000 -3.000 35
7.000 -1.000 35
7.000 1.000 35
7.000 3.000 35
7.000 5.000 35
7.000 7.000 35
0.500 0.000 0

60

Appendix B

Instance TOP-102-8

102
m 4
tmax 55.0
35.000 35.000 0
15.000 30.000 26
55.000 5.000 29
31.000 52.000 27
60.000 12.000 31
8.000 56.000 27
13.000 52.000 36
6.000 68.000 30
21.000 24.000 28
56.000 39.000 36
55.000 54.000 26
16.000 22.000 41
4.000 18.000 35
28.000 18.000 26
26.000 27.000 27
55.000 45.000 13
55.000 20.000 19
55.000 60.000 16
30.000 60.000 16
20.000 65.000 12
50.000 35.000 19
30.000 25.000 23
15.000 10.000 20
10.000 20.000 19
20.000 40.000 12
15.000 60.000 17
45.000 20.000 11
45.000 10.000 18
45.000 30.000 17
35.000 40.000 16
41.000 37.000 16
40.000 60.000 21

61

Chapter 2

35.000 69.000 23
53.000 52.000 11
65.000 55.000 14
5.000 5.000 16
11.000 14.000 18
6.000 38.000 16
47.000 47.000 13
37.000 31.000 14
57.000 29.000 18
36.000 26.000 18
12.000 24.000 13
24.000 58.000 19
62.000 77.000 20
49.000 73.000 25
67.000 5.000 25
57.000 68.000 15
47.000 16.000 25
49.000 11.000 18
49.000 42.000 13
53.000 43.000 14
57.000 48.000 23
15.000 47.000 16
14.000 37.000 11
26.000 35.000 15
18.000 24.000 22
25.000 24.000 20
22.000 27.000 11
25.000 21.000 12
18.000 18.000 17
41.000 49.000 10
35.000 17.000 7
25.000 30.000 3
20.000 50.000 5
10.000 43.000 9
30.000 5.000 8
5.000 30.000 2
45.000 65.000 9
65.000 35.000 3
65.000 20.000 6
64.000 42.000 9
63.000 65.000 8
2.000 60.000 5
20.000 20.000 8
40.000 25.000 9
42.000 7.000 5
24.000 12.000 5
23.000 3.000 7
2.000 48.000 1

62

Chapter 2

49.000 58.000 10
27.000 43.000 9
63.000 23.000 2
53.000 12.000 6
32.000 12.000 7
17.000 34.000 3
27.000 69.000 10
15.000 77.000 9
37.000 47.000 6
37.000 56.000 5
44.000 17.000 9
46.000 13.000 8
61.000 52.000 3
56.000 37.000 6
11.000 31.000 7
26.000 52.000 9
31.000 67.000 3
15.000 19.000 1
22.000 22.000 2
19.000 21.000 10
20.000 26.000 9
35.000 35.000 0

63

Appendix C

Instance TDOP-50-4

50
50400000
11174;0;0;0;21600000;72000000
10467;33;7;1152295;25200000;64800000
21660;7;2;1440728;50400000;68400000
26440;16;4;1192523;43200000;72000000
20025;25;5;1149992;54000000;68400000
29511;27;6;858459;43200000;61200000
20650;5;1;820593;39600000;54000000
8314;29;6;1524209;36000000;57600000
28023;24;5;1391980;32400000;50400000
14019;29;6;578310;50400000;72000000
9906;19;4;2027233;25200000;43200000
7392;24;5;1185928;28800000;72000000
3626;36;8;1669281;46800000;68400000
4415;33;7;1494345;28800000;72000000
25825;7;2;991878;43200000;61200000
25875;37;8;1666536;25200000;57600000
20160;17;4;1329891;46800000;61200000
28071;39;8;1333473;50400000;64800000
28298;31;7;1280576;43200000;72000000
8178;29;6;1334655;54000000;68400000
32271;9;2;1139862;36000000;72000000
2669;33;7;1220866;28800000;64800000
13986;22;5;1451646;32400000;46800000
8481;3;1;1257706;32400000;46800000
7628;6;2;1363468;46800000;61200000
4100;30;6;1427142;43200000;68400000
2626;23;5;1532733;21600000;57600000
1925;26;6;1491803;25200000;72000000
29973;36;8;845117;39600000;72000000
14182;38;8;1192548;43200000;68400000
27433;34;7;1063102;25200000;57600000
27594;28;6;676419;32400000;54000000
13032;30;6;1073103;21600000;72000000

