
TECHNICAL UNIVERSITY OF CRETE
Deparment of Electrical & Computer Engineering

Differentially private data synthesis using
Variational Autoencoders

Author
Margaritis Georgios Thesis Committee

Prof. Minos Garofalakis (Supervisor)
Prof. Antonis Deligiannakis

Prof. Vasilis Samoladas

June 28, 2021

i

Abstract

Margaritis Georgios
Thesis Supervisor: Prof. Minos Garofalakis

Following major privacy breaches around the world, individuals and organizations
are becoming increasingly reluctant in giving away their personal data. This heightened
awareness for privacy is hindering the creation of rich, centralized datasets, and results
in data owners keeping their datasets private. However, if different parties are unwilling
to share their data with one another, then the models they will be able to build on their
own will be of inferior quality, due to the lack of data.

In this thesis, we attempt to combine Variational Autoencoders, Federated Learning
and Differential Privacy to solve this problem. These tools can enable a group of individ-
uals or organizations to collaboratively create a rich synthetic dataset, without revealing
their private data to one another, and without compromising their privacy. Then, they
can all use the synthetic dataset to supplement their private datasets, they can use it to
perform hyperparameter tuning on their models, or they can even release it publicly and
share it with any other party. In any case, they will be mathematically assured that their
privacy won’t be adversely affected, no matter what they choose to do with the synthetic
dataset, or who they choose to share it with. Those privacy guarantees, which stem
from the mathematical properties of Differential Privacy, are crucial when dealing with
owners of sensitive data such as hospitals and healthcare organizations. In such cases,
the volume of data a single hospital has may be rather limited, potentially leading to very
poor diagnostic models. Hence, a privacy-aware synthetic dataset created by multiple
hospitals, could pave the way for much better diagnostic models, while preserving the
privacy of hospitals and their patients.

ii

Acknowledgements

After 5 amazing years at the Technical University of Crete, and before embarking on
my research venture in the US, I want to express my deepest gratitude to the people that
supported me throughout these years.

First and foremost, I would like to thank my supervisor, Prof. Minos Garofalakis for
exposing me to very fascinating and niche research areas. Without his guidance and
support, the completion of this thesis wouldn’t be possible. I would also like to thank the
members of his team at Athena Research Center, and particularly George Pikramenos,
whose suggestions and insights on the topic were very valuable in completing my thesis.

I also owe a lot to Prof. Daphne Manoussaki for allowing me to serve as a teaching
assistant and for helping tremendously with my doctoral applications: Her support was
crucial when I had to make difficult choices and decisions. Additionally, I want to thank
Prof. Liavas for supportingme and for exposingme to the interesting area ofOptimization
through his Convex Optimization courses. I also want to thank Prof. Aggelos Bletsas for
his mentoring and advice, Prof. Vasilis Samoladas for his exciting courses on Distributed
Systems and Computational Geometry, and Prof. George Karystinos for his great courses
on Information Theory and Number Theory.

However, this journeywouldn’t be possible without the help ofmy family and friends.
I owe a lot to my parents who unconditionally supported me through every decision I
made and gave me the opportunity to pursue all of my goals. I also want to express my
gratitude for my close friends, who were there for me both in good and in bad times.

Contents

Contents ii

List of Abbreviations v

Glossary vi

1 Introduction 1
1.1 The call for privacy . 1
1.2 Federated Learning . 2
1.3 The promise of Differential Privacy . 2
1.4 Generative Models . 2
1.5 Thesis Organization . 4

2 Privacy-preserving analytics 5
2.1 History of privacy-preserving analytics . 5

2.1.1 Privacy Framework and the Sanitization Pipe Dream 5
2.1.2 Shortcomings of traditional privacy methods 6
2.1.3 Origins of Differential Privacy . 8

2.2 Differential Privacy . 8
2.2.1 Formal Definition . 9
2.2.2 Properties . 11
2.2.3 Enforcing Differential Privacy . 12
2.2.4 Closure under Post-processing . 14
2.2.5 Composition . 14
2.2.6 Subsampling . 15
2.2.7 Moments accountant . 15

3 Federated Learning 16
3.1 Introduction . 16

3.1.1 Cross-device Federated Learning . 17
3.1.2 Cross-Silo Federated Learning . 17

3.2 Federated Training . 17
3.3 Non-IID data in Federated Learning . 19
3.4 Privacy in Federated Learning . 19

3.4.1 Actors & Threat models . 20
3.4.2 Secure aggregation & SMPC . 21
3.4.3 Differential Privacy . 22

4 Towards Federating Variational Autoencoders 26
4.1 Motivation . 26
4.2 Related Work . 28

4.2.1 Generative Adversarial Networks 29

iii

CONTENTS iv

4.2.2 Federated DP GANs . 29
4.3 Introduction to Variational Autoencoders 32

4.3.1 Autoencoder Neural Networks . 32
4.3.2 Variational Autoencoders . 34

4.4 Federated Variational Autoencoders . 41
4.4.1 Federated Setting . 42
4.4.2 Proposed method . 46
4.4.3 Implementation . 60
4.4.4 Challenges . 63

4.5 Results . 64
4.5.1 Federated vs Centralized DP VAEs 64
4.5.2 Comparing different data distribution policies 68
4.5.3 Accuracy vs number of parameters 71
4.5.4 Comparison with PrivBayes . 73
4.5.5 Comparison with GANs . 76
4.5.6 Local vs global DP . 80

5 Conclusions 83
5.1 Result Summary & Contribution . 83
5.2 Drawbacks . 84
5.3 Future Work . 85

List of Abbreviations

URS Uniform Random Sample

DP Differential Privacy

VAE Variational Autoencoder

GAN Generative Adversarial Network

IID Independent and Identically Distributed

FL Federated Learning

ML Machine Learning

PDF Probability Density Function

MPC Multi Party Communication

CDP Central Differential Privacy

LDP Local Differential Privacy

v

Glossary

Adversary: In cryptography, an adversary (rarely opponent, enemy) is amalicious entity
whose aim is to prevent the users of the cryptosystem from achieving their goal.

Honest-but-curious adversary: The honest-but-curious (HBC) adversary is a legitimate
participant in a communication protocol who will not deviate from the defined protocol
but will attempt to learn all possible information from legitimately received messages
[47].

Single-digit � differential privacy: When we use the term "single-digit � differential
privacy" we refer to the case where we have (�, �)-DP guarantees with � < 10. When
� < 10 and � is small, the level of differential privacy is considered relatively good, and
that’s why many authors aim at enforcing DP with single-digit �.

vi

Chapter 1

Introduction

1.1 The call for privacy

In the era of Information and Ubiquitous computing, the importance of data in our
lives cannot be understated. Every successful corporation has made computation and
data-driven decision making an integral part of its business model. In fact, data has
become a new form of currency. The vast majority of online platforms, such as Facebook,
Google, YouTube e.t.c. utilize their users’ data to generate revenue, while compensating
for the platform’s free service.

At the same time, we may not realize it, but by surfing through the internet, we give
away vast amounts of our personal information. This wasn’t a major concern, until the
scandal of Cambridge Analytica proved that the implications of neglecting our privacy
are far-reaching, and can even impact democratic institutions. Since then, there have
beenmany global endeavors, such as GDPR, aimed at enforcing privacy constraints when
processing people’s data.

In light of all these concerns, individuals and organizations are becoming increasingly
reluctant in giving away their personal data. This is creating a shift from traditional, cen-
tralized ML architectures to privacy-aware decentralized ML pipelines. In other words,
there is an ongoing need for Machine Learning models that can be trained in a decentral-
ized fashion, without requiring the data owners to give away their data. For instance, a
clear manifestation of this necessity appears in the medical domain.

Due to the rapid advances in the field of healthcare analytics and personalized
medicine, there has been an burgeoning demand for algorithms that utilize sensitive,
biomedical data in order to extract various health-related insights. In particular, due to
the scarcity and importance of biomedical datasets, there is an ongoing need for mech-
anisms that securely combine sensitive data from different sources (e.g. from different
hospitals or healthcare organizations) in order to produce richer datasets andmodels that
are extremely valuable not just for the data-holders themselves, but also for the entire
research community.

Motivated by those attractive applications, we aspire to create a privacy-aware data-
synthesis engine that can be trained on decentralized datasets. This systemwill be trained
through the collaboration of multiple data-owners (e.g. individuals, organizations) who
will actively participate in the training process, without sending their data to any other
entity. Then, after the model is trained, the collaborating parties will know the exact
privacy cost that their participation entailed. At the same time, the trained model can be
used privately and securely by the training participants or any other entity as an artificial
data generator that produces valuable, synthetic datasets, with quality similar to the
training data.

In order to realize this goal, we will combine 3 different research areas: Federated

1

1.2. FEDERATED LEARNING 2

Learning, Differential Privacy and Generative Models. In particular, Generative Models
will provide us with a trainable data-synthesis engine, Federated Learning will allow
us to train this engine on distributed data, and Differential Privacy will enable us to
mathematically quantify the privacy harm that this procedure incurs on data owners.

1.2 Federated Learning

Federated learning is a machine learning setting where multiple entities collaborate
together to collectively train a machine learning model using their private datasets. One
of the fundamental principles of Federated Learning is that the data owners never send
their data to any party, but they instead actively participate in the training process by
performing some local computations and sending their results to a centralized server.
This property of Federated Learning makes it particularly privacy-friendly and attractive
for many applications.

However, in order to be able to measure the privacy cost of someone’s participation in
a Federated Learning setting, we need to combine Federated Learning with Differential
Privacy. This fusion allows the orchestrators of an FL setting to provide formal and
mathematically rigorous privacy guarantees to all the parties that participate in the FL
setting.

1.3 The promise of Differential Privacy

Differential privacy (or DP) is a state-of-the-art definition of privacy developed in 2006
by Cynthia Dwork. In Dwork’s words, Differential Privacy describes a promise made by
a data holder or curator to a data subject that the latter won’t be affected, adversely or
otherwise, by allowing their data to be used in any study or analysis, no matter what
other studies, data sets, or information sources are available. In essence, Differential
Privacy addresses the paradox of learning nothing about an individual while learning
useful information about a population [25].

One important strength of Differential Privacy is that any differentially private algo-
rithm, which is referred to as mechanism, remains differentially private no matter what
an adversary knows and no matter what information is available elsewhere [23]. This
means that an adversary cannot take the output of a differentially private algorithm and
make it non differentially private.

The ultimate goal of Differential Privacy is to make sensitive data widely available for
accurate analysis, without requiring strict protocols or agreements between data-holders
and data-analysts. Unfortunately, however, there is an important trade-off between ac-
curacy and privacy. In fact, according to the fundamental law of Information Recovery,
requiring overly accurate answers to too many questions has an inevitable consequence
on privacy. Nevertheless, the goal of a lot of algorithmic work in the area of Differential
Privacy has been to mitigate this trade-off as much as possible by designing algorithms
that maintain privacy without significantly compromising utility [25].

1.4 Generative Models

Generative models are unsupervised learning models which, when trained on a train-
ing set, have the property of generating synthetic data that are similar the training ex-
amples. This property makes generative models particularly useful in many real world
scenarios, and especially in health-related applications where the supply of data is scarce.

1.4. GENERATIVE MODELS 3

Let’s assume that we have a number of hospitals, where each hospital has a different
part of a bigdatabase of clinical records of individuals. The subset of data that corresponds
to every hospital is very small, and thus the hospital cannot train its diagnostic models
solely by using its own data. Hence, if the hospitals managed to leverage each other’s
data, then they would be able to build much better diagnostic models. However, in most
cases, there are strict policies which prohibit the hospitals from sharing their data with
other parties.

Since data exchange is out of the question, we could instead leverage the power of
Generative Models, Federated Learning and Differential Privacy to solve this problem. In
particular, we can use a generative model to perform synthetic data generation, we can
then use Federated Learning to train this model from decentralized datasets and we can
combine all these with Differential Privacy so as to ensure that this process respects the
privacy of the data owners.

The combination of Generative Models with Federated Learning and Differential Pri-
vacy, may enable organizations (such as hospitals) to utilize their limited data so as to
jointly train a common Generative Model. Then, the participating organizations will be
able to use the generative model so as to generate synthetic data and enrich their pri-
vate datasets, without any fear for privacy. This way, the organizations will be able to
significantly improve their models, by having access to rich synthetic datasets. By the
same token, the synthetic data generated by the generative model can also be released
to the public, without any privacy concerns. The reason for this is that since synthetic
dataset and the generative model are differentially private, no adversary or malicious
actor can make them less private. Hence, safely releasing the synthetic datasets the syn-
thetic datasets to the public opens enormous possibilities for ways those datasets can be
used. For instance, those datasets can be used by the research community to train models
and extract various insights from rich but unforeseen data.

At the same time, one other important use-case for differentially private synthetic
datasets is hyperparameter tuning. Let’s assume that a group of organizations want to
jointly train a classifier using their collective data, but without revealing their data to
one another. This is a classic scenario where Federated Learning can be used to train
the classifier. However, since the classifier is an ML model, it will require some level of
hyperparameter tuning. Hence, in order to tune the hyperparameters of the classifier, we
can set an initial value for the hyperparameters, train the classifier using FL on the real
data, change the hyperparameters, train the classifier again using FL, and continue this
iterative process until the model yields acceptable utility. However, the more times we
perform FL on the real data, the greater the privacy loss from training. In particular, if
the federated training of the classifier is differentially private, the more times we train the
model on the real data, the worse the privacy guarantees get.

Hence, what we can instead do, is train a generative model on the distributed data
using federated learning and differential privacy. Then, we can use the generative model
to generate a differentially private synthetic dataset. This dataset can act as a summa-
ry/approximation of the real data and can then be used to tune the hyperparameters of
the classifier. The most important benefit of this dataset, is that it can be used in as many
experiments we want, without incurring additional privacy losses. This means that since
the dataset is differentially private, it will retain the same level of privacy, no matter how
many experiments we perform on this dataset. Consequently, we can train the classifier
multiple times on this dataset and determine the best set of hyperparameters, without
incurring any additional cost on privacy.

1.5. THESIS ORGANIZATION 4

1.5 Thesis Organization

This work is organized in 5 chapters:
In chapter 1, we outline the necessity for privacy as an integral part of modern

Machine Learning pipelines. We then explain the problem we are trying to address and
its importance, especially in the medical domain.

In chapter 2, we explore the area of privacy-preserving analytics and its inherent
challenges. Then, motivated by the shortcomings of traditional privacy approaches, we
analyze the notion of Differential Privacy, while understanding its motivation, properties
and mathematical primitives.

In chapter 3, we explore the domain of Federated Learning, its motivation and its
interesting real-world applications. We then examine the privacy aspects of Federated
Learning and its links with Differential Privacy.

In chapter 4, we examine the problem of differentially private, synthetic data gener-
ation from decentralized datasets. In particular, we propose a way to train Variational
Autoencoders using Federated Learning and Differential Privacy. We then test our ap-
proach in various experimental settings and compare it against other approaches that
attempt to solve the same problem as the one we are solving. In particular, our key
contributions are the following:

• We manage to adapt Variational Autoencoders to a federated setting under Differ-
ential Privacy Guarantees. To our knowledge, this hasn’t been achieved so far in
a setting similar to ours. In fact, our proposed method for training federated Var-
tiational Autoencoders addresses the open problem of federating only the part of
the Variational Autoencoder that is responsible for data synthesis (i.e. the decoder),
while keeping the other part of the autoencoder (i.e the encoder) private [13].

• We reason about the privacy guarantees of our approach and present a concrete
way to calculate the privacy budget.

• We test our approach on an image and a tabular dataset.

• We explore the relationship between privacy, utility, data distribution and number
of network parameters.

• We compare our approach with other traditional approaches, such as PrivBayes
and Federated DP GANs, and we demonstrate that Federated DP VAEs perform
relatively well withing the scope of our experiments.

In chapter 5, we draw our conclusions, summarize our results and outline our contri-
bution. We then talk about the drawbacks of our approach and suggest potential areas
for future work.

Chapter 2

Privacy-preserving analytics

In this chapter, we are first going to explore the challenges of privacy-preserving
analytics, while discussing the motivation behind privacy algorithms that rely on the
notion of Differential Privacy. Then, we are going to analyze the definition of Differential
Privacy, its properties and the various mathematical primitives, while also exploring how
those primitives can be used in designing privacy-aware data-processing algorithms.

2.1 History of privacy-preserving analytics

2.1.1 Privacy Framework and the Sanitization Pipe Dream

In the classical (centralized) framework of privacy-preserving analytics, there is an
agent (called curator) who has access to a sensitive database. This curator is trustworthy
(i.e. has no intention of leaking sensitive data) and has sufficient computational power
to protect the database from being hacked. Additionally, the database is assumed to
be in a safe place and cannot be physically stolen. Hence, under those assumptions,
the only way for somebody to have access to the database is through the curator. As a
result, a malicious data analyst (adversary) can only infer information about a member
of the database by relying on a statistical analysis of the data provided to him by the
curator. Finally, to cover a wide range of senarios, we may also assume that the adversary
has unlimited computational power and unlimited knowledge, meaning that apart from
the information the adversary is trying to infer, he has access to any kind of additional
databases [48].

In that setting, the ultimate goal of privacy-preserving analytics can be summarized in
the "Sanitization Pipe Dream": Amagical procedure is applied to a database that is full of
useful and sensitive data. This procedure generates an "anonymized" or even a "synthetic"
database that closely resembles the real databasewhen it comes to data analysis, but at the
same time maintains the privacy of everyone who was part of the original database [23].
This sanitization procedure is applied by the curator on the original database, and then
the curator releases the sanitized database to the public, where the analysts can safely
and accurately answer any query without infringing the privacy of the members of the
original database (Figure (2.1.1)).

5

2.1. HISTORY OF PRIVACY-PRESERVING ANALYTICS 6

Figure 2.1.1: The Sanitization Pipe Dream

Unfortunately, however, it is a well known mathematical fact that requiring overly
accurate answers to too many questions ultimately destroys privacy. In that sense, the
sanitization pipe dream is clearly problematic: sanitization is supposed to give relatively
accurate answers to all questions, but every system that does so, will inevitably compro-
mise privacy [23].

2.1.2 Shortcomings of traditional privacy methods

Motivatedby the sanitizationpipe-dreamandaspiring to create anonymizeddatabases
anddatasets, there havebeen a lot of research attempts over the years in the area of privacy-
preserving analytics. Unfortunately, however, most of those research attempts have failed
to maintain acceptable levels of privacy. In part, their failure can be attributed to the
prevalence of various adversarial attacks, which have managed to exploit supposedly
"anonymized" databases and datasets:

1. Linkage attack: One traditional way that has been used to anonymize a set of records,
was the removal of sensitive information (like name, phone number) , hoping that
the remaining data attributes will not be sufficient to identify an individual from
the population [25]. This notion of privacy, however, is problematic, as an adversary
may attempt to identify individuals in the anonymized dataset by combining that
data with non-anonymized public datasets. The ’linking’ uses quasi-identifiers,
such as zip , gender, date of birth, etc that are present in both datasets to establish
identifying connections [3]. Those kinds of attacks are called "linkage attacks" and
have been used to identify the medical records of the governor of Massachusetts,
by combining anonymous health records with publicly available voter registration
records. [25].

2. Background Knowledge Attack: In this attack, the adversary attempts to use an associ-
ation between the sensitive attribute with quasi-identifier attributes (i.e. attributes
available to the adversary) or background information about the target in order to
eliminate possible values of the sensitive attribute. This attack is similar to Linkage
Attacks, but instead of trying to identify whole rows, it tries to identify just the sen-
sitive attribute of a particular row. For example, Machanavajjhala et.al. (2007) [41]
showed that the information that heart attacks occur at a reduced rate in Japanese
patients could be used to narrow the range of values for a sensitive attribute of a
patient’s disease [1].

2.1. HISTORY OF PRIVACY-PRESERVING ANALYTICS 7

3. Differencing attack: This kind of attack combines background informationwith statis-
tics from overly accurate query answers in order to infer sensitive information about
an individual. Although differencing attacks can become very complicated, in
their simplest form, they require just 2 data points. For instance, if we have the
background information that George’s data have been included in a database of
COVID-19 tests, then by asking "How many individuals have tested positive for
COVID-19" and "How many individuals not named George have tested positive
for COVID-19" we can probably ascertain whether George has tested positive for
COVID-19 or not.

4. Homogeneity attack: In this type of attack, an adversary can leverage the case where
all the values for a sensitive attribute within a group of records are identical. Hence,
in such cases, the adversary can predict the value of the sensitive attribute in that
group with 100% accuracy, despite the fact that the data may be anonymized.

Probably, one of the most popular anonymization methods has been k-anonymity, until it
was proven to be an insecureway to anonymize datasets. The concept of k-anonymitywas
first proposed in 1998 by Latanya Sweeney et al. [49] and it has been used as a method to
combat the risk of re-identification of anonymized data through linkage to other datasets
[2] (i.e. protect against linkage attacks). In particular, a release of data about a population
is said to have k-anonymity if the information for each person contained in the release
cannot be distinguished from at least : − 1 other individual whose information also
appear in the release. K-anonymity can be enforced either by hiding the values of certain
attributes (suppression) or by grouping different attribute values into the same category
(generalization). The attributes available to an adversary are called quasi-identifiers and
in a k-anonymous dataset, each quasi-identifier tuple occurs in at least k records.

However, as demonstrated in [41], this notion of anonymity is problematic, as it is
susceptible to background knowledge attacks and homogeneity attacks [1]. This led
to the proposition of the l-diversity privacy model [41], which is an extension of the
k-anonymity and addresses some of the shortcomings of k-anonymity. In particular,
although k-anonymity prevents the identification of a record against linkage attacks, it is
not very effective in preventing the inference of some sensitive attributes of that record.
In other words, a dataset anonymized with k-anonymity is safe from record linkage, but
vulnerable to attribute linkage. Therefore, l-diversity was proposed as a way that not
only maintains equivalence between at least k records, but also tries to enforce diversity
in sensitive attributes, thus reducing the risk of homogeneity attacks. However, l-diversity
doesn’t come without its drawbacks. In fact, as demonstrated in [40] and [37], l-diversity
and similar privacy models are susceptible to attacks that leverage the skewness in the
distribution of the sensitive attributes (i.e. skewness attacks) and attacks that work when
the sensitive attributes are distinct but semantically similar (Similarity Attacks)[27].

Besides k-anonymity and l-diversity, other anonymization methods have also been
proposed, such as C-closeness, �-presence, anatomy, (2, :)-safety e.t.c. However, most of
those have proven to be vulnerable to some type of adversarial attacks. In fact, most
traditional anonymization techniques offer a false sense of security, which has led to var-
ious breaches of privacy over the years. Many Organizations who released their datasets
believing those datasets were anonymized, were subjected privacy attacks, resulting in
leaks of sensitive information [2]. In fact, some of those leaks are so famous that have
their-own short names: ’Governor Weld’,’AOL debacle’,’Netflix Prize’ and ’GWAS allele
frequencies’ are just some of those.

In light of all these, an important question arises: Can we view the problem of privacy
and anonymization from a different perspective?

2.2. DIFFERENTIAL PRIVACY 8

2.1.3 Origins of Differential Privacy

The concept of Differential Privacy was inspired by the advances in cryptography
of the 1970s-1980s. In "Pre-modern" cryptography, the prevailing paradigm in design-
ing cryptosystems was the "propose-break-propose-again", where a cryptosystem was
implemented, someone would break the cryptosystem, a new cryptosystem was then
implemented and this procedure kept going again and again. [23]. In fact, this procedure
was followed in designing most of the anonymization algorithms we mentioned above,
as k-anonymity was proposed, then it was found that it is vulnerable to homogenity
and background knowledge attacks, then l-diversity was proposed, then it was found to
be vulnerable to skewness attacks, then t-closedness was proposed and the cycle kept
repeating again and again.

Contrary to that approach, Goldwasser et al [28] stressed the importance of definitions
when it comes to designing cryptosystems: First, the cryptographer defines the desired
properties of the cryptosystemandbounds the computational capabilites of the adversary.
Then, the cryptographer proposes the design of the cryptosystem and rigorously proves
its security against all adversaries with the specified computational resources. This
methodology converts a break of the implementation into a break of the definition of the
cryptosystem; when an adversary manages to break the cryptosystem, then this means
that there are weaknesses not in the implementation of the cryptosystem, but rather in
the stated requirements of the cryptosystem (e.g. the adversary has more computational
resources than assumed). Thisway, a break of the cryptosystem leads to the establishment
of stronger and stronger definitions and requirements for the cryptosystem, inevitably
leading to a path of progress [23].

Following this line of reasoning in the case of privacy, we may first want to explicitly
state the definitions and requirements for privacy, and then try to design a system that
provably meets those requirements. Hence, one way natural way to define privacy in
data analytics could be to ensure that anything that can be learned about an individual
through a privacy-preserving database can also be learnedwithout access to the database.
Unfortunately, this goal proposed by Dalenius [20] provably cannot be achieved, as we
cannot expect to not learn anything new about any individual after a data analysis; if that
was the case, then what would be the purpose of the analysis?

By relaxing Dalenius’ definition, we may say that the goal of privacy preserving
analytics is to ensure that the outcome of an analysis is the same, independently of
whether an individual chooses to participate in the analysis or not. In other words,
an individual should not be harmed more in the case he chooses to participate in the
analysis compared to the case he chooses not to participate. In fact, this requirement
is the backbone of Differential Privacy. Speaking informally, Differential Privacy states
that the outcome of any analysis is essentially equally likely independent of whether any
individual joins or refrains from joining the dataset [23].

2.2 Differential Privacy

Differential Privacy is a formal definition of privacy introduced by Dwork et al. [25].
Ever since it was proposed, Differential Privacy has become the state-of-the art definition
of privacywithwide adoptionnot just from the academicworld, but also from the industry
as well. Differential Privacy provides protection against adversaries with unbounded
computational resources and side information, while allowing the quantification of the
privacy loss, even across multiple accesses to the same data [57].

