
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Hardware Acceleration of
Adiantum Cryptography

Algorithm on PYNQ

Author:
Konstantinos

AMPATZIDIS

Thesis Committee:
Prof. Apostolos DOLLAS

Assoc. Prof. Vasilios

SAMOLADAS

Assoc. Prof. Sotirios

IOANNIDIS

A thesis submitted in fulfillment of the requirements for
the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

April 22, 2021

https://www.tuc.gr/
https://www.linkedin.com/in/konstantinos-ampatzidis-78bb23148/
https://www.linkedin.com/in/konstantinos-ampatzidis-78bb23148/
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=361&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=361&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928&tx_tuclabspersonnel_list%5Bperson%5D=707&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928&tx_tuclabspersonnel_list%5Bperson%5D=707&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Hardware Acceleration of Adiantum Cryptography Algorithm on PYNQ

by Konstantinos AMPATZIDIS

As technology is closely interwoven with everyday reality, an exponentially
increasing volume of information is exposed to potential data breaches. In
that context, the field of cryptography offers the necessary confidentiality
and accuracy to sensitive data handling. Existing options such as AES can
often lead to significant performance expense, yet recent appearance of more
lightweight alternatives, like Adiantum, resolves the dilemma of choosing
between speed and security. The connection between hardware development
and cryptography is inevitable as hardware offers high parallelism which in
turn results in faster deployments with balanced power consumption. In this
thesis we present the first attempt at accelerating the entire Adiantum algo-
rithm for big plaintexts with FPGAs. This thesis comprises of three parts:
profiling of the Adiantum algorithm in order to determine the most compu-
tationally intensive parts; implementation of the ChaCha12 core which ac-
counts for some 86% - 96% of the total load; and, full implementation of the
ChaCha12 core and the Adiantum algorithm on a PYNQ Z1 FPGA board. De-
spite technology-related limitations the results are most encouraging. Specif-
ically, the ChaCha12 core is 10,731 times faster and 77,000 times more energy
efficient than the Intel i5-3230M processor. If it were to run on a present-
day system with an Intel i5-3230M processor having a tightly-coupled FPGA,
the Adiantum algorithm, including I/O overhead would run at speeds ap-
proaching the theoretical limits posed by Amdahl’s Law. However, because
the processor on the PYNQ Z1 is 15 times slower than the Intel i5-3230M pro-
cessor, the full-Adiantum-algorithm performance of the Intel i5-3230M CPU
is 4x times faster than our Pynq-z1 system, but at a 2x higher energy cost.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

Acknowledgements

First, I would like to express my deepest appreciation to my supervisor Prof.
Apostolos Dollas for his guidance both throughout my studies as a college
student and during the course of this thesis. All of the ideas and expertise
that he offered me, will continue to broaden my horizons. But most impor-
tantly, I would like to thank him for giving me the knowledge and the op-
portunity to be a part of the research community in the field of hardware.

Also, I would like to extend my deepest gratitude to my advisor Dr. Dim-
itrios Theodoropoulos for his guidance and continuous support in this project.
I would like to thank him for giving me the opportunity to expand my knowl-
edge at re-configurable computing and enlightening me in the field of cryp-
tography. He has been a great mentor for me during the last year both at a
professional and a personal level.

Furthermore, I would like to thank my thesis committee, Prof. Vasilios Samo-
ladas, and Prof. Sotirios Ioannidis, for evaluating my work.

I would also like to acknowledge the creators of Adiantum, Paul Crowley
and Eric Biggers for their immediate response to my initial queries and sub-
stantial help in understanding Adiantum.

Last but not least, I am grateful for my family for their love and moral sup-
port all of these years. I am also thankful of all my friends who stood by me at
all times during my academic years. Finally, special thanks to my girlfriend
who has been understanding during the recent years that involved a lot of
studying and most importantly who was by my side at all times, making it
possible to hold this thesis in the midst of a pandemic while continuing to
make me happy.

https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.linkedin.com/in/dimitristheodoropoulos/
https://www.linkedin.com/in/dimitristheodoropoulos/
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=361&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928%27A%3D0&tx_tuclabspersonnel_list%5Bperson%5D=361&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=928&tx_tuclabspersonnel_list%5Bperson%5D=707&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 2
1.2 Scientific Contributions . 5
1.3 Thesis Outline . 6

2 Related Work & Tools 7
2.1 Compact hardware implementations of Blake, Skein, ChaCha

& Threefish . 7
2.2 FPGA implementation of HS1-SIV 8
2.3 Hardware Design of ChaCha20 & Poly1305 9
2.4 Implementation of ChaCha20 in SoCs 10
2.5 The FPGA Perspective . 11
2.6 Tools Used . 12

2.6.1 Vivado IDE . 12
2.6.2 Vivado High Level Synthesis (HLS) 13

Synthesis Report . 14
Optimization Directives 14

2.6.3 PYNQ and Jupyter Notebook 16
2.7 FPGA Platform . 17

viii

2.7.1 PYNQ-Z1 Specifications 17
2.8 Thesis Approach . 18

3 Architecture Analysis 19
3.1 Block & Stream Ciphers . 19
3.2 Adiantum . 21
3.3 Profiling . 23
3.4 Software . 28

3.4.1 XChaCha12 . 28
ChaCha Algorithm: Initial State 28
HChaCha: Intermediate State 31

3.4.2 Little and Big Endian numbers 31
3.4.3 Software acceleration of XChaCha12 32

3.5 Hardware Approach . 35

4 FPGA Implementation 37
4.1 Top-Down Strategy . 37
4.2 Pynq Configuration & Software Changes 39
4.3 Vivado Hardware Design . 42

4.3.1 Multiple Clocks Configuration 46
4.4 IP Implementation with HLS 47

4.4.1 Core Function Analysis 49
Flowchart analysis . 55

5 Results 57
5.1 Specification of Compared Platforms 57

5.1.1 Intel i5 3230M . 57
5.1.2 PYNQ-Z1 Resource Utilization 58

5.2 Power Consumption . 58
5.3 Energy Consumption . 59
5.4 Throughput and Latency Speedup 59
5.5 ChaCha Performance . 60
5.6 Adiantum Performance . 65

6 Conclusions and Future Work 69
6.1 Conclusions . 69
6.2 Future Work . 70

References 73

ix

List of Figures

1.1 Symmetric and Asymmetric key ciphers 2
1.2 Arria 10 GX FPGA Development Kit Block Diagram 4

2.1 Pynq-z1 Top-Down . 17

3.1 Block Ciphers . 19
3.2 Stream Ciphers . 20
3.3 Adiantum . 22
3.4 Adiantum Key Generation . 22
3.5 Initial State Of ChaCha . 29
3.6 Double Round of ChaCha . 29
3.7 Quarter Round of ChaCha . 30
3.8 Example of Endianness . 32
3.9 (a)XChaCha Encrypt (b)XChaCha Encrypt(PL-PS) 35

4.1 Adiantum - PS & PL . 37
4.2 PS-PL Block Diagram . 43
4.3 Vivado Block Design . 44
4.4 IP Block Design . 47
4.5 Dataflow Example . 48
4.6 Core Function Flowchart . 49
4.7 Double Round Time-Chart: Without Unrolling & Array Parti-

tioning . 52
4.8 Double Round Time-Chart: With Unrolling & Array Partitioning 52
4.9 Pipeline Logic in ChaChaIP flowchart 53
4.10 Pipeline Time-Chart for ChaChaIP 54

5.1 PYNQ Throughput (MBytes/sec) 61
5.2 CPU-i5 Throughput (KBytes/sec) 61
5.3 CPU Encryption . 65
5.4 PYNQ Encryption . 66
5.5 Adiantum Encryption (PYNQ vs CPU) 67
5.6 PYNQ vs CPU Energy . 68

xi

List of Tables

2.1 ChaCha20 implementations: FPGA vs ASIC [21] 9
2.2 ChaCha20 throughput comparison 10
2.3 PYNQ-z1 Specifications . 17

3.1 Cryptographic Primitives Comparison. 20
3.2 Adiantum Profiling on Intel-i5 & Software only Execution

on Pynq z1 . 25
3.3 Encrypt Profiling on Intel-i5 3rd generation. 26
3.4 Encrypt Profiling for Software only Execution on Pynq z1 . . . 26

5.1 Intel i5 3230M Specifications . 57
5.2 Pynq z1 Resource Utilization 58
5.3 ChaCha acceleration: Pynq-z1 vs Intel-i5 62
5.4 ChaCha Architecture Comparison: PYNQ vs CPU 63
5.5 ChaCha Speedup over CPU . 63
5.6 ChaCha Energy & Power efficiency over CPU 64
5.7 ChaCha Comparison with Related Work 64

xiii

List of Algorithms

1 XChaCha Encryption . 32
2 XChaCha Encryption with Software Changes 34
3 XChaCha Encryption for using Hardware implementation . . 39
4 Gen_Output() for using Hardware implementation 40
5 Vivado HLS: Double Round . 51
6 Quarter Round Function . 55

xv

List of Abbreviations

API Application Programming Interface
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
AES Advanced Encryption Standard
BRAM Block Random Access Memory
CBC Cipher Block Chaining
CLB Configurable Logic Block
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate 4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
ECB Electronic Code Book
FF Flip Flops
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPU Graphic Processor Unit
GUI Graphical User Interface
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
IDE Integrated Development Environment
ILA Integrated Logic Analyzer
ISE Xilinx Integrated Software Environment
LUT Look Up Table
MPSoC Multi Processor System on Chip
MAC Message Authentication Code
PL Programmable Logic
PLD Programmable Logic Device
PS Processing System

xvi

RTL Register Transfer Level
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
TDP Thermal Design Power
URAM Ultra Random Access Memory
USB Universal Serial Bus

xvii

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

Nowadays, technology essentially intertwines with daily reality, thus affect-
ing not only the greatest fields of academic research but nearly all aspects
of ordinary life in general. Since the invention of the first computers, there
has been an exponential growth both in their use for research as well as in
everyday life. The more people use electronic devices the more personal in-
formation is expressed in computer language and, as a result, the need for
security arises.

There are many types of computer systems in terms of performance and ca-
pabilities and obviously cannot be compared with each other. For example,
the computing power of a modern Central Processing Unit(CPU) is clearly
more powerful than the CPU of a mobile phone or a smartwatch. In addition,
as science evolves, simple electronic files like documents or photographs and
many others, consume increasingly more storage space. To be more spe-
cific based on the National Security Agency, at 2013 internet processed 1.8
Petabytes per day [1]. In 2018 based on Forbes, 2.5 quintillion bytes of data
were created every day [28] while it is estimated that until 2025 the total
amount of data created worldwide will rise to 163 ZettaBytes [29]. The larger
the file size is, the longer it takes to encrypt or decrypt the data.

Nevertheless, as the great Roman Stoic philosopher, known as Seneca said:
“It’s not that we have little time, but more that we waste a good deal of it".
That is, no-one should have to be stuck in front of a computer system just
waiting for encryption/decryption process to finish. Concerning cryptog-
raphy approaches, there are numerous encryption methods, some of which
target disk encryption. However, disk encryption cannot replace file encryp-
tion as it does not protect data within an operating system from malware or
physical access. The optimal outcome in terms of security is achieved with a
combination of the two encryption methods.

2 Chapter 1. Introduction

1.1 Motivation

Cryptography as a concept originates from the Greek words "krypto" and
"grafo", which means "hidden" and "to write" respectively. Cryptography can
be thought of as “the art of writing secrets" [22]. It is impressive and im-
portant to reflect on the fact that 4000 years ago this was done by hand [20].
Today, cryptography is considered a branch of number theory and computer
science and the use of electronic devices is required as the complexity and
the size of mathematical operations make it impossible in terms of time for
humans.

In practice, cryptography is the process of converting data ("plaintext") into
an unreadable form for a human eye through mathematics ("ciphertext"), us-
ing a secret key. The above operation is called encryption while the reverse
where we convert the ciphertext back to the plaintext is called decryption
([32], [22]). Cryptography ciphers are mainly divided into symmetric-key
("secret-key ciphers") and asymmetric-key("public-key ciphers"). In the first one,
the same private key is needed both for encryption and decryption while in
the second one a public key is used for the encryption part and a private key
for decryption (figure 1.1).

FIGURE 1.1: Symmetric and Asymmetric key ciphers

1.1. Motivation 3

Apart from the theory of cryptography, the real challenge in practice is the
construction, implementation and time execution of such algorithms. It is
important to note that encryption algorithms usually run in the background
of a computer system so that the user does not waste time with that part of
their computer, let alone notice it. In addition, as already mentioned, there
are many different types of processing systems, so a brief overview of some
of them is essential.

Central Processing Units(CPUs) are the least efficient solution for running
complex algorithms. The execution times are affected due to low parallelism
and in combination with the high power consumption, make CPUs a poor
decision as a hardware choice. On the other hand, Application Specific Inte-
grated Circuits(ASICs) are the exact opposite of the CPUs. ASICs are a good
hardware choice as they offer high parallelism and the lowest power con-
sumption. However they can only serve the application for which they were
designed while they do not offer future flexibility and are really expensive.

Graphical Processor Units(GPUs) have upgraded the Single Instruction Mul-
tiple Data(SIMD) architecture of CPUs to a whole new level dedicated to of-
fering parallelism of tasks. The much simpler control logic in addition to
small per core memory has led to simpler computing cores allowing GPUs to
contain a greater amount of cores per chip than a CPU. GPU architectures can
perform very well on workloads that have no data dependencies or branch-
ing conditions. Additionally, even though a GPU has to communicate with
a CPU, their memory is specialized to support high-speed data streaming.
Until recently, the high power consumption of GPUs rendered them unsuit-
able as hardware accelerators [13], yet the situation seems to be changing
drastically.

Finally Field-Programmable Gate Arrays(FPGAs) blend the performance of
an ASIC system with the flexibility of a microprocessor. FPGAs can offer high
parallelism with balanced power consumption. One of the most significant
advantages of the FPGAs is that they can be further optimised or redesigned
every time, incorporating the needs of each application. Even so, in order
for the designer to grasp and utilize the capabilities of an FPGA, he must
be able to tackle both hardware and software issues. The designer needs to
handle the available gates/hardware resources for performing the requested
application computations but at the same time watch the software part that
supports the whole process [17].

4 Chapter 1. Introduction

While, assumedly, the ongoing battle between FPGAs and GPUs comes to an
end with the latter standing out as a better choice, the continuous research
by Intel and AMD for a hybrid model of a CPU-FPGA device presents new
opportunities for FPGAs. Intel has also designed a Development Kit(Arria
10 GX FPGA - figure 1.2) that can highlight the benefits of this hybrid design.
By merging the logic of an FPGA with a CPU, they achieved lower latency
and higher bandwidth between the communication of the two of them, while
they can also share resources such as cache and system memory. Moreover,
the hybrid model has also opened up discussions in the research community
for new technologies and especially for a future CPU-GPU-FPGA hybrid de-
sign.