64

Chapter 3

143;24;5;606060;25200000;64800000
31287;39;8;1257933;54000000;68400000
7901;39;8;1356217;32400000;50400000
8361;28;6;989770;28800000;43200000
30975;36;8;913928;25200000;46800000
29171;2;1;993832;43200000;61200000
30834;17;4;1065414;46800000;68400000
25761;21;5;895233;25200000;57600000
4668;32;7;938833;28800000;72000000
12551;24;5;1255188;54000000;68400000
13695;5;1;837167;39600000;72000000
21625;18;4;1310760;50400000;68400000
2126;18;4;1791430;43200000;68400000
21695;39;8;1792285;50400000;68400000
26303;17;4;1476167;25200000;61200000
22467;38;8;1370093;43200000;64800000
22594;0;39;0;21600000;72000000

65

Appendix D

Instance TDOP-100-8

100
50400000
27466;0;0;0;21600000;72000000
20268;8;2;1434809;43200000;61200000
19794;32;7;1592089;28800000;43200000
25473;30;6;1260918;32400000;57600000
22831;20;4;1048901;46800000;72000000
28443;30;6;1399138;39600000;57600000
13878;31;7;1298356;36000000;68400000
703;13;3;1157143;54000000;72000000
1382;16;4;1453688;50400000;72000000
8824;15;3;1174585;28800000;68400000
8024;5;1;1405310;46800000;64800000
16596;7;2;1063828;28800000;72000000
2328;31;7;1435319;50400000;68400000
31311;25;5;1506397;54000000;72000000
11059;10;2;807427;54000000;72000000
9488;33;7;1090922;21600000;36000000
32529;36;8;1738989;43200000;72000000
2259;38;8;1091492;28800000;68400000
9861;5;1;1507890;32400000;64800000
21287;13;3;1667261;25200000;72000000
8611;27;6;1191101;46800000;61200000
7129;27;6;1019728;36000000;72000000
5842;10;2;1702990;25200000;72000000
3504;9;2;1223822;50400000;72000000
24866;19;4;1474324;54000000;68400000
1882;15;3;1181198;54000000;72000000
22751;28;6;886670;43200000;72000000
18599;28;6;980028;46800000;68400000
2662;12;3;1245240;36000000;61200000
32757;21;5;1215390;43200000;57600000
20279;29;6;1339964;25200000;54000000
19436;9;2;927193;54000000;68400000
32076;21;5;893148;50400000;64800000

66

Chapter 4

1387;34;7;822946;32400000;46800000
8361;32;7;730607;39600000;72000000
26049;37;8;1192444;46800000;72000000
29493;32;7;830070;25200000;50400000
23841;20;4;1551687;32400000;50400000
1736;38;8;1385244;54000000;68400000
11600;21;5;707289;39600000;57600000
21893;3;1;761979;36000000;72000000
7329;25;5;1259619;28800000;61200000
11370;6;2;554509;54000000;68400000
21795;18;4;1285550;21600000;64800000
9253;26;6;1378532;28800000;46800000
17433;20;4;1020818;25200000;57600000
7209;28;6;1067230;43200000;61200000
3498;39;8;1034132;21600000;72000000
27650;20;4;1208531;21600000;72000000
26842;34;7;1476705;50400000;68400000
16101;1;1;1180361;21600000;39600000
30649;8;2;1248326;25200000;64800000
19852;22;5;1070714;28800000;54000000
28634;18;4;1307162;21600000;39600000
27201;4;1;1213339;25200000;72000000
9991;36;8;602382;25200000;39600000
4920;36;8;1115134;32400000;46800000
22579;23;5;944036;32400000;68400000
32545;26;6;1342452;28800000;43200000
13488;3;1;1021752;25200000;68400000
22526;21;5;916790;46800000;64800000
5539;5;1;1532598;43200000;64800000
6194;17;4;975965;43200000;72000000
25012;1;1;1355582;46800000;61200000
15835;8;2;1101671;32400000;57600000
31498;17;4;1200858;21600000;39600000
18530;29;6;1262286;36000000;72000000
18806;10;2;1058187;46800000;64800000
13393;29;6;1275848;50400000;72000000
13550;12;3;1333893;39600000;61200000
26980;6;2;996707;50400000;64800000
9278;35;7;1443596;43200000;68400000
20194;22;5;1263639;25200000;46800000
21498;21;5;924576;43200000;61200000
31277;18;4;1097394;28800000;46800000
6583;7;2;1270437;32400000;68400000
11160;22;5;1207748;28800000;64800000
26490;4;1;1488663;39600000;57600000
3450;16;4;1643735;21600000;36000000
9073;7;2;1109458;50400000;64800000
27009;5;1;1317669;25200000;50400000

