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A B S T R A C T   

Incorporating undesirable outputs in the operational assessments through the integration of Life Cycle Assess-
ment (LCA) and Data Envelopment Analysis (DEA) has received great attention recently. There are many studies 
throughout literature that apply various methods to integrate LCA and DEA. In this case study, the six most 
common approaches were employed to assess the winter wheat cropping system in Poland. These six methods 
were: a) ignoring undesirable outputs, b) treating undesirables as inputs to the DEA model, c) data trans-
formation, d) impact rate, e) ratio model, and f) slack based measurement DEA with undesirable outputs. The 
environmental impact of wheat production was assessed by determining its carbon footprint (CF). The mean CF 
equalled 0.45 kg CO2eq per kg wheat grain (ranging from 0.25 to 0.67). According to the model comparison 
results, a slack based measurement DEA with undesirable outputs could better reflect the performance of un-
desirable outputs, and was selected as the most appropriate method to maximize the efficiency of winter wheat 
production while minimizing undesirable outputs. The advantage of applying the slack based model with un-
desirable outputs was that the targets presented by this model were based on existing efficient farms, as opposed 
to theoretical results; thus achieving these targets are feasible. The average efficiency score equalled 0.43, 
whereby few farms were classified as efficient farms. The results of the proposed integrated model showed a high 
reduction potential for mineral fertilizers (up to 595 kg ha� 1 y� 1), seed (up to 37 kg ha� 1 y� 1), and fuel (up to 75 
L ha� 1 y� 1) in winter wheat farms. These results help farmers to obtain a realistic and reliable usage pattern for 
inputs in a winter wheat production system, whereby the greatest production can be achieved in conjunction 
with the lowest possible environmental impact.   

1. Introduction 

Wheat, as the second most important food crop, can be planted in 
most regions of the world. In 2017, 771 million metric tons of wheat was 
produced globally on 218 million hectares of farm-land (FAO, 2017). 
Winter wheat is the most widely planted crop in Poland, being planted 
on an area of around two million hectares, offering the highest added 
value in Poland’s economy (Statistics Poland, 2018). 

Sustainable production in agriculture provides food security, while 
limiting the impacts on the environment through the efficient use of 
resources. Among the environmental impacts, greenhouse gas (GHG) 
emissions is appraised as the most threatening to the environment and 
the economy (Stocker et al., 2014). Agriculture, forestry, and other land 

use (AFOLU) are responsible for about 25% of anthropogenic GHGs 
(Smith et al., 2014). The agricultural sector is one of the main sources of 
GHGs, including carbon dioxide (CO2), nitrous oxide (N2O), and 
methane (CH4) (De Cara and Jayet, 2000). 

Carbon footprint (CF) is the sum of GHG emissions in a production 
system, expressed in equivalent kg of CO2. There is little knowledge 
about CF of agricultural products and the efficiency of production sys-
tems in Poland. With respect to the high cultivation area and the eco-
nomic importance of wheat, identifying the main sources of GHGs in this 
crop could provide solutions for reducing these emissions. Life cycle 
assessment (LCA) is an approach to determine the environmental im-
pacts associated with all production stages of a commodity. Many 
studies have conducted LCA of winter wheat production (Charles et al., 
2006; Liang et al., 2009; Wang et al., 2006, 2007). 
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Data envelopment analysis (DEA) is a non-parametric approach to 
assess the relative efficiencies of the decision-making units (DMUs) in a 
multi-input and output production system. In general, DEA models are 
either input oriented (reducing input level while maintaining the out-
puts unchanged) or output oriented (increasing the outputs level by a 
given level of inputs). DEA has been used in many studies in agriculture 
to determine the efficiency of crop and animal production systems 
(Aravindakshan et al., 2015; Blancard and Martin, 2014; Dong et al., 
2015; Jha et al., 2000; Masuda, 2016). 

One approach proposed for evaluating a particular production sys-
tem involves a combination of LCA and DEA (Iribarren et al., 2010; 
Lozano et al., 2009; V�azquez-Rowe and Iribarren, 2015). This combined 
approach enables to find efficient producers with focus on both eco-
nomic and environmental performance. Moreover, the LCA þ DEA 
framework avoids the use of averaged inventory data, an important 
factor due to the large variability of inputs and environmental impacts 
amongst farms. There are three different classifications for the LCA þ
DEA framework which include either three, four or five-step, respec-
tively (Adenuga et al., 2018; Laso et al., 2018; Lozano et al., 2009, 2010; 
Rebolledo-Leiva et al., 2017; V�azquez-Rowe et al., 2010). In each clas-
sification, undesirable outputs can be treated differently, including (but 
not limited to): a) ignoring undesirable outputs in the DEA model 
(Alemdar and Oren, 2006; Chebil et al., 2015; Mohseni et al., 2018; 
Nabavi-Pelesaraei et al., 2017; Syp et al., 2015), b) treating undesirables 
as inputs to the DEA model (De Koeijer et al., 2002; Kuosmanen and 
Kortelainen, 2005; Lozano et al., 2009; Picazo-Tadeo et al., 2011; Ullah 
et al., 2016), c) data transformation (Golany and Roll, 1989; Rebolle-
do-Leiva et al., 2017), d) impact rate, and e) ratio model. Treating un-
desirable outputs through the impact rate and ratio model methods hve 
previously been suggested by You and Yan (2011). In addition to these 
methods, few studies have applied a new method known as a DEA model 
with undesirable outputs. Cecchini et al. (2018) applied a slack based 
measure (SBM)-DEA model with undesirable outputs for analysing the 
environmental efficiency of dairy cattle farms in Italy. In Ireland, the 
directional output distance function DEA based model was applied to 
optimize both the desirable and undesirable outputs on dairy farms 
(Adenuga et al., 2018). Dong et al. (2018) combined an energy based 
indicator and the SBM-DEA model with undesirable outputs to evaluate 
the resource use in crop production during the 1978 and 2014 in a 
province in China. V�azquez-Rowe et al. (2010) applied a SBM-DEA 
model with undesirable outputs for assessing fisheries in Spain. In a 
recent study, Angulo-Meza et al. (2019) applied a multi-objective DEA 
model to reduce the CF of organic blueberry orchards, while maintain-
ing a high production level. 