FIGURE 1.2: Arria 10 GX FPGA Development Kit Block Dia-
gram URL

The amazing field of cryptography combined with the hardware perspective
is really intriguing. This thesis analyzes and discusses the benefits of FP-
GAs for the hardware acceleration of Adiantum[14] cryptography algorithm.
Adiantum is a relatively new cryptography algorithm(published on Decem-
ber of 2018) that belongs to symmetric ciphers with the addition of a second
key that is called tweak [26]. Adiantum is intended by Google for low-end
devices and specifically for disk encryption. Nonetheless, Adiantum’s ability
to handle very big messages makes it an interesting choice for optimization
and acceleration for similar tasks, thus broadening the spectrum of use pos-
sibilities.

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

1.2. Scientific Contributions 5

1.2 Scientific Contributions

The goal of this thesis was to study and explore how the Adiantum algorithm
performs with plaintexts bigger than 4096 bytes and how an FPGA can im-
prove the performance and time execution. Adiantum was chosen because it
is a relatively new cryptography algorithm that consists of existing cryptog-
raphy models/methods/primitives which, in combination with the security
they offer, make it very interesting for research. In addition, Adiantum can
easily be improved in the future with more diffusion and security.
Towards achieving Adiantum acceleration we followed the procedure bel-
low:

1. Profiling of Adiantum algorithm in order to reveal the most computa-
tionally intensive parts.

2. Implementation of the time consumable parts with hardware (In our
case ChaCha12).

3. Full execution of the whole Adiantum algorithm after incorporating
our implementation on a PYNQ Z1 FPGA.

The most outstanding outcome is that if our design were to run at a strong
CPU like Intel-i5 3230M with a tightly-coupled FPGA, including I/O over-
head, would meet the theoretical limits posed by Amdahl’s Law.
In comparison to Intel-i5 3230M CPU our ChaCha12 design is:

• 10,731x faster

• 77,000x more energy efficient

However, given that software improvements led to a better standalone ver-
sion of Adiantum and since PYNQ processor is 15 times slower than Intel-i5
3230M, consequently Intel-i5 3230M processor is:

• 4x time faster

• 2x higher energy cost

Finally, our design offers flexibility for further improvements as the outcome
of this thesis introduces novel concepts and areas for future research.

6 Chapter 1. Introduction

1.3 Thesis Outline

• Chapter 2 - Related Work & Tools: Description of all related work for
Adiantum and its points of interest as well as an explanation of all the
tools that were utilized.

• Chapter 3 - Architecture Analysis: Detailed presentation of the theo-
retical background for Adiantum, software improvements and a theo-
retical analysis of the hardware implementation.

• Chapter 4 - FPGA Implementation: Detailed analysis of our design
and the hardware implementation.

• Chapter 5 - Results: Here all the results from the different platforms
and designs are compared and discussed thoroughly. Specifically met-
rics like throughput, latency, power and energy efficiency are visualised
with MATLAB tools [30].

• Chapter 6 - Conclusions and Related Work: The last chapter concludes
all outcomes of this thesis and some ideas for further work and opti-
mizations.

7

Chapter 2

Related Work & Tools

Notably, so far there is no relevant research on the Adiantum encryption al-
gorithm either from the software or the hardware (implementation/ acceler-
ation) point of view. Therefore, everything presented in this thesis is a new
approach aimed at accelerating the algorithm through hardware. However,
Adiantum has been constructed by already existing cryptography primitives.
Furthermore, as this thesis result came with the cooperation of software &
hardware and specifically with the hardware implementation of ChaCha12
part that Adiantum uses, it is important that some relevant research, based
on the ChaCha algorithm be analyzed ([4] , [40], [21] , [38]).

2.1 Compact hardware implementations of Blake,

Skein, ChaCha & Threefish

In the work of Nuray At. et al. [4] compact implementations of the crypto-
graphic hash functions of Blake [5] and Skein [27] are presented. Blake and
Skein are based on ChaCha stream cipher and Threefish block cipher respec-
tively and as a result, the paper authors also implemented the latter two.
The main idea of these compact implementations is to take advantage of the
parallelism that these algorithms already offer. Additionally, by designing
pipeline Arithmetic Logic Units(ALUs) with VHDL to avoid data dependen-
cies, the authors achieved lightweight co-processors that specialized in these
algorithms. Finally, the result was tested with place & route logic on Virtex-6
FPGAs.

First of all, a separate ALU design for BLAKE and ChaCha was proposed and
after that a compact implementation of the two of them. The main idea is a
register-file implemented as a dual port memory, an ALU and a control Unit.

8 Chapter 2. Related Work & Tools

The user interacts by choosing the ideal algorithm and also gives the mes-
sage, plaintext or ciphertext blocks at one port of the register file. While the
co-processors are hashing/encrypting the message, the intermediate results
are written to the other port of the register file. Secondly, in order to de-
fine words of at most 18 bits for instruction memory, a simple compression
algorithm that also generates the VHDL description for the decompression
circuit has been designed with C-language. Finally, with the control unit as
a counter and an Finite State Machine(FSM) that terminates the procedure
when the hash completes, they achieved 46 MB/s for ChaCha12 encryption.

2.2 FPGA implementation of HS1-SIV

Hash Stream 1 - Synthetic Initialization Vector(thus HS1-SIV) [24] uses HS1 as
a Pseudo-Random Function(PRF) to provide deterministic authenticated en-
cryption with SIV mode [36]. The algorithm consists of six sub-routines HS1-
SIV Encrypt, HS1-SIV Decrpyt, HS1-Hash, HS1-Subkeygen and ChaCha. In
general HS1-SIV takes some parameters as input which in turn are used to
initialize collision level, number of bytes for hash part, rounds of Stream ci-
pher and the byte-length of synthetic IV. However for the hardware imple-
mentation, Gerben Geltink and Sergei Volokitin chose these parameters as
static and thus they named it HS1-SIV-med [40].

Specifically in the ChaCha stream cipher paper [40] , authors chose 12 rounds
same as in Adiantum. Implemented with VHDL language and tested on
Virtex-7 the ChaCha part is composed by nine blocks (Set_State, Inner_Block
(1..6), Add_States and Serialize). The Set_state is the first block that receives
the input (nonce [96-bits], block-count [32-bits] and key [256-bits]) and it is
responsible for the initialization of the ChaCha block. After initialization,
the six inner_blocks run for the 12 rounds of ChaCha cipher. Finally the
add_state adds the current vector (after the inner blocks) with the first ver-
sion of it (after the Set_state) and through Serialize block the resulted stream
goes out of the ChaCha block with each 32-bit word in little-endian order.

Although, this implementation is similar to the one presented in our thesis,
the ChaCha block is not an autonomous block as it is contained in the logic/
implementation of HS1-SIV-med design. Additionally, the block-counter of
ChaCha block is 32-bits while for Adiantum is 64-bits.

2.3. Hardware Design of ChaCha20 & Poly1305 9

2.3 Hardware Design of ChaCha20 & Poly1305

The combination of ChaCha20 stream cipher and Poly1305-Message Authen-
tication Code(MAC) is very common [31], especially for low-end devices.
Moreover, Adiantum uses the variation XChaCha12 instead of ChaCha20
with Poly1305. In the paper "High-Throughput Low-Area Hardware Design
of Authenticated Encryption with Associated Data Cryptosystem that Uses
Cha Cha20 and Poly1305" [21], G.Kanda and K.Ryoo designed efficient hard-
ware for these two algorithms with Hardware Descriptive Language (HDL)-
Verilog and tested it both on a Virtex-7 FPGA and an ASIC system.

Concerning the ChaCha part, the design consists of the blocks Little Endian
Serializer, Init_State_Matrix, ChaCha20 State Generator and a Controller. Key
(256-bits) and nonce (96-bits) go into Little Endian Serializer which converts
them in little-endian order. The result and the block counter enter the Init_
State_Matrix which is responsible for generating the 4x4 Initial Matrix of
ChaCha algorithm. After the initialization part, ChaCha20 State Generator
block operates the Rounds-logic procedure of Cha-Cha algorithm and the
result is added to the initial matrix. Finally, an xor operation with the plain-
text/message completes the encryption.

Furthermore, ChaCha20 State Generator can run four Quarter-Rounds either
in parallel or serialized. Additionally, the Controller block includes an FSM
implementation for the termination of the procedure once the whole message
has been encrypted. The results from both the FPGA and the ASIC can be
seen at the follow (table 2.1):

TABLE 2.1: ChaCha20 implementations: FPGA vs ASIC [21]

Hardware Technology Design Frequency(MHz) Throughput(MB/s)

FPGA Serialized QR 182.40 135
FPGA Parallel 4xQR 161.02 479
ASIC Serialized QR 420 312
ASIC Parallel 4xQR 312 929

10 Chapter 2. Related Work & Tools

2.4 Implementation of ChaCha20 in SoCs

A relevant thesis based on ChaCha20 stream cipher and its hardware imple-
mentation has recently (year 2020) been publish by Igor Semenov [38] of The
University of Alabama in Huntsville. Aiming for hardware acceleration of
ChaCha20 with low resources Igor Semenov has chosen to implement only
its Round logic in hardware, leaving the summation and xor part of ChaCha
to processing system(PS). Additionally, after a theoretical analysis for achiev-
ing low hardware resources he made clear that a pipeline system would not
lead to the desired result. Utilizing only that the Round part of ChaCha can
be pipeline due to its own logic, he designed an efficient hardware accelera-
tion.

The design has been implemented with System Verilog and tested at Tera-
sic DE10-Nano Kit which belongs to the family of Intel Cyclone-V [18] field
programmable gate arrays(FPGAs). The accelerator (or FpgaCha-Ip core as
named by the designer) consists of three blocks (ChaCha20 accelerator, FIFO,
and S2M adapter). Except for the FIFO block which belongs to the Intel Plat-
form Designer, the other two modules are custom. The transactions between
PS and PL take place through AXI to Avalon adapter blocks. ChaCha20
accelerator is the first block that receives the input (nonce [96-bits], block-
count [32-bits], and key [256-bits]) as 32-bit words and runs the 20 rounds
of ChaCha cipher. With an additional input (named as pad_counter) the
hardware design is aware of how many ChaCha blocks/results the software
needs which also translates into how many times the ChaCha20 accelera-
tor will run. The ChaCha results are then transferred to the FIFO block and
through that to the S2M adapter. The S2M adapter takes 512-bit each time
through Avalon ST-sink interface from FIFO and then splits them into two
words of 256-bit each one. Finally the two words are both transferred in
burst mode at the same cycle to the processing system. They used different
approaches with 1, 2 and even 4 FpgaCha cores for encrypting one message
(table 2.2).

TABLE 2.2: ChaCha20 throughput comparison

Hardware Technology Design Frequency(MHz) Throughput(MB/s)

FPGA 1 FpgaCha core 50 90
FPGA 2 FpgaCha core 50 126
FPGA 4 FpgaCha core 50 123

2.5. The FPGA Perspective 11

2.5 The FPGA Perspective

FPGAs are programmable devices/integrated circuits and a part of the Pro-
grammable Logic Devices (PLDs) family. Unlike all hardware options, the
main advantage of FPGAs is that they are not fixed to a specific hardware but
they can be reconfigured and thus in general are referred to as re-configurable
computing. This asset offers much flexibility as the designer can construct
different hardware implementations depending on each application require-
ment.

The thousands of building blocks known as Configurable Logic Blocks (CLBs)
connected trough programmable interconnections enable the designer to re-
configure new digital circuits every time. Additionally, Digital Signal Pro-
cessing blocks (DSPs) which are a part of FPGA fabric can optimize hard-
ware, especially for mathematical operations like multiply-accumulate and
division. The latter makes the representation of floating-point, fixed-point,
and even integer values feasible.

Furthermore, FPGAs can have hard processor cores in the same chip offering
much faster processing speeds since they are not limited by fabric. By com-
bining hard processors lots of data can be processed which is fundamental
for communications, scheduling and data pre-post processing. Additionally,
as FPGAs also offer high energy efficiency and low latency they have been
established in the field of hardware.

Concerning the cryptography field, many algorithms and especially block ci-
phers are based on bit-wise logic operations and their implementation fits
remarkably well with the FPGA perspective. Also, as the most fundamental
operation in cryptography is substitution which needs a lot of memory re-
sources, the pipeline design logic in addition to BRAM and URAM that an
FPGA can offer leads to significant results. Some cryptographic algorithms
as already seen (ChaCha algorithm) have been used for various applications
and also for different cryptographic constructs. As a result, the dynamic con-
figuration and flexibility of FPGAs make them an optimal choice.

12 Chapter 2. Related Work & Tools

2.6 Tools Used

The main tool used for the implementation and optimization of Adiantum
Cryptography Algorithm in FPGA platform was Xilinx Vivado Design Suite
and specifically HL-System Edition 2019.2 [41]. The use of Vivado Design
Suite facilitates acceleration of the design implementation via place-and-route
tools which analytically optimize for several and synchronous design met-
rics, for instance timing, total wire length , utilization and certainly power.

Developed by Xilinx Company, Vivado Design Suite is a software through
which analysis and synthesis of Hardware Description Language(HDL) like
VHDL or Verilog can take place. Interaction between the user and the soft-
ware is feasible with a Graphical User Interface(GUI) and Tcl commands too.
Xilinx ISE overtakes previous tools with many additional features for System
on Chip(SoC) designs and High-Level Synthesis(HLS).

Furthermore a new open source development by Xilinx named PYNQ [34]
was released providing easier interaction between the user and the FPGA
board as it is using Python libraries and Jupyter Notebook [19]. For carrying
out the practical part of this thesis Xilinx Vivado IDE, Xilinx Vivado HLS and
Python productivity for Zynq(PYNQ) tools have been used.

2.6.1 Vivado IDE

Vivado Integrated Design Environment(IDE) serves as basis for all Xilinx
tools as it is a front-end GUI of Vivado Design Suite. Combining tcl com-
mands and a graphical interface Vivado IDE can compile, synthesize, im-
plement, place & route hardware designs. Apart from HDL-languages (i.e.
VHDL and Verilog) other languages that can be compiled too such as C/C++
and SystemC.

