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Abstract— The paper deals with the design of nonlinear adap-
tive cruise controllers for vehicular platoons. The constructed
feedback controllers are nonlinear functions of the distance
between successive vehicles and their speeds. It is shown that
the proposed novel controllers guarantee safety (collision avoid-
ance) and bounded vehicle speeds by explicitly characterizing
the set of allowable inputs. Moreover, we guarantee global
asymptotic stability of the platoon to a desired configuration
as well as string stability. Certain macroscopic properties are
also investigated. The efficiency of the nonlinear adaptive cruise
controllers is demonstrated by means of numerical examples.

I. INTRODUCTION

Adaptive cruise control (ACC) systems are designed to
enhance the standard cruise control by allowing an equipped
vehicle to maintain certain distance from the preceding
vehicle.

A large variety of spacing policies and controllers for ACC
vehicles and platoons of ACC vehicles have appeared, see
[4], [5], [7], [12], [16], [18], [20], [21], [22], [23], [28],
[31]. The most common policies considered in the related
literature are the constant spacing policy [26], where the
distance between successive vehicles remains constant at
all speeds; and the Constant-Time Gap (CTG) policy [12],
where the spacing varies linearly with speed. To evaluate
a spacing policy and its associated controller, the follow-
ing criteria were proposed, see [21]: (i) individual vehicle
stability, which characterizes the convergence towards a
desired equilibrium; (ii) string stability, which focuses on the
dissipation of small perturbations along a string of vehicles
([5], [17], [25], [27]); and (iii) traffic flow stability which
deals with the evolution of density when all vehicles use the
same spacing policy ([21], [22], [24]).

The notion of string stability has been widely studied and
several definitions have appeared in the literature, see [5],
[17], [20], [27], [25], [30]. A detailed overview of the various
string stability definitions and their properties can be found
in [8], [17]. To address the ambiguity over the different
definitions used in the literature, a novel definition was
proposed in [17] for both linear and nonlinear systems based
on Lp stability, which encompasses the upstream disturbance
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attenuation, the external input of the leading vehicle, as well
as perturbations on initial conditions.

While string stability ensures that disturbances in position,
speed or acceleration do not accentuate while propagating
along the platoon, it does not guarantee collision avoidance
between vehicles in the platoon, see [6]. Indeed, the majority
of spacing policies and ACC controllers focus on stability
and string stability properties, ([10], [16], [31], [27], [32],
[33]), which, however, may result in negative spacing error
and negative speeds. On the other hand, approaches con-
sidering safety can be found in [1], [4], but they do not
formally study string stability, and also in [9], [11], [28],
which mainly deal with boundedness of spacing error rather
than convergence to a desired value. In [15], different control
configurations and conditions for a CTG policy are derived
that guarantee string stability and collision avoidance when
the platoon is initiated from an equilibrium position with
zero speed and sufficiently large initial spacing between
vehicles. Safety criteria were also presented in [2], [3],
where, collisions are avoided whenever the platoon does not
exceed a given relative speed threshold regardless of the
behavior of the leader.

It is clear from the above that a methodology that simul-
taneously guarantees safety, stability, string stability under
predecessor-follower (i.e. autonomous) control architecture is
missing in the literature. In this paper, we present conditions
which guarantee safety, stability and Lp string stability of a
vehicular platoon using nonlinear adaptive cruise controllers.
The proposed nonlinear controller incorporates and integrates
the car-following and cruise control tasks without any need
for heuristic switching logic and has the following features:
1. It provides safe platoon operation without collisions,
negative speeds or speeds exceeding speed limits.
2. It guarantees global asymptotic stability of the spac-
ing/speed equilibrium for a platoon on an open road.
3. It guarantees Lp string stability for the platoon.

Moreover, we explicitly characterize the set of feasible
initial states for safe operation in terms of collision avoidance
and bounded vehicle speeds as well as the class of inputs
(maneuvers of the leading vehicle) that can be allowed for
the safe operation of the platoon. Finally, certain macroscopic
properties related to traffic flow stability, design of the
fundamental diagram, and the reduction of the microscopic
model to the standard Lighthill-Witham-Richards (LWR)
model [14], [19] are studied.