Regarding the fact that; 1) few studies focusing on crop production 
systems in Poland combined LCA and DEA, 2) different scenarios and 
approaches can be applied for the LCA þ DEA framework, and 3) to the 

best of our knowledge, to date, no study has employed and evaluated the 
SBM-DEA model with undesirable outputs for wheat production, thus, 
this paper focused on combining LCA and DEA using alternative 
methods to find an appropriate DEA model to evaluate the environ-
mental efficiency of the winter wheat cropping system in Poland. The 
results of this study can help policy makers and winter wheat farmers as 
a support tool to provide reliable usage patterns, whereby the highest 
production with the lowest environmental impact can be achieved. 

This paper consists of three sections. Section 1 presents the literature 
review and objectives of present study. Section 2 describes the data 
collection process and the methodology of calculating the CF in the LCA 
framework and the DEA models. This section eventually describes the 
integrated LCA-DEA framework. Lastly, Section 3 presents the obtained 
results and related discussions. 

2. Methodology 

2.1. Data collection and carbon footprint calculations 

Data for the LCA were collected from 250 representative farms 
throughout the country monitored by the Polish Farm Accountancy Data 
Network (FADN) system. This database has been created as a deliverable 
of the LCAgri project1 through face-to-face surveys with farmers. In-
formation related to the amount of agricultural inputs, wheat yield, and 
agricultural operations for the 2015/2016 cropping season were derived 
from that database. To apply standard DEA approaches, it is essential to 
have identical production systems. Therefore, only 151 winter wheat 
farms, growing wheat as their main product without raising livestock, 
were considered for the pre-assessments. 

The next step involved the identification of outliers. To identify the 
outliers, the density-based spatial clustering of application with noise 
(DBSCAN) method proposed by Ester et al. (1996) was applied. DBSCAN 
is capable of detecting data outliers in multi-dimensional data space. 
This algorithm detects the outliers as the points which are far from their 
nearest neighbouring points. Some studies have employed DBSCAN for 
detecting outliers within crop datasets (Majumdar et al., 2017), identi-
fying temperature hotspots (Sukmasetya and Sitanggang, 2016), while 
also for identifying outliers in dairy energy and water datasets (Shine 
et al., 2018). The fixed radius (eps) and minimum number of points 
required to create a cluster (minpts) are two important parameters in 
DBSCAN. To determine a desired eps value, Ester et al. (1996) intro-
duced k-dist method. According to k-dist method, the eps and minpts were 
determined at 0.06 and 5, respectively. Consequently, DBSCAN results 
identified 15 outlier data and these farms were excluded from the 

Acronyms 

AFLS Agriculture, forestry and other land use 
BCC Banker, Charnes and Cooper 
CCR Charnes, Cooper and Rhodes 
CF Carbon footprint 
CH4 Methane 
CO2 Carbon dioxide 
CRS Constant returns to scale 
DBSCAN Density based spatial clustering of application with noise 
DEA Data envelopment analysis 
DMUs Decision-making units 
ETS Emission trading scheme 
EU European Union 
FADN Farm Accountancy Data Network 

FU Functional units 
GHG Greenhouse gasses 
GHGD Direct GHG 
GHGID Indirect GHG 
GHGTotal Total GHG 
GTP Global temperature potential 
LCA Life cycle assessment 
LCI Life cycle inventory 
LULUCF Land use, land use change and forestry 
N2O Nitrous oxide 
SBM Slack based measurement 
SF Supplementary file 
TE Technical efficiency 
VRS Variable returns to scale 
Y Yield  

1 www.lcagri.iung.pl. 
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calculations (for more information about the data collection and the 
outlier detection method please see Section S1 in Supplementary File 
(SF)). Therefore, 136 farms were considered for further analysis. 

To calculate the CF of the farms, all emissions, including both indi-
rect (related to production and transport of inputs) and direct (related to 
application of inputs) were calculated as a part of the LCA framework. 
An attributional LCA was applied to calculate the GHG emissions caused 
by winter wheat cultivation to assess the environmental efficiency of 
winter wheat farms. The system boundary was from cradle to farm gate 
(Fig. 1) and two functional units (FUs) were defined as 1 ha (total GHG) 
and 1 kg (CF) of winter wheat grain. Representing the results per ha 
helps to evaluate the intensity of a production system, while the effi-
ciency of a production system is represented by a FU per kg of wheat 
grain (Ali et al., 2017). In a DEA model, the desirable (wheat grain) and 
undesirable outputs (total GHG emissions) must be expressed in the 
same units, thus, 1 ha was applied as the second FU for undesirable 
outputs. 

Total GHG and CF for winter wheat farms were calculated using Eq. 
(1) and Eq. (2) as follows: 

GHGTotal¼GHGID þ GHGD (1)  

CF¼
GHGID þ GHGD

Y
(2)  

where GHGTotal denotes the total GHG (kg CO2eq ha� 1 y� 1), CF implies 
the carbon footprint (kg CO2eq (kg wheat)� 1), GHGID is indirect emis-
sions (GHGs related to production and maintenance of materials and 
energies as inputs) (kg CO2eq ha� 1 y� 1), GHGD is direct emissions (GHGs 
related to application of materials and energies) (kg CO2eq ha� 1 y� 1) and 
Y denotes winter wheat grain yield (kg ha� 1 y� 1). 

The amount of chemical fertilizer (kg), manure (kg), fuel (L), biocide 
(kg of active ingredient), machinery (h), and seed (kg) were determined 
per ha for each farm and were used to estimate the indirect and direct 
GHG emissions. Indirect emissions were estimated using Ecoinvent 
database version 3.4 (Wernet et al., 2016). For more details about the 
GHG calculations see Sections S2 and S3 of SF. 