Vivado IDE also offers an IP Integrator tool. By utilizing IP Integrator the
user has the ability to connect IP blocks with ease solely by making use of
the GUI without having to write more code for every connection. Addi-
tionally, some basic connections between IPs can even be automated, mak-
ing tasks like hardware acceleration more manageable for any hardware de-
signer. These IPs can be constructed both from Vivado IDE with VHDL but
also Vivado HLS in which high level languages such as C/C++ can automati-
cally converted in VHDL or Verilog and exported as an IP block. Besides user
IPs, Xilinx also offers many IPs with or without charge and therefore users

2.6. Tools Used 13

do not necessarily have to build everything from zero. Moreover, custom IP
designs can be made available for public use.

Furthermore, the designer is able to export the whole block design into a
bitstream file downloadable for an FPGA device. When the bitstream file
is loaded at the target FPGA, PL and PS are reinitialized utilizing hardware
resources such as Digital Signal Processor(DSP) slices, B-Ram, Logic Cells
etc. The result can be executed either in PL/PS or in a combination of the
two of them.

Taking the user’s needs into consideration, Vivado IDE provides different
testing and debugging approaches. There is an integrated simulator for test-
ing, though any RTL simulator can also been used. Finally, apart from built-
in debuggers, it is possible to utilize specific IPs such as Integrated Logic
Analyzer(ILA) [39] dedicated for deep debugging. ILA is also used in the
course of this thesis making monitoring of internal signals feasible. Within
Vivado GUI, user specifies which signals trigger ILA IP in order to keep track
of their values during software execution.

2.6.2 Vivado High Level Synthesis (HLS)

HLS is a tool that can be combined with Vivado IDE for generating IPs from
high level languages like C/C++ and SystemC. Any program written in C
based languages like HandelC, MATLAB can be transformed into a register
transfer level(RTL) for synthesis and implementation onto PL of any Xilinx
Field Programmable Gate Array(FPGA) or Zynq device.

In simple terms HLS provides the functionality of a processor compiler. The
main difference between the two of them is the execution target. By setting
the FPGA as a target, Vivado HLS gives the opportunity for optimization that
can result in throughput, power and latency without limited computational
resources. These can be achieved by utilizing a set of directives and timing
constraints provided by HLS. However only educated use of each directive
can achieve software/hardware optimization.

Lastly, before synthesis user can perform testing by compiling or debugging
their code with a C/C++ test-bench. Testing files usually model a typical
scenario providing test inputs in order to confirm whether the output is as
expected or not. Furthermore, Vivado HLS offers a C/RTL co-simulation that
applies to the same test-bench file.

14 Chapter 2. Related Work & Tools

Synthesis Report

Every time a code is synthesized, Vivado HLS generates a synthesis report
containing performance metrics and an estimation of the hardware resources.
Based on this report hardware designer can identify operations that cause
bottlenecks and as a result achieve further optimization. More specifically
the report summarises the following:

• Latency: this is fundamental for performance both for processors and
FPGAs. Latency shows how many cycles an instruction or a set of in-
structions need to generate a result. Thus when HLS creates the synthe-
sis report, latency represents the number of cycles for the main function
and therefore the whole design.

• Iteration Interval (II): The number of cycles needed before the design
can accept a new value.

• Loop Latency: The number of clock cycles needed to finish all iterations
of the loop

• Loop Iteration Latency: The number of clock cycles needed for one
iteration of the loop

• Loop Initiation Interval: The number of clock cycles needed before the
next iteration of the loop can process data

• Interface: All the signals of the design and their protocols. Usually, as
also in our case, the Advanced eXtensible Interface(AXI) protocol [6].

• Area/Utilization Estimates: They show an estimation about hardware
resources that will be utilized from the target FPGA for implement-
ing the design. They specifically demonstrate the amount of Block
RAMs(BRAMs), Ultra Rams(URAMs), Digital Signal Processing Units(DSP48s),
Flip Flops(FFs) and Lookup Tables(LUTs).

Optimization Directives

As already stated, HLS offers optional directives with whom the designer
can apply high level control over the implementation of the designed code.
Designer can either keep directives integrated to their design as pragmas or
as a separate file within the Vivado HLS project. In our case directives have
been added as pragmas to the design as it is an easier way of improving

2.6. Tools Used 15

specific parts of the code. Some types of directives both for block-level and
port-level interfaces are:

• Array Map: Several arrays are being combined into one large array
thus achieving less FIFO or RAM resources.

• Array partition: Separate array interfaces into several smaller sections.
The use of this directive, leads to an expanded set of ports, control sig-
nals and implementation resources.

• Array Reshape: An array is partitioned into smaller arrays. An inter-
esting note here is that these small arrays can be recombined to form an
array with less and wider data elements.

• Interface: Using this directive the user can specify a port level interface
protocol. It is customary to use with the main function of HLS project
as it is mapping which protocol each input and output argument will
have in the resulted RTL and consequently our IP block.

• Resource: With this HLS specifies the resource for the implemented
interface. If left unspecified by the user it is auto-specified by Vivado
HLS.

• Stream: In general top level arguments are being implemented as RAM.
However by specify them as streaming port they are constructed as FI-
FOs and moreover user can determine the depth for each FIFO.

• Dataflow: Enables parallel execution of functions and loops and as a
result it increases throughput.

• Unroll: This directive also needs a factor number which determines
the amount of multiple instances of a loop. These instances can run in
parallel.

• Pipeline: Pipeline directive is of utmost importance as it reduces the
initiation interval of a whole function or a loop. Given a number x as
interval, each x clock cycles a loop or a function can process new inputs.

• Allocation: Limits the number of hardware resources.

• Loop_Tripcount: This Directive is only mentioned because it helps in
our case otherwise is not so important. It does not affect the resulting
RTL file but when loop index as an argument is undefined, HLS has to

16 Chapter 2. Related Work & Tools

know the minimum and maximum possible rounds of the loop. Oth-
erwise synthesis report will not include anything with reference to the
latency of design.

2.6.3 PYNQ and Jupyter Notebook

PYNQ is an open source project by Xilinx aimed to work on any computing
platform and operating system and to subsequently make it easier for de-
signers to use programmable logic and microprocessors. The main difference
from all the tools that Xilinx has offered thus far is that the main high level
language for using PL and download the bit-stream file to FPGA is Python
[34].

By using pynq tools, programmers and engineers are able to use ZYNQ de-
vices, without being bound to use ASIC style design tools. For pynq, pro-
grammable logic circuits are called overlays and they can be referred to as
hardware libraries. These hardware libraries can be imagined like software
libraries as they can be accessed through an application programming in-
terface(API). Although overlays can be re-used and easily applied by any
programmer, a new overlay design requires engineers with knowledge and
skills in designing PL circuits.

Xilinx has merged PYNQ tools with the open source Jupyter Notebook as an
Interactive Python(IPython) kernel [19]. By utilizing that kernel and a web
browser the user is able to directly program the ARM cores of the zynq device
but also to use/implement overlays based on the needs of each software.

Jupyter Notebook incorporates:

• Notebook Web Application: Interactive web application that enables
a user to write and run a code.

• Kernels: Kernels are separate processes. These processes can run the
user’s code in the given language and are started by the notebook web
application. Results are demonstrated through the notebook web ap-
plication.

• Notebook Documents: Self-contained documents that accommodate
all context in the web application including inputs & outputs of compu-
tations, images and media representations. Each notebook document
has its own kernel.

2.7. FPGA Platform 17

2.7 FPGA Platform

Our architecture was tested and implemented with the PYNQ-Z1 board.

2.7.1 PYNQ-Z1 Specifications

Pynq-z1 is a general purpose, programmable platform for embedded sys-
tems [35]. It offers flexibility either at hardware or software applications.
From PS perspective, it incorporates ZYNQ XC7Z020-1CLG400C with DDR3
memory controllers and from PL perspective the Artix-7 family. The table
bellow is a representation of the main PL features:

TABLE 2.3: PYNQ-z1 Specifications

Logic Cells B-RAM(KB) DSP SLices Flip-Flop(FF) LUTs

13,300 630 220 106,400 53,200

FIGURE 2.1: Pynq-z1 Top-Down

https://www.xilinx.com/content/dam/xilinx/imgs/prime/PYNQ%20-%20Top%20Down%20-%20600.png

18 Chapter 2. Related Work & Tools

2.8 Thesis Approach

This thesis aims to analyze how the Adiantum algorithm works with very
large plaintext sizes and how an FPGA can lead to hardware acceleration of
these plaintexts.
The accomplished acceleration is the result of the following three processes:

1. Profiling of the Adiantum algorithm for determining its most time con-
sumable parts.

• Section 3.3: Profiling

2. Implementation of ChaCha12 core by utilizing FPGA benefits.

• Section 4.3: Vivado Hardware Design

• Section 4.4: IP Implementation with HLS

3. Full execution of ChaCha12 implementation & Adiantum algorithm on
Pynq-z1 FPGA board.

• Section 3.5: Hardware Approach

• Section 4.1: Top-Down Strategy

• Section 4.2: Pynq Configuration & Software Changes

19

Chapter 3

Architecture Analysis

3.1 Block & Stream Ciphers

Symmetric cryptography can be divided into Block ciphers and Stream ci-
phers. Adiantum(3.2) utilises both ciphers therefore a brief summary shall
prove useful.

Block Ciphers are used for the encryption and decryption of an entire block
of plaintext bits and not individual bits. Each time a whole block of bits is
encrypted with the same key so each bit inside a block depends only on the
bits inside the same block [23].
Advanced Encryption Standard(AES) which is used by Adiantum has a fixed
block cipher of 16-bytes and the key can be either 16, 24 or 32 bytes [16].

FIGURE 3.1: Block Ciphers

Stream Ciphers encrypt bits individually and the main idea is adding a
key stream to a plaintext bit. Stream Ciphers can also be divided into syn-
chronous and asynchronous. The main difference between the two of them
is that in asynchronous stream ciphers the key stream depends also on the
ciphertext while in synchronous it does not.

20 Chapter 3. Architecture Analysis

FIGURE 3.2: Stream Ciphers

Except for the two primitives of symmetric cryptography, Adiantum also
uses Hash functions and Message Authentication Code(MAC) which are very
popular in cryptography.

Hash functions can be perceived as the fingerprint of a message and are
widely used to map an arbitrary size of message into a bit string of fixed
length. The result is called hash value and is being used to index a hash
table. Hash functions do not have a key.

Message Authentication Code(MAC) is also known as a cryptographic check-
sum, tag or a keyed hash function. In simple terms MACs can be correlated
with digital signatures as they are used to authenticate a message, mean-
ing to confirm that a message came without undergoing any change trough
transmission. In order to be verified the same key is also needed in authenti-
cation.
Unlike digital signatures MACs are symmetric key schemes and much faster
as they depend either on hash functions or block ciphers.

TABLE 3.1: Cryptographic Primitives Comparison.

Cryptographic Primitive Hash MAC Digital Signature

Integrity Yes Yes Yes
Authentication No Yes Yes
Non-repudiation No No Yes
Keys None Symmetric Asymmetric

3.2. Adiantum 21

3.2 Adiantum

Adiantum or HBSH consists of the following parts

• Hash Function: Hash consists of Poly1305 [11] followed by NH [25]

• Block Cipher: Single AES-256 invocation

• Stream Cipher: XChaCha12

• Hash Function: Hach consists of Poly1305 followed by NH

Adiantum [14] is a variable-input-length [7], tweakable block cipher [26]
which can handle any message within the allowed range (128 to 273 bits).
The procedure needs the Message-Plaintext, Cryptographic Key and the Tweak
Key.
Each stage of Adiantum demands a different size of key and for that purpose
an extra instance of XChaCha12 is being used at the beginning to create all
the keys [31]. More precisely with XChaCha a long random stream of 1136-
bytes is created and as a result Adiantum has the following keys :

• 32-byte AES

• 16-byte Poly1305 for tweak

• 16-byte Poly1305 for message

• 1072-byte NH

Stream Cipher uses the same key both for the generation of the other keys
and for the middle stage of Adiantum execution. As for the tweak key, in
order to keep it simple it is similar to an initialization vector for a CBC mode
(Cipher Block Chaining) or a nonce for OCB mode (Offset Codebook) [37].

22 Chapter 3. Architecture Analysis

FIGURE 3.3: Adiantum

As seen in figure 3.3 the message (or plaintext) is split between Left and
Right. Assuming a plaintext of x bytes, left part will be (x− 16) as the last 16
bytes of message go to the right part. Also at the right part there are group
operations of addition, subtraction whereas at the left a simple XOR opera-
tion with the plaintext.

FIGURE 3.4: Adiantum Key Generation

3.3. Profiling 23

Key generation needs a padded nonce of 24-bytes that consists of a bit with
value one followed by zeros and a plaintext filled only with zeros just for the
stream cipher.

3.3 Profiling

From a practical view Adiantum was designated by Google for disc encryp-
tion , meaning it was tested for up to 4096-bytes message for encryption and
decryption. However, as already stated, from a theoretical view Adiantum
can be used with a plaintext up to 273 bits with the same key.

For these reasons profiling came up as a first step towards achieving acceler-
ation. However, profiling has various meanings, and is sometimes misinter-
preted as benchmarking. Therefore, in terms of profiling we want to measure
the performance of the algorithm so as to narrow down where optimization
would be more useful. In order to proceed with running the Adiantum al-
gorithm, deep understanding of the python code was essential. The python
code published by Google was not limited to the Adiantum logic described
in the previous section but also runs many variations of it that were tested,
resulting to the final version. Additionally, the published code runs different
trials for Stream Ciphers(like Salsa, ChaCha, XChaCha) and Block Ciphers
like AES. As a result, we had to minimize the path for running only the final
version of Adiantum and also add numbers for bigger plaintexts than 4096
bytes.

For measuring Adiantum’s performance on Intel-i5, a Windows operating
system was used with an Integrated Development Environment(IDE) known
as PyCharm [33]. PyCharm is an IDE specific for running python projects
and the premium version which is free for academic students offers different
profiling methods. In our case, the cProfiler method was used as it is the
most common method for profiling Python code. cProfile is a built-in python
module and using it within PyCharm results in a pstat file that gives us the
following stats for every function inside the code:

• Call Count: Number of calls of the chosen function

• Time: Execution time of the chosen function plus all time taken by func-
tions called by this function.

• Own Time: Own execution time of the chosen function.

24 Chapter 3. Architecture Analysis

Subsequently, we had to run and profile the Adiantum algorithm in the PS
system of our FPGA. The first step was to establish the connection between
Pynq and the PC. Through a Universal Serial Bus(USB) connection and a web
based architecture of Pynq we were able to set up the communication. In or-
der to handle and run our code, Pynq incorporates the open-source Jupyter
notebook infrastructure to run an Interactive Python (IPython) kernel and
a web server directly on the ARM processor of the Zynq device. The web
server gives access to the kernel via a suite of browser-based tools that pro-
vide a dashboard, bash terminal, code editors, and Jupyter notebooks.