The structure of the paper is as follows. Section II is
devoted to the presentation of the properties of adaptive
cruise controllers, such as safety criteria and appropriate
stability notions. To motivate the use of nonlinear controllers,



simulation scenarios are also presented in Section II using the
standard CTG controller (see [18]) and the Variable Time-
Gap (VTG) controller (see [29]), which demonstrate that
certain safety criteria may fail. A general form of a nonlinear
adaptive cruise controller is provided in Section III together
with sufficient conditions for the safe operation of a platoon
of vehicles. Section IV provides results for the Lp string
stability of the proposed adaptive cruise controller. It is also
shown that the sufficient conditions for string stability and
the existence of a fundamental diagram also guarantee global
asymptotic stability of the unique equilibrium point of a
platoon operating in an open road. Numerical examples are
presented in Section V to demonstrate the efficiency of the
proposed nonlinear adaptive cruise controller. Due to space
constraints the proofs are omitted and can be found in [13]
together with the case of platoons operating on a ring-road.

Notation. Throughout this paper, we adopt the following
notation: R+ := [0,+∞) denotes the set of non-negative
real numbers. By |x| we denote both the Euclidean norm of
a vector x ∈ Rn and the absolute value of a scalar x ∈ R.
By K we denote the class of strictly increasing C0 functions
a : R+ → R+ with a(0) = 0. By K∞ we denote the
class of strictly increasing C0 functions a : R+ → R+ with
a(0) = 0 and lim

s→+∞
a(s) = +∞. By KL we denote the set

of all continuous functions σ : R+ × R+ → R+ with the
properties: (i) for each t ≥ 0 the mapping σ(·, t) is of class
K; (ii) for each s ≥ 0, the mapping σ(s, ·) is non-increasing
with lim

s→+∞
σ(s, t) = 0. By C0(A,Ω), we denote the class

of continuous functions on A ⊆ Rn, which take values in
Ω ⊆ Rm. By Ck(A; Ω), where k ≥ 1 is an integer, we denote
the class of functions on A ⊆ Rn with continuous derivatives
of order k, which take values in Ω ⊆ Rm. When Ω = R the
we write C0(A) or Ck(A). By Lp with p ≥ 1 we denote the
equivalence class of measurable functions f : R+ → Rn, for

which ‖f‖[0,t],p =
(∫ t

0
|f(x)|p dx

)1/p
< +∞. L∞ denotes

the equivalence class of measurable functions f : R+ → Rn,
for which ‖f‖[0,t],∞ = ess sup

x∈[0,t)
(|f(x)|) < +∞. For a set

S ⊆ Rn, S̄ denotes the closure of S.

II. MOTIVATION

A commonly used model for vehicle dynamics in vehicular
platoons consists of the following ODEs:

ṡi = vi−1 − vi
v̇i = ui

, i = 1, . . . , n (1)

where we consider a platoon of n identical vehicles on a
road, si (i = 1, . . . , n) is the back-to-back distance of the
i-th vehicle from the (i− 1)-th vehicle, vi (i = 1, . . . , n) is
the speed of the i-th vehicle, ui (i = 1, . . . , n) is the control
input (acceleration) of the i-th vehicle, and v0 is the speed
of the leader and is an external input.

For autonomous vehicles (no communication), the so-
called predecessor-follower control architecture is used, i.e.,
there exists a function F : R3

+ → R so that
ui = F (si, vi−1, vi), i = 1, . . . , n. (2)

The function F : R3
+ → R is a feedback law that consti-

tutes the Adaptive Cruise Controller. This function must be
selected in such a way that the following requirements hold.

1) Safe Operation Requirement: There exists
constant a > 0, a non-empty set of inputs
J ⊆

{
v0 ∈ C1 (R+) : 0 < v0 < vmax

}
, where vmax > 0

is the speed limit of the road, and a set valued map
(0, vmax) 3 v0 → D(v0) ⊆ R2n with

D(v0) ⊆ {(s1, . . . , sn, v1, . . . , vn) ∈ R2n :

0 < vi < vmax, , si > a , i = 1, . . . , n }
(3)

with the following property:
“For each v0 ∈ J , if (s1(0), . . . , sn(0), v1(0), . . . , vn(0)) ∈
D(v0(0)), then the solution of the initial-
value problem (1), (2) with initial condition
(s1(0), . . . , sn(0), v1(0), . . . , vn(0)) exists for all t ≥ 0 and
satisfies (s1(t), . . . , sn(t), v1(t), . . . , vn(t)) ∈ D(v0(t)).”

Notice that the requirement of safe operation is actually a
well-posedness requirement, i.e., we require that the solution
exists and takes values on a physically meaningful set.
However, the requirement of safe operation is not only a
well-posedness characterization of the solution; we further
require that si(t) > a, where the constant a > 0 is the
minimum allowable distance between two vehicles. This is a
safety requirement which implies the absence of collisions.