Direct GHG emissions for mineral and organic fertilizers were esti-
mated according to IPCC (2006) guidelines and the method developed 
by Emmenegger et al. (2009) and Nemecek et al. (2016). The SF pro-
vides details related to the calculating the GHG emissions due to the 
application of fertilizers. CH4 emissions from the application of organic 
fertilizers in wheat production was not considered in the calculation due 
to the low level of emissions on farms (Chianese et al., 2009). The 
methodology of Mil�a i Canals et al. (2013) was applied to calculate GHG 
emissions due to land use change. The changes in land use in Poland 
during the last 20 years were not significant (FAO, 2017). Thus, GHGs 
due to land use change were assumed to be zero in this study. Due to the 
lack of information in research regions and the low contribution to total 
GHG emissions (Frischknecht et al., 2007), GHGs from the production 
and the transport of capital goods (except agricultural machinery) were 
also not considered. 

To allocate the CF to the wheat grain and straw, economic allocation 
was applied. This was carried out based on the prices of 145 and 70 € per 
metric tons for wheat grain and straw, respectively. CO2, CH4 and N2O 
emissions, as the most important GHGs, were aggregated using their 
100-year global temperature potential (GTP) of 1, 30.5 and 265 CO2eq, 
respectively (IPCC, 2013). 

2.2. Data envelopment analysis approach 

DEA is a widely used non-parametrical and linear programming 
technique for evaluating the relative efficiency of DMUs (Emrouznejad 
and Yang, 2018). Since DEA can handle multiple inputs and outputs, it is 
an appropriate technique to discover the relationships that remain un-
clear in other methodologies. The process is carried out by detecting and 
quantifying the sources of inefficiency for each DMU. For the first time, 
Charnes et al. (1978) applied linear programming to estimate an 
empirical production technology frontier. Charnes, Cooper and Rhodes 
(CCR) extended an optimization model with constant returns to scale 
(CRS). Later, Banker, Charnes and Cooper (BCC) developed the model 
with variable returns to scale (VRS) and the CCR model transformed into 
the BCC model (Banker et al., 1984). These models measure the 

Fig. 1. Winter wheat production system boundary (dashed line). Emissions from production of capital goods (dotted gray lines) were excluded from sys-
tem boundary. 
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technical efficiency (TE) of a DMU relative to other DMUs under the CRS 
(or VRS) conditions. The TE (efficiency score in this study) of winter 
wheat farms was estimated by using Eq. (S6) (see Section S4 of SF). Ef-
ficiency in a DEA model is measured according to radial and non-radial 
methods (Cooper et al., 2007). The radial DEA model (Eq. (3) and Eq. 
(4)) concerns the proportionate change of input or output values 
without considering the slacks (defined as the difference between the 
inputs surplus and the outputs deficit). 

Based on the potential of a DMU to achieve the maximum output or 
alternatively, to reach the minimum input quantities by the given 
output, DEA models are classified as output-oriented and input-oriented, 
respectively (Farrell, 1957; Lorenzo-Toja et al., 2015). Due to the fact 
that a farmer has more control over inputs rather than the outputs, the 
input oriented model was applied in this study. According to the 
input-oriented CCR model (radial model), Eq. (S6) can be converted to a 
linear programming problem as Eq. (3) and Eq. (4): 

Minθ ¼
Xm

i¼1
vmxmj (3) 

Subjected to the following conditions: 

Xs

r¼1
uryrj �

Xm

i¼1
vixij � 0

Xs

r¼1
uryrj ¼ 1 ; ur � 0 ; vi � 0

(4) 

where x denotes the inputs vector, y is the outputs vector, v and u are 
the inputs’ and outputs’ weights, i and r show the number of inputs and 
outputs, respectively. An efficiency score varies between zero and one. 
Efficiency score equal to one is associated with an efficient DMU which 
has no reduction potential. An efficiency score lower than one, is related 
to an inefficient DMU. In contrary to radial models, non-radial models 
not only deal with the proportionate change of inputs or outputs, but 
also consider the slacks (Cooper et al., 2007). More details regarding the 
differences between radial and SBM models can be found in the Section 
S5 of SF. The efficiency of non-radial models is measured in the form of a 
scalar known as the slack based measure of efficiency (SBM). SBM was 
introduced and developed by Tone (2001). SBM is generally expressed 
as follows: 

min λ;S� ;Sþ ρ¼
1 � ð1=mÞ

Pm
i¼1s�i

�
xi0

1þ ð1=sÞ
Ps

r¼1sþr
�

yr0
(5) 

Subject to: x0 ¼ Xλþ s� ; y0 ¼ Yλ � sþ ; λ � 0 ; s� � 0 ;

sþ � 0 
where x and y are vectors of inputs and outputs; i and r are the indices 

of inputs and outputs; j denotes the firms; λ is a nonnegative vector; s�

and sþ are the input excess and output shortfall, respectively. 
The above equation can easily be formulated in the similar way of 

CCR model as follows (Tone, 2001): 

mint;λ;s� ;sþ τ¼ t �
1
m
Xm

i¼1
ts�i

�

xi0 (6) 

Subject to: 1 ¼ tþ 1
s
Ps

r¼1tsþr =yr0 ; x0 ¼ Xλþ s� ; y0 ¼ Yλ � sþ; λ �
0; s� � 0; sþ � 0; t > 0 

The above nonlinear problem can be transformed into a linear pro-
graming problem as follows (Tone, 2001): 

Minimize  τ ¼ t �
1
m
Xm

i¼1
S�i

,

xi0 (7) 

Subject to: 1 ¼ tþ 1
s
Ps

r¼1Sþr =yr0; tx0 ¼ XΛþ S� ; ty0 ¼ YΛ � Sþ

Λ� 0; S� � 0; Sþ � 0; t > 0  

where: S� ¼ ts� ; Sþ ¼ tsþ;and Λ ¼ tλ 
If the optimal solution of linear programming is τ*; t*; Λ*; S� *; Sþ*, 

then the optimal solution of SBM will be ρ* ¼ τ*; λ* ¼ Λ*=t*; s� * ¼

S� *=t*; sþ* ¼ Sþ*=t*. By neglecting the denominator of the objective 
function of Eq. (5), the input-oriented SBM model is defined. 