By utilizing the IPython kernel we transferred all of our files from our PC
to the external memory(Secure Digital card) of Pynq board and were finally
able to also run the code. Before measuring the performance of the ARM
core we checked that the encryption and decryption were running without
problems and that produce the same results as Intel-i5. It should be noted
at this point, that for testing purposes, Google has provided a python code
wherein a pseudo-random plaintext is created every time the algorithm is
running based on the size of the plaintext. For a specific size of plaintext, the
same plaintext is created every time and so it was possible for us to ascer-
tain that encryption and decryption give the same results both at Intel-i5 and
the ARM cores. The profiling again took place using the python’s cProfiler
module through the web-interactive terminal of Jupyter notebook.

The general use of cProfiler shows the following information through the
terminal at the end of the algorithm execution:

• function: the function name

• ncalls: the number of calls for the specific function

• cumtime: Execution time of the chosen function plus all time taken by
functions called by this function.

• tottime: Own execution time of the chosen function excluding calls to
subfunctions.

• percall: how long each call took (However, gives an average value)

3.3. Profiling 25

TABLE 3.2: Adiantum Profiling on Intel-i5 & Software only
Execution on Pynq z1

Intel-i5 Pynq-z1
Plaintext(Bytes) Encrypt(sec) Decrypt(sec) Encrypt(sec) Decrypt(sec)

4,096 0.124 0.123 2.014 1.910
8,192 0.212 0.210 3.589 3.538
16,384 0.411 0.416 6.746 6.701
32,768 0.807 0.812 13.054 12.990
65,536 1.590 1.580 26.107 26.027
131,072 3.120 3.089 51.132 51.069
262,144 6.157 6.067 103.052 103.306
524,144 13.034 13.040 210.515 210.611
1,048,576 26.970 25.921 439.894 437.460
2,097,152 62.970 62.583 979.237 977.724
4,194,304 158.740 158.333 2,276.121 2,275.240
8,388,608 384.130 383.840 5,811.407 5,812.610
16,777,216 1,138.147 1,137.861 16,805.768 16,798.543
33,554,432 4,076.847 4,050.760 54,257.313 54,198.785

Finally, table 3.2 shows the specific values of Adiantum encryption and de-
cryption time both for Intel-i5 and Pynq-z1 board for different sizes of plain-
text as profiling gave us. The first observation from this table is that timing
for Adiantum encryption and decryption is nearly the same and for obvious
reasons for the rest of this thesis when encryption time is mentioned the same
stands for decryption time too. The resulting time of encryption and decryp-
tion is reasonable as decryption has the reverse computations of encryption.
Another thing worth mentioning here is the difference in time as the plain-
text goes from 4KB to 4MB and finally to 32MB. Moreover, if we compare the
encryption time between the Intel-i5 and the ARM cores, the latter is much
slower than Intel-i5. Specifically for a plaintext of 4,096 bytes, Intel-i5 is 16x
times faster than the ARM while at 32 MBytes is 13x faster.

The important question to be resolved is which of all the components that
Adiantum utilises would actually take up the most time.

26 Chapter 3. Architecture Analysis

TABLE 3.3: Encrypt Profiling on Intel-i5 3rd generation.

Plaintext(Bytes) Encrypt(sec) Stream Cipher-
XChaCha12(sec)

Stream Cipher-
XChaCha12(%)

4,096 0.124 0.112 90.32
8,192 0.212 0.191 90.09
16,384 0.411 0.370 90.02
32,768 0.807 0.715 88.59
65,536 1.590 1.460 91.82
131,072 3.120 2.760 88.84
262,144 6.157 5.470 88.84
524,144 13.034 11.620 89.15
1,048,576 26.970 24.215 89.78
2,097,152 62.970 57.058 91.17
4,194,304 158.740 147.570 92.96
8,388,608 384.130 361.244 94.04
16,777,216 1,138.147 1,091.271 95.88
33,554,432 4,076.847 3,976.198 97.53

TABLE 3.4: Encrypt Profiling for Software only Execution on
Pynq z1

Plaintext(Bytes) Encrypt(sec) Stream Cipher-
XChaCha12(sec)

Stream Cipher-
XChaCha12(%)

4,096 2.014 1.745 86.64
8,192 3.589 3.105 86.51
16,384 6.746 5.847 86.67
32,768 13.054 11.279 86.40
65,536 26.107 22.586 86,51
131,072 51.132 44.237 86.51
262,144 103.052 89.406 86.67
524,144 210.515 183.218 87.03
1,048,576 439.894 383.996 87.29
2,097,152 979.237 868.185 88.65
4,194,304 2,276.121 2,051.956 90.15
8,388,608 5,811.407 5,367.038 92.35
16,777,216 16,805.768 15,889.808 94,54
33,554,432 54,257.313 52,215.273 96,23

3.3. Profiling 27

In the last two tables(3.3 & 3.4) we have the encryption time of Adiantum.
The last two columns, Stream Cipher (in sec and %) show the time and the
percentage respectively that XChaCha consumes of all the encryption oper-
ation. Despite the fact that Adiantum uses a combination of two hash func-
tions twice, the results demonstrate that Stream Cipher takes up the most
time. Specifically XChaCha takes about 86% of encryption time between 4KB
and 1MB size of Plaintext and after that grow vastly up to 96% at 32MB.

By looking at these tables one could assume that the comparison of Intel-i5
and Pynq-z1 board seems meaningless as Intel-i5 is 16 times faster than the
ARM cores. Regardless of how much we minimize the time needed for the
stream cipher part by utilizing programmable logic possible acceleration, the
remaining part that continues to run at the processing system is much slower
than Intel-i5. Additionally, by calculating the Amdahl’s law formula (3.1) the
maximum theoretical speedup can be 7,14% - 25%.

MaxSpeedup =
1

1− p
(3.1)

• p: task’s portion that can be benefited by resource enhancement (fourth
column of tables 3.3 & 3.4).

As a result, the best outcome for small plaintexts is that Pynq will continue to
be slower than Intel-i5, whereas for bigger plaintexts Pynq will not be more
than 3x or 4x times faster than Intel-i5. However, this thesis is the first sci-
entific research based on Adiantum algorithm that attempts to discover if an
FPGA can accelerate Adiantum and how this can be achieved. The compar-
ison between Pynq and Intel-i5 is only taking place in order to evaluate the
differences and the outcome of this thesis. Moreover, as already stated in the
first chapter of this thesis the new hybrid models of CPU-FPGA present new
opportunities and thus not limit us to systems with low processing perfor-
mance.

28 Chapter 3. Architecture Analysis

3.4 Software

Evidently, after profiling analysis, Stream Cipher of Adiantum takes up most
of the execution time. As the plaintext is getting bigger the same goes for
the time needed for completion. Adiantum has already been explained but
in order to go further in this thesis and its main purpose, an explanation of
how the Stream Cipher(3.4.1) works comes as a necessity.
Adiantum uses XChaCha12. Specifically XChaCha [9] came from ChaCha [8]
which is a variation of Salsa Stream Cipher [12]. ChaCha aimed to achieve
better diffusion per round and performance with relation to Salsa. Either one
functions very similarly and in bibliography they are referred to as XChaCha
(8/12/20) [10]. This represents the number of rounds each will do hence the
notation XChaCha12. More rounds result in better security but more execu-
tion time.

3.4.1 XChaCha12

XChaCha12 consists of the following:

• ChaCha: The usual algorithm

• HChaCha: Intermediate step before the procedure goes to ChaCha

ChaCha Algorithm: Initial State

• Constant: 16-bytes which is "expand 32-byte k"

• Key: 32-bytes

• Counter: 8-bytes

• Nonce: 8-bytes

3.4. Software 29

FIGURE 3.5: Initial State Of ChaCha

FIGURE 3.6: Double Round of ChaCha

The procedure is rather simple if broken down into stages. The initial state
of Chacha is iterated in six loops, that is from zero to twelve with a step of
two. Each one of the six loops in XChacha12 first accesses the columns(C)
and then the diagonals(D). This dual workload justifies why every loop is re-
ferred to as a Double-Round(3.6). Furthermore, each double-round consists
of a total of eight Quarter-Round(QR) calls, four for the columns (C) and four
for the diagonals(D).
A graphic explanation in figure 3.6 demonstrates the course of action in the
case of a diagonal. As to which elements form a diagonal, consider that (D2)
is formed by boxes (1,6,11,12). Each Quarter-Round function includes a num-
ber of operations that will be subsequently analysed in depth.

30 Chapter 3. Architecture Analysis

FIGURE 3.7: Quarter Round of ChaCha

In conclusion Chacha12 works in rounds and each round computes eight
Quarter-Round(3.7) four through each column and four through each diag-
onal of the state table. Consequently, the state table changes with each call
of Quarter Round. At the end, the result is obtained by adding each block of
the initial table to the final version.

3.4. Software 31

HChaCha: Intermediate State

HChaCha uses nearly the same initial table as ChaCha, meaning:

• Constant: 16-bytes which is "expand 32-byte k"

• Key: 32-bytes

• Nonce: 16-bytes

In HChaCha nonce is 16-bytes and the table of block counter takes the first
8-bytes of the 16-bytes nonce. After this initialization the procedure goes
through ChaCha rounds as usual. When the ChaCha rounds completes the
first 16-bytes and the last 16-bytes of the state table, both in little-endian(3.4.2)
format, are concatenated creating a 32-bytes subkey.

Finally XChaCha is constructed by ChaCha and HChaCha [15]. More specif-
ically HChaCha is used at first for creating the subkey in ChaCha algorithm.
Also it is of essence to mention here that when Adiantum was explained a
24-bytes nonce was mentioned. The first 16-bytes are for the HChaCha step
and the last 8-bytes for the usual ChaCha algorithm.

3.4.2 Little and Big Endian numbers

Computers have two different ways of storing data [3]. The method is called
endianness and is distinguished in "Little Endian" and "Big Endian". In sim-
ple terms big endian can be thought of as a human who begins reading a line
from left to right and the other way around for little endian.
When a machine stores data in big endian order the most significant bytes
are stored in the first memory location and all the other bytes follow. On the
contrary, in little endian machines the least significant bytes are stored in the
first memory location up to the most significant bytes that are stored in the
last one. Notably, despite the endianness inside each byte, bits are in big en-
dian order.
A major advantage of little endian order is that least significant bytes do not
change positions as more digits are added to higher addresses making some
operations much faster.

32 Chapter 3. Architecture Analysis

Supposing that an integer is saved as 4 bytes then a toy example of a vari-
able 0x0123456776543210 is in figure 3.8 where letter (a) represents the first
memory location.

FIGURE 3.8: Example of Endianness

XChaCha algorithm functions with little-endian logic and as in all the related
work, we decided to keep this approach for our practical implementation and
for academic learning.

3.4.3 Software acceleration of XChaCha12

In this thesis apart from hardware logic which will be analysed in the next
sections, software changes have also had a great impact and therefore need
to be mentioned.

Algorithm 1 XChaCha Encryption
def encrypt(plaintext,offset=0,key,nonce):

result = []

while plaintext:

stream = gen_output(key,nonce,offset)

offset += 1

result.append(bytes(x^y for x, y in zip(stream, plaintext)))

plaintext = plaintext[len(stream):]

return b’’.join(result)

Here we have a simple format of what gen_ouput() do

def gen_output(key,nonce,offset):

subkey = HChaCha(key,nonce[0:16])

return ChaCha(key=subkey,nonce[16:],offset)

3.4. Software 33

Algorithm 1 shows that XChacha encryption operates in a while loop. For
every 64-bytes of the plaintext gen_output() is called and returns 64 bytes
which are the result of XChaCha12. After the end of gen_output(), as is com-
mon with most stream ciphers, an XOR operation between the result and the
plaintext chunk is taking place. Finally, plaintext is shifted for the next loop.
Moreover, offset is the block counter of XChaCha state(3.5).

Although instinctively one can deduce that gen_output() takes up the most
time, profiling revealed that encrypt() is actually the most time-consuming
function without taking gen_output() into consideration. An initial approach
was based on the idea that python needs to perform XOR operations byte per
byte between the plaintext and the result of XChaCha and naturally the big-
ger the plaintext size, the more XOR operations are needed. Furthermore,
an essential modification for the XOR operation is to convert the byte vari-
able into an integer variable. Taking everything into consideration, initially
we tried to exploit the hardware in order to perform XOR operations for the
whole chunk and many chunks simultaneously. Unfortunately, after a num-
ber of different approaches it was clear that the XOR operation was not the
part that consumes the greatest amount of time. After these trials it was obvi-
ous that we had to do deeper profiling in order to understand which lines of
the code consume the most time and why. In order to achieve a deeper profil-
ing of the execution times for each function the kernprof library for line-by-
line profiling was used and specifically for the function of the stream cipher
part of Adiantum. Eventually, line-by-line profiling showed that Python li-
braries for simultaneously shifting and deleting bytes take up a lot of time
depending on the size of the plaintext.

Apart from the changes based on how Python operates, another important
thing to consider is that gen_output() which is called every time inside the
while loop computes the subkey from HChaCha step every time. There
is no reason for computing the subkey again as the key and nonce do not
change until the next message. Therefore the subkey needs to be calculated
for ChaCha cipher only the first time that gen_output() is called.

34 Chapter 3. Architecture Analysis

Algorithm 2 XChaCha Encryption with Software Changes
def loopsforwhile(number):

if number // 64 == number / 64:

loops = number // 64

else:

loops = number // 64 + 1

return loops

def encrypt(plaintext,offset=0,key,nonce):

result = []

numofloops = loopsforwhile(len(plaintext))

for i in range(numofloops):

stream = gen_output(key,nonce,offset)

if i == numofloops - 1:

plain = plaintext[i * 64:]

else:

plain = plaintext[i * 64:(i * 64) + 64]

offset += 1

result.append(bytes(x^y for x, y in zip(stream, plain)))

return b’’.join(result)

def gen_output(key,nonce,offset):

if offset == 0:

subkey = HChaCha(key,nonce[0:16] #subkey is global variable

return ChaCha(key=subkey,nonce[16:],offset)

Algorithm 2 resolved all previously mentioned issues concerning subkey
and Python bytes shift. There is one extra function loopsforwhile() which cal-
culates how many loops encrypt() needs depending on the size of each plain-
text. Variable plain is just taking 64-bytes of plaintext each time until the last
one yet possibly plaintext has fewer bytes. Finally, subkey in gen_output() is
being calculated only the first time, thus subkey is a global variable in order
to keep its value for the next calls of gen_output(). Apart from these modifi-
cations XChaCha12 cipher still consumes the most time while plaintext gets
bigger and therefore hardware shall aid in achieving acceleration.

