
  

  

Abstract— The paper provides conditions that guarantee 

existence and uniqueness of classical solutions for a non-local 

conservation law on a ring-road with nudging (or “look 

behind”) terms. The obtained conditions are novel, as they are 

not covered by existing results in the literature. The paper also 

provides results which indicate that nudging can increase the 

flow in a ring-road and, if properly designed, can have a strong 

stabilizing effect on traffic flow. The efficiency of the use of 

nudging terms is demonstrated by means of a numerical 

example. 

I. INTRODUCTION 

Non-local traffic flow models with Partial Differential 

Equations (PDEs) are based on extensions of the well-known 

Lighthill-Whitham-Richards model (LWR model, see [20, 

23]), where the speed is given by a non-local term. These 

models fall into the class of non-local conservation laws (see 

[5]) and possess some different features compared to the 

LWR model. Arrhenius “look-ahead” terms were considered 

in [25, 18, 19] as a result of stochastic microscopic 

dynamics, and it was shown that such models can develop 

shocks (and shock waves) in finite time. On the other hand, 

the fact that human drivers and automated vehicles adjust the 

vehicle speed based on a perception of downstream density, 

rather than the local density, motivated some researchers to 

express the perceived density by means of non-local 

(convolution) terms. Such models were studied in [2, 3, 4, 8, 

15, 16], and it was shown that they may be producing smooth 

solutions.  

     In the era of automated vehicles, the real-time information 

fed to each vehicle on a road is exploited for the appropriate 

adjustment of the speed of the vehicle. In contrast to manual 

driving, this information may include upstream density data, 

in addition to downstream density data. Note that human 

drivers base their driving decisions only on the perceived 

downstream traffic state, something that leads to the 

celebrated anisotropy principle in traffic flow modeling [7]. 

The possible beneficiary role of the use of upstream density 

data was pointed out in [22], where the effect of the upstream 

density data on the speed adjustment was termed as 

“nudging”. Such an effect was also studied in [18] (without 

reference to automated vehicles), where an Arrhenius “look-
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behind” non-local term was used for the mathematical 

expression of the use of upstream density data.        

    The selection of the nudging term for automated vehicles 

can be considered as a feedback design problem. Data are fed 

into the automated vehicles, based on which the vehicles 

adjust their speed. In other words, the density profile of the 

road changes over time, and this change is fed back to each 

automated vehicle. From a mathematically perspective, the 

use of upstream density data should not be performed in an 

arbitrary way, but so as to satisfy conditions for existence 

and uniqueness of solutions, together with further 

requirements for the closed-loop system (e.g., stability, 

optimality, etc.). It should be noticed here that the feedback 

design problem for the expression of “nudging” or “look-

behind” effect can be considered as a special feedback design 

problem for non-local, hyperbolic PDEs (see [6, 14, 17]). 

However, this specific feedback design problem is different 

from other traffic control problems studied in the literature 

(see [11, 13, 26, 27, 28]).    

   The present paper addresses these questions for a ring-road. 

We first present conditions which guarantee existence and 

uniqueness of classical solutions for a non-local conservation 

law with nudging terms (Theorem 1). The obtained results 

are novel, as they are not covered by the results in [2, 3, 4, 8, 

15, 16], where either the use of upstream density data is not 

allowed or a ring-road is not studied. In addition, the present 

paper studies the effects of nudging and it is shown that: 

(i) nudging can increase the flow in a ring-road at any 

density value; 

(ii) if properly designed, nudging can have a strong 

stabilizing effect on ring-road traffic. 

Indeed, we present results (Theorem 2) which guarantee 

local exponential stability of the uniform equilibrium profile 

in the 2L  state norm even for cases where the uniform 

equilibrium profile in a ring-road without nudging is not 

asymptotically stable and the model admits density waves. 

The existence of travelling waves for non-local conservation 

laws was studied in [24], where it is shown that travelling 

waves may occur even in non-local conservation laws.  

    The paper is organized as follows. Section II is devoted to 

the presentation of the non-local traffic flow models which 

are studied in the paper; moreover, the statements of the 

existence and uniqueness results for non-local traffic flow 

models are also given in Section II. The effects of nudging 

on ring-road traffic are studied in Section III. Illustrative 

numerical experiments are presented in Section IV, where 

the strong stabilizing effect of nudging is demonstrated. 

Finally, concluding remarks are given in Section V. Due to 

space constraints the proofs are omitted and can be found in 

[12]. 
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Notation. Throughout this paper, we adopt the following 

notation.  