67

Chapter 4

10209;4;1;1668260;50400000;68400000
18504;5;1;1470662;50400000;68400000
32608;1;1;570521;39600000;57600000
12075;34;7;1543070;28800000;50400000
12612;27;6;1233926;50400000;72000000
28762;20;4;1377679;25200000;61200000
12891;3;1;851397;28800000;72000000
16684;28;6;1320914;25200000;50400000
19933;25;5;1561680;50400000;68400000
2742;2;1;1251795;43200000;61200000
6814;16;4;1368552;50400000;64800000
10397;17;4;1285709;32400000;64800000
20616;24;5;1617192;46800000;68400000
2600;13;3;693994;54000000;72000000
4681;34;7;1436845;46800000;72000000
27033;36;8;783771;21600000;43200000
32585;26;6;1167751;28800000;43200000
3518;3;1;1636677;54000000;72000000
8671;0;39;0;21600000;72000000

68

Appendix E

Instance MCTOPMTW-48-4

1 48 994 4 10 3 6 4 2 4 6 4 6
0 -10.442 19.999 0.0 0.0 0 1000
2 -29.73 64.136 2.0 12.0 354 392.8 431.5 470.2 509 0 77 0 0 0 0 0 0 0 0 0 0
3 -30.664 5.463 7.0 8.0 234 275.8 317.5 359.2 401 1 77 1 1 0 1 0 0 1 0 0 0
4 51.642 5.469 21.0 16.0 411 451.5 492 532.5 573 1 42 0 0 1 0 0 1 1 1 0 1
5 -13.171 69.336 24.0 5.0 474 511 548 585 622 1 70 0 0 0 0 0 1 0 0 0 0
6 -67.413 68.323 1.0 12.0 155 190 225 260 295 1 75 1 0 0 0 0 0 0 0 0 1
7 48.907 6.274 17.0 5.0 361 398 435 472 509 1 46 0 0 1 0 0 0 0 0 0 0
8 5.243 22.26 6.0 13.0 451 495.5 540 584.5 629 0 50 0 1 1 1 0 0 0 0 1 0
9 -65.002 77.234 5.0 20.0 425 465.8 506.5 547.2 588 1 27 0 0 0 0 0 0 0 1 0 0
10 -4.175 -1.569 7.0 13.0 72 103.8 135.5 167.2 199 1 62 0 0 0 0 0 0 0 0 0 0
11 23.029 11.639 1.0 18.0 157 197.2 237.5 277.8 318 0 79 0 1 1 1 0 0 0 1 0 0
12 25.482 6.287 4.0 7.0 296 333 370 407 444 1 30 0 0 0 1 0 0 1 1 0 1
13 -42.615 -26.392 10.0 6.0 111 145.5 180 214.5 249 0 4 0 0 0 1 1 0 0 0 0 0
14 -76.672 99.341 2.0 9.0 368 408 448 488 528 1 9 0 0 0 0 0 1 0 0 1 1
15 -20.673 57.892 16.0 9.0 98 136.2 174.5 212.8 251 1 25 0 0 0 1 0 0 0 0 0 0
16 -52.039 6.567 23.0 4.0 96 124 152 180 208 1 25 0 0 1 0 1 1 1 1 1 0
17 -41.376 50.824 18.0 25.0 382 420.2 458.5 496.8 535 0 83 0 1 0 0 1 0 0 1 0 1
18 -91.943 27.588 3.0 5.0 436 472 508 544 580 1 10 0 0 1 0 0 0 0 0 0 1
19 -65.118 30.212 15.0 17.0 405 435.8 466.5 497.2 528 1 67 0 1 0 0 0 0 0 0 0 0
20 18.597 96.716 13.0 3.0 255 294.8 334.5 374.2 414 1 65 0 0 0 0 0 0 0 0 0 1