2.3. Integration of LCA and DEA 

One of the most important parts of the sustainability assessment 
involves evaluating the environmental impact. LCA evaluates the envi-
ronmental impacts of a production system, while it does not provide any 
alternative for improvement. DEA provides the proper amount of inputs 
(i.e. less or more usage of inputs) which can push an inefficient wheat 
farm towards an efficient production system, while the environmental 
impacts are ignored. The successful integration of LCA and DEA has been 
one of the most challenging issues over the past few years. Such inte-
gration allows for the verification that reduced input consumption levels 
may (or would lead to) reduce environmental impacts. Moreover, this 
approach helps policy makers and farmers to evaluate both the opera-
tional and environmental performance of production systems. 

As discussed in Section 1, several classifications have been intro-
duced for integrating LCA and DEA including three, four and five-step 
approaches (Adenuga et al., 2018; Laso et al., 2018; Lorenzo-Toja 
et al., 2015; Lozano et al., 2009, 2010; Rebolledo-Leiva et al., 2017; 
V�azquez-Rowe et al., 2010). The most challenging issue, regarding LCA 
þ DEA, and the main focus of this study is how to treat undesirable 
outputs in DEA models. Thus, the most common approaches for incor-
porating undesirable outputs in DEA models are discussed and assessed. 
It should be noted that within each approach, different DEA models 
(including radial (input, output, graph oriented etc.) and non-radial) can 
be employed. 

2.3.1. Ignoring undesirable outputs 
This approach does not include the undesirable outputs into the DEA 

model. An example of this approach is the five-step LCA þ DEA frame-
work stablished by V�azquez-Rowe et al. (2010) and applied by Iribarren 
et al. (2010) and Lozano et al. (2009). In this approach, the physical 
amount of inputs and desirable outputs are considered as DEA inputs 
and outputs, respectively. The life cycle impact assessment (LCIA) is 
carried out both for current and target (given as DEA results) situations 
and the potential improvements in the environmental impacts are 
addressed. Given the fact that desirable and undesirable outputs are 
produced at the same time during the crop production process, ignoring 
the undesirable outputs in a DEA model may lead to underestimation of 
DMUs’ efficiency scores. In this study, DEA inputs for this method were 
mineral fertilizer (kg ha� 1), organic fertilizer (kg ha� 1), liquid fuel (L 
ha� 1), pesticide (kgactive ingredient ha� 1), machinery (h ha� 1) and seed (kg 
ha� 1), and the model output was wheat grain yield (kg ha� 1). 

2.3.2. Treating undesirable outputs as inputs 
Introduced by Dyckhoff and Allen (2001) and Scheel (2001), this 

approach involves incorporating the undesirable outputs into the DEA 
models as inputs. Treating undesirable outputs as inputs may result in an 
erroneous interpretation. An unlimited reduction in undesirable outputs 
is not technically feasible and, moreover, this method may lead to 
ignoring some ecological slacks (Dyckhoff and Allen, 2001; Yang et al., 
2008). A modified version of this approach was applied by Lozano et al. 
(2010) and Iribarren et al. (2010) (known as the three-step LCA þ DEA 
framework), which treated both undesirable outputs and inputs as in-
puts of the DEA model and calculated the reduction of inputs con-
sumption and environmental impacts by using a SMB-DEA model. One 
criticism to this approach is the higher sample size (DMUs) requirement. 
Since the minimum total number of DMUs in a DEA model should be 
greater than I �O or 3 � (I þO), where I and O are the numbers of inputs 
and outputs, increasing in the number of model inputs and outputs, in 
this case the aggregated number of inputs and undesirable outputs, 
creates the need for more data (larger sample size), which represents a 
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limitation (William et al., 2007). In our study and for the current 
approach, total GHG emissions (kg CO2eq ha� 1 y� 1) from the use of in-
puts were considered as DEA inputs, and wheat grain yield (kg ha� 1 y� 1) 
was assumed as DEA output. 

2.3.3. Data transformation 
Introduced by Golany and Roll (1989) and Scheel (2001), this 

approach transforms an undesirable output into a desirable output by 
applying a reverse function. Rebolledo-Leiva et al. (2017) introduced 
and employed this method in a four-step LCA þ DEA framework. An 
output oriented DEA model was recommended and the desired levels of 
inputs were calculated based on benchmarking intensities. Given this 
method, in this study DEA inputs were the physical amount of inputs per 
ha, and the model outputs were wheat yield (kg ha� 1 y� 1) and the in-
verse of the total GHG (ha y (kg CO2eq)� 1). 

2.3.4. Impact rate 
With this approach, which has been introduced by You and Yan 

(2011), undesirable outputs are incorporated with their negative impact 
(or ratio) on efficiency score of a DMU. This approach can be formulated 
as follows: 

EFIR ¼ ½1 � ðEFCU � EFCDÞ� � EFCD (8)  

where EFIR represents the efficiency score of a DMU using impact rate 
approach, EFCD denotes the efficiency score for conventional DEA 
models without considering (ignoring) the undesirable outputs, and 
EFCU refers to conventional DEA models by considering the undesirable 
outputs. Inputs in a conventional DEA model, regardless of undesirable 
outputs, were physical amounts of inputs, while the output was the 
wheat yield (kg ha� 1 y� 1), similar to the model expressed in Section 
2.3.1. Incorporating the undesirable outputs into the conventional DEA 
model, causes the model output to contain the total GHG (kg CO2eq ha� 1 

y� 1) in addition to the wheat yield (kg ha� 1 y� 1). 

2.3.5. Ratio model 
You and Yan (2011) proposed this model to adjust the efficiency 

scores of DMUs when considering the undesirable outputs in the DEA 
models. In the ratio model, desirable and undesirable outputs are 
defined as Op

þ (p ¼ 1, 2, …, n1) and Oq
- (q ¼ 1, 2, …, n2), respectively. The 

undesirable outputs are treated as penalty parameter as follows: 

ψj ¼ ρ1O�1j þ…þ ρn2O�n2j (9)  

where ψ j expressed as a penalty parameter for jth DMU, and ρq is the 
penalty value for q undesirable outputs (q ¼ 1, 2, …, n2). 

