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Abstract: This laboratory study investigates selective grinding and beneficiation options for a Greek
bauxite ore. First, a series of batch grinding tests were carried out in order to investigate the grinding
behavior of the ore and the effect of the material filling volume (f c) on the distribution of aluminium-
and iron-containing phases. Then, the ground ore was subjected to magnetic separation either
as received or after reduction roasting in order to further explore potential beneficiation options.
The results showed that grinding of the ore exhibits non-first order behavior, while the breakage rate
varies with grinding time. Additionally, Al2O3 tends to concentrate in the coarser than 0.300 mm
product fraction, while fc 10% and 2 min of grinding time are considered optimum conditions for
good distribution of Al2O3 and Fe2O3. When different product fractions were subjected to magnetic
separation, it was seen that the non-magnetic product obtained from the 0.300–1.18 mm fraction
was more rich in Al2O3. In this fraction, the Al2O3 content increased from 58 wt% in the feed to
67.9 wt%, whereas the Fe2O3 content decreased from 22.4 wt% in the feed to 13.5 wt%. When the ore
was subjected to a two-step treatment, involving reduction roasting followed by magnetic separation,
the Fe2O3 grade decreased from 20.8 to 5.1 wt%, but in this case the recovery was very low.
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1. Introduction

Bauxite is an important rock which is used for the production of alumina of metallurgical or
chemical grade through the Bayer process [1]. The global proven bauxite reserves are almost 30 billion
tons and are located in Guinea (26.4%), Australia (19.2%), Brazil (12.1%) and Jamaica (7.1%), while
other significant reserves exist in India, China, Greece and Suriname [2]. Bauxite deposits belong to
two major types, namely the lateritic-type which account for 88% and the karst-type deposits which
account for 12% of the world reserves. Lateritic-type are generally residual deposits derived from
primary aluminosilicate rocks, while karst-type deposits are associated with carbonate rocks, where
the bauxite body fills former karst cavities [3–5]. Karst-type deposits have different mineralogical
composition compared to lateritic-type due to the presence of carbonates in the parent rock and the
different weathering conditions [6].

In Greece, the major bauxite deposits were formed in the geotectonic zone of Parnassos-Ghiona,
while economically important occurrences are found in Kallidromon, Iti, Nafpaktos, Smerna and
Pylos [7,8]. The deposits of Parnassos-Ghiona are hosted within a carbonate sequence and belong
to the Mediterranean karst bauxite belt. These allochthonous karst-type deposits are considered the
most significant bauxite reserves in the European Union [9]; the estimated reserves are approximatelly
300 million metric tons—the 11th largest bauxite reserves globally [10]. In addition, Greece is the 12th
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largest bauxite producer worldwide and a leading producer in the EU, with 1800 thousand metric tons
production in 2017 [9,11].

Greek bauxite ores consist mainly of gibbsite [Al(OH)3], diaspore [α-AlO(OH)] and/or boehmite
[γ-AlO(OH)], while impurities such as kaolinite [Al2Si2O5(OH)4], hematite [Fe2O3], goethite [FeO(OH)],
titanium oxide [TiO2] and silicon oxide [SiO2] are also present. The Al2O3 content varies between
49% and 65%, the Fe2O3 content between 18% and 24%, the CaO content between 0 and 5%, the SiO2