2.2. DIFFERENTIAL PRIVACY 9

2.2.1 Formal Definition

Let’s assume that we have a database that can be modeled as a collection of rows,
where each row corresponds to the data of a different individual. Differential privacy
tries to ensure that the ability of an adversary to inflict harm or good to any subset of
people stays the same no mater whether any individual is included or not in the dataset.
For this reason, differential privacy examines all pairs of adjacent databases � and �′

(i.e. databases that differ in exactly 1 record, such that a particular user’s data is included
in one database and not in the other) and tries to ensure that for all of those pairs of
adjacent databases, the output of the differentially private algorithm (or to be more exact,
the distribution of the output) stays almost the same.

Differential Privacy relies on randomized algorithms rather that on deterministic ones.
Those algorithms are also calledmechanisms and employ some part of randomness as part
of their logic. Using that framework, the formal definition of Differential Privacy is the
following:

Definition 2.1 A randomized algorithmℳ : U → ℛ is (�, �)−deferentially private if for all
S ⊆ ℛ and all pairs of adjacent datasets �, �′:

%[ℳ(�) ∈ (] ≤ 4�%(ℳ(�′) ∈ () + �

where the probability space is over the coin flips ofℳ 1.

In other words, if we consider as ℛ the set of all the possible outputs that the random-
ized algorithmℳ can produce, then (�, 0)-differential privacy indicates that any output
(⊆ ℛ is almost equally likely to occur in any pair of adjacent database � and �′. When
we say "almost equally likely", we mean that the probability of the the output (occuring
in database � and the probability of (occuring in database �′ can differ at most by a
factor of 4� (where for � ' 1 then 4� ' 1 + �). This means that for a small �, it is difficult
to distinguish between database � and database �′, as when the mechanismℳ oper-
ates in both databases, the outputs of the mechanism have (almost) the same probability
distribution (Figure 2.2.1).

Adjacent Datasets

As we can see in the definition, Differential Privacy relies on the notion of Adjacent
Datasets. So far, we have referred to adjacent datasets as datasets that differ in exactly one
row (i.e. the row corresponding to a specific user). However, this is not always the case.
In general, there are 2 different definitions for adjacent datasets, depending of the kind of
differential privacy we want to enforce [43]:

Definition 2.2 (Example-level Adjacent datasets): 2 datasets � and �′ are called adjacent if �′
can be formed by adding or removing a single training example from �. In other words, � and �′
differ in exactly 1 record.

Definition 2.3 (User-level Adjacent datasets): Let� and�′ be two datasets of training examples,
where each example is associated with a user. Then, � and �′ are adjacent if �′ can be formed by
adding or removing all of the examples associated with a single user from �.

1Randomized algorithms can also be seen as deterministic algorithms which take 2 inputs: the data and a
string of randombits. This randombit-string acts as the source of randomness and determines the probability
space of the randomized algorithm. Hence, when we say that the probability space is over the coin-flips of
mechanismℳ, then we are implying that the probability space is dictated by all the possible values of the
random bit string.

2.2. DIFFERENTIAL PRIVACY 10

The first definition is mostly used when dealing with centralized datasets or databases,
wherewewant to enforce example-level privacy. On the other hand, the second definition
is mostly used in the federated setting where we want to enforce privacy guarantees that
protect an entire client (e.g. hospital).

As a result, whenever we give differential privacy guarantees about an algorithm, we
should be careful as to what kind of "adjacent datasets" we refer to. In essence, we have
to distinguish between example-level privacy and user-level privacy, where the latter is
much stronger than the former, as it includes much more records.

Parameter �

The � parameter of Differential Privacy is referred to as privacy parameter or privacy
budget and acts as a metric of the privacy loss of a differentially private mechanismℳ.
We will discuss 2 different cases for epsilon in the case of (�, 0) Differential Privacy:

1. If � is small, then this means that we have good DP guarantees. In essence, if we
have a small value of � (i.e. use a lot of noise) and then give the adversary the output
ofℳ on � and the output ofℳ on �′, then it will be difficult for the adversary
to distinguish which output came from which database. The reason for this is that
as we can see on Figure (2.2.1a), there is a significant overlap between the output
distributions in the 2 cases, and thus if we draw a sample out of some of those
distribution it may be difficult to distinguish which distribution this sample came
from. In any case, it should be noted that "all small epsilons are alike"[25]. This
means that DP mechanisms with small values of � offer similar DP guarantees, and
that if a mechanism fails to be (�, 0) − �% for a small value of �, then this is not
necessarily alarming, as the mechanism may be (2�, 0)-DP for example

2. If � is large, then this does not mean that we have bad privacy protection for every
pair of adjacent databases � and �′. A large value of � simply means that there
exists at least one pair of adjacent databases and an output M, for which the ratio
of the probabilities of observing " conditioned on the different databases is large.
However, this output " may be very unlikely to occur (this is instead addressed
by (�, �) differential privacy), the databases � and �′ may be unlikely to appear
in the real world, or the adversary may not have the right auxiliary information
to recognize the revealing output ". Thus, this means that a large � can cause
anything from a small and meaningless privacy risk to a complete revelation of the
entire database. In other words, a large epsilon is large in its own way [25].

When it comes to the meaning of �, we can also say that � is an individual’s limit of how
much privacy they are ok with leaking. In fact, every time an individual participates in
a differential privacy calculation, then this calculation reduces the individual’s privacy
budget by �. Hence, if the individual participates in multiple such calculations, then
the privacy loss accumulates. This means that although a single differentially private
operation may not reveal anything about the individual, multiple such operations may
be combined together to infer information about the individual. Consequently, when
designing systems that rely on differential privacy, we have to be very careful so as to
track the cumulative privacy loss of the differentially private mechanism and not just the
loss in 1 DP operation.

2.2. DIFFERENTIAL PRIVACY 11

Output

M(D) M(D’)

(a) Low �, high privacy, high
noise (randomized)

Output

M(D) M(D’)

(b) High �, low privacy, low
noise (randomized)

Output

M(D) M(D’)

(c) � = ∞, no privacy, no
noise (deterministic)

Figure 2.2.1: PDFs of the output ofℳ in � and �′ for different �

Parameter �

The � parameter of differential privacy is the probability of information accidentally
being leaked. (�, �)-Differential Privacy is a relaxation of (�, 0)-Differential Privacy which
generally enables us to achieve lower values of � if we allow � to be positive instead of 0.
Typically, we are interested in values of � that are less than the inverse of any polynomial
in the size of the database. In fact, values of � that are in the order of 1/# (where # is the
size of the database) are very dangerous, as they permit privacy by releasing the complete
data of a small number of database participants [25].

At this point, it is worth mentioning that even for a very small �, there is a distinction
between (�, 0) differential privacy and (�, �) differential privacy. The main difference is
that (�, 0)-DP ensures that the output of a DP-mechanism is almost equally likely to be
observed in every neighboring database. On the other hand, (�, �)-DP says that for every
pair of adjacent databases� and�′, it is extremely unlikely that an outputℳ(�) is much
more likely to occur in database � than on �′. However, it is possible to find an output
ξ ∼ "(�)which is much more likely to occur on � than on �′.

In other words, if we define the quantity

ℒ(ξ)ℳ(�)| |ℳ(�′) = ln

(
%A["(�) = ξ]
%A["(�′) = ξ]

)
(2.2.1)

and refer to it as the privacy loss incurred by observing ξ, then in (�, 0)-DP this quantity
is always bounded by �, but in (�, �)-DP this quantity is bounded by � with probability
at least 1 − �. So, there may be cases in (�, �)-DP where the privacy loss is not bounded
by �.

Utility-Privacy tradeoff

As we briefly mentioned, the goals of attaining privacy and utility are unfortunately
not aligned. In fact, there is a significant trade-off between accuracy and privacy, which is
one of the main reasons that hinder the universal adoption of differential privacy. Hence,
although lower values of � promise better privacy guarantees, they have a significant
impact on utility. In fact, in order to attain low values of �, we generally need to add a
lot of noise to our DP mechanism, thus significantly reducing accuracy. However, a lot of
research in the area of Differential Privacy is done to mitigate this trade-off as much as
possible.

2.2.2 Properties

Despite the trade-off between accuracy and privacy, Differential Privacy offers several
benefits when used as a privacy model, some of which are:

2.2. DIFFERENTIAL PRIVACY 12

• Worst case guarantees
Differential privacy offers a worst case rather than an average-case guarantee for
privacy. Thismeans that it protects privacy even in unusual scenarios and databases
that are not likely to appear in real life, essentially protecting privacy even when
dealing with outliers [23].

• Quantification of privacy loss
One of the merits of differential privacy is that it gives us a mathematical frame-
work to quantify privacy risk. This framework can be used to compare privacy
loss inflicted by different privacy-preserving algorithms. Then, given 2 different
algorithms that offer the same privacy guarantees we can ask, which has a better
accuracy? In particular, the fact that an algorithm has certain privacy guarantees
with a poor accuracy does not mean that all algorithms with the same privacy
guarantees also have the same accuracy. In many cases, if we carefully design a
privacy-preserving algorithm we can achieve better accuracy for the same level of
privacy [23].

• Building complex algorithms from primitives: One important property stemming
from the quantitative and cumulative nature of differential privacy, is that we can
analyze the privacy loss of complex differential private algorithms by examining the
privacy guarantees of their building blocks. By the same token, we can synthesize
complex DP algorithms by combining simpler algorithms and primitives together
[23].

2.2.3 Enforcing Differential Privacy

Let’s assume that we have a function 5 : U → R# that takes a dataset � and outputs
a vector 5 (�) ∈ R# . Then, the ℓ? sensitivity of 5 is defined as:

Definition 2.4 (ℓ?-sensitivity). The ℓ?−sensitivity of a function 5 :U → R# is:

Δ? 5 = max
adj(D,D’)

‖ 5 (�) − 5 (�′)‖?

Since 5 describes a deterministic algorithmic processing of � (where the output is al-
ways the same given the same input�), then by definition this process is not differentially
private. Hence, tomake this process differentially private, we have to apply a randomized
mechanism on the output of 5 , essentially introducing some amount of noise.

Although there is a wide range of randomized mechanisms we can use, we will focus
on the Laplacian and the Gaussian mechanisms, as they are the most widely used in the
problem setting we are interested in. Hence, before we proceed, we will first describe
the probability distributions of the Gaussian and the Laplacian distribution, as shown in
definitions (2.5) and (2.6):

Definition 2.5 (Gaussian Distribution) A random variable - ∼ N(�, �2) that follows the Gaus-
sian distribution has probability density function:

5-(G |�, �) =
1

�
√

2�
4
−

1
2

(G − �
�

) 2

, G ∈ R

where �[-] = � and var(-) = �2.

Definition 2.6 (Laplacian Distribution) A random variable - ∼ Laplace(�, 1) that follows the
Laplacian distribution has probability density function:

5-(G |�, �) =
1
21 4

−
|G − �|
1 , G ∈ R

2.2. DIFFERENTIAL PRIVACY 13

where �[-] = � and var(-) = 212.

Given those probability distributions, we can add carefully calibrated noise to the output
of the deterministic function 5 in order to make 5 differentially private. In particular,
by introducing Laplacian noise to the output of 5 , we can achieve differential privacy
through the Laplacian Mechanism, whereas by adding Gaussian noise, we can achieve
differential privacy through the Gaussian Mechanism. Those 2 mechanisms are defined
below:

Definition 2.7 (The Gaussian Mechanism). Given any function 5 : � → R: , the gaussian
mechanism is defined as:

"�(G, 5 (·)) = 5 (G) + (.1 , . . . , .:)
where .8 are i.i.d. random variables drawn fromN(0, �2)

Definition 2.8 (The Laplace Mechanism). Given any function 5 : � → R: , the laplacian
mechanism is defined as [25]:

"!(G, 5 (·), �) = 5 (G) + (.1 , . . . , .:)

where .8 are i.i.d. random variables drawn from Laplace(Δ1 5 /�)

Since we have defined the Laplace and the Gaussian mechanisms, we can now reason
about the DP guarantees that each one of those mechanisms achieve:

Theorem 2.1 The Laplace Mechanism maintains (�, 0)-differential privacy.

Theorem 2.2 Let � ∈ (0, 1) be arbitrary. For 22 > 2 ln(1.25/�), the Gaussian Mechanism with
parameter � ≥ 2Δ2 5 /� is (�, �)-differentially private.

Apart from Dwork’s [25] Gaussian mechanism we mentioned above, there is also the
Optimal Gaussian Mechanism described in [56] which achieves (�, �)-DP by introducing
the least amount of Gaussian noise. The Optimal Gaussian Mechanism is described
below:

Theorem 2.3 (Optimal Gaussian mechanism (Opt-GM) for (�, �)-DP): The optimal Gaussian
mechanism for (�, �)-differential privacy adds Gaussian noise with standard deviation � to each
dimension of a query with ;2-sensitivity Δ, for � given by

� =

(
ξ +

√
ξ2 + �

)
· Δ

�
√

2
(2.2.2)

where ξ is the solution of the equation

erfc(ξ) − 4�erfc
(√

ξ2 + �
)
= 2� (2.2.3)

and erfc(·) is the complementary error function.

As a result, both the Gaussian and the Laplacian mechanisms introduce some level
of noise into the output of 5 to make it differentially private. The amount of noise that
should be added depends on ℓ1 and ℓ2 sensitivity of 5 and also on the level of privacy we
want to achieve; generally, for the same sensitivity, more noise leads to better privacy.

2.2. DIFFERENTIAL PRIVACY 14

2.2.4 Closure under Post-processing

Probably, one of themost important properties of Differential Privacy is the closure under
post-processing as described in [25]:

Theorem 2.4 Letℳ : U → ℛ be a randomized algorithm that is (�, �)−deferentially private.
Let 5 : ' → '′ be an arbitrary randomized mapping. Then 5 ◦ ℳ is also (�, �) deferentially
private.

This theorem indicates that differential private databases are immune to post-processing.
This means that if an adversary is given the output of a differentially private mechanism,
then there is no way for him to make this output "less" differentially private, no matter
what information or other resources he has at his disposal. This property is very important
in our application as we want to train a differentially private generative model and then
realese this model as an artificial data generator. Hence, if we manage to train our model
with meaningful DP guarantees, then we can release it publicly, and no adversary will be
able to make it less differentially private.

2.2.5 Composition

Another important set of primitives has to do with the composition of differentially
privatemechanisms. The use of composition theorems in differential privacy ismotivated
by several factors [24]:

1. Composition can be used to design and analyze complex DP mechanisms from
simpler ones.

2. Composition can account for the repeated use of the same DP mechanism on the
same database, in which case we want to make sure that the DP guarantees we get
don’t degrade much.

3. Composition can model the combination of different privacy mechanisms. For
instance, if Bob’s data were to be used by many DP mechanisms over time, we
would want to to reason about the overall DP spending that those releases have
had.

Given all these, we will focus on k-fold adaptive composition, where the data of a specific
user (e.g. Bob) are used in k different differentially private data releases and we want
to quantify the overall privacy budget spent. For this reason, we may use the weak
composition theorem [24]:

Theorem 2.5 The family of (�, �)-differentially private mechanisms satisfies (:�, :�)-differential
privacy under k-fold adaptive composition.

In other words, if Bob’s data were included in k data releases over time, then the theorem
indicates that we need to have � and � smaller than 1/: in order to have meaningful
DP guarantees over Bob’s data. In fact, requiring � to be that small is not a problem,
as � is usually negligible, but requiring � to be that small has a significant impact on
utility. However, if we are able to tolerate a negligible loss in �, we may use the strong
composition theorem to obtain better � guarantees [24] :

Theorem 2.6 For every � > 0, �, �′ > 0, and : ∈ N,the class of (�, �)-differentially private
mechanisms is (�′, :� + �′)-differentially private under :-fold adaptive composition for

�′ =
√

2: ln(1/�′)� + : · �(4� − 1)

This theorem roughly gives ($(
√
:�), $(:�))-DP guarantees for : compositions of the

original DP mechanism [57].

2.2. DIFFERENTIAL PRIVACY 15

2.2.6 Subsampling

Another important property of Differential Privacy that we will use throughout our
thesis is the closure under the subsampling operation. In particular, we want to reason
about what happens when an (�, �)- differentially private mechanism is applied on a
uniform random sample (URS) of the original data.

First of all, we are going to define the subsampling procedure which creates a URS of
a number of data points [57]:

Definition 2.9 Given a dataset- of# points, the procedure "subsample" selects a random sample
from the uniform distribution over all subsets of - of size <. The ratio @ := </# is defined as the
sampling parameter of the subsample procedure.

Given this definition, we can now reason about the privacy guarantees of the subsampled
mechanism [57]:

Lemma 2.1 (Privacy Amplification under Subsampling) If ℳ is (�, �) − �%, then ℳ′ that
appliesℳ ◦ subsample obeys (�′, �′)−DP with �′ = log(1 + �(4� − 1))

This lemma describes a privacy amplification under subsampling and roughly states that
subsamplingwith probability @ < 1 amplifies an (�, �)-DP algorithm to an ($(@�), @�)-DP
algorithm for a sufficiently small choice of � [57].

2.2.7 Moments accountant

In most cases, when DP is used in a deep learning setting, we can combine the privacy
amplification lemma (2.1) with the strong composition theorem (2.6) in order to obtain DP
guarantees for multiple training rounds of our model. However, as suggested in [8], this
approach does not take into account the mechanics of the underlying noise distribution
that is used during training, effectively providingweaker guarantees thanwhat one could
achieve.

Hence, Abadi et. al [8] proposed the use of a special data structure that is called
Moments Accountant. This data structure keeps track of the cumulative privacy loss
undermultiple runs of a subsampled gaussianDPmechanism and is capable of providing
tighter privacy guarantees than the strong composition theorem (2.6). In particular, the
Moments Accountant keeps track of a bound on the moments of the random variable that
determines the privacy loss. By doing that, the moments accountant offers ($(@�

√
)), �)-

DP guarantees over) runs of a (�, �) gaussian mechanism that samples the original data
with sampling probability @ at each step [8].

The Moments Accountant has been extensively used to keep track of privacy loss
during Deep Learning and Federated Learning. However, improvements to the original
moments accountant has alsobeen suggested, suchas theoneproposedbyYu-XiangWang
et. al. [57] which utilizes Renyi differential privacy to provide tight privacy guarantees
over repeated applications of a subsampled Gaussian mechanism.

Chapter 3

Federated Learning

3.1 Introduction

Federated Learning is a machine learning scenario where multiple clients collab-
oratively train a machine learning model under the orchestration of a central server-
coordinator. In Federated Learning, each client actively participates in the training pro-
cess, without sharing its private data with any other entity. This property of Federated
Learning guarantees that the data is kept decentralized and becomes crucial in mitigating
privacy risks associated with training, especially if we compare Federated Learning to
centralized ML pipelines. Additionally, due to the burgeoning IoT and distributed appli-
cations, there has been a lot of theoretical and practical research on Federated Learning,
which has made FL a particularly niche research area over the past years [33].

The term federated learning was first proposed in 2016 by McMahan et al. [42]: "We
term our approach Federated Learning, since the learning task is soled by a loose federation of
participating devices (which we refer to as clients) which are coordinated by a central server".
However, given that the original definition of FL focuses primarily on mobile devices and
edge computing, there was a need to extend this definition to other settings as well, such
as the setting where a relatively small number of more reliable clients (e.g. hospitals-
organizations) collaborate to jointly train an ML model. According to the terminology
introduced by Kairouz et al. [33], the FL scenario where mobile devices are involved is
called cross-device FL, whereas the FL setting where organizations or larger entities are
involved is called cross-silo FL. Hence, by trying to generalize the original definition of
FL to include both of those settings, Kairouz et al. [33] proposed general definition:

Definition 3.1 Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a central server or
service provider. Each client’s raw data is stored locally and not exchanged or transferred; instead,
focused updates intended for immediate aggregation are used to achieve the learning objective [33].

Federated learning has countless applications and it has started to gain a lot of ground
and scale, especially in the last decade. For instance, cross-device FL is extensively used
by Google in the Gboard mobile keyboard and in Android messages. On the other hand,
cross-silo applications of FL include finance risk predictions, pharmaceutical discovery,
electronic health records mining, medical data segmentation and smart manufacturing.
Nevertheless, Federated Learning posesmany inherent challenges, such as the prevalence
of unbalanced, non-IID datasets and the need to coordinate a large number of unreliable
devices with limited bandwidth, particularly in cross-device FL settings[33].

16

3.2. FEDERATED TRAINING 17

3.1.1 Cross-device Federated Learning

In this variant of FL, our goal is to train a model using a very large number of mobile
or IoT devices. Each client has its own training examples which never leave the client
and no client can read the data of other clients. The whole process is orchestrated by a
centralized server which never sees raw data [33].

Cross-device FL has its own sets of challenges. First of all, it relies on a vast number
of clients (up to 1010) which are not always available. The clients also tend to use slow
communication networks (e.g. Wi-Fi) and are highly unreliable, as 5% or more of the
clients participating to any given round are expected to fail due low levels of battery,
weak networks or idleness [33].

3.1.2 Cross-Silo Federated Learning

The cross-silo setting refers to the case where a number of companies or organizations
attempt to train a model on their collective data, but cannot do so by sharing their data
directly. This restriction may be imposed, by legal constraints, by the need to maintain
confidentiality, or even by the inability of a company to centralize its data from different
geographical locations. Cross-Silo Federated settings typically involve the participation of
2− 100 clients. However, those clients are inherently much more reliable and trustworthy
than the clients in cross-device FL [33].

In Cross-silo FL, the data partitioning among clients varies. In particular, there 2 types
of partitioning: Partitioning by examples and partitioning by features. In the first case,
every client’s dataset has the same features (i.e. same columns) but different samples.
In the second case, different clients may have different features for the same example.
This, for instance, happens when we have different businesses with an overlapping set of
customers, but where each one has different information on a particular customer [33].

Those 2 partitioning scenarios require very different training architectures and algo-
rithms. For instance, in the case of partitioning by features, a centralized server may be
not be involved at all in the training process. Instead, clients may exchange intermediate
results with one another, while using techniques such as SecureMulti-party Computation
or Homomorphic Encryption to limit the amount of information one client knows about
the other through training [33].

However, in our work, we will solely address the case of partitioning by examples.
This setting is used in caseswhere a company cannot centralize its data due to various con-
straints, or when organizations with similar goals want to collectively train and improve
their models. For example, different banks may want to collaboratively train classifiers
and models for fraud detections, hospitals can collectively build better diagnostic models
etc [33].

3.2 Federated Training

In a usual federated learning scenario, the training process is orchestrated by a cen-
tralized server which repeats the following steps until the training is stopped [33]:

1. Client selection: The server randomly samples a number of clients from a list of
potential clients. The selected clients, especially in cross-device FL, have to meet
certain requirements imposed by the engineerswho design the FL application. Such
requirements might for instance be the availability of a client, the existence of a wi-fi
connection, e.t.c.

2. Broadcast: The chosen clients download the currentmodel weights and the training
specification from the server.

3.2. FEDERATED TRAINING 18

3. Client Computation: Every chosen client computes a local weight update by per-
forming a training step on its own data. In most cases, when we are dealing
with neural network models, the clients use back-propagation in conjunction with
Stochastic Gradient Descent to calculate the new weights.

4. Aggregation: The server collects and aggregates the local updates of the selected
clients. In the case of SGD, the server may perform a federated averaging of the
weights of the clients. Also, the step of aggregation is particularly important, as
it is the stage where various techniques can be combined with FL, such as secure
aggregation for increased privacy and noise addition in conjunction with gradient
clipping for differential privacy.

5. Model update: The server updates the central model based on the aggregates of
the updates of the participating clients.

Although the algorithmic process we described is very general and may be applied to
arbitrary ML models, for the purpose of this thesis, we will solely focus on the training
of Neural Networks using Federated Learning.

Neural Networks are a set of extremely powerful models which try to learn patterns
from data, with a structure that imitates that of the human brain. Neural networks have
been the catalysts of theAI revolution, withwide-range applications, in data classification,
computer vision, image generation, natural language understanding and many other
areas.

Generally speaking, a Neural Network can be viewed as a parametric function 5� that
takes an input x ∈ R= and produces an output y ∈ R< after a series of computations.
The goal of training a neural network is to approximate an unknown function 6 based
on the training data we have and the problem we are trying to solve. For instance, if we
want to tell whether an image x depicts a cat or a a dog, then the function 6 we want
to approximate is an unknown function that takes as input an image and decides if the
image represents a cat or a dog. Then, since we don’t know this function 6, we want
to approximate it with a neural network through training examples. In order to train
a neural network, we need a cost function ;(θ, x) which measures how well our model
performs. Then, we evaluate this function for every sample (or batch of samples) of the
training set, andwe use gradient based optimization algorithms (e.g. SGD) in conjunction
with backpropagation in order to update the parameters θ of the neural network.

The process we described above, briefly describes how a neural network is trained
under a centralized setting (a thorough description would be out of the scope of this
thesis). If we now wanted to train a Neural Network under a federated setting, he most
common way to do that would be to use the Federated Averaging algorithm or FedAvg
[42]. This algorithm is an adaptation of local-update or parallel SGD where each client
executes a number of SGD update steps locally and then the local updates are averaged
in order for the server to calculate the new weights for the global model. This procedure
is shown in detail in Algorithm (1).

