
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Dendritic Application to Machine
Learning

Author:
Kosmas Pinitas

Committee:
Michalis Zervakis
Apostolos Dollas
Panayiota Poirazi

A thesis submitted in fulfillment of the requirements
for the degree of 5-year Diploma

School of Electrical and Computer Engineering

August 27, 2021

https://www.tuc.gr/index.php?id=5397
kpinitas@isc.tuc.gr
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=294&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://dendrites.gr/
https://www.ece.tuc.gr/index.php?id=4101

iii

Declaration of Authorship
I, Kosmas Pinitas, declare that this thesis titled, “Dendritic Application to Machine
Learning” and the work presented in it are my own. I confirm that:

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed:
Kosmas Pinitas
Date:
August 27, 2021

v

“And now, what’s going to happen to us without barbarians?
They were, those people, a kind of solution.”

Konstantinos Kavafis

vii

TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electrical and Computer Engineering

5-year Diploma

Dendritic Application to Machine Learning

by Kosmas Pinitas

The current deep learning architectures achieve remarkable performance when trained
in large-scale controlled datasets. However, the predictive ability of these architec-
tures significantly decreases when learning new classes incrementally due to their
inclination to forget the knowledge acquired from previously seen data, also called
catastrophic-forgetting. The Self-Organizing Maps can model the input space uti-
lizing constrained-kmeans and thus ensure that the past knowledge is maintained.
Hence, we propose the Dendritic-Self-Organizing Map algorithm consisting of a sin-
gle layer of Self-Organizing Maps, which extract patterns from specific regions of
the input space, and an association matrix that estimates the association between
units and labels. The best-matching unit of an input pattern is selected using the
maximum cosine similarity rule, while the point-wise mutual information is em-
ployed for inferencing. Our method performs unsupervised classification since we
do not utilize the labels for targeted weight update. Finally, the results indicate that
our algorithm outperforms several state-of-the-art continual learning algorithms on
benchmark datasets such as the Split-MNIST and Split-CIFAR-10.

Τα υπάρχοντα μοντέλα βαθιάς μάθησης επιτυγχάνουν αξιοσημείωτη απόδοση όταν εκ-

παιδεύονται σε μεγάλα σύνολα δεδομένων, Ωστόσο απόδοση των μοντέλων αυτών μειώνε-
ται σημαντικά όταν μαθαίνουν σταδιακά νέες κλάσεις λόγω της τάσης τους να ξεχνούν τις

γνώσεις που έχουν αποκτηθεί από προηγούμενα δεδομένα, το φαινόμενο αυτό ονομάζεται
καταστροφική λήθη (catastrophic forgetting). Οι Αυτοοργανωτικοί Χάρτες μπορούν να
μοντελοποιήσουν τον χώρο εισόδου χρησιμοποιώντας constrained-kmeans διασφαλίζον-
τας τη διατήρηση των προηγούμενων γνώσεων. Ως εκ τούτου, εισάγουμε τον Δενδριτικό-
Αυτοοργανοτικό Χάρτη που αποτελείται από ένα μόνο επίπεδο Χαρτών Αυτοοργάνωσης,
οι οποίοι εξάγουν μοτίβα από συγκεκριμένες περιοχές του χώρου εισόδου και ένα πί-

νακα συσχέτισης που εκτιμά τη συσχέτιση μεταξύ μονάδων και ετικετών. Η μονάδα που
ταιριάζει καλύτερα σε ένα μοτίβο εισόδου επιλέγεται με βάση τον κανόνα της μέγιστου

συνημιτόνου, ενώ η αμοιβαία πληροφορία χρησιμοποιείται για συμπερασμό. Η μέθοδος
μας εκτελεί ταξινόμηση χωρίς επίβλεψη, καθώς δεν γίνεται χρήση των ετικετών κατά την
ενημέρωση των διανυσμάτων βάρους των χαρτών. Τα αποτελέσματα υποδεικνύουν ότι ο
προτεινόμενος αλγόριθμος υπερτερεί πολλών αλγορίθμων συνεχούς μάθησης στα σύνολα

δεδομένων όπως το Split-MNIST και το Split-CIFAR-10.

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=5397
https://www.ece.tuc.gr/index.php?id=4101

ix

Acknowledgements
First and foremost, I would like to thank Dr. Panayiota Poirazi, whose mentoring
style and determination motivated me to pursue an academic career. I would also
like to thank Dr. Spyridon Chavlis for the intriguing conversations that introduced
me to the field of biologically plausible AI and inspired me to conceive the main
topic of this thesis. Furthermore, I would like to thank Professor Georgios N. Yan-
nakakis for his suggestions regarding the evaluation of the models and the com-
ments on the experimental results.

In addition, I am grateful to Dr. George Giannakopoulos who introduced me to a
more formal research methodology and inspired me to explore the connections of AI
with Cognitive Science. I would like to express my thankfulness to Prof. Athanasios
P. Liavas for supporting my decision to follow an academic career pathway. More-
over, I would like to thank my close friends and colleagues for their support and
trust.

Additionally, I am grateful to Professor Apostolos Dollas and Professor Michalis
Zervakis for evaluating my work. Last but not least, I would like to express my grat-
itude to my family for supporting me throughout these years, and thus gave me the
opportunity to broaden my horizons and carve my own path in life.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 2
1.2 Machine Learning in a Nutshell . 2
1.3 Thesis Contribution . 4
1.4 Thesis Outline . 4

2 Continual Learning 5
2.1 Chapter Outline . 6
2.2 Definition of Continual Learning . 6

2.2.1 Historical Background . 6
2.3 Continual Learning Terminology & Challenges 7

2.3.1 Basic Definitions . 7
2.3.2 Challenges . 8

Catastrophic Forgetting . 8
Memory Management . 9
Concept Drift . 9

2.4 A Continual Learning framework with emphasis on classification . . . 10
2.4.1 Definitions . 10
2.4.2 Continual Learning Scenarios . 11
2.4.3 Datasets . 12
2.4.4 Protocols . 13
2.4.5 Evaluation Metrics . 14
2.4.6 Baselines . 14

The essentials of Deep Neural Networks (DNNs) 15
2.5 Methods for addressing catastrophic forgetting 17

2.5.1 Replay . 17
2.5.2 Regularization . 18
2.5.3 Parameter Isolation . 18

2.6 State-of-the-art algorithms . 19
2.6.1 Copy Weight with Reinit (CWR) 19

Copy Weight with Reinit + (CWR+) 20
2.6.2 Deep Generative Replay (DGR) 21
2.6.3 Elastic Weight Consolidation (EWC) 22
2.6.4 Learning Without Forgetting (LwF) 23
2.6.5 Synaptic Intelligence (SI) . 24
2.6.6 Context-dependent Gating (XdG) 24
2.6.7 Hybrid Algorithms . 25

xii

Deep Generative Replay and Regularization (DGR) 25
Architectural and Regularization approach (AR1) 25

3 Self-Organizing Maps 27
3.1 Chapter Outline . 28
3.2 Historical Background . 28
3.3 Quantization . 29

Vector Quantization (VQ) . 29
K-means . 29
Soft-Clusering . 30

3.4 Fundamentals of Self-Organizing Maps 31
3.4.1 Online SOM Learning Algorithm 31
3.4.2 Methods for analyzing SOM convergence 32

Markov Chain Theory (MCT) . 32
Ordinary Differential Equation (ODE) 33
Robbins-Monro algorithm theory 34

3.5 Theoretical analysis of the 1D SOM case 36
3.5.1 A special case . 36
3.5.2 The general 1D SOM convergence case 38

3.6 Theoretical analysis of the multi-dimensional case 38
3.6.1 Continuous setting . 38
3.6.2 Discrete setting . 39

3.7 The stochastic nature of the online SOM training algorithm 40
3.8 Batch-SOM: A deterministic approach 42
3.9 SOM variations . 43

3.9.1 Heskens’ rule . 43
3.9.2 Soft Topologic Mapping (STM) 44
3.9.3 Other Variations of SOM . 45

4 Dendritic Self-Organizing Maps 47
4.1 Chapter Outline . 48
4.2 Background . 48

4.2.1 Motivation . 49
4.3 Dendritic Self-Organizing Maps . 50

4.3.1 Incorporating neurobiological concepts into SOMs 51
MSE Minimization Test . 53
Visual Test . 54
ANN Test . 55
Time Test . 57
Overall . 57

4.3.2 DendSOM Architecture . 58
Learning Algorithm . 58
Defining a decision rule for unsupervised classification 60
Investigating the effects of a new BMU rule 61

4.3.3 DendSOM for CL . 63
Task-Incremental Learning . 64
Domain-Incremental Learning 65
Class-Incremental Learning . 66

4.4 Technical Stuff . 67
4.4.1 Implementation Details . 67
4.4.2 Hyperparameter Analysis . 68

xiii

5 Conclusions & Future Work 73
5.0.1 Chapter 2: Continual Learning 73
5.0.2 Chapter 3: Self-Organizing Maps 73
5.0.3 Chapter 4: Dendritic Self-Organizing Maps 73
5.0.4 Future Work . 74

xv

List of Figures

1.1 ML definition . 3
1.2 AI ML and DL relation . 3

2.1 CL task . 8
2.2 catastrophic forgetting . 9
2.3 concept drift . 10
2.4 TIL MNIST . 11
2.5 DIL MNIST . 11
2.6 CIL MNIST . 12
2.7 svhn . 12
2.8 cifar-10 . 12
2.9 mnist . 13
2.10 permutation-mnist . 13
2.11 rotation-mnist . 14
2.12 a simple neural network . 15
2.13 continual learning methods . 19
2.14 CWR algorithm . 20
2.15 CWR+ algorithm . 20
2.16 dynamic architecture training . 21
2.17 DGR model . 21
2.18 EWC training parameters trajectory . 22
2.19 LwF algorithm . 24
2.20 AR1 algorithm . 25

3.1 Voronoi diagram for VQ . 30
3.2 A simple Markov Chain . 33
3.3 A simple SOM . 35
3.4 SOM h function . 35
3.5 A 1D SOM . 37
3.6 A 2D SOM disposition distortion case 37
3.7 SOM input mapping . 41

4.1 Biological Neuron . 48
4.2 SOMLP architecture . 49
4.3 SOMLP task masks . 50
4.4 SOM architecture for images . 52
4.5 RSOM architecture for images . 52
4.6 DendSOM architecture for images . 53
4.7 Visual test results . 55
4.8 ANN test procedure . 56
4.9 DendSOM training algorithm . 58
4.10 DendSOM with association matrix . 59
4.11 cosine similarity BMU selection rule . 63

xvi

4.12 This figure illustrates the behavior of a and σ functions for rexp ∈ {1, 2} 64
4.13 This figure illustrates the behavior of a and σ functions for different

values of λ . 68
4.14 This figure illustrates how the initial learning rate affects the unsu-

pervised classification accuracy of the DendSOM algorithm on the
MNOST dataset . 69

4.15 This figure illustrates the influence of αcrit and rexp hyperparammeters
over the DendSOM algorithm. It should be noted that the critical lr
axis is in logarithmic scale since αcrit ∈ {0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005}

. 70
4.16 This figure illustrates how the receptive field size affects the Dend-

SOM algorithm . 70
4.17 The influence of number of units per map over the DendSOM algo-

rithm is illustrated in this figure . 71

xvii

List of Tables

2.1 CL scenarios . 11

3.1 Soft vs Hard Clustering . 31
3.2 Kohonen vs Heskes BMU rule . 43

4.1 MSE experiment architecture parameters 53
4.2 MSE experiment results . 54
4.3 ANN experiment results . 55
4.4 Time experiment results . 57
4.5 Overall results . 57
4.6 The table summarizes the accuracy score of each architecture in unsu-

pervised classification on three benchmark datasets 61
4.7 Training hyperparameters for unsupervised classification 62
4.8 Architecture parameters for unsupervised classification 62
4.9 IL training parameters . 64
4.10 Task-IL results . 65
4.11 Domain-IL results . 65
4.12 Class-IL results . 66
4.13 Class-IL results . 66

xix

List of Abbreviations

AGI Artificial General Intelligence
AI Artificial Intelligence
ANN Artificial Neural Network
AR1 Architectural and Regularization hybrid algorithm
BMU Best-Matching Unit
CL Continual Learning
CLA Continual Learning Algorithm
CPU Central Processor Unit
CWR Copy Weight with Reinit
DendSOM Dendritic Self-Organizing Map
DGR Deep Generative Replay
DL Deep Learning
DNN Deep Neural Network
DSOM Deep Self-Organizing Map
EWC Elastic Weight Consolidation
GC Generative Classification
GPU Graphic Processor Unit
GSOM Growing Self-Organizing Map
GTM Generative Topographic Maps
IL Incremental Learning
LwF Learning Without Forgetting
MC Markov Chain
MCT Markov Chain Theory
ML Mchine Learning
MLP Multilayer Perceptron
MSE Mean Squared Error
NN Neural Network
ODE Ordinary Differential EquatioN
OS-Map Oriented & Scaling Map
PMI Pointwise Mutual Information
RL Reinforcement Learning
RSOM Receprive Self-Organizing Map
SGD Stochastic Gradient-Descent
SI Synaptic Intelligence
SOM Self-Organizing Map
SOMLP Self-Organizing Multi-Layer Perceptron
STM Soft Topographic Mapping
TASOM Time-Adaptive Self-Organizing Map
VQ Vector Quantization
XdG X Context-dependent Gating

xxi

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

Deep learning (DL) architectures have achieved state-of-the-art performance in sev-
eral fields such as machine translation, computer vision, and drug design. Never-
theless, DL algorithms are ill-equipped for learning tasks sequentially. Most deep
neural networks (DNNs) can be trained when the entire labeled dataset is at one’s
disposal, and often, re-training is required when new data becomes available due
to catastrophic-forgetting. On the other hand, humans can achieve impressive per-
formance on real-world problems since they can adapt to environments where new
tasks emerge over time by leveraging their past experiences. Consequently, a human
can continuously acquire new knowledge without forgetting what he has previously
learned, which is not the case for DNNs.

Although DL techniques have been widely applied in numerous fields, DNNs are
still vaguely inspired by the biological neural networks since their computational
unit is a simplified model of a biological neuron. Dendrites are thin projections of
a neuron that are specialized in receiving information from other neurons. The in-
formation is transferred from a neuron to other neurons through electrochemical
signals. Hence, the existence of ion channels in dendrites, combined with the per-
meability of dendritic networks, suggests that a synaptic input can affect its neigh-
boring synapses in a nonlinear manner.

Furthermore, biological neural networks have the ability to change throughout life, a
process known as plasticity. Studies in plasticity mechanisms suggest that dendrites
are the basic organizational unit for integrating synaptic input, undergoing synaptic
plasticity, and storing multiple complex features of the synaptic input [1, 2]. Thus,
the incorporation of dendrites can assist current DL models in obtaining greater in-
formation processing power. Therefore, drawing inspiration from the structure and
properties of dendrites, we introduce a Self-Organizing Map (SOM)-based archi-
tecture that models the dendritic nonlinearities and permits local-parallel computa-
tions.

The Dendritic-SOM (DendSOM) model consists of a single layer of SOMs. Each
SOM is treated as a group of dendrites, and its units are connected to a single soma.
In fact, the SOMs model different sub-regions of the input space, and the somata es-
timate the association between the best-matching units and class labels. We test our
model on unsupervised classification and continual learning scenarios and show
that the DendSOM is capable of alleviating the effects of catastrophic forgetting.

2 Chapter 1. Introduction

1.1 Motivation

In the real world, the computational models are required to learn and remember
multiple tasks since they are exposed to continuous streams of data from non-stationary
distributions. Thus, an agent must acquire, fine-tune, retain, and transfer knowledge
to deal with real problems. Learning new tasks on a constant basis without forget-
ting is called continual learning and constitutes a challenging branch of Artificial
Intelligence (AI). Although there have been significant advances in ML theory and
algorithms over the last few years, there is still a lot of work to be done towards
creating computational systems that can realize life-long learning.

However, as humans, we can acquire new skills and leverage both new and past ex-
perience to refine them. Although we tend to forget previously learned information,
learning new skills does not usually interfere with consolidated knowledge since
our brain can maintain a balance between learning and retaining knowledge which
is also called stability-plasticity balance. The stability-plasticity dilemma concerns
both artificial and biological neural networks, and it states that learning requires
both stability and plasticity. Nevertheless, it is important to strike a balance between
those concepts since too much plasticity results in forgetting, while too much stabil-
ity prevents the assimilation of new knowledge.

Consequently, employing biological concepts into existing AI algorithms and cre-
ating biologically plausible architectures can be the key to building human-level ar-
tificial general intelligence (AGI). In fact, the human brain is the only system that
displays this level of intellect, and thus it is the only proof that such intelligence can
exist. Although examining biological intelligence can be proved beneficial for the
field of AI, there is no need to enforce the incorporation of biological plausibility
to every algorithm since, from a practical standpoint, what works is what matters.
Thus a basic understanding of the functions, architectures, and algorithms that the
brain uses is enough to help us design more efficient ML algorithms.

1.2 Machine Learning in a Nutshell

ML is a subset of AI and corresponds to the study of algorithms that improve by
leveraging data. In brief, ML is primarily used in applications where the task can
not be performed by conventional algorithms. ML algorithms are used to construct
a model based on training data in order to identify patterns and make accurate pre-
dictions without human assistance. According to the nature of the input data, the
ML algorithms are typically divided into three broad categories:

• Supervised Learning: both input and output data, also called samples and la-
bels, are presented to supervised learning algorithms. The goal of these models
is to learn a function that maps the input to the output space.

• Unsupervised Learning: mainly deals with unlabeled data, and it allows the
model to detect patterns that were undetected and thus discover structures
that can group the input data.

• Reinforcement Learning: in this category, an algorithm also called an agent
interacts with an environment. The ultimate goal of the agent is to find out the
strategy that maximized a specific metric.

1.2. Machine Learning in a Nutshell 3

DATA ANALYTICS

MODELING &
 ALGORITHMS

MACHINE
 LEARNING

Experimental Theoretical

D
es
cr
ip
ti
ve

P
re
sc
ri
pt
iv
e

FIGURE 1.1: This figure visually illustrates that ML lies in the inter-
section of Data Analytics with Modeling & Algorithms.

DEEP
LEARNING

MACHINE
LEARNING

ARTIFICIAL
INTELLIGENCE

FIGURE 1.2: DL is a subfield of ML, which in turn is a subfield of AI.

