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Abstract 

In the field of aerodynamics, shape optimization aims to obtain high 

performance aerodynamic configurations by the optimization of an objective 

function, subject to specific geometrical constraints. Such problems include the 

maximization and minimization of the lift and drag forces, which act on an 

airfoil, respectively.  

Initially, the proper selection of the deformation technique, which later on will 

produce the candidate geometries, is of paramount importance in the 

optimization process. Specifically, during shape optimization, it is crucial for 

the computational grid – on which nodes the flow equations (Euler & Navier-

Stokes) are solved – to continuously adapt to the new geometrical entities. To 

this end, in recent decades several grid and shape parameterization techniques 

have been developed, with the common goal of minimizing both the 

computational cost and time required for the deformation, and at the same 

time, handle intricate geometries.  

In the present dissertation, two of the most prevalent methods of deformation 

are examined; the Free Form Deformation (FFD) and the Harmonic Function-

based deformation techniques. Initially, an extensive literature review of Free 

Form Deformation and Harmonic Functions-based deformation 

methodologies, used for shape parameterization and grid adaptation, is 

conducted. Furthermore, a modified Harmonic functions-based methodology 

– developed in the Turbomachinery and Fluid Dynamics Laboratory of the 

Technical University of Crete (TUC) – is presented in detail and tested. 

Finally, a grid interpolation algorithm is developed and presented in the 

context of the present work. The purpose of the aforementioned algorithm is to 
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enable data interpolation between two computational grids with different 

densities, during the aerodynamic shape optimization procedure. The mesh 

interpolation algorithm was implemented in FORTRAN 90 programming 

language.
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Περίληψη 

Στον τομέα της αεροδυναμικής, στόχος της βελτιστοποίησης σχήματος 

αποτελεί η εύρεση υψηλής απόδοσης αεροδυναμικών μορφών, μέσω της 

βελτιστοποίησης της τιμής μίας αντικειμενικής συνάρτησης υπό 

συγκεκριμένους γεωμετρικούς περιορισμούς. Τέτοια προβλήματα 

περιλαμβάνουν για παράδειγμα τη μεγιστοποίηση και ελαχιστοποίηση 

των δυνάμεων άνωσης και οπισθέλκουσας, οι οποίες δρουν σε μία 

αεροτομή, αντίστοιχα.  

Αρχικά, σε μία εφαρμογή αεροδυναμικής βελτιστοποίησης καθοριστικής 

σημασίας αποτελεί η επιλογή της συγκεκριμένης τεχνικής παραμόρφωσης, 

μέσω της οποίας θα παρασταθούν αργότερα οι υποψήφιες γεωμετρίες. Πιο 

συγκεκριμένα, κατά τη διάρκεια της διαδικασίας, απαραίτητη κρίνεται η 

συνεχής προσαρμογή του υπολογιστικού πλέγματος - στους κόμβους του 

οποίου επιλύονται οι διαφορικές εξισώσεις της ροής (Euler ή Navier-Stokes) 

- γύρω από τις υποψήφιες γεωμετρίες. Για αυτό το σκοπό και στοχεύοντας 

στην ελαχιστοποίηση του υπολογιστικού κόστους και χρόνου που 

απαιτείται κατά τη διάρκεια της παραμόρφωσης, αλλά και στην ικανότητα 

διαχείρισης πολύπλοκων γεωμετριών, ποικίλες τεχνικές παραμόρφωσης 

πλέγματος και σχήματος αναπτύχθηκαν τις τελευταίες δεκαετίες. 

Στην παρούσα διπλωματική εργασία θα παρουσιαστούν αρχικά δύο από 

τις επικρατέστερες μεθόδους παραμόρφωσης, της Free Form Deformation 

(Ελεύθερη Παραμόρφωση) και εκείνης που βασίζεται εξ’ ολοκλήρου στη 

χρήση αρμονικών συναρτήσεων (Harmonic Functions). Ειδικότερα, στη 

συγκεκριμένη εργασία θα γίνουν εκτενείς βιβλιογραφικές επισκοπήσεις 

των προαναφερόμενων μεθόδων. Στη συνέχεια, θα  παρουσιαστεί και θα 

ελεγχθεί μία τροποποιημένη μέθοδος Αρμονικών Συναρτήσεων, που 

αναπτύχθηκε στο Εργαστήριο Στροβιλομηχανών και Ρευστοδυναμικής, 
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της Σχολής Μηχανικών Παραγωγής και Διοίκησης του Πολυτεχνείου 

Κρήτης. 

Τέλος, θα παρουσιαστεί και αναλυθεί ο αλγόριθμος παρεμβολής 

υπολογιστικών πλεγμάτων, που αναπτύχθηκε στα πλαίσια της παρούσας 

διπλωματικής εργασίας. Σκοπός του παραπάνω αλγορίθμου είναι η 

παρεμβολή δεδομένων μεταξύ δύο πλεγμάτων με διαφορετική πυκνότητα, 

κατά τη διάρκεια της βελτιστοποίησης αεροδυναμικού σχήματος. Ο 

αλγόριθμος παρεμβολής υπολογιστικών πλεγμάτων υλοποιήθηκε σε 

γλώσσα προγραμματισμού FORTRAN 90. 
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source image (domain 𝛺) of the dragon, the output mappings produced by the 

interpolation of the metric tensor and 𝜂 variant for 𝑡 = 0.5 are presented (Chien, 
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Figure 1.6.28 Polycubes (a) and (e) are mapped onto double torus (b) and kitten 

(f), respectively. Color – encoded distance field of (f), (g) are transferred under 

the mapping to (d), (h), respectively (Li et al., 2010). .......................................... 56 

Figure 1.6.29 (a) The surface mesh of David’s head. (b) A generated hexahedral 

mesh on the polycube domain. (c) The generated volumetric hexahedral mesh 

on David’s head. (d) The generated mesh in the interior of the volume (Li et al., 
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Figure 1.6.30 Above: The Mach number distribution on the initial airfoil shape. 
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blue colored areas on which low Mach numbers were obtained. Below: The 
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Figure 2.1.8 Left: The initial geometry of a water pitcher. Middle and Right: 

Deformations resulted by water pitcher’s bottom compression  (Hirota et al., 
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Figure 2.1.17 The control lattice (black box) indicates the part of the aircraft 

volume to be deformed (Andreoli et al., 2003). .................................................... 73 

Figure 2.1.18 Left: The airfoil is embedded in FFD control lattice (red colored). 
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Chapter 1  

Introduction 

 

1.1  Aerodynamic Shape Optimization 

Aerodynamic Shape Optimization (ASO) is one of the key components of the 

aerodynamic design process. During the particular stage, the objective is to obtain 

aerodynamic configurations of high-performance, subject to several operational 

and geometrical constraints, which minimize or maximize the value of the 

objective function established by the designer. However, in many real-world 

applications, the design process of an aerodynamic shape is characterized by more 

than one potential objectives. As a result, a multi-objective optimization is 

performed, where the optimal solution represents the one with the least net trade-

offs, for example, the lift-to-drag ratio and aircraft fuel consumption (Ren, 2016). 

A schematic representation of a general aerodynamic design process is provided 

in Figure 1.1.1.  

  
Figure 1.1.1 The aerodynamic shape optimization (ASO) process. 
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Furthermore, an aerodynamic design process can be characterized as either a 

direct or an inverse one. The aim of a direct design approach is to obtain a solution 

that maximizes or minimizes the value of one or many objective functions via the 

alteration of the geometrical parameters defining the aerodynamic configuration 

at hand.  

On the other hand, the inverse design approach deals with the design of an 

aerodynamic geometry that results in a pre-defined aerodynamic characteristic, 

such as the target pressure distribution (Zhang et al., 2015). 

Although shape optimization aims at producing the most suitable solution to a 

specific aerodynamic design problem, it may become a laborious and 

computationally expensive process. In fact, even the most recent optimization 

approaches depend on the user’s experience and capabilities of handling the 

appropriate optimization tools and defining the most suitable geometry 

parameterization method. Moreover, by considering the required computational 

time to perform - in most cases - the aerodynamic analysis on the model of interest, 

the proper integration of required software within the general optimization 

scheme should be considered. More specifically, according to Wakayama and 

Kroo (2012), the employed methodologies must be simple enough in order to be 

executed as many times as required and sufficiently capture and analyze, at the 

same time, the local geometrical features of the entity.  
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1.2 Need for grid adaptation 

In general, the aerodynamic shape optimization consists of an iterative procedure, 

wherein the fluid motion around each candidate solution has to be accurately 

calculated. Additionally, by taking into consideration that in most cases the 

particular fluid motion is governed by non-linear partial differential equations 

(Euler equations for inviscid flows and Navier-Stokes for viscous ones) that do not 

possess analytic solutions, their numerical approximations with appropriate flow 

solvers are required. 

Thus, aiming to obtain the approximate solutions of the governing equations, it is 

necessary to apply the proper domain discretization on which the PDEs will be 

locally solved. The aforementioned space discretization can be either consisted of 

triangular or/and quadrilateral elements, or hexahedral, tetrahedral and prismatic 

elements (cells) on 2D or 3D, respectively. Each cell is connected with its 

neighboring ones regarding their topology. The overall connected domain is called 

a grid.  

An important parameter of the aforementioned procedure consists of the 

computational time needed in order to achieve the optimal geometrical solution. 

The computational time involved depends on multiple factors, most important of 

which is the optimization method chosen. An additional key factor contributing 

to the total computational time reduction is the use of a grid adaptation technique 

throughout the shape optimization process. More specifically, in the present case, 

the computational grid is created once at the beginning of the procedure and is 

constantly adapting to the shape deformation produced at each iteration. 

Furthermore, the flow equation solution calculated on previous steps can be 
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applied as the initial flow field on those following. Thus, the convergence of the 

optimization problem can be greatly accelerated.  
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1.3 Grid Adaptation Methods 

Given the importance of grid adaptation (mesh deformation or mesh morphing) 

techniques, over the latest years, several methodologies have been proposed, 

aiming to reduce the required computational time, while enhancing the quality of 

the resulting meshes. Such methodologies, which are presented in Section 1.4, are 

based on the RBF (Radial Basis Functions) interpolation, algebraic methods, 

physical analogies and partial differential equation (PDEs) methods (Gagliardi 

and Giannakoglou, 2019).  

As long as the spring analogy methodologies are concerned, the node coordinates 

of the deformed mesh can be computed as a solution to the static equilibrium 

equations. Specifically, the deformation propagation is simulated by the motion of 

linear or torsional springs, which are placed on or between the cells’ nodes. 

Therefore, for the application of the particular method, the mesh topology should 

be available. Nevertheless, in cases of high mesh density and large node 

displacements, the spring analogy method is characterized by poor performance, 

since negative volume production has been observed (Selim and Koomullil, 2016). 

Another grid adaptation method relies on the solution of the linear elasticity 

equations so as to calculate the displacement of the mesh nodes that occurred. In 

particular, linear elasticity equations are solved in order to obtain the displacement 

of a given mesh. Despite the increased method applicability, high computational 

cost is involved (Mavronikola, 2017). 

In addition, through the solution of Laplace’s partial differential equation, the 

deformation propagation within the internal grid is succeeded. More specifically, 

due to the satisfaction of the minimum/maximum principle of the Laplace 
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equations, the displacement of interior mesh nodes are bounded by the values on 

the boundary of the domain (Selim and Koomullil, 2016).  

In the algebraic dumping method, the updated node location is derived from 

algebraic equations, which are dependent on the displacement of the closest to the 

moving boundary nodes. Through the aforementioned methodology, a dynamic 

grid movement is achieved, following large-scale deformations. In spite of the 

robustness of the aforementioned method, the generated deformation may be 

rigid close to the boundary areas (Zhao and Forhad, 2003).  

Finally, grid deformation propagation can be succeeded by the Radial Basis 

Functions (RBF) interpolation. In particular, the RBF interpolation distributes the 

displacement of boundary nodes to the interior nodes in relation to their distance 

between a set of user-specified nodes (centers). As a result, the aforementioned 

method is capable of producing enriched quality deformed meshes by preserving 

the - closest to the boundary - cells orthogonality. However, RBF interpolation is 

characterized by increased computational cost (Gagliardi and Giannakoglou, 

2019). 
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1.4 Literature survey on geometrical parameterization 

techniques in Aerodynamic Optimization 

Shape parameterization represents a key part of the ASO process. A 

parameterization technique should be flexible enough in order to describe a wide 

range of complicated shapes by making the use of the minimum possible number 

of geometrical parameters (Amoiralis and Nikolos, 2008).  

According to Samareh (1999), a successful geometry parameterization method 

should possess a number of specific characteristics, which are provided below: 

 Despite the shape changes, it should maintain the smoothness of the 

geometry.  

 It should provide local control during the shape deformation. 

 It should be able to perform properly the sensitivity analysis. 

 It should be connected to the CAD system used. 

 It should be intuitive enough and able to be established in a quick way. 

According to Samareh (1999), several parameterization approaches have been 

proposed, such as: (a) the basis vector approach, (b) the domain element approach, 

(c) the Partial Differential Equation (PDE) approach, (d) the discrete one, (e) the 

polynomial and spline approach, (f) the CAD-based approach, (g) the analytical 

approach and (h) the Free-Form Deformation (FFD) approach. A brief introduction 

of the aforementioned parameterization techniques, as presented in the study of 

Samareh (1999), is provided in the following paragraphs. 
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1.4.1 The Basis Vector approach 

Introduced by Pickett et al. (1973), the basis vector approach is a parameterization 

technique through which the changes of the shape of interest are expressed by 

means of the following equation: 

where 𝑹 represents the deformed shape, 𝒓 is the baseline shape (initial shape), 𝒖𝒊 

is the design variable and 𝑼𝒊 is the design perturbation. 

1.4.2 The Domain Element approach 

This parameterization technique is based on a linked set of grid nodes (vertices), 

which form a “domain element”. Initially, an inverse mapping between the mesh’s 

nodes and the domain element is calculated, resulting to a fixed set of 

parameterization coordinates (for each mesh node). Then, every movement of 

domain element’s vertices provoke the deformation of the entire grid, which is 

formed by. An application of the basis vector approach is shown in Figure 1.4.1.  

 

 𝑹 = 𝒓 +∑𝒖𝒊𝑼𝒊
𝒊

 , (1.1) 

Figure 1.4.1 The initial shape of a domain element (left) and its deformed 

geometry (right) (J. Samareh, 1999). 
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1.4.3 The Partial Differential Equation (PDE) Approach 

Bloor and Wilson (1995) introduced a shape parameterization methodology aimed 

at the construction of surfaces by making the use of partial differential equations. 

More specifically, posed as a boundary-value problem, parametric surfaces were 

generated as the solutions to elliptic partial differential equations. 

1.4.4 The Discrete Approach 

In the aforementioned parameterization approach the discrete curve boundary 

points act as the design variables. According to Samareh (1999), this approach is 

easy to be implemented; however the deformations are restricted by the number 

of the design variables. Additionally, the discrete approach is prone to producing 

non-smooth geometries and may be a non-viable alternative for shape 

optimization applications. 

1.4.5 The Polynomial and Spline Approaches 

Aiming at the reduction of the total number of the design variables, Braibant and 

Fleury (1984) proved that Bezier and B–Spline curves consist of two feasible 

parameterization schemes for the shape optimization problem. 

An nth degree Bezier curve is defined by: 

where 𝐵𝑖,𝑛(𝑢) are the basis functions (Bernstein polynomials) and 𝑷𝒊, 𝑖 = 0,… , 𝑛 

are the position vectors of the control points, which in the particular case are the 

design variables. 

Basis functions 𝐵𝑖,𝑛(𝑢) are the nth degree Bernstein polynomials: 

 𝑪(𝑢) =∑𝐵𝑖,𝑛(𝑢) 𝑷𝒊

𝑛

𝑖=0

 , 0 ≤ 𝑢 ≤ 1 (1.2) 
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Although Bezier splines can reduce the number of the geometric parameters 

needed, they do not possess the local deformation property, due to the single 

segment curves they consist of. Furthermore, in order to satisfy a large number of 

constraints and construct a complex shape at the same time, a high-degree 

polynomial curve is required. A feasible solution to avoid the shortcomings of 

Bezier splines is the construction of multiple piecewise polynomial curves, such as 

B-Splines.  

Constructed by several low-degree Bezier segments, 𝑝 degree B–splines are 

defined as: 

where the basis functions 𝑁𝑖,𝑝(𝑢) , considering that 𝑛 = 𝑚 − 𝑝 , are given by 

The non–decreasing sequence 𝑈 = [𝑢0, . . . , 𝑢𝑚] of 𝑢𝑖 knots is called the knot vector. 

In particular, the knot vector usually takes the following form 

 
𝐵𝑖,𝑛(𝑢) =

𝑛!

𝑖! (𝑛 − 𝑖)!
𝑢𝑖(1 − 𝑢)𝑛−𝑖. (1.3) 

 
𝑪(𝒖) =∑𝑷𝒊𝑁𝑖,𝑝(𝑢)

𝑛

𝑖=0

 , 𝑢0 ≤ 𝑢 ≤ 𝑢𝑚 (1.4) 

 
𝑁𝑖,0(𝑢) = {

1, 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.5) 

 
𝑁𝑖,𝑝(𝑢) =

𝑢 − 𝑢𝑖
𝑢𝑖+𝑝 − 𝑢𝑖

𝑁𝑖,𝑝−1(𝑢) +
𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢). (1.6) 

 
𝑼 = [𝑢0, . . . , 𝑢0⏟      

𝑝+1

, 𝑢𝑝+1, . . . , 𝑢𝑚−𝑝−1, 𝑢𝑚, . . . , 𝑢𝑚⏟      
𝑝+1

]  . (1.7) 
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For equally distributed knots the constructed curve is called uniform (Masters et 

al., 2015). An airfoil constructed by a 3rd degree B–spline curve and seven (7) 

control points (in red color) is represented in Figure 1.4.2.  

 

Nevertheless, due to the inability of B–spline curves to represent implicit conic 

sections, Non-Uniform Rational B–splines (NURBS) were introduced. Specifically, 

a NURBS curve is described as: 

Similarly to B–splines notation, 𝑷𝒊 represents the 𝑖 − 𝑡ℎ control point, 𝑁𝑖,𝑝(𝑢) are 

the 𝑝 degree B–spline basis functions and 𝒘𝒊 is the 𝑖 − 𝑡ℎ non–negative control 

points’ weight (Piegl and Tiller, 1995). An efficient NURBS based parameterization 

approach was introduced for the purpose of structural shape optimization. The 

example of the initial (red dashed line) and optimized (continuous black line) 

geometries of nozzle blade profiles constructed by NURBS curves and their control 

points are shown in Figure 1.4.3. 

 
𝑪(𝑢) =

∑ 𝑁𝑖,𝑝(𝑢)𝒘𝑖𝑷𝒊
𝑛
𝑖=0

∑ 𝑁𝑖,𝑝(𝑢)𝒘𝒊
𝑛
𝑖=0

 ,   𝑎 ≤ 𝑢 ≤ 𝑏. (1.8) 

Figure 1.4.2 Airfoil representation by a 3rd degree B – Spline curve and 7 

control points (Leloudas, 2014). 
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1.4.6 The CAD-Based Approach 

The majority of most recent CAD systems combine dimension–driven modelling 

with feature-based design. As a result, through the assignment of object 

dimensions as geometrical parameters, direct manipulation of the geometry of 

interest is offered (Hardee et al., 1999).  

In particular, solid modelling CAD systems implement either a boundary 

representation or apply a constructive solid geometry method to represent a 

physical and solid object (LaCourse, 1995). However, due to possible 

abnormalities on the surface of the models resulted by the CAD-based approach, 

the application of automatic grid generation tools and the parameterization of a 

shape may become a demanding and laborious process. In addition, in the case of 

a non-recovered incompleteness of a CAD model, several challenges during the 

mesh construction procedure may arise (Amoiralis, 2005). 

 

 

 

Figure 1.4.3 Original and optimized blade profiles constructed by 

NURBS curves and their control points (Li et al., 2016). 
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1.4.7 The Analytical Approach 

Hicks and Henne (1978) introduced a geometry parameterization approach, based 

on the addition of weighted shape functions. More specifically, the airfoil shape 

can be represented by two analytical equations. In particular, each equation is 

constituted by the coordinates of the upper and lower surface baseline sections 

(𝑦𝑢𝑠𝑏𝑎𝑠𝑖𝑐 , 𝑦𝑙𝑠𝑏𝑎𝑠𝑖𝑐) and the corresponded weighted sum of a set of shape functions 

(𝑓𝑖). 

Thus, the contribution of each shape function to the airfoil design is determined 

through the participation coefficients (𝒂𝒊, 𝒃𝒊) assignment. In the aforementioned 

parameterization technique the selected weighted shape functions are smooth 

functions based on earlier successful airfoil designs. However, despite the 

effectiveness of the analytical approach in wing parameterization applications, 

complex geometries may not be able to be represented in an accurate way (Hicks 

and Henne, 1978).  

1.4.8 Free-Form Deformation (FFD) in Aerodynamic Shape Optimization 

Originated by the computer graphics field, the FFD technique is based on the 

indirect deformation of a shape in space, through the manipulation of the control 

points of trivariate Bezier volumes. Later, a modified version of FFD was 

presented, by Lamousin and Waggenspack (1994) integrating the Non-Uniform B–

splines as basis functions (NFFD). Additionally, Samareh (1999) applied the NFFD 

method in order to perform aerodynamic Computational Structural Mechanics 

 𝒚𝒖𝒔 = 𝒚𝒖𝒔𝒃𝒂𝒔𝒊𝒄 +∑𝒂𝒊𝒇𝒊

5

𝑖=1

 (1.9) 

 𝒚𝒍𝒔 = 𝒚𝒍𝒔𝒃𝒂𝒔𝒊𝒄 +∑𝒃𝒊𝒇𝒊

5

𝑖=1

 . (1.10) 
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(CSM) parameterization, while Amoignon et al. (2014) investigated the influence 

of NURBS degree on the regularity of the optimized shapes produced by the NFFD 

technique.  