  : [0, )+ = + . For a vector Ny  , y  denotes its 

transpose and ( )
1,...,

max i
i N

y y
 =

=  denotes its infinity norm. 

For two vectors , Nx y   we write x y  if and only if 

i ix y  for 1,...,i N= . We also define 

(0)

1
( ,..., )

N

Ny y y y= =  , (1)
2 1( ,..., , ) N

Ny y y y=   

and ( )ky  for 2k   by means of the recursive formula 

( ) ( 1) (1)( )k ky y −= .   

  Let 
nS    be an open set and let 

nA    be a set that 

satisfies ( )S A cl S  . By 0 ( ; )C A  , we denote the 

class of continuous functions on A , which take values in 
m   . By ( ; )kC A  , where 1k   is an integer, we 

denote the class of functions on 
nA   , which takes 

values in 
m    and has continuous derivatives of order 

k . In other words, the functions of class ( ; )kC A   are the 

functions which have continuous derivatives of order k  in 

int( )S A=  that can be continued continuously to all points 

in S A  .  When  =  , we write 0 ( )C A  or ( )kC A . 

  Let (0, )T  +  and :[0, ]T I  →  be given, where 

I    is an interval. We use the notation [ ]t  to denote 

the profile at certain [0, ]t T , i.e., ( [ ])( ) ( , )t x t x =  for 

all x I . ( )pL I  with 1p   denotes the equivalence 

class of measurable functions :f I →   for which 

1/

( )

p

p

p
I

f f x dx
 

=  + 
 
 
 . ( )L I  denotes the 

equivalence class of measurable functions :f I →   for 

which ( )sup ( )
x I

f ess f x




=  + . We use the notation 

( )f x  for the derivative at x I  of a differentiable 

function :f I →  .    

  2, ([0,1])W   is the Sobolev space of 1C  functions on [0,1]  

with Lipschitz derivative. 

  ( )Per   denotes the set of continuous, positive mappings 

: (0, )  → +  which are periodic with period 1, i.e., 

( 1) ( )x x + =  for all x  . 

 

II. NON-LOCAL TRAFFIC FLOW MODELS  

Many non-local PDE traffic flow models which have 

appeared in the literature (see [2, 3, 4, 8, 15, 16]) have the 

form 

 

( )( , ) ( , ) ( , ) 0t x t x v t x
t x




 
+ =

 
, for 0,t x    (2.1) 

( , ) ( ) ( , )

x

x

v t x f s x t s ds



 

+ 
= − 

 
 

 , for 0,t x   (2.2) 

where ( , )t x  denotes the traffic density, ( , )v t x  denotes the 

mean speed, 0t   is time, x  is the spatial variable, 0   is 

a constant (reflecting the visibility area), :f + + →   and 

: + + →   are non-increasing functions with 

0

( ) 1x dx



 = . Model (2.1), (2.2) constitutes a generalization 

of the classical LWR traffic flow model, where 

:f + + →   is the function that relates density to speed 

(fundamental diagram) and ( ) ( , )

x

x

s x t s ds



 

+

−  is the 

downstream density perceived by the human driver at spatial 

position x . Thus, the driver adapts the speed according to 

(2.2) on the basis of the perceived downstream density.   

    As a farther generalization, when automated vehicles are 

present on a highway, there may be a benefit by allowing the 

vehicle speed to depend on upstream density levels as well. 

Such an effect has been termed in the literature as “nudging” 

(see [22]) or “look-behind” effect (see [18]). In this case, the 

speed may be given by a relation of the form  

( , ) ( ) ( , ) ( ) ( , )

x x

x x

v t x f s x t s ds g x s t s ds





   

+

−

  
 = − − 

   
   

  ,  

 for 0,t x              (2.3) 

where 0   is a constant, :g + + →   is a non-

decreasing, bounded function, and : + + →   is a non-

increasing function. Even more emphatically, in the era of 

automated vehicles, the functions :g + + →   and 

: + + →   may be designed so that the traffic flow 

behavior of system (2.1), (2.3) has specific characteristics, 

e.g., so that the equilibrium point gives maximum flow of 

vehicles and is globally asymptotically stable. It is clear that 

in such a case the design problem for :g + + →   and 

: + + →   is strongly reminiscent of the feedback design 

problem for control systems. Therefore, there is an interest to 

understand traffic flow models of the form (2.1), (2.3). The 

first thing that we need to understand is the set of properties 

that all the functions described above must possess in order 

to have a well-defined system with solutions that have 

physical meaning (e.g., ( , )t x , ( , )v t x  have to be positive).  