4 Chapter 1. Introduction

1.3 Thesis Contribution

This study aims to take advantage of neuronal cells and networks’ properties to re-
duce the complexity and improve the performance of SOMs. Drawing inspiration
from the structure and properties of dendrites, we introduce a SOM-based archi-
tecture that models the dendritic nonlinearities and permits local, parallel compu-
tations. The DendSOM model consists of a single layer of SOMs. Each SOM is
treated as a set of dendrites, and its units are connected to a single soma. In fact, the
SOMs model different sub-regions of the input space, and the somata estimate the
association between the best-matching units and class labels. We test our model on
unsupervised classification and continual learning scenarios and show that Dend-
SOM is capable of alleviating the effects of catastrophic forgetting.

The robustness analysis has been conducted using both the original SOM model
and the RSOM model, which is a variation of the SOM algorithm also introduced
and implemented in this study, as references in order to investigate the DendSOM’s
strengths and weaknesses by measuring the accuracy and time complexity on pub-
licly available datasets such as the MNIST, MNIST-FASHION, and CIFAR-10 dataset.
Moreover, this thesis presents a framework for continual learning with an empha-
sis on classification in order to establish a common ground and thus enhance fair
comparisons of algorithms. What is more, this thesis reviews both the most widely
applied techniques which have managed to alleviate the effects of catastrophic for-
getting and the state-of-the-art algorithms in continual learning. It should be noted
that the SOM DendSOM and RSOM algorithms are implemented in python using
the CuPy, which is a Cuda-enabled version of NumPy.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 - Continual Learning: The theoretical background and the state-of-
the algorithms are presented in this section

• Chapter 3 - Self-Organizing Maps: The essential background and the related
work in the field of Self-Organizing Maps us described

• Chapter 4 - Dendritic Self-Organizing Maps: The Dendritic Self-Organizing
Map architecture is described and experiments are conducted

• Chapter 5 - Conclusions and Future Work: thesis conclusion and future work
directions are provided

5

Chapter 2

Continual Learning

AI algorithms thrive in solving particular tasks. Over the last few years, several ML
systems have been reported to exhibit and sometimes surpass human-level perfor-
mance on demanding tasks such as Atari Games, Image & Object Recognition, and
Speech Generation & Recognition [3, 4, 5, 6]. Although these results are remarkable,
they are obtained with architectures and algorithms that lack the ability to adapt
their behavior over time, also called static models. Hence, costly re-training is re-
quired when new data becomes available.

In our dynamic world, the practice of re-training from scratch our models becomes
intractable for data streams, or it may be available only for a short period of time
since, in the real world, we have to take into account both time and storage con-
straints as well as privacy issues [7]. Each day millions of data are produced. These
new data may provide new pieces of information regarding new topics and trends.
Therefore it is imperative to develop algorithms and deploy systems that perform
life-long learning and thus can adapt continually and keep on learning over time.

Human cognition is an example of a system that tends to learn concepts sequentially,
one after another. While revisiting some old concepts by observing new examples
may occur in real life, it is not crucial for preserving assimilated knowledge and,
as a result, for conceiving new concepts and ideas since new knowledge does not
interfere with consolidated knowledge. Although we have the inclination to grad-
ually forget old information, a complete loss of previously learned information is
infrequently attested, especially in healthful people, due to the ability of biological
neural networks to adapt in response to experience, possibly by leveraging complex
molecular machinery.

In stark contrast, ANNs are incapable of performing continual learning since they
suffer from catastrophic forgetting of old concepts as new concepts emerge. In gen-
eral, ML algorithms learn data that are sampled from stationary distributions ran-
domly, which makes several application scenarios impossible to solve. However,
there are various ways to circumvent this problem. For example, AI research is fo-
cused mostly on static tasks. Each task is usually consisted of shuffled data to ensure
i.i.d. conditions. Moreover, some techniques incorporate memory or generative re-
play for revising old concepts while multiple epochs are permitted per task, which
allows for a vast performance increase.

6 Chapter 2. Continual Learning

2.1 Chapter Outline

In this chapter, we provide the essential background for continual learning. The rest
of this chapter is organized as follows:

• Section 2.2: In this section, we provide the definition of continual learning
along with some historical background

• Section 2.3: The basic terminology is provided, and the challenges that a CL
system has to overcome are described

• Section 2.4: A framework for continual learning with an emphasis on classifi-
cation is introduced

• Section 2.5: The most commonly used methods are discussed

• Section 2.6: The state-of-the-art algorithms are revisited

2.2 Definition of Continual Learning

Continual Learning (CL), also called lifelong learning, sequential learning, or in-
cremental learning, is a branch of ML, and it studies the problem of learning from
practically an infinite stream of data where data are not available all at once. Thus
the ultimate goal of a continual learning algorithm is to gradually extend the ac-
quired knowledge and utilize it for future learning. A problem can be characterized
as a CL problem if and only if the learning process is sequential, and consequently,
only data from one or a few tasks are available at once. CL algorithms usually deal
with numerous data-related issues such as distribution shifts [8] and catastrophic
forgetting [9].

2.2.1 Historical Background

Ever since the birth of the idea of AI, the concept of learning sequentially from ex-
perience has been present. The lifelong learning paradigm exists for several years
within both the robotics and reinforcement learning (RL) research community [10,
11]. However, the field of CL has begun to be investigated more systematically only
recently. During the last 30 years, the AI community has made significant progress
towards the incorporation of this topic into the traditional ML approaches (super-
vised, unsupervised, and reinforcement learning). However, CL research has never
been extensively conducted until recent years, despite some pioneering attempts in
the late 90s. It can be argued that CL did not become so popular within the scien-
tific community in the past years since there were more fundamental problems to be
solved.

• Limited Computational Power: Like several DL techniques, CL algorithms
have high computational complexity, and thus, executing them on Central
Processing Units (CPU) is the least efficient solution due to low parallelism
and high power consumption. However, the progress in the field of Graphics
Processing Units (GPUs) in recent years has helped CL research advance.

2.3. Continual Learning Terminology & Challenges 7

• Limited Amounts Data: Data is the blueprint of innovation; Big Data has
proven to be an asset to both tech and non-tech setups since it provides a
powerful tool utilized for fact-based decisions. The explosion of big data has
brought about advancements to ML and consequently to CL. However, before
the big data revolution, collecting data was a laborious task

• Handcrafted features: Before the recent advances in the field of representa-
tion learning, the dominant approach towards solving AI problems, especially
computer vision tasks, included handcrafted feature and task-specific solu-
tions. In fact, these solutions may duffer significantly depending on the task
or domain. For many years, the development of general algorithms was con-
sidered practically impossible.

• The success of ML in classification: The success of ML algorithms in clas-
sification tasks at the time has aroused the interest of the scientific commu-
nity, which has been systematically involved in the development of such algo-
rithms. Although this situation ultimately led to the development of the first
CL algorithms, CL was out of the AI research scope for several years.

2.3 Continual Learning Terminology & Challenges

In this section, we provide some basic definitions, and we describe the challenges
that can arise when the samples are not independent and identically distributed
(i.i.d., and the data distribution is not static. The definitions used in this Thesis are
those which are commonly used in the community, as described in [12, 13, 14]. How-
ever, CL lacks a theoretical framework, and thus most of these terms are not directly
defined, whereas some terms appear to have multiple meanings in the bibliography.
Hence the terms below are redefined in this Thesis. All definitions are detailed here
for readability purposes.

2.3.1 Basic Definitions

Definition 1. Problem: Describes what the algorithms is employed to perform,
e.g., classification problem.

Definition 2. Learning Objective: The learning objective corresponds to the
minimization of a loss function based on data.

Definition 3. Task: A task is characterized by a task label, and it corresponds
to a learning sub-objective. In the case of classification, a task may consist of
more than one class. (Figure 2.1)

Definition 4. Task Label: It is a variable, usually an integer, that indicated the
task boundaries.

Definition 5. Continuum: It is composed of a sequence of tasks, and thus it
represents the complete experience.

Definition 6 Data Distribution: Is the statistical distribution from which the
data are sampled. It may be constant or dynamic, and it depends on both the
task and available data.

Definition 7. Input Distribution: Concerns the theoretical distribution of the
input data.

8 Chapter 2. Continual Learning

Definition 8. Data Stream: refers to the flux of samples generated by the data
distribution. In fact, a task is a set of the data stream.

Definition 9. Forgetting: performance decrease on previous tasks when learn-
ing a new one.

Definition 10. Catastrophic Forgetting: refers to the propensity of a model to
forget all its previously learned tasks when re-training it on an unseen task.

Definition 11. Interference: is a conflict between two or more learning sub-
objectives which leads to predictive power decrease.

Definition 12. Concept Drift: It characterizes the learning objective variations,
and it is usually caused by data distribution changes. It should be noted that
concept drift causes forgetting.

Definition 13. Catastrophic Interference: Similar to interference, indicating
that the learning process of a new task has caused catastrophic forgetting.

Definition 14. Online Learning: is a special case of CL per sample, and thus
the batch size equals one.

Definition 15. Joint Training: It corresponds to training in multiple tasks
when all data are available.

0
(0)

1
(1)

Task 1 Task 3Task 2
Split-MNIST

Task 4 Task 5

0
(2)

1
(3)

0
(4)

1
(5)

0
(6)

1
(7)

0
(8)

1
(9)

FIGURE 2.1: This figure illustrates the notion of the task.

2.3.2 Challenges

Catastrophic Forgetting

As mentioned in Definition 10, catastrophic forgetting refers to a model’s inability to
retain the knowledge acquired from previous concepts when trained incrementally
on learning new ones. The phenomenon of catastrophic forgetting in CL algorithms
can be detected as a performance decrease on learned tasks when new tasks emerge.
Although some studies refer to catastrophic forgetting as catastrophic interference
[15], in this work, we argue that the phenomenon of catastrophic interference is the
cause of catastrophic forgetting. This is evident from Definition 12.

It should be noted that he following figure is from a paper titled ”Attention-based
selective plasticity”[16].

2.3. Continual Learning Terminology & Challenges 9

FIGURE 2.2: This figure illustrates the notion of catastrophic forget-
ting

Memory Management

Retaining knowledge is crucial for avoiding catastrophic forgetting during training
in CL settings. Hence, many algorithms utilize memory mechanisms to store infor-
mation about past tasks. Although memories can be saved in different manners,
a memory management system should only save valuable information and trans-
fer knowledge to future tasks to be efficient. The trade-off problem, also called the
plasticity-stability problem, states that an algorithm should balance the information
saved and forgotten. On top of that, a memory-based algorithm has to assess the
already stored information since learning new tasks may lead to the degradation of
memories.

Concept Drift

Distribution Shifts are caused by distribution changes that may lead to catastrophic
interference and consequently to catastrophic forgetting. Hence the model has to
both detect and adapt to these changes in order to alleviate the effects of distribu-
tional shifts. The concept drift is related to the Bayesian surprise concept, which
measures how an observer can be affected by data in terms of differences between
posterior and prior beliefs about the world [17]. In fact, there are two types of con-
cept drifts:

• Virtual Concept Drift concerns only the input distribution, and it occurs due
to imbalanced classes.

• The Real Concept Drift can be detected only by its effect since it is caused by
novelty on data.

It should be noted that task changes can cause distributional shifts too.

The following figure is from a survey titled ”A survey on classification of con-
cept drift with stream data” [18].

10 Chapter 2. Continual Learning

FIGURE 2.3: This figure illustrates the notion of concept drift

2.4 A Continual Learning framework with emphasis on clas-
sification

The field of CL has gained significant popularity over the last few years. CL has been
the subject of numerous surveys. However, most of these studies are empirical[19],
while others do not even provide comparative results [20]. Although some effort has
been devoted regarding the formalization of CL in robotics [21], CL lacks a formal-
ization with an emphasis on classification. We argue that a common framework for
training and testing CL models is crucial to enhance fair comparisons of techniques
and thus assist the field in advancing further.

2.4.1 Definitions

Definition 16. Training Data
Suppose that D = {D1, ..Dn} is a sequence of distributions over X × Y where
X and Y are the input and the output random variables, respectively. At time
i the training data, which consist of (x, y) or (i, x, y) observations, are sampled
from the distribution Di and provided to the model. It should be noted that
the sequence of distributions D is potentially infinite.

Definition 17. CL Algorithm
Given f as a target function, t ass the task label and M as external memory, a
continual learning algorithm CLA can be properly defined as:

∀Di ∈ D, CLA :< fi−1, Xi, Yi, Mi−1, ti >→< fi, Mi >

In short, at each time i, (Xi, Yi) pairs are sampled from the distribution Di.
The objective of the ACL is to utilize these observations and the previously
stored information in memory to update both the target function and external
memory. It is worth to be mentioned that in the above case, the algorithm can
employ the task label information ti to disentangle the tasks. In the case that
the task information is not given the signature becomes:

∀Di ∈ D, CLA :< fi−1, Xi, Yi, Mi−1 >→< fi, Mi >

2.4. A Continual Learning framework with emphasis on classification 11

On top of that some algorithms do not utilize external memory and conse-
quently we have:

∀Di ∈ D, CLA :< fi−1, Xi, Yi >→< fi >

Definition 18. CL Scenarios
A scenario is a specific setting in which the tasks follow a specific organiza-
tional scheme

2.4.2 Continual Learning Scenarios

Although several machine learning scenarios permit models to operate on the entire
dataset, in CL, data arrive incrementally as subsets of samples. According to [22],
the CL problems can be categorized into three main scenarios. Using the dataset
depicted in figure 2.1 as an example, we summarize the objective of each scenario in
the following table:

Continual Learning Scenarios
Scenario Objective
TASK-IL Is it 0 or 1? (Task given)
DOMAIN-IL Is it 0 or 1? (Task unknown)
CLASS-IL Which digit is is? (0-9)

TABLE 2.1: This table summarizes the objective of each scenario

Task-Incremental Learning
Task-Incremental Learning is the easiest continual learning scenario since the
model can utilize task-related information. The dataset is permuted into non-
overlapping tasks, and during training, only data from the current task is avail-
able.

...

1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0

Task 1 Task 2 Task 3 Task 4 Task 5

FIGURE 2.4: Illustration of the task-incremental learning scenario on
the MNIST dataset

Domain-Incremental Learning
Domain-Incremental Learning is similar to Task-Incremental Learning except
that no task information can be accessed by the model. Thus, a given set D =
{xi, yi}i=1...2, the model has to solve the task at hand.

...

1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0

FIGURE 2.5: Illustration of the domain-incremental learning scenario
on the MNIST dataset

12 Chapter 2. Continual Learning

Class-Incremental Learning
The goal of class-incremental learning is to learn, given a dataset D = {xi, yi}i=1...n,
a unified classifier. Similar to Domain-Incremental Learning, the model can not
utilize task information in this scenario.

...

1 0 1 1 2 3 3 2 5 5 4 4 7 6 7 6 8 9 9 8

FIGURE 2.6: Illustration of the class-incremental learning scenario on
the MNIST dataset

2.4.3 Datasets

SVHN
The SVHN dataset consists of 630420 32 by 32 RGB images, 604388 for training,
and 26032 for testing. The images in total correspond to 10 classes, one per
digit, and each image is centered around a single digit. It is worth noting that
this version of the DVHN dataset is used for continual learning, while there is
one more version that is usually used for object recognition [23].

0 1 2 3 4

5 6 7 8 9

SVHN

FIGURE 2.7: Classes of the SVHN dataset

CIFAR-10
The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with
6000 images per class. The training set consists of 50000 samples while there
are 10000 test images [24].

dog ship truckhorsefrog

airplane cat deerbirdautomobile

CIFAR-10

FIGURE 2.8: Classes of the CIFAR-10 dataset

2.4. A Continual Learning framework with emphasis on classification 13

CIFAR-100

This dataset is similar to CIFAR-10. However, it consists of 100 classes orga-
nized into 20 categories. Furthermore, there are 500 training, and 100 testing
samples for each class [24].

MNIST
The MNIST dataset contains images of handwritten digits and consists of a
training set with 60000 samples and a test set with 10000 samples. Each image
is centered and size-normalized to 28× 28 pixels with 256 gray levels and is
associated with a label from 10 classes (0-9) [25].

5 8 976

0 3 421

MNIST

FIGURE 2.9: Classes of the MNIST dataset

2.4.4 Protocols

CL aims to develop algorithms that can acquire knowledge over time. To fairly
evaluate a CL method, we need to perform training and testing on several tasks.
Hence it is imperative to utilize CL protocols in order to create sequences of tasks.

Permutation
Given a dataset, the permutation protocol generated N task by applying N
different permutations to the original dataset

Task 1 Task 2

Task 3

Permutation-MNIST

FIGURE 2.10: Illustration of permuted MNIST task protocol

Split
The split protocol operates on the entire dataset by splitting the dataset into
clearly separated tasks. The Split MNIST is a typical dataset that is utilized
for benchmarking continual learning methods. It was introduced in a five-task
form where the ten classes split into five binary classification problems. (See
Figure 2.1

14 Chapter 2. Continual Learning

Rotation
Given a dataset, the rotation protocol generated N task by rotating the original
dataset by multiples of 360

N degrees

Task 1 Task 2

Rotation-MNIST

Task 3 Task 4

FIGURE 2.11: Illustration of rotation MNIST task protocol

2.4.5 Evaluation Metrics

Evaluating an algorithm is of great significance for building effective AI systems.
CL is an emerging field, and thus there are no established evaluation metrics that
measure the different aspects of CL. Hence, in this work, we focus on two essential
yet straightforward measures:

Accuracy Score
Accuracy is the simple ratio between the number of correctly classified points
to the total number of points. We argue that the accuracy score can provide
valuable insights about the robustness of the examined models due to lack of
data imbalances on the training sets

accuracy(vpred, vtrue) =
#(vpred == vtrue)

#vtrue

Forgetting Rate We propose an evaluation metric in order to measure the ef-
fects of catastrophic forgetting. The forgetting rate is inversely proportional to
the ratio of CL accuracy and joint training accuracy (See Definition 15).

f r = 1− accuracyCL

accuracyJT
(2.1)

2.4.6 Baselines

The baselines are important since they serve as performance bounds. In this work,
we utilized a deep neural network sequentially trained on all tasks, which can be
seen as the lower bound. Furthermore, the same architecture was trained using the
data of all tasks, which can be seen as the upper bound.

2.4. A Continual Learning framework with emphasis on classification 15

The essentials of Deep Neural Networks (DNNs)

A neural network is a brain-inspired algorithm that consists of input, output, and
hidden layers. Each layer, in turn, consists of neurons which are the computational
units of the model. The layers in the case of an ANN are fully connected, which
means that all the layer neurons are connected to all neurons of the next one. Each
connection maintains a weight value, though the adjustment of those weight values,
the neural network can approximate a plethora of functions hence the term universal
function approximator.