2) Technical Requirement: For a given constant A > 0,
we have
|F (s, w, v)| ≤ A, for all s > a, v, w ∈ (0, vmax). (4)

The constant A > 0 appearing in the technical requirement
is the maximum acceleration that the vehicle can have and
depends on the technical characteristics of the vehicles and
the road.

3) Stability Requirement: For every v∗ ∈ (0, vmax), there
exists s∗ ∈ (a,+∞) with F (s∗, v∗, v∗) = 0 such that (i)
(s∗, . . . , s∗, v∗, . . . , v∗) ∈ D(v∗), (ii) the constant input
v0(t) ≡ v∗ is in the allowable input set J , and (iii)
the equilibrium point (s∗, . . . , s∗, v∗, . . . , v∗) ∈ D(v∗) of
(1), (2) with v0(t) ≡ v∗ defined on D(v∗) is Globally
Asymptotically Stable and Locally Exponentially Stable, i.e.,
there exist constants M,σ, δ > 0 and a function ω ∈ KL so
that for every (s1(0), . . . , sn(0), v1(0), . . . , vn(0)) ∈ D(v∗)
the solution of (1), (2) with v0(t) ≡ v∗ satisfies

|(s1(t)− s∗, . . . , sn(t)− s∗, v1(t)− v∗, . . . , vn(t)− v∗)|
≤ ω( |(s1(0)− s∗, . . . , sn(0)− s∗,

v1(0)− v∗, . . . , vn(0)− v∗)| , t ), for all t ≥ 0; (5)

and if in addition |(s1(0) − s∗, . . . , sn(0) − s∗, v1(0) −
v∗, . . . , vn(0)− v∗)| < δ then

|(s1(t)− s∗, . . . , sn(t)− s∗, v1(t)− v∗, . . . , vn(t)− v∗)|
≤M exp(−σt)( |(s1(0)− s∗, . . . , sn(0)− s∗,

v1(0)− v∗, . . . , vn(0)− v∗)| , t ), for all t ≥ 0. (6)

The stability requirement is a crucial requirement that guar-
antees the convergence of the vehicle states to the desired
values.



While the stability requirement guarantees the desired
asymptotic behavior, there is no guarantee for the tran-
sient behavior. A performance requirement which guarantees
proper transient behavior is the requirement of string stabil-
ity. Here we adopt a slightly stronger version of the Lp string
stability notion given in [17]. As noted in [17], the Lp string
stability notion is motivated by the requirement of energy
dissipation along the string of vehicles for p = 2, whereas
the case p =∞ is related to maximum overshoot of the local
error vector between the current speed and desired speed.

4) String Stability Requirement: There exists p ∈ [1,+∞]
with the following property:
For every q > 0 there exists a continuous function βq : R2 →
R+ with βq(0) = 0, βq(s) > 0 for s ∈ R2 \ {0} such that
every solution of (1), (2) with v0 ∈ J satisfies the estimate

‖vi‖[0,t],p ≤(1 + q) ‖vi−1‖[0,t],p βq (si(0)− s∗, vi(0)− v∗)
for all t ≥ 0 and i = 1, . . . , n (7)

where ‖vi‖[0,t],p =
(∫ t

0
|vi(l)− v∗|p dl

)1/p
, ‖vi−1‖[0,t],p =(∫ t

0
|vi−1(l)− v∗|p dl

)1/p
for p ∈ [1,+∞), ‖vi‖[0,t],∞ =

sup
0≤l≤t

(|vi(l)− v∗|), ‖vi−1‖[0,t],∞ = sup
0≤l≤t

(|vi−1(l)− v∗|),

v∗ ∈ (0, vmax), s∗ ∈ (a,+∞) are constants with
F (s∗, v∗, v∗) = 0.

Another performance guarantee can be obtained by the
existence of a globally exponentially stable manifold for the
speed states. This requirement is described below.