Furthermore, Liu et al. (2017) presented a parameterization technique based on the 

combination of Radial Basis Function (RBF) and FFD to handle the junction area 

between the wing and the body of the aircraft. Specifically, following the FFD, the 

aim was to ensure the geometrical continuity preservation, through the RBF 

deformation interpolation on the junction area. As a result, according to the 

authors the introduced hybrid parameterization technique demonstrated 

effectiveness and proved to be feasible.  

In addition, Bai and Chen (2013a) proposed an aerodynamic optimization scheme 

based on the direct manipulation of the aerodynamic shape. Through the 

introduction of a user-specified pilot points’ location on the object geometry and 

their displacements, the FFD lattice associated with was accordingly modified. 

Thus, a direct shape manipulation is achieved. Furthermore, concerning the drag 

reduction optimization, the DFFD method showed improved capability compared 

to the original FFD technique. Figure 1.4.4 shows a deformation according to the 

DFFD method. 
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1.4.9 Multidisciplinary Aerodynamic-Structural Shape Optimization Using 

Deformation (MASSOUD) 

In spite of the efficient parameterization capabilities FFD method processes, the 

established design variables may have no significance for the design engineers. In 

order for the particular shortcoming to be addressed and reduce the number of the 

problem’s geometrical parameters, Samareh (1999) introduced the 

Multidisciplinary Aerodynamic-Structural Shape Optimization Deformation 

(MASSOUD) approach. The key feature of the particular method is the 

parameterization of the shape perturbations (changes in thickness, camber, twist, 

shear and planform) occurred during the optimization, rather than the geometry 

itself. Furthermore, borrowed by the computer graphics field, a modified set of 

Soft Objects Algorithms (SOA) is applied for the purpose of subsequent model 

deformation through image morphing techniques. Therefore, during the 

optimization process, the examined surface grid is updated as follows: 

 
𝑹 = 𝒓 + 𝑼(𝒖) , (1.11) 

Figure 1.4.4 Original and Deformed Foil and Corresponding FFD Control Points (Bai and 

Chen, 2013). 
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where 𝑹 represents the deformed grid, 𝒓 is the baseline grid, 𝒖 is the design 

variable vector and 𝑼 the design perturbation. In addition, according to Samareh 

(1999), by making the use of NURBS representation, strong local control and 

smoothness of the deformed geometry are succeeded. A deformation based on 

MASSOUD approach is shown in Figure 1.4.5. 

  

  

Figure 1.4.5 A deformation based on MASSOUD approach (Samareh, 1999). 
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1.5 The proposed approach 

The aim of the present dissertation is to perform an extensive literature review of 

Free Form Deformation and Harmonic Functions-based deformation 

methodologies, used for shape parameterization, shape morphing, and grid 

adaptation. Then, a 2D shape deformation and computational grid adaptation 

technique based on the Harmonic Functions is presented for the purpose of 

Aerodynamic Shape Optimization. 

The diploma thesis is organized as follows: 

 In Chapter 1, an introduction to the Aerodynamic Shape Optimization and 

to the existing geometry and grid parameterization & deformation 

techniques is provided. 

 In Chapter 2, an in-depth presentation of the Free-Form Deformation 

technique is introduced. 

 In Chapter 3 the proposed scheme, based on the application of the B-Spline 

basis functions as Harmonic Functions for the concurrent and conformal 

deformation of the B-Spline boundary and the surrounding computation 

grid, is presented. 

 In Chapter 4, a mesh interpolation methodology is presented and tested, as 

an auxiliary tool for the Harmonic Function-based parameterization. 

 In Chapter 5, indicative results of the Harmonic Functions-based 

deformation methodology are presented and commented. 

 In Chapter 6, the conclusions resulted from the application of the proposed 

shape deformation scheme, are outlined and discussed.  



1.6 Literature survey on the Harmonic Functions-based 

parameterization techniques 

1.6.1 Introduction 

It should be emphasized that a key point in the shape optimization process is 

the definition of the initial geometry, by making the use of the minimum 

possible number of parameters (independent design variables) combined with 

a robust and accurate optimization algorithm.  

In order to succeed the aforementioned characteristics and construct, at the 

same time, a parameterization technique applicable in diverse fields of studies, 

researchers have drawn their attention on harmonic functions and their desired 

properties. The parameterization techniques, analyzed in the present section 

were originated from the computer graphics field for the purpose of character 

articulation and mesh generation. 

1.6.2 Harmonic coordinates for character articulation 

Harmonic coordinates were firstly introduced in 2005 by Pixar Animation 

Studios. Based on mean-value coordinates by Floater (2003), the harmonic 

functions applied on Closed Triangular Meshes, as presented in the work of Ju 

et al. (2005), included seven key parameterization properties for character 

articulation. 

According to Joshi et al. (2007), let a polyhedron in 2D called cage C, where the 

volume to be deformed is embedded as shown in Figure 1.6.1. 
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Then, for every cage vertex 𝑪𝒊, a function ℎ𝑖(𝑝) subject to the following 

conditions is sought:  

1. Interpolation: ℎ𝑖(𝑪𝑗) = 𝛿𝑖,𝑗 , where 𝛿𝑖,𝑗 = 1 𝑓𝑜𝑟 𝑖 = 𝑗  and 𝛿𝑖,𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

2. Smoothness: The functions ℎ𝑖(𝑝) are at least C1 smooth in the interior of 

the cage. 

3. Non-negativity: ℎ𝑖(𝑝) ≥ 0 for all 𝑝 ∈ 𝐶 

4. Interior locality: Minimum and maximum value of harmonic 

coordinates are strictly located at the cage vertices. 

5. Linear reproduction: Every object point (𝑝) is described as a linear 

representation of its harmonic function and harmonic coordinates of 

cage vertex 𝑪𝒊. Thus, 𝒑 = ∑ ℎ𝑖(𝑝)𝑪𝒊𝑖  

6. Affine - invariance: ∑ ℎ𝑖(𝑝)𝑖 = 1 for all 𝑝 in C 

7. Strict generalization of barycentric coordinates: When 𝐶 is a simplex, 

ℎ𝒊(𝑝) is the barycentric coordinate of 𝑝 with respect to 𝑪𝒊. 

 Figure 1.6.1 Image of Mickey Mouse computational mesh and the cage surrounded 

by (Mavronikola, 2017). 
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However, the described method is extended from two to 3D objects with the 

addition of the final property: 

8. Dimension reduction: 𝑑-dimensional coordinates when restricted to a 

𝑘 <  𝑑 dimensional facet, reduce to 𝑘 - dimensional harmonic 

coordinates. 

Coordinate functions, which satisfy the mentioned properties, are called 

harmonic coordinates and are obtained as solutions to the Laplace’s equation:  

Accordingly, by the displacement of cage (boundary) vertices, a deformation 

of the initial geometry is achieved (Joshi et al., 2007). A deformation based on 

harmonic coordinates is shown in Figure 1.6.2. 

  

Moreover, in an attempt of Joshi et al. (2007) to enhance the interior 

controllability and broaden the method’s applicability, the addition of a 

supplementary cage encircling the areas of interest was proposed. Thus, the 

object parts bounded to the additional cage, maintain their initial geometrical 

characteristics followed by any deformation. An example of the particular 

method’s extension is shown in Figure 1.6.3. 

 ∇2ℎ𝑖(𝑝) = 0 . (1.12) 

 Figure 1.6.2 Deformation based on harmonic 

coordinates (Joshi et al., 2007). 
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Nevertheless, the main limitation of the discussed process is the excessive 

amount of computer memory required, both for pre-computing processing and 

storing the entire solution grid for the purpose of simultaneous geometry and 

cage deformation. 

1.6.3 Boundary Element Formulation of Harmonic Coordinates 

In a major advance in geometry parameterization based in harmonic 

coordinates later in 2007, the Boundary Element Formulation of Harmonic 

Coordinates was proposed. Specifically, Rustamov (2008) applied the 

Boundary Element Method (BEM) in order to calculate the Harmonic 

Coordinates of an arbitrary point 𝑝 at the interior of the control cage. 

Furthermore, based on the usage of nested cages for local control enhancement 

by Joshi et al. (2007), Rustamov (2008) applied the BEM in order to extrapolate 

the Harmonic Functions first at the exterior cage and then, at the entire 

Euclidean space. In addition, derived by the comparison between the BEM 

formulations of transfinite harmonic coordinates (Belyaev, 2006), transfinite 

Shepard’s interpolation (Shepard, 1968) and Mean Value coordinates 

(Hormann and Floater, 2006; Ju et al., 2005), a generalization of the harmonic 

coordinates was proposed, called the weakly singular interpolates. Figure 1.6.4 

presents a deformation based on the aforementioned methodology. 

Figure 1.6.3 Left: Interior control cage (green). Right: Deformed 

facial region except the internal cage area (Joshi et al., 2007). 
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Although the BEM proved capable of adequately addressing the problems of 

the excessive amount of required storage space and the increased 

computational time associated with the computation of the harmonic 

coordinates, the proposed extrapolation scheme lacked of two major 

properties; those of non-negativity and locality. Moreover, Rustamov (2008) 

proved that the weakly singular interpolates possess the interpolation, 

smoothness, linear precision and affine invariance properties. Figure 1.6.5 

shows a deformation resulted by exterior harmonic coordinates. 

 

 

 

 

 

Figure 1.6.4 Left: Original Model. Middle and Right: Model deformations 

using Boundary Element Formulation of Harmonic Coordinates 

(Rustamov, 2008). 

Figure 1.6.5 Left: Deformation of a sphere into an ellipse in Amardillo’s stomach. 

Right: Exterior deformation caused by the deformation of the sphere (Rustamov, 

2008). 
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1.6.4 Holomorphic coordinates 

Li and Liu (2012) presented a cage-free deformation method by taking 

advantage of the holomorphic coordinates. The particular technique relies on 

the application of a set of vertices over the shape of interest in order to succeed 

deformation. By definition, holomorphic coordinates are constructed by 

conjugate pairs of harmonic functions 𝝍𝒊 and 𝝋𝒊. Thus, for a set of handle points 

𝒖𝒊 : 

Therefore, the shape of interest can be deformed by direct point handling 

without the construction of an external cage.  

The new position of a shape point is obtained as follows: 

where 𝒖′𝒊 is the displaced position of the 𝑖 − 𝑡ℎ handle point. 

Holomorphic coordinates satisfy interpolation, conformity, smoothness, linear 

reproduction and similarity properties. However, in contrast to Harmonic 

Coordinates, the aforementioned coordinates do not possess the non-negativity 

property (Li and Liu, 2012). A deformation based on Holomorphic coordinates 

parameterization is shown in Figure 1.6.6.  

 ℎ𝑖 = 𝜑𝑖 + 𝑖𝜓𝑖 . (1.13) 

 𝒗′ =∑ℎ𝒊
𝑖

𝒖′𝒊 , (1.14) 
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1.6.5 Biharmonic Coordinates 

Weber et al. (2012) proposed a natural generalization of the Harmonic 

Coordinates, which is enhanced by the additional property of boundary 

derivative data interpolation. The key to the proposed methodology is the 

solution to the Biharmonic Dirichlet Problem: 

where 𝑓 is a biharmonic function at any point 𝑥 in the computational domain 

𝛺, ∆ is the Laplace operator and 𝑔1 and 𝑔2  known values of the biharmonic 

function and its derivative on the boundary 𝜕𝛺, respectively. In order to solve 

the aforementioned problem, Weber et al. (2012) applied the Boundary Element 

Method over polygonal domains. The resulted coordinates were called 

Biharmonic.  

Therefore, in order to obtain the value of a function 𝑓 inside the domain 𝛺: 

 ∆2𝑓(𝑥) = 0,   𝑥 ∈ 𝛺  

 𝑓(𝑥′) = 𝑔1,   𝑥′ ∈ 𝜕𝛺 (1.15) 

 𝜕𝑓

𝜕𝑛
(𝑥′) = 𝑔2,   𝑥′ ∈ 𝜕𝛺 .  

Figure 1.6.6 A deformation based on Holomorhic coordinates parameterization.  In (a) 

the original goldfish shape is shown, while in (b) the grid covering its geometry is 

presented. In (c) the deformed grid and the handle points used (black spots) are shown. 

In (d) the final geometry is displayed (Li and Liu, 2012). 
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where 𝒂𝑗 , 𝜷𝑗  are the biharmonic coordinates, 𝑓𝑗 are the prescribed values at 𝑗𝑡ℎ 

control polygon vertex and 𝑑𝑗 the known derivative values along the 

corresponding control polygon edges. The biharmonic coordinates satisfy the 

following properties: 

where 𝒗𝑗 is the 𝑗𝑡ℎ control cage vertex, 𝒆𝑖 the 𝑖𝑡ℎ edge of the control cage, 𝑛 the 

unit normal to the boundary, 𝑥′ an arbitrary point on the boundary, 𝑥 an 

internal point and 𝛿𝑖𝑗 the Kronecker delta. By moving the control polygon cage 

vertices, the shape of interest is deformed.  

According to Weber et al. (2012), the biharmonic coordinates offer complete 

control over the boundary of the shape and its derivatives. Additionally, 

through the application of the BEM, the computation of the aforementioned 

coordinates is efficient and the discretization of the domain is not required. 

However, compared to the Harmonic Coordinates, the Biharmonic do not 

possess the minimum/maximum principle (the capability of attaining both the 

highest and the lowest value inside the bounded domain), while the sensitivity 

to user input and incorrect boundary derivative data may lead to unsatisfactory 

 𝑓(𝑥) =∑𝒂𝒋(𝑥)𝑓𝑗 + 𝜷𝑗(𝑥)𝑑𝑗

𝑚

𝑗=1

 , (1.16) 

 
∑𝒂𝑗(𝑥)𝑣𝑗 + 𝜷𝑗(𝑥)𝑛𝑗 = 𝒙

𝑚

𝑗=1

 (1.17) 

 
∑𝒂𝑗(𝑥) = 1

𝑚

𝑗=1

 (1.18) 

 𝒂𝑗(𝑣𝑗) = 𝛿𝑖𝑗 

𝜕𝒂𝑗

𝜕𝑛
(𝑥′) = 0, 𝑥′ ∈ 𝜕𝛺 

𝜷𝑗(𝑥
′) = 0, 𝑥′ ∈ 𝜕𝛺 

𝜕𝜷𝑗

𝜕𝑛
(𝑥′) = 𝛿𝑖𝑗, 𝑥

′ ∈ 𝑒𝑖  , 

(1.19) 
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results. A visualization of biharmonic coordinates deformation compared to 

Variational Harmonic Maps method is presented in Figure 1.6.7. 

 

1.6.6 Bounded biharmonic coordinates 

In order to simplify the design and control of the deformation process, Jacobson 

et al. (2011) proposed a methodology based on the development of linear 

blending weights that provide smooth and intuitive deformations on objects. 

In particular, in order to compute the transformation of a domain 𝛺, a weighted 

blend of handles 𝑯𝑗  (control cage vertices, single points, skeleton bones or a 

region) transformations are computed. More specifically, a weighted function 

𝒘𝑗 ∶ 𝛺 → ℝ is associated with every handle point the choice of whom 

determines whether intuitive and smooth deformations will be developed or 

not. Provided the affine transformation (position, rotation, scaling) 𝑻𝑗  for each 

handle point 𝑯𝑗 , 𝑗 = 1,… ,𝑚 by the user, the new location of a point 𝑝 ∈ 𝛺 is 

defined by Equation (1.20) as follows: 

In order to compute the weights 𝑤𝑗, the Laplacian Energy is minimized: 

 𝑝′ =∑𝒘𝑗(𝑝)𝑻𝑗𝑝

𝑚

𝑗=1

 . (1.20) 

Figure 1.6.7 Comparison of Biharmonic and Variational Harmonic 

Maps deformation (Weber et al., 2012). 
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where 𝐹𝐶 is the set of all cage faces, 𝛿𝑗𝑘 the Kronecker’s delta and ∆ the Laplace 

operator (Jacobson et al., 2011). 

According to Jacobson et al. (2011), the bounded biharmonic weights produce 

smooth and shape-aware deformations even for complex geometries. 

Furthermore, non-negativity and partition-of-unity properties are satisfied. 

Additionally, it was experimentally observed that bounded biharmonic 

weights possess the locality, sparsity and non-local maxima properties as well. 

Moreover, due to the generality of the proposed methodology, additional 

control over the minimization of the Laplacian energy is possible to be 

established.   

However, in order to compute the weights 𝑤𝑗  the discretization of the domain 

is required combined with the increased amount of optimization time is 

needed. Furthermore, the bounded biharmonic weights do not satisfy the linear 

reproduction property, thus they do not, necessarily reproduce linear 

functions. A shape deformation based on the aforementioned method is 

presented in Figure 1.6.8.  

  
arg𝑚𝑖𝑛𝑤𝑗,   𝑗=1,…,𝑚∑

1

2
∫‖∆𝒘𝑗‖

2
𝑑𝑉

𝛺

𝑚

𝑗=1

, (1.21) 

 
subject to: 𝒘𝑗|𝐻𝑘 = 𝛿𝑗𝑘 (1.22) 

 
 𝒘𝑗|𝐹 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟    ∀𝐹 ∈ 𝐹𝐶 (1.23) 

 
 ∑𝒘𝑗(𝑝)

𝑚

𝑗=1

= 1    ∀𝑝 ∈ 𝛺 (1.24) 

 
 0 ≤ 𝒘𝑗 ≤ 1, 𝑗 = 1, … , 𝑚    ∀𝑝 ∈ 𝛺 , (1.25) 
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1.6.7 Pseudoharmonic coordinates 

Due to the absence of their closed form, in order to approximate Harmonic 

coordinates, a discrete Laplace equation in the triangulated domain must be 

solved numerically. The resulted linear system is large and excessive 

computational time is required, in order to obtain the final solution. As a result, 

several coordinate schemes have been proposed which have closed-form 

solutions, less computational time is needed for their computation and act as 

approximations to the Harmonic Coordinates. Chen and Gotsman (2016) 

investigated the quality of the aforementioned approximations produced by 

popular barycentric coordinate schemes and studied the pseudo-harmonicity 

of the Moving Least Squares (MLS) Coordinates as presented by Manson and 

Schaefer (2010).  

According to Chen and Gotsman (2016), one of the basic tests to specify the 

accuracy of the approximation is to check whether the tested coordinates 

coincide with the harmonic coordinates in the special case of the contour to be 

a unit circle. More specifically, consider the transfinite barycentric coordinates of 

a planar curve 𝑆, where a function 𝑓 in a 2D point 𝑡 in the interior of a closed 

planar curve is given by: 

Figure 1.6.8 Crocodile deformation occurred by making the use 

of skeleton, cage and points (Jacobson et al., 2011). 
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given a value 𝑓(𝑠) of function 𝑓 on a 2D point 𝑠 on 𝑆 and 𝐾(𝑠, 𝑡) a real-valued 

Kernel function. If given a transfinite barycentric coordinate scheme, reduces 

to the (harmonic) Poisson kernel:  

for the special case that the contour is a unit cycle, the particular coordinates are 

called pseudoharmonic. Note that, 𝑤 represent a point on the contour of the 

circle, 𝑧 is an interior to the unit circle point and 𝑑𝑠 is the arc-length differential 

(Chen and Gotsman, 2016).  

The kernel 𝐾 of Equation (1.26) satisfies the properties: 

Chen and Gotsman (2016) proved that the affine-based MLS and similarity-

based MLS coordinates are pseudoharmonic. In addition, it was concluded that 

among coordinate-based transfinite interpolation schemes such as Wachspress 

Coordinates (Wachspress, 1975), Laplace Coordinates (Pinkall and Polthier, 

1993), Gordon-Wixom Coordinates (Gordon and Wixom, 1974), Mean-Value 

Coordinates (Floater, 2003), Maximum Entropy Coordinates (Hormann and 

Sukumar, 2008), Poisson Coordinates (Li and Hu, 2013) and MLS Coordinates, 

the latter offer higher quality approximations on irregular convex or non-

convex polygons. In Figure 1.6.9 a comparison between Harmonic, Moving 

Least Squares and Maximum Entropy coordinate functions is shown. 

 
𝑓(𝑡) = ∮𝐾(𝑠, 𝑡)𝑓(𝑠)𝑑𝑠

𝑆

 , (1.26) 

 
𝐾𝑝(𝑤, 𝑧)𝑑𝑠 =

𝑑𝑠

|𝑤 − 𝑧|2
 , (1.27) 

 
Non-negativity: 𝐾(𝑠, 𝑡) ≥ 0, ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑖𝑛𝑡(𝑆) (1.28) 

 
Constant precision: ∮𝐾(𝑠, 𝑡)𝑑𝑠 = 1,   ∀𝑡 ∈ 𝑖𝑛𝑡(𝑆)

𝑆

 (1.29) 

 
Linear precision: ∮𝑠𝐾(𝑠, 𝑡)𝑑𝑠 = 𝑡,   ∀𝑡 ∈ 𝑖𝑛𝑡(𝑆)

𝑆

. (1.30) 
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1.6.8 Harmonic Guidance for Surface Deformation 

Zayer et al. (2005) introduced two alternative methods for smooth deformation 

interpolation aiming at preserving the global shape of the object of interest as 

well. According to the first editing scenario, deformation is succeeded through 

repositioning a small number of a triangulated domain vertices by the user, 

while all the other are placed in an automatic manner by the system. According 

to Zayer et al. (2005), three types of vertices are considered; free, fixed and 

edited. The first category includes all vertices which are to be displaced, while 

the second one consists of points which maintain their initial position during 

the whole process. Edited vertices are defined by the user and a change in their 

position causes the deformation the object is desired to be subject to. Local 

deformation interpolation is achieved through the solution of the Laplace’s 

equation (1.12) over the whole region of interest, given the following boundary 

conditions: 

and  

where ℎ is the harmonic function.  