According to the ratio model and applying Eq. (9), the desirable 
outputs (Yp) are modified as: 

Y ’
p¼

1
ψ Oþp ðp¼ 1; 2; …; n1Þ (10)  

2.3.6. SBM with undesirable outputs 
The SBM model with undesirable outputs was introduced by Cooper 

et al. (2007) to take undesirable outputs into account in the DEA model. 
V�azquez-Rowe et al. (2010) applied this method to link environmental 
and socioeconomic assessments in fisheries. In this method, an efficient 
DMU is the one with more desirable outputs and less undesirable outputs 
(relative to less input). Therefore, each DMU has three vectors such as X, 
Yg, and Yb for inputs, good outputs and bad outputs, respectively. The 
excessive values in inputs, and bad outputs can be illustrated by s-, sb, 
while the shortfall in good outputs can be shown by sg. The SBM with 
undesirable outputs can be presented as follows: 

Minimize ρ*¼
1 � 1

m

Pm
i¼1

s�i
xi0

1þ 1
s1þs2

�
Ps1

r¼1
sg

r
yg

r0
þ
Ps2

r¼1
sb
r

yb
r0

� (11) 

Subject to: x0 ¼ Xλþ s� ; yg
0 ¼ Ygλ � sg ; yb

0 ¼ Ybλþ sb 

s� � 0 ; sg � 0 ; sb � 0 ; λ � 0 

By transferring Eq. (11) into a linear programing problem, Eq. (11) is 
displayed as follows: 

Minimize  τ* ¼ min t �
1
m
Xm

i¼1

S�i
xi0

(12) 

Subject to: 1 ¼ tþ 1
s1þs2

�
Ps1

r¼1

Sg
r

yg
r0
þ
Ps2

r¼1

Sb
r

yb
r0

�

x0t ¼ XΛþ S� ; yg
0t ¼ YgΛ � Sg ; yb

0 ¼ Ybλþ Sb  

S� � 0 ; Sg � 0 ; Sb � 0 ; Λ � 0 ; t > 0 

If the optimal solution of linear programming is t*;Λ*; S� *; Sg*; Sb*, 
then the optimal solution of SBM with undesirable outputs will be ρ* ¼

τ*; λ* ¼ Λ*=t*; s� * ¼ S� *=t*; sg* ¼ Sg*=t*; Sb* ¼ sb*=t*. 
The six methods, as were discussed in Section 2.3.1 to Section 2.3.6, 

were evaluated based on the radial and SBM models, and their results 
were compared. Due to nature of the sixth method (SBM-DEA model 
with undesirable), only the SBM was calculated for this method. There 
are several other DEA models that can be used in the LCA þ DEA 
framework such as multiple objective ratio optimization with domi-
nance (MORO-D) (Angulo-Meza et al., 2019; Estellita Lins et al., 2004), 
directional distance function (DDF) (Adenuga et al., 2018; 
Beltr�an-Esteve et al., 2014, 2017) and weak disposability assumption 
(WDA) (Dakpo et al., 2016), which were out of the scope of this study. 

Operational and environmental aspects of this study can be sum-
marized in different steps. In the first step, the life cycle inventory (LCI) 
and subsequently total GHG for each DMU were calculated. In the next 
steps, six methods for incorporating undesirable outputs in the radial 
and SBM-DEA models were developed for DMUs and the obtained results 
were compared. Finally, efficiency scores of the winter wheat farms in 
the research area were assessed according to the most appropriate 
model. All calculations and analyses were conducted using Microsoft 
Excel 2016, SimaPro 8.5.2.0, R-software and DEASolver 15. 

3. Results and discussions 

3.1. Life cycle assessment of winter wheat 

The annual average GHG emissions and CF of winter wheat pro-
duction were 2485 kg CO2eq per ha and 0.45 kg CO2eq per kg wheat grain 
(see Table S8 in SF). Also, the average indirect and direct GHG emissions 
were reported as 1615 and 870 kg CO2eq per ha per year, respectively. 
This result was in agreement with the result of similar studies on wheat 
production in Europe; such as Syp et al. (2015) in Poland (0.45 kg CO2eq 
per kg wheat grain), Fantin et al. (2017) and Ali et al. (2017) in Italy 
(0.44 and 0.30 kg CO2eq per kg wheat grain), Hayer et al. (2008) in 
Germany (0.53 kg CO2eq per kg wheat grain, respectively), Audsley et al. 
(2010) in UK (0.51 kg CO2eq per kg wheat grain), and Hayer et al. (2008) 
in Denmark (0.36 kg CO2eq per kg wheat grain). W�ojcik-Gront (2018) 
reported wheat CF around 0.27 kg CO2eq per kg wheat grain for Poland. 
The difference between the reported CF in previous study and our study 
is due to differences in wheat grain yield. The wheat farms studied by 
W�ojcik-Gront (2018) were experimental farms type with the average 
yield higher than the actual wheat yield in Poland. A considerable dif-
ference was found between the results of this study and previous works, 
such as Williams et al. (2010) and Hayer et al. (2008), in which the 
emissions were reported as 0.70 and 1.07 kg CO2eq for the production of 
1 kg wheat grain in UK and Poland, respectively. This discrepancy may 
be due to the inventory data and modelling approaches used (Corrado 
et al., 2018). As there is an inverse relationship between CF and yield 
rates, factors which influence the yield may indirectly have impact on 
CF. According to the results of the study conducted by W�ojcik-Gront 
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(2018), water overflow is a yield restricting factor of winter wheat grain 
yield in Poland. Since most winter wheat production in Poland is rain 
fed, high precipitation during final wheat growth phase has negative 
consequences for plant growth conditions. Improved drainage may in-
crease the yield directly and decrease CF indirectly (Lv et al., 2011). N2O 
emission due to it’s high GTP is an important source of emissions in soils. 
Soil N2O emissions depend on the soil moisture and soil mineral nitrogen 
level (W�ojcik-Gront, 2018). In addition to these factors, organic soils 
have previously showed higher levels of N2O emissions when compared 
to mineral soils (Bouwman et al., 2002). Unfortunately, there were no 
details available detailing the soil quality of the studied farms. This in-
formation helps to have more reliable results. Bouwman et al. (2002) 
reported higher levels of emissions in poorly drained soils compared to 
well-drained soils, due to denitrification. Owing to the high level of 
precipitation in Poland, drainage in crop production systems is an 
important issue and may lead to a lower CF in winter wheat production. 
According to the results obtained, the production and application of 
mineral fertilizers and liquid fuel contributed most to the total GHG 
emission in the research area (see Table S8 in SF). Also, Ali et al. (2017), 
Wang et al. (2007) and Sefeedpari et al. (2013) found chemical fertilizer 
and diesel fuel as the largest sources of emissions in a wheat production 
system. Ali et al. (2017) found that around 52.6% of total emissions were 
due to their production and field application of urea, and moreover, 
there was a positive correlation between nitrogen rate and CF. Fig. 2 
shows the variability in GHGID, GHGD, CF and total GHG. In Fig. 2, 
GHGID, GHGD and total GHG are based on kg CO2eq per ha per year, 
while CF is based on kg CO2eq per kg wheat grain. The CFs of winter 
wheat farms in the research area ranged from 0.25 to 0.67 kg CO2eq per 
kg wheat grain (5th � 95th percentile) (Fig. 2). Achten and Van Acker 
(2016) found a range of 0.30–1.07 for CF of wheat production in Europe. 
Total GHGs varied between 1207 (5th percentile) and 3686 (95th 
percentile) kg CO2eq per ha per year. The coefficient of variation (CV) 
showed the larger variability of total GHG compared to the variability of 
GHGD, GHGID and CF. According to the results obtained, GHGID 
contributed to 57% of total GHG emission. Ali et al. (2017) found that 
more than 51% of total GHG in wheat production comes from indirect 
emissions. 