Input Layer Hidden Layer Output Layer

x1=a1.1

x2=a1.2

x3=a1.3

W1 B1 W2

Z2 A2A1

B2

S

FIGURE 2.12: Illustration of a simple neural network with one
hidden-layer

16 Chapter 2. Continual Learning

Forward Propagation
During forward propagation, the data is fed to the neural network, and each
layer receives, processes, and passes it to the next one.

– Input Layer
The neurons in the input layer represent the input data.

xi = a1.i, i ∈ 1, 2, 3

– Hidden Layer
Each layer applies a linear transformation to the output of the previous
layer. Thus the vector Z is produce which in turn is used for the calcu-
lation of the activation vector A. It should be noted that the activation
function is non-linear.

Z2 = WT
1 A1 + B1

A2 = activation(Z2)

– Output Layer
This layer applies a linear transformation to the activation vector of the
previous layer. The output vector is produced as follows:

S = WT
2 A2 + B2

Finally we compute a functions that evaluates the output vector S against the
properly encoded label y. This function is also called cost function and the
objective of the neural network is to minimize it

C = cost(S, y)

Backward Propagation
As mentioned above the objective of a neural network is to find the values of
W, B minimize the cost function and consequently the difference between the
actual and the predicted vectors. Hence, the calculation of the gradient of the
cost function w.r.t both W and B is needed.

– Gradient Calculation

For batch size equals 1, the gradients can be calculated as follows:

dC
dWl

=
dC
dZl

dZl

dWl
=

dC
dZl

AT
l−1

dC
dBl

=
dC
dZl

dZl

dBl
=

dC
dZl

For batch size equal tp m, the following equation can be used for gradient
calculation

dC
dWl

=
1
m

m

∑
i=1

dCi

dWl

dC
dBl

=
1
m

m

∑
i=1

dCi

dBl

2.5. Methods for addressing catastrophic forgetting 17

– Parameter Update
The gradient points to the direction of the greatest increase, and conse-
quently, following the gradient’s direction is not a wise choice since it
leads to cost function maximization. The solution is to adjust the net-
work’s parameters by utilizing the anti0gradient instead. Hence the up-
date rule can be formalized as follows:

Bnew
l = Bold

l −
dC

dBold
l

Wnew
l = Wold

l −
dC

dWold
l

2.5 Methods for addressing catastrophic forgetting

The recent advances in the field of digital design have assisted DL in receiving in-
creased attention. In fact, the use of powerful GPUs has allowed training on vast
datasets and thus revealed the remarkable predictive abilities of the DNNs. The
advent of DL algorithms has brought about advancements in the field of CL too.
Nowadays, AI researchers address CL problems with many tasks of numerous sam-
ples each. Hence, several techniques have been adopted to alleviate the effects of
catastrophic forgetting. Based on how the information can be stored and used for
feature learning and inferencing, these methods can be categorized into three broad
categories. In this section, we describe the most common methods that are employed
in CL.

2.5.1 Replay

Replay methods aim to defy catastrophic forgetting by relaying memories from pre-
vious tasks in order to revisit old concepts when learning new ones. The technique of
storing previously encountered examples for rehearsal is used since 1990. In fact, the
method of experience replay is widely applied in the field of RL, where the agents
have to interact with non-stationary environments and learn to perform the actions
that maximize a reward function. According to the replay strategy that they employ,
the replay based-algorithms are characterized as follows:

Rehearsal: The rehearsal methods save raw or preprocessed samples of al-
ready learned tasks in memory.

Pseudo-Rehearsal: The pseudo-rehearsal methods produce pseudo-samples
instead of saving already seen examples. In both the rehearsal and pseudo-
rehearsal replay methods, the memories are usually mixed with the current
data.

Constrained: Although rehearsal methods tend to overfit in the saved sam-
ples, constrained replay methods can circumvent this effect by introducing ad-
ditional constraints in the update process to prevent the interference between
the new and the old tasks

18 Chapter 2. Continual Learning

2.5.2 Regularization

This method introduces a regularization term to the loss function of the learner
to consolidate the previous knowledge when learning from new data. Thus, the
regularization-based algorithms do not make use of external memory systems or
generated samples to retain previous concepts, and consequently, they are both
memory efficient and privacy-preserving. The regularization approach can also be
divided into two main categories:

Prior-focused: The prior-focused regularization-based algorithms utilize the
model parameters to estimate the prior distribution when learning from new
data. The parameters of the model are assumed to be independent since the
estimation of the prior distribution becomes infeasible due to the vast number
of parameters in DNNs. On top of that, an importance metric is calculated
for each parameter of the model, and changes in important parameters are
penalized during the training in new data.

Data-focused: The data-focused regularization approach is based on the con-
cept of knowledge distillation [26]. The goal of the distillation techniques is
to transfer the knowledge acquired from one neural network (NN) to another.
In fact, if a NN A can solve a specific task, then A’s ability can be transferred
to a NN B by forwarding the same input to both networks and imposing B
to mimic the output of network A. Knowledge distillation is practically less
costly than re-training the network B on the entire dataset since a produces a
soft target. Thus it is easier for B to distinguish the new from the previously
learned tasks.

2.5.3 Parameter Isolation

As the name indicates, the parameter isolation-based algorithms dedicate different
subsets of the model parameters to different tasks. Hence the model tends to learn
a distinct representation for each concept, and consequently, the catastrophic inter-
ference is prevented to some extend, which in turn limits the effects of any possible
forgetting of the previous tasks. Once again, according to the size constraints of the
architecture, the parameter isolation-based algorithms are categorized as follows:

Fixed Architecture: The fixed architecture method aims to identify the most
significant parts of the architecture for solving the old task and mask them
out during the training of a new task. Consequently, utilizing this method
leads to learning a different mask and thus different features for each task.
The masking can be imposed on both the parameters and neurons. However,
the task boundaries have to be known for this method to work properly.

Dynamic Architecture: In the case of dynamic architecture parameter isola-
tion methods where there are no constraints on the size of the architecture, the
learning process is straightforward. These methods proceed by identifying the
parts of the network that solve the previous tasks and freeze them. On top
of that, as the name suggests, the architecture is dynamic, and consequently,
it can grow new branches when needed. However, much like the fixed archi-
tecture method, the task boundaries have to be known for this architecture to
achieve the highest possible performance.

2.6. State-of-the-art algorithms 19

CONTINUAL LEARNING METHODS

REGULARIZATION
PARAMETER
 ISOLATION

REPLAY

Rehearsal

Pseudo-Rehearsal

ConstrainedData-FocusedPrior-Focused

Dynamic-
Architecture

Fixed-
Architecture

FIGURE 2.13: Illustration of a tree diagram that depicts the types of
methods used in continual learning

2.6 State-of-the-art algorithms

In this section, we present some algorithms that can be classified as state-of-the-
art in CL. These algorithms fall into at least one of the aforementioned families of
methods and learn either task-specific or task-free features. For each algorithm, we
provide both a detailed but concise description as well as the pseudocode needed
for implementation reasons. It is worth to be mentioned that in chapter 4, these
algorithms will be compared with our proposed architecture in each of the three CL
scenarios discussed above. Furthermore, the accuracy score on benchmark datasets
such as the Split-MNIST and Split-CIFAR-10 will be used as an evaluation metric.

2.6.1 Copy Weight with Reinit (CWR)

This algorithm belongs to the family of dynamic-architecture parameter-isolation
methods, and it is considered to be a baseline technique for learning from sequential
batches in each CL scenario. When the task label is given, the algorithm freezes
the shared weights Θ̄ after the completion of a task and extends the output layer
with new randomly initialized neurons for the new one. However, in the case of
both domain-incremental and class-incremental scenarios where the environment
can not provide information about the task boundaries due to the unavailability
of the task label, the algorithm still follows the same procedure, but this time, the
architecture is extended for each training batch [27]. As shown in the figure above,
the algorithm maintains two sets of output weights the consolidated weights cw
used for making predictions and the temporal weights tw utilized for learning while
the shared weights remain frozen after learning the first batch.

20 Chapter 2. Continual Learning

FIGURE 2.14: This figure illustrates the pseudocode for the CWR al-
gorithm

Copy Weight with Reinit + (CWR+)

The CWR+ algorithm [27] is an extension of the CWR algorithm. In fact, this tech-
nique improves upon the original one by introducing the following two simple mod-
ifications to the CWR approach:

Modification 1. Mean-Shift: Tuning the parameters wi in the CWR algo-
rithm is usually a tedious and laborious task, while wrongly tuned wi can
significantly decrease the model’s performance. Hence, instead of that, this
algorithm normalizes the tw learned at the ith training step by subtracting the
global mean of tw

Modification 2. Constant Initialization: It has been empirically proven that
the random initialization of the training weights of the last layer can introduce
significant bias during the first softmax normalization. Thus instead of random
initialization, constant initialization is performed. In fact, the parameters tw
are reinitialized to zero since the shared weights remain frozen during training.

FIGURE 2.15: This figure illustrates the pseudocode for the CWR+
algorithm

2.6. State-of-the-art algorithms 21

t1 t2 t3 tn

Tasks

ti==t1 ti==t2 ti==t3 ti==tn

...
...

ti

B1 B2 B3 Bn

Batches

ti==t1 ti==t2 ti==t3 ti==tn

...
...

ti

......

Bi

Task-Incremental Scenario

Domain/Class-Incremental Scenario

FIGURE 2.16: This figure illustrates the training process of CWR and
CWR+ in task, class, and domain incremental scenarios

2.6.2 Deep Generative Replay (DGR)

This model is based on pseudo-rehearsal replay methods. The goal of the classifier
is to learn a mapping from the input to the output space, while the generator aims
to learn the data distribution in order to sample data from past experience. On the
first batch of data, both the classifier and generator are ordinarily trained. How-
ever, when the next batch arrives, the generator produces the replay data, which
are mixed with the training data of the current batch, and the models are trained in
the new upsampled dataset. In this way, it can be ensured that the already learned
knowledge is not forgotten [28].

input

softmax

input

z

New data Generative
Replay

C
lassifier

G
enerator

FIGURE 2.17: Illustration of a typical DGR architecture

22 Chapter 2. Continual Learning

2.6.3 Elastic Weight Consolidation (EWC)

EWC [29] is a prior-focused regularization-based algorithm since it penalizes up-
dates on important weights. When the model is trained on a new task, the impor-
tance of the training parameters can be estimated by the diagonal of the Fisher infor-
mation matrix F. The diagonal of this matrix corresponds to the curvature of the loss
surface near a minimum. Hence, the ith diagonal element Fi corresponds to the im-
portance factor of parameter θi. It should be noted that important parameters must
be moved as little as possible since a slight change can cause a dramatic increase in
the loss function due to the high curvature of the loss surface towards their direc-
tion. For two sequential tasks A and B, the loss function of the algorithm is given
from the following formula:

L(θ) = LB(θ) + ∑
i

λ

2
Fi(θi − θ∗A,i)

2

• L(θ): loss function for task B

• θi: current θi parameter

• θ∗A,i: the optimal θi parameter for task A

• Fi: the ith diagonal element of the Fisher information matrix (FIM)

When another task emerges, the algorithm will try to minimize the loss function of
this task without significantly changing the learned parameters of the old tasks by
either adding separate penalty functions or a single penalty for the old tasks.

θ*,Α

θ*,Β

Low error region for task 1

Low
 er

ro
r r

eg
io

n f
or

 ta
sk

 2

L2

No penalty

EWC

FIGURE 2.18: This figure illustrates the trajectories of the model’s
training parameters (a) when the EWC algorithm is employed (b)
when L2 regularization is utilized and (c) when no regularization is

introduced

2.6. State-of-the-art algorithms 23

2.6.4 Learning Without Forgetting (LwF)

This algorithm is based on data-focused regularization techniques since it tries to
address catastrophic forgetting by forcing predictive stability. Given a set of param-
eters, the ultimate goal of the LwF algorithm is to add task-specific parameters as
well as learn parameters that work well on all tasks without using old data [30].
First, the responses yo of the algorithm are recorded, and thus, each sample is asso-
ciated with a prediction vector. Next, the network is trained to minimize the loss for
all tasks and the regularization term. Furthermore, the loss function for the new task
is defined as follows:

Lnew(yn, ŷn) = −yn log ŷn

• yn: The one-hot encoded truth label vector

• ŷn: The softmax prediction vector

• For multiple new tasks, the total loss equals to the sum of losses across new
tasks

• For multilabel classification, the total loss equals to the sum of losses across
all labels

On top of that, the loss function for each original task can be computed as follows:

Lold(y′o, ŷ′o) = −
l

∑
i=1

y′(l)o log ŷ′o
(l)

• l: number if labels

• ŷ′o: The modified version of current probabilities

• y′o: The modified version of the initially recorded probabilities

• For multiple old tasks, the total loss equals to the sum of losses across new
tasks

• For multilabel classification, the total loss equals to the sum of losses across
all labels

Finally the modified probabilities can be calculated using the following formulas:

y′(i)o =
(y′(i)o)

1
T

∑j(y′
(j)
o)

1
T

, ŷ′
(i)
o =

(ŷ′
(i)
o)

1
T

∑j(ŷ′
(j)
o)

1
T

It should be noted that the parameter T > 1 leads to better class similarity encoding
[26].

24 Chapter 2. Continual Learning

FIGURE 2.19: This figure illustrates the pseudocode for the LwF algo-
rithm

2.6.5 Synaptic Intelligence (SI)

This algorithm is an alternative to the EWC [31]), and thus it is based on the prior-
focused regularization technique. In fact, SI differs from EWC in the sense that it
computes the weight importance during Stochastic gradient descent (SGD), unlike
EWC, which computes the FIM at the end of the training on the batch. During SGD,
the loss change caused by the movement of the ith weight can be calculated as fol-
lows:

∆Li = ∆θi
dL
dθi

= (θ′i − θi)
dL
dθi

Hence the Fi parameter can be computed as follows:

Fi =
1

K2
i + ξ

∑ ∆Li

It is worth noting that the EWC can be easily turned into SI regularization since these
algorithms differ only in terms of importance calculation.

2.6.6 Context-dependent Gating (XdG)

The XdG method is a neuro-inspired solution for CL. In fact, the algorithm aims to
model the ability of the brain to switch between tasks and thus deal with catastrophic
forgetting by allowing updates to occur in primarily non-overlapping sets of weights
in order to minimize the catastrophic interference between tasks. This easy-to-train
algorithm selects a random subset X% of the total number of units in each hidden
layer for each task and sets their activation functions to zero. The hyperparameter
X is usually selected through grid search, and as mentioned above, it controls the
percentage of units that will be gated in each hidden layer. However, this method
can only be utilized only for task-incremental learning problems since it requires a
unique signal for each task [32].

2.6. State-of-the-art algorithms 25

2.6.7 Hybrid Algorithms

In this subsection, we describe some hybrid algorithms that aim to alleviate the ef-
fects of catastrophic forgetting by combining the merits of two or more techniques.

Deep Generative Replay and Regularization (DGR)

This method aims to combine generative replay with knowledge distillation. The
key idea behind this hybrid algorithm is to utilize LwF for replaying input data
generated by a deep generative model and associate those data to probability vectors
or soft targets in general. Although this approach does not significantly improve the
performance of the DGR algorithm, it can be considered a state-of-the-art approach
[33].

Architectural and Regularization approach (AR1)

AR1 [27]is a hybrid algorithm that utilizes both parameter isolation and regular-
ization. In fact, AR1 is similar to the CWR+ algorithm since it follows an almost
identical training process. However, this hybrid algorithm employs SI to introduce
the concept of parameter importance and thus tune the shared weights Θ̄ across the
entire dataset.

FIGURE 2.20: This figure illustrates the pseudocode for the AR1 algo-
rithm

27

Chapter 3

Self-Organizing Maps

In recent years, enormous amounts of data are created every day. Emails, social
networking interactions, and online transactions are only some of the sources that
produce data [34, 35]. It has been estimated that almost 5 exabytes of data are cre-
ated every two days. Thus, it is not a surprise that Big Data and data analytics are at
the epicenter of modern science and business in the age of digitalization and tech-
nological progress. Actually, data may contain patterns and valuable pieces of infor-
mation that can be extracted and consequently incorporated into decision-making
processes.

However, every analytical task that invokes large datasets requires an information
organization process. Distinguishing common patterns and their relationships in
the data can provide valuable insights about the structure and thus the organization
of data. Clustering belongs to the family of unsupervised ML algorithms that aim
to discover the structure of a dataset by grouping data points so that similar sam-
ples belong to the same group. Statistical ML methods aim to identify the cluster
structure of a high-dimensional dataset and then utilize this structure in order to
recognize the patterns that will allow for accurate and persistent predictions for un-
seen data points.

The SOM [36] is an effective algorithm in producing similarity graphs of input data,
considering it converts the statistical relationships between high-dimensional data
points to geometric relationships on a space of lower dimensions, usually 2D. On
top of that, the SOM, in its basic form, can also be very useful for high-dimensional
data visualization since it can compress information while preserving the topolog-
ical characteristics, at least the most important, of the entire dataset. Hence it is
widely applied in several domains such as machine perception, data analytics, and
bioinformatics.

Since its introduction by Kohonen, SOM is one of the most commonly used neu-
ral network models. The SOM is an unsupervised learning algorithm with a simple
structure and relatively low computational complexity compared with the number
of data that it processes. Initially developed as associative and inspired by both the
retina-cortex mapping and brain maps, the SOM aims to cause neighboring parts
of the map to have similar responses to specific input patterns. In general, self-
organization is a key process of learning both inter-pattern associations as well as
intra-pattern relationships among the stimuli and responses. It should be noted that
the process above does not require external influence for discovering the appropriate
patterns.

28 Chapter 3. Self-Organizing Maps

3.1 Chapter Outline

In this chapter we provide the essential background for self-organizing maps. The
rest of this chapter is organized as follows:

• Section 3.2: In this section we briefly describe the history of the SOM algorithm

• Section 3.3: The notion of vector quantization is discussed

• Section 3.4: The essential background of SOM is presented

• Section 3.5: Theoretical analysis is conducted in the case of 1D SOMs

• Section 3.6: Theoretical analysis is conducted in the case of multi-dimensional
SOMs

• Section 3.7: The stochastisity of the online algorithm is analysed

• Section 3.8: The Batch-SOM algorithm is presented

• Section 3.9: Variations and extensions of the original SOM algorithm are pre-
sented

3.2 Historical Background

In 1982 Teuvo Kohonen introduced a special type of ANN, the model, and ever
since, it has encountered large success because it is a simple-to-develop and easy-
to-train algorithm that achieves remarkable performance on data clustering as well
as it provides a method for producing visualizing the nonlinear relationships be-
tween multi-dimensional data in a meaningful way. The basic version of SOM is
partly inspired by the way that sensory (e.g., visual, auditory, olfactory) information
is handled in the cerebral cortex of humans, and the learning algorithm can be mod-
eled as an online stochastic process.