3.5. Hardware Approach 35

3.5 Hardware Approach

Software modifications definitively improved Adiantum but the real target
from the beginning was to accelerate it utilising hardware tools that an FPGA
can offer. This section serves as a theoretical overview of what is imple-
mented using programmable logic(PL) and why, and what will remain in
the processing system(PS).

FIGURE 3.9: (a)XChaCha Encrypt (b)XChaCha Encrypt(PL-PS)

Figure 3.9 demonstrates at the left(a) a very simple flowchart of how the
XChaCha encrypt() function works and at the right side(b) how it is mod-
ified and which parts are implemented either in PL or PS of our FPGA. Al-
though XChaCha still takes up the most time, the difference is that now time
is being consumed at gen_output() function. This is reasonable as this func-
tion contains nearly the whole logic and computations of Adiantum stream
cipher. Despite subkey is being calculated only once, the main issue is that
for every chunk of 64-bytes of plaintext the usual ChaCha logic has to be re-
peated. For a very big plaintext this leads to many cycles as for every chunk

36 Chapter 3. Architecture Analysis

of bytes the block counter is increased and the initial table of ChaCha has to
be reinitialized and run through all computations.

By utilizing hardware benefits such as pipeling and many others, gen_output()
function can be improved impressively. The basic idea of using pipeline can
be best comprehended by thinking of the target function as a counter. For ev-
ery increment a series of mathematical computations takes place. There is no
need, however, for these calculations to be completed in order for the counter
to be incremented. Consequently, the ChaCha algorithm inside gen_output()
has been implemented in the PL of the ZYNQ device.

Notably, we have chosen to keep the xor part at the PS system so as to not
consume time in communication between PL and PS. Had we decided to
include the xor part, then every run of ChaCha in Pl would have also needed
512-bit of the plaintext. By implementing it as such, the PS can now send one
stream at the PL and receives many 64-bit chunks of ChaCha algorithm each
time. Moreover, as communication between PL and PS is limited to an upper
limit of bytes, the need for the plaintext from PL would have also resulted
to receiving about half of the data that PL now sends to PS. Also, due to the
different trials for implementing only the xor part at PL as we mentioned in
the previous section and after the deeper profiling with kernprof library took
place, it was clear that the xor part consumes an insignificant amount of time.

Furthermore, it is important to clarify that ChaCha algorithm is also executed
for generating the subkey through the HChaCha step though as it runs only
once there is no need for that part to be transferred to PL. With the imple-
mentation of ChaCha algorithm using PL, gen_output() is called only once
inside the encryption part and returns a list of all the required stream chunks
for the appropriate length of each plaintext.Further details of the hardware
implementation will be analyzed in the next chapter of this thesis(4).

37

Chapter 4

FPGA Implementation

4.1 Top-Down Strategy

A top-down approach of the implementation is analyzed in the following
sections. Using the top-down method the explanation begins from the gen-
eral/big picture and as the explanation goes further inside/deep information
is shown and explained.

FIGURE 4.1: Adiantum - PS & PL

38 Chapter 4. FPGA Implementation

Figure 4.1 shows the part of Adiantum that has been changed in order to uti-
lize the hardware benefits. As already explained in the last chapter, the most
time consuming part of Adiantum is the stream cipher part (XChaCha12).
Additionally, by leaving the xor part at the PS we have the benefit of not
sending much data to PL but also using all hardware transfer limits for the
receiving part from PL to the PS. The upper hardware limit for a single trans-
action between PL and PS is better explained at the DMA configuration in
the next subsection.

The analysis of top-down strategy consists of the following sections:

• Pynq Configuration & Software Changes: This section describes the
changes required by the software implementation for incorporating our
ChaCha12 design within the whole Adiantum process.

• Vivado Hardware Design: Here all Vivado configurations for connect-
ing processing system to programmable logic are discussed and ana-
lyzed.

• IP Implementation with HLS: The last section describes all details about
the ChaCha12 implementation and examination of all the pragmas that
were utilised for achieving hardware acceleration.

4.2. Pynq Configuration & Software Changes 39

4.2 Pynq Configuration & Software Changes

Algorithm 3 XChaCha Encryption for using Hardware implementation
def loopsforwhile(number):

if number // 64 == number / 64:

loops = number // 64

else:

loops = number // 64 + 1

return loops

def encrypt(plaintext,offset=0,key,nonce):

result = []

numofloops = loopsforwhile(len(plaintext))

stream = self.gen_output(offset, numofloops, key, nonce)

for i in range(numofloops):

if i == numofloops - 1:

plain = plaintext[i * 64:]

else:

plain = plaintext[i * 64:(i * 64) + 64]

offset += 1

result.append(bytes(x^y for x, y in zip(stream[i], plain)))

return b’’.join(result)

Algorithm 3 shows how the encrypt() function has been changed in compar-
ison to algorithm 2. The main difference is that the call for gen_output() func-
tion is outside of the for-loop and now it is called only once. Also, an extra
parameter (numloops) has been added to the call of gen_output and based
on that the gen_output() function will know how many chunks of ChaCha
runs are needed for each size of plaintext. The stream value is now a list of
object type variables of 64 bytes. The 64-byte variables are the chunks/results
from the ChaCha algorithm that our hardware implementation returns to PS
system.

40 Chapter 4. FPGA Implementation

Algorithm 4 Gen_Output() for using Hardware implementation
overlay = Overlay("./ChaChaIP.bit")

dma = overlay.my_axi_dma_engine

ChachaMax = 1000000

def hard_loops(number):

if number // ChachaMax == number / ChachaMax:

loops = number // ChachaMax

else:

loops = number // ChachaMax + 1

return loops

def gen_output(offset, softloops, key, nonce):

subkey = ks.hash(key=key, nonceoffset=nonce[:nl])

result = []

if softloops > ChachaMax:

hardloops = self.hard_loops(softloops)

else:

hardloops = 1

for i in range(hardloops):

start = i*ChachaMax

input_buffer = allocate(shape=(1,), dtype=’S64’)

if i == hardloops - 1:

endoff = start + softloops

output_buffer = allocate(shape=(softloops,), dtype=’S64’)

else:

softloops = softloops-ChachaMax

endoff = start+ChachaMax

output_buffer = allocate(shape=(ChachaMax,), dtype=’S64’)

buffer = endoff+start+nonce[nl:]+subkey

after converting buffer to object type ’bytes’

input_buffer[:] = np.array(buffer) # transfer() takes ndarray

dma.sendchannel.transfer(input_buffer)

dma.recvchannel.transfer(output_buffer)

asyncio.get_event_loop().run_until_complete(

asyncio.ensure_future(dma.sendchannel.wait_async()))

asyncio.get_event_loop().run_until_complete(

asyncio.ensure_future(dma.recvchannel.wait_async()))

result.extend(list((output_buffer).copy()))

del input_buffer,output_buffer

return result

4.2. Pynq Configuration & Software Changes 41

Algorithm 4 has changed a lot with relation to its previous version in al-
gorithm 2. As already explained pynq uses programmable logic circuits as
hardware libraries that are called overlays. By calling the function Overlay()
with the bit file that has been created through Xilinx Vivado IDE as a pa-
rameter, each PL implementation can be loaded to the FPGA. After the PL
implementation has been loaded, there are ready-made functions from the
Pynq community in order to make the communication between PS and PL
feasible.

The first thing that has to be analyzed is the new function hard_loops().
The encrypt() function sends the number of ChaCha chunks required by
Gen_Output(). However, due to hardware limitations (AXI DMA configura-
tion) each transaction between PS and PL can be up to 226 bytes or about 64
MB. Therefore, the hard_loops() function is used to calculate for how much
time the PL logic has to be called. The number of one million has been cal-
culated based on the 226 limitation as each run of ChaCha results in 64 bytes,
then one million runs of ChaCha will result in 61 MB. So the best case sce-
nario is to send 64bytes to PL and receive one million results of ChaCha al-
gorithm.

For every transaction between PL and PS, the input_buffer and output_buffer
have to be initialized. By using pynq’s allocate() function, the specification
for the amount of memory that PL needs is allocated. The input_buffer
contains the data which will be transmitted through DDR memory to AXI
DMA and respectively the output_buffer receives the data from AXI DMA
towards PS. After initialization takes place, the input_buffer can take data
and through pynq function dma.sendchannel.transfer(input_buffer) the data
can be transferred with AXI master (HP or ACP) ports from DDR memory to
the DMA.

The initialization block of XChaCha requires the subkey, the constant, the
block counter, and the nonce. Constant is like an authentication that the de-
sign is free of intentional harware backdoors which is why it is hard-created
within the design. The buffer variable takes the subkey, the nonce, and the
numbers of the block counter for the first and last chunk of ChaCha that PL
will return. By sending both the first and the last block counter numbers, the
PS can communicate again with the PL for getting the next one million or less
results. Finally, by using both the python library of asyncio and pynq func-
tion wait_async(), the PS can continue to run as PL operates until an interrupt
signal is triggered from DMA and sent back to PS.

42 Chapter 4. FPGA Implementation

4.3 Vivado Hardware Design

In general, data has to pass to DDR of the processor and after that there are
three ways for sending them through PL.

• Streaming(AXI-4): Streaming method uses AXI-4 protocol and can be
implemented with Xilinx’s IP(AXI DMA). By utilizing this IP, a continu-
ous bus is being created and without requests data is travelling through
it as in a large FIFO. Given that the requests part does not exist, no time
is consumed into that part and, therefore, more space is acquired for
the pipeline by covering the DDR interval.

• B-RAM: BRAMs are used for storing data inside an FPGA and usu-
ally they are between many KB and a few MB. The process here goes
in bursts. Data is transferred either as stream or memory mapped in
chunks and is saved in BRAMs exploiting their huge bandwidth. In or-
der to achieve this approach, data must have small memory footprint.
Lastly, there are three configurations of BRAMs, namely single/double
port and FIFO.

• Memory-mapped I/O(MMIO): Another approach is MMIO which per-
forms I/O between CPU and peripherals of an FPGA. It can be imple-
mented through Vivado IDE by using Xilinx’s IP known as Data-Mover.
In principal MMIO method uses the same addresses both for memory
and I/O devices as they are mapped together. Since it uses random ac-
cesses it cannot drive many requests at the same time therefore a lot of
time(30 to 50 cycles) is being consumed at each request. Considering
this, there is no reason for this approach to be implemented in a design
that targets acceleration and methods like pipelining.

Given that our target is to accelerate Adiantum, the streaming method is
more efficient and by utilizing it we can take advantage of the whole DDR
high bandwidth memory(HBM). A very simple block diagram follows just to
demonstrate the main idea of how connections and data transfers are taking
place.

4.3. Vivado Hardware Design 43

FIGURE 4.2: PS-PL Block Diagram

Figure 4.2 shows how the accelerator is connected with ZYNQ-PS. Processor
and DDR Memory Controller are placed inside Zynq PS whereas AXI DMA
and our IP are implemented in Zynq PL. The first thing to be mentioned
is that through AXI lite bus, the processor can communicate with the AXI
DMA. It resembles a human brain as in the case of DMA it controls the se-
tups, initiate and monitor data transfers. Aside this, AXI Memory-Mapped to
Streaming(AXI_MM2S) and AXI Streaming to Memory-Mapped(AXI_S2MM)
make it possible for DMA to communicate or, better yet, access DDR memory
for fetching and returning data. Afterwards DMA takes the data and streams
them using AXI4-streaming buses and specifically AXIS_MM2S for sending
the data and AXI_S2MM for receiving data. One major difference between
AXI and AXIS is that in streaming mode(AXIS) the addresses are not being
used.

AXI DMA is the key for communication between PL and PS. By taking data
from DDR memory and transferring them to PL, a software algorithm can be
further optimized. Besides everything concerning hardware utilization and
the way it works, it should be noted that while PL logic is in use, PS can
still continue. The outcome is that PS and PL can work in parallel until PL
is finished, which can also occur with an interrupt signal from DMA to PS,
thus ensuring even more precious time. The configuration of AXI DMA is
essential for a design to function properly. In our case the upper limit of 226

bytes for a single transaction is used as well as the data width of 512bits both
for the Read and Write Channel.

44 Chapter 4. FPGA Implementation

In addition to the previous block diagram, a more precise block design is
provided with the appropriate signals and blocks.

FIGURE 4.3: Vivado Block Design

Figure 4.3 adds more detail to the previous one 4.2. At first we see two AXI
Interconnects(AXI-I/C) and IPs which are responsible for Interrupts(Concat
and AXI Interrupt Controller). In addition to the blocks, some ports and their
names are now visible as well.

In PS, High Performance Port(HP0) is enabled for data transferring from PS
to PL and vice versa and from fabric interrupts the first PL-PS interrupt port
bits have been enabled. HP ports support high rate communications between
PL and memory elements in the PS. Zynq devices have four of these ports but
in our case only one is needed. Moreover these ports contain FIFOs for read
and write data in burst mode. Data width can be either 32 or 64 bits(in our
case 64bits) but PL always acts as the master of these communications.

Apart from PS, from the perspective of PL logic there are two things to be
mentioned. Firstly, at DMA engine signals mm2s_introut and s2mm_introut

4.3. Vivado Hardware Design 45

are shown, which are used for interrupts. Secondly, Concat block and AXI
Interrupt Controller connect interrupts between PL and PS.

Concat block combines signals of different width into a single bus. Typically
a designer can connect the out port of concat block directly to PS. However it
is more accurate to nest AXI interrupt controller between them and for that
reason pynq-z1 demands it. AXI Interrupt Controller concentrates multiple
interrupt inputs from peripheral devices to a single interrupt output to the
system processor.

A further clarification of what these buses transfer is needed for understand-
ing the connection between the Vivado Block Design (figure 4.3) and the al-
gorithm (4). The HP port is used to transfer the input data (buffer data in
algorithm 4) from DDR memory of PS to AXI DMA of PL and through it to
our ChaChaIP design. However, PS sends and receives packets of 64 bytes
while the HP port can transmit/receive either 32 or 64 bits (in our case 64
bits). Therefore, the option of transferring in burst mode offered by AXI I/C
has been enabled and as a result, the Vivado auto-configures FIFO imple-
mentations for holding the data until the desirable size of data has been re-
ceived/sent. In our case, the desirable size is 512 bits data both for receiving
from PS and sending to PS.

After AXI I/C receives the 512 bits from PS, they are sent to the DMA and
through M_AXI_MM2S are finally transferred to our ChaChaIP design. When
ChaChaIP receives the data the process explained in the next section is initi-
ated. Our design sends the ChaCha results as streams of 512 bits per stream
through masterOut to S_AXIS_S2MM of DMA. The received data are con-
verted from a stream to memory-mapped and sent from DMA (with M_AXI_
S2MM bus) to AXI I/C and finally to the PS (with S_HP_HP0) port.