5) Fundamental Diagram Requirement: There exists a
function G ∈ C1(R+;R+) and constants M̄, σ̄ > 0 such that
every solution of (1), (2) with v0 ∈ J satisfies the estimate
n∑
i=1

|vi(t)−G(si(t))| ≤M̄ exp(−σ̄t)
n∑
i=1

|vi(0)−G(si(0))| ,

for all t ≥ 0. (8)

The fundamental diagram requirement essentially de-
mands that the vehicle speeds ultimately depend only on
the local vehicle density. Since the vehicle density ρ(t, x)
is equal to 1/si(t) when x is a position between the i-th
vehicle and the (i−1)-th vehicle, it is reasonable to say that
ultimately the local speed of vehicles of the platoon obeys
the equation

v = G
(
ρ−1

)
, for ρ ∈ (0, a−1). (9)

Even in the case that a globally exponentially manifold for
the speed states is absent, it is reasonable to expect that all
equilibrium points for (1), (2) satisfy a relation of the form
vi = G(si) for i = 1, . . . , n and an appropriate function G ∈
C1(R+;R+). The inverse of this relation, i.e., the equation
si = G−1(vi) when G is invertible, is called a spacing policy
(see [24], [29]). A spacing policy allows the reduction of the
system of n ODEs (1), (2) to the standard LWR model with
speed given by (9) (although such a reduction is problematic
in the absence of a fundamental diagram for the platoon).
In this case, the following macroscopic stability condition
arises.

v1

v2

v3

v4

v5

v0

vmax

0 10 20 30 40
26

27

28

29

30

31

32

time (s)

s
p
e
e
d
(m

/s
)

Fig. 1. CTG policy (11) with controller (2), (12) and speeds exceeding
the road speed limit vmax = 30.1m/s.

6) Macroscopic Stability Requirement: There exist con-
stants 0 < a < b such that a function

∂

∂ ρ

(
ρG
(
ρ−1

))
> 0, for all ρ ∈ (a, b). (10)

Inequality (10) was proposed in [24], [29] for the so-called
“unconditional traffic-flow stability”, i.e., the stability of the
model to all possible boundary conditions. It was later used
in [21] for the construction of macroscopically stable spacing
policies.

A very common spacing policy used in ACC systems is
the constant time-gap policy (CTG) in which the desired
inter-vehicle spacing is proportional to speed:

sd = r + Tvi (11)

where r ≥ a is a safety or desired distance between vehicles
and the constant T > 0 is referred to as the time-gap, i.e., the
time required for the following vehicle to reach the current
back side of the front vehicle while driving with its current
speed vi. For the CTG spacing policy (11), a typical control
law (2) to regulate the spacing between vehicles is given by

F (s, w, v) = (k − g)g(s− r) + gw − kv (12)

where k > g > 0, the time-gap being T = 1/g, see
[12], [18]. The CTG policy (11), with the controller (2),
(12) satisfies both the Stability Requirement and the String-
Stability Requirement, see [18]. However, the Technical
Requirement is not fulfilled since F (s, w, v) in (12) grows
linearly in s and, more importantly, there are cases where
the Safe Operation Requirement on an open road may not
be valid. To our knowledge, no researcher has ever shown
what is the allowable set of inputs for an open road. This is
illustrated in the following scenario.

For illustration of some of the above statements, consider
a case of n = 5 vehicles of the same length a = 5m moving
on a road with speed limit vmax = 30.1m/s with all vehicles
using the same CTG spacing policy (11) with controller (2),
(12), initial speed vi,0 = vi(0) = 27m/s and initial spacing
si,0 = si(0) = 70m, i = 1, . . . , 5. Furthermore, suppose that
the leading vehicle is also moving with constant speed v0 =
27m/s, and let the time-gap be T = 1/g = 1s, and k =
1.2 s−1, r = 33m. Fig. 1 shows that in this setting, certain
vehicles do not respect the speed limit vmax = 30.1m/s.

As a second scenario, we consider a slowly moving
leading vehicle v0 = 10m/s on a road with speed limit
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Fig. 2. Vehicle spacing for CTG policy (11) with controller (2), (12) with
collision.
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Fig. 3. Negative vehicle speed for the CTG policy (11) with controller
(2), (12).

vmax = 30.1m/s and n = 5 vehicles moving with speed
vi,0 = 30m/s, i = 1, . . . , 5, and initial spacing s1,0 = 25m,
si,0 = 15m, i = 2, . . . , 5. For this scenario, we let the
time-gap T = 1/g = 1s, k = 1.2s−1 and set r = 33m.
Furthermore, suppose that the leading vehicle decelerates
to a lower speed v0 = 1m/s. Fig. 2 shows the back-to-
back vehicle distances for this particular scenario. It can
be seen that the safe operation requirement with a = 5m
(the vehicles’ length) is not satisfied, since there exists time
T > 0 with s2(T ) < a, which implies collision between the
first and second vehicle. Notice also that the vehicles in the
platoon attain negative speeds as shown in Fig. 3.