In 1986 the somatosensory mapping property of SOM was illustrated [37] and con-
sequently was once again affirmed that the SOM learning algorithm was motivated
by neuro-biological paradigms in which the learning process is unsupervised and
regulated by the experience. For a long time, the algorithm was used only for mod-
eling neural and biological processes in general. However, it slowly started to be
applied in a plethora of other fields [38, 39] such as economics, robotics, and natural
language processing (NLP) due to its remarkable computational capabilities [40].

Over the last years, numerous variants and extensions of this algorithm have been
developed. In fact, the deterministic batch SOM [41] algorithm was proposed for
industrial applications where the reproducibility of the results is a crucial factor. On
top of that, the original algorithm supports only real-valued vectorial data. Thus
the algorithm had to be redefined several times in order to support complex non-
vectorial, categorical data, and documents, as well as similarity and dissimilarity
indexes [42, 39].

3.3. Quantization 29

3.3 Quantization

According to Wikipedia quantization is a mathematical process that maps values
from a large, usually continuous, set to values in a smaller set with a finite num-
ber of elements. Typical quantization examples include rounding and truncation;
thus, quantization is a key step in every lossy compression algorithm. This mapping
technique is adopted in the field of digital signal processing since it can be utilized
for constructing digital representations of analog signals. However, quantization is
a one-way process since the same quantized value may represent a large subset of
numbers and not just an input value.

Vector Quantization (VQ)

VQ [43] is the process of partitioning vectorial input data into regions optimally
represented by a codebook vector. Thus VQ describes a pattern set using a reduced
number of codebook vectors. Consequently, an optimal VQ has been achieved when
the regions are partitioned such that the mean distance of an input data point from
the best-matching codebook vector is minimized. VQ is widely applied in the field
of pattern recognition since it has low computational complexity compared to other
models, such as the hidden Markov models (HMMs). However, the classical VQ
technique does not account for temporal changes in signals. Thus, a multi-section
approach was introduced to address this problem by creating a different codebook
for each section of an input signal [44].

For an input d-dimensional pattern x ∈ Rd and the codebook vectors that repre-
sent the partitioned regions c we can find the best-matching codebook vector using
the Euclidean distance such as:

bmv = arg min
i
{||x− ci||2}

Suppose that the probability density of x is denoted as p(x), then the mean quanti-
zation error over the data space V is an energy function E which is defined as:

E =
∫

V
||x− cbmv||2 p(x) dV

Although the above function can be minimized, it may converge in a local minimum
due to its high nonlinearity [45]. It should be mentioned that a batch method for VQ
also exists, which is called k-means clustering [46, 47].

K-means

It is the most used hard-clustering algorithm [48] . In each step the probability that
an input pattern x belongs to the region represented by the codebook cj is calculated
and denoted as P(j|X). Then for each x in the input space the codebook is updated
iteratively such as the best-matching codebook for x is moved closer to it. The update
rule is defined as:

cbmv(t + 1) = cbmv(t) + lrP(bmv|X)
(
x− cj(t)

)

https://en.wikipedia.org/wiki/Quantization_(signal_processing)#Mathematical_properties

30 Chapter 3. Self-Organizing Maps

• lr: The learning rate

• cbmv(t): The best-matching codebook vector before the update

• cbmv(t + 1): The updated best-matching codebook vector

There is also a batch version of k-means in which each cj is moved towards the center
of its assigned patterns. Although the k-means algorithm can produce results that
can be reproduced if trained on the same dataset with the same initial code vectors,
it is prone to end at a local minimum, and thus, the initial choice of code vectors can
significantly affect the success of the algorithm

Soft-Clusering

In this type of clustering, [49], the codebooks compete for one input pattern x, the
probability that the input x belongs to the jth code vector is given by the formula:

P(j|x) =
exp(−β||x− cj||2)

∑j exp(−β||x− cj||2)
(3.1)

The above equation indicates that the probability P(j|x) is a Gaussian normalized
function. The parameter β controls the code vector’s range of influence such that for
β→ ∞, the algorithm becomes hard-clustering. Furthermore, ∑j P(j|x) = 1 and the
energy function E can be calculated as shown above. In fact, the soft-clustering ap-
proach can be implemented as an annealing process that can be utilized for avoiding
convergence to local minima [50]

FIGURE 3.1: Illustration of the Voronoi diagram (permutation bound-
aries) and the codeboock vectors (diamonds) for the input training

data (circles)

3.4. Fundamentals of Self-Organizing Maps 31

Hard vs Soft Clustering
Type Definition
Hard-Clustering A data point belongs completely to a cluster
Soft-Clustering A data point can belong to several cluster with a likelihood

TABLE 3.1: Hard vs Soft clustering

3.4 Fundamentals of Self-Organizing Maps

The SOM is an unsupervised projection mapping algorithm similar to VQ in the
sense that both aim to find the optimal codebook vectors or units in the case of
SOMs. However, The units of a SOM are also spatially globally ordered. These units
are represented as nodes on a 2D grid. The SOM algorithm applies competitive
learning to construct the map’s topology in such a way that the more similar the
input data, the shorter their distance on the map [51]. From a theoretical standpoint,
we can distinguish two different training settings based on the nature of the input
space:

• discrete setting: the data space consists of N data points xi, i = 1...N with
xi ∈ Rd

• continuous setting: The data space can be modeled by a probability density
function (PDF) g

3.4.1 Online SOM Learning Algorithm

The SOM consists of a grid of units. Each unit i has a predetermined position pi on
the grid, where pi ∈N+m

and m is the grid’s dimensions. Furthermore, the i-th unit
maintains a weight vector wi ∈ Rk where k is the number of dimensions of the in-
put vector xn with n = 1, 2, 3...number o f samples. It is worth noting that the weight
vectors are initialized to small random values.

The SOM is trained iteratively, and at each iteration t, the learning process per-
forms the following steps:

1. Select a sample vector x randomly (discrete setting) or according to the PDF g
(continuous setting) from the input data space X

2. Identify the index of the Best-Matching Unit (BMU) that satisfies:

BMU = arg min
i
||x−wi||2 (3.2)

3. Update each weight vector i using the following equation:

wi(t + 1) = wi(t) + a(t)hi,BMU(t)
(

x−wi(t)
)

(3.3)

The learning rate a(t) at training step t is calculated by:

a(t) = a0 exp
(
− t

λ

)
0 < a0 < 1

(3.4)

32 Chapter 3. Self-Organizing Maps

Moreover, the neighborhood function hi,BMU(t) at iterarion t is calculated as
follows:

hi,BMU(t) = exp
(
− ||pi − pBMU||2

2σ(t)

)
(3.5)

where σ(t) corresponds to the neighborhood radius at step t and it can be
calculated by:

σ(t) = σ0 exp
(
− t

λ

)
(3.6)

During the update step, the BMU and its topological neighbors are moved
closer to the input vector. It can also be observed that a(t), σ(t) and hi,BMU(t)
decrease exponentially over time. Furthermore, a0 and σ0 are the initial val-
ues of the learning rate and neighborhood radius, respectively. Finally, λ is a
hyperparameter whose value controls the decrease rate for both σ(t) and a(t).

The above algorithm is simple to develop, easy-to-train (see Figure 3.3) and provides
a useful tool for high-dimensional data visualization. However, apart from some
empirical results, the theoretical properties have not been entirely proved despite
a large number of works and experimental results. In fact, each wi is a stochastic
process in Rd. Thus for a large number of training steps t, the weight vectors can
display different behaviors. Hence, the following questions have to be addressed
from a theoretical point of view:

• Have the algorithm approximately converged to a distribution when t→ ∞?

• What happens when a(t) = a0 ∀t?

• What happens when a(t) decreases?

• Is the limit state stable if it exists?

• Can we characterize the organization and how?

The main results, as well as the remaining open problems, can be found in these
papers [52, 53].

3.4.2 Methods for analyzing SOM convergence

In this section, we present the mathematical tools that have been utilized to analyze
the convergence of stochastic processes and consequently of SOM

Markov Chain Theory (MCT)

Markov chain is a stochastic model [54, 55], and thus it can model the randomness of
an environment in which the next state depends only on the current state. The MCT
has been applied for studying the convergence and the limit states of a SOM with
constant learning rate and neighborhood function. If the algorithm converges in
distribution, this distribution, also called limit distribution, has to be an invariant
measure for the Markov Chain. It should be noted that for a Markov Chain on
a state space M with transition matrix P and the function f : m → R such that
f (i) = λi, ∀i ∈ M. The function f is a neasyre ib M if f (i) = λi ≥ 0, ∀i ∈ M.
Furthermore, a measure function f is invariant if f (i)P = f (i)↔ λiP = λi. Thus for
every state j ∈ M it should hold that f (j) = ∑i∈M f (i)pij ↔ λj = ∑i∈M λi pij

3.4. Fundamentals of Self-Organizing Maps 33

B

A

q

p

1-q

1-p

state transition

FIGURE 3.2: Illustration of a simple Markov chain with two states
and probabilistic transitions

Ordinary Differential Equation (ODE)

To employ the ODE method, the SOM update equation (Equation 3.3) has to be
rewritten in vector form as follows:

w(t + 1) = w(t) + a(t)Φ(x, w(t)) (3.7)

• w(t):SOM’s weight vectors before the update

• w(t + 1):The updated SOM’s weight vectors

• Φ(x, w(t)): a stochastic term

The next step involves the study of the solutions of the deterministic ODE that de-
scribes the mean behavior of the process.

dw
dt

= −φ(w) (3.8)

• dw
dt : The derivative of w w.r.t. t

• φ(w): In the case of continuous setting, it corresponds to the expectation of
Φ(., w) w.r.t. the probability distribution of the input space, while in discrete
setting it is the expectation of Φ(., w) w.r.t. the arithmetic mean

34 Chapter 3. Self-Organizing Maps

Thus, the mth component of φ for the continuous setting can be calculated as follows:

φm(w) =
N

∑
j=1

hmj

∫
Cj

(x− wm)g(x)dx (3.9)

• N: The number of SOM’s units

• hmj: The value of the neighborhood function between the jth and mth unit

Similarly, the mth component of φ for the discrete setting can be calculated as follows:

φm(w) =
1
K

N

∑
j=1

hmj ∑
xi∈Cj

(xi − wk) (3.10)

• K: The number of the input samples

• C: The space of BMUs

Finally, the possible limit states of the stochastic process have to satisfy the following
equation:

φ(w) = 0 (3.11)

It is worth noting that if the solutions of this function are also the minima. Thus
gradient descent can be applied in order to find the zeros of the above equation.

Robbins-Monro algorithm theory

This approach is useful for root finding problems where the function can be repre-
sented as ab expected value. Thus, this algorithm can only be utilized if the learning
rate decreases under the following conditions:

∑
t

a(t) = +∞

∑
t

a(t)2 < +∞
(3.12)

Although some progress has been made in analyzing the SOM convergence, the
original SOM algorithm is still difficult to be studied. First of all, an organized state
is challenging to be defined for high-dimensional input data and maps. Secondly, it
has been proved that the update rule (Equation 3.7) is not an energy function [56],
and thus gradient descent can not be utilized for finding the roots of φ in the contin-
uous setting. Finally, all the approaches assume that the neighborhood function is
of fixed intensity which is not the case for the original SOM algorithm.

3.4. Fundamentals of Self-Organizing Maps 35

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

x

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

FIGURE 3.3: Illustration of the SOM architecture (gird with nodes w)
and the input vector (node x). The weight vector in position (2,2) as

selected as the BMU of the input

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1t = N

FIGURE 3.4: This figure illustrates the behavior of the neighborhood
function h w.r.t. training step t

36 Chapter 3. Self-Organizing Maps

3.5 Theoretical analysis of the 1D SOM case

Although the theoretical analysis of the one-dimensional case, where the map is a
string, and the inputs are scalars, can provide valuable insights about the behavior
of the algorithm, the 1D SOM has almost zero practical utility. It should be noted
that the 1D SOM algorithm has been extensively analyzed in the past [57, 52, 53].
However, the 1D SOM case is analyzed in a more concise way in this section (see
Figure 3.5).

3.5.1 A special case

In this case, the map is one-dimensional and of N units, the input data are sampled
from a uniform distribution in [0, 1]. Furthermore the learning rate is constant a0
with a0 < 1

2 and the neighborhood function is constant and it can be defined as
follows:

hbmu,i =

{
0, |bmu− i| > 1
1, otherwise (3.13)

If the w(t) update process is a homogeneous (transitions independent of t) Markov
Chain with a continuous state space, the organization can be characterized by the
ordering of the units. It should be noted that this case has been extensively studied
[57]. The core steps of the proof are described below.

1. The number of wrongly ordered triplets has to decrease strictly to sufficiently
prove the convergence.

2. The set of ordered dispositions has to be an absorbing state (a state from which
there is no escape) of a Markov Chain.

3. Then it can be shown that the topology preservation takes place after a finite
time with a probability higher than a positive bound and consequently that the
arrival to the absorbing state is finite.

4. Thus, there exists an integer A and a positive constant c such that if the process
starts from an ordered state. the probability to enter in a set E ∈ [0, 1]n with
less than A transitions is smaller than c · volume(E).

5. The step above indicates that the process converges to a monotonous station-
ary distribution that depends on a0.

6. If a(t)→ 0, the Markov Chain almost surely converges towards a monotonous
solution of an explicit linear system if the Robbins-Monro conditions are satis-
fied.

Proof: volume(E) = 1
n! where E = {x = (x1, ..., xn) ∈ Rn : 0 ≤ x1 ≤ ... ≤ xn ≤

1}:
The statement above can be easily proven as follows:

For n = 1 the set represents a unit line segment and thus V1 = 1
For n = 2 the set represents a triangle with unit height and E1 as base so,
V2 = 1

2 V1 = 1
2

For n > 1 the set is a simplex and consequently Vm = 1
n Vn−1 = 1

n
1

n−1 ... 1
2 1 = 1

n!

3.5. Theoretical analysis of the 1D SOM case 37

Therefore, in the case of 1D SOM for t → ∞ both the convergence to a monotonous
and unique ordered solution can be proved.

w1(+∞) < ... < wN(+∞)

w1(+∞) > ... > wN(+∞)
(3.14)

However, when the dimension number increases, it becomes impossible to discover
absorbing states and consequently a stable and monotonous unit ordering (see Fig-
ure 3.6).

W1 W2 W3 W4 W5 W6

x

FIGURE 3.5: Illustration of the 1D SOM

A
B

c

FIGURE 3.6: Illustration of a 2D SOM. In this case, the units are well
ordered and connected as depicted. Hence A and B are neighboring
units, the same holds for A and C. However, B is not a neighbor of C.
Thus if C is repeatedly chosen as the BMU, B is never updated, and
consequently, its grid position does not change. On the other hand,
A comes closer to C with every update, and as a result, the starting

disposition is disordered

38 Chapter 3. Self-Organizing Maps

3.5.2 The general 1D SOM convergence case

The general case invokes relaxation of the hypothesis on the data distribution and
the neighborhood function. In this section, the conclusions that can be drawn for the
general 1D case are presented. It should be noted that more detailed discussions on
those results can be found in these papers. [52, 53]

• For constant a(t), the order time is usually finite

• The random process w(t) usually converges to a stable and unique equilibrium
point if a(t) satisfies the Robbins-Monro conditions

• If the stable equilibrium us unique, for constant a(t) = a0 exists an invariant
probability measure ma0 from any ordered state.When a0 → 0, this measure
becomes a Dirac measure, and the equilibrium state

• If the stable equilibrium is unique, the algorithm converges to this equilibrium
from any ordered state provided that it satisfies the Robbins-Monro conditions

Although the 1D case for constant rates is well-known, there is nothing proven about
the choice of a proper decreasing function for a(t) that ensures both ordering and
convergence. The same holds for the neighborhood function.

3.6 Theoretical analysis of the multi-dimensional case

Although the multi-dimensional case is difficult to be studied theoretically, some
partial results have been proved over the last years [56, 58, 59, 60, 61]. In this section,
some of the results presented in those studies are discussed.

3.6.1 Continuous setting

In the multi-dimensional case, it has been shown that for a neighborhood function
of a finite range, a constant learning rate and a positive probability density function
(pdf), at least on an interval. The learning algorithm weakly converges to a unique
probability distribution that depends on a0. However, the topological preservation
properties of this stationary distribution remain unproven due to the difficulty of
defining absorbing states in the multi-dimensional continuous setting. Determin-
ing the complexity of the problem is also difficult since some contradictory results
hold. For instance, if there is a 2D map and a set S that contains ordered units (x,y
coordinates), it holds that:

• Given a constant learning rate and a pdf, the process will hit S almost surely
in finite time [58]

• The exit time is almost surely finite in the case of 8-neighbor setting [59]

3.6. Theoretical analysis of the multi-dimensional case 39

3.6.2 Discrete setting

When the neighborhood function is independent of the training step, the stochastic
process derives from a function whose values are positive near positive charges,
negative near negative charges, and in general, tend to zero at infinity. The potential
functions are associated with energy and thus the configuration of latent variables
and the configuration of inputs provided in an example. The update rule is shown
below:

wu(t + 1) = wu(t) + a(t)hu,bmu(t)(x− wu(t))
= wu(t)− a(t)Φu(x, w(t))

= wu(t)− a(t)
d

dwu
E(x, w(t))

where E(x, w) is a sample function of E(W)

E(w) =
1

2N

U

∑
u1=1

U

∑
u2=1

hu1,u2 ∑
xi∈Cj

||wu1 − xi||2

or

E(w) =
1

2N

N

∑
i=1

U

∑
u=1

hu,bmuxi
||wu − xi||2

Hence, the stochastic gradient descent process on E(w) is associated with the update
stochastic process w(t). Thus the following conclusions can be drawn:

1. The energy function is associated with the Simple Competitive Learning pro-
cess, also called VQ algorithm, as a generalization of the intra-classes variance
function. The SCL process is a SOM with the following neighborhood function:

hbmu,i =

{
1, |bmu− i| = 0
0, otherwise

Using the above h function the energy function R can be further reduced to:

E(w) =
1

2N

N

∑
i=1
||wbmu − xi||2

2. The gradient of the energy function is not continuous, and the general hy-
potheses utilized to prove that the SGD process converges are not valid due
to the fact that there are discontinuities on the cluster boundaries since the
neighbors involved in the computation change from time to time. Although
this process does not ensure convergence, it provides valuable insight into the
process behavior.

3. For 0-neighbors, the VQ converges since there are no neighbors, and thus the
gradient is continuous. However, the process will most probably converge to
one of the local minima since there are a lot of local minima.