3.2. Comparison of various DEA models in an LCA þ DEA framework 

The eco-efficiency taken into account in this study was based on the 
fact that decreasing inputs use resulted in higher levels of efficiency and 

greater environmental performance in winter wheat production in 
Poland. Multiple methods and DEA models were assessed to select the 
most appropriate one for the eco-efficiency assessment. Table 1 shows 
the descriptive statistics of the results obtained from six DEA models in a 
LCA þ DEA framework for the 136 winter wheat farms in the research 
area. For each method, the results of the radial and SBM models are 
represented. As shown, the number of efficient farms (farms with effi-
ciency score equal to 1.00) for studied methods varied from 7 (according 
to method 5) to 18 (according to method 2). For all methods, the average 
efficiency scores from the radial model were higher than the SBM model. 
Since SBM considers not only the proportional reduction but also the 
slacks in the variables, the efficiency scores from the SBM model can be 
expected to be smaller than the radial models (Tone, 2001). Therefore, 
by comparing radial and SBM-DEA models, the following goals were 
pursued: 1) estimating the reduction rate of efficiency scores due to 
application of SBM model within each method, and 2) comparing 
methods in terms of their reduction in (changes of) efficiency scores. As 
shown in Table 1, method 5, in which SBM-DEA is applied, achieved the 
least changes (with the lowest standard deviation) in efficiency scores. 
Lower efficiency scores from the SBM models indicate that the DEA 
models can compare and evaluate the DMUs better (with less changes) 
than the radial models (You and Yan, 2011). For example, a DMU 
determined as an efficient DMU in the radial model can be turned out to 
be inefficient based on the SBM model (for more detail please see Section 
S5 in SF where the difference between radial and SBM models were 
discussed). Therefore, it can be concluded that the SBM model offers a 
more realistic efficiency score for a DMU. Standard deviations (SDs) of a 
farms efficiency scores were in almost the same range. The highest SD 
was calculated for the SBM model in method 4. The minimum efficiency 
scores ranged from 0.06 (methods 4 and 5) to 0.41 (method 3) (Table 1). 
The coefficient of variation showed greater variability among farms for 
the SBM model in methods 4 and 5 (Table 1 and Fig. 3). 

Fig. 3 presents the efficiency score variability of winter wheat farms 
for six DEA methods (including radial and SBM models). The efficiency 
scores showed large variability among DMUs for the SBM models in 
comparison with the radial models in all studied methods. As illustrated 
in Fig. 3, the variability of the calculated efficiency scores of method 1 
was fairly equal to methods 2 and 3, while a large variability was 
calculated among the efficiency scores estimated by methods 4, 5 and 6. 

Methods 1, 2 and 3 were not found to be appropriate DEA models in 
our study when the undesirable aspects of the winter wheat farms are 
taken into consideration. Due to the different nature of desirable and 
undesirable outputs, undesirable outputs should be distinguished in the 
DEA models in which both desirable and undesirable outputs are 
considered. Literature review shows that the majority of prior research 
on DEA of wheat production have applied and are continuously applying 
method 1 (Alemdar and Oren, 2006; Chebil et al., 2015; Moradi et al., 
2018; Nabavi-Pelesaraei et al., 2016; Syp et al., 2015). However some of 
them applied method 2 at the regional level (Kuosmanen and Kortelai-
nen, 2005; Masuda, 2016) and at the farm level (Picazo-Tadeo et al., 
2011; Ullah et al., 2016). In addition, some agricultural studies used 
method 6 (Adenuga et al., 2018; Cecchini et al., 2018; Dong et al., 2018). 
In studies where method 1 was employed, DEA modelling aimed at 
optimizing the production system without treating the undesirable 
outputs and ultimately evaluating the environmental consequences of 
DEA results. On this basis, however, a reduction in environmental im-
pacts due to the application of method 1 is an apparent conclusion, this 
model ignores undesirable outputs during the optimization process and 
does not address the production process completely (Dakpo et al., 2016). 
The goal of this method, referred to a five-step LCA þ DEA approach by 
Lozano et al. (2009) and Iribarren et al. (2010), is not minimization of 
undesirable outputs. Instead, this method aims to measure the potential 
reduction of undesirable outputs in an efficient production situation. 
Comparing to the three-step LCA þ DEA approach (where both unde-
sirable outputs and inputs are treated as inputs), method 1 has an 
additional advantage of requiring less samples (DMUs) in the DEA 