In addition to the above scenarios, there are certain
macroscopic properties of the CTG policy, for a string of
vehicles on a single-lane highway, that are of interest. More
specifically, for the CTG policy (11), we can obtain from (9)
with G(s) = g(s−r), that the road speed in terms of density
is

v = g
1− rρ
ρ

(13)

and the traffic flow is

Q = ρv = g(1− rρ). (14)

Notice now that, as the density decreases, the speed grows
unbounded. Conversely, larger values of r result in smaller
traffic density with the speed being negative if ρ ∈(
r−1, a−1

)
. Fig. 4 illustrates the density-flow relation (the

so-called fundamental diagram) for different values of the
minimum distance r and the time-gap T = 1/g. It can be
seen that the fundamental diagram violates the maximum
speed since it passes above the line Q = vmaxρ. It is clear
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Fig. 4. Fundamental diagram of CTG policy (11) for several values of r
and fixed T = 1.4s on the top; on the bottom, the fundamental diagram
for fixed r = 10m and several values of T .

that the macroscopic stability requirement does not hold (as
was already remarked in [24], [29]). Moreover, since the
fundamental diagram is always a straight line, the CTG
policy (11) has limited degrees of freedom for the optimal
selection of the desired fundamental diagram.

It should be noted that practical ACC systems have two
modes of operation: to maintain a desired speed as conven-
tional cruise control; or switch to CTG car-following mode if
the preceding vehicle is slower. These two modes are coupled
with a transitional logic which determines when to switch
from speed-control mode to spacing-control mode and vice
versa, see [7]. Therefore, in practice, ACC systems would
never increase the vehicle speed beyond the speed limit.

The previous scenarios show that the CTG policy (11)
with the controller (12) fails to satisfy the safe requirement
operation leading to negative speeds, collisions and speeds
exceeding the road speed limits. Analogous behavior con-
cerning safety can also been observed with the VTG policy

sd =
1

ρm (1− vi/vmax)

under the controller proposed in [29]:

F (s, w, v) =
ρm
vmax

(vmax−v)2(w−v+λs− vmaxλ

ρm(vmax − v)
)

(15)
where λ > 0 and ρm is the jam density. The VTG controller
(15) is a nonlinear function of vehicle speed and satisfies
the macroscopic stability requirement and the string stability
requirement, see [29]. However, the safety requirement is not
satisfied as shown next. We consider a scenario where all
vehicles are moving with initial speed vi,0 = 27m/s, initial
spacing si,0 = 30m, i = 1, ..., 5, and the leading vehicle
moving with speed v0 = 24m/s on a road with speed limit
vmax = 30.1m/s. Moreover, the leading vehicle strongly
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Fig. 5. VTG policy with controller (15) with collisions.

decelerates to a speed of v0 = 5m/s. We set λ = 0.5 and
ρm = 0.05veh/m. Fig. 5 shows that the first vehicle collides
with the leading vehicle since there exists time T > 0 with
s1(T ) < a. Finally, in Fig. 6 it is shown that the vehicles
also attain negative speeds.

III. SAFE OPERATION OF PLATOONS

In this section, we provide sufficient conditions for the
safe operation of a vehicular platoon. Our first result provides
sufficient conditions for an open road and is given below.

Theorem 1: Let f, g, κ : R → R+ be locally Lipschitz
functions and suppose that there exist constants vmax > 0,
λ > a > 0, k > 0 for which the functions f, g, κ : R→ R+

satisfy the following properties:

0 ≤ g(s) < κ(s) ≤ k, for all s ≥ a (16)
f(s)

κ(s)− g(s)
≤ vmax < k(λ− a), for all s ≥ a (17)

f(s) = g(s) = 0 and κ(s) = k, for all s ∈ [a, λ] (18)

Given v0 ∈ (0, vmax), we define the set:

D(v0) = (s1, . . . , sn, v1, . . . , vn) ∈ R2n :
0 < vi < vmax

si > a+ k−1 max (0, vi − vi−1)
, i = 1, . . . , n

 .