40 Chapter 3. Self-Organizing Maps

3.7 The stochastic nature of the online SOM training algo-
rithm

The stochasticity of the online SOM training algorithm is a result of two main factors:

• random weight vector initialization

• random input vector choice at step t

Although there are deterministic SOM training algorithms, the online algorithm can
provide interesting insights into the input data’s significance. In fact, assuming that
input data that are close in the input space belong to the same or adjacent units of a
SOM can be valuable for interpreting the SOM result. However, given observations
that have been matched to identical or adjacent units of the map, the hypothesis that
these observations belong to the same partition of the input space may not hold. The
phenomenon of wrongly mapped samples happens due to the fact that there is no
perfect mapping between multi-dimensional and low-dimensional data, especially
for one or two dimensions.

Given a pair of input samples xi, xj the following three cases can be distinguished
(see Figure 3.7):

significant association: The pair is matched to the same or neighboring units
because xi and xj are close in the input space. Thus the observations are called
mutually attracted

significant non-association: The pair is never matched to the same or neigh-
boring units due to the fact that xi and xj are not close enough in the input
space. Thus the observations are called mutually repulsed

fickle pairs: The pair is sometimes matched to the same or neighboring units,
but xi and xj are not close enough in the input space. In this case, the proximity
of the map is due to randomness

The stochasticity of the SOM can produce results that can not be easily reproduced.
However, this stochasticity can also be utilized for quantifying the behavior of every
pair of observations by running the algorithm several times; This idea was first in-
troduced in 2002 [62], while in 2015 [63, 64], it was employed for text mining. In fact,
the idea at its core is quite simple. Running the algorithm several times will allow
for identifying the behavior of every pair of data since the algorithm is stochastic.
Hence, if R denotes the total number of runs, and TR

ij is the total number of times
that the observations xi, xj are classified to neighboring units on the map in the R
runs, the stability index Mij for these observations can be defined as follows:

Mij =
TR

ij

R

3.7. The stochastic nature of the online SOM training algorithm 41

If the data are matched to neighboring units by chance, utilizing an approximation
of the binomial distribution with a confidence interval of 5% on a map with N units,
the following measures are introduced:

A =
9
R

, B = 1.96

√
9

RN
(
1− 9

N
)

Hence, the relationships between pairs of input data can be quantified as indicated
by the following decision rule:

• if Mij > A + B the association between xi and xj is significantly frequent

• if Mij < A− B the non-association between xi and xj is significantly frequent

• if A + B < Mij < A− B the non-association between xi and xj is due to ran-
domness

The fickle pairs can be utilized in several ways, such as:

• Improving the robustness of a map by distinguishing mutually attracted and
repulsive pairs from fickle pairs.

• Removing fickle pairs to improve visualization systems

• In text mining, the removal of flicked words can result in a simplified graph of
co-occurrences between words

input space input space

input space

SOM SOM

SOM

fi
ck

le
 p

ai
r

si
gn

if
ic

an
t

no
n-

as
so

ci
at

io
n

si
gn

if
ic

an
t

as
so

ci
at

io
n

FIGURE 3.7: This figure illustrates the different mapping cases for
pairs of input data

42 Chapter 3. Self-Organizing Maps

3.8 Batch-SOM: A deterministic approach

As mentioned in section 3.4, the possible limit states of the weight update stochastic
process w(t) may possibly be the solutions of the ODE equation [65]:

φ(w) = 0

Hence, an important question arises: How can someone get the solutions directly?
The answer to this question is hidden in the definition of the Batch-SOM algorithm.

As shown previously the kth component of φ in the continuous setting is:

φk(w) =
K

∑
j=1

hkj

∫
Cj

(x− wk)g(x)dx

Thus, the continuous setting solution w∗k can be calculated as follows:

w∗k =
∑K

j=1 hkj
∫

Cj
xg(x)dx

∑K
j=1 hkj

∫
Cj

g(x)dx

Similarly, the discrete setting solution w∗k can be calculated as follows:

w∗k =
∑K

j=1 hkj ∑xi∈Cj
xi

∑K
j=1 hkj|Cj|

=
∑N

i=1 hk,bmuxi

∑N
i=1 hk,bmu

As shown in the above equation, w∗k is equal to the weighted means of all the inputs
which belong to the cluster Ck or its neighboring clusters. The weights are equal to
the neighborhood function values.

Thus, the definition of the batch-SOM algorithm can be derived in continuous set-
ting as follows:

wk(t + 1) =
∑K

j=1 hkj
∫

Cj(wk(t))
xg(x)dx

∑K
j=1 hkj

∫
Cj(wk(t))

g(x)dx

Furthermore, the the batch-SOM algorithm can be derived in discrete setting as fol-
lows:

wk(t + 1) =
∑N

i=1 hk,bmu(t)xi

∑N
i=1 hk,bmu(t)

This algorithm is deterministic since the limit states of the code vectors depend only
on the initial values of the weight vectors

3.9. SOM variations 43

3.9 SOM variations

The SOM algorithm has been widely applied in numerous fields such as water re-
sources management, skin detection, gene data clustering, and cluster visualization
[66, 67, 68, 69]. However, the algorithm lacks some desired theoretical properties in
the online continuous setting since it is not a gradient algorithm, while in the dis-
crete setting, the energy function is not continuously differentiable. Thus several
extensions of the classic algorithm have been proposed to address these challenges,
among other things.

3.9.1 Heskens’ rule

Heskes modified the original BMU selection rule to obtain an energy function [61].

bmu = arg min
i∈units

N

∑
j=1

hij(t)||x−mi(t)||2

The energy function is calculated as follows:

E(w) =
1
2

N

∑
i=1

N

∑
j=1

hji(t)
∫

x∈Ci(w)
||x−mj(t)||2g(x)dx

• Ci(m): is the cluster associated with the ith weight vector

• g(x): is the pdf function

• hji: is the neighbourhood function between the jth and ith unit

The properties of both the energy and gradient function are summarized in the table
below:

Kohonen vs Heskes BMU rule
Kohonen BMU rule Heskes BMU rule
Discrete
Energy: discontinuous & finite
Gradient: discontinuous & infinite

Discrete
Energy: continuous
Gradient: discontinuous & finite

Continuous
Energy: continuous
Gradient: discontinuous

Continuous
Energy: continuous
Gradient: discontinuous

TABLE 3.2: Kohonen vs Heskes BMU rule

44 Chapter 3. Self-Organizing Maps

3.9.2 Soft Topologic Mapping (STM)

This mapping strategy allows for soft winner assignments. In the discrete case, the
energy function can be written as follows:

E(w, c) =
1
2

K

∑
k=1

N

∑
i=1

cik

K

∑
j=1

hkj(t)||wj(t)− xi||2

where

cik =

{
1, xi ∈ Ck
0, otherwise

However, the cik can be smoothed by considering cik≥0 such that ∑K
k=1 cik = 1. Fur-

thermore, an annealing process has to be utilized in order to solve this problem since
the gradient-descent algorithm may possibly converge into a local minimum. On top
of that, the energy function is smoothed by adding an entropy term such as:

F(w, c, β) = E(w, c)− 1
β

S(c)

If the function above, the term S(c) corresponds to an entropy function parametrized
by β such as:

• β → ∞: In this case, the term 1
β → 0 and thus the function F becomes equal to

function E

• For low values of β: smoothing occurs and consequently the function F has
only one global minimum that can be estimated by a gradient descent-like al-
gorithm

The basic steps of the deterministic annealing approach are described below:

1. calculate a minimum at low values of β

2. calculate a minimum at higher values of β

3. repeat 2 until the global minimum of F for β → ∞ is equal to the global mini-
mum of E

If β has a fixed value, the minimization of the function F can be approximated by
iterating over the steps denoted by the following two equations:

P(xi ∈ CK) =
exp(−βeik)

∑K
j=1 exp(−βeij)

• eik =
1
2 ∑K

j=1 hjk(t)||xi − wj(t)||2

wk(t) =
∑N

i=1 xi ∑K
j=1 hjk(t)P(xi ∈ Cj)

∑N
i=1 xi ∑K

j=1 hjk(t)P(xi ∈ Cj)

The weight vectors are weighted averages over the corresponding input data. Fur-
thermore, if β → ∞, the process becomes identical to the classical batch-SOM algo-
rithm.

3.9. SOM variations 45

3.9.3 Other Variations of SOM

Over the last years, several efforts have been made towards modifying the algo-
rithm’s architecture and learning process. However, there is still much work to be
done in this direction since the lack of complete theoretical proofs that describe the
convergence and organizational behavior of the multi-dimensional SOMs in com-
bination with the algorithm’s heuristic nature constitutes significant challenges that
thwart the progress of the field. In this section, several SOM variants are presented.

• The Elastic Maps:
This algorithm learns by minimizing the sum of quadratic bending and stretch-
ing energy. In fact, it utilizes concepts such as spline interpolation and elastic
energy minimization. Consequently, this model is widely applied for visual-
ization and simulation tasks [70, 71]

• The Generative Topographic Maps (GTM):
This SOM-based architecture can map high-dimensional input data to low-
dimensional spaces in a smooth and continuous way. Thus this algorithm can
address some of the theoretical challenges mentioned above. The primary use
of this algorithm is in data analysis as a nonlinear version of the principal com-
ponent analysis (PCA) [72, 73].

• The Growing Self-Organizing Maps (GSOM):
This algorithm aims to address the problem of map size identification. The
learning process starts with four units and uses a heuristic-based strategy to
grow new units on the boundaries. It usually provides better input-space rep-
resentation than SOM and consequently is widely applied for data visualiza-
tion [74, 75].

• The Oriented & Scaling Maps (OS-Map):

As the name suggests, this algorithm allows for both scale and rotational in-
variance. The rotational invariance is achieved by replacing the neighborhood
function with the matrix exponential. Furthermore, the map can cover the do-
main several times. Thus, the scale corresponds to the number of best match-
ing units.

• The Time-Adaptive Self-Organizing Maps (TASOM):

This architecture extends the original algorithm in the sense that it employs
adaptive learning and neighborhood rates as well as a scale factor for scale,
translation, and rotation invariance. This algorithm is mainly used for multi-
level thresholding [76, 77].

47

Chapter 4

Dendritic Self-Organizing Maps

In this section, we will introduce a variation of the original SOM algorithm. The Den-
dritic Self-Organizing Map (DendSOM) incorporates the concepts of receptive fields
and local dendritic computations as mentioned above. Furthermore, we will study
extensively how these changes affect the performance of SOM in unsupervised clas-
sification tasks. Additionally, we will discuss how the DendSOM architecture ad-
dresses the challenges of continual learning: concept drift, memory management,
and catastrophic forgetting. Finally, we will compare the proposed architecture with
the state-of-the-art algorithms in all three continual learning scenarios. It should be
noted that the DendSOM algorithm is a bio-inspired algorithm motivated by brain
maps.

In fact, there are three types of neural organization that can be called ”brain maps”:
sets of feature-sensitive cells ordered projections between neuronal layers and or-
dered anatomical maps of abstract features. The latter manifests the core properties
of the experiences of an organism. It has been hypothesized that such feature maps
are probably learned in a process involving parallel input to neurons of a particular
brain area and adaptation of neurons in close proximity to the cells that respond to
this input. Although such maps were considered unrealistic, the biological sensory
processing substantiates the presence of such features maps in the brain. For exam-
ple, tonotopic maps exist in auditory pathways and represent the order of acoustic
resonances on the basilar membrane of the inner ear. [78, 79].

It is quite possible that a biological SOM may need days to form or alter neural maps
in the neural realm. Thus the effects of reorganization are not always immediately
measurable or even observable, and thus the organizing effects may be disguised by
other short-term neuronal signals, also called activities. On the contrary, in the case
of the SOM learning algorithm, changes that in wi which affect signal transmission
occur gradually and only intermittently during the learning process under the in-
fluence of some specific learning-control factor. Nonetheless, it is now evident that
several biological components can implement the SOM algorithm.

The SOM algorithm has been gained significant popularity due to its remarkable
clustering performance. Although it can be argued that it is inspired by the way that
the human brain processes sensory information, there are still several modifications
to be made that can result in improved .performance, especially in the field of com-
puter vision. For instance, the original algorithm processes the entire image at once
while humans sample different regions of a scene by making rapid eye movements
which can potentially decrease the root mean square error between the input data
and the selected BMU on SOMs. Furthermore, our brains can perform parallel local
computations in dendrites, significantly decreasing our response time to a stimulus.

48 Chapter 4. Dendritic Self-Organizing Maps

4.1 Chapter Outline

In this chapter, we introduce and test the DendSOM architecture. The rest of this
chapter is organized as follows:

• Section 4.2: In this section, we provide the biological background and the mo-
tivation for creating a SOM-based architecture to address the challenges of CL

• Section 4.3: The algorithm and experiments are discussed in this section

• Section 4.4: The implementation details and hyperparameter analysis are pro-
vided in this section

4.2 Background

Dendrites are thin extensions of nerve cells that receive and transmit electrochem-
ical signals from other neurons to the cell’s body, also called soma. The dendritic
morphology is highly correlated to the function of the neuron, which indicates that
the dendritic branches and grouping patterns play a key role in shaping the brain’s
information processing power. Dendritic spines are projections contained by some
classes of dendrites and allow for better isolation of signal specificity in dendrites.
The ability of dendrites to grow and extend is an essential factor in the formation of
memory, and thus, it is believed that dendrites influence the learning process as well
[80, 81].

Dendrites have several computational components or functional units that can per-
form the appropriate computations based on the stimuli received. Thus, these den-
dritic computational components are able to process input information and are also
composed of dendritic spines or groups of branches. Hence, the plastic changes ob-
served in dendrites can alter their morphology and consequently affect the neural
cell’s computational power and processing abilities. Although in the early devel-
opment stages, the dendritic structure is mainly influenced by the cell’s genome, in
adulthood, more significant morphological changes are caused by signals from other
neurons [82, 83].

FIGURE 4.1: Diagram of a neuronal cell

Source: Wikipedia

https://simple.wikipedia.org/wiki/Neuron

4.2. Background 49

4.2.1 Motivation

As mentioned in Chapter 2, continual learning is the concept of constructing a model
that is able to learn a large number of tasks sequentially without forgetting the
knowledge from previous tasks when training on new ones. The basic methods de-
veloped for addressing this problem involve regularization, replay, and parameter
isolation. The inspiration for using SOM-based architectures to solve CL problems
came from a paper entitled ”Continual Learning with Self-Organizing Maps” [84].
In short, the authors of this paper proposed a memoryless SOM-controlled ANN for
addressing the problem of catastrophic interference and, consequently, catastrophic
forgetting.

The so-called Self-Organizing multilayer perceptron (SOMLP) architecture consists
of an MLP and a SOM. In this architecture, the SOM layer controls the update of
a fully connected layer. In fact, the SOM receives the same input as the fully con-
nected layer and is trained without supervision to create a map that represents the
geometrical relationships of the tasks. During training, the important parameters of
the MLP are determined based on the SOM’s topology, such as the activation of best-
matching neurons whose corresponding unit is closer to the input vector is scaled
up. Hence the SOM’s topology assists the MLP to learn shared representations for
similar tasks and separate representations for dissimilar ones.

FIGURE 4.2: This figure illustrates the SOMLP architecture. Super-
vised training is denoted using red color borders

Source: Continual Learning with Self-Organizing Maps

https://arxiv.org/pdf/1904.09330.pdf

50 Chapter 4. Dendritic Self-Organizing Maps

Apart from the introduction of the SOMLP architecture, the authors also studied the
topology of the SOM layer. The results indicated that the SOM is capable of associ-
ating each task to a different region of the map and thus produce a separate update
mask. In fact, as commented by the authors: ”In MNIST permutations, because of
the random pixel permutations in each task, masks corresponding to each task are
independent of each other. Conversely, in MNIST-rotations, the learned masks share
nodes between tasks that are more similar.” It should be noted that these results mo-
tivated us to further encouraged us to investigate the use of pure SOM models in
CL.

FIGURE 4.3: This figure illustrates the feature masks learned by
the SOM layer for the MNIST-permutations and MNIST-rotations

datasets

Source: Continual Learning with Self-Organizing Maps

4.3 Dendritic Self-Organizing Maps

In this section, we incorporate the concepts of receptive fields and computational
locality into the original SOM algorithm to reduce the complexity and improve the
performance of the online training algorithm. We test this hypothesis by measur-
ing the mean-squared error and the training time of two variations of the original
algorithm. Next, we present the DendSOM training algorithm. We derive a decision
rule based on information theory and study the effects of different BMU and update
rules. Finally, we use this algorithm for solving the CL scenarios as discussed in
Chapter 2

https://arxiv.org/pdf/1904.09330.pdf

4.3. Dendritic Self-Organizing Maps 51

4.3.1 Incorporating neurobiological concepts into SOMs

The receptive fields are regions of the observed visual space whose luminance and
structural patterns affect the amplitude of the action potential and thus the activity of
a single neuron. In the primary visual cortex, receptive fields correspond to visual
angles and are organized by their position in the retina. In fact, different neurons
tend to have different receptive fields and thus select and process specific orienta-
tion information. Receptive fields of different cells also have different structures. For
instance, in the retina, the most common receptive fields are of the center-surround
structure, whereas most cells in the primary cortex can be activated by simpler or
more complex visual space regions [85].

The selectivity in individual neurons is highly correlated to the dendritic spine ac-
tivity of those neurons since it has been observed that dendritic spines with similar
selectivity are clustered together, and neurons whose dendrites consist of such clus-
ters display a greater selectivity. Dendrites have the ability to perform elementary
computations locally without interference from other neurons and propagate the
result only to the cell body from which they extend due to their biophysical mecha-
nisms. These local computations include the logical operations AND, OR, XOR and
addition, multiplication, subtraction, and division as well. Thus, dendrites can per-
form both linear and nonlinear local computations [86].

Unlike other SOM-based architectures such as Deep SOM, Deep Convolutional SOM,
and Layered-SOM [87, 88, 89], the DendSOM is a shallow neural network that can be
trained using unsupervised competitive learning algorithms. Hence, this network
can be used for unsupervised classification and continual learning tasks. DendSOM
employs multiple SOMs to model different sub-regions of the input space (receptive
fields). Similar to dendrites, each SOM receives input information and propagates
the best matching unit’s positional vector to soma, where the association between
labels and BMUs is calculated

Hence, it is essential to answer the following questions to evaluate the DendSOM
architecture’s performance.

• Does the DendSOM minimizes the MSE?

• Can the DendSOM’s weight vectors properly represent the original images?
(Are there significant changes in the content of the original image?)

• Has the algorithm low time complexity?