 ∇2ℎ(𝑓𝑖𝑥𝑒𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) = 0 (1.31) 

 ∇2ℎ(𝑒𝑑𝑖𝑡𝑒𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) = 1 , (1.32) 

Figure 1.6.9 A comparison between barycentric coordinate function of a non – convex 

polygon. Left: Harmonic coordinate function. Middle: Moving Least Squares coordinate 

function. Right: Maximum Entropy coordinate function (Chen and Gotsman, 2016).  
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Then, the fragmented mesh resulted by the deformation is reconstructed 

through the solution of the sparse linear system: 

where 𝒃 denotes the vector containing the divergence values at all vertices, 𝑳 is 

the Laplace-Beltrami operator and 𝒙 are the new positions of the vertices. A 

deformation based on the particular editing scenario is shown in Figure 1.6.10. 

 

On the other hand, the second surface editing scenario is based on the 

establishment of correspondence between source and target objects of 

comparable geometries. Then, harmonic fields are used in order to “transfer” 

deformation from source to the target surface.  

Specifically, according to Zayer et al. (2005), the user selects few corresponding 

pairs of points denoted as markers 𝑚𝑖, 𝑖 = 1,… , 𝑘, to “establish a semantic 

correlation” between the two surfaces. Then, for each marker, a harmonic field 

𝒉𝑖  is defined with the boundary condition: 

 𝑳𝒙 = 𝒃, (1.33) 

Figure 1.6.10 Left: A visualization of the harmonic field. Red and blue 

colored areas are formed due to the boundary conditions (1.32) and 

(1.31) set at two vertices on the tip of the left arm and bellow the 

middle of the trunk, respectively. Middle: The deformed object. Right: 

A difference in deformation propagation occurred following the 

increase of the vertices at both arms where the boundary condition 

(1.32) is set (Zayer et al., 2005). 
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and  

Each vertex of both source and target meshes will be assigned a 𝑘 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vector containing the harmonic functions resulted, one for each 

marker. The harmonic functions on an arbitrary mesh point 𝑝 satisfy the 

partition-of-unity property, thus: 

Source and target surfaces with comparable geometries have similar harmonic 

fields and the corresponding vectors assigned on every triangular element of 

both meshes (source and target) have close field values resulting, subsequently, 

to the deformation transfer. Finally, Equation (1.33) is solved in order to 

reconstruct the target mesh. In Figure 1.6.11 a source-target surface 

correspondence is presented. 

  

 𝒉𝑖(𝑚𝑗) = 1,   𝑖 = 𝑗 (1.34) 

 𝒉𝑖(𝑚𝑗) = 0,   𝑖 ≠ 𝑗 . (1.35) 

 ∑𝒉𝑖(𝑝)

𝑘

𝐼=1

= 1 . (1.36) 

Figure 1.6.11 The cat surface triangles are mapped on the lion in 

order to succeed deformation transfer. Colored areas visualize 

the surface parts origin. White tringles show the abscess of 

correspondence in the particular areas (Zayer et al., 2005). 
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Additionally, Zayer et al. (2005) proposed an interpolation technique for 

deformation propagation depending solely on establishing correspondence on 

markers. Thus, local deformations applied on markers of the source mesh are 

used as constraints for harmonic interpolation on the target surface. Once 

again, the Equation (1.33) is solved in order to obtain the deformed mesh of the 

target geometry. 

Nonetheless, for the purpose of preserved geometrical details between the 

related surfaces, additional markets may be added. Furthermore, according to 

Zayer et al. (2005) local deformations, obtained by harmonic interpolation, are 

within the convex hull of the given deformation at the markers. As a result, 

local deformations cannot be reproduced between the specific areas. Moreover, 

the proposed deformation transfer techniques between surfaces with semantic 

differences are not capable of producing pleasing results.  

1.6.9 Robust One-to-One Sweeping with Harmonic S-T mapping 

Cai and Tautges  (2014) proposed a robust mesh generation technique based on 

Harmonic mapping and the established correspondence between the source (S) 

and the target (T) surface for interior nodes location in volumes with 

concavities.  According to the authors, harmonic mapping 𝑀 → 𝐻 is the 

mapping between two Riemannian manifolds, where the Dirichlet energy is 

minimized. During the harmonic mapping process, source (𝑀1) and target 

(𝑀2) surface triangulations are harmonically mapped on two 2-D unit disks, 

𝐻1 and 𝐻2, respectively. Therefore, by making the use of the linear 

approximation method, the outmost boundary source and target vertices are 

allocated on the 2D unit disks (𝐻1 and 𝐻2) boundaries in order to correspond. 

Thereupon, barycentric coordinates from each mesh node of 𝑀1 are computed 

and their 2D position at 𝐻1 is obtained. Then, the corresponding 3D position 

on the target surface 𝑀2 of every mesh node at 𝐻2 is calculated. Figure 1.6.12 

presents the Harmonic mapping process.  
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To locate internal nodes in volumes with concavities, Cai and Tautges (2014) 

proposed the Harmonic Interpolation technique. More specifically, the target 

quadrilateral mesh is translated in the inverse sweeping direction and the 

source surface is reached. Then, all-quad meshes in both source and target 

surface are converted into triangular. Since the location of the interior nodes in 

the source object is known, the bounding surface of the target (deformed) 

geometry may act as a cage. Thus, the final position of the interior nodes in the 

deformed object may be calculated using the harmonic interpolation as 

presented in Section 1.5.1, where for all vertices 𝐶𝑖 on the target bounding 

surface, the same boundary conditions hold. A deformation process is shown 

in Figure 1.6.13. 

 

Figure 1.6.12 (1) M1 mapping on H1 unit disk. (2) M2 mapping on H2 

unit disk. (3) H1 mapping on H2 (4) H2 mapping on M2 (Cai and 

Tautges, 2014). 

Figure 1.6.13 Left: A physical model. Right: Meshed 

bounded surfaces (Cai and Tautges, 2014). 
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1.6.10 Volumetric T-Spline construction using Boolean operations 

Liu et al. (2014) proposed a volumetric T-Spline construction algorithm in order 

to overcome the limitations related to the application of NURBS in the isometric 

analysis. Such drawbacks include the absence of local refinement and the 

resulted gaps between two neighboring surface patches. The main idea behind 

constructing a volumetric T-spline model on an object with complex geometry 

is the decomposition of the initial shape into hexahedral components and the 

development of Boolean operations for volumetric T-Spline control mesh 

creation.  

In order to divide the geometry into coherent surfaces, the harmonic field is 

calculated. According to Liu et al. (2014), such a field consist of that of the 

steady-state temperature distribution. Therefore, the key to the entire process 

is to assign the maximum and minimum temperature values on two separate 

points belonging to the model, which will act as boundary conditions. Then, 

Laplace’s equation is solved over the surface mesh and the critical points of the 

field (min, max and saddle) are obtained. On the sections formed by the 

aforementioned points, the minimum and maximum temperature values are 

assigned and the harmonic field is recalculated. Finally, following the tracing 

of the gradient lines, the model is divided into parts. The aforementioned 

technique applied to a torus is presented in Figure 1.6.14. 

  

Figure 1.6.14 Left: Harmonic field calculation given maximum and minimum 

temperature values at the highest and lowest points, respectively. Middle: Harmonic 

field calculation given maximum and minimum temperature values at the highest and 

lowest cross regions, respectively. Right: Decomposition of the torus (Liu et al., 2014).   



Sofia Tavla  Introduction 

 

36 

 

1.6.11 All hexahedral mesh generation via inside-out advancing front based 

on harmonic fields 

Li and Tong (2012) proposed an inside out Advancing Front method to 

generate an unstructured all-hexahedral mesh for a given volume constructed, 

initially, by an isotropic tetrahedral mesh. The key of the aforementioned 

method consisted of the calculations of two harmonic fields which determined 

the orientation of the produced elements and guided the whole hex-mesh 

advancement process. Initially, in order to construct the harmonic field over 

the whole volume, Li and Tong (2012) proposed the solution of the discrete 

Laplace’s equation of the form: 

over the tetrahedral mesh 𝑀, where 𝑁(𝑖) is the one-ring neighborhood and 𝑢𝑖 

the harmonic scalar value of the function 𝑓:𝑀 → 𝑅 of the vertex 𝑣𝑖, respectively. 

The term 𝑤𝑖𝑗 is a real-valued weight assigned to the edge 𝑒𝑖𝑗 and can be 

calculated by the Equation (1.38) as follows: 

where 𝑒𝑝𝑞 is the opposite edge of 𝑒𝑖𝑗 and 𝜃𝑘 , 𝑘 = 1,… , 𝑛 is the dihedral angle. 

Then, the linear system: 

is obtained, where 𝒖 = {𝑢0, 𝑢1, … , 𝑢𝑛} and 𝑳 is the Laplacian operator equal to: 

 ∑ 𝑤𝑖𝑗(𝑢𝑖 − 𝑢𝑗)

𝑗∈𝑁(𝑖)

= 0 , (1.37) 

 
𝑤𝑖𝑗 =∑‖𝑒𝑝𝑞‖cos (𝜃𝑘)

𝑛

𝑘=1

 , (1.38) 

 𝑳𝒖 = 0 , (1.39) 

 

𝑳𝑖𝑗 =

{
 
 

 
 ∑ 𝑤𝑖𝑘   𝑖𝑓 𝑖 = 𝑗

𝑣𝑘∈𝑁(𝑖)

−𝑤𝑖𝑗            𝑖𝑓  𝑗 ∈ 𝑁(𝑖)

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 . (1.40) 
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The solution of the Equation (1.39) consists of the harmonic discrete scalar 

values on the corresponding mesh vertices. Subsequently, every point 𝑣 of the 

volume its harmonic function equals to:  

where 𝜑𝑖(𝑣) is the linear basis function on each vertex of the tetrahedron in 

which the point lies.  

Therefore, in order to solve the Equation (1.39) the following boundary 

condition was set: the selected boundary vertices of the one side of the volume 

had the minimal scalar value equal to 0, while the boundary vertices belonged 

to the other volume side were constrained with the maximal value equal to 1. 

In addition, according to Li and Tong (2012), the discrete gradient vectors of 

the harmonic field should be perpendicular to the corresponding normal of the 

boundary surface. The constructed harmonic field, under the aforementioned 

boundary conditions, was referred to as “Principal” and determined the 

orientation of the constructed elements. Figure 1.6.15 shows the boundary 

conditions set on an elliptical cylinder and the corresponding principal 

harmonic field. 

 
𝑢(𝑣) =∑𝑢𝑖𝜑𝑖(𝑣)

4

𝑖=1

 , (1.41) 
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On the contrary, the harmonic field obtained under the boundary condition 

where the vertices of the initial hexahedral elements are constrained with the 

minimal value, while the ones belonged on the tetrahedral mesh boundary 

were equal to the maximal value, was referenced to as “Radial Harmonic Field”. 

The gradient vector field was calculated in order to trace the streamlines of 

Radial Harmonic field and indicates the direction of the advancement process 

on each individual vertex. A visualization of the produced Radial Harmonic 

field on an arbitrary volume is shown in Figure 1.6.16.  

 

Figure 1.6.15 (a) The boundary conditions on an elliptic cylinder. Red-colored 

area indicates the maximal valued vertices, while blue-colored vertices are 

constrained with the minimal value. (b) The distribution of the principal 

harmonic field over the elliptic cylindrical volume. Red-colored and blue colored 

areas indicate high and low scalar values, respectively. The short blue lines 

represent the gradient vector at the corresponding points (Li and Tong, 2012). 

 

Figure 1.6.16 The distribution of the Radial Harmonic field. Red-

colored and blue-colored areas mark high and low scalar field 

vectors. The streamlines of the Radial Vector Field are indicated with 

light blue color (Li and Tong, 2012). 
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In addition, Li and Tong (2012) proposed a complex volume segmentation 

technique. The main idea was to generate hexahedral-meshed subvolumes 

with smooth interfaces between the segmented areas. To achieve this, they 

proposed the solution of the Linear System (1.39) with the following boundary 

condition: the scalar value of each boundary vertex equals to the random walk 

distance to the specific seed face. The constructed harmonic fields on the Venus 

model and the produced hex mesh are shown in Figure 1.6.17. 

  

1.6.12 Direct Product Volumetric parameterization of handlebodies via 

harmonic fields 

Xia et al. (2010) proposed a volume parameterization method by exploiting the 

harmonic field properties. Given a manually designed polycube 𝑃 and a 3D 

geometry represented by a tetrahedral mesh 𝑀, a polycube map between the 

boundary 𝜕𝑃 and 𝜕𝑀 is constructed by the Divide and Conquer method 

introduced by He et al. (2009). Then, due to the bijectivity of the 

aforementioned polycube mapping, the user-specified partition of the 

boundary surface 𝜕𝑃 into floor 𝐵0, ceiling 𝐵1 and walls 𝐷, automatically, results 

Figure 1.6.17 Left: Harmonic field construction in Venus 

model. Right: All – hexahedral mesh generation (Li and 

Tong, 2012). 
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into the identical partition of the surface 𝜕𝑀. A partition between the polycube 

and a 3D model is shown in Figure 1.6.18. 

  

Now, consider two harmonic functions on 𝑀 and 𝑃, 𝑓𝑀:𝑀 → ℝ and 𝑓𝑃:𝑀 → ℝ, 

accordingly. Then, through the solution of the Laplace’s equation: 

under the boundary conditions: 

 
∆𝑓(𝑝) = 0   ∀ 𝑝 ∉ 𝐵0 ∪ 𝐵1 , (1.42) 

Figure 1.6.18 (a) The surface of the 3D model 𝑀 mapped on the 

surface of the polycube 𝑃. (b) The partition of the polycube 𝑃. (c) The 

surface of the 3D model 𝑀. (d) The partition of the 3D model 𝑀 

resulted by the partition of the polycube 𝑃 (Xia et al., 2010). 
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the harmonic functions 𝑓𝑀 and 𝑓𝑃, are obtained. Afterwards, the gradient field 

vector of 𝑓𝑀, ∇𝑓𝑀, is calculated and the integral curve (whose tangent vector 

equals to the gradient field) is traced. The points where the integral curve 

intersects the floor and ceiling of 𝑀 are denoted with 𝑝 and 𝑞, respectively. 

Following the creation of the polycube map, each point on the ceiling and floor 

of 𝑀 is mapped to the polycube 𝑃. The computation of the harmonic fields on 

the polycube 𝑃 and the 3D model 𝑀 is presented in Figure 1.6.19. 

  

Then, the integral curve of the gradient vector ∇𝑓𝑃 is computed and the 

intersection points on the floor and ceiling of 𝑃,  𝑝′ and 𝑞′ are obtained, 

respectively. Subsequently, given an interior point of 𝑀, denoted as 𝑠, the 

corresponding unique point in 𝑃, 𝑠′, is found through the Equation (1.45): 

Thus, by locating each interior point of 𝑃 given the corresponding point’s 

position on 𝑀, the volumetric mapping for the interior is constructed. 

 
𝑓(𝑝) = 0   ∀ 𝑝 ∈ 𝐵0 (1.43) 

 
𝑓(𝑝) = 1   ∀ 𝑝 ∈ 𝐵1 , (1.44) 

 𝑓𝑀(𝑠) = 𝑓𝑃(𝑠
′) . (1.45) 

Figure 1.6.19 Figures from (a) to (d) show the polycube (up) and 3D model (down) 

computed harmonic fields. Figure (e) shows the several iso – surfaces of harmonic fields 

(Xia et al., 2010). 
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Similarly, to construct a mapping for the walls, the gradient of every triangular 

element of the boundary of the floor on 𝑀, 𝜕𝐵0
𝑀, is calculated and the integral 

curve beginning from the aforementioned boundary is traced. Then, through 

the floor map ℎ: 𝐵0
𝑀  → 𝐵0

𝑃, each integral curve on 𝑀 is mapped to a 

corresponding curve on 𝑃, thus, every point on 𝑀 is mapped to a unique point 

on 𝑃.  

Furthermore, resulted from the regular structure of the polycube used in the 

aforementioned volumetric parameterization scheme, the proposed 

methodology was applied for the generation of hexahedral meshes on 3D 

domains. A generated hexahedral mesh resulted from the application of the 

aforementioned technique, is shown in Figure 1.6.20. 

 

Figure 1.6.20 The generated hexahedral mesh using the Direct 

Product Volumetric Parameterization method (Xia et al., 2010). 
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1.6.13 Dynamic Harmonic fields for surface processing 

Xu et al. (2009) introduced a fast updating harmonic field method for dynamic 

conditions handling applied for surface processing applications. The 

aforementioned methodology is based on the solution of the linear system 

(1.46) on a closed manifold triangular mesh: 

where 𝒖 is the vector containing the unknown approximate harmonic function 

values on the mesh vertices. Term 𝑳 denotes the unconstraint Laplacian matrix 

and equals to: 

where 𝑾𝑖𝑗 =
1

2
(𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗), while 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are the opposite angles of 

(𝑖, 𝑗) edge in the triangular mesh, respectively. In case of edge (𝑖, 𝑗) not existing 

then 𝑾𝑖𝑗 = 0.  

Matrix 𝑫 is diagonal and consists of the row sums of 𝑾. Furthermore, the 

diagonal penalty matrix 𝑷 in Equation (1.46) equals to: 

where the penalty factor 𝑎 = 1.0 ∙ 108 and 𝑆 the set of indices of the vertices on 

which the boundary conditions are forced. In addition, matrices 𝑹 and 𝑩 are 

equal to:  

and  

 (𝑳 + 𝑷 + 𝑹𝑹𝑻 − 𝑩𝑩𝑻)𝒖 = 𝑷𝒃 , (1.46) 

 
𝑳 = 𝑫 −𝑾 , (1.47) 

 
𝑷𝑖𝑗 = {

𝑎,   𝑖𝑓 𝑖 ∈ 𝑆 𝑎𝑛𝑑 𝑖 = 𝑗
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} , (1.48) 

 
𝑹𝑖𝑗 = {

√𝑎,    𝑖 = 𝑗 ∈ 𝑆𝑖𝑛𝑠
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} , (1.49) 
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Terms 𝑆𝑖𝑛𝑠 and 𝑆𝑑𝑒𝑙 denote the sets of indices referred to locations of added and 

deleted constraints. Moreover, vector 𝒃 in Equation (1.46) equals to: 

where the term 𝑠𝑖 consist of the given harmonic field value at site 𝑖 = 1, … . , 𝑛. 

The harmonic field computed following the addition of new constraint vectors 

is shown in Figure 1.6.21. 

 

Xu et al. (2009) demonstrated the effectiveness of the interactive harmonic field 

updating methodology on various surface processing applications, such as the 

shape deformation and deformation transfer between a source and a target 

surface by making the use of dynamic handles. In all presented applications the 

proposed methodology offered real-time performance and interactive user 

experience on surface processing. Figure 1.6.22 presents a deformation transfer 

between a source (cat) and a target (wolf) shape by making the use of dynamic 

handles. 

 
𝑩𝑖𝑗 = {

√𝑎,   𝑖 = 𝑗 ∈ 𝑆𝑑𝑒𝑙
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} . (1.50) 

 
𝒃𝑖 = {

0  𝑖𝑓 𝑖 ∉ 𝑆
𝑠𝑖 𝑖𝑓 𝑖 ∈ 𝑆

} , (1.51) 

Figure 1.6.21 Left: Harmonic vector field computation according to the user - 

specified constraint vectors (red arrows). Right: Calculation of the Harmonic 

field after the insertion of additional constraint vectors (Xu et al.). 
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1.6.14 Skeleton based cage guided by harmonic fields 

Casti et al. (2019) introduced a user-assisted skeleton-based cage generation 

tool. The input of the method consists of a triangular mesh 𝑀 representing the 

surface of a 3D model of choice and its skeleton 𝑆. Provided a number of 

bending nodes on the skeleton by the user, a corresponding segmentation of 

the volumetric model is resulted and an initial control cage is constructed for 

each piece of the object. In order to create the surfaces which will later 

contribute to the formation of the final cage, a tetrahedral mesh is generated 

and a harmonic field on the latter mesh’s vertices is calculated. More 

specifically, given a vertex point 𝑝 of the tetrahedral mesh, the solution of the 

Laplace’s equation: 

is sought, under the Dirichlet boundary conditions of Equation (1.53) and 

(1.54), respectively: 

 
∆𝑓(𝑝) = 0 , (1.52) 

 𝑓(𝑝) = 0, ∀𝑝 ∈ 𝑆  (1.53) 

 𝑓(𝑝) = 1, ∀𝑝 ∈ 𝑀 .  (1.54) 

Figure 1.6.22 Deformation transfer between a source (cat) and a target (dog) surface. Handles 

applied on cat are indicated with red color and change throughout the procedure (Xu et al., 

2009). 
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Then, the harmonic function is linearly interpolated at the interior of each 

element belonging to the tetrahedral mesh. 

Induced by the boundary conditions (1.53) and (1.54), the integral lines of the 

produced harmonic field begin from a bending point 𝑝 of 𝑆 and terminate at 

the surface mesh 𝑀. The aforementioned intersection points form a ring 

centered at 𝑝 and consist of the closest points of 𝑝. The area spanned 

transversely by the integral lines of the harmonic field is called a cutting surface. 