46 Chapter 4. FPGA Implementation

4.3.1 Multiple Clocks Configuration

It is essential before we move forward to how our IP is implemented, to men-
tion that in the above figure 4.3 there are two different clock frequencies for
PL logic. One clock at 100MHz is for configuration of AXI I/C, Concat, etc.
and the other clock at 150MHZ is for our IP/Accelerator and related connec-
tions with AXI DMA engine.

By using two clocks there are some pros and cons depending on the final tar-
get of each design. The apparent advantage is that by using a faster clock,
design will also run faster and for that reason we have used 150MHz for our
IP. On the other hand, more hardware resources need to be consumed for
the implementation on FPGA. Considering our thesis target is acceleration
and given that our IP does not need many resources we chose to implement
this way. Notably these clock frequencies were not selected randomly. Ba-
sic frequency for PL logic for Artix-7 and Speed Grade(-1) where our FPGA
belongs is at 100MHz and after testing our design with it, we increased to
150Mhz which is the maximum possible frequency. Finally as AXI-Lite clock
can be up to 120MHz, our AXI DMA works in asynchronous mode.

4.4. IP Implementation with HLS 47

4.4 IP Implementation with HLS

The next step of our design was the implementation of the accelerator and
more specifically the ChaCha algorithm. In order to convert this part from
Python in C++ language, a deep knowledge of how Adiantum uses ChaCha
and the mathematics was deemed necessary. Vivado HLS was used for this
purpose after having previously understood its tools.

FIGURE 4.4: IP Block Design

Figure 4.4 shows the basic concept of communication which our IP uses with
DMA. Two axi streams have been used, one as a slave and the other one as
a master for data transferring. As data comes inside our IP block a stream
FIFO is implemented for keeping and transporting data to Core function. By
utilizing a stream FIFO, each arrival of data from DMA will be kept until
they can be processed by Core so as to not get lost. It is essential to mention
that both input and output of the accelerator use a stream object.

Stream is a Vivado HLS construct and in simple terms it makes an inter-
face through which data is exchanged in streaming manner. In bibliography
stream can be implemented either as a FIFO or a shift register. Due to stream
being a template class, it was used in combination with a struct which is an
easy way to group variables of different size or type into a single one. The
same struct containing two ap_uint<> variables has been used both for input
and output. Vivado HLS also offers some C-based data types which helps
hardware designers to construct variables of specific size like ap_uint<x>
where x is the number of bits.

48 Chapter 4. FPGA Implementation

In this case stream struct contains a variable of 512 bits for receiving or send-
ing out data and a variable of one bit which represents the TLAST signal
of AXI protocol. The TLAST signal is fundamental for the proper function
of the whole design as it informs the receiver (in this case AXI DMA) that
communication is almost terminated.

The main function of our IP uses Pragmas for converting input and output
variables into AXI protocol interfaces and DATAFLOW. By using Dataflow
pragma in the main function, Vivado HLS is instructed to execute in parallel
all sub-functions contained within main. In this case FIFO implementation
and Core are executed in parallel as they are part of main function.

FIGURE 4.5: Dataflow Example

4.4. IP Implementation with HLS 49

4.4.1 Core Function Analysis

A simple flowchart of how the Core function operates is shown below.

FIGURE 4.6: Core Function Flowchart

Figure 4.6 is one flowchart shown in two parts. The way Core function works
is shown on the left side, whereas on the right side there is the flowchart of
what is taking place inside the Sub_Block. Additionally, besides the Quarter
Round function which will be explained later, there are also LITTLE_INT()
and MOD_OV() functions which are not demonstrated in the figure. These
functions are not at all complicated yet each one of them is requisite. As
already explained(3.4.1) the initial table of Chacha algorithm is consisted of
32-bit words. However these words must be in little endian order(3.4.2).

50 Chapter 4. FPGA Implementation

Consequently, LITTLE_INT() converts 32-bit words from big to little endian
and vice versa. Finally, MOD_OV() is just to ensure that whenever an add
operation takes place there is no overflow bit and our variables will remain
32-bit.

Before proceeding with more details about figure 4.6, pragmas/directives
that are used need to be further analyzed.

Array Partitioning

HLS offers this feature to counterbalance the disadvantage of B-RAMs hav-
ing only two memory channels which results in memory access limitations.
By using array partitioning a B-RAM array can be separated into many parts.
There are three ways of partition:

• Cyclic: Create smaller arrays and more precisely the array is parti-
tioned cyclically by putting each element into each new array before
returning to the first array. This process is repeated until the array is
fully partitioned.

• Block: Combining with a factor N separates the original array into
smaller arrays of size N.

• Complete: Finally all elements of the array are separated into different
variables.

In order to achieve separation multiplexers are utilized for converting the ar-
rays. In our case complete mode was used for state[] & inState[] arrays and as
a result the algorithm can have multiple accesses to these arrays at the same
cycle resulting in better throughput.

Pipeline & Unroll

Pipeline directive is one of the most important features that FPGAs offer. The
optimal pipeline can be achieved by interval(II=1) in which case every cycle
the process can take a new input. In the occasion of a loop every cycle a
new iteration can take place. Apart from pipeline, unroll directive can also
help significantly with loops. It can be specified by the designer but it is also
an automated configuration from HLS when the pipeline directive is used.
When a loop is being unrolled either partially or fully this is translated into
many copies of loop body in the RTL and therefore the entire loop can run

4.4. IP Implementation with HLS 51

simultaneously. In our case pipeline pragma is used within the main for-loop
of the Core function. For Sub_Block this was translated in fully unrolling of
the first and last for-loops and partial unroll with a factor 4 of the middle for-
loop which holds the eight calls of Quarter Round function. The middle loop
could not be fully unrolled as the last four calls(diagonals) of QR function
demand that the first four have already completed.

Algorithm 5 Vivado HLS: Double Round

1: uint32 state[16]
2: #pragma HLS array_partition variable = state complete
3:

4: for i← 0, i < Rounds, i← i + 2 do . QR function take pointers
5: #pragma HLS unroll f actor = 4
6: QR(state[0], state[4], state[8], state[12]) . column 1 (figure 3.6)
7: QR(state[1], state[5], state[9], state[13]) . column 2
8: QR(state[2], state[6], state[10], state[14]) . column 3
9: QR(state[3], state[7], state[11], state[15]) . column 4

10:

11: QR(state[0], state[5], state[10], state[15]) . diagonal 1 (main diagonal)
12: QR(state[1], state[6], state[11], state[12]) . diagonal 2
13: QR(state[2], state[7], state[8], state[13]) . diagonal 3
14: QR(state[3], state[4], state[9], state[14]) . diagonal 4
15: end for

Algorithm (5) shows a simplified example for the use of array_partition and
pipeline logic for Double Round. The use of the array_partition pragma for
the state[] table allows for multiple accesses to it at the same cycle. Also, with
the addition of unroll pragma, this code results in unrolling with factor 4 the
first four QR calls(lines 5..8) and the last four calls(lines 10..13). In fact, this
for-loop is inside another bigger loop that consists of the pipeline pragma
which results in unrolling these QR calls, but also achieving interval II=1.
Interval one means that the whole logic runs in parallel and gives results in
every cycle.

52 Chapter 4. FPGA Implementation

In order to further demonstrate the incredible hardware benefits and specifi-
cally array partitioning and unrolling, a visual example of them based on the
double round is shown bellow.

FIGURE 4.7: Double Round Time-Chart: Without Unrolling &
Array Partitioning

Figure 4.7 shows how Vivado HLS translates the general C/C++ code of
Double Round(blue color: QR calls of columns & red color: QR calls of diag-
onals) without the appropriate pragmas. The result will not differ at all when
the same code runs at the PS system. Assuming that each QR call takes one
cycle to complete, then an implementation like this will take 8 cycles for one
Double Round and as a result, 6 Double Rounds for the ChaCha12 algorithm
will consume 6 ∗ 8 = 48 cycles.

FIGURE 4.8: Double Round Time-Chart: With Unrolling & Ar-
ray Partitioning

4.4. IP Implementation with HLS 53

On the other hand, figure 4.8 shows how the appropriate pragmas and an
efficient design can result in a much faster implementation by exploiting the
hardware benefits. As before, blue boxes represent QR column calls whereas
red ones represent QR diagonal calls. The first thing to note is that by un-
rolling the Double Round with a factor of 4 now in each cycle there are 4 QR
calls. This was our goal from the beginning as there is no reason for an on-
going QR column call to wait for the previous QR column call to complete.
Of course the same theory is applied to the diagonal QR calls. However, in
our case, unrolling requires array partitioning since each QR call utilizes ele-
ments from a single array. Therefore, by using array partitioning we achieve
multiple access to the same array within the same cycle. Finally, with this im-
plementation, 2 cycles are consumed in each Double Round and 6 ∗ 2 = 12
cycles are consumed for 6 double rounds of ChaCha12 algorithm.

FIGURE 4.9: Pipeline Logic in ChaChaIP flowchart

54 Chapter 4. FPGA Implementation

Figure 4.9 is one of the most important pictures in this thesis as the correct
position of the pipeline statement is key for gaining the desired acceleration
of ChaCha12 algorithm.

FIGURE 4.10: Pipeline Time-Chart for ChaChaIP

By achieving Pipeline Interval 1 (II=1) for each cycle a new process of Sub_Block
part begins and as a result in every cycle there is a ChaCha result (figure
4.10). As already explained at AXI DMA limitations there can be one mil-
lion ChaCha runs at each transaction between PL and PS. This means that
the potency of our acceleration is highlighted when PS asks PL for one mil-
lion ChaCha runs. One million ChaCha runs means one million Sub_Block
runs. One Sub_Block needs 50 cycles to complete so, naturally, a generic sys-
tem would need 1million ∗ 50 = 50million cycles. In contrast, by utilizing
pipeline logic in our implementation, hardware advantages shine out and
consequently, for 1 million ChaCha runs our design needs only 1million + 50
cycles.

4.4. IP Implementation with HLS 55

Flowchart analysis

To begin with, the input word is received and is separated into the appro-
priate variables. By the term ’separated’ it is meant that from 512-bits of the
input word some of them are the key, nonce, start counter and the number of
the last chunk. When we explained ChaCha and the reasons for implement-
ing it with an FPGA we had correlated it with a usual counter and thus the
number of the last 512-bit chunk which is needed has to be sent from PS. The
number of loops of the Chacha algorithm is obtained by subtracting the start
variable from the value of the last chunk.

After these steps Sub_Block is repeated. Through each iteration from the ini-
tial ChaCha array the only change is the two blocks that contain the counter.
Although the second array(State[]) may seem unnecessary it should be noted
that the last step of ChaCha algorithm is adding each block from the initial
table to the same block of the table after Quarter Rounds has taken place, and
therefore a copy of the initial table is needed. The procedure continues with
the loop that holds the QR calls. Finally in the last loop the final table(512-bits
or 64bytes) of ChaCha is being computed by adding each block from the two
tables and convert the result from little to big endian. The result is sent im-
mediately through the AXI stream interface back to the AXI DMA and finally
to the PS system.

Algorithm 6 Quarter Round Function

1: function QUARTERROUND(uint32& a, uint32& b, uint32& c, uint32& d)
2: a← MOD_Ov(a + b) . MOD_Ov() checks for overflow
3: d← d⊕ a . bitwise XOR operation
4: d← d.lrotate(16) . lrotate() is left rotation
5: c← MOD_Ov(c + d)
6: b← b⊕ c
7: b← b.lrotate(12)
8: a← MOD_Ov(a + b)
9: d← d⊕ a

10: d← (d.lrotate(8)
11: c← MOD_Ov(c + d)
12: b← b⊕ c
13: b← b.lrotate(7)
14: return . Function arguments are pointers
15: end function

56 Chapter 4. FPGA Implementation

Lastly, the inner part of our design is the Quarter Round process which is
shown in algorithm 6. Inside this function there is a set of three operations
that is repeated four times. The first one is an addition of two 32-bit variables
which may result in 33-bit if we have an overflow bit. In order to drop the
overflow bit, a small function named MOD_Ov() takes the result of the ad-
dition as input and returns only the last 32-bits. After the addition a simple
bit-wise xor operation take place and finally a left rotation.

Bit Rotation is similar to shift operation with the difference that the bits that
are shifted out are pushed in sequence to the opposite side of the bit stream.

• Left Rotation: The bits that are shifted out from the left side are put
back at the right side.

• Right Rotation: The bits that are shifted out from the right side are put
back at the left side.

In QR process we have a left rotation(of 16, 12, 8 and 7 bits successively).
Despite in general C or C++ language does not offer support such operations,
Vivado HLS offers some advanced functions which in our case is the lrotate().

The first approach of the QR function was to take four variables as parame-
ters and not as pointers. However, a struct object that groups four ap_uint<32>
variables was necessary in order for the QR function to return four variables
at once. Consequently, it was consuming more memory as for every simul-
taneous iteration of pipeline logic an extra struct was needed apart from the
already array that held the specific values. Finally, the pointer logic that C
language offers helps decrease the necessary resources and also make our
design more efficient.

57

Chapter 5

Results

This chapter demonstrates all the results both from software approach and
most importantly hardware implementation. It is fundamental to not only
specify timing but also power and energy differences between the compared
platforms.

5.1 Specification of Compared Platforms

The equipment used for all the experiments during this thesis was a generic
laptop CPU and PYNQ-z1(Python Productivity for Zynq-7000 ARM/FPGA
SoC). Specifically the CPU is an Intel i5 3230M which was released at January
2013 and PYNQ-z1 contains ZYNQ XC7Z020-1CLG400C and was released at
the start of 2018. Since 2018 there has been ample improvement on PYNQ-z1.

5.1.1 Intel i5 3230M

Intel i5 3230M is a mobile processor. Some basic information is shown below.

TABLE 5.1: Intel i5 3230M Specifications

Cores 2
Threads 4
MAX Turbo Frequency 3.2GHz
TDP 35W
MAX Memory Bandwidth 25.6GB/s
Lithography 22nm

58 Chapter 5. Results

Thermal Design Power(TDP): represents the average power, in watts, the
processor dissipates when operating at Base Frequency with all cores active
under an Intel-defined, high-complexity workload. Moreover, MAX Turbo
frequency is the maximum single core frequency at which the processor is
capable of operating whereas Max Two-core processing is 3GHz.

5.1.2 PYNQ-Z1 Resource Utilization

All specifications about PL logic are referred at 2.3 where implementation is
analyzed. In the following table hardware utilization of the final implemen-
tation is presented.