content between 2% and 10%, the TiO2 content between 0.5% and 3%, while the Cr and Ni content may
be as high as 2000 mg/kg. Smaller amounts of magnesium, manganese, vanadium and gallium as well
as other elements may be also found [12,13]. Greek bauxites are high grade compared to ores treated in
several other parts of the word [14–16]. In Greece, 1.8 million tons are treated annualy mainly for the
production of alumina (820,000 tons of which 480,000 tons are exported) and aluminium (185,000 tons
of which 125,000 tons are exported). Minor quantities are used in cement plants, as a flux for the
production of cast iron as well as for the production of rockwool and abrasive materials. It has been
mentioned that in recent years, in order to reduce the underground mining cost, some quantities of
tropical bauxites (0.4 million tons out of 1.8 million tons) have also been imported to and treated in
Greece. The production of aluminum metal is generally accomplished by the Bayer process in which
finely ground bauxite ore is digested in strong sodium hydroxide solution at a temperature range
100–250 ◦C [17]. The dissolved alumina is separated by physical means, such as settling and filtration,
from the insoluble residue, known as “red mud” or recently as “bauxite residue”. The amount of
residue generated per ton of alumina produced, varies greatly depending on the type of bauxite
used, from 0.3 tons for high grade bauxite to 2.5 tons for very low grade [18]. The bauxite residue
mainly contains iron and silicon oxides, and other phases [19]. The Bayer process can economically
produce alumina when Al2O3 to SiO2 mass ratio in bauxite is greater than 10, while sintering or a
combination of sintering and Bayer process can be used for ores with lower ratios. However, sintering
is an energy-intensive process and increases the production cost of alumina [20–23].

Beneficiation is often considered for the upgrade of bauxite ores in order to also render them
suitable for the refractory/ceramics industry [13,16]. Studies focusing on the removal of iron-bearing
minerals include magnetic/gravimetric separation [24–26], reductive roasting followed by magnetic
separation [17,22,27], froth flotation [28–30], leaching of iron oxides [31], chlorination followed by
leaching [32] and microwave-magnetising roasting [33]. Other studies have attempted to upgrade
bauxite ores through selective grinding by exploiting the different grindability between the minerals
of interest, e.g., diaspore (6.5–7 Mohs hardness) and gangue minerals, e.g., kaolinite (2–2.5 Mohs
hardness) and some other aluminosilicates [20,34].

Prior to any ore processing, grinding is the principal operation attracting particular attention due
to the associated CO2 emissions and the high energy consumption that affects the overall processing
cost. Thus, in order to efficiently recover the economically valuable minerals an investigation of the ore
behavior during grinding in relation to the operating parameters is required. Kinetic models which are
based on two functions, namely the breakage rate and the breakage function are mainly used [35,36].
These models consider that grinding follows a first-order law as reported in previous studies [37,38].
However, deviations from first-order kinetics have been observed for several mineral phases indicating
that the breakage rate varies with grinding time [39–41]. For non-first-order kinetics, the following
Equation (1) proposed by Alyavdin can be used to describe the grinding process [42,43],

Ri,t = R0,t·e−K·tM
(1)

where Ri,t is the mass fraction of the mill hold-up that is of size i, R0,t is the mass fraction in the feed,
K is the grinding rate constant, t is the grinding time and M is a constant depending on the material
properties and grinding conditions.

The present laboratory study aims to investigate selective grinding and various beneficiation
options for a Greek bauxite ore. First, selective grinding was carried out, through a series of batch
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grinding tests, to elucidate the grinding behavior of the ore and assess the effect of the material filling
volume in the mill. Second, the ore was subjected to magnetic separation to determine the distribution
of Al- and Fe-containing phases. Third, reduction roasting followed by magnetic separation was
investigated to enable the conversion of weak magnetic iron-bearing minerals to strong magnetic
phases, i.e., magnetite or metallic iron, and further explore potential beneficiation options.

2. Materials and Methods

The bauxite ore used in the present study was provided by the mining company Delphi-Distomon
S.A., which is one of the three Greek mining companies exploiting bauxite from the Parnassos-Ghiona
zone, in central Greece. The ore is a typical red-brown (Fe-rich) bauxite composed of diaspore and
boehmite as aluminum bearing mineral phases [44].

The received ore, approximately 150 kg, with a particle size of −30 mm was homogenized by
the cone and quarter method, and a representative sample was crushed to −3.35 mm using a jaw
crusher (Fritsch pulverisette 1, Fritsch GmbH, Idar-Oberstein, Germany). To determine the particle
size distribution of the crushed products, the ore was wet screened at 0.106 mm, while the +0.106 mm
fraction was dried and screened using a series of screens with an aperture ratio 2 to obtain six
size fractions.