3.3. NON-IID DATA IN FEDERATED LEARNING 19

Algorithm 1: Federated Averaging
parameters: Total number of clients # , clients per round", total communication
rounds), local steps per round ,number of samples in k-th client =:

Server executes:
Initialize model Θ0

foreach round C ∈ {1, 2, . . . ,)} do
�C ← (sample of M distinct users)
foreach client : ∈ �C do

ΘC+1
:
← ClientUpdate(:,ΘC)

end
ΘC+1 =

∑
:∈�C

=:
"
ΘC+1
:

end

Function ClientTrain(:,Θ0):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, loss function
;(Θ; G), server weights Θ0, local epoch �

foreach local epoch 8 from 1 to � do
Θ8 ← Θ0

8
ℬ ← (split data of the :−th client into batches of size �)
foreach 1 ∈ ℬ8 do

Θ← Θ − �∇;(Θ; 1)
end

end
return Θ;

End Function

3.3 Non-IID data in Federated Learning

One of the challenges of FL is that in most cases, the federated datasets are non-IID
(i.e. they are not independent and identically distributed). In particular, when we refer
to non-IID data in an FL setting, we generally mean that there are differences between
data distribution D8 of client 8 versus data distribution D9 of client 9. In most cases,
this property stems from the fact that each client usually corresponds to a different user,
a different geographic location or a different time window, which influences the data
distributions different clients may have.

Generally, there are a lot of ways that client data can deviate from being IID. This may
happen due to differences in feature distributions, label distributions, or differences in
which features or labels are available in each client [33].

In real world FL scenarios, a combination of all those may appear and depending of
type of "non-IIDness", different strategies may need to be employed in order to improve
the results of FL [33].

3.4 Privacy in Federated Learning

Federated learning is a complexmachine learning scenario that involvesmanydifferent
actors with radically different objectives. Ideally, in such scenarios, we would want every
actor to have access to only the bare minimum amount of information that they need in
order to fulfill their role. In addition to that, an ideal system would also enable its users

3.4. PRIVACY IN FEDERATED LEARNING 20

to clearly and accurately know what kind of information might be revealed to others by
participating in the system [33].

Designing a system that meets all of those requirements is a really challenging task on
its own. However, FL has a range of desirable properties that favor the establishment of
a useful and privacy-aware ML system. In particular, one of the inherent advantages of
FL is that it provides a layer of privacy by not allowing the raw user data leave the user’s
device. Instead, only model updates are sent to the central server (e.g. gradients) which
are strictly related to the ML task and typically convey significantly less information than
the raw data. Also, the individual model updates only need to be stored to the server
temporarily and not permanently, thus enhancing privacy even more [33].

Although these characteristics of FL do protect privacy to some extent, they don’t offer
rigorous privacy protection guarantees. In fact, there are instances where by knowing
the model and the gradient updates from a client, the server can reconstruct training
examples of that particular client, essentially inferring some portion of the raw data.
Hence, in order to alleviate this problem, many techniques has been proposed, but we
will mostly focus on Differential Privacy and Multi-Party Communication [33].

3.4.1 Actors & Threat models

Aswediscussed above, anFL scenario involves the interactionof different stakeholders
with disparate goals. Hence, in order to characterize an FL systemwith respect to privacy,
we normally have to define the threat model for the different entities that are involved
and then offer privacy guarantees for each of those entities. For instance, we should
differentiate the view of the server administrator from the view of a data analyst that
uses the learned model, as even if we build a system that offers strong privacy guarantees
against a malicious data analyst, then the same system may offer no guarantees against
a malicious server. Hence, in most cases, in order to offer privacy guarantees to all the
different actors that interact with an FL system, wemay have to combine different privacy
and security techniques together [33]. However, before we proceed, we will first mention
some of threat models an FL system may have to fortify against:

• Client access: Someone who has access to a client device is assumed to be able to
inspect all messages received from the server, including snapshots of themodel that
the server sends to the client during training. At the same time, they may also be
able to tamper with the training process by interfering with the local updates sent
to the server. However, if they are honest-but-curious, they may just observe the
message exchanges, without interfering with the training process.

• Server access: Someone who has access to the server device is assumed to be able to
inspect all messages (e.g. gradient updates) sent to the server during all rounds of
FL and can therefore tamper with the training process. However, if they are honest-
but-curious, theymay just observe the message exchanges, without interfering with
the training process.

• Intermediate Model Access: A data analyst or data engineer may have access to mul-
tiple states of the model from training settings with potentially different hyperpa-
rameters.

• Deployed Model Access: In cross-device FL, the model resulting from training may be
deployed to hundreds of millions devices. Hence, if a device is compromised, then
a malicious actor (e.g. hacker) may gain black-box or white-box access to the model,
depending on the level of access they have on the device.

In order to combat some of those problems, FL can be used in conjunction with
Differential Privacy and secure aggregation protocols.

3.4. PRIVACY IN FEDERATED LEARNING 21

3.4.2 Secure aggregation & SMPC

As we previously discussed, in a Federated Learning Setting, the centralized server-
coordinator acts as an aggregator of the local client updates. However, in many cases, the
server cannot be fully trusted. Hence, what we ideally want would be for the server to
compute a sum or average of the updates sent by the clients, but without having access to
the individual updates each client sent. This way, even if the server is compromised, the
malicious actor that has access to the server will only know the aggregates of the client
updates and not the individual updates of any particular client. This process is referred to
as secure aggregation and enables each client to submit a value (such as a vector or tensor)
so that the server learns nothing but an aggregate of the clients’ values.

There has been a lot of literature on ways of achieving secure aggregation, such as the
use of Secure Multi-Party Computation protocols [33]. In particular, secure multi-party
computation (SMPC) is a sub-field of cryptography that enables distinct parties to jointly
compute a function using their private inputs. Only the output of that function is made
public and the parties don’t learn anything more than their own inputs except whatever
they can learn from the output of the function [26]. This field was first introduced in
1980’s by Yao and thanks to various theoretical and engineering breakthroughs, it has led
to technologies that were adopted by the industry [33].

Generally, cryptographic approaches such as the ones used for Multi-Party Compu-
tation rely on operations done in finite fields (i.e. integers modulo a prime number ?),
which oftenmakes it difficult to represent real numbers. Hence, when such cryptographic
approaches are combined with ML, normalization and careful quantization is generally
used in the training process so as to avoid arithmetic overflows and underflows [33].

For several years, it has been known that any function can be securely computed in
the presence of malicious adversaries. However, while generic solutions do exist, their
real-world performance hinders their adoption in most practical scenarios. Hence, a lot
of research has been devoted to designing MPC protocols for custom ML applications,
such as linear regression, logistic regression and neural network training and inference.
This works are generally concerned with the cross-silo FL setting, where a small number
of participants are involved. In fact, the adaptation of SMPC protocols to a cross-device
FL setting with millions of participants is a daunting task, due to the high computation
and communication overhead [33].

One notable work that employs SMPC to achieve secure aggregation within the con-
text of Federated Learning was done by Bonawitz et al. [16]. This work proposes an
SMPC protocol that can securely aggregate <-dimensional vectors from = users with a
computational cost of $(=2 + <=) and a communication cost of $(= + <) on the user-
side. For instance, the authors indicate that a population of = = 214 users can securely
aggregate 224-dimensional vectors using a 1.98 expansion in communication, indicating
a relatively low communication overhead, even for vectors and client pools. In fact, this
work has also been integrated into Tensorflow Federated, which facilitates the usage of
secure aggregation in FL settings.

Another very important work in the area of Secure Multi-Party Computation is the
SPDZ framework introduced by Damgard et al. [21]. This work proposes a general SMPC
protocol that can be used to securely compute a function over any finite field F:? . The pro-
tocol consists of 2 phases: a preprocessing phase and an online phase. The preprocessing
phase is independent of the function to be computed and independent of the inputs of the
function. In particular, the preprocessing phase has a complexity of $(=2/B) operations,
where = is the number of clients and B is a parameter that increases with the security pa-
rameter of the cryptosystem. On the other hand, the online phase is much more efficient
than the preprocessing phase, featuring a computation and communication complexity
linear in =, whereas previous works featured a complexity quadratic in =. Additionally,

3.4. PRIVACY IN FEDERATED LEARNING 22

several works have been devoted to applying the SPDZ framework to an ML setting, such
as the one by Chen et al. [17], where the authors use the SPDZ framework to perform a
linear and a logistic regression using mini-batch SGD.

3.4.3 Differential Privacy

As we mentioned in the previous chapter, Differential Privacy is the state-of-the art
definition of privacy that enables limiting and quantifying the privacy risks associated
with an individual’s participation in data disclosures. In the context of FL, since we are
interested in user-level privacy, we will always use the definition (2.3) of user-adjacent
datasets to dictate the type of privacy we are aiming for. In particular, in an FL setting we
want to provide privacy guarantees forwhole clients, essentially protecting all the training
examples associatedwith a particular client and not just 1 training example (whichwould
be the case in example-level privacy).

Central Differential Privacy

Over the past years, there has been a lot of work in the intersection of FL with
Differential Privacy. In a non-FL setting, in order to enforce DP, the common assumption
is that the raw data is collected centrally by a trusted authority (i.e. database curator) who
is responsible for applying the necessary noise perturbations in order to achieve privacy.
By the same token, this centralized differential privacy model can also be applied to an
FL setting.

Inmany cases, the assumptionwemake in an FL setting is that there is a trusted central
server that orchestrates the training process. This server, apart from aggregating the
model updates from clients, is also responsible for applying the necessaryDPmechanisms
in order to guarantee the users’ privacy. At the same time, the server also ensures that
only the privatized versions of the trained model are released to other parties (e.g. model
engineers, data analysts) [33].

Generally, there have been a lot works that train deep learning models by combin-
ing central DP with FL, such as the training of federated DP RNN models in [43] and
the training of Federated DP GANs in [13]. In those works and similar ones, the main
techniques used to achieve differential privacy is a combination of clipping the weight
updates performed by clients and introducing Gaussian noise during the federated ag-
gregation phase of training. Then, the privacy guarantees can be measured by using the
Moments Accountant data structure we mentioned in the previous chapter. For example,
Algorithm (2) which is based on [13] and [43] shows how we can use federated averaging
in conjunction with central DP in order to train a neural network in a federated setting.

3.4. PRIVACY IN FEDERATED LEARNING 23

Algorithm 2: Federated DP Averaging
parameters: Total number of clients # , clients per round ", total
communication rounds), local steps per round ,round participation fraction
@, clipping parameters (, noise scale I

Server executes:
Initialize model Θ0, moments accountantℳ

�← I(

@#
ℳ ← �=8C80;8I4"><4=CB�22>D=C0=C
foreach round C ∈ {1, 2, . . . ,)} do

�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← ClientUpdate(:,ΘC)

end

ΘC+1 = ΘC + 1
@#

∑
:∈�C Δ

C+1
:
+N(0, ��2)

ℳ .compose_subsampled_mechanism(I, @)
end
printℳ.get_epsilon(�)

Function ClientTrain(:,Θ0):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, loss function
;(Θ; G), server weights Θ0, local epoch �

Θ← Θ0

ℬ ← (split data of the :−th client into batches of size �)
foreach 1 ∈ ℬ8 do

Θ← Θ − �∇;(Θ; 1)
end
Δ: = Θ − Θ0;

Δ: = Δ: ·min

(
1, (

‖Δ: ‖

)
//Gradient Clipping

return Δ:

End Function

Local Differential Privacy

Although Central Differential Privacy may sometimes be sufficient, in many real-
world applications, we may want to curb the need for a trusted third party (i.e. server)
in a differentially private FL setting, as the existence of such party may be a rather strong
assumption to make. For this reason, there exists the model of Local differential privacy
(LDP), where the clients apply differentially private transformation to their data prior to
sharing the model updates with the server. LDP has been used in a federated setting
to train a spam classifier by Snap and has also been used to gather statistics across large
user groups by Google, Apple and Microsoft. Unfortunately, maintaining privacy under
LDP requires the participation of a much larger number of clients than the centralized
DP setting. At the same time, pure LDP makes it very difficult to train a model while
also maintaining utility. For this reason, hybrid methods has also been proposed, such as
Distributed Differential Privacy and Hybrid Differential Privacy [33].

3.4. PRIVACY IN FEDERATED LEARNING 24

Distributed Differential Privacy

Distributed Differential Privacy offers some of the utility benefits of Central DP but
without the assumption of a trustworthy central server. In Distributed DP, the clients
send a minimal and encoded version of their updates to a secure computation function,
whose output is made available to the central server. However, by the time the server
gains access to the output of the secure function, this output already satisfies differential
privacy guarantees. This way, the server has access solely to a noisy aggregate of the client
updates and not on the individual updates themselves. However, Distributed DP does
require some rather strong assumptions, such as the availability of an SMPC mechanism
to perform the secure computation [33].

One of the methods we can use to achieve Distributed DP is secure aggregation. As
we mentioned above, secure aggregation ensures that the central server obtains only
the aggregated result and not the individual client updates or any other intermediate
parameter that may be used to reveal information about a client. Also, in that setting,
each client can introduce a moderate amount of noise into their updates so that the
aggregated results obeys certain DP guarantees. In fact, if the noise added by each client
is calibrated carefully, then both privacy and utility will reach similar levels as in Central
DP, but with the added benefit that we make no assumptions about the existence of a
trusted server [33].

Comparison of privacy models

Based on the way Central and Local Differential Privacy work, and taking into con-
sideration that for each one of those we can enforce user-level DP or record-level DP, we
can identify the following privacy models [60]:

• ULDP: (user-level privacy protection with distributed pertubation). In ULDP, each
user 8 selects its own privacy parameters �8 and �8 and uses a local DPmechanism.8
, such that given 2 instances G8 and G′8 of user 8’s data (which are user neighboring),
then for any possible subset of outputs Y8 of .8 , it must hold that %(.8(G8) ∈ Y8) ≤
%(.8(G′8) ∈ Y8)4�8 + �8 . This privacy paradigm is the one that is used to achieve
user-level local differential privacy.

• ULCP: (user-level privacy protection with centralized pertubation). In ULDP, the
aggregator chooses privacy parameters � and � and applies a randomized mech-
anismℳ such that for any user 8, for any 2 instances of the user 8’s data (which
are user-neighboring) and for any possible subset of outputs � ofℳ, it must hold
that %(ℳ(G8) ∈ �) ≤ %(ℳ(G′8) ∈ �)4� + �. This privacy paradigm ensures user-level
central differential privacy and it is weaker than ULDP as it makes the assumption
of a trusted server-aggregator.

• RLDP(record-level privacy protection with distributed perturbation): This scenario
is the same as ULDP, but instead uses a different definition of adjacent datasets,
where the datasets G8 and G′

8
are said to be adjacent if they differ in exactly 1

record. The RLDP privacy paradigm enforces record-level local differential privacy.
However, this type of privacy is weaker than ULDP, as it protects the individual
rows of a user’s data and not all the data at once, as ULDP does.

• RLCP(record-level privacy protection with centralized perturbation): This privacy
paradigm is the same as ULCP, but uses the definition of record adjacent datasets
instead of user-adjacent datasets. Hence, in RLCP, the datasets G8 and G′8 are said to
be adjacent if they differ in exactly 1 record. The RLCP privacy paradigm enforces
record-level central differential privacy. However, this type of privacy is theweakest

3.4. PRIVACY IN FEDERATED LEARNING 25

of all, as it protects only individual rows of a client’s data and not the client’s whole
data at once, and at the same time, it assumes the existence of a trusted server which
performs the centralized pertubation.

Following [60], we performed a comparison of the privacy properties of ULDP, ULCP,
RLDP and RLCP as shown in Table (3.4.1). The comparison takes into account 3 factors:

1. Protection against Honest but Curious Aggregator. In this comparison dimension,
we want to examine if the privacy model assumes that the clients fully trust the
server to ensure Differential Privacy. In particular, we want to explore whether
the privacy model offers protection against an honest-but-curious aggregator, who
tries to learn information about the clients without interfering with the training
protocol1.

2. Protection against attacks after model publishing: This comparison dimension ex-
amines whether the different privacy paradigms protect privacywhen an adversary
has black-box or white-box access to the trained model. Generally, one of the main
benefits of Differential Privacy , is the fact that the output of a DPmechanism cannot
bemade less Differentially Private (Theorem 2.4). Hence, by training amodel under
DP and releasing it publicly, no adversary can reduce the DP level of the model.

3. Protections of a user’s entire dataset: This comparison dimension outlines the
difference between user-level differential privacy and the weaker record-level dif-
ferential privacy. In most FL scenarios, it makes more sense to enforce DP on a
user-level rather than on a record-level, as user-level DP protects all the data of a
particular user simultaneously, whereas record-level DP protects individual rows.
Hence, in FL scenarios where a particular client has many data points associated
with the same individual, it is much safer to use user-level DP. For instance, a hos-
pital may have many data points about a specific patient, or a mobile device may
have many training examples for its user, thus making the use of user-level DP
paramount.

Privacy Paradigm
Protects against

Honest but Curious
Aggregator

Protects against
attacks after model

publishing

Protects a user’s
entire dataset

at once

ULDP 3 3 3

ULCP 7 3 3

RLDP 3 3 7

RLCP 7 3 7

Table 3.4.1: Comparison of different FL privacy models

Throughout this work, we will only focus on ULDP and ULCP, as we want to enforce
user-level DP and not the weaker record-level DP. Hence, from now on, whenever we
refer to Central Differential Privacy, we will imply User-level Differential Privacy with
Centralized Perturbation (ULCP) and whenever we refer to Local Differential Privacy we
will imply User-level Differential Privacy with Distributed Perturbation (ULDP).

1We are not examining cases where aggregator interferes with the training protocol, as those cases are out
of the scope of this thesis.

Chapter 4

Towards Federating Variational
Autoencoders

In this chapter, we will first discuss the motivation behind federating generative mod-
els using differential privacy. Then we will focus on Variational Autoencoders as a class
of generative models andwewill discuss their widespread applications, their inner work-
ings and interesting variations. At the same time, as the core subject of our thesis, we
will analyze how we federated Variational Autoencoders using differential privacy and
we will also present the experimental setting we used and the results that came out from
our work.

4.1 Motivation

Over the past decade, generative models, such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs), have become a state-of-the-art research
area in Deep Learning. The reason for this is that they offer unique mechanisms for
understanding and analyzing the rapidly expanding class of unlabeled datasets [45]. In
particular, the main goal of generative models is to capture the probability distributions
of a set of data points so as to be able to generate synthetic data similar to the training
examples. Generative Models have been widely used in many areas, with applications
in computer vision, speech recognition and generation, natural language processing,
robotics and many others [45].

At the same time, although the era of information and ubiquitous computing has
produced immense volumes of data, there are still domains where the supply of data
is very limited. For example, in medical applications, when conducting a patient-level
analysis, each patient is usually treated as a single sample in the training process of
a model. Hence, since there are many different diseases and combinations of those
diseases, the number of patients in thewholeworld is inmost cases insufficient to produce
acceptable volumes of data. As a result, medical datasets are in many cases unsuitable
for directly training data-voracious models such as Neural Networks. Moreover, since
medical datasets contain very sensitive information, having direct access to those data
may be in many cases impossible due to serious privacy concerns [58].

Fortunately Differentially Private Federated Generative Models may be the answer to
both of those problems. By learning the underlying data distributions from small train-
ing datasets, generative models have been proven to be very efficient ways of generating
high-fidelity artificial data that can be used to enrich the original datasets. Hence, the
combination of Generative Models with Federated Learning, may enable multiple orga-
nizations (such as hospitals) to utilize their limited data so as to jointly train a common
Generative Model. Not only will this benefit the collaborating parties by providing them

26

4.1. MOTIVATION 27

with ways fo enriching their original datasets, but it may also benefit the entire research
community, by granting them access to an artificial generator of valuable but unforeseen
data. Consequently, training Generative Models through Federated Learning may pro-
vide a promising solution for the data-scarcity problem; Although each organizationmay
have limited amounts of data individually, the jointly trained GenerativeModel will learn
a common, underlying distribution that will be sampled to generate new, synthetic data
of quality similar to the real data.

The benefit of the federated settingwe described is that the participating organizations
won’t need to send their data elsewhere in order for the training to happen. Instead, they
will be actively involved in the whole process by training a model locally with their own
data and then sending the gradient updates to the server. Unfortunately, this doesn’t fully
resolve the problem of privacy, but that’s where Differential Privacy comes into play. The
combination of Federated Learning with Differential Privacy can offer rigorous privacy
guarantees to all participants by mathematically ensuring that everyone’s participation
in the model training changes very little the final result. This requirement which lies in
the core of Differential Privacy is essential to ensure that no significant information about
the data owners is leaked during training. Then, if the training process is done under DP
guarantees, the model that will be generated after training will also follow the same DP
guarantees. This way, the final generative model can be released to other parties or even
publiclywithout any privacy risk. At the same time, the synthetic datasets generated from
this process can be used to train a wide variety of models, can be analyzed to provide
valuable data-related insights, or can be utilized to securely enrich the clients’ private
datasets.

At the same time, a Differentially Private synthetic data generator can also be very
useful when tuning the hyperparameters of a federated model. If we want to train
a classifier on federated data, then in order to determine the hyperparameters of this
classifier, we generally need to run multiple training experiments, while studying the
effect that the different hyperparameters have on the accuracy of the classifier. However,
if those experiments are run directly on the real federated data, then themore experiments
we perform, the less private our process becomes. For instance, if a single experiment
of training the classifier on real data is (�, �)-differentially-private, then : runs of that
experiment are (:�, :�)-differentially-private. This means that there is a considerable
increase in the privacy budget for each run of the experiment, which may limit the
amount of experiments we can perform (e.g. data-owners may refuse to participate in
further experiments if their privacy budget exceeds a certain threshold). On the other
hand, if a synthetic DP dataset is used instead, this won’t be an issue. If we first train a
generative model on the real data using Differential Privacy and then generate a synthetic
dataset, then this dataset can be used in as many experiments as we want, without
incurring additional privacy losses, apart from the privacy loss occurred during training
the generative model. This means that if the generative model is (�, �)-differentially-
private, then the synthetic dataset will also be (�, �)-differentially-private (due to the post-
processing lemma of differential privacy) and then, no matter howmany experiments we
run on the synthetic dataset, the process will remain (�, �)-differentially-private. Hence,
we can run multiple experiments on the synthetic datasets without incurring additional
privacy losses, and then, after we have determined the best hyperparameters for the
classifier, we can train the classifier on the real data once.

In light of all these, federated generative models seem to have many advantages, and
that’s why we we chose to federate Variational Autoencoders for the purpose of this
thesis. Variational Autoencoders are becoming increasingly popular among the research
community both for their strong probabilistic foundation and their ability to produce
meaningful latent representations of data [12]. VAEs have been used in many different

4.2. RELATEDWORK 28

and exciting applications, such as for brain aging analysis [59], anomaly detection [10],
recommender systems [38] and even for molecular design [39]. At the same time, as seen
in the work done by Lei Xu et. al [36], Variational Autoencoders demonstrate very solid
results in centralized, tabular data synthesis, surpassing in most cases all other models,
such as GANs and PrivBN. Hence, all those factors make Variatitonal Autoencoders very
attractive candidates for performing Synthetic data generation from distributed datasets.

Last but not least, to our knowledge, Variational Autoencoders have not been used
for differentially private data synthesis from distributed datasets before. This makes the
combination of FL, DP and Variational Autoencoders a particularly interesting research
topic with various open questions that are worthy of exploration. For instance, one such
question is whether we can federate only one part of the Variational Autoencoder (i.e. the
decoder), while keeping the other part of the VAE private (i.e the encoder). Such question
arises from the fact that in order to perform synthetic data generation, we just need a
trained decoder: the encoder is not used in data synthesis. Hence, if we allow the clients
to keep their encoders private and share only their decoders, then we may achieve better
DP guarantees and better quality of synthetic data than sharing both the encoders and
the decoders. The reason for this is that the more information the clients keep private,
the better privacy guarantees they can get, and at the same time, a private encoder for
each client may adapt much better to the nuances of a client’s own dataset than a global
encoder that will be used by all clients.

4.2 Related Work

Our work combines three key components: generative models, federated learning
and differential privacy. Most previous works in the area focus on at most 2 of those
3 components. For instance, there has been a lot of work on training generative mod-
els under Differential Privacy, but on centralized rather than on federated settings (e.g.
Torkzadehmahani et al. [52], Xie et al. [58] and Takahashi et al. [51]). Also, there have
been some works that focus on generative models for decentralized data problems but
without any privacy guarantees. For instance, Hardy et al. [31] trained a GAN using
decentralized data, albeit with no privacy protections.

When it comes to VAEs, there has been one work that combines VAEs with differential
privacy using semi-distributed data [9]. However, this work uses a very different setting
than ours, as it clusters a centralized dataset and then merges the clusters using VAEs,
while offering record-level DP guarantees rather than the stronger user-level guarantees
we are interested in.

Clearly, a previous work that is very close to ours is the one done by McMahan et
al. [13], where the authors train a GAN on a federated setting, while ensuring user-level
differential privacy. The federated setting the authors use is very similar to ours, but
their goal when using a federated GAN is very different: They are trying to detect bugs
in clients, whereas in our case, we are trying to create a DP data synthesizer that will
generate data similar to the original data of the clients. Hence, in our case, we also have
to synthesize the labels of the different data points, whereas in [13] this is not needed.
Last but not least, in our case, we use a different way of measuring the quality of the
generated data, which involves the Student Network (will be discussed in detail in a next
section). However, the way the authors federated GANs inspired our work, and thus we
will briefly describe their approach in section (4.2.1). Additionally, in next sections, we
will also attempt to compare the Federated GANs proposed by the authors against our
Federated VAEs in a data-synthesis setting.

4.2. RELATEDWORK 29

4.2.1 Generative Adversarial Networks

GANs (Generative Adversarial Networks) are considered state-of-the-art generative
models nowadays, with immense applications in generating image,text, sound and even
videos (deepfakes). In fact, in a seminar of 2016, Yann LeCun, one of the fathers of AI,
has called GANs "the coolest idea in deep learning in the last 20 years".

GANs were proposed by Ian Goodfellow et al. [29] and have their theoretical founda-
tion on Game Theory. In particular, the fundamental principle of GANs is a two player
minimax game between a neural network called Generator and a neural network called
Discriminator. The generator attempts to fool the discriminator by generating realistic
synthetic images, while the discriminator tries to distinguish real images from fake ones,
as shown in Figure (4.2.1).