TABLE 5.2: Pynq z1 Resource Utilization

PS Clock 650 MHz
PL Clocks 100 & 150 MHz
BRAMs 15,53%
FFs 48,69%
LUT 47,74%
DSP 0%

5.2 Power Consumption

Electronic devices require energy/power in order to be in use. More pre-
cisely, by the term of power consumption we are referring to the energy con-
sumed per unit time for the completion of a task. It is usually measured in
Watt(W) or kilowatt(kW). Every hardware designer has to manage and keep
power consumption on specific levels depending on the design needs but
also the available tools. In order to minimize energy losses and increase the
system’s energy efficiency, the designer has to keep the average power con-
sumption at the lowest possible. It is clear that, for the designs to be kept
simple and economic, low power consumption is the most effective way.

5.3. Energy Consumption 59

5.3 Energy Consumption

Although power consumption shows power per task, it is essential to calcu-
late the amount of energy consumed during specific time. Therefore, energy
comsuption is easily calculated: As a result, energy consumption is an easy
way for the calculation:

Energy = Power ∗ time (5.1)

Formula 5.1 demands:

• Power: Required power

• Time: Amount of time to complete the task

Lastly, energy is usually measured in Joule(J) or kilo-joule(kJ) and, as with
power consumption, energy is also preferred to be as low as possible so as
to minimize the operational costs. Taking everything into account, aside
from time acceleration, energy/power consumption should be considered
and compared between the two platforms.

5.4 Throughput and Latency Speedup

Latency and throughput are two fundamental concepts both in computer sci-
ence and hardware. Additionally, speedup is used to compare the work-
load/time between two or more systems utilizing/running the same task.
Speedup is a notion that was first established by Amdahl’s law [2]. Despite
that Amdahl’s law was first mentioned only on parallel computing(meaning
multiple processors), it can show performance improvement after any re-
source enhancement.

Latency is the time needed for single task to be completed by a specific sys-
tem and is calculated as follows:

Latency =
T
W

(5.2)

• T: execution time of task

• W: execution workload of task

60 Chapter 5. Results

Throughput shows the maximum rate of processing a specific problem:

Throughput = r ∗ v ∗ A =
r ∗ A ∗W

T
=

r ∗ A
L

(5.3)

• r: execution density

• A: execution capacity

Finally, speedup can be calculated by comparing each value of the previous
formulas(5.2 & 5.3) with the corresponding one from the other systems.

SLatency =
L1

L2
=

T1 ∗W2

T2 ∗W1
=

1

(1− p) +
p
s

(5.4)

• s: speedup of the improved task

• p: task’s portion that is benefited by resource enhancement

SThroughput =
Thr2

Thr1
(5.5)

5.5 ChaCha Performance

Having analyzed all the previous scientific concepts, apart from timing im-
provements it is also essential to compare latency, throughput and energy
efficiency between CPU-i5 3230M and our design in this section . Nonethe-
less, it is fundamental before we proceed with the tables to distinguish what
differs CPU in relationship with our design.

As already explained our design is working like a counter and by that it is
meant that with every initialization many results come back from PL to PS.
These results are simply running of the ChaCha algorithm as usual, numer-
ous times and during each run only the block counter block of the initial table
is changed. Due to Vivado AXI DMA IP limitations, a simple transaction can
only be achieved with transfers up to 64MB each time and for that reason
with every initialization, our design can return up to one million results at a
time(1,000,000 * 64 = 61.0352MB).

Based on the idea that our design can return up to one million ChaCha runs,
a testing approach of different packets of runs at a time is essential to clarify
which size yields the best throughput.

5.5. ChaCha Performance 61

FIGURE 5.1: PYNQ Throughput (MBytes/sec)

FIGURE 5.2: CPU-i5 Throughput (KBytes/sec)

62 Chapter 5. Results

Figure 5.1 and 5.2 show the results of our hardware design and CPU-vanilla
software code for different sizes of ChaCha runs respectively. Specifically,
if we run the design each time for 1MB results (1MB/64-byte each run =
16,384 runs of ChaCha) in 4.2ms there is a total throughput of 238MByte/sec
(3,899,392 runs of ChaCha/sec). The best throughput was achieved with the
utilization of all AXI DMA hardware limits and as a result run our design
for one million ChaCha results at a time. This approach gives 781MByte/sec
(12,795,904runs of ChaCha/sec) while each run needs only 82ms. In contrast
to the CPU which needs 880 seconds with the throughput of 73KByte/sec
for one million runs of ChaCha we achieved a big impact on timing results,
especially for big messages.

TABLE 5.3: ChaCha acceleration: Pynq-z1 vs Intel-i5

Plaintext(Bytes) ChaCha Runs Intel-i5(msec) Pynq-z1(msec)

4,096 64 71 2.85
8,192 128 102 2.99
16,384 256 158 3.04
32,768 512 327 3.16
65,536 1,024 677 3.38
131,072 2,048 1,296 3.88
262,144 4,096 2,595 3.88
524,288 8,192 5,219 3.99
1,048,576 16,384 15,994 4.20
2,097,152 32,768 29,257 5.71
4,194,304 65,536 51,848 8.19
8,388,608 131,072 105,025 13.7
16,777,216 262,144 215,578 22.4
33,554,432 524,288 447,709 41.8
67,108,864 1,048,576 910,041 103

Table 5.3 is the most interesting table as it presents the outcome of our hard-
ware design and our whole work. As already explained, for every 64 bytes
of the plaintext the ChaCha algorithm has to run through all of its computa-
tions.

ChaChaRuns =
Plaintextsize(Bytes)

64
(5.6)

5.5. ChaCha Performance 63

The second column (ChaCha Runs) of the table 5.3 is computed based on
the equation 5.6. Notably, these timings have been extracted once more us-
ing the same profiling methods that have been analyzed during section 3.3.
Moreover, the xor part between the ChaCha result and the plaintext is not
included as the xor equation does not exist in our design and is reserved for
the PS system. It is extraordinary how much our design prevails over CPU.
Even for small plaintexts like 4,096 bytes, our design is 25x times faster than
Intel-i5 and the speedup grows vast as the plaintext gets bigger. For a plain-
text of 67,108,864 bytes, our design has to be called twice from PS system and
it is 8,835x faster than Intel-i5. Therefore, the best case scenario for our design
is to run for one million ChaCha runs in each call from the PS.

TABLE 5.4: ChaCha Architecture Comparison: PYNQ vs CPU

PYNQ CPU

Clock(MHz) 150 3200
Latency(msec) 2.71 3
Power Consumed(Watt) 2 14
Energy(Joule) 0.16 12.32K

Latency: refers to one ChaCha run

Energy: refers to one million runs of ChaCha

Table 5.4 shows latency, power and energy. Latency is based on the worst
case scenario in which our design works for only 64Byte result(one run of
ChaCha). Energy has been calculated considering that our design aims for
big messages for which we choose each PL run to return one million runs of
ChaCha. More precisely CPU consumes 12.3KJoule for one million runs of
ChaCha while PYNQ needs only 0.16Joule.

TABLE 5.5: ChaCha Speedup over CPU

PYNQ vs CPU

Throughput Speedup 10,698x

Throughput Speedup: for one million runs ChaCha

64 Chapter 5. Results

TABLE 5.6: ChaCha Energy & Power efficiency over CPU

PYNQ vs CPU

Power Efficiency 7x
Energy Efficiency 77,000x

Energy Efficiency: for one million ChaCha runs

Tables 5.5 and 5.6 shows how much our design prevails over CPU with rela-
tion to above definitions. Firstly, in the case of one million results of ChaCha,
throughput is 10,698x better than CPU. Additionally, for the worst-case sce-
nario of the design which correlates to one run of the ChaCha algorithm, our
design is a little better than CPU. Secondly, PYNQ is 7x more power-efficient
and as a result for one million runs of ChaCha, energy is 77,000x more effi-
cient than CPU.

TABLE 5.7: ChaCha Comparison with Related Work

Design Frequency(MHz) Throughput(MB/s)

G.Kanda and K.Ryoo [21] 161 479
Igor Semenov [38] 50 126
Our Design 150 781

Finally, our implementation is 17-times faster than the work of Nuray At.
et al. [4] but this was to be expected as their design is intended for a co-
processor which resulted in 46 MB/s for ChaCha12 encryption. On the other
hand, it is more interesting if we compare our work with the research of
G.Kanda and K.Ryoo [21] (table 5.7). Although in our case we have ChaCha12
instead of ChaCha20 and we did not include the xor part at the hardware
level, it is still remarkable that our design can compete with their ASIC im-
plementation and it is nearly 2-times faster than their FPGA implementation.
Moreover, Igor Semenov [38] designed the implementation of ChaCha20,
but as he tried to achieve acceleration without pipeline logic and with low
resources, it is only natural that our design is 6-times faster. However, as
each implementation poses different standard result metrics, those differ-
ences should be taken into consideration.

5.6. Adiantum Performance 65

5.6 Adiantum Performance

FIGURE 5.3: CPU Encryption

Figure 5.3 shows how much time Adiantum encryption takes in our CPU as
the plaintext/message gets bigger. There are two waveforms, one blue and
one green. The blue waveform shows the encryption time before the original
software implementation (vanilla) whereas the green one is the result of all
software changes. Evidently, before reaching the 2MB sized plaintext there
is no big difference, as was expected due to profiling. As a brief reminder,
profiling showed that after a plaintext of 2MB size, stream cipher takes more
and more time. It is essential to note at this point how much difference our
software changes achieved in big messages such as 64MB and realize at what
extent certain Python libraries may affect a code with relation to time. Specif-
ically, at 64MB size of plaintext Adiantum encryption took about 17,000sec
whereas with our changes takes 1,100sec.

66 Chapter 5. Results

FIGURE 5.4: PYNQ Encryption

Figure 5.4 includes all the execution times of Adiantum encryption based
on PYNQ z1 device. All three curves depict the amount of time our FPGA
needs for running Adiantum encryption for each approach and messages of
different sizes. More specifically the blue curve is the initial code and it is
essential to observe that for 64MB size of plaintext PYNQ needs about 3.5
times more than our CPU for this size. The green curve depicts encryption
time after software changes and as we see with 64MB size plaintext a decrease
in order of magnitude has been achieved.

Finally the last and the most important, red curve is the combination of run-
ning Adiantum encryption both with PS and PL. PS executes our new version
of Adiantum encryption while PL is used for the ChaCha12 algorithm of the
Stream Cipher part. Even for small messages like disc encryption of 4096
bytes, PYNQ needed about 2.5 seconds while in the last version 0.3 seconds.
Remarkably, our design is more impactful for big messages. Specifically, for
64MB PYNQ required more than 200,000 seconds at first, whereas now it only
needs 5,000 seconds. The most outstanding outcome is that our design meets
the maximum theoretical speedup calculated by the Amdahl’s law formula.

5.6. Adiantum Performance 67

FIGURE 5.5: Adiantum Encryption (PYNQ vs CPU)

Figure 5.5 demonstrates the final comparison of the Adiantum cryptography
algorithm with PYNQ and Intel-i5. As already stated in (Chapter 2: Profiling
Section 3.3) even if we fully minimize the stream cipher part of Adiantum,
the PYNQ PS system is too slow in comparison to Intel-i5 CPU, and only
4x speedup at most could be achieved. As a result, in comparison, between
the vanilla version of Adiantum encryption and our PYNQ version, for big
messages and specifically for 64MB plaintext, PYNQ is 3.5x times faster and
23x more energy efficient (figure 5.5). However, our software improvements
also had a big impact on Intel-i5 and finally, CPU is also faster for bigger
plaintexts. Although this comparison is not beneficial to our PYNQ imple-
mentation, in fact our hardware design (ChaCha implementation) is unbe-
lievably faster than CPU. The uprising CPU-FPGA hybrids that have been
recently put on the market can overthrow all obstacles that an existing PS
system may cause to such implementations.

68 Chapter 5. Results

FIGURE 5.6: PYNQ vs CPU Energy

Finally, any embedded implementation is strongly related to energy con-
sumption and thus, figure 5.6 is presented. Despite CPU being faster due
to the PS system that PYNQ incorporates, it is less energy efficient. More
specifically, Adiantum on PYNQ is 2x more energy efficient than our CPU.

69

Chapter 6

Conclusions and Future Work

The sixth and last chapter of this thesis serves as a summary and evaluation
of our work. Furthermore, some ideas for future work are proposed and
explained with hope to intrigue more people into this subject and specifically
in Adiantum cryptography algorithm.

6.1 Conclusions

Over the years, mankind uses technology more and more, from the smallest
things of everyday life to more advanced ones like jobs, scientific research,
etc. The higher the rate of technological use, the greater the need for privacy
and security. Besides the security aspects, it is also a fact that electronic files
are getting bigger in terms of size in bytes. As the file size gets bigger, more
time is needed for encrypting and decrypting these files. However, time is
of the essence and should not be wasted on mundane everyday tasks. As
a result every approach that aims to achieve acceleration on these subjects
becomes ever so important.

The purpose of this thesis was to explore how Adiantum cryptography algo-
rithm can be accelerated by utilizing and exploiting FPGA advantages such
as parallelism. Profiling methods made it clear that one should aim for ac-
celeration on the stream cipher part (ChaCha12) of the Adiantum algorithm
as big messages consumed the most time. Notice here that, given the time
needed for ChaCha12 stream cipher, we achieved remarkable results.

70 Chapter 6. Conclusions and Future Work

Precisely, in comparison to Intel-i5 3230M, our ChaCha12 design is:

• 10,731x faster

• 10,698x throughput Speedup

• 77,000x times more energy efficient

It is remarkable that including I/O overhead if our Adiantum design were to
run at a strong CPU with tightly-coupled FPGA, would meet the theoretical
speedup as calculated by Amdahl’s law. Nonetheless, the Adiantum encryp-
tion algorithm is not entirely implemented with hardware logic. Addition-
ally, software changes have made a big impact on our CPU with relation to
the time needed for Adiantum encryption. This resulted in CPU being faster
but not energy efficient.
Specifically, with our New software version of Adiantum: Intel-i5 3230M is:

• 4x times faster

• 2x times less energy efficient

However, it would be more interesting if we were able to test our Adiantum
design with an FPGA that incorporates a much better CPU system or, better
yet, with the new CPU-FPGA hybrids as PYNQ’s CPU is the only reason
why Intel-i5 3230M proving faster. Finally, Google tested Adiantum on ARM
Cortex-A7 but in our case (ARM Cortex A9) it should be noted that with
our changes we achieved to encrypt 64kbyte at about the same time that the
initial code requires for 4kbyte.