For each ring centered at a bending point 𝑝 a quadrilateral is formed with its 

vertices consisted of four sampled intersection points. An example of a 

calculated harmonic field together with the ring area and the quadrilateral 

formed by, are shown in Figure 1.6.23.  

 

Therefore, the quadrilateral sections are connected pairwise and their convex 

hull is computed. Finally, by welding all the convex hulls for each segment of 

the 3D model, an initial control cage is constructed. In case of the control cage 

intersects the surface mesh 𝑀, the corresponding face is projected onto 𝑀 

following the integral lines of the previously calculated harmonic field. 

Therefore, through the welding of the aforementioned quadrilateral sections, 

which better align to the cutting surfaces, the final topology of the cage is 

Figure 1.6.23 Left: The harmonic field on a 3D model. Bottom Right: The intersection points 

on 𝑀 obtain through following the integral lines (black dotted lines) of the harmonic field 

beginning from 𝑝. Top Right: The quadrilateral section formed by four sampled intersection 

points (Casti et al., 2019). 
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created. A cage constructed using the presented technique is shown in Figure 

1.6.24.  

 

1.6.15  Variational Harmonic Maps 

Ben-Chen et al. (2009) proposed a space deformation technique based on a set 

of harmonic functions that have a closed-form expression. The concept 

underlying the aforementioned methodology consists of the computation of a 

harmonic mapping where the user places a number of position and orientation 

constraints, given a cage embedding the volume of interest. Then, an 

optimization procedure is followed in order to produce a smooth deformation 

coupled with detail preservation.  

More specifically, consider the fundamental solution of the Laplace’s equation 

(which is the Green’s function) in a 3D domain 𝛺 bounded by a triangular mesh 

𝑆(𝑉, 𝐹) with 𝑉 vertices and 𝐹 faces: 

and its gradient: 

 
𝐺(𝑞, 𝑝) =

1

4𝜋|𝑞 − 𝑝|
= �̂�(𝑞, 𝑝) , (1.55) 

Figure 1.6.24 (a) The input of the particular technique consists of the volume and its 

skeleton around which the cage will be formed. (b) Bending points are selected by the 

user. (c) Cross – sections at bending nodes are constructed through tracing the harmonic 

field integral lines beginning from individual bending points. (d) The welding of the 

quadrilateral sections around the bending nodes forms the topology of the cage. (e) 

Presentation of the volume inside its created cage (Casti et al., 2019). 
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where 𝑝(𝑥, 𝑦, 𝑧) ∈ 𝛺, 𝑞(𝑥, 𝑦, 𝑧) ∈ 𝜕𝛺 and �̂�(𝑞) is the unit normal direction to the 

surface 𝑆 = 𝜕𝛺. Note that Green’s function (1.55) has a closed-form expression 

for any dimension and considering that consists of a solution to Laplace’s 

equation is also harmonic. Thus, according to Ben-Chen et al. (2009), all its 

partial and higher derivatives are also harmonic. 

Then, a deformation mapping 𝑓: 𝛺 → ℝ3 can be defined: 

where 𝑎 is a piecewise linear map on 𝑆 defined by values 𝑎𝑣 at vertices of the 

triangular mesh and 𝑏 a constant piecewise map defined by values 𝑏𝑡 at the 

faces of the aforementioned grid. 

Given the matrix notation of Equation (1.57): 

the Jacobian of the deformation 𝒇 at a point 𝑝,  𝑱𝑓(𝑝), as well as the Hessian 

𝑯𝑓(𝑝) define the orientation of a point and the smoothness of the deformation 

around it, accordingly. Terms 𝑛,𝑚 in Equation (1.58) denote the numbers of 

vertices and faces, respectively.  

Then, provided by the user a set of 𝑟 points 𝑞𝑖 ∈ 𝛺 and their target 

position 𝑓(𝑞𝑖) = 𝑓𝑖, in addition to a set of 𝑠 points 𝑡𝑖 together with their 

orientation 𝐽𝐹(𝑡𝑖) = 𝑔𝑖, 𝑘 points 𝑤𝑖 ∈ 𝜕𝛺 are sampled in order to approximate 

the smoothness of the deformation. Furthermore, the rigidity of the 

deformation is estimated through the sampling of 𝑑 points on 𝑙 rigidity lines 

 
∇𝐺(𝑞, 𝑝) ∙ �̂�(𝑞) = �̂�(𝑞, 𝑝) , (1.56) 

 𝑓𝑎,𝑏(𝑝) =∑ ∫𝑎𝑣(𝑞)�̂�(𝑞, 𝑝)

𝑞∈𝑡𝑡∈𝐹

−∑ ∫𝑏𝑡(𝑝)�̂�(𝑞, 𝑝)

𝑞∈𝑡𝑡∈𝐹

 , (1.57) 

 
𝒇𝒂,𝒃(𝑝)𝟏𝒙𝟑 = (𝝋1𝑥𝑛 𝝍1𝑥𝑚) (

𝜶𝑛𝑥3
𝒃𝑚𝑥3

) , (1.58) 
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which can be obtained by e.g. a given skeleton of the deformed shape by the 

user.  

Therefore, the solution of the optimization problem: 

defines a smooth and detail-preserving deformation which satisfies the user 

imposed constraints (1.60) and (1.61). Note that the unknowns of the 

optimization problem consist of 𝑎, 𝑏, 𝑹𝑖 where 𝑹𝑖 are the rotations a point 

should undergo. A deformation resulted from the solution of the 

aforementioned optimization problem is shown in Figure 1.6.25. 

  

A detail-preserving deformation produced following the prescription of the 

target position and Jacobian constraints is presented in Figure 1.6.26. 

 
𝑚𝑖𝑛𝑎,𝑏,𝑹𝑖 𝐸(𝑓𝑎,𝑏) =∑‖𝑱𝐹(𝑚𝑖) − 𝑹𝑖‖𝐹

2 + 𝜆2∑‖𝑯𝐹(𝑤𝑖)‖𝐹
2

𝑘

𝜄=1

𝑑

𝑖=1

 (1.59) 

 
𝑠. 𝑡.   ∀𝑖 = 1,… , 𝑟  𝑓𝑎,𝑏(𝑞𝑖) = 𝑓𝑖 ,    ∀𝑖 = 1,… , 𝑠  𝑱𝐹(𝑟𝑖) = 𝒈𝑖 (1.60) 

 
∀𝑖 = 1,… , 𝑑  𝑹𝑖

𝑇𝑹𝑖 = 𝑰 , (1.61) 

Figure 1.6.25 Left: Initial model’s geometry enclosed in a cage. 

Right: Model’s deformation using variational harmonic maps 

deformation method (Casti et al., 2019). 
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1.6.16  Bounded distortion Harmonic Shape Interpolation 

Chien et al. (2016), presented a shape interpolation method aiming at 

producing smooth and one-to-one (injective) mappings that have bounded 

conformal and isometric distortion. The input of the aforementioned 

methodology consists of two smooth, harmonic mappings with bounded 

isometric distortion which are, afterward, linearly blended in order to produce 

the output mapping. Moreover, the proposed interpolation technique is 

composed of three diverse variants; the second complex dilatation 𝑣, the 

unscaled 𝜂 and the metric tensor 𝑀ℎ.  

More specifically, consider a connected domain 𝛺 and an arbitrary point 𝑧 ∈ 𝛺. 

Then, any harmonic mapping 𝑓: 𝛺 → ℝ2 can be written as a sum of a 

holomorphic 𝛷 and an antiholomorphic function �̅�: 

Furthermore, let a function 𝑓: 𝛺 → ℝ2 and its Jacobian matrix 𝑱𝒇 at any point in 

the domain. Then, the matrix 𝑱𝒇 can be written as a sum of a similarity 𝑺𝟐 =

𝑎 −𝑏
𝑏   𝑎

 and an anti - similarity matrix 𝑨𝟐 =
𝑐    𝑑
𝑑 −𝑐

, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ2. Here, 

the similarity is considered in terms of the Frobenius norm.  

 
𝑓(𝑧) = 𝛷(𝑧) + �̅�(𝑧) . (1.62) 

Figure 1.6.26 Left: Position and Jacobian constraints imposed in the circular area 

by the user. Right: The detail – preserving deformation of the marked area 

occurred (Ben-Chen et al., 2009). 
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Considering the above, the functions 𝛷(𝑧) and �̅�(𝑧) of Equation (1.62) can be 

obtained through the integration of the parts acquired from the decomposition 

of the Jacobian matrix of the harmonic mapping 𝑓: 𝛺 → ℝ2. Moreover, it should 

be mentioned that the derivatives 𝛷′ = 𝒇𝑧 and 𝛹′̅̅ ̅ = 𝒇�̅� are also holomorphic 

and anti-holomorphic, respectively. Additionally, let the two input 

holomorphic - harmonic mappings  𝒇𝑧
0, 𝒇𝑧

1: 𝛺 → ℝ. Then, the interpolation 

mapping can be obtained through the linear interpolation of the logarithms of 

the input mappings, as presented in Equation (1.63): 

where the term 𝑡 denotes a specific point in the time interval [0, 1].  

In order to generate mappings with bounded conformal distortion, Chien et al. 

(2016) introduced the second complex dilatation 𝑣 variant. Considering a planar 

mapping 𝑔, the variant 𝑣 equals to:  

Then, the second complex dilation 𝑣𝑡 for a time 𝑡 ∈ [0, 1] can be obtained 

through Equation (1.65): 

 where 𝒗0, 𝒗1 are also holomorphic. In addition, in order to interpolate the 

quantity 𝑣𝑡 in the interior of the domain 𝛺, the Equation (1.66) holds: 

Equation (1.66) appears to be anti-holomorphic and it is able, thus, to produce 

harmonic mappings. 

 
𝒇𝑧
𝑡 = (𝒇𝑧

0)1−𝑡(𝒇𝑧
1)𝑡 , (1.63) 

 
𝑣 =

𝑔�̅�̅̅ ̅

𝑔𝑧
 . (1.64) 

 
𝒗𝑡 = (1 − 𝑡)𝒗0 + 𝑡𝒗1 , (1.65) 

 
𝒇�̅�
𝑡 = 𝒗𝑡𝒇𝑧

𝑡̅̅ ̅̅ ̅̅  . (1.66) 
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In addition to the first variant of the aforementioned technique, Chien et al. 

(2016) proposed the scaled variant 𝜂, aiming at producing local injective 

mappings with bounded geometric distortion.  

Consider a planar mapping 𝑔 and the quantity 𝜂 = 𝑔�̅�𝑔𝑧̅̅ ̅, then the linear 

interpolation of 𝜂 is obtained: 

Additionally, let the scaled variant �̃�𝑡 = 𝜌(𝑡)𝜂 with 𝜌: [0, 1] → (0, 1) and 𝜌(0) =

𝜌(1) = 1. Then, the interpolation of the scaled variant �̃�𝑡 in the interior of the 

domain 𝛺, equals to: 

 
𝒇�̅�
𝑡 =

�̃�𝑡

𝒇𝑧
𝑡̅̅ ̅ . 

(1.68) 

Similar to Equation (1.66), Equation (1.68) is anti-holomorphic and it can, thus, 

produce harmonic mappings. 

Additionally, in order to produce mappings that preserve the conformal and 

isometric distortion, Chien et al. (2016) introduced the metric tensor variant. 

Consider a planar mapping ℎ: 𝛺 → ℝ2 where its metric is defined: 

where 𝑱𝒉 is the Jacobian matrix of the mapping ℎ. Then, following the 

decomposition of the Jacobian 𝑱𝒉, the quantity 𝑨 = |ℎ𝑧|
2 + |ℎ�̅�|

2 is produced.  

Now, let two input mappings 𝒇0 and 𝒇1 and their metrics 𝑴𝑓
0 and 𝑴𝑓

1, 

respectively. In order to interpolate the metric tensor 𝑴𝑓
𝑡 , the metrics 𝑴𝑓

0 

and 𝑴𝑓
1 are blended. Thus,  

 
𝜼𝑡 = (1 − 𝑡)𝜼0 + 𝑡𝜼1 . (1.67) 

 
𝑴𝒉 = 𝑱𝒉

𝑻𝑱𝒉 , (1.69) 

 
𝑴𝑓
𝑡 = (1 − 𝑡)𝑴𝑓

0 + 𝑡𝑴𝑓
1 . (1.70) 
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Similarly, consider the scaled variant interpolation of Equation (1.67) and the 

linear interpolation of the quantity 𝐴: 

Therefore, according to Chien et al. (2016) in order to preserve the geometric 

distortion, the metric 𝑴𝑓
𝑡  is linearly blended on the boundary 𝜕𝛺 of the 

domain 𝛺. Thus, the positive root of the Equation (1.72): 

is considered the linear interpolation formula for the metric tensor on 𝜕𝛺. In 

order to interpolate the quantity |𝒇𝑧
𝑡 | in the interior of 𝛺, the Dirichlet boundary 

problem is solved through applying the value 𝑙𝑛|𝒇𝑧
𝑡 | on the boundary 𝜕𝛺. The 

resulted quantity consists of a holomorphic function. 

On the other hand, in order to obtain the anti-holomorphic function 𝒇�̅�
𝑡 , the 

scaled variant 𝜼𝑡 is directly interpolated in the interior of the domain 𝛺 (and 

not just on the boundary). 

Eventually, each variant of the proposed interpolation technique possesses the 

ability to produce smooth harmonic mappings with bounded geometric 

distortion. A demonstration of the produced harmonic mappings given the 

input mapping for 𝑡 = 0 and 𝑡 = 1 is shown in Figure 1.6.27. 

 
𝑨𝑡 = (1 − 𝑡)𝑨0 + 𝑡𝑨1 . (1.71) 

 
|𝒇𝑧
𝑡 |2 =

𝑨𝑡 ±√(𝑨𝑡)2 − 4|𝜼𝑡|2

2
 , (1.72) 
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1.6.17  Feature-aligned harmonic volumetric mapping using MFS. 

Li et al. (2010) proposed a harmonic volumetric mapping methodology that 

establishes a correspondence between two solid models of similar topology. 

The input of the method consists of the volumetric geometries of the 3D 

models, 𝑀1 ∈ ℝ
3 and 𝑀2 ∈ ℝ

3, respectively. In addition to prior, the boundary 

mapping 𝒇 = (𝑓′1, 𝑓′2, 𝑓′3) between the boundary surfaces 𝜕𝑀1 and 𝜕𝑀2 is 

given. 

Then, considering a real harmonic function 𝑓𝑖(𝑖 = 1, 2, 3) on the three 

axes 𝑥, 𝑦, 𝑧, respectively, the main objective of the particular method is to 

compute the harmonic volumetric mapping: 

 
𝒇:𝑀1 → 𝑀2 = 𝒇 = ∑ 𝒇𝑖

𝑖=𝑛𝑠

𝑖=1

= ∑(𝑓𝑖
1

𝑖=𝑛𝑠

𝑖=1

, 𝑓𝑖
2, 𝑓𝑖

3) , (1.73) 

Figure 1.6.27 Considering the input mappings for 𝑡 = 0 and 𝑡 = 1 and the source image 

(domain 𝛺) of the dragon, the output mappings produced by the interpolation of the 

metric tensor and 𝜂 variant for 𝑡 = 0.5 are presented (Chien, Chen and Weber, 2016). 
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where for a given collocation point 𝑝 ∈ 𝑷 = {𝑃1, 𝑃2, … , 𝑃𝑛𝑐}, the boundary 

conditions (1.74) or (1.75) hold: 

On the other hand, for an internal point 𝑝 ∈ 𝑀1, Laplace’s equation in 3D is 

solved: 

Thus, in order to obtain the harmonic functions 𝑓𝑖
𝑗
, 𝑗 = 1, 2, 3, 𝑖 = 1,… , 𝑛𝑠 the 

linear system of Equation (1.77) is formulated: 

where given a set of source points 𝑸 = {𝑄1, 𝑄2, … , 𝑄𝑛𝑠} in the exterior of 𝑀1, 

the 𝑢𝑣𝑡ℎ element of the coefficient matrix 𝐴 equals to the Green’s function: 

and the term 𝒃𝑖
𝑗
 denotes the values of the boundary conditions on the 

collocation points as presented in Equations (1.74) and (1.75). 

Subsequently, the linear system of Equation (1.77) is solved in order to compute 

the unknown weight function 𝒘𝑖
𝑗
 on each source point 𝑸 = {𝑄1, 𝑄2, … , 𝑄𝑛𝑠}. 

Then, in order to compute a harmonic function on a point 𝑝 on the boundary 

or in the interior of 𝑀1 the Equation (1.79) is applied: 

 
𝒇(𝑝) = 𝒇′(𝑝), 𝑖 = 1 (1.74) 

 
𝛿𝑓′(𝑝) = 𝒇′(𝑝) − ∑ 𝒇𝑖

𝑖=𝑛𝑠−1

𝑖=1

(𝑝),    𝑖 > 1 . (1.75) 

 
∆𝑓𝑖 =

𝜕2𝑓𝑖

𝜕𝑥2
+
𝜕2𝑓𝑖

𝜕𝑦2
+
𝜕2𝑓𝑖

𝜕𝑧2
= 0 . (1.76) 

 
𝑨𝑖
𝑗
∙ 𝒘𝑖

𝑗
= 𝒃𝑖

𝑗
 , (1.77) 

 
𝑨𝑢𝑣 = 𝐾(𝑷𝑢, 𝑸𝑣) =

1

4𝜋|𝑷𝑢 − 𝑸𝑣|
 , (1.78) 
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Moreover, Li et al. (2010) proposed the addition of feature constraints such as 

handle points, skeleton, curves and surfaces ideal for matching heterogeneous 

volumetric data. The establishments of two smooth correspondences between 

a polycube and a torus as well as a polycube and a kitten are depicted in Figure 

1.6.28. 

  

Additionally, the application of the proposed technique for hexahedral mesh 

generation is presented in Figure 1.6.29. 

 

 

 

 
𝑓𝑖(𝒘𝑖, 𝑸; 𝑝) = ∑𝒘𝑛

𝑖

𝑛𝑠

𝑛=1

𝐾(𝑝,𝑸𝑛) . (1.79) 

Figure 1.6.28 Polycubes (a) and (e) are mapped onto double torus (b) and kitten (f), 

respectively. Color – encoded distance field of (f), (g) are transferred under the mapping 

to (d), (h), respectively (Li et al., 2010). 

Figure 1.6.29 (a) The surface mesh of David’s head. (b) A generated hexahedral mesh on the 

polycube domain. (c) The generated volumetric hexahedral mesh on David’s head. (d) The 

generated mesh in the interior of the volume (Li et al., 2010). 
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1.6.18 Shape Parameterization and Grid Adaptation using Harmonic 

Coordinates and their application to the Aerodynamic Design Optimization 

Mavronikola (2017) presented a shape parameterization and grid adaptation 

methodology based on the harmonic coordinates introduced by Joshi et al. 

(2007). At first, given a 2D aerodynamic shape, represented by a triangular 

mesh (e.g. an airfoil), its control cage was constructed. Then, following the 

solution of Laplace’s equation (1.12) under the same Dirichlet boundary 

conditions as applied in Joshi et al. (2007), every mesh node was assigned a 

number of harmonic coordinates depending on the number of control points 

on the cage. Afterwards, the values of the harmonic coordinates obtained on 

the triangular mesh nodes were interpolated to a grid for Computational Fluid 

Dynamics (CFD) applications.  

Therefore, by the displacement of the control points, the shape of the 

aerodynamic figure, as well as the computational mesh, were concurrently 

modified. Moreover, a system of two nested control cages was proposed in 

order to ensure both the periodicity and smoothness of the computational mesh 

close to the boundaries of the internal cage. Eventually, the proposed 

methodology was integrated into an aerodynamic design optimization scheme.  

Based on the work of Mavronikola (2017), Zervas (2018) introduced the 

aforementioned shape parameterization and grid adaptation technique for the 

case of 3D unstructured grids. The initial shape of an airfoil, as well as its 

deformation, occurred following the shape parameterization and grid 

adaptation technique introduced by Mavronikola (2017) are presented in 

Figure 1.6.30. 
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1.6.19 Summary  

The purpose of the present literature review was to provide the latest scientific 

works concerning geometry parameterization and handling techniques based 

on harmonic functions. Due to the necessity for smooth and plausible shape 

deformation results, several methods have been proposed, either by making 

the use of harmonic coordinates and their approximations or harmonic fields 

and maps. For the purpose of the aforementioned methods to succeed, high 

parameterization accuracy and stability come at the price of an increased 

demand on computational time and algorithm complexity. In addition, further 

research in developing a powerful parameterization method, suitable for 

general geometries, is required. Furthermore, in order to construct a less 

Figure 1.6.30 Above: The Mach number distribution on the initial airfoil 

shape. Red colored areas indicate the presence of high Mach numbers 

compared to the blue colored areas on which low Mach numbers were 

obtained. Below: The deformed airfoil along and the Mach distribution 

around it (Mavronikola, 2017). 
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complex algorithm, the smallest possible number of parameters may be used, 

so as to easily define and effectively handle them throughout the entire process. 
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Chapter 2  

Free Form Deformation 

 

2.1 Introduction to Free Form Deformation (FFD) 

Due to the ability of the indirect shape manipulation and the reduced number of 

design parameters handled, the Free Form Deformation represents one of the most 

popular and diverse parameterization methods, not only in computer graphics but 

also in the aerodynamic optimization field. The fundamental idea underlying the 

FFD algorithm is to achieve an indirect deformation of the shape at hand by 

embedding it into a parametric control grid (lattice); then by transforming the 

geometry of the particular lattice, every object enclosed to it undergoes the same 

deformation (Leloudas et al., 2020). Over the latest years, several FFD-based 

parameterization methods have been proposed. A brief introduction to the 

developed techniques for both computer graphics and aerodynamic shape 

optimization purposes is implemented in Section 2.1.1 and Sections 2.1.2, 

respectively. 