As the training progresses, the generator gradually becomes better and better at creat-
ing realistic images, while the discriminator becomes better at distinguishing them from
real ones. In theory, this minimax game reaches equilibrium when the discriminator
cannot distinguish real from fake images. Hence, if the discriminator is adept at dis-
tinguishing real from fake images and the generator manages to fool the discriminator,
then this means that the images generated by the generator are very realistic, leading
to a high-quality generative model. Then, after training a GAN, we can then feed the
generator with random noise so as to generate new images (or data) that are similar to
the training set.

Figure 4.2.1: Generative Adversarial Network

4.2.2 Federated DP GANs

Generally GANs, just like Neural Networks, are usually trained using centralized
datasets. However, as we previously mentioned, GANs were also adapted to a Differen-
tially Private Federated setting by Augenstein et al. [13], as shown in Algorithm (3). In
their approach, the authors federated only the discriminator of GANs and kept a global
generator that could be trained centrally using the federated discriminator. This approach
is based on the fact that in GANs, only the discriminator network needs access to real
data for training. In particular, training the discriminator requires fake images and real
images, and the loss function is determined by how well the discriminator distinguishes
real from fake images. On the other hand, training the generator requires supplying
random noise into the generator in order to generate fake images. Those images are then
passed through the discriminator which outputs a prediction of whether they are real or
fake. Then, the generator uses those predictions and the fake images to calculate how

4.2. RELATEDWORK 30

much it managed to fool the discriminator, which determines the value of loss function.
Hence, it is evident that access to real data is required only during the training of

the discriminator, which is why the authors federated only the discriminator. Addition-
ally, the authors enforce user-level DP on the federated training of the discriminator.
Hence, since the discriminator is Differentially Private, the Generator which is trained
only through the discriminator follows the same DP guarantees as the discriminator (DP
post-processing lemma). Then, the authors experimented with differential privacy and
utility using a small population size, and estimated the level of privacy theywould achieve
in realistic population sizes.

This approach made us wonder if we could federate VAEs instead of GANs under
the presence of Differential Privacy. In fact, the authors, in the Open Problems section,
wonder if it would be possible to federate VAEs using differential privacy, while keeping
a private encoder for every user and a global (federated) decoder that will act as a data
generator for all users. This is exactly what we did, as we will discuss in the next section.

However, our approach differs from the Federated GAN approach in several ways.
First and foremost, we are interested in conditional sample generation, meaning that we
want to be able to control which label to generate samples from. This requirement stems
from the fact that our end goal is to generate an artificial private dataset which has both
data and labels. Secondly, we use a different metric to assess the quality of the generated
data. In particular, we use the accuracy of a neural network that is trained on artificial
data and tested on the real data in order to assess the quality of the synthetic datasets.
Last but not least, apart from Central Differential Privacy that the authors studied, we
also experimented with Local Differential Privacy which is a stronger version of privacy
which doesn’t require the assumption of a trusted server/aggregator.

In any case, we will later use DpFedGANs as a comparison to challenge our Federated
VAEs. However, in order to do that, we have to be able to choose which class our GAN
generates samples from. This was done by training 1 federated GAN for each data class 8,
where the i-thGANwas trainedonlyusing the subset of thedata samples that corresponds
to i-th class.

4.2. RELATEDWORK 31

Algorithm 3: DP-FedAvg-GAN
parameters: round participation fraction @ ∈ (0, @], total number of users # ∈ N,
total number of rounds) ∈ N, noise scale I ∈ R+, gradient clipping parameter
(∈ R+

Initialize generator �0
�
, discriminator �0

�
,privacy accountantℳ

Set � = I(

@#

foreach round C ∈ {1, 2, . . . ,)} do
�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← UserDiscUpdate(:, �C

�
, �C

�
)

end

ΔC+1 =
1
@#

∑
:∈�C Δ

C+1
:

�C+1
�
← �C

3
+ ΔC+1 +N(0, ��2)

ℳ .acum_privacy_spending(I) �C+1
�
←GenUpdate(�C+1

�
, �C

�
)

end
printℳ.get_privacy_spent()

Function UserDiscUpdate(:, �0
�
, ��):

parameters: number of steps = ∈ N, Batch size � ∈ N, learning rate �� ∈ R+,
client id :, clipping parameter (∈ R+, generator input size =* , gen.
function �(* ;��),disc. loss function ;�(�� ; 1real , 1fake)

�� ← �0
�

ℬ ←(k’s data split into = size � batches)
foreach batch 1real ∈ ℬ do

* ← (sample � random vectors of dim =*)
1fake ← �(* ;��)//Generated data
�� ← �� − ��∇;�(�3; 1real, 1fake)

end
Δ = �� − �0

�

return Δ: = Δ ·min
(
1, (

‖�‖
)

End Function
Function GenUpdate(�� , �0

�
):

parameters: number of steps = ∈ N, Batch size � ∈ N, learning rate �� ∈ R+,
generator input size =* , gen. function �(* ;��), gen. loss function
;�(��; 1, ��)

�� ← �0
�

foreach generator training step 8 fromm 1 to = do
* ← (sample � random vectors of dim =*)
1fake ← �(* ;��)//Generated data
�� ← �� − ��∇;�(��; 1fake , ��)

end
Δ = �� − �0

�
return ��

End Function

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 32

4.3 Introduction to Variational Autoencoders

Before we discuss Variational Autoencoders, we first have to understand traditional,
non-probabilistic autoencoders and see what makes them unsuitable for data genera-
tion. Then, we will examine the probabilistic modifications of Autoencoders that enable
Variational Autoencoders to generate high-quality synthetic data.

4.3.1 Autoencoder Neural Networks

Generally speaking, an autoencoder is a type of Artificial Neural Network that is used
to compress information in an unsupervised manner [35]. The goal of autoencoders is
to learn a representation (i.e. encoding) of a set of data points, typically for dimension-
ality reduction and noise removal. For instance, in a highly influential publication on
Science made by Hinto et. al [32], autoencoders were proposed as a very efficient method
of reducing the dimensionality of data, demonstrating better results than conventional
dimensionality reduction methods like PCA.

In their simplest form, autoencoders are feedforward, non-recurrent neural networks
that consist of 2 connected networks: An encoder and a decoder. The encoder network
takes an input x ∈ R= and compresses it into a smaller (latent) representation z ∈ R3,
which then the decoder uses to produce an output x′ that is as close as possible to the
original input x. Hence, due to the fact that the purpose of the autoencoder is not to predict
labels, but to reconstruct its input x, autoencoders fall into the category of unsupervised
models (i.e. don’t require labels for training).

Figure 4.3.1: Autoencoder

The conventional autoencoder we described can be shown in the figure (4.3.1). How-
ever, autoencoders don’t always take vectors as input. Convolutional autoencoders are
a special type of autoencoders that operate on images instead of vectors. Their encoder
consists of a CNN network that takes an image and encodes it into a vector, and their
decoder is a reverse CNN network that takes that vector and tries to reconstruct the orig-
inal image. For instance, in Figure (4.3.2) we can see a Convolutional Autoencoder which
operates on the MNIST dataset: The encoder accepts an image of size 28 × 28, encodes it
into a vector of size 2, and then the decoder uses that vector to reconstruct the original
28 × 28 image.

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 33

Figure 4.3.2: Convolutional Autoencoder

Mathematical Framework

In order to better understand autoencoders, it would be very useful to formally define
what an autoencoder network tries to achieve. Let’s assume that we have a set of training
examples - = {x1 , x2 , . . . , x<} where x8 ∈ R= . Then, an autoencoder can be represented
as the composition of 2 functions @ and ? such that [15]:

@ : R= → R3 (encoder)
A : R3 → R= (decoder)

@, A = argmin
@,A

<∑
8=1
‖x8 − (@ ◦ A)(x8)‖2

In other words, an autoencoder is trained to minimize the reconstruction error:

! =

<∑
8=1
ℒ(x8 , x′8) (4.3.1)

where ℒ(x, x′) usually represents the squared error between input vector x and output
vector x′ = (@ ◦ A)(x8). So, in most cases:

ℒ(x8 , x′8) = ‖x8 − x′8 ‖
2

Using the loss function (4.3.1), autoencoders can thenbe trained throughback-propagation
of the reconstruction error, just like conventional feedforward neural networks.

Can Autoencoders generate?

Since our task requires a model that performs synthetic data generation, we may
wonder if Autoencoders are somehow suitable for that use. As we described above, the
decoder generally learns a mapping from the low-dimensional latent space to the high-
dimensional output space. This enables the decoder to take as input a low dimensional
vector and produce an output that -under certain assumptions- is very similar to the
samples of the training set. Hence, one idea for data generation would be to supply
randomnoise to the decoder’s input, hoping that the sampleswill generate vectors similar
to those drawn from the original dataset. Unfortunately, the latent space of a traditional
autoencoder is not continuous and thus feeding the decoder with random noise is not
guaranteed to generate meaningful reconstructed outputs.

For instance, let’s examine the scenario of the convolutional autoencoder of Figure
(4.3.2) that operates on the MNIST dataset. In that setting, our goal would be to use
the trained autoencoder to generate synthetic images, similar to the ones of the original

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 34

dataset. However, ifweplot the 2D latent representations of thedifferent images ofMNIST
after passing those images from the encoder, the plot will look like Figure (4.3.3), where
different colors represent the different classes of MNIST. Hence, as we can see, there are
many discontinuities between the clusters of the 2D latent space and if we choose a point
that lies in those discontinuities and feed it as input to the decoder, then the generated
image will be unrealistic, as the decoder doesn’t know how to deal with those points.

Figure 4.3.3: Autoencoder 2D latent space discontinuity (Source: [5])

4.3.2 Variational Autoencoders

In order to address the discontinuities and irregularities in the latent space of conven-
tional Autoencoders, Variational Autoencoders (VAEs)were developed. The fundamental
difference between those two models is that the latent space of VAEs is, by design, con-
tinuous, thus allowing for easy random sampling and interpolation. In other words, a
variational autoencoder is an autoencoder whose training is regularised to avoid overfit-
ting and ensure that the latent space has good properties for data generation [22].

Just like traditional Autoencoders, VAEs are also trained to minimize the reconstruc-
tion loss between their input and their output. However, in order to introduce regular-
ization into the training of VAEs, the following modification is made: Istead of encoding
VAE’s input as a deterministic latent vector, we encode it as a distribution over the latent
space, and in particular as a vector of means and a vector of standard deviations of a
multivariate Gaussian distribution. The schematic of a Variational Autoencoder is shown
in Figure (4.3.4).

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 35

Figure 4.3.4: Variational Autoencoder

Intuitively, the mean vector determines where the encoded version of an input will
be centered around, while the standard deviation vector controls how much the encoded
point can deviate from the mean point, as seen of Figure (4.3.5). Hence, due to the fact
that a given input does not correspond to a specific point but rather to a family of points
around the mean, the decoder learns to generate meaningful reconstruction for all those
points. This enables the decoder to maintain a relatively continuous latent space, as seen
in Figure (4.3.6).

μz

σ

00 11

11

Conventional Autoencoder

(input mapped deterministically

to a point)

Variational Autoencoder

(input mapped to a gaussian

distribution - family of points)

Figure 4.3.5: Deterministic vs Stohastic mapping of input into 2D latent space

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 36

Figure 4.3.6: Continuous 2D latent space of MNIST VAE (Source: [6])

Probabilistic Framework

We will now define the mathematical framework behind VAEs, as proposed in [34].
Let’s assume that we have a set of training examples - = {x1 , x2 , . . . , x<} that are IID
samples of some continuous or discrete distribution. In the context of VAEs, given an
input x, we want to map that input not to a fixed vector, but rather to a distribution.
So, let’s denote this distribution as ?θ parametrized by θ. In order to fully describe the
probabilistic relationship between the input vector x and the latent vector z within the
context of a VAE, we need the following parametric families of distributions1:

• Prior parametric distribution ?θ(z)

• Likelihood parametric distribution ?θ(x|z)

• Posterior parametric distribution ?θ(z|x)

If we now assume that we know the value of the parameter θ = θ∗, then in order to
generate a sample that is similar to a real data point x8 , we have to do the following
process:

1. Sample a vector z8 from the prior distribution ?θ∗(z)

2. Generate a value x8 from the conditional distribution ?θ∗(x|z = z8)

Clearly, the optimal value θ∗ for the parameter θ is the one that maximizes the probability
of generating the samples of the original dataset. Hence, since we assumed that the

1When we say that ?θ is a parametric family of distributions parametrized by θ we mean that ?θ may for
instance be a Gaussian distribution with means and variances determined by θ, or an other type of general
distribution (e.g. Poisson, Laplacian) with parameters determined by θ

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 37

samples of our dataset are IID then:

θ∗ = argmax
θ

<∏
8=1

?θ(x8)

= argmax
θ

<∑
8=1

log ?θ(x8)
(4.3.2)

Also, according to the law of conditional probabilities:

?θ(x8) =
∫

?θ(x8 , z)3z =

=

∫
?θ(x8 |z)?θ(z)3z

(4.3.3)

Hence, in order to calculate θ∗ we could plug Equation (4.3.3) into (4.3.2). Unfortunately,
the problemof calculating ?θ directly is intractable, as it is very computationally expensive
to iterate over all values of z and calculate the integral in Equation (4.3.3). This means
that the posterior:

?θ(z|x) = ?θ(x|z)?θ(z)/?θ(x) (4.3.4)

is also intractable. For this reason, we will use an approximation function @φ(z|x)
parametrized by φ to approximate the intractable posterior ?θ(z|x).

The Probabilistic Graphical Model of the scenario we described can be shown on
Figure (4.3.7). In this figure, solid lines are used for the generative distribution ?θ and
dashed lines refer to the distribution @φ(z|x) that is used to approximate the intractable
posterior ?θ(z|x). Hence, in that setting, the conditional distribution ?θ(x|z) represents
a probabilistic decoder, as it defines a generative model that takes a latent vector z and
produces an output sample x. Also, the approximation function @φ(z|x) represents the
probabilistic encoder, as it takes an input sample and outputs the latent vector that
corresponds to that sample.

Figure 4.3.7: Probabilistic Graphical Model of VAEs (Source: [4])

Since we introduced a function approximation @φ(z|x) of the posterior distribution
?θ(z|x), we have to ensure that those functions/distributions are very close to one another.
Hence, in order to measure the similarity of those distributions, we will use the Kullback-
Leibler divergence. KL divergence � !(- | |.) between 2 distributions - and . measures
howdifferent distribution. is in comparison to the reference distribution-. In particular,
it measures the amount of information (in nats or 1/log(2) bits) that we have to use in
order to distort distribution . into -.

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 38

Within the context of Variational Autoencoders, we want to minimize the inverse KL
Divergence �KL(@)(z|x)‖?�(z|x))with respect to φ in order to ensure that @φ(z|x) approx-
imates well the posterior distribution ?θ(z|x). Hence, by expanding the KL divergence
term, we get:

�KL(@)(z|x)‖?�(z|x)) =
∫
I

@)(z|x) log
@)(z|x)
?�(z|x)

3z

And since ?θ(z|x) = ?θ(z, x)/?θ(x), then:

�KL(@)(z|x)‖?�(z|x)) =
∫
I

@)(z|x) log
@)(z|x)?�(x)
?�(z, x)

3z

=

∫
I

@)(z|x)
(
log ?�(x) + log

@)(z|x)
?�(z, x)

)
3z

Also, due to the fact that
∫
I
@)(z|x)3z = 1 then:

�KL(@)(z|x)‖?�(z|x)) = log ?�(x) +
∫
I

@)(z|x) log
@)(z|x)
?�(z, x)

3z

Finally, due to the fact that ?(I, G) = ?(G |I)?(I)we get:

�KL(@)(z|x)‖?�(z|x)) = log ?�(x) +
∫
I

@)(z|x) log
@)(z|x)

?�(x|z)?�(z)
3z

= log ?�(x) + Ez∼@)(z|x)[log
@)(z|x)
?�(z)

− log ?�(x|z)]

= log ?�(x) + �KL(@)(z|x)‖?�(z)) − Ez∼@)(z|x) log ?�(x|z)

By rearranging the terms in the equation above we get:

log ?�(x) − �KL(@)(z|x)‖?�(z|x)) =
= Ez∼@)(z|x) log ?�(x|z) − �KL(@)(z|x)‖?�(z))

(4.3.5)

The LHS of the last equation is precisely what we are trying to maximize in order to
learn the true distributions. Essentially, in order to train our variational model, we want
2 things:

1. Maximize the likelihood (or log-likelihood) of generating real data. This can be
done by maximizing the term log ?θ(x)

2. Minimize the difference between the real posterior distribution ?θ(z|x) and its ap-
proximation @φ(z|x). This canbedonebyminimizing theKL term�KL(@)(z|x)‖?�(z|x))
or equivalently maximizing the negative of that KL term.

Hence, in order to train our Variational Autoencoder, we have to maximize the LHS of
(4.3.5), which gives us the following loss function:

ℒ+��(θ,φ) = − log ?�(x) + �KL(@)(z|x)‖?�(z|x)) =
= Ez∼@)(z|x) log ?�(x|z) − �KL(@)(z|x)‖?�(z))

(4.3.6)

and thus if we denote the optimal parameters as θ∗ and φ∗ then:

θ∗ ,φ∗ = argmin
θ,φ

ℒ+��(θ,φ)

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 39

In Variational Bayesian settings, the loss function (4.3.6) is usually referred to as the
Variational Lower Bound or Evidence Lower Bound. The terminology "Lower Bound"
stems from the fact that since theKLdivergence term is always non negative, the following
inequality holds:

−ℒ+��(θ,φ) = log ?�(x) − �KL(@)(z|x)‖?�(z|x))
≤ log ?�(x)

Consequently, byminimizing the loss function (4.3.6) we aremaximizing the lower bound
of the probability that our Variational Autoencoder generates real samples.

Evaluating the loss function

Since we have defined the loss function and we have made the optimization problem
tractable, we should now focus on how we can evaluate the loss function (4.3.6) which
is essential to train the Variational Autoencoder. In order to do that, we will make the
following assumptions which we will use throughout this work:

• The distribution ?θ(z)where z ∈ R3 is a Gaussian distributionN(0, I)with:

?θ(z) =
1√
(2�)

3
exp

(
−1

2 ‖z‖
2
)

(4.3.7)

• The distribution @)(z|x) is a Gaussian distributionN(µx , diag(σx)2)with:

@)(z|x) =
1√

(2�)
3 ∏3

8=1 �
(8)
x

exp

(
−1

2

3∑
8=1

(I8 − �(8)x

�(8)x

)2
)

(4.3.8)

where µx and σx is the vector of means and the vector of standard deviations that
is produced if we give the encoder x as input (see figure (4.3.4)).

Before proceeding, we will present the following lemma which allows us to calculate the
KL divergence between 2 Gaussian distributions:

Lemma 4.1 If %1 and %2 are gaussian distributions with means µ1 ,µ2 ∈ R3 and standard
deviations σ1 ,σ2 ∈ R3 then:

� !(%1 | |%2) =
1
2

(
log |�2 |
|�1 |
− 3 + tr(�−1

2 �1) + (µ2 − µ1))�−1
2 (µ2 − µ1)

)
Using the lemma (4.1) and since ?θ(z) = N(0, I) and @φ(z|x) = N(µx , diag(σx)2) we can
calculate the KL divergence that appears in the loss function as:

�KL(@)(z|x)‖?�(z)) =
1
2

(
log 1∏3

8=1 �
(8)
x
− 3 + ‖σx‖2 + ‖µx‖2

)
=

=
1
2

(
‖σx‖2 + ‖µx‖2 − 3 −

3∏
8=1

�(8)x

) (4.3.9)

Also, the term Ez∼@)(z|x) log ?�(x|z) of the loss function can be calculated by drawing
random samples z fromN(µx , diag(σx)2) for every training example x, and then passing
z through the decoder. Hence, using the above term and the KL term, we can calculate
(or to be more precise, approximate) the loss function.

4.3. INTRODUCTION TO VARIATIONAL AUTOENCODERS 40

However, apart from this method, there is also an approximate method to estimate
the loss function, which is used instead in many practical cases. This method leverages
the fact that:

ELBO = −ℒ+��(θ,φ) =
= Ez∼@)(z|x) log ?�(x|z) − �KL(@)(z|x)‖?�(z)) =

= Ez∼@)(z|x)
[
log ?�(x|z) − log

?θ(z)
@φ(z|x)

]
=

= Ez∼@)(z|x)
[
log ?�(x|z) − log ?θ(z) − log @φ(z|x)

]
and then uses samples I ∼ @)(z|x) to produce a Monte-Carlo approximation of the
expectation. In particular, the 3 terms inside the expectation can be approximated as
follows:

1. The term log ?θ(z) can be approximated by taking the logarithm of the PDF of a
standard normal multivariate GaussianN(0, I).

2. The term log @φ(z|x) can be approximated by taking the logarithm of the PDF of a
multivariate GaussianN(µx , diag(σx)2).

3. The term log ?θ(z|x) (since the distribution ?θ(z|x) is unknown) can be estimated
through an approximation of cross entropy by comparing the output of the decoder
with the input of the encoder.

the term log ?θ(z) can be approximated by evaluating the PDFof standard gaussianN(0, I)

Reparameterization Trick

As we described above, evaluating the expectation term Ez∼@)(z|x) log ?�(x|z) requires
generating samples z from the distribution @)(z|x). Unfortunately, the sampling operation
is a stochastic process and thus doesn’t allow the backpropagation of the gradients.
Hence, since backpropagation is an integral part of Neural Network training, we have
to do something in order to remove the stochasticity from the training process. For this
reason, we will express the random variable z as a deterministic variable z = 6(φ, x, ε)
where ε ∼ N(0, I) is an auxiliary random variable and 6 is a transformation function
parametrized by φwhich converts ε to z.

In particular, before this reparametrization, the sampling operation was:

z ∼ @φ(z|x) = N(µx , diag(σx)2)

and after the reparametrization, the sampling operation becomes:

z = µx + σx � ε, where ε ∼ N(0, I)

where z,µx ,σx , ε ∈ R3 and the vectors µx ,σx are the outputs of the encoder when given
an input x ∈ R= .

Using this reparameterization trick, z now becomes a deterministic node and the
stochasticity of sampling is transferred to the random variable ε. This enables us to
backpropagate the losses through the Autoencoder during training, as seen on Figure
(4.3.8).

4.4. FEDERATED VARIATIONAL AUTOENCODERS 41

Figure 4.3.8: Reparameterization (Source: NIPS 2016 workshop)

Training

After analyzing the reparametrization trick, we can now describe the training process of
a Variational Autoencoder:

1. An input sample x is fed into the encoder which converts it into the parameters of
a multidimensional gaussian distribution. In particular, the output of the encoder
is a vector of means ���G and a vector of standard deviations ���G as shown on figure
(4.3.4).

2. A sample z from the Gaussian distributionN(���G , diag(���G)2) is generated.

3. The sampled point is fed into the decoder and the ELBO error is calculated.

4. The reconstruction loss is backpropagated through the network

It should be noted that this process is usually done on batches of training examples and
not on individual training samples in order to increase the training speed and improve
the fidelity of the model.

In any case, by performing the steps we described over many epochs, we are able to
obtain a trained, Variational Autoencoder that is capable of data generation. In particular,
if we now feed the decoder with random noise z ∼ N(0, I), then the samples generated
in the output of the decoder will be similar to the ones of our training set. This happens
because the latent space of a VAE is continuous, thus enabling sampling and interpolation
of the latent space.

4.4 Federated Variational Autoencoders

So far, we have explained in detail howVariationalAutoencoderswork. Hence, wewill
now attempt to train them in a federated setting, while ensuring meaningful guarantees

4.4. FEDERATED VARIATIONAL AUTOENCODERS 42

of Differential Privacy. For that reason, we will first describe our target federated scenario
and then explain ourmethodology for training a VAE under that setting, whilemeasuring
the privacy cost that the federated training incurs.

4.4.1 Federated Setting

Figure 4.4.1: Federated VAE setting

In our federated setting, we will assume that there are # different clients (such as
hospitals), where each one of those clients has his own private dataset �8 . The goal of
the clients is to collaboratively train a VAE model using their collective data, but with the
added constraint that the private datasets never leave the client and that the training is
done under user-level differential privacy. This requirement for differential privacy stems
from the fact that the clients own sensitive datasets and thus want to ensure that the
training process respects their privacy. Also, the requirement for user-level differential
privacy instead of example-level differential privacy is of paramount importance, as we
want to provide privacy protections to an entire client and not just on a subset of the
client’s data.

In order for the federated training to happen, there is a centralized server which
aggregates the local model updates of the clients. The server then uses those aggregates
to update a centralized version of the VAE model, which is sent to the clients at the
beginning of every federated training epoch. At the same time, the server also keeps
track of the privacy loss during training. Then, after the training finishes, the VAE model
that lies in the server can be safely released to the public for synthetic data generation,
without the fear of it compromising the privacy of data owners. This process is illustrated
in figure (4.4.1).

To trust or not to trust?

One of the fundamental questionswe have to answer is whether or not the clients trust
the server to aggregate their local updates. If the clients are certain about the server’s

4.4. FEDERATED VARIATIONAL AUTOENCODERS 43

credibility, then they may entrust the server with the task of implementing Differential
Privacy. This means that the clients will send a clipped but non-noisy version of their
local updates to the server, and then the server will aggregate the clipped local updates
while adding appropriate noise. This privacy model is the Central Differential Privacy
and makes the strong assumption that the server is fully trusted. The benefit of Central
Differential Privacy is that since the parties trust one another, there is a great benefit in
utility, as the clients don’t need to add more noise than necessary to ensure privacy.

Unfortunately, in many cases, relying on a trusted server may not always be possible.
For instance, if the server becomes compromised, then the privacy implications may be
enormous. Additionally, there is also the possibility that the server is managed by an
honest-but-curious entity, which doesn’t interfere with the training protocol, but instead
tries to learn information about the clients. In those cases, there are 2 main approaches
to alleviate the privacy risk:

1. Combine Central DP with a secure aggregation protocol, such as MPC. This
way, the server will only have access to an aggregate (e.g. average) of the local
model updates and not on the individual updates themselves. Hence, if a sufficient
number of clients participate in each federated round the server won’t be able to
infer information about any client’s data. The benefit of this approach is that it
does not incur any cost on utility, although it increases the computational and
communication cost of federated training.