21 -40.942 83.209 10.0 16.0 293 337.2 381.5 425.8 470 1 85 1 0 0 0 0 0 1 0 0 0
22 -37.756 -33.325 4.0 25.0 298 325.5 353 380.5 408 1 41 0 0 0 0 0 0 1 0 0 0
23 23.767 29.083 23.0 21.0 479 511 543 575 607 0 13 0 0 0 1 0 0 0 0 0 1
24 -43.03 20.453 20.0 14.0 376 416 456 496 536 1 13 1 0 0 0 0 1 0 0 0 0
25 -35.297 -24.896 10.0 19.0 91 127.8 164.5 201.2 238 1 44 0 0 0 0 0 0 0 0 1 0
26 -54.755 14.368 4.0 14.0 360 396.2 432.5 468.8 505 1 7 0 1 0 0 1 1 0 0 0 0
27 -49.329 33.374 2.0 6.0 379 416.2 453.5 490.8 528 1 35 1 0 0 1 0 1 0 0 0 0
28 57.404 23.822 23.0 16.0 258 300.5 343 385.5 428 1 35 1 0 0 1 0 0 0 0 0 0
29 -22.754 55.408 6.0 9.0 352 391.2 430.5 469.8 509 0 42 0 1 0 0 0 0 1 0 1 0
30 -56.622 73.34 8.0 20.0 288 311 334 357 380 1 58 0 0 0 1 0 0 0 0 0 1
31 -38.562 -3.705 10.0 13.0 159 200.2 241.5 282.8 324 0 39 0 0 0 0 0 1 0 0 0 1
32 -16.779 19.537 7.0 10.0 423 458.2 493.5 528.8 564 1 35 0 1 0 0 0 0 0 1 0 1
33 -11.56 11.615 1.0 16.0 238 275.2 312.5 349.8 387 1 14 0 1 0 0 0 1 0 0 0 0
34 -46.545 97.974 21.0 19.0 339 361.5 384 406.5 429 1 69 0 1 1 0 0 0 0 1 0 1

69

Chapter 5

35 16.229 9.32 6.0 22.0 397 440.8 484.5 528.2 572 0 12 0 1 0 0 0 0 0 0 1 0
36 1.294 7.349 4.0 14.0 479 509 539 569 599 1 59 0 0 0 0 1 0 0 0 0 1
37 -26.404 29.529 13.0 10.0 315 359.2 403.5 447.8 492 0 17 1 0 0 0 0 0 0 1 0 0
38 4.352 14.685 9.0 11.0 132 171.5 211 250.5 290 0 84 1 0 0 0 0 0 1 1 0 0
39 -50.665 -23.126 22.0 15.0 161 202.2 243.5 284.8 326 1 88 0 1 0 0 0 0 0 0 0 0
40 -22.833 -9.814 22.0 13.0 387 417.2 447.5 477.8 508 1 63 0 0 0 0 0 1 1 0 0 1
41 -71.1 -18.616 18.0 15.0 284 324.5 365 405.5 446 1 76 0 1 0 0 0 1 0 1 0 0
42 -7.849 32.074 10.0 8.0 296 339.8 383.5 427.2 471 1 34 1 0 1 1 0 0 0 0 0 0
43 11.877 -24.933 25.0 22.0 381 406.2 431.5 456.8 482 1 87 0 0 0 1 0 0 0 0 1 0
44 -18.927 -23.73 23.0 24.0 401 431.2 461.5 491.8 522 1 62 1 0 0 0 0 1 0 0 0 0
45 -11.92 11.755 4.0 3.0 432 465 498 531 564 1 85 0 0 0 0 0 1 0 0 0 0
46 29.84 11.633 9.0 25.0 289 329.2 369.5 409.8 450 1 85 0 0 0 0 0 0 0 0 0 0
47 12.268 -55.811 17.0 19.0 451 487.5 524 560.5 597 1 0 0 0 1 0 0 0 1 1 0 0
48 -37.933 -21.613 10.0 21.0 123 167.8 212.5 257.2 302 1 0 1 1 1 0 1 0 0 0 0 0
49 42.883 -2.966 17.0 10.0 98 131.8 165.5 199.2 233 1 76 0 1 0 0 0 1 1 0 0 0