 

2.1.1 Free Form Deformation Variations 

Barr (1984) was the first to introduce a hierarchical solid modeling technique in 

order to achieve deformation of complex geometries. In particular, through the 

hierarchical combination of transformations (twisting, bending, tapering or 

similar) of simpler geometries, a complex shape modification is succeeded. A 

deformation based on the aforementioned approach is presented in Figure 2.1.1.  
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 Later on, Sedeberg and Parry (1986) proposed a general geometry modification 

technique for solid objects, based on Bernstein polynomials and the 

displacement of a set of handle points (i.e. control points). The aforementioned 

study was the origin of several Free Form Deformation-based techniques. 

Following Sederberg & Parry’s methodology, Griessmair and Purgathofer (1989) 

implemented Free Form Deformation by making the use of trivariate B-Spline 

basis functions for the purpose of parametric lattice construction. Later, 

Coquillart (1990) introduced an efficient method of modeling and modification 

of cloth-like surfaces. The aim of the Extended Free Form Deformation (EFFD) 

was the geometry deformation, through the bending and insertion of shaped 

bumps on the object’s surface of interest. Thus, the aforementioned deformation 

technique is independent of handled body geometry. In addition to EFFD, 

Coquillart and Jancéne (1991) introduced the Animated Free Form Deformation 

(AFFD) approach. In particular, the abovementioned method is based on the 

shape modification and subsequent motion by a sequence of independent shape 

transformations. In Figure 2.1.2 an AFFD deformation is presented  

Figure 2.1.1 Left: Twisting of a tapered primitive. Right: A bent, twisted and tapered 

primitive (Barr, 1984). 
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Chang and Rockwood (1994) suggested a 3D FFD method based on a generalized 

form of the de Casteljau algorithm. Specifically, for the purpose of succeeding 

deformation, by making the use of a single Bézier curve, a control polygon and a 

user-specified axis, several affine transformations are repeatedly applied in space. 

A demonstration of the Generalized de Casteljau approach of FFD is shown in 

Figure 2.1.3. 

Figure 2.1.2 Disc transformation into a 

hand (Coquillart and Jancéne, 1991). 
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Lamousin and Waggenspack (1994), presented a FFD methodology based on the 

construction of B-Spline rational basis functions over a non-uniform knot vector 

(NURBS). Later, Samareh (1999) applied the NFFD approach in order to perform 

aerodynamic Computational Structural Mechanics (CMS) parameterization.  

MacCracken and Joy (1996) proposed a variation of the original FFD technique 

based on the 3D lattice refinement into a sequence of lattices that converge 

uniformly to a region of 3D space, throughout the application of the Catmull-Clark 

subdivision methodology. As a result, any modification that occurred in the 

repeatedly refined lattices is transferred to the 3D space. A deformation based on 

MacCracken’s and Joy’s approach is shown in Figure 2.1.4. 

Figure 2.1.3 (a) A single Bezier curve, a control polygon and 

user specified axes, (b) the object to be deformed, (c) cube 

mapping on each control polygon segment and (d) the initial 

geometry’s wrapping along the Bezier curve (Chang and 

Rockwood, 1994). 
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Feng et al. (1996) introduced a modification of the Free Form Deformation based 

on the combination of two parametric surfaces in order to define a 3D parametric 

domain. More specifically, the object of interest is mapped onto the newly-

constructed 3D space. Then, following the deformation of the parametric domain, 

the object’s geometry is, automatically, modified. Figure 2.1.5 shows the original 

3D shape of a teapot and its deformation occurred as a consequence of the 

individual parametric surfaces’ shape modification. 

 

Figure 2.1.4 Left: A star – shaped lattice located on a disk. Middle: The deformed star – 

shaped lattice containing the modified disk area. Right: The final geometry of the disk 

(MacCracken and Joy, 1996). 

Figure 2.1.5 Above: The original 3D shape of a teapot. Below: The 

deformation of the two surfaces (denoted with green and yellow 

colors) induce the modification of the model’s geometry (Feng et 

al., 1996). 
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An additional approach based on the classical FFD is the Dynamic Free Form 

Deformation presented by Faloutsos et al. (1997). The aforementioned technique 

was capable of transforming a wide class of objects into dynamic characters. As a 

result, a natural deformation of the examined objects was achieved. A deformation 

based on the DFFD technique is presented in Figure 2.1.6. 

 

Feng et al. (2012) proposed the Accurate FFD methodology which is based on the 

polyhedral model deformation achieved through the sampling of a small number 

of control points. In particular, through the Accurate FFD technique, the 

polyhedral object is described by triangular Bezier patches which, subsequently, 

yield a B-Spline volume. As a result, despite the few representative points 

sampled, the deformation result appears to be similar to theoretical. An AFFD 

deformation is shown in Figure 2.1.7. 

Figure 2.1.6 Local and global deformation based on 

DFFD technique (Faloutsos et al., 1997). 
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Based on the work of Griessmair and Purgathofer (1989), Gain and Dodgson (1999) 

proposed an adaptive refinement and decimation technique for the interactive 

Free Form Deformation. Specifically, the aim of the study was to prevent the 

decrease of approximation quality of polygon-mesh objects caused by the 

distortion which the FFD typically provokes. 

Hirota et al. (2000) presented a variation of the FFD methodology by integrating 

the minimization of the elastic energy subject to the volume-preserving criterion. 

The aim of the study  was compute the position of the deformed control lattice’s 

nodes, given the boundary representation of an object and the desired 

deformation. Improved performance compared to the traditional FFD techniques 

is achieved. A deformation based on Hirota et al. (2000) approach is presented in 

Figure 2.1.8. 

Figure 2.1.7 Left: The initial shape. Right: The 

deformed geometry (Feng et al., 2012). 
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Yoshizawa et al. (2002) presented a variation of Free Form Deformation based on 

the input of a mesh-represented geometry and a number of control points. The 

rationale of the methodology consists of the generation of a concatenation of 

deformations caused by the alteration of individual control points’ location in 

order to, eventually, reach the desired shape. It worth noting that the present 

technique is not making any use of the input mesh connectivity. Thus, direct 

manipulation of the shape represented by multiple point datasets is feasible. A 

deformation that occurred through the modification of the control points’ location 

is depicted in Figure 2.1.9. 

 

Figure 2.1.8 Left: The initial geometry of a water pitcher. Middle and Right: Deformations 

resulted by water pitcher’s bottom compression  (Hirota et al., 2000). 

Figure 2.1.9 Left: The input geometry and six control points placed on it. 

Middle and Right: A sequence of deformations produced by the alteration of 

control points’ position (Yoshizawa et al., 2002). 
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In order for the Free Form Deformation methodology to be effective and produce 

the desired both global and local deformations, the parallelepiped parametric 

lattice should adequately conform to the shape of the embedded object. Ono et al. 

(2002) presented a variant of the FFD based on the automatic generation of the 

parametric lattice which approximates the geometry of the object to be deformed. 

At first, a bounding box is automatically generated embedded in the 3D model. 

Afterwards, the box is hierarchically refined and a series of “multiresolution 

lattices” are generated. Then, the user is able to select the desired parametric lattice 

either consisted of few control points for global deformation or the one which 

offers the best approximation of the 3D model’s geometry for local deformations. 

The process of parametric lattice construction which approximates the geometry 

of the 3D model is shown in Figure 2.1.10. 

 

Ilic and Fua (2002) introduced the Dirichlet Free Form Deformation (DFFD) 

technique by making the use of arbitrary placed control points. The main idea 

Figure 2.1.10 (a) The initial bounding box in which the 3D model is 

embedded. (b)-(e) The hierarchical process of the geometry 

approximation. (f) The generated parametric lattice (Ono et al., 2002). 



Sofia Tavla  Free Form Deformation 

 

69 

 

behind the novel Free Form Deformation (DFFD) method is the geometry 

deformation through the modification of a triangular cage encircling the shape of 

interest. The triangular control cages of a human head and ear created, through 

the application of DFFD, are presented in Figure 2.1.11. 

 

Kobayashi and Ootsubo (2003) presented a novel FFD technique called t-FFD. 

According to the authors, a polygonal mesh or a point cloud is deformed through 

an arbitrary topology triangular control mesh. Figure 2.1.12 demonstrates the t-

FFD process.  

 

Figure 2.1.11 Control triangulations for head (left), profile (middle) and ear (right) (Ilic and Fua, 

2002). 

Figure 2.1.12 (a) The initial shape to be deformed, (b) specification of the area to be deformed, 

(c) construction of the initial control mesh, (d) the deformed control mesh occurred by the 

relocation of the blue point, (e) the deformed geometry (Kobayashi and Ootsubo, 2003). 
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Compared to the lattice-based traditional FFD technique, Hua and Qin (2003) 

made the use of the scalar field as the parametric space. Thus, through the motion 

of the scalar field vertices, the Free Form Deformation of the object of interest 

occurs. A scalar-field Free Form Deformation is presented in Figure 2.1.13. 

  

Schein and Elber (2004) introduced a variant of FFD, called Discontinuous Free 

Form Deformation. As stated by the authors, the particular technique offers the 

designer the ability to model and incorporate geometric discontinuities such as 

gaps and holes to the deformation process. A deformation based on Discontinuous 

FFD is presented in Figure 2.1.14.  

 

Figure 2.1.13  Left: The initial shape of a teapot. Middle: The teapot is embedded in 

the scalar field. Right: The deformed shape of the teapot (Hua and Qin, 2003). 

Figure 2.1.14 Left: The Stanford bunny model cut with a cylinder tool from 

above. Right: The DFFD’s stitching algorithm was applied in order to close 

the opening (Schein and Elber, 2004). 
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Later on, Song and Yang (2005) proposed a novel FFD technique named w-TFFD. 

The aforementioned method is based on the application of - a generalization of 

NUBRS - the weighted T-Spline volumes and T - Junctions. According to the 

authors, T-Spline volumes produce flexible control lattices and yield to the 

adaptive deformation of objects with arbitrary topology. In addition, to 

approximate the object’s geometry, the OCTREE algorithm is executed and the 

control lattice is automatically constructed. A w-TFFD process is presented in 

Figure 2.1.15. 

 

2.1.2 Free Form Deformation applications on Aerodynamic Shape 

Optimization 

Due to the simplicity of its nature and the effectiveness on deforming either locally 

or globally intricate geometries, the Free Form Deformation found a plethora of 

applications on aerodynamic shape optimization. 

Ronzheimer (2002) introduced a post-parameterization tool tailored for the 

existing CAD models which was based upon the FFD technique. More specifically, 

the present methodology is implemented on the “MegaCads” software through 

which a NURBS-based FFD lattice is generated and controlled. The post-

parameterization tool of Ronzheimer (2002) was tested on an elbow joint, a 2D 

Figure 2.1.15 Left: The initial geometry. Middle left: The initial control lattice. Middle right: The 

deformed control lattice. Right: The resulted deformed geometry (Song and Yang, 2005). 
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airfoil section and on the design of various wing - tip planform geometries. Figure 

2.1.16 shows the initial and deformed shapes of a 3D airfoil constructed by a 

surface grid embedded in the control lattice. 

  

Later on, Ronzheimer (2005) applied the Free Form Deformation technique as a 

parameterization tool for the aerodynamic design optimization process. The 

introduced methodology was implemented on an airfoil aiming at acquiring its 

optimum aerodynamic shape. Moreover, in order to demonstrate the effectiveness 

of the aforementioned technique, Ronzheimer (2005) performed the inverse design 

of the airfoil. 

Andreoli et al. (2003) applied the Free Form Deformation technique as a 

parameterization tool on the optimization of complex 3D aerodynamic shapes. 

The proposed methodology was based on the employment of 3D Bezier curves in 

combination with genetic algorithms and the simplex optimization methodology. 

Andreoli et al. (2003) implemented the aforementioned technique on airfoils, 

wings and general 3D aircraft models. A Free Form Deformation for an engine 

pylon body is shown in Figure 2.1.17. 

Figure 2.1.16 Left: The initial shape of an airfoil constructed by a surface grid is embedded in 

the FFD control lattice. Right: The deformation of the FFD lattice is transferred to the 

embedded airfoil geometry (Ronzheimer, 2002). 



Sofia Tavla  Free Form Deformation 

 

73 

 

  

Désidéri et al. (2004) presented a shape optimization technique based on Bezier 

polynomials for the aerodynamic design of transonic aircrafts. More specifically, 

the aforementioned methodology employs a 3D unstructured grid by making the 

use of the Finite Elements Method (FEM) in order to obtain the solution of 

compressible flow. Moreover, through the particular variant of Free Form 

Deformation technique, the modification of the computational grid was 

succeeded. Additionally, during the optimization procedure, a genetic algorithm 

was used along with the simplex method. A deformation generated by the 

proposed Free Form Deformation technique is shown in Figure 2.1.18. 

Figure 2.1.17 The control lattice (black box) indicates the part of the aircraft volume to 

be deformed (Andreoli et al., 2003). 
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Samareh (2004) introduced a variation of the classical Free Form Deformation 

technique based upon the Non-Uniform Rational B-Splines (NURBS) for the 

aerodynamic shape optimization. More specifically, the aforementioned 

methodology disregards the initial grid topology; therefore, it is capable of 

handling both structured and unstructured grids. Additionally, the grid is created 

once and its topology remains fixed throughout the optimization, thus any 

modification desired is directly applied to it. Moreover, through the proposed 

methodology a trivariate volume can be effectively represented by a bivariate 

surface resulting in the significant reduction of the design variables. A trivariate 

volume and its deformed shape are shown in Figure 2.1.19. 

Figure 2.1.18 Left: The airfoil is embedded in FFD control lattice (red colored). Right: The 

deformation of the control lattice is not only passed to the embedded airfoil but to the 

surrounding computational grid (blue colored), also (Désidéri et al., 2004). 
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Liu et al. (2017) proposed a hybrid geometrical parameterization based on the 

combination of Radial Basis Function (RBF) and Free Form Deformation. The 

present study aimed to preserve the original connectivity of the junction area 

between the wing and the body of the aircraft despite the deformations that 

occurred throughout the optimization procedure. More specifically, following the 

application of the FFD methodology for wing parameterization and deformation, 

the RBF interpolation was employed in order to calculate the displacements that 

occurred on the wing root junction mesh nodes caused by the deformation. Then, 

an aerodynamic shape optimization scheme was established based upon the 

Cuckoo search algorithm and the Kriging surrogate model. Liu et al. (2017) 

demonstrated the effectiveness of the proposed technique on a DLR F4 wing body 

configuration. Figure 2.1.20 shows the updated junction area between the wing 

and the body following the RBF interpolation. 

Figure 2.1.19 Above: A trivariate volume deformation. Below: The deformed grid 

causes the deformation of the embedded airfoil (Samareh, 2004). 
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Additionally, Bai and Chen (2013b) presented an aerodynamic optimization 

scheme based on the direct manipulation of the aerodynamic shape. In particular, 

following the establishment of both the locations and the displacements of few 

user-specified pilot points on the object of interest, the FFD lattice associated with, 

is accordingly modified resulting in direct manipulation of the object’s geometry. 

Moreover, aiming at the reduction of the drag force, Bai and Chen (2013b) 

established an aerodynamic shape optimization scheme that demonstrated good 

feasibility.  

Despite the numerous advantages that the Free Form Deformation technique 

offers in aerodynamic shape optimization, it should be mentioned that it is 

characterized by the inability to preserve the cross-sectional area of a reference 

shape throughout the optimization procedure. Based on the aforementioned 

observation, Leloudas et al. (2018) proposed the Area Preserving Free Form 

Deformation (AP FFD). The aim of the study was to conserve the cross-sectional 

Figure 2.1.20 The deformed wing (red colored) occurred by the 

application of FFD, the updated wing root junction area (green 

colored) following the RBF interpolation and the aircraft body 

surface (blue colored) which remains fixed throughout the 

aforementioned procedure (Liu et al., 2017). 
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area of a reference airfoil following the consecutive deformations that occurred 

throughout the optimization procedure. More specifically, given the area of an 

initial airfoil, the minimum displacements of the FFD control points were 

calculated in order for the deformed airfoil shapes to recover the reference cross-

sectional area.  A comparison between the airfoil geometries and the control 

lattices formed before and following the Area-Preserving FFD is demonstrated in 

Figure 2.1.21. 

  

Figure 2.1.21 Above: The initial FFD lattice (red color) and the 

deformed one (green color) following the application of the AP FFD. 

Below: The airfoil shape produced by the classical FFD (red color) 

and the one after the application of the AP FFD (green color) 

(Leloudas et al., 2018). 
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2.1.3 Free Form Deformation process  

Given the numerous variations of the classical Free Form Deformation technique, 

the main core of the process followed remains the same. The four major steps 

throughout the FFD process, according to Sederberg and Parry (1986) are: 

First Step: Construction of the parametric lattice 

Initially, the object to be deformed is placed in a 2D or 3D parametric space. The 

constructed lattice is defined by a set of control points and parametric basis 

functions, establishing at the same time a local coordinate system. A visualization 

of the first step of the FFD technique is shown in Figure 2.1.22. 

  

Second Step: Embedding the object within the lattice 

Thus, each point with (𝑥, 𝑦) cartesian coordinates or (𝑥, 𝑦, 𝑧) on the embedded 2D 

or 3D geometry, respectively, is described by (𝑢, 𝑣) (for 2D) or (𝑢, 𝑣, 𝑤) (for 3D) 

parametric coordinates. Considered that the computation of the set of parametric 

coordinates consists of an iterative procedure, Quadtree or Octree algorithms are 

Figure 2.1.22 The construction of the parametric lattice. 

The lattice  consists of an ordered set of control points 

indicated with white color. Red colored bars indicate the 

neighboring control points (Sederberg and Parry, 1986).  
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applied. The construction of the local coordinate system is depicted in Figure 

2.1.23. 

  

Third Step: Deformation of the Parametric Space 

The deformation of the parametric space is specified by the adjustment of the FFD 

lattice control points. Given the numerous variations of the original FFD 

technique, the deformation process followed varies. Considered the paradigm of 

NURBS-based FFD (NFFD) technique (Lamousin and Waggenspack, 1994), the 

deformation is applied through the alteration of the weight assigned for each 

control point. The deformed object embedded in the lattice is presented in Figure 

2.1.24. 

Figure 2.1.23 The construction of the local 

(parametric) coordinate system (Sederberg and 

Parry, 1986).  
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Fourth Step: Evaluating the Results of the Deformation  

The evaluation process consists of the calculation of the Cartesian Coordinates of 

the deformed object, given its modified geometry and its parametric coordinates. 

Note that the parametric coordinates of each point on the embedded shape do not 

change throughout the entire process compared with its Cartesian Coordinates 

which are affected by the modification of the control lattice. The deformed object 

is shown in Figure 2.1.25. 

   

Figure 2.1.24 The modified lattice containing the 

deformed object (Sederberg and Parry, 1986). 

Figure 2.1.25 A deformed object (Sederberg and 

Parry, 1986). 
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2.2 2D B-Spline FFD 

Over the past decades, in most design optimization problems curved involved 

shapes were consisted of a single polynomial or rational segment. As a result, the 

specific process was susceptible to great inadequacies and showed numerous 

drawbacks. According to Piegl and Tiller (1995), the three main shortcomings 

included the need for higher degree curves in order to satisfy a large number of 

constraints and represent in an accurate way a complex geometry. In addition to 

the prior drawbacks, curves created by just one segment appeared to be not 

suitable for interactive shape design, yielding to insufficient local control.  

Hence, the solution to the aforementioned problems was the usage of piecewise 

polynomial curves as shown in Figure 2.2.1. 

  

As it can be observed from Figure 2.2.1, a piecewise polynomial curve consists of 

several 𝑛 − 𝑡ℎ degree polynomial segments (𝐶𝑖(𝑢)) where 𝑢𝑖 maps to the endpoint 

of each section.   

Considering the necessity of a methodology that provides local controlled 

deformations, B-Spline surfaces appear to be a sufficient solution to the 

Figure 2.2.1 A piecewise polynomial curve consisted of three 

segments (𝐶𝑖) (Piegl and Tiller, 1995). 
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subsequent modification a shape undergoes throughout the Free Form 

Deformation technique. In the particular diploma thesis, a 2D B-Spline based FFD 

version is utilized. 

2.2.1 Implementation of the Procedure 

Through the integration of B-Splines into the FFD methodology, the valuable 

properties of complex shape handling and local control are exploited. In the 

present section, the main theoretical background of the B-Spline surfaces and Free 

Form Deformation are presented. 

First Step: Construction of the parametric lattice 

Let 𝑺(𝑢, 𝑣) be a planar B-Spline surface defined by a bidirectional net of control 

points 𝑷𝑖,𝑗 = (𝑥𝑖,𝑗, 𝑦𝑖,𝑗), two knot vectors 𝑼, 𝑽 and the products of the univariate B-

Spline functions 𝑁𝑖,𝑝, 𝑁𝑖,𝑞 (Piegl and Tiller, 1995) as: 

where 𝑝 ∈ [0, 𝑛] and 𝑞 ∈ [0,𝑚] refer to the degree of basis functions. 

Furthermore, let 𝑁𝑖,𝑝(𝑢) be a B-Spline basis function of 𝑝th degree in 𝑢 direction 

and 𝑁𝑖,𝑞(𝑣) be a B-Spline basis function of 𝑞th degree in 𝑣 direction defined over 

two non-periodic and non - uniform knot vectors 𝑼, 𝑽, respectively. 

The value of each knot vector can be calculated (provided in the particular 

segment for the 𝑢 direction) as: 

Knot vector 𝑽 is likewise computed. 