Chemical analyses were carried out by X-ray fluorescence (XRF) spectroscopy using a Bruker
S2 Ranger Energy-dispersive ED-XRF (Bruker, Karlsruhe, Germany) spectrometer. The composition
of major elements was also determined after complete dissolution of each fraction by acid digestion
followed by atomic absorption spectroscopy (AAS). The differences between the two analytical
approaches were marginal, so the results obtained by XRF analysis are presented in this study.
The identification of the mineral phases was carried out by X-ray powder diffraction (XRD) using a
Bruker-AXS D8 Advance type (Bruker) diffractometer. Quantitative phase analysis by the Rietveld
method was also performed [45]. The microstructure of the ore and the products obtained after each
treatment was examined by scanning electron microscopy (SEM) using a JEOL 6380LV microscope
(JEOL Ltd., Tokyo, Japan) equipped with an Oxford INCA energy dispersive X-ray spectrometer
(EDS). The thermal behavior of the ore was studied using a Perkin Elmer TGA-6/DTG differential
thermogravimetric analyser (Perkin Elmer, Waltham, MA, USA). A mass of about 40 mg was heated to
temperatures of up to 900 ◦C at a heating rate of 10 ◦C/min under pure N2 atmosphere with a flow rate
of 35 mL/min.

Three series of wet grinding tests were carried out in a laboratory ball mill (Sepor, Los Angeles,
CA, USA) with an internal diameter of 204 mm using the crushed product −3.35 mm as feed material.
Different grinding times, namely 2, 4, 8 and 12 min, were considered, while the grinding media used
were stainless steel balls (ρb = 7.85 g/cm3) of three different sizes, i.e., 40, 25.4, and 12.7 mm. In this
test series, the total ball mass was kept constant at about 10 kg corresponding to ball filling volume
J = 40%, while the material filling volume f c varied between 5% and 15%. The interstitial filling U of
the void spaces of the balls filled by material was calculated using Equation (2). The product obtained
after each grinding period was wet sieved using a series of screens, namely 1.18, 0.300 and 0.075 mm.
The mill specification data and test conditions are shown in Table 1.

U =
fc

0.4·J
(2)

The magnetic separation tests involved the treatment of three product fractions, namely−0.300 mm,
0.300–1.18 and 1.18–3.35, obtained after a specific grinding period. More specifically, the feed material
in the mill, −3.35 mm, was ground using different material filling volumes f c (5%, 10% and 15%) in
order to obtain a product size of 50% passing 0.300 mm. Then, each grinding product was subjected
to magnetic separation using three different types of magnetic separators, depending on the sample
size fraction. The two coarse size fractions, namely 1.18–3.35 mm and 0.300–1.18 mm were treated
with the use of a HS10 Perm Roll belt separator (Outokumpu Technology Inc., Jacksonville, FL, USA)
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with magnetic field strength of 0.5 T and a Carpco model MIH(13)111-5 high intensity induced roll
magnetic separator (Outokumpu Technology Inc., Carpco Division), respectively, while for the fine
fraction −0.300 mm a Carpco model WHIMS 3x4L wet high intensity magnetic separator (Outokumpu
Technology Inc., Carpco Division) was used. The magnetic separation process of the coarse fractions
involved two stages, as seen in Figure 1a. According to the procedure followed, each fraction was
subjected to magnetic separation and two products were obtained, namely a magnetic product (MI) and
a non-magnetic product (NMI). After the first stage, the non-magnetic product was further treated in
the same magnetic separator using a lower roll speed and a second magnetic product (MII) and a final
non-magnetic (NMII) product were obtained. The 1.18–3.35 mm fraction was treated using 180 and
140 rpm roll speed in the first and second stage, respectively. For the 0.300–1.18 mm fraction the roll
speed was maintained at 120 and 100 rpm in the first and second stage, respectively, while the magnet
coil current was kept at 3 amp. The magnetic separation of the −0.300 mm fraction involved a strong
magnetic field created within a cell containing iron spheroids which was placed between two poles.
The process included three separation stages with decreasing magnet coil current ranging from 7 to
1.5 amp, corresponding to magnetic field strength between 0.8 and 0.3 T, as seen in Figure 1b. The feed
to the magnetic separator was a slurry with a pulp density of 10 wt%. At each stage, the slurry was fed
through the cell, the magnetic product was retained on the sphere-poles and the non-magnetic product
was flushed through. Then, the magnetic field strength was removed and the obtained magnetic
product was further treated using a lower coil current. Finally, three non-magnetic products, namely
NMI, NMII, NMIII and one magnetic MIII were collected. All the products were filtered, oven dried at
105 ◦C for 24 h, weighed and characterized by XRF, XRD and SEM.