(19)

Then, for every input v0 ∈ C1(R+) satisfying

v̇0(t) ≥ −kv0(t), 0 < v0(t) < vmax, for all t ≥ 0 (20)

and for every (s1,0, . . . , sn,0, v1,0, . . . , vn,0) ∈ D(v0(0)), the
initial-value problem (1), (2) with

F (s, w, v) = f(s) + g(s)w − κ(s)v, for all s, v, w ∈ R
(21)

with initial condition (s1(0), . . . , sn(0), v1(0), . . . , vn(0)) =
(s1,0, . . . , sn,0, v1,0, . . . , vn,0) has a unique solution
(s1(t), . . . , sn(t), v1(t), . . . , vn(t)) defined for all t ≥ 0 that
satisfies (s1(t), . . . , sn(t), v1(t), . . . , vn(t)) ∈ D(v0(t)) for
all t ≥ 0.

Theorem 1 characterizes clearly the class of inputs that
can be allowed for the safe operation of a vehicular platoon.
Indeed, the speed of the leader v0 must be a function of
class C1(R+) which satisfies (20). When the speed of the
leader satisfies this safety requirement, then all vehicles
remain in a distance at least a > 0 from each other, and
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Fig. 6. VTG policy with controller (15) with negative speeds.

all vehicles’ speeds are less than the speed limit vmax.
Thus, if the adaptive cruise controller has the form (21),
where the functions f, g, κ : R → R+ satisfy (16), (17)
and (18), then the safe operation requirement is satisfied.
Notice that the sufficient conditions (16), (17) and (18), are
not restrictive and depend on technical characteristics of the
vehicles and the road. In particular, the constant k in (16)
represents a friction term and condition (20) together with
inequality κ(s) ≤ k, s ≥ a, describe the maximum rate
of deceleration of the leading and following vehicles in the
platoon. Condition (18) describes the distance at which a
following vehicle starts decelerating. Finally, conditions (16)
and (17) are technical conditions that are required for the safe
operation of the platoon.

Remark 1: If the adaptive cruise controller has the form
(21), where the functions f, g, κ : R → R+ satisfy (16),
(17) and (18), then the Technical Requirement holds for the
function F defined by (21). Indeed, the fact that the functions
f, g, κ : R→ R+ are non-negative and inequality (17) show
that

|F (s, w, v)| < kvmax, for all s > a, v, w ∈ (0, vmax). (22)

Consequently, inequality (22) guarantees that inequality (4)
holds with A := kvmax.

IV. STABILITY, STRING STABILITY AND FUNDAMENTAL
DIAGRAM

If the adaptive cruise controller has the form (21), where
the functions f, g, κ : R → R+ satisfy (16), (17) and (18),
then the safe operation of a vehicular platoon is guaranteed.
However, we have no guarantee for the string stability of
the platoon or for the existence of a fundamental diagram.
In order to achieve these objectives, we have to restrict
the allowable form of the adaptive cruise controller, so that
conditions (16), (17), (18) hold automatically, and additional
sufficient conditions that guarantee string stability and the
existence of a fundamental diagram for the platoon hold.
This is shown by the following theorem:

Theorem 2: (String Stability and Fundamental Diagram)
Let g : R→ R+ be a locally Lipschitz function and suppose
that there exist constants k > gmax > 0, λ > a > 0 for
which the following properties hold:

0 < g(s) ≤ gmax, for all s > λ (23)



vmax :=

∫ +∞

a

g(l)dl < k(λ− a) (24)

g(s) = 0, for all s ∈ [a, λ]. (25)

Let v∗ ∈ (0, vmax) be a given constant and define s∗ ∈
(λ,+∞) by means of the equation

v∗ = G(s∗) (26)

where
G(s) :=

∫ s

a

g(l)dl, for all s ∈ R. (27)

Also define

F (s, w, v) = (k−g(s))G(s)+g(s)w−kv, for all s, v, w ∈ R.
(28)

Given v0 ∈ (0, vmax), we define the set D(v0) ⊂ R2n

by means of (19). Then, for every input v0 ∈ C1(R+)
satisfying (20) and for every (s1,0, . . . , sn,0, v1,0, . . . , vn,0) ∈
D(v0(0)), the initial-value problem (1), (2) with (28),
initial condition (s1(0), . . . , sn(0), v1(0), . . . , vn(0)) =
(s1,0, . . . , sn,0, v1,0, . . . , vn,0) has a unique solution
(s1(t), . . . , sn(t), v1(t), . . . , vn(t)) defined for all t ≥ 0 that
satisfies (s1(t), . . . , sn(t), v1(t), . . . , vn(t)) ∈ D(v0(t)) for
all t ≥ 0. Moreover, the following inequalities hold for all
t ≥ 0, i = 1, . . . , n and q > 0:∫ t

0

(vi(τ)− v∗)2dτ ≤ (1 + q)