6.2 Future Work

Adiantum Cryptography algorithm is relatively new and as no other relevant
research has been done on it so far it makes sense that this thesis opens up
numerous new paths.

Google proved that from a theoretical point of view, Adiantum can encrypt
a message of size up to 273 bits. Also, as the algorithm consists of many
different methods of symmetric cryptography such as hash functions, stream
ciphers and block ciphers(specifically AES), there is the prospect of a very
good algorithm in terms of security. All of this results in Adiantum being
able to be used in a wider range and not just in disc encryption for low-end
devices. Therefore endeavors towards acceleration in execution time, not

6.2. Future Work 71

only on the hardware side but in software as well, can lead to its integration
on many electronic devices in our daily lives.

In terms of hardware, the Adiantum algorithm is undoubtedly a very fast
algorithm that does not require as much complexity as the equivalent algo-
rithms that already exist. The question, however, is how much larger the
message can be in a reasonable amount of execution time. To resolve the
previous question further deepening into acceleration can result in very in-
teresting results.
In this thesis we tried to minimize the time consumed in the stream cipher
part of Adiantum and we already have a significant improvement in the ex-
ecution time. A further approach could be the implementation of hash func-
tion(Poly1305 with NH) which now takes about the 90% of encryption time
into hardware and as a result the whole Adiantum algorithm. Finally in the
world of cryptography, there is the view that regardless of the mathematical
complexity of an algorithm, the real metric of its security is the amount of
time it remains uncompromised. It is therefore very interesting to continue
to see the course of Adiantum in the future.

73

References

[1] National Security Agency. “US National Security Agency ’is surveil-
lance leviathan”. In: BBC (Aug. 2013). URL: https://www.bbc.com/
news/technology-23669003.

[2] Gene M. Amdahl. “Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities”. In: Proceedings of the April
18-20, 1967, Spring Joint Computer Conference. AFIPS ’67 (Spring). New
York, NY, USA: Association for Computing Machinery, 1967, 483–485.
ISBN: 9781450378956. DOI: 10.1145/1465482.1465560. URL: https:
//doi.org/10.1145/1465482.1465560.

[3] Mohit Arora. “Handling Endianness”. In: The Art of Hardware Architec-
ture: Design Methods and Techniques for Digital Circuits. New York, NY:
Springer New York, 2012, pp. 155–168. ISBN: 978-1-4614-0397-5. DOI:
10.1007/978-1-4614-0397-5_7. URL: https://doi.org/10.1007/
978-1-4614-0397-5_7.

[4] Nuray At et al. “Compact Hardware Implementations of ChaCha, BLAKE,
Threefish, and Skein on FPGA”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 61.2 (2014), pp. 485–498. DOI: 10.1109/TCSI.
2013.2278385.

[5] J.-P. Aumasson et al. “SHA-3 proposal BLAKE”. In: (2008). URL: https:
//www.aumasson.jp/.

[7] Mihir Bellare and Phillip Rogaway. “On the Construction of Variable-
Input-Length Ciphers”. In: Fast Software Encryption. Ed. by Lars Knud-
sen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 231–244.
ISBN: 978-3-540-48519-3. URL: https://cseweb.ucsd.edu/~mihir/
papers/lpe.pdf.

[8] Daniel J. Bernstein. “ChaCha, a variant of Salsa20”. In: State of the Art of
Stream Ciphers Workshop, SASC 2008, Lausanne, Switzerland (Jan. 2008).
URL: https://cr.yp.to/chacha/chacha-20080128.pdf.

[9] Daniel J. Bernstein. “Extending the Salsa20 nonce”. In: Workshop record
of Symmetric Key Encryption Workshop 2011 (2011). URL: https://cr.
yp.to/snuffle/xsalsa-20110204.pdf.

https://www.bbc.com/news/technology-23669003
https://www.bbc.com/news/technology-23669003
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-1-4614-0397-5_7
https://doi.org/10.1007/978-1-4614-0397-5_7
https://doi.org/10.1007/978-1-4614-0397-5_7
https://doi.org/10.1109/TCSI.2013.2278385
https://doi.org/10.1109/TCSI.2013.2278385
https://www.aumasson.jp/
https://www.aumasson.jp/
https://cseweb.ucsd.edu/~mihir/papers/lpe.pdf
https://cseweb.ucsd.edu/~mihir/papers/lpe.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf

74 References

[10] Daniel J. Bernstein. “Salsa20/8 and Salsa20/12”. In: (2006). URL: https:
//cr.yp.to/snuffle/812.pdf.

[11] Daniel J. Bernstein. “The Poly1305-AES message-authentication code”.
In: Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, revised selected papers (Feb. 2005). URL: https:
//cr.yp.to/mac/poly1305-20050329.pdf.

[12] Daniel J. Bernstein. “The Salsa20 family of stream ciphers”. In: New
Stream Cipher Designs: The eSTREAM Finalists (2008). URL: https://cr.
yp.to/snuffle/salsafamily-20071225.pdf.

[13] Sylvain Collange, David Defour, and Arnaud Tisserand. “Power Con-
sumption of GPUs from a Software Perspective”. In: Computational Sci-
ence – ICCS 2009. Ed. by Gabrielle Allen et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 914–923. ISBN: 978-3-642-01970-8.

[14] Paul Crowley and Eric Biggers. “Adiantum: length-preserving encryp-
tion for entry-level processors”. In: IACR Transactions on Symmetric Cryp-
tology 2018.4 (Dec. 2018), pp. 39–61. DOI: 10.13154/tosc.v2018.i4.39-
61. URL: https://tosc.iacr.org/index.php/ToSC/article/view/
7360.

[15] Frank Denis. “XChaCha20”. In: libsodium (2018). URL: https://doc.
libsodium.org/advanced/stream_ciphers/xchacha20.

[16] Morris Dworkin et al. Advanced Encryption Standard (AES). Nov. 2001.
DOI: https://doi.org/10.6028/NIST.FIPS.197.

[17] Scott Hauck and Andre DeHon. Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation. 2008. ISBN: 978-0-12-370522-8.
DOI: https://doi.org/10.1016/B978-0-12-370522-8.X5001-8.

[20] David Kahn. The Codebreakers: The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Dec. 1996. ISBN: 978-0-684-
83130-5.

[21] Guard Kanda and Kwangki Ryoo. “High-Throughput Low-Area Hard-
ware Design of Authenticated Encryption with Associated Data Cryp-
tosystem that Uses ChaCha20 and Poly1305”. In: International Journal of
Recent Technology and Engineering (IJRTE) 8 (July 2019). URL: https://
www.ijrte.org/wp-content/uploads/papers/v8i2S6/B10170782S619.

pdf.
[22] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Secu-

rity: Private Communication in a Public World. Mar. 1995. ISBN: 978-0-13-
061466-7.

https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/mac/poly1305-20050329.pdf
https://cr.yp.to/mac/poly1305-20050329.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://doi.org/10.13154/tosc.v2018.i4.39-61
https://tosc.iacr.org/index.php/ToSC/article/view/7360
https://tosc.iacr.org/index.php/ToSC/article/view/7360
https://doc.libsodium.org/advanced/stream_ciphers/xchacha20
https://doc.libsodium.org/advanced/stream_ciphers/xchacha20
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.1016/B978-0-12-370522-8.X5001-8
https://www.ijrte.org/wp-content/uploads/papers/v8i2S6/B10170782S619.pdf
https://www.ijrte.org/wp-content/uploads/papers/v8i2S6/B10170782S619.pdf
https://www.ijrte.org/wp-content/uploads/papers/v8i2S6/B10170782S619.pdf

References 75

[23] Lars R. Knudsen. “Block Ciphers”. In: Encyclopedia of Cryptography and
Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA:
Springer US, 2011, pp. 152–157. ISBN: 978-1-4419-5906-5. DOI: 10.1007/
978-1-4419-5906-5_549. URL: https://doi.org/10.1007/978-1-
4419-5906-5_549.

[24] Ted Krovetz. “HS1-SIV (version 2)”. In: CAESAR competition: 2nd Round
(July 2015). URL: https://competitions.cr.yp.to/round2/hs1sivv2c.
pdf.

[25] Ted Krovetz. “UMAC: Message Authentication Code using Universal
Hashing”. In: RFC 4418, RFC Editor (Mar. 2006). URL: https://www.
rfc-editor.org/rfc/rfc4418.txt.

[26] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable Block
Ciphers”. In: Advances in Cryptology — CRYPTO 2002. Ed. by Moti Yung.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 31–46. ISBN:
978-3-540-45708-4.

[27] S. Lucks and Jon Callas. “The Skein Hash Function Family”. In: 2009.
URL: https://www.cs.rit.edu/~ark/20090927/Round2Candidates/
Skein.pdf.

[28] Bernard Marr. “How Much Data Do We Create Every Day? The Mind-
Blowing Stats Everyone Should Read”. In: Forbes (May 2018). URL: https:
//www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-

do- we- create- every- day- the- mind- blowing- stats- everyone-

should-read/?sh=5af00f6760ba.
[29] Nicole Martin. “How Much Data Is Collected Every Minute Of The

Day”. In: Forbes (Aug. 2019). URL: https://www.forbes.com/sites/
nicolemartin1/2019/08/07/how-much-data-is-collected-every-

minute-of-the-day/?sh=6e06a8113d66.
[31] Yoav Nir and Adam Langley. “ChaCha20 and Poly1305 for IETF Pro-

tocols”. In: RFC 7539, RFC Editor (May 2015). URL: https://www.rfc-
editor.org/rfc/rfc7539.txt.

[32] Christof Paar and Jan Pelzl. Understanding Cryptography. 2010. ISBN:
978-3-642-44649-8. DOI: https: / /doi . org / 10. 1007/ 978 - 3 - 642-
04101-3.

[36] Phillip Rogaway and Thomas Shrimpton. “Deterministic Authenticated-
Encryption: A Provable-Security Treatment of the Key-Wrap Problem”.
In: Cryptology ePrint Archive, Report 2006/221 (2006). URL: https : / /
eprint.iacr.org/2006/221.

https://doi.org/10.1007/978-1-4419-5906-5_549
https://doi.org/10.1007/978-1-4419-5906-5_549
https://doi.org/10.1007/978-1-4419-5906-5_549
https://doi.org/10.1007/978-1-4419-5906-5_549
https://competitions.cr.yp.to/round2/hs1sivv2c.pdf
https://competitions.cr.yp.to/round2/hs1sivv2c.pdf
https://www.rfc-editor.org/rfc/rfc4418.txt
https://www.rfc-editor.org/rfc/rfc4418.txt
https://www.cs.rit.edu/~ark/20090927/Round2Candidates/Skein.pdf
https://www.cs.rit.edu/~ark/20090927/Round2Candidates/Skein.pdf
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=5af00f6760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=5af00f6760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=5af00f6760ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=5af00f6760ba
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/?sh=6e06a8113d66
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/?sh=6e06a8113d66
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/?sh=6e06a8113d66
https://www.rfc-editor.org/rfc/rfc7539.txt
https://www.rfc-editor.org/rfc/rfc7539.txt
https://doi.org/https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/https://doi.org/10.1007/978-3-642-04101-3
https://eprint.iacr.org/2006/221
https://eprint.iacr.org/2006/221

76 References

[37] Phillip Rogaway et al. “OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption”. In: vol. 6. Jan. 2001, pp. 196–205.
DOI: 10.1145/501983.502011.

[38] Igor Semenov. “An Implementation Of ChaCha20 Stream Cypher in
All-Programmable SoCs”. In: The Department of Electrical and Computer
Engineering of The University of Alabama in Huntsville (2020). URL: http:
//www.ece.uah.edu/~milenka/docs/igor.semenov.thesis.pdf.

[40] Sergei Volokitin and Gerben Geltink. “Hardware Implementation of
HS1-SIV”. In: Oct. 2017, pp. 179–194. ISBN: 978-3-319-67875-7. DOI: 10.
1007/978-3-319-67876-4_9.

https://doi.org/10.1145/501983.502011
http://www.ece.uah.edu/~milenka/docs/igor.semenov.thesis.pdf
http://www.ece.uah.edu/~milenka/docs/igor.semenov.thesis.pdf
https://doi.org/10.1007/978-3-319-67876-4_9
https://doi.org/10.1007/978-3-319-67876-4_9

77

External Links

[6] AXI Protocol. URL: https://www.xilinx.com/support/documentation/
ip_documentation/ug761_axi_reference_guide.pdf.

[18] Intel Cyclone V. URL: https://www.intel.com/content/www/us/en/
products/programmable/fpga/cyclone-v.html.

[19] Jupyter Notebook. URL: https://jupyter.org/index.html.
[30] Matlab. URL: https://www.mathworks.com/products/matlab.html.
[33] PyCharm. URL: https://www.jetbrains.com/pycharm/.
[34] Pynq Design. URL: http://www.pynq.io/.
[35] Pynq-z1. URL: https : / / reference . digilentinc . com / reference /

programmable-logic/pynq-z1/start.
[39] Vivado-ILA IP. URL: https://www.xilinx.com/products/intellectual-

property/ila.html.
[41] Xilinx Vivado design Suite. URL: https://www.xilinx.com/products/

design-tools/vivado.html.

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-v.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/cyclone-v.html
https://jupyter.org/index.html
https://www.mathworks.com/products/matlab.html
https://www.jetbrains.com/pycharm/
http://www.pynq.io/
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Outline

	Related Work & Tools
	Compact hardware implementations of Blake, Skein, ChaCha & Threefish
	FPGA implementation of HS1-SIV
	Hardware Design of ChaCha20 & Poly1305
	Implementation of ChaCha20 in SoCs
	The FPGA Perspective
	Tools Used
	Vivado IDE
	Vivado High Level Synthesis (HLS)
	Synthesis Report
	Optimization Directives

	PYNQ and Jupyter Notebook

	FPGA Platform
	PYNQ-Z1 Specifications

	Thesis Approach

	Architecture Analysis
	Block & Stream Ciphers
	Adiantum
	Profiling
	Software
	XChaCha12
	ChaCha Algorithm: Initial State
	HChaCha: Intermediate State

	Little and Big Endian numbers
	Software acceleration of XChaCha12

	Hardware Approach

	FPGA Implementation
	Top-Down Strategy
	Pynq Configuration & Software Changes
	Vivado Hardware Design
	Multiple Clocks Configuration

	IP Implementation with HLS
	Core Function Analysis
	Flowchart analysis

	Results
	Specification of Compared Platforms
	Intel i5 3230M
	PYNQ-Z1 Resource Utilization

	Power Consumption
	Energy Consumption
	Throughput and Latency Speedup
	ChaCha Performance
	Adiantum Performance

	Conclusions and Future Work
	Conclusions
	Future Work

	References