 
𝑺(𝑢, 𝑣) =  ∑∑𝑁𝑖,𝑝(𝑢)

𝑚

𝑗=0

𝑁𝑗,𝑞(𝑣)

𝑛

𝑖=0

𝑷𝑖,𝑗 , (2.1) 

 
𝑢𝑖 = {

                0, 0 ≤ 𝑖 ≤ 𝑝 + 1 
         𝑖 − 𝑝, 𝑝 + 1 ≤ 𝑖 ≤ 𝑛 + 1 
𝑛 − 𝑝 − 1, 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 1

 .   (2.2) 
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Therefore, through the application of deBoor, Cox and Mansfield recurrence 

formula, the 𝑖th B-Spline basis functions of 𝑝th degree in 𝑢 direction are obtained: 

Basis functions for 𝑣 direction are similarly calculated. 

Eventually, the Cartesian Coordinates (𝑥𝑡, 𝑦𝑡) of an arbitrary point inside the 

parametric space are obtained, by making the use of its Parametric Coordinates 

(𝑢𝑡, 𝑣𝑡) as follows: 

Second Step: Embedding the object within the lattice 

Considering that the object to be deformed is initially defined by its Cartesian 

Coordinates, an iterative procedure is followed, in order to obtain its parametric 

coordinates, necessary for the implementation of FFD. The calculation of (𝑢𝑡, 𝑣𝑡) 

parametric coordinates for each point of the shape of interest is performed by the 

application of the QUADTREE algorithm in 2D. 

For each point on the object the following procedure is recurrently applied: 

i. The parametric surface is divided in four equal subareas.  

ii. The Cartesian Coordinates of each subarea vertex are calculated by making 

the use of Equation (2.5). 

 𝑁𝑖,0(𝑢) = {
1  𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3) 

 𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖
𝑢𝑖+𝑝 + 𝑢𝑖

𝑁𝑖,𝑝+1(𝑢) +
𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) . (2.4) 

 𝑹(𝑢, 𝑣) =  
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑷𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)
𝑚
𝑗=0

𝑛
𝑖=0

 . (2.5) 
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iii. Obtained Cartesian Coordinates resulted from step (ii), are compared to the 

Cartesian Coordinates of each point of the object of interest, for the purpose 

of locating the subarea to which it belongs.  

iv. Once the latter subarea is found, is now divided in four equally created 

subareas and steps ii-iv are repeated until a certain number of subdivisions 

is reached or a desirable accuracy is achieved. Therefore, the Parametric 

Coordinates of the object’s point under study are defined as the Parametric 

Coordinates of the center of the last calculated subarea in which it lies.  

Third Step: Deformation of the Parametric Space 

Having calculated the Parametric Coordinates of each point of the object under 

consideration, the Free Form Deformation technique is implemented. Thus, in 

order to deform the embedded shape in the FFD lattice, the positions of B-Splines 

control points are altered. The initial airfoil geometry embedded in the parametric 

lattice is shown in Figure 2.2.2. 

 

 

Figure 2.2.2 Initial geometry of the embedded airfoil in the lattice (Amoiralis, 

2005). 
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Fourth Step: Evaluating the Results of the Deformation  

Through the relocation of the control points, the new Cartesian Coordinates of an 

arbitrary point in the parametric space can be calculated by the application of 

equation (2.5). It should be noted that throughout the deformation procedure, the 

parametric coordinates (𝑢𝑡, 𝑣𝑡) of each point on the object, do not change in 

comparison with its Cartesian Coordinates (𝑥𝑡, 𝑦𝑡). The deformed shape of the 

airfoil is presented in Figure 2.2.3. 

  

Figure 2.2.3 Deformed geometry of the embedded airfoil in the lattice 

(Amoiralis, 2005). 
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Chapter 3  

Mesh morphing and shape deformation through the 

application of B-Spline Basis Functions as Harmonic 

Functions 

 

3.1 Introduction to Harmonic Functions 

Nowadays, a great deal of engineering and physical phenomena, such as heat 

conduction, the diffusion process, or even the way the sound, the light and the 

waves are propagating through space, can be effectively formulated by Partial 

Differential Equations (PDEs). Laplace’s equation:  

constitutes a typical example of PDEs which, for instance, models the steady-state 

temperature distribution, the flow of a fluid and electrostatic potentials. As the 

name betrays, the Laplacian was named in honor of the French scholar and 

polymath Pierre-Simon Laplace (1749 - 1827), who was the first to study its 

properties. By its nature, according to Asmar and Grafakos (2018), the Laplacian 

of a function measures the difference between the value of the function on a certain 

point and the average value of the same in a neighborhood of it. Therefore, those 

functions, whose values do not considerably fluctuate, have a lower Laplacian. As 

a result, the real-valued functions which are twice differentiable ℎ: 𝛺 → ℝ and 

satisfy Laplace’s equation in the open subset 𝛺 of ℝ𝑛, are referred as “Harmonic 

Functions” and vary in a quite regular way. Thus, every point’s location in the open 

 ∇ℎ𝑖
2 =

𝜕2ℎ𝑖
𝜕𝑥2

+
𝜕2ℎ𝑖
𝜕𝑦2

= 0 ,  
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subset, may be written as a linear combination of the resulted harmonic functions 

ℎ𝑖  corresponding to a control point 𝑃𝑖, according to Equation (3.1): 

 𝑝 =∑ℎ𝑖(𝑝)𝑷𝑖

𝑛

𝑖=0

 . (3.1) 
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3.2 Harmonic Functions properties 

The three major properties of Harmonic Functions are: 

 the Mean-Value principle (cf. Section 3.2.1), 

 the Maximum/Minimum principle (cf. Section 3.2.2), 

 the Uniqueness property (cf. Section 3.2.3). 

3.2.1 The Mean-Value principle 

Theorem: Let ℎ be a harmonic function in a region 𝛺. Then ℎ satisfies the Mean-

Value property in the following sense: If 𝑧 is in 𝛺 and the close disk 𝐵𝑟(𝑧) (𝑟 > 0) 

is contained in 𝛺, then 

Alternatively stated, the abovementioned expression refers to the fact that the 

value of a harmonic function ℎ at the center of the close disk 𝐵𝑟 is equal to the 

average of ℎ values on the surface of it (Asmar and Grafakos, 2018).  

3.2.2 The Maximum/Minimum modulus principle 

Theorem: Suppose that ℎ is a real-valued harmonic function on a region 𝛺. If ℎ 

attains a maximum and minimum in 𝛺, then ℎ is constant in 𝛺 (Asmar and 

Grafakos, 2018). 

3.2.3 The Uniqueness property 

Corollary: Resulted from the Maximum/Minimum principle, the aforementioned 

property states that, given the function values on the boundary of a region, there 

is a single harmonic function defined on the particular domain with the specific 

boundary values (Axler et al., 1992).   

 ℎ(𝑧) =
1

2𝜋
∫ ℎ(𝑧 + 𝑟𝑒𝑖𝑡)𝑑𝑡
2𝜋

0

 . (3.2) 
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3.3 Dirichlet problem 

In order to obtain the function which acts as a solution of a Partial Differential 

Equation in a given region, a set of known values of the aforementioned function 

must perform as a condition on the boundary of the domain. The aforementioned 

condition is called a “boundary condition” and the problem involving the PDE along 

with the specified boundary conditions is called the “boundary value problem” 

(Asmar and Grafakos, 2018). Therefore, the boundary value problem of acquiring 

the solution of Laplace’s equation given a set of boundary function values is called 

the “Dirichlet problem”.  
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3.4 B-Spline Curves 

Considering the main shortcomings of producing and handling a single 

polynomial or rational segment curves presented in Section 2.2, polynomial curves 

that offer local support had been the main focus of interest over the past decades. 

The present study is focused on the B-Spline polynomial curves implementation.  

According to Piegl and Tiller (1995), a 𝑝 − 𝑡ℎ degree B-Spline curve is defined by  

where 𝑃𝑖 are the control points and the 𝑁𝑖,𝑝 are the 𝑝 − 𝑡ℎ degree B-Spline basis 

functions. In addition, the polygon formed by the control points 𝑃𝑖 is called control 

polygon. 

As mentioned in Section 2.2.1 (Equations 2.3 and 2.4), B-Splines basis functions are 

defined as follows: 

over a non-periodic knot vector  

where 𝑚 + 1 is the total number of knots. It should be mentioned that, in several 

cases, the first and the last knots have a 𝑘 > 1 multiplicity. In the instance of the 

 𝑪(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑷𝑖,   𝑎 ≤ 𝑢 ≤ 𝑏,   𝑖 = 0,… , 𝑛

𝑛

𝑖=0

 (3.3) 

 𝑁𝑖,0(𝑢) = {
1  𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4) 

 𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖
𝑢𝑖+𝑝 + 𝑢𝑖

𝑁𝑖,𝑝+1(𝑢) +
𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (3.5) 

 𝑁𝑖,𝑝 ≥ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑝 𝑎𝑛𝑑 𝑢 , (3.6) 

 𝑼 = {𝑎, … , 𝑎, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 𝑏, … , 𝑏} ,  (3.7) 
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knot vector presented in Expression (3.7), 𝑎 and 𝑏 knots have a 𝑝 + 1 multiplicity. 

An example of cubic B-Spline basis functions on 𝑼 =

{0, 0,0,0, 1 4⁄ , 1 2⁄ , 3 4⁄ , 1,1,1,1}, as well as the generated cubic curve, are shown in 

Figure 3.4.1. 

 

  

Figure 3.4.1 (a) Cubic B – Splines 𝑈 =

{0, 0,0,0, 1 4⁄ , 1 2⁄ , 3 4⁄ , 1,1,1,1}, (b) Cubic curve using the Basis 

Functions of (a) (Piegl and Tiller, 1995). 



Sofia Tavla   Harmonic Functions Parameterization 

92 

 

3.5 Parameterization in 2D 

In the following, the deformation method, developed in the Turbomachines & 

Fluid Dynamics Laboratory of the Technical University of Crete, will be presented. 

In order to perform deformation, the object of interest must be properly 

parameterized. In other words, the shape to be deformed may be described and, 

subsequently, modified by making the use of a set of geometrical parameters. 

To begin with, consider a computational domain 𝛺 and a 2D geometry defined by 

a B-Spline curve, as shown in Figure 3.5.1. 

 

Furthermore, let the B-Spline curve define one of the boundaries 𝜕𝛺𝑗  of 𝛺 

computational domain. It worth noting that, the constructed boundaries can be 

either internal (in most cases) or external, while the rest can be defined by different 

curve types and remain fixed during the parameterization and optimization 

procedures. 

Figure 3.5.1 The computational domain and the embedded shape of interest (airfoil) 

constructed by a B – Spline curve. 
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Moreover, consider the initial position 𝑪0(𝑢) of a discrete point of a B-Spline curve 

corresponding to a parameter 𝑢. From B-Spline curve definition is: 

where 𝑃𝑖
0 is the initial position of the the 𝑖 − 𝑡ℎ control point. 

In order to properly parameterize the shape of interest, consider the Dirichlet 

problem. Given the Laplace’s equation, a unique continuous harmonic function ℎ 

twice continuously differentiable in the interior of the domain 𝛺 and continuous 

on the boundary 𝜕𝛺 is sought, under a specific boundary condition.  

Therefore, for the calculation of the 𝑖𝑡ℎ Harmonic Function ℎ𝑖   of a point 𝑝(𝑥, 𝑦) 

inside the domain, the solution of the Laplace’s equation: 

is examined, under the boundary condition: 

where 𝑢𝑙 is the boundary grid node on which Equation (3.9) is applied. 

Alternatively stated, for the purpose of computing the Harmonic Functions on 

every domain point 𝑝, the Laplace’s equation is 𝑛 + 1 times solved, one for each 

boundary curve 𝑁𝑖,𝑝 on a specific boundary grid node at a time. It should be 

mentioned that, during the calculation of Laplace’s equation solution, if 𝑢𝑙 lies 

outside the interval [𝑢𝑖, 𝑢𝑖+𝑝+1], then 𝑁𝑖,𝑝 = 0 and, subsequently, the Harmonic 

Function ℎ𝑖(𝐶
0(𝑢𝑙)) = 0.For instance, consider a 3rd degree B-Spline curve. The 3rd 

 
𝑪0(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑷𝑖

0

𝑛

𝑖=0

 ,  

 Δℎ𝑖(𝑝) = ∇ℎ𝑖
2 =

𝜕2ℎ𝑖
𝜕𝑥2

+
𝜕2ℎ𝑖
𝜕𝑦2

= 0 , (3.8) 

 ℎ𝑖(𝑪
0(𝑢𝑙)) = 𝑁𝑖,𝑝, 𝑎 ≤ 𝑢 ≤ 𝑏, 𝑖 = 0, … , 𝑛 (3.9) 
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harmonic function values calculated across the computational domain, with the 

Dirichlet boundary condition ℎ3(𝐶
0(𝑢)) = 𝑁3,3 , are shown in Figure 3.5.2. 

 

  

Figure 3.5.2 The discrete solution ℎ3 resulted for the Basis Function 𝑁3,3, applied as a Dirichlet 

boundary condition on the B-spline boundary of the computational domain. 
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3.6 Deformation in 2D 

Given the calculated Harmonic Function values on each point inside the 

computational domain and the B-Spline boundary curve, the propagation of 

discrete movements applied on the B - Spline control points across the entire space 

is desired.  

If 𝐶1(𝑢) denotes the final position of a boundary grid node and 𝛥𝐶(𝑢) =  𝑪1(𝑢) −

𝑪0(𝑢) is its displacement, according to the B-Spline curve definition: 

where 𝛥𝑃𝑖 = (𝑷𝑖
1 − 𝑷𝑖

0). 

Let 𝒓 be the position vector of a point 𝑝 inside the computational domain. If  ℎ𝑖(𝒓) 

is the value of the 𝑖 − 𝑡ℎ harmonic function on point 𝑝 with 𝑟 position vector, the 

interpolation of any movement of the 𝑖 − 𝑡ℎ control point across the computational 

domain, can be applied through the Equation (3.11): 

However, in the special case of a discrete boundary node, Equation (3.11) can be 

formulated as: 

 

 

𝛥𝐶(𝑢) = 𝑪1(𝑢) − 𝑪0(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑷𝑖
1

𝑛

𝑖=0

−∑𝑁𝑖,𝑝(𝑢)𝑷𝑖
0

𝑛

𝑖=0

 

=∑𝑁𝑖,𝑝(𝑢)(𝑷𝑖
1 − 𝑷𝑖

0) =

𝑛

𝑖=0

∑𝑁𝑖,𝑝(𝑢)𝛥𝑃𝑖

𝑛

𝑖=0

 

(3.10) 

 
𝛥𝐶(𝑟) =∑ℎ𝑖(𝒓)𝛥𝑃𝑖

𝑛

𝑖=0

 . (3.11) 

 𝛥𝐶(𝒓(𝑢𝑙)) =∑ℎ𝑖(𝒓(𝑢𝑙))𝛥𝑃𝑖

𝑛

𝑖=0

=∑𝑁𝑖,𝑝(𝑢𝑙)𝛥𝑃𝑖

𝑛

𝑖=0

 . (3.12) 
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That is to say, any deformation of the B-Spline boundary that occurred through 

the movement of the curve’s control points can be successfully propagated to the 

interior of the computational domain. Thus, the proposed methodology results in 

the concurrent and conformable modification of the B-Spline boundary and the 

entire computational mesh. 

A deformation resulted through the proposed methodology and a comparison 

between the B-Spline and the Harmonic Functions procedures are shown in Figure 

3.6.1 and Figure 3.6.2, accordingly.  

 

 

 

Figure 3.6.1 The resulted deformation (blue color) of B-Spline 

boundary curve and the subsequent modification of the 

surrounding computational grid occurred through the movement of 

the three control points. 
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Figure 3.6.2 A comparison between the deformations occurred, by the 

alteration of three control points, through the B – Spline and Harmonic 

Functions procedures. 
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3.7 Conclusion 

In conclusion, it worth noting that the proposed methodology is applicable not 

only to mesh morphing and design optimization but appears to have a great 

potential in the graphic design field. Compared to the Harmonic Coordinates 

deformation technique, the Harmonic Functions calculated in the present study 

are combined with the B-Spline control points’ displacement vectors. As a result, 

the aforementioned methodology provides a direct manipulation of curved 

boundaries rather than the necessity of linear boundaries existence in order to be 

applied (e.g. control polygons). 

Furthermore, a different and denser computational grid (e.g. for the solution of the 

flow equations) can be deformed, through the interpolation of the harmonic 

function values resulted from the coarse to the fine mesh. Alternatively, Laplace’s 

equation may be solved directly to the densest mesh, involving-at the same time- 

a higher computational cost, spent once at the beginning of the procedure. 
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Chapter 4  

Mesh Interpolation 

4.1 Introduction to Mesh Interpolation 

During the aerodynamic shape optimization, the aim is to obtain accurate and 

robust solutions of flow equations around the continuously modified 

geometry. The computational mesh is applied for the purpose of space 

discretization around the object of interest. Afterwards, numerical flow 

simulations are implemented in order to evaluate each individual alternative 

and select, eventually, the optimal geometrical solution. In many cases 

interpolation of flow quantities between grids of different densities is required. 

An example of the final (destination) grid superimposed on the initial (source) 

mesh is shown in Figure 4.1.1. 

 

Figure 4.1.1 In mesh interpolation problems, data from the source 

mesh (blue color) must be mapped to the destination mesh (red 

color). 
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Within the framework of the present dissertation, an interpolation scheme, 

based on the Barycentric Coordinates proposed by Möbius (1827) and the 

Inverse Distance Weighting function introduced by Shepard (1968), is 

implemented. The proposed interpolation methodology consists of three major 

steps. Initially, the elements of the source mesh are divided into two equally 

sized subsets. In the second part, for each node of the superimposed 

destination mesh, the source mesh element, which belongs to, is located and 

barycentric interpolation is performed. Then, a list of detected and unperceived 

destination points is created. Finally, for each not located destination node, its 

distances from every detected node of the destination mesh are computed. 

Therefore, according to the calculated distances, further Barycentric or Inverse 

Distance Weighting (IDW) interpolations are performed.   
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4.2 Algorithm Analysis 

4.2.1 Division of the source mesh 

Based on the rationale of the Kd-tree theory mentioned in de Berg et al. (2008), 

the aim of the first step is the partition of the source mesh elements into two 

approximately equally-sized groups.  

To begin with, for the purpose of performing the necessary operations 

following, a .txt file containing all the source mesh information is read. An 

example of the file structure is shown in Figure 4.2.1. 

 

As shown in Figure 4.2.1, the first line of the input file contains the total number 

of source mesh nodes, the number of triangular elements and, finally, the 

number of quadrilateral elements contained in the examined grid. In the case 

of Figure 4.2.1, the total number of mesh nodes equals to 16082, the number of 

triangular elements is equal to 31102 and the examined grid is constructed by 

0 quadrilaterals. As it can be seen in Figure 4.2.1, the particular example 

consists of a triangular mesh as the input of the algorithm. 

Then, considering that the second line indicates the notation for each column 

of the .txt file, each further line contains all the information needed about every 

element of the source mesh. Therefore, the first column represents the ID of the 

particular element, the second and the third column indicate the X and Y 

Figure 4.2.1 Format of input .txt file containing source mesh information. 
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Cartesian coordinates of the first element node, the fourth and the fifth column 

contain the aforementioned coordinates of the second element node and so on. 

It should be noted that, in the case of a triangular mesh, as presented in Figure 

4.2.1, the last two columns (eighth and ninth) are equal to zero. However, in 

the case of a quadrilateral mesh as the input of the algorithm, the latter two 

columns represent the fourth element node’s coordinates, which in that case 

are non-zero.  

Consequently, given the necessary information about the elements which 

construct the source mesh, a series of operations are performed that will, later 

on, lead to the division of the space into two equally-sized subareas. At first, X 

coordinates of each element which is closest to zero (minimum) and most 

distant from it (maximum) are obtained. Afterward, all the minimum X 

coordinates, gathered from the previous step, are sorted, by making the use of 

the Bubble Sort algorithm (Astrachan, 2003). Hence, borrowed by the Kd-tree 

partitioning rule, for the purpose of dividing the examined mesh, the median 

of the sorted minimum coordinates is computed. The median of an even 

number of observations, when the sample is ordered, is calculated through the 

application of Equation (4 .1): 

where 𝑥[𝑛 2⁄ ] indicate the 𝑛 2⁄  observation and 𝑛 the total number of 

observations. On the other hand, in the case of an odd length sample list, the 

median equals to the midmost observation: 

 
𝑚𝑒𝑑𝑖𝑎𝑛𝑒𝑣𝑒𝑛 = 

1

2
(𝑥[𝑛 2⁄ ]

+ 𝑥[𝑛 2⁄ +1]
) , (4.1) 

 𝑚𝑒𝑑𝑖𝑎𝑛𝑜𝑑𝑑 = 𝑥[𝑛 2⁄ +1 2⁄ ]
 . (4.2) 
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Eventually, by the median computation, the mesh area is partitioned. Thus, 

each element whose minimum coordinate is less than or equal to the calculated 

median is relocated to the “left” subarea. On the contrary, the rest of the 

elements and those with minimum X coordinate greater than the median, are 

assigned to the “right” subarea. Furthermore, the size of each sublist is 

returned. Therefore, in the case of an even number (𝑛) of elements, the left and 

right sublist lengths are equal to: 

However, in the event of an odd number of elements, the left and right sublist 

length is computed as follows: 

4.2.2 Point-in-Element check and Data Interpolation 

In Aerodynamic Shape Optimization applications, the examined geometry is 

subject to multiple deformations. Hence, the surrounding mesh may, 

successively, adapt to the new geometrical characteristics and carry all the 

necessary flow information throughout the iterative process. Therefore, to 

successfully interpolate data contained in certain areas of interest from source 

(initial) to the destination (final) mesh, each node of the second is necessary to 

be accurately located in a certain element of the first. Figure 4.2.2 demonstrates 

the process of location check. 

 𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑓𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑔ℎ𝑡 =
𝑛
2⁄  . (4.3) 

 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑔ℎ𝑡 =
𝑛
2⁄ − 1 2⁄  (4.4) 

 𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑓𝑡 = 𝑛 − 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑔ℎ𝑡 . (4.5) 
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Initially, in order to accurately locate a node in an element or its neighbors and 

perform, eventually, the interpolation of the function of interest, the proper 

information must be considered. Therefore, two text files containing the 

function values on source element nodes and the neighbor elements’ IDs, are 

read. For example, in the case of a triangular mesh, as shown in Figure 4.1.1, 

the format of the .txt file, containing the function values, is presented in Figure 

4.2.3. 

According to Figure 4.2.3, in the first row of the FunctionValues.txt, the total 

Figure 4.2.2 The source and destination mesh are indicated 

with blue and red colors, accordingly. The destination node D 

is located into the source element .with A, B and C nodes. 

Figure 4.2.3 FunctionValues.txt format. 
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number of source elements is noted. Additionally, from the second row and 

until the end of the file, the ID of the particular element (first column) and the 

function values on its nodes (second to fourth column), are listed.  It should be 

mentioned that the last column is equal to zero, as it represents the function 

value on the fourth node in the case of a quadrilateral element. 

Moreover, in the case of a triangular mesh, the format of the .txt file containing 

the neighbor elements’ IDs is demonstrated in Figure 4.2.4. 

 

As shown in Figure 4.2.4, the first line of the file enumerates the elements 

which compose the source mesh, while the second contains the notation of each 

data column. In addition, from the third line until the end of the present file, 

the IDs of the examined element (first column), its first neighbor (second 

column), the second neighbor (third column) and the third neighbor (fourth 

column) are presented. In the case of a mesh that contains quadrilateral 

elements, an additional column will be added, in order to contain the fourth 

neighbor’s ID. 

It is worth mentioning that concerning a boundary element, the total number 

of its neighbors is equal to its internal faces. As a result, the neighbors which 

correspond to the external faces appear to be fictitious, are described as “ghost 

Figure 4.2.4 Format of the file containing all the 

necessary info of each element neighbors. 
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elements” and their IDs are greater than the total number of elements or equal 

to zero. 

Furthermore, for the purpose of applying the proposed interpolation scheme, 

it is necessary to integrate all the information regarding the destination mesh 

topology. Figure 4.2.5 presents the aforementioned .txt file’s format. 

 

As presented in Figure 4.2.5, the first line of the aforementioned file contains 

the total number of destination mesh nodes, while from the second line until 

the end of the file, their X coordinates (first column) and Y coordinates (second 

column) are listed. Finally, given all the essential information regarding the 

topology of the source and destination meshes, the interpolation scheme is 

implemented.  

Initially, in order to minimize the total number of iterations needed to locate a 

certain destination node to a source element, the minimum and maximum X 

coordinates (calculated as explained in Section 4.2.1) of the latter are 

considered. Furthermore, aiming at the reduction of both computational cost 

and time, every destination node is directly associated with the left or right 

“subarea” according to its Cartesian Coordinates. 

Figure 4.2.5 Format of the file which contains 

destination mesh information. 
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More specifically, in order to specify whether the destination node is located in 

the surrounding area of a particular source element or not, the coordinates of 

the first are compared with the minimum and maximum Cartesian coordinates 

of the second. Therefore, if inequality (4.6) holds 

then the particular destination node is most likely located in the examined 

source element or in its surrounding area, where 𝑋𝑞 represents the X coordinate 

of the examined destination node, while 𝑋𝑠,𝑚𝑖𝑛, 𝑌𝑠,𝑚𝑖𝑛 and 𝑋𝑠,𝑚𝑎𝑥, 𝑌𝑠,𝑚𝑎𝑥 are the 

minimum and maximum Cartesian coordinates of the tested source element, 

respectively. A demonstration of the inequality (4.6) is presented in Figure 

4.2.6. 

 

 𝑋𝑞 ≤ 𝑋𝑠,𝑚𝑖𝑛 𝑎𝑛𝑑 𝑋𝑞 ≥ 𝑋𝑠,𝑚𝑎𝑥 𝑎𝑛𝑑 𝑌𝑞 ≤ 𝑌𝑠,𝑚𝑎𝑥 𝑎𝑛𝑑 𝑌𝑞 ≥ 𝑌𝑠,𝑚𝑖𝑛 , (4.6) 

Figure 4.2.6 Graphic representation of inequality (4.6). Point 𝐶 has the maximum 𝑌 

Cartesian coordinate (𝑌𝑐 = 𝑌𝑠,𝑚𝑎𝑥), while point 𝐴 has the minimum one (𝑌𝐴 = 𝑌𝑠,𝑚𝑖𝑛). 

Additionally, point 𝐵 has the maximum 𝑋 Cartesian coordinate (𝑋𝐵 = 𝑋𝑠,𝑚𝑎𝑥), and point 𝐶 

has the minimum one (𝑌𝐶 = 𝑌𝑠,𝑚𝑖𝑛). 
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As shown in Figure 4.2.6, the blue-colored points illustrate the source element’s 

nodes as well as the area between the red, green, orange and purple-colored 

lines represents the intersection of the four individual inequalities of inequality 

(4.6). Furthermore, the red-colored point demonstrates the destination mesh 

node which appears to be located on the examined source element formed by 

ABC nodes. Note that the areas between the colored lines and the element’s 

nodes demonstrate the possible location of the three neighbors (in the case of 

the triangular mesh). In the event of a query point lies outside the element of 

interest, the three neighboring areas are examined as already mentioned.  

Therefore, through the specification of the approximate area where the 

destination mesh node may lies on, a further and accurate test of location is 

conducted, by the exploitation of the barycentric coordinates properties. 

The Point-In-Element check 

In the field of geometry, the barycentric coordinate system consists of a 

coordinate system that describes the location of a random point on the plane 

according to a reference simplex (triangle for the 2D plane, tetrahedron for the 

3D space, etc.). More specifically, let a triangle in which the query point is 

located and has masses placed on its vertices. The barycentric coordinates of 

the query can be interpreted as the individual mass magnitudes on the three 

vertices which altogether define the query as the center of mass of the simplex. 

The aforementioned masses can be either zero or negative for points that are 

located outside the triangular area or positive for queries located inside the 

simplex.  

Hence, according to Floater et al. (2006) let 𝛺 ⊂ ℝ2 be a convex polygon with 

vertices 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑛 ≥ 3, in a counterclockwise ordering. Any set of 
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functions 𝜆𝑖: 𝛺 → ℝ, 𝑖 = 1,… , 𝑛 is called “barycentric coordinates” if they satisfy 

for all 𝑣 ∈ 𝛺 the three following properties: 

The aforementioned presentation of barycentric coordinates consists of a 

generalization of the triangular barycentric coordinates, where 𝑛 = 3 and 𝛺 is 

a triangular simplex with vertices [𝑣1, 𝑣2, 𝑣3] as presented in Figure 4.2.7. From 

now on, for simplicity reasons, the barycentric coordinates of a query point will 

be denoted as 𝑤, 𝑣, 𝑢. 

 

To begin with, consider the case of a triangular element as shown in Figure 

4.2.7. In order to obtain the barycentric coordinates 𝑤, 𝑣, 𝑢 of a randomly placed 

point 𝑃 at the interior of a triangular simplex with vertices 𝐴, 𝐵, 𝐶, property (4.9) 

is exploited and Equation (4.10) emerges: 

 𝜆𝑖(𝑣) ≥ 0, 𝑖 = 1,… , 𝑛 (4.7) 

 ∑𝜆𝑖(𝑣) = 1

𝑛

𝑖=1

 (4.8) 

 

 
∑𝜆𝑖(𝑣)𝑣𝑖 = 𝑣

𝑛

𝑖=1

 . (4.9) 

Figure 4.2.7 Triangular barycentric coordinates of point D inside the 

triangle ABC. 
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From property (4.8) we have: 

Therefore, Equation (4.10) can be formed as follows: 

If 𝑐 = 𝐶 − 𝐴, 𝑏 = 𝐵 − 𝐴, 𝑝 = 𝑃 − 𝐴 then, 

Then, considering that Equation (4.13) has two unknown variables (𝑢, 𝑣), both 

sides of it are dotted, initially, with 𝑐 and, finally, with 𝑏. The following system 

with two equations and two unknown variables emerges: 

As a result, if a point is located inside a triangular area, according to property 

(4.7), its barycentric coordinates must be positive as follows: 

 𝑃 = 𝑤𝐴 + 𝑣𝐵 + 𝑢𝐶 . (4.10) 

 𝑤 + 𝑣 + 𝑢 = 1  

 𝑤 = 1 − 𝑢 − 𝑣 . (4.11) 

 𝑃 = 𝑤𝐴 + 𝑣𝐵 + 𝑢𝐶  

 𝑃 = (1 − 𝑢 − 𝑣)𝐴 + 𝑣𝐵 + 𝑢𝐶  

 𝑃 = 𝐴 − 𝑢𝐴 − 𝑣𝐴 + 𝑣𝐵 + 𝑢𝐶  

 𝑃 − 𝐴 = 𝑣(𝐵 − 𝐴) + 𝑢(𝐶 − 𝐴) . (4.12) 

 𝑝 = 𝑏𝑣 + 𝑐𝑢 . (4.13) 

 𝑢 =
(𝑝 ∙ 𝑐)(𝑏 ∙ 𝑏) − (𝑏 ∙ 𝑐)(𝑝 ∙ 𝑏)

(𝑐 ∙ 𝑐)(𝑏 ∙ 𝑏) − (𝑏 ∙ 𝑐)(𝑏 ∙ 𝑐)
 (4.14) 

 𝑣 =
(𝑝 ∙ 𝑏)(𝑐 ∙ 𝑐) − (𝑝 ∙ 𝑐)(𝑐 ∙ 𝑏)

(𝑏 ∙ 𝑏)(𝑐 ∙ 𝑐) − (𝑏 ∙ 𝑐)(𝑏 ∙ 𝑐)
 . (4.15) 

 𝑢, 𝑣 ≥ 0 𝑎𝑛𝑑 (4.16) 

 𝑤 = 1 − 𝑢 − 𝑣 ≥ 0 . (4.17) 
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It should be noticed that in case of a not detected point inside the examined 

element, its neighbors are, then, tested in the same way.  

On the other hand, in the event of testing a quadrilateral element, the 

barycentric coordinates of a randomly located point are obtained by the 

division of the simplex into two triangular areas, as presented in Figure 4.2.8. 

 

Thus, through the calculation of BCs of both generated triangles (e.g. ABC and 

ACD triangles), the query point can be locate accordingly. The case of an 

embedded point inside a quadrilateral element is shown in Figure 4.2.8. 

Barycentric Interpolation 

Once the query point is successfully located, the interpolation of the function 

is performed. Therefore, consider a function 𝑓: 𝛺 → ℝ, with values 

𝑓(𝑣1), 𝑓(𝑣2), 𝑓(𝑣3) on the triangular element’s nodes 𝑣1, 𝑣2, 𝑣3, respectively, 

wherein the query point was located. Then, in order to interpolate the function 

𝑓 on the query point’s 𝑝 location, Equation (4.18)  holds: 

 𝑓(𝑝) = 𝑤𝑓(𝑣1) + 𝑣𝑓(𝑣2) + 𝑢𝑓(𝑣3) , (4.18) 

Figure 4.2.8 Line segment AC divides the tetrahedron ABCD (blue colored) 

into two separate triangular areas, ABC and ACD, accordingly. The query 

point E (red colored) is located into ACD triangle. 
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where 𝑤, 𝑣, 𝑢 are the barycentric coordinates of the query, calculated at the 

previous step (Point-In - Element check). 

Although a query point undergoes consecutive checks (on the interior of each 

source element and its neighbors) for the verification of its location, there exist 

several instances where is not, eventually, detected. The aforementioned case 

is presented in Figure 4.2.9. 

 

The most common reasons for the particular inexpediency consists of either the 

difference on the topology of both meshes or the round-off errors resulted from 

the numerical operations, applied for the specific application. Hence, to 

successfully interpolate a function on the undetected points, an additional 

interpolation scheme is applied, called the “Inverse Distance Weighting (IDW) 

interpolation”. 

Inverse Distance Weighting (IDW) Interpolation 

Introduced by Shepard (1968), the Inverse Distance Weighting Interpolation 

consists of a multivariate interpolation methodology, applied on a given set of 

scattered points. In order to determine the value of a function on a particular 

query location, its distance from every point of the given set is measured, and 

Figure 4.2.9 Destination node A is located outside the source mesh indicated 

with blue color.  
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act as a weight, which is assigned to each one of them. Therefore, the estimation 

of the function value is obtained through the application of the weighted 

average of individual values on the provided set of points. 

Thus, for the purpose of interpolating a function on the not-located destination 

nodes, their Euclidean distances from each detected point of the 

aforementioned mesh, need to be calculated and saved. The Euclidean Distance 

between two different points is: 

where (𝑥1, 𝑦1), (𝑥2, 𝑦2) are their Cartesian coordinates, respectively. Once, the 

distances between the query point and the located destination nodes are 

computed, the Bubble Sort algorithm is applied and they, therefore, are sorted 

in a descending order. A demonstration of the aforementioned process is 

presented in Figure 4.2.10. 

 

 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 , (4.19) 

Figure 4.2.10 The calculation of the individual distances between the query point and 

the surrounding destination nodes. Red circular points indicate the destination mesh 

nodes, while points marked with blue squares represent the source mesh nodes. Each 

black colored arrow depicts the calculated distance between the query point and the 

detected destination nodes. 
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To begin with, a robust way to locate the destination nodes which were not 

found initially, is to employ the Point-In-Element check and, provided the 

estimation of the location of the element it belongs to, the Barycentric 

Coordinates interpolation methodology is implemented. However, in the 

present instance, the only source elements which are tested consist of the three 

-closest to the query- that were observed. Nevertheless, despite the application 

of the present variation, both Point-In-Element check and the BC interpolation 

processes, remain the same, as described in the previous section.  

Till the present section, the proposed algorithm offers a “three-layered” point-

in-element check i.e. 1st layer according to Inequality (4.6); 2nd layer for BCs 

check according to Inequalities (4.16) & (4.17), 3rd for BCs check according to 

the Euclidean distances between the query and the located destination nodes. 

However, there is, yet, a possibility of a few queries location to be unspecified. 

On the account of the aforementioned issue, the Inverse Distance Weighting 

(IDW) interpolation is applied. 

Therefore, according to Witteveen and Bijl (2009), during the IDW 

interpolation methodology, the interpolation surface 𝑤(𝑥), through 𝑛 data 

samples 𝒗 =  {𝑢1, 𝑢2, … , 𝑢𝑛 } of the examined function 𝑢(𝑥) ≡ 𝑢(𝑥𝑖) is given by: 

with the weighting function: 

where 𝑟𝑖 is the Euclidean distance (Equation 4.19) between the query point 𝑥 

and the node 𝑥𝑖, and 𝑐 is a positive real number called the ”power parameter”.   

 𝑤(𝑥) =
∑ 𝑢𝑖𝜑(𝑟𝑖)
𝑛
𝑖=1

∑ 𝜑(𝑟𝑖)
𝑛
𝑖=1

 , (4.20) 

 𝜑(𝑟) = 𝑟−𝑐 , (4.21) 
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More specifically, in the case of the present study, data points 𝑥𝑖, 𝑖 = 1, … , 100 

are the hundred - closest to the query - destination nodes that were, already, 

located in a source mesh element, as presented in the previous section. The 

specific number of data points was selected in order to decrease the total the 

computational time involved during the interpolation. Furthermore, the power 

parameter was set equal to five (𝑐 = 5), following the trial-and-error method.  
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4.3 Flow chart of the proposed interpolation algorithm 

To summarize, in order to interpolate a destination mesh to a source grid, steps 

1 to 7 are followed: 

1. Text files containing the topology of the source mesh (elements’ 

Cartesian coordinates and neighboring elements), the function values 

on the source mesh nodes and the destination mesh nodes’ Cartesian 

Coordinates, are read.  

2. Minimum and maximum X and Y coordinates of each source element 

are obtained. The median of the minimum X coordinates is calculated 

and two mesh - subareas are created. Every source element is assorted 

to the proper subarea according to each maximum X coordinate 

compared with the calculated median. 

3. Every destination node is assorted to the left or right subarea according 

to its X coordinate and the median calculated in step 2. Then, the query 

is examined and the source element which belongs to is specified, 

according to its calculated Barycentric Coordinate and their properties.   

4. The function of interest is interpolated on the query, through the 

application of the Barycentric Interpolation formula. 

5. In case of a destination node is not located into a source element, its 

distances between the detected destination nodes, are calculated. Its 

location compared to the three elements, where the - closest destination 

nodes - are placed, is checked, according to its Barycentric coordinates 

and their properties (as in Step 3.). 

6. If the examined destination node is, successfully, located into an 

element (as explained in step 3), the function of interest is interpolated, 

according to the Barycentric Coordinates formula. 
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7. If the examined node is not located (following the process described in 

step 5), the Inverse Distance Weighting Interpolation methodology is 

applied by making the use of the 100 - closest to the query-destination 

nodes’ values. 

The aforementioned interpolation process is demonstrated in Figure 4.3.1. 

 



Sofia Tavla   Mesh Interpolation 

 

118 

 

  

Figure 4.3.1 Flow chart of the proposed algorithm, which combines the Barycentric Coordinates (BCs) 

and Inverse Distance Weighting (IDW) interpolation schemes. 
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4.4 Results of the algorithm 

In the present study, the cases of triangular, quadrilateral and hybrid mesh 

interpolation were tested. In all of the three instances, a fine and a coarse mesh 

were utilized. Furthermore, the flow velocity values on each node of the source 

mesh were selected to be interpolated to the destination mesh nodes. A 

detailed presentation of the estimated function, on each occasion, is presented 

in Sections 4.4.1-4.4.3.  

4.4.1 Triangular mesh interpolation 

In the present instance, a mesh containing 16082 nodes and 31102 triangular 

elements was chosen as source. Additionally, the selected destination mesh 

consisted of 4055 nodes and 7580 triangular elements. Both source and 

destination mesh constituted a fine and coarse discretization of the surface of 

an S-shape pipe, respectively. The geometry of an S-shape pipe is presented in 

Figure 4.4.1. 

 

A section of the source (blue-colored) and destination mesh (red-colored) 

acting as a fine and a coarse discretization of the S-shape pipe’s geometry, are 

demonstrated in Figure 4.4.2 and Figure 4.4.3, respectively. 

Figure 4.4.1 The geometry of an S – Shape pipe. 
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The function, which was chosen in order to be interpolated from the source to 

the destination mesh, consisted of the velocity values calculated on the nodes 

of the former grid. 

Figure 4.4.2 The source mesh of the S-Shape pipe is 

constructed by 16082 nodes and 31102 elements and is 

indicated with blue color. 

Figure 4.4.3 The destination mesh of the examined 

geometry consists of 4055 nodes and 7580 elements 

and is colored with red. 
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The function values on the source and destination mesh nodes are presented 

in Figure 4.4.4 and Figure 4.4.5. In both cases, red colored areas indicate the 

maximum flow velocity values. On the other hand, blue colored areas 

demonstrate the minimum velocity values.  

 

 

 

Figure 4.4.4 The function values on source mesh 

nodes. 

Figure 4.4.5 The destination values obtained following 

the application of the proposed interpolation 

algorithm. 
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Through the visual comparison of Figure 4.4.4 and Figure 4.4.5, it can be 

observed that the proposed interpolation scheme resulted to almost identical 

to the source grid velocity values on the destination mesh. In other words, the 

velocity contour on both meshes (source & destination) had no substantial 

differences at all. It worth noting that in the case of interpolating values from 

coarse to fine triangular meshes, the proposed methodology produced 

plausible results.  

4.4.2 Quadrilateral mesh interpolation 

For the quadrilateral mesh interpolation, the source mesh consisted of 4000 

nodes and 3735 quadrilateral elements. On the other hand, the destination 

mesh was constructed by 16000 nodes and 15469 elements. Additionally, the 

suggested interpolation algorithm was applied for the case of the exact same 

shape as mentioned in triangular mesh interpolation (Section 4.4.1). The 

examined shape’s geometry is shown in Figure 4.4.1. A part of the source (blue 

colored) and destination grid (red colored) is presented in Figure 4.4.6 and 

Figure 4.4.7, respectively. 

 

Figure 4.4.6 The topology of the source mesh in the middle 

of the S – shape pipe. 
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As presented in Section 4.4.1, the selected function for the quadrilateral mesh 

interpolation was the flow velocity at the interior of the S-shape pipe. The 

contours of the given velocity values on the source mesh nodes as well as of 

the interpolated ones on the destination mesh are shown in Figure 4.4.8 and 

Figure 4.4.9, respectively.  

 

Figure 4.4.7 The topology of the destination mesh in the middle 

of the S – shape pipe. 

Figure 4.4.8 The function values on the nodes of the source 

mesh. 
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Following the comparison of Figure 4.4.8 and Figure 4.4.9, it should be noted 

that the flow velocity contours of source and destination grid appeared to be 

similar to a considerable extent. Moreover, the proposed scheme produced fair 

results for the case of interpolating values from the fine to the coarse mesh. 