Although answering the above questions for both DendSOMs and SOMs can help
us determine which algorithm performs better, we can not conclude how receptive
fields and computational locality affect the performance of the DendSOM architec-
ture. Thus we create the Receptive Self-Organizing Map (RSOM). The RSOM model
is similar to SOM, but it sequentially receives the image’s receptive fields instead of
processing the entire image at once. Hence, the concept of receptive fields is incor-
porated into the RSOM algorithm. However, the notion of computational locality is
absent, and thus different receptive fields can interact with each other. The schemat-
ics of SOM, RSOM, and DendSOM are shown below.

It should be noted that each of the following experiments was repeated for 10 rounds

52 Chapter 4. Dendritic Self-Organizing Maps

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

FIGURE 4.4: This figure illustrates the SOM architecture. The input
vector is an image

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

... ...

FIGURE 4.5: This figure illustrates the RSOM architecture. An image
produces several input vectors, which are sequentially processed by

a single SOM

4.3. Dendritic Self-Organizing Maps 53

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

... ...

FIGURE 4.6: This figure illustrates the DendSOM architecture. An
image produces several input vectors, each input vector is processed

by a different SOM

using initial learning rate a0 = 0.5, initial neighborhood radius σ0 =
√

#units
2 and

λ = 10e2. The experiments were conducted on the MNIST dataset and the architec-
ture parameters are shown in the following table:

MNIST-MSE MINIMIZATION
Model maps units wv step
DendSOM 169 4× 4 4× 4 3
RSOM 1 52× 52 4× 4 3
SOM 1 8× 8 28× 28 −

TABLE 4.1: This table contains the parameters of all architectures
tested in MSE minimization

MSE Minimization Test

To answer the first evaluation question, we have to calculate the average MSE be-
tween the input vectors and their corresponding BMUs for each of the aforemen-
tioned architectures. The MSE for each digit can be calculated as follows:

MSE(digit) =
1

#samples(digit) ∑
ytest=digit

||xtest − wbmu||2

54 Chapter 4. Dendritic Self-Organizing Maps

The results can be summarized in the following table:

MSE per digit
digit SOM DendSOM RSOM
0 6.057± 0.931 3.427± 0.344 1.535± 0.255
1 3.383± 0.816 2.393± 0.363 0.976± 0.213
2 6.382± 0.729 3.495± 0.369 1.551± 0.280
3 6.022± 0.835 3.366± 0.361 1.612± 0.245
4 5.570± 0.835 3.160± 0.382 1.494± 0.265
5 6.216± 0.735 3.372± 0.347 1.594± 0.268
6 5.745± 0.959 3.381± 0.397 1.560± 0.289
7 5.132± 0.973 2.908± 0.416 1.261± 0.256
8 6.100± 0.788 3.588± 0.384 1.856± 0.294
9 5.229± 0.854 3.066± 0.377 1.532± 0.280
Avg. 5.584± 0.846 3.215± 0.374 1.498± 0.265

TABLE 4.2: This table contains the MSE per digit for each architecture

The table above indicates that the RSOM architecture achieves the minimum MSE
for each class while the DendSOM performs better than the original algorithm but
worse than RSOM. It is possible that the absence of the computational locality assists
RSOM in further minimizing the MSE since there are no constraints regarding the
location of the receptive fields.

Visual Test

In this experiment, we randomly choose a sample from each class and compare the
reconstructed images, which are visual representations of the weight vectors that
correspond to the BMUs of the random samples. This comparison will provide some
insights into the ability of the algorithms to maintain the context of the input data.
The results are shown in the figure below.

As shown in Figure 4.7, both the RSOM and DendSOM algorithms manage to keep
the context of the original image. Although the SOM architecture maintains the con-
text of the image in most cases, the results do not pass the visual test in the case of
classes 4 and 5. The visual representation of digit four is closer to the representa-
tion for the ninth digit, and the weight vector representation of class five is much
closer to digit four. These observations are quite valuable for two main reasons. At
first, the inferiority of SOM to the other two architectures in the visual test is clearly
demonstrated. Secondly, it becomes evident that the Euclidean distance may not
properly map the geometric relations between the classes of this dataset.

4.3. Dendritic Self-Organizing Maps 55

RSOM

RSOM

DendSOM

DendSOM

SOM

SOM

Digit

Digit

RSOM

RSOM

DendSOM

DendSOM

SOM

SOM

Digit

Digit

RSOM

RSOM

DendSOM

DendSOM

SOM

SOM

Digit

Digit

RSOM

RSOM

DendSOM

DendSOM

SOM

SOM

Digit

Digit

RSOM

RSOM

DendSOM

DendSOM

SOM

SOM

Digit

Digit

FIGURE 4.7: This figure illustrates the visual representations of some
randomly selected samples

ANN Test

Although the visual test provided some valuable insights about the ability of the
architectures to maintain the context of the images and the mapping power of the
Euclidean distance, it is imperative to evaluate the performance of the SOM-based
architectures on the entire dataset systematically. As the name suggests, the ANN
test can estimate the ability of the algorithms to maintain the context of the images.
In short, the ANN, SOM, RSOM, and DendSOM models are trained on the MNIST
dataset, and then the visual representations of the test set are classified. It should
be noted that the SOM-based algorithms do not require labels since they perform
clustering. The results can be summarized in the following table:

Accuracy score per digit
digit SOM DendSOM RSOM ANN
0 0.869± 0.003 0.967± 0.001 0.980± 0.001 0.985± 0.003
1 0.981± 0.005 0.987± 0.001 0.991± 0.007 0.991± 0.001
2 0.851± 0.007 0.968± 0.004 0.981± 0.002 0.985± 0.001
3 0.576± 0.004 0.954± 0.001 0.967± 0.002 0.970± 0.002
4 0.698± 0.008 0.962± 0.005 0.968± 0.001 0.973± 0.002
5 0.633± 0.002 0.950± 0.002 0.965± 0.005 0.973± 0.001
6 0.932± 0.003 0.976± 0.004 0.980± 0.003 0.982± 0.002
7 0.753± 0.003 0.940± 0.006 0.950± 0.006 0.961± 0.001
8 0.813± 0.008 0.950± 0.002 0.962± 0.004 0.962± 0.002
9 0.569± 0.005 0.955± 0.001 0.970± 0.001 0.973± 0.000
Avg. 0.768± 0.005 0.961± 0.003 0.971± 0.003 0.976± 0.002

TABLE 4.3: This table contains the accuracy score per dogot for each
architecture

56 Chapter 4. Dendritic Self-Organizing Maps

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

... ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

... ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3) ...

... ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

... ...

w31 w32 w33 w34 w35 w36

w25 w26 w27 w28 w30

w19 w23 w24

w13 w17 w18

w7 w11 w12

w3 w4 w5 w6

w15w14

w8

w29

w20 w22

w16

w10w9

w21

w1 w2
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(1,5)

(2,5)

(3,5)

(4,5)

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4)

(2,4)

(3,4)

(2,2) (2,3)

(3,2) (3,3)

TRAIN

TEST

Training
 set

Test
 sample

(MNIST)

FIGURE 4.8: This figure illustrates the ANN test procedure

Once again, the RSOM algorithm achieves greater performance than the DendSOm
model, which in turn is better than the original SOM model. It should be noted that
none of the SOM architectures managed to surpass the accuracy score of the ANN,
which indicates that there is a loss of information. However, both the RSOM and
DendSOM perform comparably with the ANN.

4.3. Dendritic Self-Organizing Maps 57

Time Test

The time complexity is defined as the amount of time taken by an algorithm to run
for inputs of given lengths. Although most ML algorithms have known time com-
plexity, in practice, the training time can significantly differ due to the size and com-
plexity of the dataset. Thus, in order to determine which algorithm has the lowest
time complexity, it is essential to run each algorithm and measure the training time.
The results are reported in the table below:

Training time
Model SOM DendSOM RSOM
Time 55 sec 150 sec 3000 sec

TABLE 4.4: This table contains the required training time (in sec) for
each architecture

As indicated from the table above, the SOM has the smallest training cost. The Dend-
SOM requires more training time than the SOM. However, it is still significantly
faster in comparison to the RSOM model, which is by far the most expensive algo-
rithm in terms of time since, in the case of RSOM, the receptive fields presented to
the algorithm sequentially, whereas, in DendSOM, the receptive fields of an image
are processed simultaneously. In fact, the RSOM algorithm can not properly utilize
the computational power of the GPU.

Overall

The way that the performance of the original algorithm is affected by the concepts of
computational locality and receptive fields affect the original algorithm the follow-
ing metrics are used:

A(model) =
|accuracy(som)− accuracy(model)|

accuracy(som)
100% (4.1)

T(model) =
|time(som)− time(model)|

time(som)
100% (4.2)

G(model) =
A(model)
T(model)

(4.3)

The results are shown in the following table:

Rate of Increase
Metrics DendSOM RSOM
T 172% 5354%
A 25% 26%
G 0.14 0.005

TABLE 4.5: This table contains the rates of increase for training time
and accuracy score in comparison to those of the SOM algorithm for

both RSOMs and DendSOMs

58 Chapter 4. Dendritic Self-Organizing Maps

An obvious conclusion that can be drawn based on the results above is that the ab-
sence of computational locality and the constraints it imposes leads to better context
preservation. However, the incorporation of this concept into the RSOM model can
significantly decrease the required training time. In fact, the G metric indicates that
the RSOM is inferior to DendSOM since the G factor of RSOM is three times smaller
than the G factor of DendSOM.

4.3.2 DendSOM Architecture

As mentioned above, the DendSOM uses multiple SOMs to model the input pat-
tern from different subregions of the input space. Consequently, the order of local
regions, also called input vectors, is crucial for the final labeling result due to the
fact that the slightest change in the order of the receptive fields is capable of causing
significant changes in the temporal evolution of the input image, which in turn will
result in the incorrect mapping of the input space.

It should be noted that for an input x of size N1 × N2 and SOMs that extract pat-
terns of size P1 × P2 we need S1 × S2 SOMs in order to properly model the input
space. Assuming the stride s1, s2 respectively, then S1 and S2 can be calculated by:

Si =

⌊
Ni − Pi

si

⌋
+ 1, i ∈ {1, 2} (4.4)

In our implementation s1 = s2, N1 = N2, P1 = P2 and thus S1 = S2.

Learning Algorithm

Each SOM can be trained independently by utilizing a similarity metric for best-
matching unit identification and a weight update strategy for adjusting the weight
vectors. Apart from that, an association matrix is introduced in order to assist us
in measuring the association between SOM units and labels. This association corre-
sponds to the number of times that a unit was selected as BMU for a specific label.
The association matrix can then be employed in combination with a decision rule in
order to predict which class is most likely to be represented by the selected BMUs.

FIGURE 4.9: Illustration of the DendSOM online training algorithm
for unsupervised classification and CL

4.3. Dendritic Self-Organizing Maps 59

It should be noted that for unsupervised classification or clustering rexp = 1. What
is more, the iter crit parameter can be derived as follows:

αcrit = α0exp(− iter crit
λ

)↔

exp(
iter crit

λ
) =

α0

αcrit
↔

iter crit = λ log
α0

αcrit
↔

iter crit = bλ log
α0

αcrit
c

iter crit ∈N

SO
M B
M

U
 index

association m
atrix

SO
M B
M

U
 index

association m
atrix

SO
M B
M

U
 index

association m
atrix

SO
M B
M

U
index

association m
atrix

.

.

.

.

.

.
.
.
.

FIGURE 4.10: The image is divided into sub-regions. Each sub-region
of the input space is modeled from the corresponding SOM. The
SOMs identify the BMUs whose indexes are then propagated to the
appropriate association matrices. These matrices estimate the associ-

ation between the BMUs and the class labels

60 Chapter 4. Dendritic Self-Organizing Maps

Defining a decision rule for unsupervised classification

The introduction of the association matrix allows for estimating both the prior and
posterior distributions for each map. These pieces of information can be utilized
by a function that maps the observed sequence of BMUs to the class that is most
likely to be associated with those units. Pointwise Mutual information (PMI) is a
measure of association between a pattern and an action. The PMI of two outcomes
xo, yo can take positive values when xo, yo co-occur more frequently than expected
under an independence assumption, negative values when the outcomes co-occur
less frequently than expected, and it can be equal to 0 when the outcomes are statis-
tically independent. For a single association matrix, we can easily calculate the PMI
between a label (l) and a BMU as follows:

PMI(l; BMU) = log
P(l|BMU)

P(l)
(4.5)

where P(l|BMU) corresponds to the conditional probability of a class label given a
BMU and it can be calculated using the association matrix:

P(l|BMU) =
assoc matrix[l, BMU]

∑i∈Labels assoc matrix[i, BMU]
(4.6)

Where assoc matrix[l, BMU] is the number of times that the BMU was the closest
unit to an image of label l and ∑i∈Labels assoc matrix[i, BMU] corresponds to the total
number of times that the BMU was selected by an image. Moreover, the a priori
probability P(l) can be calculated by:

P(l) = ∑u∈Units assoc matrix[l, u]
∑u∈Units ∑i∈Labels assoc matrix[i, u]

(4.7)

Where ∑u∈Units assoc matrix[l, u] is the total number o images in the training set that
represent the label l and ∑u∈Units ∑i∈Labels assoc matrix[i, u] is the total number of
images in the training set. According to subsection 4.3.2, in the case of DendSOM,
we have more than one BMUs. In fact, we have a BMU for each SOM; hence, the
class prediction problem can be formulated in the following way. Let I be an input
image of unknown label and BU = {bmu1, bmu2...bmun} a set that contains the
best matching units of I. Thus, the objective of the label prediction problem can be
expressed as:

prediction = arg max
l∈Labels

n

∑
i=1

PMI(l; bmui) (4.8)

It is worth to be mentioned that certain patterns, also called typical patterns, are
very likely to appear many times, even in images that represent different labels.
For instance, the blank regions in the MNIST dataset are part of the background,
and thus, they appear in about the same places in all the images regardless of the
label of each image. The use of the PMI decision rule allows for identifying those
typical patterns and nullifying their contribution during the label prediction. In fact,
for those patterns, it holds that P(l) = P(l|BMU)∀l ∈ Labels and thus P(l|BMU)

P(l) =

1∀l ∈ Labels. Consequently, log P(l|BMU)
P(l) = PMI(l; BMU) = 0∀l ∈ Labels. Let I

be an image of unknown label, BU = {bmu1, bmu2...bmun} a set that contains the
best matching units of I and TBU = {bmua, bmub...bmuk} a set that contains the

4.3. Dendritic Self-Organizing Maps 61

best matching units of the subregions of I that correspond to typical patterns.The
problem of label prediction can be expressed as follows:

prediction = arg max
l∈Labels

∑
b∈BU

PMI(l; b) = arg max
l∈Labels

∑
b∈BU−TBU

PMI(l; b) (4.9)

Investigating the effects of a new BMU rule

According to equation 3.2, the BMU is defined as the unit whose weight vector has
the minimum Euclidean distance from the input vector. The Euclidean distance cor-
responds to the L2 norm of a difference between vectors. Thus, the Euclidean dis-
tance estimates the similarity between patterns by measuring how close the images
are in pixel intensity. On the other hand, the cosine similarity is proportional to the
dot product of two vectors and inversely proportional to the product of their mag-
nitudes, and vectors with a high cosine similarity are located in the same general
direction from the origin. Consequently, we can express the objective as:

BMU = arg max
i

cos(θx,wi) (4.10)

where θx,wi is the angle between the input vector x and the weight vector of the
i-th unit wi. Furthermore, the cosine similarity between two vectors v, u can be
calculated by:

cos(θv,u) =
vTu

||v|| ||u|| (4.11)

Spatial correlation is a signal-matching technique performed in the spatial domain.
The cosine similarity can be mathematically interpreted as the cosine of the angle
between two vectors x and y, while correlation is the cosine similarity between the
centered vectors xc, yc. In the spatial domain, the correlation corresponds to the pro-
cess of moving a filter mask over the image and computing the sum of products.
However, in the case of DendSom, the cosine similarity causes highly correlated
receptive fields to select the same or neighboring BMUs and thus create a new low-
dimensional space that maintains the spatial correlation of the input space

In this following experiment, the hypothesis that the DendSOM algorithm allows
for improved classification performance when compared to the original SOM algo-
rithm is tested. To do so, we compare the two algorithms in terms of the accuracy
score on three publicly available datasets.

SOM vs Dendritic-SOM
Model MNIST MNIST-FASHION CIFAR-10
SOMeuc 84.51± 0.01 73.72± 0.00 25.66± 0.00
SOMcos 86.96± 0.00 76.48± 0.00 27.05± 0.00
DendSOMeuc 95.30± 0.00 77.74± 0.00 38.42± 0.00
DendSOMcos 95.12± 0.00 80.89± 0.00 47.13± 0.00

TABLE 4.6: The table summarizes the accuracy score of each architec-
ture in unsupervised classification on three benchmark datasets

As the results suggest, the classification accuracy is influenced by both the architec-
ture and BMU selection rule. In short, the results in the table show a consistent

62 Chapter 4. Dendritic Self-Organizing Maps

pattern that utilizing multiple SOMs to map different regions improves the per-
formance of the original algorithm since the final matching pattern is not just a
weighted average of similar images but it consists of several informative features.
Furthermore, in most cases, the cosine similarity rule allows for improved perfor-
mance compared to the Euclidean distance rule due to the fact that the cosine sim-
ilarity is only influenced by the inter-pixel relation between the weight vector and
the corresponding receptive field while the Euclidean distance takes into account
the average pixel value difference. According to the table, the Dendritic-SOM that
employs cosine-similarity for BMU selection achieves the highest accuracy score
on the MNIST-FASHION and CIFAR-10 datasets while it performs comparably to
the Dendritic-SOM that uses the Euclidean distance rule for BMU selection on the
MNIST dataset. Finally, all the algorithms achieve their highest and lowest scores
on the MNIST and CIFAR-10 datasets, respectively. In fact, the MNIST dataset con-
sists of handwritten digits in a static background, and thus it is the most simple
dataset. On the other hand, the CIFAR-10 dataset consists of 10 real-world classes in
a dynamic background. Thus, the geometrical properties of the input space can be
properly described neither by cosine-similarity nor by the Euclidean distance.

The DendSOM training hyperparameters for this experiment are summarized in the
following table:

SOM vs DendSOM
Dataset α0 σ0 λ rexp
MNIST 0.95 4 1000 1
MNIST-FASHION 0.95 5 1000 1
CIFAR-10 0.95 6 1000 1

TABLE 4.7: Training hyperparameters for unsupervised classification

It should be noted that the same hyperparameter values are also used in the case of
SOM. Furthermore, the architecture parameters used on the MNIST, MNIST-FASHION,
and CIFAR-10 datasets are shown in the tables below.