Table 1. Mill specification data and test conditions.

Item Description 1st Series 2nd Series 3rd Series

Material

Bulk density (g/cm3) 1.82 1.82 1.82
Material filling volume, f c (%) 5 10 15

Interstitial filling, U (%) 31 63 94
Pulp density, % (by weight) 60 60 60

Item Description In all series

Mill

Diameter, D (cm) 20.4
Length, L (cm) 16.6

Volume, V (cm3) 5423
Operational speed, N (rpm) 66

Critical speed, Nc (rpm) 93.7

Balls

Diameter, d (mm) 40, 25.4, 12.7
Number 13, 51, 407

Weight (g) 3403.9, 3463.6,
3407

Density (g/cm3) 7.85
Porosity (%) 40

Ball filling volume, J (%) 40

The −0.300 mm grinding fraction obtained using material filling volume f c = 10% in the mill
was also subjected to reduction roasting followed by magnetic separation. Reduction roasting,
which is an option used also for the treatment of bauxite residues, was carried out to facilitate
reduction of iron minerals and production of magnetic phases, as indicated in earlier studies [46–48].
The reduction roasting was carried out in a Linn High Therm model HK 30 furnace (Linn High Therm
GmbH, Eschenfelden, Germany) at 800 ◦C. A commercial activated-charcoal/carbon type Norit GAC
1240 purchased from Sigma–Aldrich (Sigma–Aldrich GmbH, Taufkirchen, Germany) was used as a
reductant and Na2CO3 as the flux. The ore was mixed with carbon using carbon to bauxite (C/B) mass
ratio 0.15, while the mass ratio of Na2CO3 to bauxite ore was maintained at 0.20. The parameters
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used in this study, i.e., reductive roasting temperature and duration, C/B ratios and flux addition were
based on previous tests carried out in the laboratory. The mixtures were placed in the furnace and
heated to the required temperature at a heating rate of 17 ◦C/min under pure N2 atmosphere with
a flow rate of 200 mL/min. The duration of the reduction process was 1 h. Then, the samples were
removed, cooled-down in a desiccator and stored in sealed plastic containers until characterization.
The roasted samples were then subjected to the wet magnetic separation, as previously mentioned,
by applying 3.5 amp coil current (0.6 T magnetic field strength) and two products, i.e., a magnetic and
a non-magnetic one, were obtained.
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Figure 1. Schematic diagram of the process for the magnetic separation of (a) coarse fractions
(1.18–3.35 mm and 0.300–1.18 mm) and (b) fine fraction (−0.300 mm).

3. Characterization of Bauxite Ore

Table 2 shows the main chemical composition, in the form of oxides, of each size fraction of the as
received ore. The respective mass ratios of Al2O3 to SiO2 and Al2O3 to Fe2O3 are also presented. It is
observed that the main oxides present are Al2O3 and Fe2O3 assaying 57.95 and 22.39 wt%, respectively.
The Al2O3 content in general decreases with decreasing size, while increased content of Fe2O3 is
observed in the finer fractions. As a result, the mass ratio Al2O3/Fe2O3 decreases from 2.75 in the
1.70–3.35 mm fraction to 1.76 in the −0.106 mm fraction. The overall Al2O3/SiO2 ratio is much greater
(36.55) than 10 and thus, the bauxite is considered to be high-grade and can be processed directly by
the Bayer process [49].