In this paper, we study traffic flow models on a ring-road; 

hence we impose the periodicity condition  

 

( , 1) ( , )t x t x + = , for 0,t x  .    (2.4) 

 

Given 0 ( )Per    we consider the initial-value problem 

(2.1), (2.4), (2.5) with initial condition 

0[0] =                     (2.5) 

Our first main result is an existence and uniqueness result for 

the initial-value problem (2.1), (2.3), (2.4), (2.5).  



  

Theorem 1: Suppose that , (0,1]   , ( )3,f g C +  , 

( ) 0f   , ( ) 0g   , ( ) 0f   , ( ) 1g    for all 0  . 

Moreover, suppose that there exists a constant 0M   such 

that 
3 3

( ) ( )

0 00 0

sup ( ) sup ( )k k

k k

f g M
 

 
 = =

   
+    

   
    (2.6) 

 

Finally, suppose that the restrictions of , :  + + →   on 

[0, ] , [0, ] , respectively, are 1C  functions with ( ) 0x   

for [0, ]x  , ( ) 0x   for [0, ]x   and that ( ) 0x =  for 

x  , ( ) 0x =  for x  . Then for every 

2,
0 ( ) ( )W Per      the initial-value problem (2.1), 

(2.4), (2.3), (2.5) has a unique solution 1( )C +    with 

2,[ ] ( ) ( )t W Per      for all 0t  . Moreover, the 

following inequality holds for all 0,t x  : 

( ) ( )0 0
[0,1] [0,1]

min ( ) ( , ) max ( )
x x

x t x x  
 

      (2.7) 

 

Theorem 1 can be proved by applying [12, Theorem 2.3] to 

the case (2.3). Due to space constraints the proof is omitted 

and can be found in [12]. Finally, according to the proofs of 

Theorem 1 and [12, Theorem 2.3], the numerical scheme that 

approximates the unique classical solution of the initial value 

problem (2.1), (2.3), (2.4), (2.5) is 

 

( )1 1(( 1) ) 1 ( ) ( ) ( ) ( )i i i i ik v k k v k k         + −+ = − + ,  

 for 0, 1, 2,...i =   , 0,1,...k =    (2.8) 

0(0) : ( )i ih = , for 0, 1, 2,...i =       (2.9) 

where : 1/h N= , 2N  , : h =        

( )( ) (( ( )) )i
i Nv k K Q k  = , for 0, 1, 2,...i =   , 0,1,...k =  

     (2.10) 

0 1( ) ( ( ),..., ( )) N
NQ k k k     −=  ,  0,1,...k =       

  (2.11) 
( 1) 1 ( 1)1 1

0 1 1

( ) ( ) ( )

i h i hN N

N i i

i iih ih

K f s ds g s ds    

+ − −− −

= = −

   
=    

   
   
   ,    

for N +                 (2.12) 

 

III. CONTROLLING NON-LOCAL TRAFFIC FLOW MODELS 

The uniform equilibrium points ( ) 0x    of model (2.1), 

(2.2), (2.4) satisfy exactly the same density-flow relation 

( )q f =  of the classical LWR model (the so-called 

fundamental diagram). This is not true for the uniform 

equilibrium points ( ) 0x    of model (2.1), (2.3), (2.4). 

For this model, the density-flow relation is given by  

( ) ( )q f g  =         (3.1) 

where 

0

: ( )s ds



 =  . Since ( ) 1g   , relation (3.1) shows  

 
Fig. 1: The effect of nudging on the fundamental diagram.  

The blue line is the fundamental diagram with nudging and  

the red line is the fundamental diagram without nudging ( ( ) 1g s  ).  

 

that nudging can increase the flow. Moreover, the critical 

density, i.e., the density for which the flow becomes 

maximum, changes. This is demonstrated in Fig.1 for the 

case ( ) exp( )f  = − , 
exp( )

( ) (1 )
exp( )

s
g s k

k s




= +

+
, 1 = , 

1/ 2k = . It may be seen that the flow values are increased, 

and the critical density is increased as well. It should be 

noted that Fig.1 is typical for many combinations of 

functions ,f g  with the characteristics required by the 

physics of traffic flow, i.e., ( ) 0f   , ( ) 0g   , ( ) 0f   , 

( ) 1g   , for all 0  , ( )lim ( ) 0f



→+

= , ( )lim ( )g



→+

 + .  