2. Use Local Differential Privacy instead of Central Differential Privacy:
In this approach, the clients clip their weights and introduce noise prior to sending
the weight updates to the server. The benefit of this approach is that the clients can
choose individually how much privacy they require and then add the appropriate
amount of noise inorder to achieve this level of privacy. Unfortunately, this approach
usually comes at a very high cost on utility, as in order to attain good privacy
protection in that manner, the amount of noise needed may have a significant
impact on the quality of the trained model.

In our experiments, we we will assume that the clients don’t trust the server. Hence,
whenever we use Central Differential Privacy, we will assume that we have access to a
secure aggregation protocol, such as an MPC protocol (e.g. [26]). However, since having
access to such protocols may not always be possible, we will also experiment with Local
Differential Privacy which doesn’t make any such assumptions. Unfortunately, as we will
see, Local Differential Privacy provides relatively poor privacy protection if we want to
maintain acceptable accuracy levels.

Notation

Beforeweproceedany further,wewill present thenotation thatwewill use throughout
this chapter:

• Fraction of clients participating in each round: @ ∈ (0, 1]

• Total number of clients: # ∈ N

• Total number of federated rounds:) ∈ N

• DP noise scale: I ∈ R+,

• Gradient clipping parameter: (∈ R+

• Client id: :

4.4. FEDERATED VARIATIONAL AUTOENCODERS 44

• Dataset of client :: �:

• Batch size: � ∈ N

• Learning rate: � ∈ R+

• Number of classification classes: � ∈ N

• Size of VAE latent dim: =* ∈ N

• Encoder parameters Φ, decoder parameters Θ

• Encoder: �(+ ;Φ)

• Decoder: �(* ;Θ)

• Loss function: ;(G, Ĝ;Φ,Θ)

Datasets

In our federated scenario, we have made the assumption that there is a dataset �
which is distributed among # different clients and each client 8 has its own private
dataset �8 . Each private dataset can be described collection of =8 training examples and
their corresponding labels (i.e. �8 = {(x(1)8 , H

(1)
8
), . . . (x(=8)

8
, H
(=8)
8
)}). However, although

different clients can have different number of training examples, all training examples
must have the same number of dimensions. Under those assumptions, after training a
Federated VAE, we will be able to generate new synthetic examples and labels by forming
a Differentially Private Synthetic Database that has the exact same attributes and columns
as any private database �8 .

In our federated setting, we will experiment 2 different datasets, the EMNIST dataset,
which is an image dataset and the Epilepsy dataset, which is a tabular dataset:

1. EMNIST [19] is an extension of the well known MNIST dataset. It contains a
collection handwritten character digits which are derived from the NIST Special
Database 19. The images are converted to a 28 × 28 format so that the structure of
the EMNIST is exactly the same as that of MNIST. Although EMNIST contains both
letters and numbers, we will only work with the portion of the dataset that contains
digits the 0 − 9, so that we have a manageable number of classes (� = 10).

2. Epilepsy [11] is a tabular dataset that is used to predict epileptic seizures based
on brain activity. The version of the dataset that is available on the UCI Machine
learning Repository [7] contains 11500 rows in total. Every row consists of 178
real-number attributes that represent the value of an EEG recording across different
points in time. Although the possible labels for every row are 5, only the 1st label
indicates an epileptic seizure, whereas the other labels represent other states of the
brain. Hence, just like many previous authors, we will group classes 2 − 5 together
so as to obtain a binary classification task: A label of 1 will indicate that the patient
is having an epileptic seizure, while a label 0 will indicate that they are not having a
seizure. However, it should be noted that grouping together classes 2 − 5 results in
an unbalanced dataset, as 80% of the training examples correspond to label 0 and
20% correspond to label 1.

Given those centralized datasets, one fundamental question is how we can distribute
them into clients. Hence, since data distribution plays a huge role in federated learning,
we will experiment with the following different data distribution strategies:

4.4. FEDERATED VARIATIONAL AUTOENCODERS 45

• Uniform: In this strategy, we will distribute our dataset uniformly among clients,
so that every sample has the same probability of being assigned to any given client.
More formally, for every training example (x, H) of the original dataset � and for
every client : ∈ {1, . . . , #}, it must be true that:

%A[(x, H) ∈ �:] =
1
#

(4.4.1)

A realizationof theuniformdatadistribution strategy canbe shown infigure (4.4.2a).

• KMEANS: In this strategy the data distribution was perfored using KMEANS on
the features of our samples. This data distribution scheme results in clients with
vastly different numbers of samples, as seen in figure (4.4.2b).

• Geometric: In this scheme we used a geometric distribution to determine which
cluster anygiven samplewill be assigned to. So, theprobability of a sampleD = (x, H)
being assigned to client : is:

%A[D ∈ �:] = ?(1 − ?):−1 , : ≥ 1 (4.4.2)

If we now use -8 ∈ N∗ to denote the id of the client that the ith sample was assigned
to, then we want to ensure that the probability that -8 exceeds # is very small.
The reason we want that probability to be small is that we want most samples
to be assigned to clients with id between 1 and # inclusive, as we only have #
clients. Hence, since the geometric distribution is parametrized by ?, then given a
probability threshold 0 of our choice, we need to find a value of ? such that:

%(-8 ≤ #) ≥ 0 ⇐⇒
1 − (1 − ?)# ≥ 0 ⇐⇒
? ≥ 1 − (1 − 0) 1

#

(4.4.3)

So, if we pick ? = 1 − (1 − 0) 1
, then we will know that any given sample will be

assigned an id between 1 and # inclusive with probability 0. For instance, if we
have # = 30 clients and we set 0 = 0.99, then ? is calculated as 0.14. Hence, this
means that with a value of ? = 0.14, the probability that a sample is assigned to a
client with an id more than 30 is 1 − 0 = 0.01.

Between those different data distribution strategies, we expect that the Uniform strategy
will produce the best synthetic datasets, as this strategy leads to an IID federated dataset,
which usually yields good results in the training of a model. On the other hand, we
expect that the KMEANS distribution strategy will have the worst results, as it leads to
very non-iid client datasets with vastly different number of samples among clients.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 46

(a) Uniform (b) KMEANS

(c) Geometric

Figure 4.4.2: Number of samples per client in epilepsy dataset

4.4.2 Proposed method

Our task is to federated VAEs so as to create a differentially private synthetic data
generator from distributed data. However, if we train a VAEmodel using samples x of the
original dataset, we will be able to generate artificial samples that are similar to x, but we
won’t be able to determine the corresponding labels H. Hence, apart from the individual
data points x, we also have to find away to synthesize the dataset labels H. For this reason,
we will examine 2 different approaches for this problem:

• FedVAESep: In this approach, we will use 1 VAE for every class (� VAEs in total).
Hence, whenever we want to generate data from the i-th class, we just need to
sample the decoder of the i-th VAE.

• FedVAEUni: In this approach, we will use 1 VAE for all classes, but we will need to
make a slight modification to the decoder so that we will also be able to specify to
the decoder which class we want to generate data from. Then, in order to generate
data from a particular class, we will feed the decoder with a vector of random noise
concatenated with the one-hot encoded version of our label.

Each one of these approaches has certain advantages and disadvantages. In particular,
the FedVAESep approach, where 1 VAE is used for every class, has the advantage that it
can potentially be used in skewed datasets, where there are vastly different numbers of
samples in the different classes. In those cases, if we used 1 VAE for all classes, then the

4.4. FEDERATED VARIATIONAL AUTOENCODERS 47

classes which have much more samples could dominate the training of the single VAE,
and thus the VAE would not be very good at generating the minority classes. On the
other hand, if we separate the classes and use 1 VAE for every class, then each VAEwill be
trained solely on its corresponding class, thus learning to generate this class much more
efficiently.

The obvious disadvantage of the FedVAESep approach is that using 1 VAE for every
class yields a much higher computation and communication overhead than using 1 VAE
for all classes. In particular, in the FedVAESep approach, the clients have to train �

different VAEs and communicate the parameters of those VAEs to the server, whereas
in the FedVAEUni approach, the clients have to train and share the parameters of just 1
VAE. In addition to that, the FedVAEUni approach can potentially lead to better privacy
guarantees, as the less information the clients have to share with the server, the better the
privacy guarantees they can get. In fact, if the clients share only the parameters of 1 VAE
with the server, they need to perform a much less aggressive gradient clipping than if
they share the parameters of multiple VAEs. This means that FedVAEUni may be able to
achieve better utility than FedVAESep if the same level of privacy is used.

Consequently, it is evident that if the dataset has good properties that allows us to
use FedVAEUni, we should choose FedVAEUni over FedVAESep, due to the computation,
communication and privacy benefits of FedVAEUni. On the other hand, if the dataset
doesn’t allow us to use FedVAEUni, we can use FedVAESep which may work better on
skewed datasets, albeit with higher computation, communication and privacy cost.

If we now combine the FedVAEUni and FedVAESep approaches with Central and
Local Differential privacy, we obtain the 4 different federation methods of Table (4.4.1),
which we will discuss in detail below.

1 VAE for each class 1 VAE for all classes

Central DP FedVAESepCDP FedVAEUniCDP

Local DP FedVAESepLDP FedVAEUniLDP

Table 4.4.1: Different VAE federation schemes

FedVAESepCDP

Themain idea of this federationmethod is to train 1VAE for every class, while utilizing
Central Differential Privacy. This way, after the training is finished, we can sample the
decoder of the i-th VAE to generate synthetic data of the i-th class. Hence, in order to
train VAEs under this setting, we will follow an approach similar to [13] and [43], while
utilizing Central DP. This leads us to the following training procedure:

1. The server initializes C VAEs, one for each class.

2. The server randomly selects @# clients out of the pool of # clients.

3. The server sends the current weights of the decoders of the � VAEs to the selected
clients.

4. The selected clients load the weights of the decoders sent to them by the server.
Then, the clients use their local samples corresponding to the i-th class to train the
i-th VAE using 1 epoch of mini-batch SGD. This process is repeated for all � classes.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 48

5. The clients calculate the weight differences Δ8 of the � decoders by subtracting the
decoder weights sent by the server from the local decoder weights after training.

6. The clients clip the � weight difference vectors Δ8 so that each of those vectors has
!2 norm bounded by (/

√
� and their concatenation has !2 norm bounded by (.

7. The clients send their clipped non-noisy update vectors for each one of the � de-
coders to the server.

8. The server aggregates the update vectors for every decoder and addsGaussian noise
of std �� in order to ensure Central Differential Privacy.

9. The server updates thedecoders of its� VAEmodels using the aggregatedgradients.

10. The process continues from step 2 for) − 1 more rounds.

11. Data Generation: For every class 8 = {1, . . . , �} we can feed the decoder of the i-th
VAE of the server with random Gaussian noiseN(0, �) in order to generate data for
class 8.

This process is described in detail in Algorithm (4). However, at this point,we should note
that during the federation process we described, we chose to federate only the decoders
and not the encoders of VAEs. This means that although both the encoders and the
decoders are trained locally by the clients, only the weight updates of the decoders are
sent back to the server. The reason for this is that in order for the server to be able to
generate synthetic data, it only needs to feed random noise to the decoders: The encoders
are only needed during the training happening locally at the clients. Hence, this means
that each client can have its own private encoder, without sharing it with the server. This
approach has 2 main advantages:

• Less communication overhead: By only sending theweight updates of the decoders
back to the server, the clients can significantly reduce the amount of data they have
to communicate to the server. This is particularly important when the clients are
low-power devices with limited bandwidth and poor connectivity, such as mobile
devices.

• Better privacy guarantees: By sharing only the updates of the decoders, we are able
to obtain better privacy guarantees for the same amount of noise. In particular, if we
wanted to share the weight updates of both the encoder and the decoder, we would
need to perform a more aggressive clipping on the weight differences in order to
obtain the same DP guarantees. Hence, this could potentially lead to worse utility
for the same level of privacy.

Let’s now reason about the privacy guarantees of Algorithm (4). In order to analyze
this Central DP scenario, we will assume that the clients trust the server, or that we
have access to a secure aggregation protocol (e.g. MPC). Under those assumptions, the
Algorithm (4) obeys user-level central differential privacy, as it follows the same privacy
structure as DP-FedAvg algorithm in [43]. Also, in order to measure the impact of noise
in DP, we have to examine the !2 sensitivity of the following aggregator, which is used in
Algorithm (4):

5�(�C) =
∑
:∈�C Δ:
@#

(4.4.4)

So, if we use Δ(8)
:

to denote the weight differences of the i-th decoder of the k-th user,
then clearly ‖Δ(8)

:
‖ ≤ (√

�
due to the clipping performed by the clients in Algorithm

4.4. FEDERATED VARIATIONAL AUTOENCODERS 49

(4). Hence, if we concatenate the updates of all decoders into a long vector Δ: =

concat(Δ(1)
:
,Δ
(2)
:
, . . . ,Δ

(�)
:
), then we have:

‖Δ: ‖2 =
�∑
8=1
‖Δ(8)

:
‖2 ≤

�∑
8=1

(2

�
= (2 =⇒

‖Δ: ‖ ≤ (
(4.4.5)

Hence, since every update vectorΔ: has an !2 norm bounded by (, then according to [43],
the sensitivity of the aggregator 5 (�C) is:

S(5�) =
(

@#
(4.4.6)

Given the sensitivity of the query estimator, if we pick � =
√

2 ln(1.25/�) · S(5�)/�
then one round of the server training loop of Algorithm (4) is (�, �)-DP with respect to
a batch of clients [8]. Also, since a batch of clients is a random sample from database of
clients2, the privacy amplification lemma (2.1) states that a single round of Algorithm (4)
is (@ log(1 + @(4� − 1)), @�)-DP. Finally, we can then use the strong composition theorem
(2.6) to accumulate the DP spending over all the) rounds of Algorithm (4).

The problem, however, with this approach is that it does not provide tight guaran-
tees of Differential Privacy. For this reason, following previous works on DP-FL ([13],
[43]), we use a Moments Accountant data structure to obtain tight composition guaran-
tees for repeated applications of a Subsampled Gaussian Mechanism. In particular, we
use the Analytical Moment Accountant proposed by Yu-Xiang Wang et. al. [57] which
uses Renyi differential privacy to obtain tight bounds on privacy loss under Subsampling
Mechanisms.

The Analytical Moment Accountantℳ provides 2 important methods:

• ℳ.compose_subsampled_mechanism(�̄,q):
This method composes the privacy spending of a subsampled gaussianmechanism.
The argument �̄ is the standard deviation of the Gaussian Noise normalized by
the sensitivity of the gradient accumulator. Hence, since we defined �� = I(

@#

in Algorithm (4), it is evident that the normalized standard deviation we should
give as input to our moments accountant is �̄ = ��

S(5�)
= I. Also, the parameter @

given as input to themethod compose_subsampled_mechanism is the sub-sampling
probability of the Gaussian Mechanism, or, in our case the round participation
fraction @.

• ℳ.get_epsilon(�):
This method is used to return the privacy budget spent after repeated calls to the
composition method above. In particular, it takes as argument a parameter � and
finds the corresponding � such that the overall privacy budget satisfies (�, �)-DP.
Also, following [43], we used � = 1

#1.1 in order for the probability of the privacy leak
to be less than 1 over the number of clients. The reason we chose this value for � is
that according to [25], if we set � > 1

, then we may permit privacy by sharing the
complete records of a small number of users, which is clearly undesirable. Then,

2At this point, we should not that just like Augenstein et al. [13], we used a slightly different way of
selecting users at each round compared to the DP-FedAvg algorithm proposed by McMahan et al. [43]. In
particular, we used fixed-size federated rounds of @# clients, instead of using randomly-sized federated
rounds where the users are selected independently with probability @. This has some minor effect on the
overall privacy bound.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 50

using the value � = 1
#1.1 , we calledℳ.get_epsilon(�) at the end of Algorithm (4) to

find the overall privacy loss.

Besides measuring privacy in an actual experimental setting, the moments accountant
is also useful in determining privacy in theoretical, scaled up federated scenarios. In
particular, in our experiments, we used a small user population (# = 20) with an even
smaller number of users per round (@# = 10). This scenario, clearly, doesn’t achieve good
privacy protection. However, as demonstrated in [13], the small-scale simulation scenario
does indicate us themaximumnoise level we can addwithout hurting utility. Then, while
keeping noise �� constant, we can scale up the number of clients # and use the moments
accountant to calculate the DP guarantees in the hypothetical scaled-up scenario.

Themotivation behind scaling up the number of clients is that by keeping the noise ��
constant, we can achieve better DP guarantees with more clients. In particular, our goal
is to scale the number of clients such that we achieve single digit � guarantees3 without
hurting utility. So, let’s assume that in our experimental scenario we have # clients, noise
scale I, noise std ��, round participation fraction @ and � = 1/#1.1, with �� = I(

@# . Under
those assumptions, if we want to calculate the level of Differential Privacy in a scaled
population of #′ > # clients, we can follow the approach used by Augenstein et al. [13]:

1. We first scale I by a factor 0 = 1
I so that 4 I′ = 0I = 1. Then, we scale @# by a factor

of 0 as well, so that @′#′ = 0@# . With those two scalings, we have managed to
keep the actual noise � constant, because �′

�
= I′(

@′#′ =
0I(
0@# = I(

@# = ��. Hence, those
scalings have no effect on utility of Algorithm 4.

2. Now, since @′#′ = 0@# =
@#

I
, we can easily calculate @′ as we know #′. Hence

@′ =
@#

I#′ . Also,the privacy leak �′ for the new client population is �′ = 1/(#′)1.1.

3. We can now use the 2 methods of the analytical moments accountant to calculate
the level of differential privacy in the scaled up scenario. In particular, we can make
) calls to the composition method using arguments �̄ = I′ = 1 and @′, and we can
then make a call to the second method to get our epsilon for the new privacy leak
�′.

At this point, should emphasize once again that the scaling process does not hurt
utility, because it doesn’t increase the actual level of noise (�). The only trade-off is that
the more we increase the number of users # , the more computationally expensive our
training becomes. Nevertheless, in most cases, we have to accept this tradeoff if we want
to attain good DP guarantees while maintaining utility.

FedVAESepLDP

We will now use the exact same algorithm as before, but this time, we will use Local
Differential Privacy instead of Central Differential Privacy. This means that we will again
use 1 VAE for every class but this time, the users are responsible for implementing their
own privacymechanisms. Hence, this leads us to the following training procedure, which
is described in detail in in Algorithm (5):

1. The server initializes C VAEs, one for each class.

2. The server randomly selects @# clients out of the pool of # clients.

3When we say single-digit � guarantees we are implying that � ' 1, which is a relatively good privacy
protection.

4The reason picked I′ = 1 is that we scaled the level of privacy to larger populations just like in [13]. Also,
as demonstrated by McMahan et al. [43], in order attain acceptable utility, we generally have to set I′ ≥ 1.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 51

3. The server sends the current weights of the decoders of the � VAEs to the selected
clients.

4. The selected clients load the weights of the decoders sent to them by the server.
Then, the clients use their local samples corresponding to the i-th class to train the
i-th VAE using 1 epoch of mini-batch SGD. This process is repeated for all � classes.

5. The clients calculate the weight differences Δ8 of the � decoders by subtracting the
decoder weights sent by the server from the local decoder weights after training.

6. The clients clip the � weight difference vectors Δ8 so that each of those vectors has
!2 norm bounded by (/

√
� and their concatenation has !2 norm bounded by (.

7. The clients add Gaussian noise with standard deviation �! in order to enforce
differential privacy. The choice of �! is made by the clients, depending on the level
of privacy they want to achieve. Then, they use their local Moments Accountant in
order to keep track of the local privacy loss.

8. The clients send their noisy update vectors for each one of the � decoders to the
server.

9. The server aggregates the update vectors and updates the decoders of its � VAE
models using the aggregated gradients.

10. The process continues from step 2 for) − 1 more rounds.

11. Data Generation: For every class 8 = {1, . . . , �} we can feed the decoder of the i-th
VAE of the server with random Gaussian noiseN(0, �) in order to generate data for
class 8.

The above training process guarantees user-level local differential privacy. In this case,
however, the sensitivity changes. In fact, since the clients don’t trust the server, the
gradients have to be Differentially Private as soon as they leave the client. This means that
in order to measure the level of Differential Privacy, we have to examine the !2 sensitivity
of the following query function5:

5!(:) = Δ: (4.4.7)

where Δ: is the concatenation of the gradient updates of the client :. Hence, given that
‖Δ: ‖ ≤ (due to gradient clipping, then S(5!) = (. As a result, the normalized standard
deviation �̄ we give as input to composition method of the moments accountant is:

�̄ =
�!
S(5!)

=
�!
(

Also, for the second argument of the moment accountant, we use @ = 1, as there isn’t any
kind of subsampling when it comes to an individual client’s data: The client is viewed
separately from the server and at each iteration where a client is involved, the client
accesses all its data and not just a URS of that data.

By explaining how the moment accountant can be used to keep track of LDP guar-
antees, we have given a way for clients to measure their privacy loss across training.
However, since the clients have to choose a value for �! prior to training, they need to
approximately know what value for �! they have to pick in order to achieve their desired
privacy budget. So, let’s assume that a client : wants to achieve (�: , �:)-DP guarantees,

5Note that the query function 5! is different than the query function 5� weused for the previous algorithm,
as in this case we assume that the adversary (or the untrusted server) may have direct access to the gradient
update vectors Δ: prior to their being aggregated

4.4. FEDERATED VARIATIONAL AUTOENCODERS 52

while participating in 1 federated round. Then according to Theorem (2.3), the optimal
Gaussian mechanism to achieve (�: , �:)-DP occurs if we set:

�! =

(
ξ +

√
ξ2 + �:

)
· (

�:
√

2
(4.4.8)

where ξ can be found if we use bisection to solve the equation:

erfc(ξ) − 4�:erfc
(√

ξ2 + �:
)
= 2�: (4.4.9)

Hence, using thismethod, the client can find out the level of noise they need to add so as to
achieve (�: , �:)-DP if they participate in 1 federated round. However, in reality, the clients
don’t participate in only 1 federated round. So, let’s assume that the client : participates
in): federated rounds. Hence, since the moments accountant offers ($(� ·

√
)), �)-DP

guarantees for) runs of an (�, �)-DP Gaussian mechanism (See subsection 2.2.7), then
if the client uses Equation (4.4.8) to determine �!, the DP guarantees it will get over):
rounds are ($(�:

√
):), �:). This means that if the client wants (�: , �:)-DP guarantees

while participating in): federated rounds, then the client must set:

�! =

(
ξ +

√
ξ2 + �:/

√
):

)
· (

�:
√

2/):
(4.4.10)

and find ξ through bisection by solving:

erfc(ξ) − 4�:/
√
):erfc

(√
ξ2 + �:/

√
):

)
= 2�: (4.4.11)

If we now view): as a random variable, then due to the fact that the server randomly
samples clients with probability @, we expect that �[):] = @ ·) where) is the total number
of federated rounds and @ is the round participation fraction. This means that we can
approximate): with @) and plug the approximation into equations (4.4.10) and (4.4.11).
This would yield an approximate noise level �! the client would need to achieve (�: , �:)-
LDP while participating in @) training rounds. However, this is just an approximation:
The exact privacy guarantees can only be calculated through the Moments Accountant
present in the client. Additionally, the federated protocol can also be modified so that if
a client has participated in more training rounds than what their privacy budget allows,
then the they may reject further participations.

So far, we have analyzed the privacy guarantees on a client level. However, we should
also examine the impact the local noise �! has on the server as well. For simplicity, we
will assume that all clients use the same noise level �!. Then, if we use Δ̄: to denote
the gradient updates of the k-th client before adding noise, Δ: the gradient updates after
adding noise and-: ∼ N(0, � ·�2

!
) the noise added by the client, then in the server training

loop we will have:

Δ =
1
@#

∑
:∈�C

Δ: =

=
1
@#

∑
:∈�C

(
Δ̄: + -:

)
=

=
1
@#

∑
:∈�C

Δ̄: +
1
@#

∑
:∈�C

-: =

=
1
@#

∑
:∈�C

Δ̄: +
1
@#

∑
:∈�C

-:

(4.4.12)

4.4. FEDERATED VARIATIONAL AUTOENCODERS 53

The quantity . =
1
@#

∑
:∈�C -: is a random vector, which is the average of @# i.i.d

Gaussian random vectors. If we now denote the i-th component of vectors - and. as -(8)
and.(8) respectively, then.(8) is the weighted sum of @# i.i.d Gaussian random variables.
Hence, .(8) is also Gaussian with:

�[.(8)] = �
[1
@#

∑
:∈�C

-
(8)
:

]
=

1
@#

∑
:∈�C

�[-(8)
:
] = 0

and:

Var(.(8)) = Var
(1
@#

∑
:∈�C

-
(8)
:

)
=

=
1

@2#2

∑
:∈�C

Var(-(8)
:
) =

=
1

@2#2

∑
:∈�C

�2
! =

=
1

@2#2 @#�2
! =

=
�2
!

@#

Hence, . ∼ N(0, � �
2
!

@#). This leads us to the following theorem:

Theorem 4.1 Using global Gaussian noise with std �� in the CDP setting of Algorithm (4) is
exactly equivalent (noise-wise) to using local Gaussian noise with std �! = ��

√
@# in the LDP

setting of Algorithm (5).

This theorem is very important as it will later help us compare the privacy guarantees of
CDP and LDP settings.