70

Appendix F

Instance MCTOPMTW-100-8

1 100 471 2 1 1 5 0 1 2 3 1 3
0 40.0 50.0 0.0 0.0 0 1236
2 45.0 68.0 90.0 10.0 912 925.8 939.5 953.2 967 1 60 0 0 1 0 0 0 0 0 1 0
3 45.0 70.0 90.0 30.0 825 836.2 847.5 858.8 870 1 48 0 0 0 0 0 0 0 0 0 0
4 42.0 66.0 90.0 10.0 65 85.2 105.5 125.8 146 1 29 0 0 0 0 0 0 0 0 0 0
5 42.0 68.0 90.0 10.0 727 740.8 754.5 768.2 782 1 47 0 0 0 0 0 0 0 0 0 0
6 42.0 65.0 90.0 10.0 15 28 41 54 67 1 15 1 1 0 1 0 1 0 0 0 0
7 40.0 69.0 90.0 20.0 621 641.2 661.5 681.8 702 1 53 0 0 0 0 0 0 0 0 0 1
8 40.0 66.0 90.0 20.0 170 183.8 197.5 211.2 225 1 91 0 0 1 0 0 0 0 0 0 0
9 38.0 68.0 90.0 20.0 255 272.2 289.5 306.8 324 1 61 0 0 0 0 0 0 1 0 0 0
10 38.0 70.0 90.0 10.0 534 551.8 569.5 587.2 605 1 19 0 1 0 0 0 0 1 1 1 0
11 35.0 66.0 90.0 10.0 357 370.2 383.5 396.8 410 1 54 0 1 0 0 0 0 0 0 0 0
12 35.0 69.0 90.0 10.0 448 462.2 476.5 490.8 505 1 77 0 0 0 0 0 0 0 0 0 0
13 25.0 85.0 90.0 20.0 652 669.2 686.5 703.8 721 0 77 1 0 0 1 0 0 0 0 0 1
14 22.0 75.0 90.0 30.0 30 45.5 61 76.5 92 1 73 1 0 0 0 0 1 0 0 1 0
15 22.0 85.0 90.0 10.0 567 580.2 593.5 606.8 620 1 62 0 1 0 1 0 0 0 1 0 0
16 20.0 80.0 90.0 40.0 384 395.2 406.5 417.8 429 1 95 0 0 0 0 0 1 0 0 1 0
17 20.0 85.0 90.0 40.0 475 488.2 501.5 514.8 528 1 44 0 0 0 0 0 1 0 0 0 0
18 18.0 75.0 90.0 20.0 99 111.2 123.5 135.8 148 1 84 0 0 0 0 0 0 0 0 0 0
19 15.0 75.0 90.0 20.0 179 197.8 216.5 235.2 254 1 75 0 0 1 0 0 0 0 0 1 1
20 15.0 80.0 90.0 10.0 278 294.8 311.5 328.2 345 1 41 0 0 1 0 0 0 0 1 0 1
21 30.0 50.0 90.0 10.0 10 25.8 41.5 57.2 73 1 20 0 0 1 0 0 0 0 0 0 1
22 30.0 52.0 90.0 20.0 914 926.8 939.5 952.2 965 1 43 0 1 0 1 0 0 0 0 0 1
23 28.0 52.0 90.0 20.0 812 829.8 847.5 865.2 883 1 88 0 0 0 0 0 0 0 0 1 0
24 28.0 55.0 90.0 10.0 732 743.2 754.5 765.8 777 1 24 0 0 1 0 0 0 1 0 1 0
25 25.0 50.0 90.0 10.0 65 84.8 104.5 124.2 144 1 47 0 0 0 0 0 1 1 0 0 1
26 25.0 52.0 90.0 40.0 169 182.8 196.5 210.2 224 1 52 0 0 0 0 0 0 0 0 0 0
27 25.0 55.0 90.0 10.0 622 641.8 661.5 681.2 701 1 60 0 0 0 1 0 0 0 1 0 0
28 23.0 52.0 90.0 10.0 261 274.8 288.5 302.2 316 1 3 0 0 0 0 0 0 0 0 0 0
29 23.0 55.0 90.0 20.0 546 557.8 569.5 581.2 593 1 82 0 0 0 0 0 0 1 1 1 0
30 20.0 50.0 90.0 10.0 358 369.8 381.5 393.2 405 1 92 0 0 1 0 1 1 0 0 0 0
31 20.0 55.0 90.0 10.0 449 462.8 476.5 490.2 504 1 23 1 0 0 0 0 0 0 1 0 0
32 10.0 35.0 90.0 20.0 200 209.2 218.5 227.8 237 1 45 0 1 0 0 1 1 0 0 1 0
33 10.0 40.0 90.0 30.0 31 48.2 65.5 82.8 100 1 45 0 1 0 0 0 0 1 0 1 0
34 8.0 40.0 90.0 40.0 87 104.8 122.5 140.2 158 1 37 0 0 0 0 0 0 0 0 1 1