The XRD patterns of three representative different size fractions, namely 1.70−3.35 mm,
0.212–0.425 mm and −0.106 mm are shown in Figure 2. It is observed that the main aluminum
containing phases present in the ore are diaspore [α-AlO(OH)] and boehmite [γ-AlO(OH)], while the
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gangue minerals include hematite [Fe2O3], anatase [TiO2] and kaolinite [Al2Si2O5(OH)4]. It is revealed
from these patterns that in general the crystalline phases identified differ marginally between the
different size fractions. However, the characteristic peaks of diaspore have higher intensity in the
coarse fraction (1.70–3.35 mm), while the intermediate (0.212–0.425 mm) and fine (−0.106 mm) fractions
contain more boehmite and hematite. In addition, kaolinite is more abundant in the fine fraction.
These results are consistent with the quantitative phase analysis based on Rietveld method, which
indicated that the diaspore content was 63 and 42 wt% in the coarse and fine fraction, respectively,
while the hematite content was 10 and 14 wt%, respectively.

Table 2. Chemical composition of each bauxite fraction obtained after sieving.

Size
(mm)

Mass
(%wt)

Al2O3
(%wt)

Fe2O3
(%wt)

SiO2
(%wt)

TiO2
(%wt)

LOI a

(%wt) Al2O3/SiO2 Al2O3/Fe2O3

1.70–3.35 38.52 58.76 21.34 1.68 3.90 5.1 34.98 2.75
0.850–1.70 20.93 59.45 21.38 1.43 3.81 2.7 41.51 2.78
0.425–0.850 14.69 58.33 22.32 1.44 3.90 1.9 40.63 2.61
0.212–0.425 9.95 58.37 22.38 1.41 3.94 1.3 41.35 2.61
0.106–0.212 6.66 57.65 23.00 1.64 3.99 0.9 35.23 2.51
−0.106 9.25 50.38 28.68 2.62 4.43 1.2 19.25 1.76
Total 100.0 57.95 22.39 1.65 3.94 13.0 36.55 2.62

a Loss on Ignition at 1050 ◦C for 3 h.
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1.70–3.35 mm fraction, (b) 0.212–0.425 mm fraction, and (c) −0.106 mm fraction.

Thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG) of the
bauxite ore are presented in Figure 3. The TGA thermograms show a weight loss of about 2% up to
78 ◦C, which is attributed to the loss of the inherent moisture of the ore. After this temperature a
three-stage weight loss was observed. The weight loss (~3%) detected in the 78–486 ◦C range can be
attributed to the dehydroxylation of boehmite, while a sharp weight loss of 9% was observed at the
486–580 ◦C temperature range. This bigger weight loss is associated with the peak on DTG curve
at 532 ◦C, which indicates the removal of the chemically bound water present in diaspore [50,51].
Dehydration and removal of the structural water of boehmite and kaolinite may also occur at this
temperature range. However, due to the lower content of boehmite and kaolinite in the ore compared
to diaspore, these effects overlap with the dehydration effect of diaspore [52]. The third stage of weight
loss (~1.4%) is recorded in the range 580–900 ◦C and may be assigned to the release of CO2 due to the
decomposition of calcite. However, calcite was not detected by XRD and this may be due to fact that
its content is below the detection limit (<2 wt%) of the instrument [53].
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SEM images of the bauxite ore (crushed product −3.35 mm) along with EDS composition data are
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Figure 4. (a–c) Cross sectional SEM-backscattered electron (BSE) images of polished surfaces of bauxite
ore (crushed product −3.35 mm). EDS spectra obtained in several spot locations (b–d) show the
presence of oxide phases, the mineral formation of the bauxite clasts and mixed/intergrown oxides in
the diasporic matrix (D: Diaspore; B: Boehmite; H: Hematite; A: Anatase; K: Kaolinite; F-T: Fe-Ti oxide).