 

Theorem 1 guarantees that the uniform equilibrium points 

( ) 0x    are neutrally stable in the sup norm of the 

state. However, Theorem 1 says nothing about (local or 

global) asymptotic stability and convergence to a uniform 

equilibrium point. Indeed, there are cases where the uniform 

equilibrium point ( ) 0x    for model (2.1), (2.2), (2.4) 

is not locally asymptotically stable, no matter what f  is. 

More specifically, it is shown in [12], that  model (2.1), (2.2), 

(2.4), for the important case 1( )x −=  for [0, ]x   and 

( ) 0x =  for x   (case also studied in [17]), where 

(0,1]   is a rational number, is characterized by lack of 

asymptotic stability of the uniform equilibrium point 

( ) 0x    since its solutions are high density waves 

which move with constant speed ( , ) ( )v t x f  . The reader 

should notice that, if convergence to the uniform equilibrium 

point ( ) 0x    is to be studied, then we should restrict 

our attention to initial conditions 2,
0 ( ) ( )W Per      

with 

1

0

0

( )x dx = , since only for this set of functions we 

can obtain solutions which converge to the uniform 

equilibrium point ( ) 0x    (notice that 

1 1

0

0 0

( , ) ( )t x dx x dx =   for all 0t   for every solution of 



  

(2.1), (2.4), (2.2), (2.5) or any solution of (2.1), (2.4), (2.3), 

(2.5)).  

 

In the next result we show that nudging, if properly designed, 

can improve the stability properties of the system. The proof 

can be found in [12].  

 

Theorem 2 (Local Stabilization by Means of Nudging): 

Consider model (2.1), (2.3), (2.4) with 1 = , 1( )x −=  for 

[0, ]x   and ( ) 0x =  for x  , ( ) 1x x = −  for 

[0,1]x , where (0,1]   is a constant and ( )3,f g C +   

are any functions with ( ) 0f   , ( ) 0g   , ( ) 0f   , 

( ) 1g    for all 0  . Moreover, suppose that there exists 

a constant 0M   such that inequality (2.17) holds. Let 
2,

0 ( ) ( )W Per      with  

max max min min min min2F g F g f G−      (3.2) 

where  

( ) 1
max min max: max ( ) : min ,F f s s   − =    (3.3) 

( ) 1
min min max: min ( ) : min ,F f s s   − =    (3.4) 

( )( )1
min max: min ,f f   − =      (3.5) 

( )max min max

1
: min 2 ,

2
g g    

= − 
 

    (3.6) 

( )min max min

1
: max 2 ,

2
g g    

= − 
 

    (3.7) 

( )

( )

max min

min

min max

( ) : max 2 ,
: min

2 min 2 ,

g s
G

s

  

  





  −
 

=  
  − 

 

  (3.8) 

1

0

0

( )s ds  =  , ( )min 0
[0,1]

: min ( )
x

x 


=  and 

( )max 0
[0,1]

: max ( )
x

x 


= . Then there exists a constant 0c   

such that the unique solution 1( )C +    of the initial-

value problem (2.1), (2.4), (2.3), (2.5) satisfies the estimate: 

( ) ( )
1 1

2 2
max

0

min0 0

( , ) exp( ) ( )t x dx ct x dx


   


 −  − −  ,   

 for 0t       (3.9) 

 

Remarks: (i) When min max  = =  then (3.2) holds 

automatically (by virtue of the fact that  ( ) 0f   , 

( ) 0g   , ( ) 0f   , ( ) 1g    for all 0  ). Due to 

continuity of max min min max min min, , , , ,F F f g g G  with respect to 

min max, ,   , for every 0  , there exist 

min max     such that (3.2) holds. This implies the 

existence of a neighborhood of the uniform equilibrium point 

( ) 0x    in ( )Per   for which the 2 (0,1)L  norm of the 

deviation of the solution from the equilibrium point 

converges exponentially to zero.  

(ii) Condition (3.2) is a condition on the maximum deviation 

0 


−  of the initial condition from the desired uniform 

equilibrium point ( ) 0x   .  

(iii) The nudging term with 1 = , ( ) 1x x = −  for [0,1]x , 

depends on the whole density profile of the ring-road. Such a 

term has no meaning when the vehicles are driven by human 

drivers. However, when automated vehicles are present in a 

highway, then such a term can be implemented by providing 

continuously information for the density profile to each 

vehicle. In such a case, the effect of nudging is not only the 

increase of the flow, but also the elimination of the well-

known stop-and-go waves (see [1]).  