4.4.3 Hybrid mesh Interpolation 

In the present section, the interpolation between two hybrid meshes is 

presented. At first, it should be noted that a hybrid mesh is consisted of both 

quadrilateral and triangular elements. Therefore, a hybrid mesh consisted of 

26671 nodes, 35738 triangles and 8448 quadrilateral elements was utilized as 

the source one. On the contrary, the chosen destination mesh was composed of 

68809 nodes, 101170 triangular elements and 17760 quadrilaterals. Both source 

and destination grids acted as a fine and a coarse discretization of the exterior 

of an airfoil shape, respectively. The geometry of the examined airfoil is shown 

in Figure 4.4.10. 

Figure 4.4.9 The function values on the nodes of the 

destination mesh. 
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In Figure 4.4.11 and Figure 4.4.12 the topologies of the source (blue-colored) 

and destination (red-colored) meshes are presented, respectively.  

 

Figure 4.4.10 The airfoil shape. 

Figure 4.4.11 The topology of the source mesh. 
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As presented in Section 4.4.1 and 4.4.2, the chosen function values to be 

interpolated, consisted of the fluid velocity given on the source mesh nodes. 

Figure 4.4.13 depicts the contour of the flow velocity on the source mesh. On 

the other hand, Figure 4.4.14 represents the interpolated on the destination 

mesh. It worth noting that no deviation was observed between the given values 

on the source and the interpolated velocity on the destination mesh nodes, 

respectively. Therefore, the contours of Figure 4.4.13 and Figure 4.4.14 did not 

appear to have considerable differences. Additionally, in the case of mesh 

interpolation from a fine to a course grid, plausible results were obtained.  

Figure 4.4.12 The topology of the destination mesh. 
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Figure 4.4.13 Each node of the source grid is assigned a 

flow velocity value. Color variation indicates the 

magnitude of the velocity around the examined 

geometry. For example, low flow velocity values are 

marked with blue color contrary to high flow velocity 

areas indicted with red color. 

Figure 4.4.14 The flow velocity contour resulted from the 

interpolation of the values on the source grid nodes to the 

destination mesh. 
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4.5 Conclusion 

In each one of the three cases tested, the flow velocity values were smoothly 

interpolated from the initial (source) mesh to the final (destination) one. 

Consequently, the proposed interpolation scheme appears to be applicable on 

Triangular, Quadrilateral and Hybrid meshes, given the topology information 

of the source and destination grids and the function values on the source mesh 

nodes, as explained in Sections 4.2.1 and 4.2.2. Eventually, it worth noting that 

the aforementioned interpolation scheme proved to be feasible for the 

interpolation from the fine to the coarse mesh and inversely.  
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Chapter 5  

Application of Harmonic Functions - based deformation 

5.1 Test Case 1: Single internal B-Spline boundary. 

The first test case consists of a rectangular domain with a single internal 

boundary, formulated as a smooth closed periodic B-Spline curve of 2nd degree, 

with 4 (different) control points (as being a periodic closed B-Spline curve of 

2nd degree, the two first control points are repeated at the end of the curve, 

resulting in actually 6 control points). The coordinates of the control points are 

listed in  Table 5.1.1. 

x-coordinate y-coordinate 

-3.80327177 9.66863155 

-3.41808033 7.30724001 

4.16851759 9.73562145 

3.76657844 11.71182060 

 Table 5.1.1 The Cartesian coordinates of four control points of a 

2nd degree B – Spline curve. 

The initial unstructured grid, consisted of triangular elements, is depicted in 

Figure 5.1.1 and Figure 5.1.2. In Table 5.1.2, the coordinates of the discrete 

points of the B-Spline boundary are contained, along with the corresponding 

u-value and the values of the 4 Basis Functions, used as boundary conditions 

for the consecutive solution of the Laplace equation. 
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i x y u(i) N1(i) N2(i) N3(i) N4(i) 

100 -3.61068 8.487941 0 0.5 0.5 0 0 

1 -3.61972 8.582142 0.01 0.4608 0.5384 0.0008 0 

2 -3.61603 8.675834 0.02 0.4232 0.5736 0.0032 0 

3 -3.59962 8.769018 0.03 0.3872 0.6056 0.0072 0 

4 -3.57048 8.861691 0.04 0.3528 0.6344 0.0128 0 

5 -3.52861 8.953855 0.05 0.32 0.66 0.02 0 

6 -3.47401 9.045511 0.06 0.2888 0.6824 0.0288 0 

7 -3.40669 9.136656 0.07 0.2592 0.7016 0.0392 0 

8 -3.32663 9.227293 0.08 0.2312 0.7176 0.0512 0 

9 -3.23385 9.317422 0.09 0.2048 0.7304 0.0648 0 

10 -3.12834 9.407041 0.1 0.18 0.74 0.08 0 

11 -3.01011 9.49615 0.11 0.1568 0.7464 0.0968 0 

12 -2.87914 9.584751 0.12 0.1352 0.7496 0.1152 0 

13 -2.73545 9.672842 0.13 0.1152 0.7496 0.1352 0 

14 -2.57902 9.760425 0.14 0.0968 0.7464 0.1568 0 

15 -2.40987 9.847497 0.15 0.08 0.74 0.18 0 

16 -2.228 9.934062 0.16 0.0648 0.7304 0.2048 0 

17 -2.03339 10.02012 0.17 0.0512 0.7176 0.2312 0 

18 -1.82606 10.10566 0.18 0.0392 0.7016 0.2592 0 

19 -1.60599 10.1907 0.19 0.0288 0.6824 0.2888 0 

20 -1.3732 10.27523 0.2 0.02 0.66 0.32 0 

21 -1.12769 10.35925 0.21 0.0128 0.6344 0.3528 0 

22 -0.86944 10.44276 0.22 0.0072 0.6056 0.3872 0 

23 -0.59847 10.52576 0.23 0.0032 0.5736 0.4232 0 

24 -0.31476 10.60825 0.24 0.0008 0.5384 0.4608 0 

25 -0.01833 10.69023 0.25 0 0.5 0.5 0 

26 0.278724 10.76874 0.26 0 0.4608 0.5384 0.0008 
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27 0.564315 10.84082 0.27 0 0.4232 0.5736 0.0032 

28 0.838436 10.90647 0.28 0 0.3872 0.6056 0.0072 

29 1.101089 10.96569 0.29 0 0.3528 0.6344 0.0128 

30 1.352274 11.01848 0.3 0 0.32 0.66 0.02 

31 1.59199 11.06483 0.31 0 0.2888 0.6824 0.0288 

32 1.820237 11.10476 0.32 0 0.2592 0.7016 0.0392 

33 2.037015 11.13825 0.33 0 0.2312 0.7176 0.0512 

34 2.242325 11.16532 0.34 0 0.2048 0.7304 0.0648 

35 2.436166 11.18595 0.35 0 0.18 0.74 0.08 

36 2.618539 11.20015 0.36 0 0.1568 0.7464 0.0968 

37 2.789443 11.20792 0.37 0 0.1352 0.7496 0.1152 

38 2.948878 11.20926 0.38 0 0.1152 0.7496 0.1352 

39 3.096845 11.20417 0.39 0 0.0968 0.7464 0.1568 

40 3.233343 11.19265 0.4 0 0.08 0.74 0.18 

41 3.358372 11.1747 0.41 0 0.0648 0.7304 0.2048 

42 3.471933 11.15031 0.42 0 0.0512 0.7176 0.2312 

43 3.574025 11.1195 0.43 0 0.0392 0.7016 0.2592 

44 3.664649 11.08225 0.44 0 0.0288 0.6824 0.2888 

45 3.743803 11.03857 0.45 0 0.02 0.66 0.319999 

46 3.81149 10.98846 0.46 0 0.0128 0.6344 0.352799 

47 3.867707 10.93192 0.47 0 0.0072 0.605601 0.387199 

48 3.912456 10.86895 0.48 0 0.0032 0.573601 0.423199 

49 3.945736 10.79955 0.49 0 0.0008 0.538401 0.460799 

50 3.967548 10.72372 0.5 0 0 0.500001 0.499999 

51 3.977234 10.64431 0.51 0.0008 0 0.460801 0.538399 

52 3.974139 10.56418 0.52 0.0032 0 0.423201 0.573599 

53 3.958262 10.48332 0.53 0.0072 0 0.387201 0.605599 

54 3.929604 10.40174 0.54 0.0128 0 0.352801 0.634399 
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55 3.888164 10.31944 0.55 0.02 0 0.320001 0.659999 

56 3.833942 10.23641 0.56 0.0288 0 0.288801 0.6824 

57 3.766939 10.15266 0.57 0.0392 0 0.259201 0.7016 

58 3.687154 10.06818 0.58 0.0512 0 0.231201 0.7176 

59 3.594587 9.982986 0.59 0.0648 0 0.204801 0.7304 

60 3.489239 9.897066 0.6 0.08 0 0.180001 0.74 

61 3.371109 9.81042 0.61 0.0968 0 0.156801 0.7464 

62 3.240198 9.723053 0.62 0.115199 0 0.135201 0.7496 

63 3.096504 9.634962 0.63 0.135199 0 0.115201 0.7496 

64 2.94003 9.546147 0.64 0.156799 0 0.096801 0.7464 

65 2.770773 9.456607 0.65 0.179999 0 0.080001 0.74 

66 2.588735 9.366347 0.66 0.204799 0 0.0648 0.7304 

67 2.393916 9.275361 0.67 0.231199 0 0.0512 0.7176 

68 2.186314 9.183651 0.68 0.259199 0 0.0392 0.701601 

69 1.965931 9.09122 0.69 0.288799 0 0.0288 0.682401 

70 1.732767 8.998064 0.7 0.319999 0 0.02 0.660001 

71 1.48682 8.904183 0.71 0.352799 0 0.0128 0.634401 

72 1.228093 8.80958 0.72 0.387199 0 0.0072 0.605601 

73 0.956583 8.714254 0.73 0.423199 0 0.0032 0.573601 

74 0.672292 8.618205 0.74 0.460798 0 0.0008 0.538401 

75 0.375219 8.52143 0.75 0.499998 0 0 0.500002 

76 0.077516 8.428127 0.76 0.538398 0.0008 0 0.460802 

77 -0.20866 8.342488 0.77 0.573599 0.0032 0 0.423202 

78 -0.48332 8.264511 0.78 0.605599 0.0072 0 0.387202 

79 -0.74646 8.194199 0.79 0.634399 0.0128 0 0.352802 

80 -0.99807 8.131549 0.8 0.659999 0.02 0 0.320001 

81 -1.23816 8.076564 0.81 0.682399 0.0288 0 0.288801 

82 -1.46673 8.029243 0.82 0.701599 0.039199 0 0.259201 
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83 -1.68378 7.989584 0.83 0.717599 0.051199 0 0.231201 

84 -1.88931 7.957591 0.84 0.730399 0.064799 0 0.204801 

85 -2.08331 7.933259 0.849999 0.74 0.079999 0 0.180001 

86 -2.26579 7.916592 0.859999 0.7464 0.096799 0 0.156801 

87 -2.43675 7.907589 0.869999 0.7496 0.115199 0 0.135201 

88 -2.59618 7.90625 0.879999 0.7496 0.135199 0 0.115201 

89 -2.7441 7.912573 0.889999 0.7464 0.156799 0 0.096801 

90 -2.88049 7.92656 0.899999 0.74 0.179999 0 0.080001 

91 -3.00536 7.948212 0.909999 0.730401 0.204799 0 0.064801 

92 -3.1187 7.977526 0.919999 0.717601 0.231198 0 0.051201 

93 -3.22053 8.014505 0.929999 0.701601 0.259198 0 0.039201 

94 -3.31083 8.059146 0.939999 0.682401 0.288798 0 0.028801 

95 -3.38961 8.111453 0.949999 0.660001 0.319998 0 0.02 

96 -3.45687 8.171422 0.959999 0.634402 0.352798 0 0.0128 

97 -3.5126 8.239054 0.969999 0.605602 0.387198 0 0.0072 

98 -3.55682 8.314351 0.979999 0.573602 0.423198 0 0.0032 

99 -3.58951 8.397312 0.989999 0.538402 0.460798 0 0.0008 

Table 5.1.2 In the first three columns of the table, the IDs and the Cartesian coordinates of B-

Spline boundary points are listed. Additionally, the fourth column contains the 

corresponding u-values on each point. Finally, the fifth, sixth, seventh and eight columns 

consist of the values of four 2nd degree B-Spline basis functions applied as boundary 

conditions for the solution of the Laplace equation on each point, respectively. 

In Figure 5.1.3 to Figure 5.1.6, the solution of the Laplace equation is depicted, 

for each one of the basis functions, used as boundary conditions upon the 

internal boundary. Each basis function corresponds to a B-Spline control point. 

The original unstructured grid was used for the solution of the Laplace 

equation (4 consecutive times, equal to the number of the (different) control 

points of the B-Spline curve). 
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Then, a deformation to the original control points of the internal B-Spline 

boundary is applied. The deformation to each one of the control points’ 

coordinates is depicted in Table 5.1.3. 

 

 

 

 

Figure 5.1.1 The initial shape of a smooth closed periodic curve of 2nd degree embedded in an 

unstructured grid consisted of triangular elements.  



Sofia Tavla            Comparison of FFD and Harmonic Functions-Based Deformation 

135 

 

 

Figure 5.1.2 A closer examination of the initial shape of the B-Spline curve (shown in Figure 

5.1.1) as well as of the unstructured grid surrounded by. 

Figure 5.1.3 The solution of the Laplace equation calculated by the application of the first 

basis function (𝑁1(𝑖)) as a Dirichlet boundary condition. 
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Figure 5.1.5 The solution of the Laplace equation using the second basis function (𝑁2(𝑖)) as a 

boundary condition. 

Figure 5.1.4 The solution of the Laplace equation using the third basis function (𝑁3(𝑖)) as a 

boundary condition. 
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Δx Δy 

1.0 -0.5 

1.0 -0.5 

1.0 -0.5 

1.0 -0.5 

Table 5.1.3 The displacement of the control points that provokes 

the deformation of the B-Spline curve.  

The applied movement to each one of the control points, using the 

methodology descried in Chapter 3, results in the deformation of the entire 

unstructured grid, as presented in Figure 5.1.7, Figure 5.1.8 and Figure 5.1.9. 

The original grid is in blue color, while the deformed one is in red color. As it 

can be seen, there is a smooth deformation of the unstructured grid, which 

fades-out as we approach the external rectangular boundary of the domain. 

Figure 5.1.6 The solution of the Laplace equation for the fourth basis function (𝑁4(𝑖)). 
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Figure 5.1.7 The initial (blue-colored) and the deformed (red-colored) unstructured grids. 

Figure 5.1.8 A more detailed examination of the initial and deformed grids, respectively. 
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Figure 5.1.9 A visualization of the initial (blue-color) and deformed (red-color) grids, 

respectively. 
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5.2 Test Case 2: Two internal B-Spline boundaries. 

The second test case consists of a rectangular domain with two internal 

boundaries, formulated as smooth closed periodic B-Spline curves of 3rd 

degree. The first one consists of 11 (different) control points, while the second 

one consists of 9 (different) control points. As being closed periodic B-Spline 

curves of 3rd degree, the 3 first control points of each curve are repeated at the 

end of the curve to produce the periodicity, resulting actually in 14 and 12 

control points in total, respectively. The coordinates of the control points of the 

first B-Spline curve are listed in the following Table 5.2.1. 

x-coordinate y-coordinate 

1.19990253 13.11501503 

-0.66915739 13.17731762 

-1.90475249 12.69120598 

-2.98158932 11.97601223 

-2.78379297 11.25177765 

-1.73216796 11.19115543 

-0.58905482 12.11818314 

1.3957088 11.77107239 

2.3145895 10.99261284 

3.12043738 11.4656105 

2.72119808 12.21872234 

Table 5.2.1 The control points’ Cartesian coordinates belonging 

to the first B-Spline curve. 

The coordinates of the control points of the second B-Spline curve are listed in 

the following Table 5.2.2. 
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x-coordinate y-coordinate 

10.29767895 7.94940615 

7.90498877 7.76820374 

6.81564045 7.02900267 

7.23188925 6.11807156 

9.2277689 6.25089693 

11.40646648 6.95119238 

14.11855793 8.37674522 

13.75686646 9.82143688 

11.96165276 9.24493408 

Table 5.2.2 The Cartesian coordinates of the control points 

belonging to the second B-Spline curve. 

The initial unstructured grid, consisted of triangular elements, is depicted in 

Figure 5.2.1 and Figure 5.2.2.   

 

 

Figure 5.2.1 The initial unstructured grid containing both B-Spline curve boundaries. 
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In Figure 5.2.3 to Figure 5.2.6, the solution of the Laplace equation is depicted, 

for only 4 of the basis Functions (for brevity – 2 for each boundary), used as 

boundary conditions upon the internal boundary (control points 1 & 5 for the 

1st B-Spline curve and control points 1 & 5 for the second B-Spline curve, 

respectively). Each basis Function corresponds to a B-Spline control point. The 

original unstructured grid was used for the solution of the Laplace equation 

(20=11+9 consecutive times, equal to the number of the (different) control 

points of the two B-Spline curves). 

 

Figure 5.2.2 A closer examination of the unstructured grid depicted in Figure 5.2.1. 
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Figure 5.2.3 The solution of the Laplace equation following by the application of the first B-

Spline basis function for the first B-Spline curve. 

Figure 5.2.4 The solution of the Laplace equation for the second basis function for the fifth B-

Spline curve. 
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Figure 5.2.5 The solution of the Laplace equation for the first B-Spline basis function around 

the second B-Spline curve. 

Figure 5.2.6 The solution of the Laplace equation for the fifth B-Spline basis function for the 

second B-Spline curve. 
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Then, a deformation to the original control points of the internal B-Spline 

boundaries is applied. The deformation to each one of the control points’ 

coordinates is depicted in Table 5.2.3 for the first boundary and in Table 5.2.4 

for the second one. 

Δx Δy 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

0.5 -1 

Table 5.2.3 The displacement of the control points belonging to 

the first B-Spline curve.  

Δx Δy 

-0.5 1 

-0.5 1 

-0.5 1 

-0.5 1 

-0.5 1 

-0.5 1 

-0.5 1 
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-0.5 1 

-0.5 1 

Table 5.2.4 The displacement of the control points for the second 

B-Spline boundary curve. 

The applied movement to each one of the control points, using the 

methodology described in Chapter 3, results in the deformation of the entire 

unstructured grid, as presented in Figure 5.2.7 to Figure 5.2.11. The original 

grid is in blue color, while the deformed one is in red color. As in the previous 

test case, there is a smooth deformation of the unstructured grid, which fades-

out as we approach the external rectangular boundary of the domain.  

 

 

Figure 5.2.7 A visual comparison between the initial (blue-colored) and the deformed (red-

colored) grids. 
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Figure 5.2.8 A more detailed examination of the initial (blue-colored) and deformed (red-

colored) unstructured grids of the first B-Spline curve. 



Sofia Tavla            Comparison of FFD and Harmonic Functions-Based Deformation 

148 

 

 

 

 

 

 

 

Figure 5.2.9 A further closer examination of the initial (blue-colored) and deformed (red-

colored) unstructured grids consisted of triangular elements, around the first B-Spline 

curve. 



Sofia Tavla            Comparison of FFD and Harmonic Functions-Based Deformation 

149 

 

 

Figure 5.2.10 A detailed examination of the initial (blue-colored) and deformed (red-

colored) unstructured grids around the second B-Spline boundary. 
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Figure 5.2.11 A closer examination of the initial (blue-colored) and deformed (red-colored) 

unstructured grids around the second B-Spline boundary. 
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Chapter 6  

Conclusions 

Three are the main contributions of the current work. The first is an extensive 

literature review of the existing geometry deformation techniques, based 

mainly on Free Form Deformation (FFD) and Harmonic functions. The second 

contribution is the testing of a new methodology (developed in the 

Turbomachines and Fluid Dynamics Laboratory, Technical University of 

Crete) for geometry/mesh deformation, combining B-spline theory and 

Harmonic functions, for the concurrent deformation of the parametrically-

defined geometries and the corresponding computational mesh. This 

methodology is well-suited for aerodynamic design optimization. The third 

contribution is the development of a mesh-interpolation methodology, for 

unstructured-hybrid meshes. In this work, the validity of both methodologies 

was investigated and proved in various tests. 

Concerning the geometry-deformation methodology, the following 

conclusions can be made: 

 The proposed novel methodology allows for the concurrent 

deformation of the curved boundaries and the corresponding 

computational mesh (structured or unstructured). 

 The deformation of the geometry boundaries is applied on the control 

points of the B-spline curves that describe the corresponding 

boundaries. Therefore, no reverse-engineering is required at the end of 

the procedure to compute the parametric definition of the final 

geometry. 
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 The computation of the field of the harmonic functions requires 

significant computational resources. However, this computation is 

performed only once, at the beginning of the deformation procedure. 

 The resulting quality of the grid deformation is not very good, when 

large deformations are applied. In some cases negative volumes may 

result. 

 The proposed methodology is very promising. However, further 

research is required to expand its potential for aerodynamic shape 

optimization. 

 Comparing the proposed methodology with FFD, the former provides 

more smooth mesh deformations, with better local control, as the lattice 

points (which control the deformation) extend inside the mesh region. 

On the other hand, at the end of FFD deformation, the deformed 

geometry is not in parametric form, and a reverse-engineering 

procedure is required to compute its parametric (B-spline or NURBS) 

form. In the proposed methodology the control points of the parametric 

B-spline curves that define the geometry boundaries control both the 

deformation of the geometry (boundaries) and the computational mesh. 

 The proposed methodology has been developed for periodic B-spline 

curves, which provide smooth Basis functions.  
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