∫ t

0

(vi−1(τ)− v∗)2 dτ

+ k−1
(
W (si(0), vi(0)) +

1

2q
(vi(0)−G(si(0)))

2

)
(29)∫ t

0

(G(si(τ))− v∗)2dτ ≤

(1 + 2q)
2qk + k − gmax

k − gmax

∫ t

0

(vi−1(τ)− v∗)2 dτ

+
2qk + k − gmax

k (k − gmax)

(
W (si(0), vi(0))

+
1

2q
(vi(0)−G(si(0)))

2

)
(30)

|vi(t)− v∗| ≤2 |vi(0)− v∗|+ |G(si(0))− v∗|
+ sup

0≤τ≤t
(|vi−1(τ)− v∗|) (31)

n∑
i=1

|vi(t)−G(si(t))| ≤ e(−(k−gmax)t)
n∑
i=1

|vi(0)−G(si(0))|

(32)
where W (s, v) := (v−v∗)2 +2

∫ s
s∗

(k−g(z))(G(z)−v∗)dz.
Due to (23), (24), (25), the function G, defined by (27), is

strictly increasing on [λ,+∞). This feature guarantees that
for every v∗ ∈ (0, vmax), the solution s∗ > λ of equation
(26) is unique.

It should be noted that, if the adaptive cruise controller
has the form (28), where g : R→ R+ is a locally Lipschitz
function that satisfies (23), (24), (25), then the conditions for
the safe operation of the vehicular platoon hold. However,
in this case we also have some additional properties shown
by estimates (29), (30), (31) and (32). Estimate (29) shows

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.1

0.2

0.3

0.4

0.5

Density ( )

F
lo
w

(Q
)

γ gmax

57.4136 1.1

60.1 1

67.525 0.8

72.85 0.7

89.95 0.5

Fig. 7. Fundamental Diagram for the nonlinear adaptive cruise controller
(2), with (28) and (33).

that the L2 string stability notion holds; and estimate (31)
shows that the L∞ string stability notion holds. The point
(s1, . . . , sn, v1, . . . , vn) = (s∗, . . . , s∗, v∗, . . . , v∗) is the de-
sired equilibrium point for the vehicular platoon. Moreover,
estimate (32) guarantees that the vehicular platoon under the
cruise controller (28) has a fundamental diagram of the form
(9), where G is defined by (27).

Theorem 2 allows the selection of the locally Lipschitz
function g : R → R+ that satisfies (23), (24), (25) in order
to have an appropriate fundamental diagram for the platoon.
By changing g : R→ R+, we are in a position to change the
shape as well as the critical density and the capacity of the
fundamental diagram. This feature is illustrated in Section V.

If the adaptive cruise controller has the form (28),
where g : R → R+ is a locally Lipschitz function
that satisfies (23), (24), (25) then the equilibrium point
(s∗, . . . , s∗, v∗, . . . , v∗) ∈ D(v∗) for a platoon on an open
road is Globally Asymptotically Stable. This is guaranteed
by the following theorem.

Theorem 3: Let g : R → R+ be a locally Lipschitz
function for which there exist constants k > gmax > 0, λ >
a > 0 such that properties (23), (24), (25) hold. Consider a
platoon of n vehicles on a open/straight road described by
(1), (2) with (28), v0 = v∗ ∈ (0, vmax) being the constant
speed of the leading vehicle, defined on the set D(v∗),
where D(v∗) is given by (19) with v0 = v∗ ∈ (0, vmax).
Define also s∗ ∈ (λ,+∞) by means of equation (26). Then,
the equilibrium point (s∗, . . . , s∗, v∗, . . . , v∗) is Globally
Asymptotically Stable. Moreover, if in addition g is of class
C1 in a neighborhood of s∗ > λ, then the equilibrium point
(s∗, . . . , s∗, v∗, . . . , v∗) is Locally Exponentially Stable.

V. ILLUSTRATIVE EXAMPLES

In the simulation results below, we compare the three
scenarios of the CTG and VTG policies presented in Section
II with the proposed controller (2) with (28) and the function
g defined by

g(s) =


0 s ≤ λ

(s− λ) λ < s ≤ gmax + λ
gmax gmax + λ < s ≤ γ

gmax exp(γ − s) s > γ

(33)

with γ, λ > 0 and k > gmax > 0. From (33), (9), (27), and
(24), we obtain the fundamental diagram shown in Fig. 7 for
fixed values λ = 32.5m, k = 1.1 s−1 and different values of
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γ, gmax, all of which satisfy vmax = 30.1m/s (recall (4.2)).
Fig. 7 illustrates the macroscopic stability requirement and
the freedom of controlling the capacity flow and the critical
density via corresponding ACC settings. It should be noticed
that g(·) in (33) was selected for its simplicity, and can
in general be selected such that the emerging fundamental
diagram may be any desired curve which satisfies necessary
physical and technical requirements (for example it should
satisfy Q ≤ vmaxρ).