Microscopic characterization of polished bauxite surfaces proved that the main Al-bearing and
Fe-rich phases present in the ore are diaspore [α-AlO(OH)], boehmite [γ-AlO(OH)] and hematite
[Fe2O3], respectively (Figure 4a). In accordance with the XRD results, remarkable minor quantities of
anatase [TiO2] and kaolinite [Al2Si2O5(OH)4] (mixed with Al-oxides) were also found in the diasporic
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clasts of the ore (Figure 4b). More specifically, Figure 4c (zoom of rectangular area of Figure 4b) shows
the presence of anatase that occurs in the form of individual microscale particles (<2 µm) widely
dispersed within the diasporic core (center of the clast) as well as in the form of intergrown particles
within the internal rings of hematite (inner-outer dashed line area) in the diasporic clast [11]. In this
context, EDS point analyses confirmed the presence of Ti in the brightest particles, i.e., intergrown
with hematite (Fe-Ti oxide) as well as individually (particles) within the diaspore core, while Si was
detected in the gray region of the diasporic matrix due to kaolinite contribution (Figure 4b–d).

4. Results and Discussion

4.1. Kinetic Behavior of Grinding Process

The grinding behavior of the bauxite ore was evaluated by identifying the relationship between
the remaining mass (%) fraction of each particle size vs. grinding time. Figure 5a shows, as an example,
the experimental data obtained for four selected sizes, namely 0.600, 0.300, 0.150 and 0.075 mm when
the material filling volume (f c) was 5%. It is observed that the experimental data are expressed well by
Equation (1) and thus, grinding of the ore exhibits non-first-order behavior and the grinding rate of
each size fraction is time dependent. High values of correlation coefficient R2, ranging from 0.996 to
1.0, were obtained for the different f c values used. In general, the reduction rate of larger particle sizes
is higher than that of smaller particles with increasing grinding time, indicating that larger particles
are ground more efficiently. Figure 5b shows the fitting curves of the particle size 0.300 mm when
Equation (1) was applied to the experimental data, for different f c values (5%, 10% and 15%). It is
apparent that the reduction rate for a specific particle size depents on the material filling volume f c and
thus the grinding rate and consequently the grinding efficiency increases with decreasing f c. As can be
seen in Table 3, which shows the calculated parameters K and M by fitting the Alyavdin equation to
experimental data, the grinding rate constant K decreases from 0.206 to 0.043 when f c increases from
5% to 15%. It is also seen that M values range between 0.780 and 1.084, confirming the non-first-order
grinding behavior of the ore [37,41,54].

Minerals 2020, 10, x FOR PEER REVIEW 8 of 21 

 

Figure 4b) shows the presence of anatase that occurs in the form of individual microscale particles 
(<2 μm) widely dispersed within the diasporic core (center of the clast) as well as in the form of 
intergrown particles within the internal rings of hematite (inner-outer dashed line area) in the 
diasporic clast [11]. In this context, EDS point analyses confirmed the presence of Ti in the brightest 
particles, i.e., intergrown with hematite (Fe-Ti oxide) as well as individually (particles) within the 
diaspore core, while Si was detected in the gray region of the diasporic matrix due to kaolinite 
contribution (Figure 4b–d). 