(iv) The proof of Theorem 2 makes use of estimate (2.16) 

and the functional 

1

0

( )
( ) ( ) ln ( )

x
V x x dx


   







  
= + −   

  
 . 

This functional, defined on the set of functions ( )Per    

with 
1

00
( )x dx  =  , is a non-coercive Control Lyapunov 

Functional for the control system (2.1), (2.4) with 
1[ ] ( ) ( )v t Per C     as input. Indeed, for classical 

solutions of (2.1), (2.4) we get 

( )
1

0

( [ ]) ( , ) ( , )
d v

V t t x t x dx
dt x

   
= −

 . For non-coercive 

Lyapunov functionals, the reader can consult [9, 21]. It is 

possible that the use of other Lyapunov functionals can give 

less demanding conditions than (3.2) for exponential 

convergence to the uniform equilibrium point ( ) 0x   .   

  

IV. ILLUSTRATIVE EXAMPLE 

In this section we present some numerical examples that 

demonstrate the advantages and the stabilizing effects of 

nudging (Model 3) in comparison with the “look-ahead” 

model (2.1), (2.2) (Model 2) and the LWR model (2.1) with 

( , ) ( ( , ))v t x f t x=  (Model 1). Let ( ) exp( )f  = −   for all 

models on a ring-road (2.4) with initial density given by 

 

0

2.35, 0.5 0.75

[0.5 ,0.5] [0.75,0.75 ],
( ) [0.55,2.35],

0

0.55,

x

x
x

else

 




=  


 −  +



 =

 

Note that on the interval [0.5 ,0.5] [0.75,0.75 ]x   −  + , 

for sufficiently small 0  , the initial density profile 0 ( )x  

is smoothly extended to satisfy the requirement 
2,

0
( ) ( )W Per


     in Theorem 2. Notice also that the 

initial condition corresponds to a road with congestion belt at 

[0.5,0.75]  with the uniform equilibrium  



  

given by 
1

00
( ) 1x dx  = = . 

 Model 3 

Velocity 

( , )v t x  

Model (2.1) with ( , )v t x  

given by (2.3) 

( )g   

1.8
exp

(2 )
( ) 1.6

1.8
0.6 exp

(2 )

x

g x

x

 

 

−
=

+
−

 
 
 

 
 
 

 

( )   1


−
 

( )   1 x−  

 

Table 1. Model 3 of the simulation example. 

 

We have used two different values for the upstream horizon: 

1 =  and 0.154 = . While Theorem 2 guarantees local 

exponential stabilization for 1 = , it is important for 

implementation purposes to consider small values for the 

upstream horizon (which do not require knowledge of the 

whole density profile of the ring road).  The value of the 

downstream horizon in all experiments was set 0.1 = . 

While the numerical results for the LWR model are obtained 

by means of the Godunov numerical scheme, for the non-

local PDEs we have used the numerical scheme (2.8)-(2.12) 

with 1/ 500h = , 0.25 = . Figure 3 shows the density 

profiles at different times.   

 

 

 

 

 
Fig.3 Density profiles of Model 1, Model 2, Model 3 with 1 =  

and Model 3 with 0.154 = . 

 

Notice that the rate of convergence of Model 3 for both 

values 1 =  and 0.154 =  is faster compared to the other 



  

models. This feature can also be verified in Figure 4, which 

depicts the evolution of the 2L  norm of the deviation from 

the equilibrium ( )
1/2

1
2

2
0

[ ] ( , )t t x dx    
 

− = − 
 
 
 .  

Figure 4 also shows the evolution of the logarithm of the 2L  

norm 
2

[ ]t −  indicating exponential convergence. 

 

Fig.4 Evolution of  the 
2L  norm and its logarithm for Model 1, 

Model 2, Model 3 with 1 =  and Model 3 with 0.154 = . 

V. CONCLUSION 

The paper provided indications about the stabilizing effect of 

nudging in a ring-road when nudging is expressed by means 

of (2.3). It is also possible to study more complicated speed 

adjustment feedback laws which may allow the development 

of global stabilization results for ring-roads. This 

development has to be combined with the construction of 

appropriate Lyapunov functionals for the system.  Another 

research direction is the study of the effect of boundary 

conditions in non-local conservation laws on bounded 

domains. It is (in principle) possible to combine boundary 

feedback stabilization approaches with nudging and obtain 

even better results.  
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