FedVAEUniCDP

In this federation scheme, we will use 1 VAE to generate data for all classes, while
utilizing Central Differential Privacy. In order to achieve that, we have make a slight
variation to the decoder of a Variational Autoencoder. In a conventional VAE, the encoder
takes as input a sample x and generates 2 vectors µG ,σG ∈ R=* . Then we generate a
random noise vector u ∼ N(µG , diag(σG)2) andwe give this vector as input to the decoder.
This means that the decoder has =* inputs. However, since we also want to choose the
class our decoder generates samples from, we will need to condition the decoder on the
class label H. For this reason, we will slightly alter the decoder so that it has =* +� inputs
instead of =* . Then, whenever we want our decoder to generate samples with label H, we
will provide the encoder with a vector v which is the concatenation of a noise vector z and
the one-hot encoding of the label H. This idea of a conditional decoder is very similar to
the one proposed in [50] and allows us to use just 1 decoder so as to generate samples from
whichever class we want. By making this modification in the FedVAESepCDP scenario,
the training process becomes:

1. The server initializes 1 VAEs for all classes.

2. The server randomly selects @# clients out of the pool of # clients.

3. The server sends the current weights of the decoder of its VAE to the selected clients.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 54

4. The selected clients load theweights of the decoder sent to them by the server. Then,
the clients use their samples to train the local VAE using 1 epoch of mini-batch SGD.
During training, every local sample x is passed through the encoder to generate the
mean and std vectorsµG ,σG . Then, a noise vectoru ∼ N(µG , diag(σG)2) is generated,
this vector becomes concatenated with the one-hot encoding of the label of x, and
finally the concatenated vector is then passed through the decoder.

5. The clients calculate the weight difference Δ of their decoder by subtracting the
decoder weights sent by the server from the local decoder weights after training.

6. The clients clip the weight difference vector Δ so that it has !2 norm bounded by (.

7. The clients send their clipped non-noisy update vector Δ to the server.

8. The server aggregates the update vectors for the decoder and adds Gaussian noise
of std �� in order to ensure Central Differential Privacy.

9. The server updates its decoder using the aggregated gradients.

10. The process continues from step 2 for) − 1 more rounds.

11. Data Generation: In order to generate samples of the i-th class, we have to generate
a random Gaussian vector u ∼ N(0, �) with dimension =* , concatenate that vector
with the one-hot encoding of the desired label 8 and then feed the result into the
decoder.

This process is described in detail in Algorithm (6) and is very similar to Algorithm (4),
except that in this case, we use 1 VAE for all classes and not 1 VAE for each class. In fact,
using 1 VAE for all classes has many advantages, such as:

• Reduced communication overhead: In the FedVAEUniCDP scenario, the clients
only need to send to the server the weight updates of 1 decoder instead of �
decoders. This significantly reduces the amount of information the clients need to
send, almost by a factor of 1/�.

• Reduced computational cost: Since the trainingprocess of FedVAEUniCDP involves
just 1 VAE instead of � VAEs, the computational complexity of training is much
better not just for the clients, but also for the server.

• Rich Latent Space: in the FedVAEUniCDP scenario, the VAE that is responsible for
generating all classes, has a much richer latent space than a VAE which generates a
single class. This opens the possibility for more meaningful latent representations
of the input samples, which may be utilized to gain insights into the training set.

The DP guarantees of the FedVAEUniCDP scenario can be calculated exactly in the same
way as we did with FedVAESepCDP. The reason for this is that since we want to enforce
Central Differential Privacy, the gradient aggregator is the same as in (4.4.4), and thus,
the sensitivity of this aggregator is the same as in (4.4.6) (i.e. S(5) = ().

FedVAEUniLDP

In this scenario, we will again use 1 VAE for all classes, but this time we want to
enforce Local Differential Privacy instead of Central Differential Privacy. This leads us to
the following training process:

1. The server initializes 1 VAEs for all classes.

4.4. FEDERATED VARIATIONAL AUTOENCODERS 55

2. The server randomly selects @# clients out of the pool of # clients.

3. The server sends the current weights of the decoder of its VAE to the selected clients.

4. The selected clients load theweights of the decoder sent to them by the server. Then,
the clients use their samples to train the local VAE using 1 epoch of mini-batch SGD.
During training, every local sample x is passed through the encoder to generate the
mean and std vectorsµG ,σG . Then, a noise vectoru ∼ N(µG , diag(σG)2) is generated,
this vector becomes concatenated with the one-hot encoding of the label of x, and
finally the concatenated vector is then passed through the decoder.

5. The clients calculate the weight difference Δ of their decoder by subtracting the
decoder weights sent by the server from the local decoder weights after training.

6. The clients clip the weight difference vector Δ so that it has !2 norm bounded by (.

7. The clients add Gaussian noise with standard deviation �! in order to enforce local
differential privacy. The choice of �! is made by the clients, depending on the level
of privacy they want to achieve. Then, the clients can use their local Moments
Accountant to calculate the privacy loss.

8. The clients send their noisy update vectors Δ to the server.

9. The server aggregates the update vectors.

10. The server updates its decoder using the aggregated gradients.

11. The process continues from step 2 for) − 1 more rounds.

12. Data Generation: In order to generate samples of the i-th class, we have to generate
a random Gaussian vector u ∼ N(0, �) with dimension =* , concatenate that vector
with the one-hot encoding of the desired label 8 and then feed the result into the
decoder.

This process is described in detail in Algorithm (7). Additionally, the LDP guarantees in
this scenario are exactly the same as in the FedVAESepLDP case, as the update vectors Δ
have the same bound to their !2 norm (prior to adding noise).

4.4. FEDERATED VARIATIONAL AUTOENCODERS 56

Algorithm4:Federated separateVAEwith centralDP (FedVAESepCDP)
parameters: round participation fraction @ ∈ (0, @], requested DP privacy leak �,
total number of users # ∈ N, total number of rounds) ∈ N, dp noise scale
I ∈ R+, gradient clipping parameter (∈ R+, params of decoders Θ

Initialize encoder Φ0, decoder Θ0 and DP accountantℳ

�� ←
I(

@#

foreach round C ∈ {1, 2, . . . ,)} do
�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← ClientTrain(:,Θ)

end

ΔC+1 =
1
@#

∑
:∈�C Δ

C+1
:

ΘC+1 ← ΘC + ΔC+1 +N(0, ��2
�
)

ℳ .compose_subsampled_mechanism(I, @)
end
printℳ.get_epsilon(�)

Function ClientTrain(:,Θ0):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, gradient
clipping term (∈ R+, Size of latent dim =* , number of classification
classes � ∈ N, local encoder weights for the 8-th class Φ8 , local decoder
weights for the 8-th class Θ8 , encoder �(+ ;Φ8), decoder �(* ;Θ8), loss
function ;(G, Ĝ;Φ8 ,Θ8), server decoder weights for the 8-th class Θ0

8

foreach 8 ∈ {1, . . . ,C} do
Θ8 ← Θ0

8
ℬ8 ← (split data of the 8−th class of the :−th client into batches of size �)
foreach 1 ∈ ℬ8 do

���, ���← �(1;Φ8)
���, ���← flatten(���), flatten(���)
* ← (Generate 1 sample vector fromN(���, diag(���)2)
* ← (Reshape U to size � × =*)
1̂ ← �(* ;Θ8)
(Φ8 ,Θ8) ← (Φ8 ,Θ8) − �∇;(1, 1̂;Φ8 ,Θ8)

end
Δ8 = Θ8 − Θ0

8
//Calculate weight differences after train

Δ8 = Δ8 ·min

(
1, (√

�‖Δ8 ‖

)
//Gradient Clipping

end
Δ← concat(Δ1 ,Δ2 , . . . ,Δ�)//Due to clipping, ‖Δ‖2 ≤ (
return Δ

End Function

4.4. FEDERATED VARIATIONAL AUTOENCODERS 57

Algorithm 5: Federated seperate VAE with local DP (FedVAESepLDP)
parameters: round participation fraction @ ∈ (0, @], requested DP privacy leak �,
total number of users # ∈ N, total number of rounds) ∈ N, dp noise scale
I ∈ R+, gradient clipping parameter (∈ R+

Initialize encoder Φ0, decoder Θ0

Initialize dp accountant for each clientℳ = {ℳ1 ,ℳ2 , . . . ,ℳ# }
foreach round C ∈ {1, 2, . . . ,)} do

�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← ClientTrain(:,Θ0)

end

ΔC+1 =
1
@#

∑
:∈�C Δ

C+1
:

ΘC+1
�
← ΘC

�
+ ΔC+1

end
printℳ.get_epsilon(�)

Function ClientTrain(:,Θ0 ,ℳ:):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, gradient
clipping term (∈ R+, Size of latent dim =* , number of classification
classes � ∈ N, local encoder weights for the 8-th class Φ8 , local decoder
weights for the 8-th class Θ8 , encoder �(+ ;Φ8), decoder �(* ;Θ8), loss
function ;(G, Ĝ;Φ8 ,Θ8), server decoder weights for the 8-th class Θ0

8
, local

noise standard deviation �!

foreach 8 ∈ {1, . . . ,C} do
Θ8 ← Θ0

8
ℬ8 ← (split data of the 8−th class of the :−th client into batches of size �)
foreach 1 ∈ ℬ8 do

���, ���← �(1;Φ8)
���, ���← flatten(���), flatten(���)
* ← (Generate 1 sample vector fromN(���, diag(���)2)
* ← (Reshape U to size � × =*)
1̂ ← �(* ;Θ8)
(Φ8 ,Θ8) ← (Φ8 ,Θ8) − �∇;(1, 1̂;Φ8 ,Θ8)

end
Δ8 = Θ8 − Θ0

8
//Calculate weight differences after train

Δ8 = Δ8 ·min

(
1, (√

�‖Δ8 ‖

)
//Gradient Clipping

end
Δ← concat(Δ1 ,Δ2 , . . . ,Δ�)//Due to clipping, ‖Δ‖2 ≤ (
Δ← Δ +N(0, � · �2

!
)//Add noise

ℳ: .compose_subsampled_mechanism(�!/(, 1)
return Δ

End Function

4.4. FEDERATED VARIATIONAL AUTOENCODERS 58

Algorithm 6: Federated unified VAE with global DP (FedVAEUniCDP)
parameters: round participation fraction @ ∈ (0, @], requested DP privacy leak �,
total number of users # ∈ N, total number of rounds) ∈ N, dp noise scale
I ∈ R+, gradient clipping parameter (∈ R+

Initialize encoder Φ0, decoder Θ0, DP accountantℳ

�� ←
I(

@#

foreach round C ∈ {1, 2, . . . ,)} do
�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← ClientTrain(:,Θ0)

end

ΔC+1 =
1
@#

∑
:∈�C Δ

C+1
:

ΘC+1
�
← ΘC

�
+ ΔC+1 +N(0, ��2

�
)

ℳ .compose_subsampled_mechanism(I, @)
end
printℳ.get_epsilon(�)

Function ClientTrain(:,Θ0):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, gradient
clipping term (∈ R+, Size of latent dim =* , number of classification
classes � ∈ N, local encoder weights Φ, local decoder weights Θ, encoder
�(+ ;Φ), decoder �(* ;Θ), loss function ;(G, Ĝ;Φ,Θ), server decoder
weights Θ0

Θ← Θ0

ℬ ← (split data of the :−th client into batches of size �)
foreach (X, y) ∈ ℬ do

���, ���← �(X;Φ)
���, ���← flatten(���), flatten(���)
* ← (Generate 1 sample vector fromN(���, diag(���)2)
* ← (Reshape U to size � × =*)
* ← [*, one_hot(y)]//Concatenate* with one hot encoding of labels
1̂ ← �(* ;Θ)
(Φ,Θ) ← (Φ,Θ) − �∇;(1, 1̂;Φ,Θ)

end
Δ = Θ − Θ0//Calculate weight differences after train

Δ = Δ ·min

(
1, (

‖Δ‖

)
//Gradient Clipping

return Δ

End Function

4.4. FEDERATED VARIATIONAL AUTOENCODERS 59

Algorithm 7: Federated unified VAE with local DP (FedVAEUniLDP)
parameters: round participation fraction @ ∈ (0, @], requested DP privacy leak �,
total number of users # ∈ N, total number of rounds) ∈ N, dp noise scale
I ∈ R+, gradient clipping parameter (∈ R+

Initialize encoder Φ0, decoder Θ0, DP accountant
Initialize dp accountantℳ

�← I(

@#

foreach round C ∈ {1, 2, . . . ,)} do
�C ← (sample of qN distinct users)
foreach client : ∈ �C do

ΔC+1
:
← ClientTrain(:,Θ0 ,ℳ:)

end

ΔC+1 =
1
@#

∑
:∈�C Δ

C+1
:

ΘC+1
�
← ΘC

�
+ ΔC+1

end

Function ClientTrain(:,Θ0):
parameters: Batch size � ∈ N, learning rate � ∈ R+, client id :, gradient
clipping term (∈ R+, Size of latent dim =* , number of classification
classes � ∈ N, local encoder weights Φ, local decoder weights Θ, encoder
�(+ ;Φ), decoder �(* ;Θ), loss function ;(G, Ĝ;Φ,Θ), server decoder
weights Θ0, local noise standard deviation �!

Θ← Θ0

ℬ ← (split data of the :−th client into batches of size �)
foreach (X, y) ∈ ℬ do

���, ���← �(X;Θ)
���, ���← flatten(���), flatten(���)
* ← (Generate 1 sample vector fromN(���, diag(���)2)
* ← (Reshape U to size � × =*)
* ← [*, one_hot(y)]//Concatenate* with one hot encoding of labels
1̂ ← �(* ;Θ)
(Φ,Θ) ← (Φ,Θ) − �∇;(1, 1̂;Φ,Θ)

end
Δ = Θ − Θ0//Calculate weight differences after train

Δ = Δ ·min

(
1, (

‖Δ‖

)
//Gradient Clipping

Δ← Δ +N(0, ��2
!
)

ℳ .compose_subsampled_mechanism(�!/(, @)
return concat(Δ1 ,Δ2 , . . . ,Δ�);

End Function

4.4. FEDERATED VARIATIONAL AUTOENCODERS 60

4.4.3 Implementation

Let’s now discuss some aspects of the implementation of Federated VAEs. As we
previously discussed, we have used 2 different datasets in our experiments: The EMNIST
and the Epilepsy dataset. Hence, for each one of those datasets, we have used a different
Neural Network architecture for our VAEs. In particular, when it comes to EMNIST, we
used a Convolutional Variational Autoencoder architecture (CVAE), where the encoder
is:

• Input layer of size 28 × 28

• Conv2D layer with 32 filters and stride 2

• 2×Conv2D layers with 64 filters and stride 2

• Flatten layer

• Dense layer with 2 · LATENT_DIM nodes

and the decoder is:

• Input layer of size LATENT_DIM + �

• Dense layer with 1568 units

• Reshape layer with target shape 7 × 7 × 32

• Inverse Conv2D layer with 32 filters and stride 1

• Inverse Conv2D layer with 64 filters and stride 1

• Inverse Conv2D layer with 64 filters and stride 2

• Inverse Conv2D layers with 32 filters and stride 2

• Inverse Conv2D layers with 1 filter and stride 1

In the figure below, we can see a visualization of this variational autoencoder for the
EMNIST dataset:

μ
x

6

σ
x

6

Conv2D

Flatten

Dense

Reshape

Conv2DTranspose

28

28

28

28

Figure 4.4.3: Visualization of the EMNIST Variational Autoencoder

4.4. FEDERATED VARIATIONAL AUTOENCODERS 61

The reason we chose this architecture for the EMNIST VAE is that it is very similar to
the architecture used in an official tensorflow tutorial for Convolutional VAEs [14]. In this
tutorial, this convolutional architecture for VAEs seems to demonstrate a good generative
performance in the centralized MNIST dataset, and that’s why we decided to adapt this
architecture to our setting.

When it comes to the Epilepsy dataset, we used a standard dense architecture with
relu activations. In particular, the architecture of our encoderwas:

• Input layer of size 178

• Dense RELU layer with 128 units

• Dense RELU layer with 64 units

• Dense RELU layer with 32 units

• Dense RELU layer with 16 units

• Dense layer with 2 · LATENT_DIM nodes

and the architecture of our decoderwas:

• Input layer of size LATENT_DIM

• Dense RELU layer with 16 units

• Dense RELU layer with 32 units

• Dense RELU layer with 64 units

• Dense RELU layer with 128 units

• Dense layer with 178 units (no activation)

The architecture of the VAE for the Epilepsy dataset was partially inspired by the architec-
ture used for Tabular VAEs by the Synthetic Data Vault project of MIT [55]. A schematic
diagram of our Epilepsy VAE architecture can be shown in figure (4.4.4).

4.4. FEDERATED VARIATIONAL AUTOENCODERS 62

σ
x

μ
x

4

4

4

178
178

128
128

64
64

32
32

16
16

sampling

Figure 4.4.4: Visualization of the Epilepsy Variational Autoencoder

Evaluation

Another important aspect of the implementation of Federated VAEs is finding a way
to assess the quality of the artificial data generated by the VAEs. Hence, although many
metrics have been proposed for this task, we will use the accuracy of the student network
for our experiments.

The student network is a classification network that will be trained using the artificial
data generated fromourVAEs. Then, wewill evaluate the accuracy of the student network
on the real test set. Hence, if our VAEs generate a high quality artificial dataset that is
very similar to the real training set, then we expect the accuracy of the student network to
be high. By the same token, if the quality of the data generated is low, we expect to have
lower accuracy on the test set. Hence, we can use the accuracy of the student network as
a metric for the quality of the generated data.

However, although accuracy is generally a good metric for balanced classification
tasks, it is not that good when it comes to imbalanced classification. For this reason, as a
metric for the Epilepsy dataset, we used f1-score instead of accuracy, due to the fact that
the Epilepsy dataset is highly imbalanced, with 80% of samples corresponding to label 0
and only 20% of the samples corresponding to label 1. On the contrary, when it comes to
the EMNIST dataset, we used accuracy instead of f1-score, due to the fact that the dataset
was balanced.

For clarification purposes, we present the formulas used to calculate Accuracy and
F1-score for a classification task. Note that the formula for accuracy works for both binary
and multi-label classification problems, whereas the formula for F1-score works only for
binary classification tasks:

Accuracy =
Correct predictions
Total predictions

and:
F1-score = 2 · Precision · RecallPrecision + Recall

4.4. FEDERATED VARIATIONAL AUTOENCODERS 63

where:
Precision = True Positive

True Positive+False Positive
and:

Recall = True Positive
True Positive+False Negative

When it comes to the architecture of the Student Network, we used a Convolutional
Neural Network for EMNIST and a standard multi-layer neural network for Epilepsy. In
particular, the architecture we used for the EMNIST dataset is the following:

• Input layer of size 28 × 28

• Conv2D layer with 32 filters, 3 × 3 kernel and stride 1

• Max Pooling 2D layer with pool size 2 × 2

• Flatten layer

• Dense layer with 100 units

• Dense softmax layer with � = 10 units

This architecture was inspired by online tutorials on designing high accuracy CNN clas-
sifiers for the MNIST dataset.

On the other hand, the architecture of the student network we used for the Epilepsy
dataset is the following:

• Input layer of size 178

• Dense RELU layer with 1024 units

• Dropout layer with dropout rate 0.25

• Flatten layer

• Dense sigmoid layer with 1024 units

• Dropout layer with dropout rate 0.4

• Dense sigmoid layer with 2 units

This architecture was chosen after a lot of trial, error and experimentation, where we
found that the architecture performs relatively well in classifying samples of the epilepsy
dataset.

4.4.4 Challenges

During the implementation of Federated VAEs, we faced several challenges. The
most important one was that Federated VAEs exhibited a very unstable behavior during
training, which in many instances caused a collapse of the student network accuracy.
However, after a lot of experimentation, we found that the root cause of this behavior was
an exploding loss functionwhich caused an explosion of the gradients. Hence, in order to
alleviate this problem, we introduced some level of value clipping into the loss function,
so that it never exceeds the maximum limit for float32 values.

At the same time, VAEs also required a considerable level of hyperparameter tuning.
In particular, we had to experiment a lot with different batch sizes, different size of latent
dimension,different learning rates and different Neural Network architectures. Hence, af-
ter a lot of fine-tuning and experimentation, we managed to achieve descent performance
using our federated VAEs.

4.5. RESULTS 64

4.5 Results

In this section, we are going to present the experimental results from training our
federated VAEs under different noise regimes, data distribution policies and model sizes.
We are also going to compare Federated DP VAEs against other models that attempt to
solve the same problem as the one we are solving, such as PrivBayes and Federated DP
GANs.

Before we begin, we should note that the implementation of all models and experi-
ments was done in Python 3.7 using numpy and Tensorflow 2. Then, the experiments
were run in a desktop computer with 16GB of ram, Quad-core 4GHz processor (i7-6700k)
and a 6-GB Nvidia GPU card (GTX 1060 GB). Also, in order for tensorflow to be able to
run on the GPU, we used Cuda and CudNN libraries, which significantly accelerated the
training process.

In order to log our results during training we used Tensorboard. Then, we wrote a
python script which reads Tensorboard logs, creates the experimental figures and calcu-
lates the level of Differential Privacy for every experimental setting.

4.5.1 Federated vs Centralized DP VAEs

Firstly, we are going to study the performance of Federated DP VAEs under different
noise regimes. The performance evaluationwill be done using the accuracy of the student
network for the EMNISTdataset andusing f1 score of the student network for the Epilepsy
dataset. Those scores will be calculated by training the Student network on the artificial
data generated from our VAEs and then evaluating the student network on the real test
set.

In order to facilitate comparison, we will also use 2 different baselines:

a) The accuracy/f1 score of a Student network that is trained directly on real training
data. Those real training data are the result of merging the federated datasets into a
common, Centralized dataset. In this scenario, VAEs are not involved at all, but we
use this metric as a baseline to measure the maximum accuracy/f1 score that our
VAEs could theoretically achieve. Clearly, however, VAEs cannot compete against
this baseline, as the artificial dataset generated from the VAEs will always be of
lower quality than the real dataset.

b) The accuracy/f1 score that we would have if we accumulated all the data in the
server, traineda centralizedVAEusing that data and then evaluated theperformance
of the student network the artificial data generated from that VAE. This baseline acts
as an indicator of how much utility we are sacrificing by moving from a centralized
to a federated setting.

At this stage, it should be noted that the data distribution among clients follows
a uniform distribution, but in the next section we are also going to study other data
distributions as well. In any case, the hyperparameters used for the EMNIST and the
Epilepsy datasets are shown on Table (4.5.1) and (4.5.2) respectively.

4.5. RESULTS 65

learning rate � latent dim =* batch size � L2 clip parameter (

2 · 10−3 8 16 0.1

total users # users per round @# federated rounds) noise scale I

20 10 1500 0, 0.05, 0.1

data distribution seperation

UNIFORM 1 VAE for all classes

Table 4.5.1: Hyperparameters for EMNIST Federated VAEs

learning rate � latent dim =* batch size � L2 clip parameter (

1 · 10−5 8 16 0.1

total users # users per round @# federated rounds) noise scale I

20 10 1200 0, 0.1, 0.2, 0.5

data distribution seperation

UNIFORM 1 VAE per class

Table 4.5.2: Hyperparameters for Epilepsy Federated VAEs

Using those hyperparameters, we ran FedVAEUniCDP algorithm on EMNIST and
FedVAESepCDP algorithm on epilepsy6, as shown in Figures (4.5.1) and (4.5.2) respec-
tively. In these figures, we have plotted the accuracy/f1 score of the student network
when trained on data from centralized and federated VAEs under different noise regimes.
Also, for more robust results, the accuracy/f1 score is calculated as the average accura-
cy/f1 score in 10 different runs of the experiment. Last but not least, for every federated
scenario presented in Figures (4.5.1) and (4.5.2), we have calculated the respective privacy
budgets in Tables (4.5.3) and (4.5.4), not just for the simulation scenarios where # = 20,
but also for realistic, scaled-up scenarios where # ' 104.

6The reasonweuse FedVAESepCDPalgorithm instead of FedVAEUniCDP for Epilepsy is that the Epilepsy
dataset is highly imbalanced. Hence, if we used 1 VAE for all classes (i.e. use algorithm FedVAEUniCDP),
then the VAEwould not be efficient in generating theminority class, as themajority class would dominate the
training. Hence, that’s why we use FedVAESepCDP in Epilepsy, as we want the majority and the minority
class to be associated with different VAEs.