For the following simulation scenarios, we consider the
function g(·) in (33) with γ = 62.1m and gmax = 1s−1. For
this selection, all conditions (23), (24), and (25) are fulfilled
and, in addition, both the CTG policy (11) with (2), (12) and
the nonlinear controller (2), (28) with (33) have the same
speed v∗ and spacing equilibrium s∗.

Scenario 1. Recall that in this scenario the leading vehicle
is moving with constant speed v0 = 27m/s, vmax =
30.1m/s and vi,0 = 27m/s for i = 0, 1, . . . , 5 and si,0 =
70m, i = 1, . . . , 5. Notice that these initial conditions belong
to the set D(v0) defined by (19) with a = 5m for the
Safe Operation requirement. Fig. 8 shows the speeds of all
vehicles using the adaptive cruise controller (2), (28) with
(33). Contrary to the CTG policy (11) with (2), (12) (see
Fig. 1), the speeds of all vehicle with the nonlinear controller
stay within the bounds (0, vmax). Fig. 9 illustrates the vehicle
spacing of the adaptive cruise controller (2), (28) with (33).
Both Fig. 8 and Fig. 9 exhibit exponential convergence of
the state to the equilibrium point.

Scenario 2: In this scenario, the leading vehicle has initial
speed v0(0) = 10m/s on a road with vmax = 30.1m/s
and decelerates to 1m/s. Recall that the initial speed and
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Fig. 10. Vehicle spacing for scenario 2 using the nonlinear adaptive cruise
controller (2), (28) with (33).
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Fig. 11. Speed of vehicles for the nonlinear adaptive cruise controller (2),
(28) with (33) for scenario 2.

initial spacing of the n = 5 vehicles are vi,0 = 30m/s,
i = 1, . . . , 5 and s1,0 = 25m, si,0 = 15m, i = 2, . . . , 5,
respectively. Notice now that these initial conditions are
in the safe operation set D(v0(0)) given by (19). Indeed,
s1,0(0) = 25 > a+k−1 max(v1,0(0)−v0(0)) = 23.18m and
si,0(0) > 5m for i = 2, . . . , 5. Under these initial conditions
the Safe Operation requirement was not satisfied for the CTG
policy (11) with cruise controller (2), (12) as was shown in
Figure 2. On the other hand, using the proposed nonlinear
adaptive cruise controller (2), (28) with (33), there are no
collisions as shown in Fig. 10. Finally, Fig. 11 shows that the
speeds of all vehicles are within the speed limits, verifying
the Safe Operation requirement (compare with Fig. 3).

Scenario 3: We focus now on the third scenario where
all vehicles have initially the same speed vi,0 = 27m/s and
the leading vehicle decelerates from the initial speed v0(0) =
24m/s to a speed of 5m/s with deceleration satisfying (22).
Recall that the initial vehicle distances for this scenario are
si,0 = 30m, i = 1, . . . , 5, which guarantees that the initial
state is in the set D(v0(0)) defined by (19) with a = 5m.
Compared to the VTG controller (15), which is a nonlinear
function of speed, the nonlinear adaptive cruise controller
(2), (28) with (33), which is a nonlinear function of spacing,
satisfies the safe operation requirement as shown in Fig. 12
and Fig. 13.

VI. CONCLUDING REMARKS

The present work proposed a novel nonlinear adaptive
cruise controller for vehicular platoons which incorporates
and integrates the car-following and cruise control tasks
without any need for heuristic switching logic. Certain
conditions were derived that guarantee safety in terms of
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Fig. 12. Vehicle spacing of the nonlinear adaptive cruise controller (2),
(28) with (33).

collision avoidance and bounded vehicle speeds by explicitly
characterizing a set of admissible initial conditions and the
set of allowable inputs. It is shown that a platoon of vehicles
with this controller is Lp string stable, and all vehicles
will converge to the desired speed/spacing configuration
from any initial condition. Future work will address the
impact of sensor and actuator delays, as well as the effects
of nudging on the stability, string stability and safety of
vehicular platoons.
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