71

Chapter 6

35 8.0 45.0 90.0 20.0 751 767.2 783.5 799.8 816 1 87 0 0 0 0 0 0 1 1 0 0
36 5.0 35.0 90.0 10.0 283 298.2 313.5 328.8 344 1 2 0 0 1 1 1 0 0 0 0 1
37 5.0 45.0 90.0 10.0 665 677.8 690.5 703.2 716 1 62 0 0 0 0 0 0 0 0 1 0
38 2.0 40.0 90.0 20.0 383 395.8 408.5 421.2 434 1 25 0 1 0 0 1 0 0 0 0 0
39 0.0 40.0 90.0 30.0 479 489.8 500.5 511.2 522 1 53 1 1 0 0 0 0 0 0 0 0
40 0.0 45.0 90.0 20.0 567 581.2 595.5 609.8 624 1 38 1 0 0 0 0 0 0 0 0 0
41 35.0 30.0 90.0 10.0 264 278.2 292.5 306.8 321 1 35 0 0 0 0 0 0 0 1 0 1
42 35.0 32.0 90.0 10.0 166 183.2 200.5 217.8 235 1 60 0 1 0 0 1 0 0 0 0 0
43 33.0 32.0 90.0 20.0 68 88.2 108.5 128.8 149 1 75 0 0 1 0 0 1 0 0 0 0
44 33.0 35.0 90.0 10.0 16 32 48 64 80 1 55 0 0 0 1 0 0 1 0 1 0
45 32.0 30.0 90.0 10.0 359 372.2 385.5 398.8 412 1 30 1 0 0 1 0 0 1 0 0 0
46 30.0 30.0 90.0 10.0 541 555.8 570.5 585.2 600 1 98 1 1 0 0 0 0 1 0 0 0
47 30.0 32.0 90.0 30.0 448 463.2 478.5 493.8 509 1 91 0 0 1 0 0 0 1 0 1 0
48 30.0 35.0 90.0 10.0 1054 1072.2 1090.5 1108.8 1127 1 74 0 1 0 0 0 0 0 0 0 0
49 28.0 30.0 90.0 10.0 632 647.2 662.5 677.8 693 1 36 0 0 1 1 0 0 0 0 0 0
50 28.0 35.0 90.0 10.0 1001 1017.2 1033.5 1049.8 1066 1 12 0 0 0 1 0 0 0 0 1 0
51 26.0 32.0 90.0 10.0 815 831.2 847.5 863.8 880 1 62 0 0 0 0 0 0 0 1 0 0
52 25.0 30.0 90.0 10.0 725 740.2 755.5 770.8 786 1 19 0 0 0 0 0 0 1 0 0 0
53 25.0 35.0 90.0 10.0 912 926.2 940.5 954.8 969 1 77 0 0 0 1 1 0 0 1 1 0
54 44.0 5.0 90.0 20.0 286 301.2 316.5 331.8 347 1 16 0 0 0 0 0 1 0 1 1 0
55 42.0 10.0 90.0 40.0 186 203.8 221.5 239.2 257 1 46 0 0 0 0 0 0 0 0 1 0
56 42.0 15.0 90.0 10.0 95 110.8 126.5 142.2 158 1 7 1 0 0 1 0 0 0 1 0 0
57 40.0 5.0 90.0 30.0 385 397.8 410.5 423.2 436 1 16 0 1 1 0 0 0 0 0 0 0
58 40.0 15.0 90.0 40.0 35 48 61 74 87 1 8 1 0 1 0 0 0 0 1 0 0