MNIST
Model S1 S2 U1 U2 P1 P2 s1 s2
DendSOM 7 7 8 8 10 10 3 3
SOM 1 1 21 21 28 28 − −

MNIST-FASHION
Model S1 S2 U1 U2 P1 P2 s1 s2
DendSOM 6 6 10 10 8 8 4 4
SOM 1 1 18 18 28 28 − −

CIFAR-10
Model S1 S2 U1 U2 P1 P2 s1 s2
DendSOM 15 15 12 12 4 4 2 2
SOM 1 1 29 29 32 32 − −

TABLE 4.8: Architecture parameters for unsupervised classification

4.3. Dendritic Self-Organizing Maps 63

x=(x1,x2)

w2=(x1,x2+1)

w1=(6x1,6x2)
n2

n1

FIGURE 4.11: This diagram shows the 2D vectors x (input vector)
w1 and w2 (weight vectors). According to the minimum Euclidean
distance rule the unit that maintains the w1 is the best matching unit
since euc(x, w1) < euc(x, w2). However, the angle between x and
w2 is smaller than the the angle between x and w1 and consequently
cos(x, w2) > cos(x, w1). Hence the maximum cosine rule indicates
that the best matching unit is the unit with weight vector w2. The
cosine similarity rule is a scale-invariant rule since it depends only on

the inter-pixel relations and not from the exact pixel values

4.3.3 DendSOM for CL

In this subsection, we will utilize the DendSOM architecture to address the chal-
lenges of CL. Furthermore, we will compare the performance of the DendSOM model
with the state-of-the-art architectures in CL. The performance of the compared ar-
chitectures will be measured using the accuracy score on the Split-MNIST and Split-
CIFAR-10 datasets. The three challenges of continual learning and the correspond-
ing solutions are listed below:

Memory Management
The DendSOM is a memoryless architecture and thus there is no need for find-
ing an optimal sample saving strategy

Concept Drift
The DendSOM model accounts for both real and virtual concept drift by esti-
mating the prior and posterior probabilities and utilizing the PMI as a decision
rule since the PMI is only influenced by the ratio between the posterior and
prior probabilities and not by the exact probabilities

Catastrophic Forgetting
Like the original SOM algorithm, the DendSOM performs constrained-kmeans.
Thus similar samples are matched to the same or neighboring units while less
similar samples are matched to different units. This strategy aims to minimize
the catastrophic interference between samples and consequently avoid catas-
trophic forgetting.

64 Chapter 4. Dendritic Self-Organizing Maps

FIGURE 4.12: This figure illustrates the behavior of a and σ functions
for rexp ∈ {1, 2}

The parameters of the DendSOM architecture are identical to those of Table 4.8. On
the other hand, the training parameters are shown in the table below:

Incremental Learning Experiments
Dataset α0 σ0 λ rexp acrit
MNIST 0.95 4 1000 2 5e− 3
CIFAR-10 0.95 6 1000 2 5e− 5

TABLE 4.9: The IL training parameters are reported in this table

It should be noted that only the hyperparameter rexp changes in the case of incremen-
tal learning experiments since it expands the neighborhood radius and increases the
learning rate. As shown in the example above (see Figure 4.12) for rexp = 1, both the
learning rate and neighborhood radius exponentially decrease over time as expected
theoretically. On the other hand, for rexp = 2, both a and σ values are doubled every
2000 repetitions, which prevents the early completion of input space mapping in the
case of continual learning.

Task-Incremental Learning

The performance of our algorithm is evaluated and compared to other state-of-the-
art architectures [22] on the Split-MNIST protocol under the limitations of the task-
incremental learning scenario.

4.3. Dendritic Self-Organizing Maps 65

Split protocol
Model MNIST
SOM 82.93± 0.08
DendSOM 98.30± 0.00
EWC 98.64± 0.22
SI 99.09± 0.15
XdG 99.10± 0.08
DGR 99.50± 0.03
LwF 99.57± 0.02
DGR+ distill 99.61± 0.02

TABLE 4.10: The accuracy scores for the Task-IL scenario are summa-
rized in this table

According to the table above, the models performed well in this scenario. However,
the SOM algorithm had the lowest accuracy score; unlike other methods, both the
SOM and DendSOM can not use the task information to learn task-specific features
by freezing or regularizing its weight vectors. In contrast, it can utilize this piece of
information only to estimate the appropriate distributions. It should be noted that
the DendSOM algorithm achieves a higher accuracy score than the SOM algorithm
because the latter processes the whole image at once and determines the BMU using
the Euclidean distance. Consequently, the SOM algorithm does not take into account
the temporal evolution of the images.

Domain-Incremental Learning

This experiment is similar to the aforementioned one except that the models operate
under class-incremental constraints.

Split protocol
Model MNIST
EWC 63.95± 1.90
SI 65.36± 1.57
LwF 71.50± 1.63
SOM 74.33± 0.02
DendSOM 90.83± 0.01
DGR 95.72± 0.25
DGR+ distill 96.83± 0.20

TABLE 4.11: The accuracy scores for the Domain-IL scenario are sum-
marized in this table

As shown in the table above, the DendSOM algorithm achieves an accuracy score of
90.83, ranking our proposed model among the top 3 models for domain-incremental
learning on the Split-MNIST dataset. However, the other algorithms permit many
epochs per task and are trained in batch mode. On the contrary, there is only one
stream of samples, and each sample is presented only once in both the SOM and
DendSOM cases. Although the SOM algorithm marks the fourth higher accuracy
score, still its performance is inferior to the DendSOM algorithm. The superiority of
the DendSOM algorithm is due to both the architecture and the BMU selection rule,
as mentioned in the previous experiment. On top of that, we calculated the forget-
ting rate for both RSOM and DendSOM as shown in Equation 2.1. Consequently, we

66 Chapter 4. Dendritic Self-Organizing Maps

have that f rSOM = 0.12 and f rDendSOM = 0.05, which also indicates that the SOM
algorithm tends to forget with a higher rate than the DendSOM algorithm.

Class-Incremental Learning

Furthermore, we compare the performance of our algorithm to the state-of-the-art
models [90] in class-incremental learning on both the Split-MNIST and Split-CIFAR-
10 protocols.

Split protocol
Model MNIST CIFAR-10
DGR 91.30± 0.60 17.21± 1.88
EWC 19.95± 0.05 18.63± 0.29
SI 19.95± 0.11 18.14± 0.36
CWR 32.48± 2.64 18.37± 1.61
CWR+ 37.208± 3.11 22.32± 1.08
ARI 48.84± 2.55 24.44± 2.55
SOM 63.35± 0.10 25.44± 0.04
DendSOM 92.17± 0.08 46.02± 0.00
GC 93.79± 0.08 56.03± 0.04

TABLE 4.12: The accuracy scores for the Class-IL scenario are sum-
marized in this table

The table shows the performance of several algorithms on the Split-MNIST and
Split-CIFAR-10 protocols. Our model outperformed most of the other algorithms in
both cases. In fact, the DendSOM and algorithms achieved accuracy scores of 91.04
and 46.02 on the Split-MNIST and Split-CIFAR-10 datasets, which correspond to the
third-highest and second-highest scores, respectively. Furthermore, unlike the other
models, the DendSOM was trained in an online mode since the tasks were presented
sequentially and only once while the batch size was equal to 1. Once again, the SOM
algorithm is proved to be a simple yet effective algorithm in CL that performs com-
parably with several leading-edge regularization and hybrid algorithms. However,
the DendSOM achieves a significantly higher accuracy score than the SOM since the
cosine similarity rule does not take into account the sum of individual pixel intensity
differences like the SOM. What is more, the restrictive connectivity introduced in the
DendSOM algorithm allows for a more detailed mapping of the input space, which
in turn accounts for capturing the temporal changes of the input images. Finally, we
compute the forgetting rate for the SOM and DendSOM algorithm on each dataset.

Split protocol
Model MNIST CIFAR-10
SOM 0.250 0.009
DendSOM 0.031 0.024

TABLE 4.13: The forgetting rates for the Class-IL scenario are sum-
marized in this table

The results indicate that the SOM appears to forget with a higher rate than the Dend-
SOM since the SOM-mapped space does not properly represent the MNIST input
space. On the other hand, the SOM forgets with a lower rate than the DendSOM
in the case of the CIFAR-10 dataset. However, we can not draw a clear conclusion

4.4. Technical Stuff 67

as to which algorithm better addresses the problem of catastrophic forgetting since
the accuracy score achieved by the SOM algorithm is significantly low even in the
joint-training settings.

4.4 Technical Stuff

In this section, we examine how the training hyperparameters affect the perfor-
mance of the DendSOM algorithm. In addition, we also provide some implementa-
tion details about the SOM and DendSOMs algorithms.

4.4.1 Implementation Details

Initially, a SOM model was implemented using Python 3.8 and CuPy 8.0.0 since the
SOM is a special type of neural network, and thus custom features are needed in the
model. The results of the SOM model were then evaluated using a Numpy 1.19.2
implemented SOM on the MNIST dataset. The unsupervised classification accuracy
score was calculated ten times for each model, and the Wilcoxon Signed-Rank Test
[91, 92] was applied on those repeated measurements. This test indicated no statisti-
cal significance between the accuracy scores with a confidence interval of 95%. Next,
these algorithms were compared in terms of time complexity, and the results sug-
gested that the cupy-enabled SOM was significantly faster than the numpy-based
model.

In fact, the cupy-based SOM completed the training process in 180 seconds while the
numpy-based SOM in 1554.55 seconds on average, and thus the cupy-based SOM is
8.64 times faster than the numpy-based SOM. It should be noted that the SOM algo-
rithm was implemented based on the online SOM algorithm presented in Chapter 2.
Moreover, the DendSOM algorithm was implemented using python and CuPy 8.0.0
and initially required 600 seconds to complete the training process since the compu-
tation of the cosine similarity was expensive because it required loops. Hence, it was
imperative for this computation to be optimized to decrease the time complexity of
the DendSOM algorithm.

Fortunately, the CuPy dependency offers the command cupy.einsum, which can as-
sist us in circumventing the problem mentioned above. As the name suggests, the
einsum command evaluates the Einstein Summation convention on two n-dimensional
operands for simplifying expressions, including summations of vectors, matrices,
and general tensors. The three rules of Einstein summation notation are shown be-
low:

• Repeated indices are summed over

• Each index can appear at most twice in any term

• Each term must contain identical non-repeated indices.

This optimization significantly decreases the time complexity of the DendSOM al-
gorithm from 600 seconds to 260 seconds since it allowed for parallel computation
of the corresponding inner products in cosine similarity. It should be noted that the
einsum command provides further flexibility to compute array non-classical Ein-
stein summation operations by forcing summation over specified subscript labels.

68 Chapter 4. Dendritic Self-Organizing Maps

However, the time complexity results presented in this section are not on par with
the results illustrated in table 4.4. In fact, the algorithms in this section are 2-3 times
slower than the algorithms presented in the previous section. Although the source
code remained the same, at the time of writing, we use an NVIDIA GTX 1050 Ti
4GB GPU, 8 GB DDR 4 RAM, and Ryzen 5 1600 6 Cores 3.2 GHz, whereas the pre-
vious experiments were conducted in a machine with RTX 2080 Ti 11GB GPU, 64
GB DDR4 RAM and AMD Ryzen Threadripper 1950X 16 Cores 3.40 GHz provided
by the Poirazi Lab. On top of that, the rest of the algorithms mentioned in tables
4.10,4.11 and 4.13 were already implemented using Python and Pytorch 1.1.0 and
the codes are publicly available on GitHub [93, 94, 95]. Although PyTorch provides
useful abstractions and has a lower training time than CuPy, it has higher memory
usage. Thus at the time of writing, there is no way to measure the time complexity of
the other CL algorithms due to the memory limitations of our system. Nevertheless,
it is safe to assume that the DendSOM’s time complexity is not significantly higher
than the complexity of the other models due to the fact that the other algorithms
perform 2000-5000 epochs per batch in order to achieve the scores mentioned above
while the DendSOM algorithm performs only one epoch. Finally, the introduction
of computational parallelism during the creation of receptive fields can further de-
crease the time complexity of the DendSOM algorithm.

4.4.2 Hyperparameter Analysis

The DendSOM’s behavior is controlled by several training hyperparameters. The
ultimate goal is to find an optimal combination of hyperparameters that increases
the predictive power of our model and thus gives better results. Hence, additional
experiments have been performed to determine how the training hyperparameters
affect the performance of our model individually. In fact, we discovered a good set
of hyperparameters through a trial-and-error process (see Tables 4.7, 4.9) based on
which we carried out the following experiments:

FIGURE 4.13: This figure illustrates the behavior of a and σ functions
for different values of λ

4.4. Technical Stuff 69

As shown in the figure above, for λ = 1000, both α and σ tend to zero after almost
1000 time steps, and thus the DendSOM can not properly map the input space due to
an insufficient number of input samples. However, for higher λ values, the mapping
process requires several epochs to be completed, which increases the training time
of the algorithm. In the case of the DendSOM model, λ = 10e2 is a good choice
since incorporating the receptive fields allows for averaging in smaller regions of
the input space and thus extracting simpler patterns.

FIGURE 4.14: This figure illustrates how the initial learning rate af-
fects the unsupervised classification accuracy of the DendSOM algo-

rithm on the MNOST dataset

As the figure above suggests, a higher α0 usually results in a higher accuracy score.
However, the original SOM algorithm requires that 0 < α0 < 1m the introduction of
the maximum cosine similarity rule for BMU identification is a scale-invariant rule,
and thus this experiment can be extended for α0 > 1. For α0 = 0.1, the DendSOM
model has an accuracy score of 0.936, which in turn suggests that it is possible to
make accurate predictions without updating the map during the training process,
but this hypothesis has to be tested. It should be noted that σ0 was initialized using
the following heuristic:

σ0 =
max{U1, U2}

2
where U1 and U2 correspnd to the number of units actoss the horizontal and verical
axis respectively

70 Chapter 4. Dendritic Self-Organizing Maps

FIGURE 4.15: This figure illustrates the influence of αcrit and rexp
hyperparammeters over the DendSOM algorithm. It should be
noted that the critical lr axis is in logarithmic scale since αcrit ∈

{0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005}

The figure above indicates that high acrit values tend to decrease the performance of
the algorithm while relatively low rexp values tend to improve the predictive ability
of our model. In fact, either high rexp or high αcrit values tend to increase both α
and σ dramatically, which in turn leads to weight vector overwriting. It is worth
noting that the algorithm marks the highest accuracy score on MNIST and CIFAR-
10 datasets for αcrit = 0.005 and αcrit = 0.00005, respectively.

FIGURE 4.16: This figure illustrates how the receptive field size affects
the DendSOM algorithm

As shown in the figure above, for receptive field sizes smaller than 10, the accuracy
score of our model increases due to the fact that the patterns extracted from the input
space are most likely to be informative patterns and thus non-typical patterns. On
the other hand, when the receptive field size is greater than 10, the DendSOM is re-
duced to a SOM, and thus, the accuracy score decreases. It is worth to be mentioned
that for receptive field size equal to 1, the accuracy score is 9%.

4.4. Technical Stuff 71

FIGURE 4.17: The influence of number of units per map over the
DendSOM algorithm is illustrated in this figure

The results suggest that increasing the number of units improves the performance
of the SOM algorithm. However, this does not seem to be the case for the DendSOM
model since increasing the number of units above 100 decreases the model’s predic-
tive ability. This result is counterintuitive, and thus, additional experiments have to
be conducted in order to draw clear conclusions.

73

Chapter 5

Conclusions & Future Work

In this thesis, we incorporated neuroscience-related concepts into the SOM architec-
ture to create a new algorithm capable of addressing the challenges of CL. In this
chapter, the work of this thesis is summed up, and directions for future work are
provided.

5.0.1 Chapter 2: Continual Learning

In this chapter, we provided the definition of continual learning along with some
historical background. Furthermore, The basic terminology was presented, and the
challenges that a CL system has to overcome were described. Moreover, a frame-
work for continual learning in classification was introduced, and the three scenar-
ios of continual learning were presented. On top of that, the broad categories of
methods for addressing the challenges of continual learning and the state-of-the-art
algorithms were explained.

5.0.2 Chapter 3: Self-Organizing Maps

In this chapter, we briefly described the historical background of the SOM algorithm
and discussed the notion of vector quantization which was the forerunner of many
well-known clustering algorithms such as SOM and KMEANS. Furthermore, the es-
sential background of SOM was presented. Moreover, theoretical analysis was con-
ducted for both the 1D and multi-dimensional SOM. Moreover, the cause and effects
of the stochasticity of the online SOM training algorithm were provided, and the de-
terministic Batch-SOM algorithm was presented. Finally, algorithms and extensions
related to the original SOM algorithm were discussed.

5.0.3 Chapter 4: Dendritic Self-Organizing Maps

In this section, we provided the biological background and the motivation for cre-
ating a SOM-based architecture to address the challenges of CL. Moreover, we pro-
posed a new SOM-based architecture that utilizes neuroscience and information the-
ory concepts to address catastrophic-forgetting, which is crucial for avoiding model
re-training when new data presented. Our experimental results have shown that
the DendSOM consistently outperforms the original SOM algorithm in unsuper-
vised classification, which indicates that both the adaptation of receptive fields and
dendritic computational locality play a significant role in improving the predictive
power of the SOM. Furthermore, the DendSOM is a memoryless easy-to-train algo-
rithm that performs on par with the state-of-the-art datasets task-incremental learn-
ing algorithms. Moreover, it achieves a higher accuracy score than most leading-
edge architecture in both the domain-incremental and class-incremental scenarios.

74 Chapter 5. Conclusions & Future Work

Finally, it should be noted that the DendSOM model is trained for one epoch using
only one input stream, which corresponds to a batch size equal to one.

5.0.4 Future Work

This thesis presented a SOM-based architecture capable of alleviating the effects of
catastrophic forgetting and concept drift. However, there is still a lot of work to be
done in this direction. Some possible extensions of this work are presented below:

• The current model can not process RGB images. However, the retina has two
types of photoreceptive cells. Rods are active in low light conditions, while
Cones contain color-detecting molecules. Thus an extension of this work could
be the incorporation of the cone’s color-detecting properties into the DendSOM
architecture.

• The DendSOM model is a shallow neural network. Although there have been
numerous attempts to stack DendSOMs, the results are at best the same as
in the case of a single DendSOM since the upper layer DendSOMs propa-
gate their fickle weight vectors to the lower ones. An unsupervised back-
propagation algorithm has to be derived to correct these fickle weight vectors.

• In this work, the preprocessing corresponds to image normalization and grayscale
transformation. Thus, a possible extension could concern the investigation of
other preprocessing procedures [96].