4.5. RESULTS 66

0 200 400 600 800 1000 1200 1400
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
ud

en
t E

M
NI
ST

 a
cc
ur
ac
y
sc
or
e

Student EMNIST accuracy score

Baseline (No VAE)
C nt(aliz d VAE (σG=0)
C nt(aliz d VAE (σG=6 ⋅ 10−4)
Centrali−ed VAE (σG=1.2 ⋅ 10.3)
F dVAEUniCDP (σG=0)
F dVAEUniCDP (σG=2.5 ⋅ 10.3)
F dVAEUniCDP (σG=5 ⋅ 10.3)

Figure 4.5.1: Accuracy of DpFedVAEs on EMNIST under different noise regimes

Model DP in simulation (N=20) DP in scaled population (N=30000)

Centralized VAE (�� = 0) (∞, 1.00 · 10−6) -

Centralized VAE (�� = 6 · 10−4) (1.26 · 106 , 1.00 · 10−6) -

Centralized VAE (�� = 1.2 · 10−3) (3.17 · 105 , 1.00 · 10−6) -

FedVAEUniCDP (�� = 0) (∞, 3.71 · 10−2) (∞, 1.19 · 10−5)

FedVAEUniCDP (�� = 2.5 · 10−3) (5.99 · 105 , 3.71 · 10−2) (2.63 · 100 , 1.19 · 10−5)

FedVAEUniCDP (�� = 5 · 10−3) (1.49 · 105 , 3.71 · 10−2) (1.28 · 100 , 1.19 · 10−5)

Table 4.5.3: (�, �)-DP in different scenarios of EMNIST

4.5. RESULTS 67

0 200 400 600 800 1000 1200
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
St

ud
en

t E
pi

le
ps

y
F1

 sc
or

e

Student Epilepsy F1 score

Baseline (No VAE)
Central zed VAE (σG = 0)
Central zed VAE (σG = 5 ⋅ 10−3)
Central zed VAE (σG = 1 ⋅ 10−2)
FedVAESepCDP (σG = 0)
FedVAESepCDP (σG = 5 ⋅ 10−3)
FedVAESepCDP (σG = 1 ⋅ 10−2)
FedVAESepCDP (σG = 2.5 ⋅ 10−2)

Figure 4.5.2: Accuracy of DpFedVAEs on Epilepsy under different noise regimes

Model DP in simulation (N=20) DP in scaled population (N=10000)

Centralized VAE (�� = 0) (∞, 1.00 · 10−6) -

Centralized VAE (�� = 5 · 10−3) (1.46 · 105 , 1.00 · 10−6) -

Centralized VAE (�� = 1 · 10−2) (4.29 · 104 , 1.00 · 10−6) -

FedVAESepCDP (�� = 0) (∞, 3.71 · 10−2) (∞, 3.98 · 10−5)

FedVAESepCDP (�� = 5 · 10−3) (1.19 · 105 , 3.71 · 10−2) (3.41 · 100 , 3.98 · 10−5)

FedVAESepCDP (�� = 1 · 10−2) (2.92 · 104 , 3.71 · 10−2) (1.65 · 100 , 3.98 · 10−5)

FedVAESepCDP (�� = 2.5 · 10−2) (4.01 · 103 , 3.71 · 10−2) (6.44 · 10−1 , 3.98 · 10−5)

Table 4.5.4: (�, �)-DP in different scenarios of Epilepsy

By examining Figures (4.5.1), (4.5.2) and tables (4.5.3), (4.5.4), we can draw the follow-
ing conclusion for our Federated VAEs:

When VAEs are trained on EMNIST without the presence of noise, the Federated VAE
model (i.e. FedVAEUniCDP) seems to have very similar accuracy to the Centralized VAE
model, with a difference of only 2 − 3 percentage points. If we then add a moderate

4.5. RESULTS 68

amount of noise (�� = 2.5 · 10−3) to the federated model, then the drop in accuracy is
rather negligible, but the gain in privacy is significant: From having no privacy, we end
up having � ' 105 CDP privacy budget in simulation and single-digit � CDP in a scaled
population of 30000 clients. Then, when we double the level of noise of FedVAEUniCDP
(i.e. set �� = 5 · 10−3), we can observe a few percentage points drop in accuracy, but
with the benefit of � halving in the scaled population setting. In other words, if we
use noise �� = 5 · 10−3 in FedVAEUniCDP, then we can achieve a maximum accuracy
of approximately 84% with � ' 1 in 30000 clients. On the contrary, when it comes to
the Centralized VAE model, the privacy guarantees it offers are very weak and cannot
be improved by scaling the population size the way we did with federated VAEs, as the
model is Centralized.

When it comes to the Epilepsy dataset, we can see that the non-noisy federated VAE
model has an f1-score difference of 8-9 percentage points compared to the centralized
VAE model. However, as we add noise to FedVAESepCDP up to a certain point, the
f1-score seems to increase instead of decrease. In particular, a noise of �� = 1 · 10−2

increases the f1-score by almost 3 percentage points compared to the non-noisy scenario
of FedVAESepCDP. This behavior is attributed the fact that a moderate level of noise
may act as a regularizer for the VAEs training, essentially avoiding overfitting, improving
generalization and contributing to higher f1-scores. However, as we would expect, a high
level of noise destabilizes the training process, as seen when �� = 2.5 ·10−2. Nevertheless,
if we run FedVAESepCDPAlgorithm on Epilepsy using a noise scale of �� = 1 ·10−2, then
we can achieve an F1-score of 85%, while achieving CDP with � ' 1.7 in a population of
approximately 10000 clients.

(a) Epoch 1400, �� = 0 (b) Epoch 1400, �� = 2.5·10−3 (c) Epoch 1400, �� = 5 · 10−3

Figure 4.5.3: Images generated from FedVAEUniCDP in EMNIST

4.5.2 Comparing different data distribution policies

As we discussed in previous sections, one of the fundamental challenges of FL is
that the data among different clients are not IID. Hence, to explore the effect this has on
the quality of the generated data, we evaluated our Federated VAEs using different data
distribution policies (Uniform, KMEANS andGeometric) whichwere discussed in section
(4.4.1). Just as before, we have plotted the accuracy/f1 score of the student network under
different noise regimes. However, this time, we have tested different data distribution
policies, as shown in figures (4.5.4) and (4.5.5) for the EMNIST and the Epilepsy dataset.

In these figures, the accuracy/f1 score were calculated on an average of 10 runs of the
experiment, and the DP guarantees of the different scenarios are the same as the ones in
tables (4.5.3) and (4.5.4). Additionally, in order to facilitate the comparison of the different
scenarios, we have also sorted our data distribution schemes according to decreasing

4.5. RESULTS 69

maximum accuracy/f1 score in tabular form, as shown in tables (4.5.5) and(4.5.6).

0 200 400 600 800 1000 1200 1400
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
St
ud

en
t E

M
NI
ST

 a
cc
ur
ac
y
sc
or
e

Student EMNIST accuracy score

Baseline (No VAE)
FedVAEUniCDP uniform (σG=0)
FedVAEUniCDP kmeans (σG=0)
FedVAEUniCDP geometric (σG=0)
FedVAEUniCDP uniform (σG=2.5 ⋅ 1003)
FedVAEUniCDP kmeans (σG=2.5 ⋅ 1003)
FedVAEUniCDP g om tric (σG=2.5 ⋅ 1003)
FedVAEUniCDP uniform (σG=5 ⋅ 1003)
FedVAEUniCDP kmeans (σG=5 ⋅ 1003)
FedVAEUniCDP g om tric (σG=5 ⋅ 1003)

Figure 4.5.4: EMNIST accuracy under different data distribution strategies

0 200 400 600 800 1000 1200
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

St
ud

en
t E

pi
le
ps
y
F1
 sc

or
e

Student Epilepsy F1 score

Baseline (No VAE)
FedVAESepCDP unifo(m (σG=0)
FedVAESepCDP kmean) (σG=0)
FedVAESepCDP geomet(ic (σG=0)
FedVAESepCDP unifo(m (σG=5 ⋅ 10−3)
FedVAESepCDP kmean) (σG=5 ⋅ 10−3)
FedVAESepCDP geomet(ic (σG=5 ⋅ 10−3)
FedVAESepCDP unifo(m (σG=1 ⋅ 10−2)
FedVAESepCDP kmean) (σG=1 ⋅ 10−2)
FedVAESepCDP geomet(ic (σG=1 ⋅ 10−2)

Figure 4.5.5: Epilepsy f1-score under different data distribution strategies

4.5. RESULTS 70

Model Maximum accuracy

FedVAEUniCDP uniform (�� = 0) 0.894

FedVAEUniCDP geometric (�� = 2.5 · 10−3) 0.884

FedVAEUniCDP uniform (�� = 2.5 · 10−3) 0.882

FedVAEUniCDP geometric (�� = 0) 0.872

FedVAEUniCDP uniform (�� = 5 · 10−3) 0.845

FedVAEUniCDP kmeans (�� = 2.5 · 10−3) 0.842

FedVAEUniCDP geometric (�� = 5 · 10−3) 0.833

FedVAEUniCDP kmeans (�� = 5 · 10−3) 0.831

FedVAEUniCDP kmeans (�� = 0) 0.770

Table 4.5.5: Maximum accuracy in different scenarios of EMNIST

Model Maximum F1 score

FedVAESepCDP kmeans (�� = 0) 0.868

FedVAESepCDP geometric (�� = 1 · 10−2) 0.862

FedVAESepCDP kmeans (�� = 5 · 10−3) 0.862

FedVAESepCDP kmeans (�� = 1 · 10−2) 0.858

FedVAESepCDP uniform (�� = 1 · 10−2) 0.849

FedVAESepCDP geometric (�� = 0) 0.836

FedVAESepCDP geometric (�� = 5 · 10−3) 0.823

FedVAESepCDP uniform (�� = 0) 0.820

FedVAESepCDP uniform (�� = 5 · 10−3) 0.816

Table 4.5.6: Maximum f1-score in different scenarios of Epilepsy

By looking at Table (4.5.5), we can see that the uniform data distribution strategy
without noise seems to generate the best accuracy results for EMNIST. The reason for this
is that the uniform distribution strategy ensures i.i.d samples in the federated process.

4.5. RESULTS 71

Hence, since the distribution of samples among clients is not skewed, we expect this to
have a positive impact on training. In contrast, the kmeans data distribution seems to
perform worse, as it generates clients with very highly imbalanced data. In particular,
kmeans results in few clients having many data points and most clients having very few
data points. Hence, given that every client is treated equally in our training process
(i.e. all updates have the same weight), then the updates of the many low-utility clients
(i.e. clients having little data) may negatively influence training. Lastly, the geometric
distribution seems to be between the uniform and the KMEANSwith respect to accuracy,
as it is more skewed than the uniform distribution, but less skewed than the KMEANS
distribution.

On the contrary, by looking at Table (4.5.6), we can see that in the Epilepsy dataset,
the distribution strategy that yields the best results is kmeans, then the geometric and
then the uniform distribution. This behavior may be attributed to the characteristics of
the epilepsy dataset itself. For instance, when using KMEANS on Epilepsy, the clients
which have a lot of data (as seen in Figure (4.4.2b)), may be able to train their private
encoders very well. Hence, since those encoders remain private and are NOT updated
by the federated process (only the decoders are updated), they becomemuch better every
time they are trained using the large volume of local data that high-utility clients have.
This leads to some clients having very rich private encoders, which may positively affect
the training process.

In light of these, we can conclude that the impact of data distribution on the quality
of the generated data is not clear, as it depends strongly on the underlying dataset used,
and probably on whether we use 1 VAE for all classes (as we did with EMNIST) or 1 VAE
for every class (as we did with Epilepsy).

4.5.3 Accuracy vs number of parameters

Since VAEs are Neural Networks, it would be reasonable to study the relationship
between the number of network parameters (e.g. weights and biases) and the quality
of the generated data. For this reason, we experimented with different neural network
sizes and different noise regimes, while measuring the accuracy/f1-score of the student
network in as shown in figures (4.5.6) and (4.5.7). At this point, it should be noted that
when it comes to EMNIST, we measured the total parameters of the 1 VAE we used (in
EMNIST we use 1 VAE for all classes), but when it comes to Epilepsy, we measured the
sum of parameters of the 2 VAEs we used (in Epilepsy we used 1 VAE for each one of the
2 classes).

4.5. RESULTS 72

20000 40000 60000 80000 100000 120000 140000 160000
Number of parameters

0.82

0.84

0.86

0.88
M

ax
im

um
 a

cc
ur

ac
y

sc
or

e
vs

 E
M

NI
ST

 p
ar

am
et

er
s

Maximum accuracy score vs EMNIST parameters

FedVAEUniCDP (σG = 0)
FedVAEUniCDP (σG=2.5 ⋅ 10−3)
FedVAEUniCDP (σG=5 ⋅ 10−3)

Figure 4.5.6: EMNIST accuracy vs parameter number

25000 30000 35000 40000 45000 50000 55000
Number of pa amete s

0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

M
ax

im
um

 f1
 sc

o
e

Maximum f1 sco e
FedVAESepCDP (σG=0)
FedVAESepCDP (σG=5 ⋅ 10−3)
FedVAESepCDP (σG=1 ⋅ 10−2)

Figure 4.5.7: Epilepsy f1 score vs parameter number

By looking at the 2plots above, we can see that reducing the number of parameters, the
accuracy/f1 score decreases. This behavior is to be expected, as a reduction in the model
parameters, generally leads to a poorer modeling of the distributions of our samples, thus
resulting in lower-fidelity artificial samples. However, as we can see, if we increase the
level of noise, accuracy/f1-score drop at a slower pace when reducing the number of
parameters. This may be a result of regularization, as the more noise we add, the less
impact the parameters of the neural network have on the final result. For instance, if we

4.5. RESULTS 73

add too much noise, the output samples generated by the VAE will be of the same poor
quality, no matter how many parameters the network has.

4.5.4 Comparison with PrivBayes

In order to see howwell our generative model performs, we compared it with another
method called PrivBayes that tries to solve the same problem as the one we are solving.
In particular, PrivBayes was adapted to a federated setting by V. Digalakis and C. Zachar-
ioudakis in [54] and [18] and can be used for differentially private data generation from
distributed datasets.

For our comparison, we adjusted and optimized the code provided by [18] in order to
be able to run federated PrivBayes on the EMNIST and the Epilepsy datasets. The main
challenge of running PrivBayes is that it is very computationally expensive, especially for
bigger datasets. For instance, in the EMNIST dataset, which consists of samples with 282

features, federated PrivBayes takes almost 24 hours to run, even if we pick the smallest
possible degree for our Bayesian Network (: = 1).

In light of all these, we used a degree of : = 1 for all of our experiments and we
then ran the PrivBayes algorithm under different noise regimes and data distribution
policies. In particular, we tested PrivBayes under different values of � (� = ∞, � =

103 and � = 1) and under different data distribution schemes (kmeans,geometric and
uniform). Then, we evaluated the quality of the generated data using classification
accuracy/f1 score as our metrics (accuracy was used for EMNIST and F1-score was used
for the Epilepsy dataset). The accuracy/f1 score was evaluated by 10 different classifiers
(XGBoost, Decision Tree, KNN, Linear SVC, SVC,Random Forest, Multi-Layer Perceptron,
Ada-Boost, Gradient-Boosting, GaussianNB, LinearDiscriminantAnalysis andQuadratic
Discriminant Analysis).

Then, for each dataset, we picked the best classifier and recorded its accuracy/f1 score
in the tables (4.5.7) and (4.5.8) for the EMNIST and the Epilepsy datasets respectively. In
the same tables we also recorded the DP guarantees achieved in the different settings,
where a value of � = ∞ corresponds to no differential privacy.

Last but not least, for the actual comparison with our VAEs, we created figures (4.5.8)
and (4.5.9). In those figures, we have plotted the accuracy/f1 score of PrivBayes against
different privacy budgets and under different data distribution policies. Then, we also
plotted the accuracy/f1 scores of our VAEs on a scaled population size of ∼ 104 clients.
At this point, we should note that the experiments with PrivBayes were performed under
the same federated setting as the VAE experiments (i.e. same dataset, same number of
clients # = 20, same distribution policy in clients). However, during the comparison
in (4.5.8) and (4.5.9), the type of DP guarantees PrivBayes and VAEs offer are different:
PrivBayes offers local �-DP out of the box, while VAEs offer (�, �)-CDP which assumes
either a trusted server or a secure aggregation protocol. Also,unlike PrivBayes, federated
VAEs need around ∼ 104 clients in order to achieve single-digit DP, despite the fact that
104 clients are not that many for a real-world FL scenario (in cross-device FL, the number
of devices can reach even 1010).

4.5. RESULTS 74

Model DP (�, �) Accuracy of best classifier

EMNIST centralized (baseline) - 0.897

PrivBayes UNIFORM (∞, 0) 0.723

PrivBayes UNIFORM (1 · 103 , 0) 0.123

PrivBayes UNIFORM (1 · 100 , 0) 0.128

PrivBayes KMEANS (∞, 0) 0.830

PrivBayes KMEANS (1 · 103 , 0) 0.513

PrivBayes KMEANS (1 · 100 , 0) 0.114

PrivBayes GEOMETRIC (∞, 0) 0.732

PrivBayes GEOMETRIC (1 · 103 , 0) 0.175

PrivBayes GEOMETRIC (1 · 100 , 0) 0.082

Table 4.5.7: Accuracy and privacy for PrivBayes in EMNIST

10−1 100 101 102 103 104 2
ε (L(wer ε means m(re priva 0)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy vs Priva y budget in EMNIST

FedVAEUniCDP UNIFORM (3 3 104 lients)
FedVAEUniCDP KMEANS (3 3 104 lients)
FedVAEUniCDP GEOMETRIC (3 3 104 lients)
PrivBa0es UNIFORM
PrivBa0es KMEANS
PrivBa0es GEOMETRIC

Figure 4.5.8: PrivBayes vs Federated VAEs in EMNIST

4.5. RESULTS 75

Model DP (�, �) F1 score of best classifier

Epilepsy centralized (baseline) - 0.940

PrivBayes UNIFORM (∞, 0) 0.813

PrivBayes UNIFORM (1 · 103 , 0) 0.836

PrivBayes UNIFORM (1 · 100 , 0) 0.712

PrivBayes KMEANS (∞, 0) 0.812

PrivBayes KMEANS (1 · 103 , 0) 0.779

PrivBayes KMEANS (1 · 100 , 0) 0.133

PrivBayes GEOMETRIC (∞, 0) 0.805

PrivBayes GEOMETRIC (1 · 103 , 0) 0.812

PrivBayes GEOMETRIC (1 · 100 , 0) 0.621

Table 4.5.8: Accuracy and privacy for PrivBayes in Epilepsy

10−1 100 101 102 103 104 3
ε (Lo0er ε mea(s more privac1)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s
co
re

F1-score vs Privacy budget in Epilepsy

FedVAESepCDP UNIFORM (1 ⋅ 104 clients)
FedVAESepCDP KMEANS (1 ⋅ 104 clients)
FedVAESepCDP GEOMETRIC (1 ⋅ 104 clients)
PrivBayes UNIFORM
PrivBayes KMEANS
PrivBayes GEOMETRIC

Figure 4.5.9: PrivBayes vs Federated VAEs in Epilepsy

4.5. RESULTS 76

By looking at figure (4.5.8), it is evident that PrivBayes demonstrates very poor perfor-
mance on theEMNISTdataset, especially in higher levels of noise. In fact, the performance
of PrivBayes when � = 1 is no better than a classifier which selects every class of EM-
NIST uniformly at random without taking into account the data at all. Hence, the data
generated by PrivBayes on EMNIST are equivalent to random noise. The reason for this
is that PrivBayes is inherently not suitable for reproducing image datasets, as it doesn’t
take into account the spatial relationships of the different pixels of the image. In fact,
in order to capture those relationships, we would have to use a very high degree : for
the Bayesian Network, which would lead to an explosion in complexity. For instance, in
the experiments we did, even for : = 1, PrivBayes took almost a day to run on EMNIST,
and increasing : beyond 1 would lead to an exponential increase in computational time.
Hence, in light of all these, when comparing Federated VAEs with PrivBayes on EMNIST,
VAEs seem to demonstrate a better performance, under the assumption thatwe have 3 ·104

clients at our disposal. Hence, if this condition ismet, thenVAEs can achieve single-digit �
on EMNIST with ∼ 83% accuracy, while PrivBayes achieves roughly the same guarantees
with 10% accuracy on average.

Then, by examining figure 4.5.9, it is evident that for � = 1, PrivBayes demonstrates
mediocre performance for Uniform and Geometric distributions and very poor perfor-
mance for KMEANS distribution. However, the performance of PrivBayes in Epilepsy
is clearly better than the performance in EMNIST, as PrivBayes is much better suited for
synthesizing tabular datasets than image datasets. In any case, Federated VAEs seem to
win PrivBayes on the Epilepsy dataset as well, under the assumption that we have a client
population of around 104 clients or more. In particular, PrivBayes achieves single-digit
� with a maximum f1-score of ∼ 70% on uniform data distributions of Epilepsy, while
Federated VAEs achieve an f1-score of around 85%, while maintaining single-digit � in
104 clients.

At this point, we should note again that although Federated VAEs seem to achieve
better performance than PrivBayes on both EMNIST and Epilepsy, Federated VAEs make
more assumption than PrivBayes. In particular, the DP guarantees given by Federated
VAEs assume the existence of a trusted server or a secure aggregation protocol, and at
the same time, the participation of around 104 clients. On the other hand, PrivBayes
doesn’t make such assumptions and offers (�, 0) differential privacy for a small number
of clients. At the same time, the limited scope of our experiments doesn’t allow us
to generalize our conclusions regarding the comparative performance of Federated VAEs
andPrivBayes. In particular, in order to perform amore rigorous comparison of Federated
VAEs with PrivBayes, we would need to experiment with much more datasets (tabular
and image ones), with different degrees for the Bayesian network, different strategies
of constructing the Bayesian Network described in [54] (i.e. sharing the noisy sufficient
statistics, noisy majority voting, sharing the noise model) and probably with different
classifiers to estimate the quality of the synthetic data generated by PrivBayes.

4.5.5 Comparison with GANs

Since GANs are considered to be state-of-the-art models when it comes to data gener-
ation, it would be very reasonable to compare our VAEs against GANs in a federated and
DP setting. In order to run a fair comparison against GANs, wewill rely on thework done
by Augenstein et al. [13], which we described in Section (4.2.1). Using this work and its
implementation [30] as our reference, we adapted GANs to our federated DP setting and
ran experiments with the EMNIST dataset under different noise regimes. At this point,
it should be noted that in order to use DPFedGans in our setting, we trained 10 GANs, 1
for every class of EMNIST, where the 8-th GAN was trained using the subset of the data
that corresponds to the 8-th class. Then, we used Algorithm (3) for the actual training

4.5. RESULTS 77

process. The parameters we used for Federated DP GANs are similar to the ones we used
for Federated DP VAEs and can be shown in table (4.5.9).

Using the setting we described, we trained Federated DP GANs on EMNIST, while
using the Student network to assess the quality of the generated data. Just like with
Federated VAEs, the student network was trained on artificial data and evaluated on the
real test set. Then, we plotted the accuracy of the student network every 50 federated
rounds, as shown on Figure (4.5.10). Also, we ran Algorithm (3) under different noise
levels (�� = 0, �� = 2.5 · 10−3 and �� = 5 · 10−3) and then calculated the DP guarantees of
DPFedGANs in simulated and scaled populations, as shown in table (4.5.10). Then, for
the actual comparison of Federated GANs with Federated DP VAEs, we created Radar
plot (4.5.11) in order to facilitate comparison across 4 different factors. In particular, we
compared our FedVAEUniCDP against DPFedGAN across the following dimensions:

• Privacy budget in 3 · 104 clients: In section (4.5.1), we found out that if we use
= 30000 clients, then the FedVAEUniCDP algorithm can achieve single-digit �
CDP guarantees on EMNIST, without significantly compromising utility. Hence,
when comparing Federated DP VAEs with GANs, we will compare their respective
privacy budgets � in a scaled-up population scenario where � = 1/#1.1, # = 30000
and the notion of Differential Privacy used is CDP.

• Student Accuracy: This metric refers to the accuracy of the student network when
trained on artificial data and then tested on the real test set. Student accuracy can
be used to assess the quality of the synthetic datasets generated from the feder-
ated VAEs and GANs. However, for more concrete results, student accuracy was
calculated by averaging multiple runs of Federated DP GANs and VAEs.

• Number of Network Parameters: Since GANs and VAEs are both neural networks,
one other metric we can use when comparing them is the number of network
parameters that each one of these model requires. Neural Network parameters
can be either trainable parameters, such as weights and biases trained through
backpropagation, or non-trainable parameters, such as the parameters of Batch
Normalization layerswhich are not trained through backpropagation. Hence, when
it comes to FedVAEUniCDP, we counted the number of total parameters of the 1
encoder and the 1 decoder we used (we remind the reader that the FedVAEUniCDP
algorithm has 1 VAE for all classes). On the other hand, when it comes to Federated
GANs, despite the fact that we used 10 GANs in total (i.e. 1 for every class), we
accounted for the parameters of just 1 GAN (i.e 1 Generator and 1 Discriminator),
in order to make the comparison more fair.

• Training time: The last metric we will use when comparing VAEs to GANs is the
time it takes for our federated model to train. When it comes to training time, it
should be noted that all the experiments were run in a computer with an NVIDIA
GPU, which significantly accelerates training.

4.5. RESULTS 78

gen. learning rate �� disc. rate �� latent dim =* batch size �

1 · 10−3 1 · 10−4 30 10

L2 clip parameter (total users # users per round @# federated rounds)

1 10 5 1400

noise scale I data distribution class seperation

0, 0.01, 0.02 UNIFORM 1 GAN for every class

Table 4.5.9: Hyperparameters for EMNIST Federated DP GANs

0 200 400 600 800 1000 1200 1400
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DP
Fe
dG

AN
 E
M
NI
ST

 st
ud

en
t a

cc
ur
ac
y

DPFedGAN EMNIST student accuracy

Baseline (No VAE)
D(FedGAN uni o)m (σG = 0)
D(FedGAN uni o)m (σG = 2.5 ⋅ 10.3)
D(FedGAN uni o)m (σG = 5 ⋅ 10.3)

Figure 4.5.10: DPFedGAN Student Accuracy on EMNIST

Model DP in simulation (N=8) DP in scaled population (N=30000)

DpFedGAN (�� = 0) (∞, 1.02 · 10−1) (∞, 1.19 · 10−5)

DpFedGAN (�� = 2.5 · 10−3) (1.40 · 107 , 1.02 · 10−1) (5.33 · 100 , 1.19 · 10−5)

DpFedGAN (�� = 5 · 10−3) (3.50 · 106 , 1.02 · 10−1) (2.54 · 100 , 1.19 · 10−5)

Table 4.5.10: Privacy budget of DPFedGANs on EMNIST

4.5. RESULTS 79

Student AccuracyPrivacy budget (ε) in 3 ⋅ 104 clients

Number of network params Trainin minutes

0.84

1.28

1.7 0 105
150

0.66

5.33

6.7 0 105 420

0.528
2.54

6.7 0 105 420

FedVAEUniCDP (σG=2.5 ⋅ 10−2)
DPFedGAN (σG=2.5 0 10−2)
DPFedGAN (σG=5 0 10−2)

Figure 4.5.11: Comparison of Federated GANs and VAEs

By looking at figure (4.5.10), we can see that a non-noisy DPFedGan achieves a maxi-
mumaccuracy of around 75%. In contrast, the noisy FedGANwith �� = 2.5·10−3 achieves
a maximum accuracy of ∼ 67% with a CDP privacy budget of 5.3 in 30000 clients. Lastly,
the noisy FedGAN with �� = 5 · 10−3 achieves a maximum accuracy of ∼ 53% and a
privacy budget of 2.5 in 30000 clients. However, it should be noted that in this noisy
scenario, the accuracy plot is not very stable.