4. Results and Discussion 

4.1. Kinetic Behavior of Grinding Process 

The grinding behavior of the bauxite ore was evaluated by identifying the relationship between 
the remaining mass (%) fraction of each particle size vs. grinding time. Figure 5a shows, as an 
example, the experimental data obtained for four selected sizes, namely 0.600, 0.300, 0.150 and 0.075 
mm when the material filling volume (fc) was 5%. It is observed that the experimental data are 
expressed well by Equation (1) and thus, grinding of the ore exhibits non-first-order behavior and 
the grinding rate of each size fraction is time dependent. High values of correlation coefficient R2, 
ranging from 0.996 to 1.0, were obtained for the different fc values used. In general, the reduction 
rate of larger particle sizes is higher than that of smaller particles with increasing grinding time, 
indicating that larger particles are ground more efficiently. Figure 5b shows the fitting curves of the 
particle size 0.300 mm when Equation (1) was applied to the experimental data, for different fc 
values (5%, 10% and 15%). It is apparent that the reduction rate for a specific particle size depents on 
the material filling volume fc and thus the grinding rate and consequently the grinding efficiency 
increases with decreasing fc. As can be seen in Table 3, which shows the calculated parameters K and 
M by fitting the Alyavdin equation to experimental data, the grinding rate constant K decreases 
from 0.206 to 0.043 when fc increases from 5% to 15%. It is also seen that M values range between 
0.780 and 1.084, confirming the non-first-order grinding behavior of the ore [37,41,54]. 

  
(a) (b) 

Figure 5. Remaining mass fraction (wt%) vs. grinding time for (a) four selected sizes when fc = 5% 
and (b) particle size 0.300 mm when diferrent fc values (5%, 10% and 15%) were used. 

Table 3. Parameters of Alyavdin formula (Equation (1)) for particle size 0.300 mm at different fc 
values. 

Parameter fc = 5% fc = 10% fc = 15% 
K 0.206 0.059 0.043 
M 0.780 1.084 0.987 

R2 (adj.) 0.999 0.999 0.996 

4.2. Al2O3 and Fe2O3 Content of the Selective Grinding Products 

Figure 5. Remaining mass fraction (wt%) vs. grinding time for (a) four selected sizes when f c = 5% and
(b) particle size 0.300 mm when diferrent f c values (5%, 10% and 15%) were used.

Table 3. Parameters of Alyavdin formula (Equation (1)) for particle size 0.300 mm at different f c values.

Parameter f c = 5% f c = 10% f c = 15%

K 0.206 0.059 0.043
M 0.780 1.084 0.987

R2 (adj.) 0.999 0.999 0.996



Minerals 2020, 10, 314 9 of 21

4.2. Al2O3 and Fe2O3 Content of the Selective Grinding Products

Figure 6 shows the Al2O3 and Fe2O3 content as well as the mass recovery (yield) in the product
fractions (as cumulative oversize) after 2 min of grinding when the material filling volume (f c) was
10%. It is seen that as size decreases the yield in the product coarser than this size increases. In light
of this, mass recovery increases from 43.2 to 87.6 wt% when the product size decreases from 1.18 to
0.106 mm. With decreased product size the Fe2O3 grade of the coarser particles increased by 5.6 wt%,
while the Al2O3 grade decreased slightly by 1.7 wt%, from 65 to 63.3 wt%. The results show that the
content of Al2O3, which is mainly present in diaspore, increases slightly in coarser fractions, while
Fe2O3 grade becomes higher in finer fractions indicating good selectivity during grinding. However,
the mass recovery in coarser fractions and consequently the overall Al2O3 recovery is very low.
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of grinding and when f c = 10%.

The effect of grinding time on Al2O3 grade and recovery for the product fractions coarser than
1.18 mm and 0.300 mm is presented in Figure 7a,b respectively. It is seen from Figure 7a that Al2O3

recovery in the product fraction coarser than 1.18 mm decreases from 45.2 to 21.8 wt% as grinding
time increases from 2 to 12 min, respectively, while the Al2O3 grade remains almost constant, ~65 wt%,
during grinding. Higher Al2O3 recovery can be achieved for the product fraction coarser than 0.300 mm,
as seen in Figure 7b. In this context, Al2O3 recovery reaches almost 73 wt% after 2 min of grinding
with a corresponding Al2O3 grade 64 wt%. At this grinding period, the Fe2O3 grade was 18.3 wt% and
the corresponding recovery 65.4 wt%. Thus, better results can be obtained in terms of Al2O3 recovery
for the product fraction coarser than 0.300 mm and after 2 min of grinding.
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Figure 8a presents the effect of material filling volume f c (5%, 10% and 15%) on Al2O3 grade and
recovery for the product fraction coarser than 0.300 mm after 2 min grinding. It is observed that Al2O3