• The use of DendSOM on new hybrid methods.

• As shown in the unsupervised classification experiments, the BMU selection
rule can significantly affect the performance of the model. Hence, utilizing
metric learning to increase the number of significantly associated or signifi-
cantly non-associated samples and consequently decrease the fickle ones may
further improve the predictive ability of DendSOM both in CL and unsuper-
vised classification.

75

Bibliography

[1] T. Branco and M. Häusser, “The single dendritic branch as a fundamental func-
tional unit in the nervous system,” Current opinion in neurobiology, vol. 20, no. 4,
pp. 494–502, 2010.

[2] A. Losonczy, J. K. Makara, and J. C. Magee, “Compartmentalized dendritic
plasticity and input feature storage in neurons,” Nature, vol. 452, no. 7186,
pp. 436–441, 2008.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[4] M. K. Patrick, A. F. Adekoya, A. A. Mighty, and B. Y. Edward, “Capsule
networks–a survey,” Journal of King Saud University-Computer and Information
Sciences, 2019.

[5] Y. M. Assael, B. Shillingford, S. Whiteson, and N. De Freitas, “Lipnet: End-to-
end sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

[6] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[7] C. Dwork, “Differential privacy: A survey of results,” in International conference
on theory and applications of models of computation, pp. 1–19, Springer, 2008.

[8] A. Gepperth and B. Hammer, “Incremental learning algorithms and applica-
tions,” in European symposium on artificial neural networks (ESANN), 2016.

[9] C. V. Nguyen, A. Achille, M. Lam, T. Hassner, V. Mahadevan, and S. Soatto,
“Toward understanding catastrophic forgetting in continual learning,” arXiv
preprint arXiv:1908.01091, 2019.

[10] M. B. Ring et al., Continual learning in reinforcement environments. PhD thesis,
University of Texas at Austin Austin, Texas 78712, 1994.

[11] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and autonomous
systems, vol. 15, no. 1-2, pp. 25–46, 1995.

[12] Z. Mai, H. Kim, J. Jeong, and S. Sanner, “Batch-level experience replay with
review for continual learning,” arXiv preprint arXiv:2007.05683, 2020.

[13] S. Farquhar and Y. Gal, “Towards robust evaluations of continual learning,”
arXiv preprint arXiv:1805.09733, 2018.

[14] R. Aljundi, “Continual learning in neural networks,” arXiv preprint
arXiv:1910.02718, 2019.

76 BIBLIOGRAPHY

[15] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist net-
works: The sequential learning problem,” in Psychology of learning and motiva-
tion, vol. 24, pp. 109–165, Elsevier, 1989.

[16] S. Kolouri, N. Ketz, X. Zou, J. Krichmar, and P. Pilly, “Attention-based selective
plasticity,” arXiv preprint arXiv:1903.06070, 2019.

[17] L. Itti and P. F. Baldi, “Bayesian surprise attracts human attention,” in Advances
in neural information processing systems, pp. 547–554, Citeseer, 2006.

[18] S. Kadam, “A survey on classification of concept drift with stream data,” 2019.

[19] B. Pfülb and A. Gepperth, “A comprehensive, application-oriented study of
catastrophic forgetting in dnns,” arXiv preprint arXiv:1905.08101, 2019.

[20] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71,
2019.

[21] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-Rodrı́guez,
“Continual learning for robotics: Definition, framework, learning strategies,
opportunities and challenges,” Information fusion, vol. 58, pp. 52–68, 2020.

[22] G. M. Van de Ven and A. S. Tolias, “Three scenarios for continual learning,”
arXiv preprint arXiv:1904.07734, 2019.

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” 2011.

[24] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” arXiv preprint arXiv:1503.02531, 2015.

[27] D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-task
scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[28] G. M. Van de Ven, H. T. Siegelmann, and A. S. Tolias, “Brain-inspired replay
for continual learning with artificial neural networks,” Nature communications,
vol. 11, no. 1, pp. 1–14, 2020.

[29] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the national academy
of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[30] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[31] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intel-
ligence,” in International Conference on Machine Learning, pp. 3987–3995, PMLR,
2017.

BIBLIOGRAPHY 77

[32] N. Y. Masse, G. D. Grant, and D. J. Freedman, “Alleviating catastrophic forget-
ting using context-dependent gating and synaptic stabilization,” Proceedings of
the National Academy of Sciences, vol. 115, no. 44, pp. E10467–E10475, 2018.

[33] G. M. Van de Ven and A. S. Tolias, “Generative replay with feedback
connections as a general strategy for continual learning,” arXiv preprint
arXiv:1809.10635, 2018.

[34] P. Zikopoulos and C. Eaton, Understanding big data: Analytics for enterprise class
hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

[35] R. D. Schneider, “Hadoop for dummies,” John Willey & sons, 2012.

[36] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, 1990.

[37] H. Ritter and K. Schulten, “On the stationary state of kohonen’s self-organizing
sensory mapping,” Biological cybernetics, vol. 54, no. 2, pp. 99–106, 1986.

[38] S. Kaski, T. Honkela, K. Lagus, and T. Kohonen, “Websom–self-organizing
maps of document collections,” Neurocomputing, vol. 21, no. 1-3, pp. 101–117,
1998.

[39] M. Oja, S. Kaski, and T. Kohonen, “Bibliography of self-organizing map (som)
papers: 1998–2001 addendum,” Neural computing surveys, vol. 3, no. 1, pp. 1–
156, 2003.

[40] H. J. Ritter and K. Schulten, “Kohonen’s self-organizing maps: exploring their
computational capabilities.,” in ICNN, pp. 109–116, 1988.

[41] F. Mulier and V. Cherkassky, “Self-organization as an iterative kernel smoothing
process,” Neural computation, vol. 7, no. 6, pp. 1165–1177, 1995.

[42] T. Kohonen and P. Somervuo, “How to make large self-organizing maps for
nonvectorial data,” Neural networks, vol. 15, no. 8-9, pp. 945–952, 2002.

[43] R. Gray, “Vector quantization,” IEEE Assp Magazine, vol. 1, no. 2, pp. 4–29, 1984.

[44] M. Faundez-Zanuy and J. M. Pascual-Gaspar, “Efficient on-line signature recog-
nition based on multi-section vector quantization,” Pattern Analysis and Appli-
cations, vol. 14, no. 1, pp. 37–45, 2011.

[45] T. Kohonen, “Self-organizing maps: ophmization approaches,” in Artificial neu-
ral networks, pp. 981–990, Elsevier, 1991.

[46] A. Gersho, “Asymptotically optimal block quantization,” IEEE Transactions on
information theory, vol. 25, no. 4, pp. 373–380, 1979.

[47] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding,”
Proceedings of the IEEE, vol. 73, no. 11, pp. 1551–1588, 1985.

[48] K. Teknomo, “K-means clustering tutorial,” Medicine, vol. 100, no. 4, p. 3, 2006.

[49] N. Grover, “A study of various fuzzy clustering algorithms,” International Jour-
nal of Engineering Research, vol. 3, no. 3, pp. 177–181, 2014.

[50] K. Rose, E. Gurewitz, and G. C. Fox, “Statistical mechanics and phase transi-
tions in clustering,” Physical review letters, vol. 65, no. 8, p. 945, 1990.

78 BIBLIOGRAPHY

[51] T. Kohonen, “Essentials of the self-organizing map,” Neural networks, vol. 37,
pp. 52–65, 2013.

[52] M. Cottrell, J.-C. Fort, and G. Pagès, “Theoretical aspects of the som algorithm,”
Neurocomputing, vol. 21, no. 1-3, pp. 119–138, 1998.

[53] J.-C. Fort, “Som’s mathematics,” Neural Networks, vol. 19, no. 6-7, pp. 812–816,
2006.

[54] L. Tierney, “Introduction to general state-space markov chain theory,” Markov
chain Monte Carlo in practice, pp. 59–74, 1996.

[55] G. O. Roberts, “Markov chain concepts related to sampling algorithms,” Markov
chain Monte Carlo in practice, vol. 57, pp. 45–58, 1996.

[56] E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: ordering, con-
vergence properties and energy functions,” Biological cybernetics, vol. 67, no. 1,
pp. 47–55, 1992.

[57] M. Cottrell and J.-C. Fort, “Etude d’un processus d’auto-organisation,” in An-
nales de l’IHP Probabilités et statistiques, vol. 23, pp. 1–20, 1987.

[58] J. A. Flanagan, “Self-organisation in kohonen’s som,” Neural networks, vol. 9,
no. 7, pp. 1185–1197, 1996.

[59] J.-C. Fort and G. Pagés, “About the kohonen algorithm: strong or weak self-
organization?,” Neural Networks, vol. 9, no. 5, pp. 773–785, 1996.

[60] V. Tolat, “An analysis of kohonen’s self-organizing maps using a system of en-
ergy functions,” Biological Cybernetics, vol. 64, no. 2, pp. 155–164, 1990.

[61] T. Heskes, “Energy functions for self-organizing maps,” in Kohonen maps,
pp. 303–315, Elsevier, 1999.

[62] E. de Bolt, M. Cottrell, and M. Verleysen, “Statistical tools to assess the relia-
bility of self-organising maps,” Neural Networks, vol. 15, no. 8-9, pp. 967–978,
2002.

[63] N. Bourgeois, M. Cottrell, B. Déruelle, S. Lamassé, and P. Letrémy, “How to im-
prove robustness in kohonen maps and display additional information in facto-
rial analysis: application to text mining,” Neurocomputing, vol. 147, pp. 120–135,
2015.

[64] N. Bourgeois, M. Cottrell, S. Lamassé, and M. Olteanu, “Search for meaning
through the study of co-occurrences in texts,” in International work-conference on
artificial neural networks, pp. 578–591, Springer, 2015.

[65] J.-C. Fort, M. Cottrell, and P. Letremy, “Stochastic on-line algorithm versus
batch algorithm for quantization and self organizing maps,” in Neural Networks
for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society
Workshop (IEEE Cat. No. 01TH8584), pp. 43–52, IEEE, 2001.

[66] A. M. Kalteh, P. Hjorth, and R. Berndtsson, “Review of the self-organizing map
(som) approach in water resources: Analysis, modelling and application,” En-
vironmental Modelling & Software, vol. 23, no. 7, pp. 835–845, 2008.

BIBLIOGRAPHY 79

[67] D. A. Brown, I. Craw, and J. Lewthwaite, “A som based approach to skin de-
tection with application in real time systems.,” in BMVC, vol. 1, pp. 491–500,
Citeseer, 2001.

[68] F. Nan, Y. Li, X. Jia, L. Dong, and Y. Chen, “Application of improved som net-
work in gene data cluster analysis,” Measurement, vol. 145, pp. 370–378, 2019.

[69] J. Himberg, “A som based cluster visualization and its application for false col-
oring,” in Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, vol. 3, pp. 587–592, IEEE, 2000.

[70] A. N. Gorban, A. Y. Zinovyev, and D. C. Wunsch, “Application of the method of
elastic maps in analysis of genetic texts,” in Proceedings of the International Joint
Conference on Neural Networks, 2003., vol. 3, pp. 1826–1831, IEEE, 2003.

[71] H. Shaban and S. Tavoularis, “Identification of flow regime in vertical upward
air–water pipe flow using differential pressure signals and elastic maps,” Inter-
national Journal of Multiphase Flow, vol. 61, pp. 62–72, 2014.

[72] J. Sublime, N. Grozavu, G. Cabanes, Y. Bennani, and A. Cornuéjols, “From hor-
izontal to vertical collaborative clustering using generative topographic maps,”
International journal of hybrid intelligent systems, vol. 12, no. 4, pp. 245–256, 2015.

[73] I. Casciuc, Y. Zabolotna, D. Horvath, G. Marcou, J. Bajorath, and A. Varnek,
“Virtual screening with generative topographic maps: how many maps are re-
quired?,” Journal of chemical information and modeling, vol. 59, no. 1, pp. 564–572,
2018.

[74] R. L. do Rêgo, A. F. Araújo, and F. B. de Lima Neto, “Growing self-organizing
maps for surface reconstruction from unstructured point clouds,” in 2007 Inter-
national Joint Conference on Neural Networks, pp. 1900–1905, IEEE, 2007.

[75] R. Nawaratne, D. Alahakoon, D. De Silva, H. Kumara, and X. Yu, “Hierarchical
two-stream growing self-organizing maps with transience for human activity
recognition,” IEEE Transactions on Industrial Informatics, vol. 16, no. 12, pp. 7756–
7764, 2019.

[76] H. Shah-Hosseini and R. Safabakhsh, “Tasom: a new time adaptive self-
organizing map,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 33, no. 2, pp. 271–282, 2003.

[77] M. K. Moghaddam and R. Safabakhsh, “Tasom-based lip tracking using the
color and geometry of the face,” in Fourth International Conference on Machine
Learning and Applications (ICMLA’05), pp. 6–pp, IEEE, 2005.

[78] G. L. Romani, S. J. Williamson, and L. Kaufman, “Tonotopic organization of the
human auditory cortex,” Science, vol. 216, no. 4552, pp. 1339–1340, 1982.

[79] M. Saenz and D. R. Langers, “Tonotopic mapping of human auditory cortex,”
Hearing research, vol. 307, pp. 42–52, 2014.

[80] P. Poirazi and B. W. Mel, “Impact of active dendrites and structural plasticity
on the memory capacity of neural tissue,” Neuron, vol. 29, no. 3, pp. 779–796,
2001.

80 BIBLIOGRAPHY

[81] G. J. Stuart and N. Spruston, “Dendritic integration: 60 years of progress,” Na-
ture neuroscience, vol. 18, no. 12, pp. 1713–1721, 2015.

[82] G. Tavosanis, “Dendritic structural plasticity,” Developmental neurobiology,
vol. 72, no. 1, pp. 73–86, 2012.

[83] M. Bosch and Y. Hayashi, “Structural plasticity of dendritic spines,” Current
opinion in neurobiology, vol. 22, no. 3, pp. 383–388, 2012.

[84] P. Bashivan, M. Schrimpf, R. Ajemian, I. Rish, M. Riemer, and Y. Tu, “Continual
learning with self-organizing maps,” arXiv preprint arXiv:1904.09330, 2019.

[85] M. D. Binder, N. Hirokawa, and U. Windhorst, Encyclopedia of neuroscience,
vol. 3166. Springer Berlin, Germany, 2009.

[86] M. London and M. Häusser, “Dendritic computation,” Annu. Rev. Neurosci.,
vol. 28, pp. 503–532, 2005.

[87] N. Liu, J. Wang, and Y. Gong, “Deep self-organizing map for visual classifica-
tion,” in 2015 international joint conference on neural networks (IJCNN), pp. 1–6,
IEEE, 2015.

[88] S. Aly and S. Almotairi, “Deep convolutional self-organizing map network for
robust handwritten digit recognition,” IEEE Access, vol. 8, pp. 107035–107045,
2020.

[89] A. Nakagawa and A. Kutics, “Classification in big image datasets using
layered-som,” in 2017 13th International Conference on Signal-Image Technology
& Internet-Based Systems (SITIS), pp. 143–150, IEEE, 2017.

[90] G. M. Van de Ven, Z. Li, and A. S. Tolias, “Class-incremental learning with
generative classifiers,” arXiv preprint arXiv:2104.10093, 2021.

[91] R. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of clinical trials,
pp. 1–3, 2007.

[92] S. Taheri and G. Hesamian, “A generalization of the wilcoxon signed-rank test
and its applications,” Statistical Papers, vol. 54, no. 2, pp. 457–470, 2013.

[93] G. M. van de Ven and A. S. Tolias, “Generative replay with feedback
connections as a general strategy for continual learning,” arXiv preprint
arXiv:1809.10635, 2018.

[94] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,”
arXiv preprint arXiv:1904.07734, 2019.

[95] G. M. van de Ven, Z. Li, and A. S. Tolias, “Class-incremental learning with gen-
erative classifiers,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pp. 3611–3620, June 2021.

[96] G. Lowe, “Sift-the scale invariant feature transform,” Int. J, vol. 2, no. 91-110,
p. 2, 2004.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Machine Learning in a Nutshell
	Thesis Contribution
	Thesis Outline

	Continual Learning
	Chapter Outline
	Definition of Continual Learning
	Historical Background

	Continual Learning Terminology & Challenges
	Basic Definitions
	Challenges
	Catastrophic Forgetting
	Memory Management
	Concept Drift

	A Continual Learning framework with emphasis on classification
	Definitions
	Continual Learning Scenarios
	Datasets
	Protocols
	Evaluation Metrics
	Baselines
	The essentials of Deep Neural Networks (DNNs)

	Methods for addressing catastrophic forgetting
	Replay
	Regularization
	Parameter Isolation

	State-of-the-art algorithms
	 Copy Weight with Reinit (CWR)
	Copy Weight with Reinit + (CWR+)

	Deep Generative Replay (DGR)
	Elastic Weight Consolidation (EWC)
	Learning Without Forgetting (LwF)
	Synaptic Intelligence (SI)
	Context-dependent Gating (XdG)
	Hybrid Algorithms
	Deep Generative Replay and Regularization (DGR)
	Architectural and Regularization approach (AR1)

	Self-Organizing Maps
	Chapter Outline
	Historical Background
	Quantization
	Vector Quantization (VQ)
	K-means
	Soft-Clusering

	Fundamentals of Self-Organizing Maps
	Online SOM Learning Algorithm
	Methods for analyzing SOM convergence
	Markov Chain Theory (MCT)
	Ordinary Differential Equation (ODE)
	Robbins-Monro algorithm theory

	Theoretical analysis of the 1D SOM case
	A special case
	The general 1D SOM convergence case

	Theoretical analysis of the multi-dimensional case
	Continuous setting
	Discrete setting

	The stochastic nature of the online SOM training algorithm
	Batch-SOM: A deterministic approach
	SOM variations
	Heskens' rule
	Soft Topologic Mapping (STM)
	Other Variations of SOM

	Dendritic Self-Organizing Maps
	Chapter Outline
	Background
	Motivation

	Dendritic Self-Organizing Maps
	Incorporating neurobiological concepts into SOMs
	MSE Minimization Test
	Visual Test
	ANN Test
	Time Test
	Overall

	DendSOM Architecture
	Learning Algorithm
	Defining a decision rule for unsupervised classification
	Investigating the effects of a new BMU rule

	DendSOM for CL
	Task-Incremental Learning
	Domain-Incremental Learning
	Class-Incremental Learning

	Technical Stuff
	Implementation Details
	Hyperparameter Analysis

	Conclusions & Future Work
	Chapter 2: Continual Learning
	Chapter 3: Self-Organizing Maps
	Chapter 4: Dendritic Self-Organizing Maps
	Future Work