Fig. 2. GHG emissions and CF variability of winter wheat farms. The midpoints 
of each box plot represent the 50th percentile; lower and upper edges of the 
boxes show the 25th and 75th percentiles, respectively; and the whiskers 
denote the 5th and 95th percentiles. 
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model. Method 2 (considering undesirable outputs as inputs into DEA) 
was unable to truly reflect the production process. Dyckhoff and Allen 
(2001) expressed that by applying method 2 in an input oriented DEA 
model, some ecological slacks are not detected and, moreover, an 
infinite reduction of undesirables is not possible (Yang et al., 2008; You 
and Yan, 2011). Although in method 3 the undesirable output is being 
treated as an output variable, the scale has been changed and subse-
quently the intervals have also been changed. Moreover, the value of 
zero for undesirable output is not defined in this method (You and Yan, 
2011). A modified method for treating undesirable outputs as DEA 
model inputs (three-step LCA þDEA model (Lozano et al., 2010)), which 
was not studied in this study is treating both undesirable outputs and 
inputs as DEA model inputs. As Seiford and Zhu (2002) specified, un-
desirable outputs are not inputs, thus, treating them as additional inputs 
will not reflect the real situation of the production process. Moreover, it 
is not physically acceptable due to the fact that it violates the constraints 
of outputs (Dakpo et al., 2016). As shown in Table 1 and Fig. 3, the larger 
efficiency scores for DMUs were estimated when the undesirable output 
was treated in the DEA model (methods 2 and 3) in comparison to 
method 1. The results of our study for methods 1–3 were in agreement 
with Hua et al. (2007) and You and Yan (2011), whom mentioned that 
disregarding the undesirable outputs in DEA models decreases the 
estimated efficiency scores. Lower average efficiency scores were re-
ported for methods 4 and 5 in comparison with the methods 1–3 (Table 1 
and Fig. 3). These differences for methods 4 and 5 can be explained by 
Eq. (8) and Eq. (10), where the undesirable output is considered as a 
negative impact or penalty parameter, which decreases the efficiency 
score of a DMU. Although method 4 reflects the efficiency score of DMUs 
well, it cannot discuss the possible amount of input reduction for a DMU. 

Among the conventional DEA models (methods 1–5), method 5 
showed the lowest average efficiency score which also can imply the 
better performance of this method in evaluating the DMUs. The vari-
ability between efficiency scores of DMUs in method 5 was higher than 
in method 6 and also the higher average efficiency score was reported 
for method 6. In method 5, the model output is defined as a fraction of 
desirable and undesirable outputs (Eq. (10)). Due to the fact that in an 
input-oriented model, the output is considered as a fixed parameter, the 
undesirable output is treated likewise, and thus, it is not minimized as it 
happens with the inputs; whereas in method 6, only the desirable out-
puts are considered as fixed parameters and both inputs and undesirable 
outputs are aimed to be minimized. To obtain a greater understanding of 
the obtained results, the current and target values (based on DEA results) 
of inputs and outputs according to the six methods are presented in 
Section S7 (Table S9) in the SF. Similar trends for the potential reduction 
of inputs and undesirable outputs were observed in the efficiency scores 
of the six DEA methods. According to Table S9, the lowest target values 
for inputs and undesirable outputs were reported for method 5. A deeper 
examination of the target values of method 5 revealed that the estimated 
target values for mineral fertilizers, liquid fuel, seed and total GHG 
emission were not in the acceptable (actual) range (level) of inputs use 
and GHG emissions in winter wheat production. Therefore, this method 
could not present the input values within the acceptable range (as 
defined in the DEA model constraint). According to this finding, method 
6 reflects the performance of undesirable outputs to a greater extent 
compared to methods 1–5. 

Table 1 
Descriptive statistics of the results obtained from six DEA methods (including radial and SBM models) for 136 winter wheat farms.  

Items Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 

Radial SBM Radial SBM Radial SBM Radial SBM Radial SBM SBM 

No. of efficient DMUs 13 13 18 18 16 16 13 13 7 7 13 
Average efficiency score 0.70 0.52 0.72 0.56 0.73 0.53 0.59 0.40 0.37 0.31 0.43 
S.D of efficiency score 0.17 0.21 0.17 0.22 0.16 0.22 0.22 0.25 0.21 0.20 0.23 
Min efficiency score 0.33 0.20 0.34 0.23 0.41 0.20 0.17 0.06 0.13 0.06 0.15 
Max efficiency score 1 1 1 1 1 1 1 1 1 1 1 
Coefficient of variation 0.24 0.40 0.24 0.39 0.22 0.41 0.38 0.63 0.57 0.66 0.53  

Fig. 3. Efficiency score variability of winter wheat farms for six DEA methods. The midpoints of each box plot represent the 50th percentile; lower and upper edges of 
the boxes show the 25th and 75th percentiles, respectively; and the whiskers denote the 5th and 95th percentiles. 
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3.3. SBM-DEA model with undesirable output 

After comparing multiple DEA methods and selecting method 6 as 
the most appropriate method, the performance results of winter wheat 
farms in this research area based on method 6 are presented. The 
average efficiency score was 0.43 with a standard deviation of 0.23. This 
value shows that around 57% of resources could be saved by raising the 
performance of inefficient farms to the efficient levels. According to the 
results, 123 farms were classified as inefficient farms (efficiency score 
less than one), while 13 farms were efficient (with efficiency score equal 
to one). The largest number of efficiency scores were reported between 
0.2 and 0.4 (around 57% of all efficiency scores) (See Table S10 in SF). 
Table S11 shows the target values and reduction level of inputs and 
undesirable output for each inefficient farm in order to perform at the 
efficient level according to the method 6. Target values and changes 
allow the decision makers and farmers to produce winter wheat crop 
more sustainably. According to the ‘change’ column in Table S11, fuel 
contributed most (� 69%) to the total change of inputs, followed by 
machinery (� 65%), biocide (� 63%) and mineral fertilizer (� 57%). The 
highest reduction potential (in amount) among all inputs was for min-
eral fertilizer and since the amount of fuel, machinery, and biocide 
consumption per hectare was small, a small reduction in these inputs 
would result in a large percentage change. Comparatively, the results of 
the current and optimum (target) (DEA results) situations tie in well 
with previous studies, wherein the highest reduction of inputs usage was 
seen for chemical fertilizers and diesel fuel (Alemdar and Oren, 2006; 
Syp et al., 2015). The total GHG reduction potential for the inefficient 
farms varied from 479 to 3353 kg CO2eq per ha per year. Results showed 
that the reduction potential of total GHG emissions in the research area 
was around 49%. In the DEA models, inefficient farms selected a 
composition of efficient farms as the best option or sample, which have 
the lowest levels of inputs and undesirable outputs and the highest level 
of desirable outputs. Thus, a farm which appeared more often than 
others in the reference set is selected as the most efficient farm. 
Accordingly, farms 3, 19, 26, 36, 52, 75, 80 and 102 were the most 
efficient farms while appearing more frequently in the reference set. 
Fig. 4 represents the current situation of yield and GHG emission of the 