59 38.0 5.0 90.0 30.0 471 486.8 502.5 518.2 534 1 37 0 0 0 0 1 0 1 1 0 0
60 38.0 15.0 90.0 10.0 651 673.2 695.5 717.8 740 1 43 0 1 1 0 0 0 1 0 1 0
61 35.0 5.0 90.0 20.0 562 578.8 595.5 612.2 629 1 47 1 0 0 0 0 0 0 0 0 0
62 50.0 30.0 90.0 10.0 531 550.8 570.5 590.2 610 1 87 1 0 0 0 1 0 1 0 1 0
63 50.0 35.0 90.0 20.0 262 275.8 289.5 303.2 317 1 88 0 0 0 1 0 0 1 0 0 0
64 50.0 40.0 90.0 50.0 171 182.8 194.5 206.2 218 1 5 0 0 0 0 0 0 0 1 0 1
65 48.0 30.0 90.0 10.0 632 647.2 662.5 677.8 693 1 58 1 0 0 0 0 0 0 1 0 0
66 48.0 40.0 90.0 10.0 76 89.2 102.5 115.8 129 1 8 0 0 0 0 0 0 0 0 1 0
67 47.0 35.0 90.0 10.0 826 838.2 850.5 862.8 875 1 17 1 0 0 1 0 0 0 0 0 0
68 47.0 40.0 90.0 10.0 12 28.2 44.5 60.8 77 1 51 1 1 0 0 0 0 1 0 0 0
69 45.0 30.0 90.0 10.0 734 744.8 755.5 766.2 777 1 18 0 1 1 0 1 0 1 1 0 0
70 45.0 35.0 90.0 10.0 916 929.2 942.5 955.8 969 1 58 0 0 0 0 0 0 0 1 0 0
71 95.0 30.0 90.0 30.0 387 404.2 421.5 438.8 456 1 18 0 0 0 0 0 0 0 0 0 0
72 95.0 35.0 90.0 20.0 293 309.8 326.5 343.2 360 1 38 0 0 0 0 1 0 0 1 0 0
73 53.0 30.0 90.0 10.0 450 463.8 477.5 491.2 505 1 72 0 0 0 0 0 0 0 0 0 0
74 92.0 30.0 90.0 10.0 478 496.2 514.5 532.8 551 1 57 0 0 0 0 0 0 0 1 1 0
75 53.0 35.0 90.0 50.0 353 367.8 382.5 397.2 412 1 51 0 0 0 0 0 0 0 0 0 0
76 45.0 65.0 90.0 20.0 997 1014.8 1032.5 1050.2 1068 0 26 0 0 0 1 0 0 0 1 1 0
77 90.0 35.0 90.0 10.0 203 217.2 231.5 245.8 260 1 80 0 1 0 0 0 0 0 0 0 0
78 88.0 30.0 90.0 10.0 574 591.2 608.5 625.8 643 1 97 0 1 0 0 0 0 0 0 0 0
79 88.0 35.0 90.0 20.0 109 124.2 139.5 154.8 170 1 62 1 1 0 0 1 1 0 0 0 0
80 87.0 30.0 90.0 10.0 668 683.8 699.5 715.2 731 1 35 0 0 0 0 0 0 0 0 0 1
81 85.0 25.0 90.0 10.0 769 781.8 794.5 807.2 820 1 20 0 0 0 0 0 1 0 0 0 1
82 85.0 35.0 90.0 30.0 47 66.2 85.5 104.8 124 1 67 0 1 1 0 0 0 0 0 0 0