Additionally, by examining figure (4.5.11), it seems that within the limited scope of
our experiments, Federated VAEs appear to win Federated GANs in every comparison
dimension of EMNIST. In particular, our Federated VAE achieved 84% accuracy with
� = 1.28 in 3 · 104 clients, while the most noisy DPFedGAN achieved twice the privacy
budget and ∼ 52% accuracy with 4 times as many parameters as the Federated VAEs.
Hence, in our experiments, Federated VAEs seem to demonstrate a better performance
than Federated GANs.

However, it is very important to note that since the scope of our experiments is very
limited, we cannot draw general conclusions about the performance of VAEs versus the
performance of GANs. In particular, generalizing our results would require experimenta-
tion with many different datasets besides EMNIST, with different client population sizes,

4.5. RESULTS 80

different neural network architectures for VAEs and GANs (e.g. different size of the latent
space), and potentially different architectures for the student network. At the same time,
we should note that in our experiments, despite the fact that we used the same student
network architecture for VAEs and GANs, additional fine-tuning of the Federated GANs
may have improved the GAN results further, thus reducing the accuracy and privacy gaps
between VAEs and GANs.

4.5.6 Local vs global DP

In all of our experiments so far, we have only experimented with Central Differential
Privacy, using Algorithms (4) and (6) for our Federated VAEs. Hence, our assumption has
been that we have access to a secure aggregation protocol (e.g. MPC) which allows us to
ensure CDP under the presence of an honest-but-curious server. However, since access to
such protocols is not always possible, wewill now experimentwith LDP,while comparing
it with the CDP settings we tested. In particular, in order to compare LDP with the CDP
settings of our previous experiments, we will attempt to measure the number of clients
that the LDP settings requires to (a) maintain the same utility as the CDP setting and
(b) ensure single-digit � guarantees for the average client 7. Then, we will compare the
number of clients needed to achieve single-digit LDP with the number of clients needed
to achieve single digit CDP.

In particular, according to Theorem (4.1), in order to compare the privacy guarantees
of CDP and LDP against different population sizes and under the same utility (i.e. noise
level), we can work as follows:

1. RunAlgorithm FedVAESepCDP or FedVAEUniCDP to determine themaximum std
of global noise �� that can be added while maintaining acceptable utility.

2. For different user population sizes # :

(a) Initialize aMoments Accountant"� for the CDP case and aMoments Accoun-
tant "! for the LDP case.

(b) Call) times themethodℳ� .compose_subsampled_machanism(�̄, @)with �̄ =
1 and @ = (/(�� · #). Then callℳ� .get_epsilon(�) with � = 1/#1.1 to get the
CDP privacy budget of Algorithm FedVAESepCDP or FedVAEUniCDP. This
privacy budget represents the CDP privacy budget in a scaled population of
size # where the noise level �� remains constant (i.e. utility is maintained).

(c) Call @) times the method ℳ!.compose_subsampled_machanism(�̄, @) with
�̄ = (��

√
@#)/(. Then callℳ!.get_epsilon(�) with � = 1/#1.1 to get the aver-

age LDP privacy budget of FedVAESepLDP or FedVAEUniLDP. This privacy
budget represents the privacy budget of the average client in a scaled LDP
setting of # clients. Additionally, this LDP setting has the same utility as the
CDP setting above, as the local Gaussian noise with �! = ��

√
@# added by

the clients is exactly equivalent to a global Gaussian noise with std �� (see
Theorem (4.1)).

3. Plot the privacy budgets � for the CDP and the LDP that were calculated in the
previous step for different user populations # .

In order to better illustrate this process, let’s consider an example. Let’s assume that
after running FedVAEUniCDP on EMNIST, we have concluded that a central noise with

7When we refer to an average client, we mean that this client participates in at most @) training rounds,
which is the average number of rounds that a client will participate, since the probability that a client
participates in a given round is @.

4.5. RESULTS 81

std �� = 5 · 10−3 maintains an acceptable level of accuracy. Then, using the comparison
process we described above, we will attempt to answer the following questions:

• If we maintain the same utility (i.e. keep �� constant), then how many clients do
we need in order to guarantee single-digit � CDP?

• If we perform the same experiment in an LDP setting, then how many client do we
need so that (a) the total noise added by the clients locally is equivalent to a global
noise with std ��, and (b) the average client achieves (�, �)-LDP with single digit �.

Hence, in order to explore the relationship of CDP, LDP, privacy budget and population
size, we created Figures (4.5.12) and (4.5.13) for the EMNIST and the Epilepsy dataset
respectively, by following the process we described previously. In particular, in Figure
(4.5.12) we can see the privacy budget in a CDP and an LDP setting for EMNIST under
different population sizes, wheres in Figure (4.5.12)we can see the same results, but for the
Epilepsy dataset. Also, we should note that the noise level we used in the CDP scenarios
of those plots is the same as the noise level we used during our CDP experiments (i.e.
Figure (4.5.1) and Figure (4.5.2)). Similarly, the local noise we used in the LDP scenarios
of the plots is equivalent to a global noise with std ��. Hence, whenever we use �� within
the context of an LDP scenario, we are implying that this LDP scenario has a local noise
which is equivalent to a global noise with std ��. If we take that into account, we can see
that the green line of every plot has the same utility as the red line, and the blue line has
the same utility as the orange line.

101 102 103 104 105 106 107 108 109

Total number of clients (N)

100

101

102

103

104

105

106

P(
iv
ac

y
bu

dg
et
 (ε

)

Client numbe(v) p(ivacy budget in CDP/LDP
Ta(get p(ivacy level (ε=1)
FedVAEUniCDP (σG=2.5 / 10−3)
FedVAEUniLDP (σG=2.5 ⋅ 10.3)
FedVAEUniCDP (σG=5 ⋅ 10.3)
FedVAEUniLDP (σG=5 ⋅ 10.3)

Figure 4.5.12: Client number vs Privacy trade-off in EMNIST

4.5. RESULTS 82

101 102 103 104 105 106 107 108 109

Total number of clients (N)

100

101

102

103

104

105
Pr
iv
ac
y
bu
d
e)
 (ε
)

Clien) number v(privacy bud e) in CDP/LDP
Tar e) privacy level (ε=1)
FedVAESepCDP (σG=5 ⋅ 10−3)
FedVAESepLDP (σG=5 ⋅ 10−3)
FedVAESepCDP (σG=1 ⋅ 10−2)
FedVAESepLDP (σG=1 ⋅ 10−2)

Figure 4.5.13: Client number vs Privacy trade-off in Epilepsy

By examining figure (4.5.12), we can see that we need between 104 and 105 clients to
achieve (�, �)-CDPwith single-digit � on EMNIST, when �� = 5 ·10−3. That’s why in Table
(4.5.3) we picked # = 30000 for the scaled population size. However, when it comes to
LDP, the number of clients needed to achieve equivalent level of privacy is much greater.
In particular, in order to achieve the same utility as CDP (i.e. �� = 5 ·10−3), while ensuring
single-digit LDP to the average user, we would need around 108 clients on EMNIST.

Similarly, by looking at Figure (4.5.13) for Epilepsy, we can see that for a noise level of
�� = 1 · 10−2, we need ∼ 104 clients for CDP with single-digit � and ∼ 108 clients for LDP
with single-digit � for the average client.

Chapter 5

Conclusions

To summarize, in this thesis we discussed the problem of differentially private syn-
thetic data generation from distributed datasets.

In the first chapter, we highlighted the necessity for privacy in our data-driven world
and briefly defined the nature and importance of the problem we are trying to solve.

In the next chapter, we analyzed the challenges of privacy-preserving analytics and
pinpointed why most dataset anonymization techniques have failed. This led us to
explore the state-of-the art concept of Differential Privacy, along with its many attractive
properties and principles.

In chapter 3 we explored the widely-adopted paradigm of Federated Learning and
highlighted its strengths in performing Machine Learning on Decentralized datasets. We
then analyzed some of its privacy aspects and highlighted its connection with Differential
Privacy and Cryptography.

In the final chapter, we examined the problem of private, synthetic data generation
from decentralized datasets. After presenting some related work in the area, we went on
to discuss the attractive properties of Generative Models and particularly Variational Au-
toencoders in solving this problem. Then, we analyzed the principles and mathematical
framework of VAEs, while proposingways to adapt VAEs to a federated andDifferentially
Private setting. After that,we tested our approach in various experimental settings, by
exploring the impact of noise, data distribution and number of neural network parameters
on the quality of the synthetic data generated. We also compared our federated model
against other methods of solving the same problem, such as PrivBayes and Federated DP
GANs. Last but not least, we compared Central Differential Privacy and Local Differential
Privacy as different privacy paradigms, while exploring the underlying assumptions that
each one of those requires.

5.1 Result Summary & Contribution

Aswe previously discussed, we addressed the problem of Private Synthetic Data Gen-
eration from Decentralized datasets by combining Variational Autoencoders, Federated
Learning and Differential Privacy. Our results showed that we can achieve good privacy
and utility, while using an FL scenario of ∼ 104 clients in conjunction with a secure aggre-
gation protocol. We also showed that if we don’t have access to such protocols, we need
∼ 108 clients to maintain acceptable utility while ensuring good LDP guarantees for the
average client.

To our knowledge, our approach is the first that uses VAEs in a federated and DP
setting, while ensuring user-level differential privacy. In fact, the federation of DP VAEs
with a private decoder for every client, was deemed an open problem by Augenstein et al.
[13]. In particular, the reasonwe chose to address this open problem is that by keeping the

83

5.2. DRAWBACKS 84

decoder private, we can reduce the amount of computation and communication, improve
privacy, and potentially improve the quality of synthetic data generated by the VAE.

Also, within the limited scope of our experiments, our approach seems to compare
very favorably to approaches like PrivBayes and DPFedGANs, not only with respect to
privacy and utility, but also with respect to training time and computational complexity.
In particular, approaches like PrivBayes are far from perfect, as they work only on specific
types of datasets (i.e. performance in image datasets is very poor), while their computa-
tional complexity skyrockets if we increase the number of features or the degree of the
Bayesian Network. At the same time, Federated VAEs seem to be more tolerant to noise
than Federated GANs. In particular, our experiments showed that under similar settings,
Federated VAEs maintain better privacy guarantees than Federated GANs, despite the
fact that many more experiments are needed to generalize this conclusion.

At the same time, federated DP VAEs can theoretically be used to synthesize any type
of dataset (e.g. image, tabular), depending on the architecture we use for the encoder and
the decoder. In that sense, we offer a potentially general approach towards differentially
private synthetic data generation fromdistributed datasets. This approach can be utilized
by a group of organizations to jointly create a synthetic dataset using their collective data,
without revealing their data to one another. Then, the organizations can use the synthetic
dataset to enrich their private datasets and train their models, while being assured that
the use of the synthetic dataset by anybody won’t leak information about the original
data or infringe the privacy of the data owners. Last but not least, the Differentially
Private synthetic datasets can also be used for hyperparameter tuning within the context
of Federated Learning: If the real data is used for hyperparameter tuning of a model,
then each time the experiment is rerun on the real data, the privacy loss will increase. On
the contrary, if the differentially private synthetic data are used, then we can try many
different hyperparameters and run as many experiments as we want on the synthetic
data, without those experiments incurring any additional privacy losses.

5.2 Drawbacks

Despite the promising nature of Federated VAEs, our approach has some disadvan-
tages that make it unsuitable for certain FL scenarios. In particular, our CDP approach
relies on the assumption that we have access to a secure aggregation protocol, which may
not always be the case. Additionally, even if we have access to such protocols, the min-
imum number of clients needed to achieve good privacy guarantees is 104. This means
that our approach cannot be used in Federated scenarios with a limited number of clients,
such as cross-silo FL scenarios with few participating organizations.

On the other hand, our LDP approach, doesn’t assume the existence of a secure
aggregation protocol. However, it requires the participation of around 108 − 109 clients,
thus being unsuitable for most real-world FL scenarios, with the possible exception of
cross-device FL scenarios such as the ones orchestrated by Google on mobile devices
(e.g. Google Keyboard). In addition to that, the LDP guarantees we have given are
guarantees for the "average" userwhich participates in atmost @) training rounds. Hence,
although the average participation rounds of a user are indeed @), there may be users
that participate in more than @) rounds and users that participate in less than @) rounds.
This may lead to some clients spending greater privacy budgets than the average, and
possibly exceeding their original budgets. This problem, however, can be alleviated if the
clients refuse participation in further rounds when they have exceeded their budget (i.e.
the server may only select clients which haven’t exceeded their privacy budget).

Another drawback of Federated VAEs and VAEs in general is that they tend to become
unstable if they are not well parametrized, especially under the presence of noise. For

5.3. FUTURE WORK 85

instance, in many cases, VAEs suffer from exploding loss functions, thus requiring careful
parametrization and additional clipping in order to achieve a stable training. At the
same time, we should also note that although the nature of our results is promising,
our experiments had a very limited scope. In fact, in order to generalize our results, we
should run much more experiments with different datasets, different data distribution
policies, different VAE hyperparameters, different client populations, and examine many
other aspects of Federated VAEs which we did not study in this thesis.

5.3 Future Work

Besides the areas we covered, there are still many aspects of Federated VAEs that are
worth exploring:

• Private vs non-private encoder: In our work, we used a private encoder for our
VAEs which wasn’t shared with the server (only the decoders were federated).
Hence, it would be worth exploring whether federating just the decoder yields
better accuracy than federating both the encoder and the decoder.

• Alternative notions of LDP: In our approach, we achieved LDP through the addi-
tion of carefully calibrated Gaussian noise in the clients. However, this clearly isn’t
the only way of achieving LDP. In fact, there are also other LDP mechanisms which
may offer better privacy and utility guarantees than the Gaussian mechanism we
used. For instance, in [56], the authors have developed custom randomized mecha-
nismwhich is based on Bernoulli random variables and presumably achieves better
utility than the Optimal Gaussian mechanism for the same LDP guarantees. Other
approaches towards LDP have also been proposed (e.g. [60],[44],[53]), and thus
it would be worth exploring if some of those approaches can be combined with
Federated VAEs so as to achieve better privacy and utility.

• Other datasets: Besides the EMNIST and the Epilepsy datasets we used, it is also
useful to evaluate Federated VAEs in other datasets as well. For instance, it would
be very beneficial to test VAEs on tabular and image biomedical datasets in order to
explore the suitability of VAEs for healthcare applications.

• Realistic populations and data distributions: In our experiments, we tested Fed-
erated VAEs in a small population of # = 20 clients, with a predefined set of
data federation strategies (i.e. uniform, kmeans, geometric). However, in order to
validate and generalize our results, it is very important to test Federated VAEs in
realistic population sizes with real federated data. The reason for this is that the
number of clients and the non-IID distribution of data may be important factors in
training Federated VAEs, and thus the relationship of those factors with the quality
of the trained model should be explored.

• Evaluate synthetic data differently: In our experiments, we used the Student Net-
work in order to evaluate the quality of the generated data. This method, however,
is not the onlymetric that can be used: There aremany othermethodsworth explor-
ing. For instance, the MIT synthetic data vault project (Github implementation [55],
Publication [46]) uses a combination of many different metrics to evaluate the qual-
ity of the synthetic dataset, such as LogisticRegression Detection, SVC Detection,
Gaussian Mixture Log Likelihood, Chi-Squared, Inverted Kolmogorov-Smirnov D
statistic,Continuous KL Divergence etc.

Bibliography

[1] K–anonymity. "https://en.wikipedia.org/wiki/K-anonymity".

[2] K–anonymity:An Introduction. "https://www.privitar.com/blog/
k-anonymity-an-introduction/".

[3] Linkage Attacks. "https://www.privitar.com/glossary/linkage-attack/".

[4] From Autoencoder to Beta-VAE, Aug 2018. [Online; accessed 17. May 2021].

[5] Variational Autoencoder Explained, Oct 2018. [Online; accessed 16. May 2021].

[6] Introducing Variational Autoencoders (in Prose and Code), Apr 2021. [Online; ac-
cessed 16. May 2021].

[7] UCI Machine Learning Repository: Epileptic Seizure Recognition Data Set, May
2021. [Online; accessed 20. May 2021].

[8] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, Oct 2016.

[9] Gergely Acs, Luca Melis, Claude Castelluccia, and Emiliano De Cristofaro. Differen-
tially Private Mixture of Generative Neural Networks. arXiv, Sep 2017.

[10] Jinwon An and S. Cho. Variational Autoencoder based Anomaly Detection using
Reconstruction Probability, 2015. [Online; accessed 12. May 2021].

[11] Ralph Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David,
and Christian Elger. Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on recording region
and brain state. Phys. Rev. E, 64(6 Pt 1):061907, Jan 2002.

[12] A. Asperti, D. Evangelista, and E. Loli Piccolomini. A survey on Variational Autoen-
coders from a GreenAI perspective. arXiv, Mar 2021.

[13] Sean Augenstein, H. BrendanMcMahan, Daniel Ramage, Swaroop Ramaswamy, Pe-
ter Kairouz, Mingqing Chen, Rajiv Mathews, and Blaise Aguera y Arcas. Generative
models for effective ml on private, decentralized datasets, 2020.

[14] TensorFlow Authors. Convolutional Variational Autoencoders, 2020. "https://www.
tensorflow.org/tutorials/generative/cvae".

[15] Pierre Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. In
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages 37–49.
JMLR Workshop and Conference Proceedings, Jun 2012.

86

"https://en.wikipedia.org/wiki/K-anonymity"
"https://www.privitar.com/blog/k-anonymity-an-introduction/"
"https://www.privitar.com/blog/k-anonymity-an-introduction/"
"https://www.privitar.com/glossary/linkage-attack/"
"https://www.tensorflow.org/tutorials/generative/cvae"
"https://www.tensorflow.org/tutorials/generative/cvae"

BIBLIOGRAPHY 87

[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, AaronSegal, andKarn Seth. Practical Secure
Aggregation for Privacy-Preserving Machine Learning. In CCS ’17: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1175–1191. Association for Computing Machinery, New York, NY, USA, Oct 2017.

[17] ValerieChen, Valerio Pastro, andMarianaRaykova. SecureComputation forMachine
Learning With SPDZ. arXiv, Jan 2019.

[18] Zacharioudakis Christos. Large differentially private data synthesis, 2020. Diploma
Work, School of Electrical and Computer Engineering, Technical University of Crete,
Chania, Greece, 2020 "https://doi.org/10.26233/heallink.tuc.84556".

[19] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:
Extending mnist to handwritten letters. 2017 International Joint Conference on Neural
Networks (ĲCNN), 2017.

[20] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tid-
skrift, 15(429-444):2–1, 1977.

[21] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, pages 643–662, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[22] Andrew DeCotiis-Mauro. Intuitively Understanding Varia-
tional Autoencoders, 2018. "https://towardsdatascience.com/
intuitively-understanding-variational-autoencoders-1bfe67eb5daf".

[23] C. Dwork and R. Pottenger. Toward practicing privacy. J Am Med Inform Assoc,
20(1):102–108, Jan 2013.

[24] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pages 51–60, 2010.

[25] Cynthia Dwork andAaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

[26] Thanos Giannopoulos and Dimitris Mouris. Privacy Preserving Medical Data Ana-
lytics using SecureMulti Party Computation. An End-To-EndUseCase. ResearchGate,
Sep 2018.

[27] Olga Gkountouna. A survey on privacy preservation methods. 2015.

[28] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
April 1988.

[29] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Net-
works. arXiv, Jun 2014.

[30] google research. federated, May 2021. [Online; accessed 29. May 2021].

[31] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. MD-GAN: Multi-
Discriminator Generative Adversarial Networks for Distributed Datasets. arXiv,
Nov 2018.

"https://doi.org/10.26233/heallink.tuc.84556"
"https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf"
"https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf"

BIBLIOGRAPHY 88

[32] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, Jul 2006.

[33] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Ras-
mus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Fe-
lix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning,
2021.

[34] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv, Dec
2013.

[35] Mark A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE J., 37(2):233–243, Feb 1991.

[36] Xu Lei, Skoularidou Maria, Cuesta-Infante Alfredo, and Veeramachaneni Kalyan.
Modeling Tabular data using Conditional GAN. arXiv, Jul 2019.

[37] N. Li, T. Li, and S. Venkatasubramanian. Closeness: A new privacy measure for data
publishing. IEEE Transactions on Knowledge and Data Engineering, 22(7):943–956, 2010.

[38] Xiaopeng Li and James She. Collaborative Variational Autoencoder for Recom-
mender Systems. In KDD ’17: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 305–314. Association for
Computing Machinery, New York, NY, USA, Aug 2017.

[39] Jaechang Lim, Seongok Ryu, JinWooKim, andWooYounKim. Molecular generative
model based on conditional variational autoencoder for de novo molecular design.
J. Cheminf., 10(1):1–9, Dec 2018.

[40] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. L-diversity:
privacy beyond k-anonymity. In 22nd International Conference on Data Engineering
(ICDE’06), pages 24–24, 2006.

[41] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data, 1(1), March 2007.

[42] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks from
decentralized data, 2017.

[43] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning
differentially private recurrent language models, 2018.

[44] ThôngT.Nguyên, Xiaokui Xiao, YinYang, SiuCheungHui, Hyejin Shin, and Junbum
Shin. Collecting andAnalyzingData fromSmartDeviceUserswith LocalDifferential
Privacy. arXiv, Jun 2016.

BIBLIOGRAPHY 89

[45] Achraf Oussidi and Azeddine Elhassouny. Deep generative models: Survey. In 2018
International Conference on Intelligent Systems and Computer Vision (ISCV), pages 1–8.
IEEE, Apr 2018.

[46] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault.
In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pages 399–410. IEEE, Oct 2016.

[47] Andrew J. Paverd and A. Martin. Modelling and Automatically Analysing Privacy
Properties for Honest-but-Curious Adversaries, 2014. [Online; accessed 19. May
2021].

[48] Rafael Pinot. Minimum spanning tree release under differential privacy constraints.
01 2018.

[49] Pierangela Samarati and Latanya Sweeney. Protecting privacywhen disclosing infor-
mation: k-anonymity and its enforcement through generalization and suppression.
1 1998.

[50] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-
tation using deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015.

[51] Tsubasa Takahashi, Shun Takagi, Hajime Ono, and Tatsuya Komatsu. Differentially
Private Variational Autoencoders with Term-wise Gradient Aggregation. arXiv, Jun
2020.

[52] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. DP-CGAN: Differ-
entially Private Synthetic Data and Label Generation. arXiv, Jan 2020.

[53] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. LDP-
Fed: Federated Learning with Local Differential Privacy. arXiv, Jun 2020.

[54] Digalakis Vasileios. Data analytics with differential privacy, 2018. Diploma Work,
School of Electrical and Computer Engineering, Technical University of Crete, Cha-
nia, Greece, 2018 "https://doi.org/10.26233/heallink.tuc.78371".

[55] MIT Synthetic Data Vault. SDV, Jun 2021. [Online; accessed 24. Jun. 2021,"https:
//github.com/sdv-dev/SDV"].

[56] Teng Wang, Jun Zhao, Xinyu Yang, and Xuebin Ren. Locally Differentially Private
Data Collection and Analysis. arXiv, Jun 2019.

[57] Yu-Xiang Wang, Borja Balle, and Shiva Kasiviswanathan. Subsampled rényi differ-
ential privacy and analytical moments accountant, 2018.

[58] LiyangXie, KaixiangLin, ShuWang, FeiWang, and JiayuZhou. Differentially Private
Generative Adversarial Network. arXiv, Feb 2018.

[59] Qingyu Zhao, Ehsan Adeli, Nicolas Honnorat, Tuo Leng, and Kilian M. Pohl. Varia-
tional AutoEncoder for Regression: Application to Brain Aging Analysis. InMedical
Image Computing and Computer Assisted Intervention – MICCAI 2019, pages 823–831.
Springer, Cham, Switzerland, Oct 2019.

[60] YangZhao, JunZhao,MengmengYang, TengWang,NingWang, LingjuanLyu, Dusit
Niyato, and Kwok-Yan Lam. Local Differential Privacy based Federated Learning for
Internet of Things. arXiv, Apr 2020.

"https://doi.org/10.26233/heallink.tuc.78371"
"https://github.com/sdv-dev/SDV"
"https://github.com/sdv-dev/SDV"

	Contents
	List of Abbreviations
	Glossary
	Introduction
	The call for privacy
	Federated Learning
	The promise of Differential Privacy
	Generative Models
	Thesis Organization

	Privacy-preserving analytics
	History of privacy-preserving analytics
	Privacy Framework and the Sanitization Pipe Dream
	Shortcomings of traditional privacy methods
	Origins of Differential Privacy

	Differential Privacy
	Formal Definition
	Properties
	Enforcing Differential Privacy
	Closure under Post-processing
	Composition
	Subsampling
	Moments accountant

	Federated Learning
	Introduction
	Cross-device Federated Learning
	Cross-Silo Federated Learning

	Federated Training
	Non-IID data in Federated Learning
	Privacy in Federated Learning
	Actors & Threat models
	Secure aggregation & SMPC
	Differential Privacy

	Towards Federating Variational Autoencoders
	Motivation
	Related Work
	Generative Adversarial Networks
	Federated DP GANs

	Introduction to Variational Autoencoders
	Autoencoder Neural Networks
	Variational Autoencoders

	Federated Variational Autoencoders
	Federated Setting
	Proposed method
	Implementation
	Challenges

	Results
	Federated vs Centralized DP VAEs
	Comparing different data distribution policies
	Accuracy vs number of parameters
	Comparison with PrivBayes
	Comparison with GANs
	Local vs global DP

	Conclusions
	Result Summary & Contribution
	Drawbacks
	Future Work