most efficient winter wheat farms in comparison to other farms. As it is 
seen, the yield of efficient farms are well distributed among all wheat 
farms. However, GHG emissions of efficient farms were in the first 50th 
percentile among all farms. For more detailed information about the 
current situation of all inputs consumption for the most efficient farms in 
comparison to other farms see Fig. S2 in the SF. The achievement of 
targets presented by the SBM model with undesirable outputs (see 
Table S11 in SI) are feasible due to the fact that they are based on the 
existing efficient farms, as opposed to theoretical results. There are 
many useful strategies for lowering GHG emissions caused by nitrogen 
fertilizers such as; avoiding the excessive use of nitrogen, incorporating 
N fertilizers into the soil (>5 cm deep), precision agriculture, and using 
legumes in crop rotations. Excessive use of nitrogen fertilizer, not only 
has no effect on increasing the yield, but also leads to environmental 
damages (W�ojcik-Gront, 2018). One of the most important environ-
mental consequences of excessive use of nitrogen fertilizer is N2O 
emissions from soil. Yearly soil monitoring helps to obtain more precise 
estimates of N2O emissions from agricultural production systems (Zhou 
et al., 2017), which was not available in this study. As an option which 
can be studied on crop production in Poland, Liu et al. (2013) suggested 
the use of nitrification inhibitors for reducting nitrogen without having a 
negative impact on wheat grain yield. One of the strategies aimed to-
wards reducing the amount of mineral fertilizer is replacing portions of 
mineral fertilizer by organic fertilizer. However, the results from the 
DEA model recommend a lower level of organic fertilizer usage. To 
explain this confliction and to check the importance of the current usage 
of manure on wheat production, we omitted the organic fertilizer input 
from the DEA model and reran the model. The average results did not 
change, showing that manure application does not have a negative 
impact on the efficiency score of winter farms. Besides chemical fertil-
izer, W�ojcik-Gront (2018) expressed that fungicides play a crucial role 
during winter wheat growth in Poland. In a situation with high pre-
cipitation and low solar radiation in wheat farms, the possibility of foliar 
diseases increases, which leads to wheat grain yield loss (W�ojcik-Gront, 
2018). High precipitation also causes a loss of soil nitrogen and subse-
quently poor nitrogen availability to wheat plants (Huang et al., 1995). 

4. Conclusion 

In this paper the efficiency of winter wheat farms in Poland was 
evaluated by integrating LCA and DEA. To select the most appropriate 
DEA model, six methods treating the undesirable factors into the DEA 
models were applied and the results were compared. Based on the re-
sults, the following conclusions were drawn: 

The annual average CF was 0.45 kg CO2eq per kg of wheat grain 
whereby the production and application of mineral fertilizers and liquid 
fuel contributed most to the CF in the research area. According to 
another classification, the average indirect GHG emissions were higher 
than direct GHG emissions. Results of different DEA methods showed 
that the average efficiency scores in all methods for the radial DEA 
models were higher than for the SBM-DEA models. The variability of 
efficiency scores for method 1, was fairly equal to methods 2 and 3, 
while considerable variability was seen between the efficiency scores for 
methods 4, 5 and 6. According to the obtained results, an SBM-DEA 
model with undesirable outputs was the model that reflecting the per-
formance of undesirable outputs to a greater extent than other methods 
presented in this study. This conclusion was based on the fact that a large 
difference was seen in the SBM-DEA models in comparison to the radial 
models. Moreover, the SBM-DEA model with undesirable outputs re-
ported the lowest efficiency scores between the studied models, which 
distinguishes winter wheat farms better. Finally, the selected model 
presented the greatest potential improvement for inputs consumption 
and undesirable outputs. Thus, this method was employed for maxi-
mizing the wheat production efficiency and minimizing undesirable 
outputs. Since the targets presented by this model are based on the 
existing efficient farms, these targets can be feasibly achieved. The 

Fig. 4. Current situation of yield and GHG emission for the most efficient farms 
in comparison to other farms. The midpoints of each box plot represent the 50th 
percentile; lower and upper edges of the boxes show the 25th and 75th per-
centiles, respectively; and the whiskers denote the 5th and 95th percentiles. 
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average efficiency score for winter wheat farms, according to this 
method, was reported as 0.43 which shows that around 57% of resources 
could be saved by raising the performance of inefficient farms to the 
efficient levels. Results showed that the largest change (in amount) 
among all inputs was observed for mineral fertilizer, while the largest 
change in percentage was for fuel, machinery, and biocide consumption 
per hectare. This study can help winter wheat farmers to obtain real and 
reliable usage pattern for inputs in winter wheat production system, in 
which highest production with the lowest environmental impact can be 
achieved. The results of this study can be applied by policy makers as a 
support tool to establish reference values for inputs consumption and 
GHG emissions in winter wheat production. For future works, other 
methods and techniques such as Multiple Objective Ratio Optimization 
with Dominance (MORO-D), Directional Distance Function (DDF) and 
Weak Disposability Assumption (WDA) are recommended to be 
employed for comparing different approaches. 
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