72

Chapter 5

83 75.0 55.0 90.0 20.0 369 381.8 394.5 407.2 420 1 73 1 0 1 1 0 1 0 0 0 0
84 72.0 55.0 90.0 10.0 265 283.2 301.5 319.8 338 1 17 0 1 0 1 0 0 0 0 0 1
85 70.0 58.0 90.0 20.0 458 474.2 490.5 506.8 523 1 69 1 0 0 0 0 0 0 1 0 1
86 68.0 60.0 90.0 30.0 555 569.2 583.5 597.8 612 1 5 0 0 0 0 0 0 0 0 0 0
87 66.0 55.0 90.0 10.0 173 189.2 205.5 221.8 238 1 52 0 0 0 0 0 0 0 0 1 0
88 65.0 55.0 90.0 20.0 85 99.8 114.5 129.2 144 1 89 0 0 1 0 1 0 0 0 0 0
89 65.0 60.0 90.0 30.0 645 660.8 676.5 692.2 708 1 43 0 1 1 0 0 0 0 0 0 0
90 63.0 58.0 90.0 10.0 737 753.2 769.5 785.8 802 1 1 1 0 0 0 0 0 1 0 0 0
91 60.0 55.0 90.0 10.0 20 36 52 68 84 1 41 0 0 0 0 0 0 0 0 0 0
92 60.0 60.0 90.0 10.0 836 849.2 862.5 875.8 889 1 23 1 0 0 0 0 0 1 0 1 0
93 67.0 85.0 90.0 20.0 368 386.2 404.5 422.8 441 1 80 0 0 0 0 0 0 1 1 1 0
94 65.0 85.0 90.0 40.0 475 485.8 496.5 507.2 518 1 68 0 0 0 0 0 0 0 0 0 0
95 65.0 82.0 90.0 10.0 285 297.8 310.5 323.2 336 1 14 0 0 1 1 0 0 0 0 0 0
96 62.0 80.0 90.0 30.0 196 206.8 217.5 228.2 239 1 16 0 0 1 1 0 0 0 0 0 0
97 60.0 80.0 90.0 10.0 95 110.2 125.5 140.8 156 1 23 0 0 0 0 0 0 0 1 0 0
98 60.0 85.0 90.0 30.0 561 576.2 591.5 606.8 622 1 57 0 0 0 1 0 1 1 0 0 0
99 58.0 75.0 90.0 20.0 30 43.5 57 70.5 84 1 22 0 0 0 0 0 0 1 0 0 0
100 55.0 80.0 90.0 10.0 743 762.2 781.5 800.8 820 1 5 0 1 1 0 0 0 1 0 0 0
101 55.0 85.0 90.0 20.0 647 666.8 686.5 706.2 726 1 71 0 0 1 0 0 0 1 0 0 0

73

	Introduction
	Contribution
	Overview

	Background and Related Work
	The Orienteering Problem
	Mathematical Formulation
	Applications and Solution Approaches

	Markov Decision Processes
	Collaborative Multi-Agent MDP
	Partially Observable MDP
	Mixed Observability

	Q-Learning
	SAS-Q-Learning

	Coordination Graphs
	Decentralized Max-Plus Algorithm
	SparseQ: Coordinated Multi-agent Reinforcement Learning
	Agent-based decomposition
	Edge-based decomposition

	Partially Observable Monte-Carlo Planning
	Partially Observable UCT
	POMCP

	Related Work

	Our Approach
	Our Extension
	Applying SparseQ
	Applying Max-Plus

	Applying POMCP
	Particle Initialization
	Particle Reinvigoration

	Applying Q-learning
	Further Improvements and Relaxations

	Experimental Evaluation
	Setup
	Results
	Applying Improvements
	Results with Improved Heuristics and New Settings

	Conclusions and Future Work
	Bibliography
	Appendices
	Instance TOP-66-5
	Instance TOP-102-8
	Instance TDOP-50-4
	Instance TDOP-100-8
	Instance MCTOPMTW-48-4
	Instance MCTOPMTW-100-8