grade increases marginally from 63.5 to 64 wt% with increasing f c from 5% to 10% and then drops
to 62.6 wt% when f c was 15%. However, Al2O3 recovery increases significantly from 57.7% to 73%
when f c increases to 10% and reaches 73.4 wt% at f c = 15%. Similar results were obtained for the Fe2O3

grade and recovery in the product fraction coarser than 0.300 mm, as seen in Figure 8b. Fe2O3 grade
increased slightly from 17.6 to 18.7 wt% with increasing f c to 15%, while its recovery reached 66.2 wt%.
Based on these results, f c = 10% can be considered as the optimum material volume in the mill for
upgrading the bauxite ore during grinding. Under these conditions, the Al2O3 grade increased by
9.5 wt% compared with the raw ore, with corresponding recovery 73 wt%, while the Fe2O3 grade
decreased by 18.3 wt% and its recovery was 65.4 wt%. It is worth mentioning that despite the fact
that a higher grinding rate of the material is achieved when f c = 5% (Table 3), the results in terms of
Al2O3 grade and recovery are not satisfactory. Hence, the results of the present study show that the
usual industrial practice of using higher milling rate does not necessarily result in efficient separation
between the different minerals of interest present in ores or concentrates. Thus, detailed grinding
kinetics analysis is required in order to determine the optimum grinding conditions that maximize the
breakage rate of the minerals of interest, as for example diaspore in this case, while minimizing the
respective rate of the impurities [55].
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Figure 8. Effect of material filling volume f c on (a) Al2O3 grade and recovery and (b) Fe2O3 grade and
recovery for the product fraction coarser than 0.300 mm after 2 min of grinding.

Figure 9 presents the Al2O3 enrichment ratio (Al2O3 grade in the product: Al2O3 grade in the feed)
for the cumulative oversize product after 2 min of grinding when different material filling volumes f c

were used. The results show that when the material filling volume f c was 10%, in all cases a higher
Al2O3 enrichment ratio was obtained, while the lowest enrichment ratio was achieved at f c = 15%.
The maximum ratio of 1.12 was achieved for the coarser than 1.18 mm product fraction with 65 wt%
Al2O3 grade and corresponding recovery 45.2 wt%.
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4.3. Magnetic Separation Efficiency on Bauxite

Figure 10a shows the Al2O3 grade in the magnetic separation products, namely MI, MII and
NMII for the 1.18–3.35 and 0.300–1.18 mm fractions, when the material filling volume f c was 10%.
The Al2O3 grade in the feed is also presented for comparison. As expected, the non-magnetic product
(NMII) has higher Al2O3 grade compared to the magnetic one, i.e., MI and MII. The Al2O3 grade in
this product, although higher than the one in the feed, does not exceed 66.3 wt%. The feed fraction
has a great effect on the magnetic separation efficiency given that the non-magnetic product obtained
from the 0.300–1.18 mm fraction is more rich in Al2O3 despite the fact that finer feed fractions contain
less Al2O3. The non-magnetic product (NMII) contained 14.6–15.7 wt% Fe2O3 depending on the feed
fraction tested, as seen in Figure 10b. Fe2O3 grade in this product corresponds to a 9.6 and 21.8 wt%
reduction when the feed fraction used was 1.18–3.35 and 0.300–1.18 mm, respectively.
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The effect of the material filling volume f c on Al2O3 grade and recovery in the non-magnetic
product NMII when the 0.300–1.18 mm fraction was subjected to magnetic separation is presented
in Figure 11a. It is observed that the maximum Al2O3 grade and recovery, i.e., 67.85 and 47.8 wt%,
respectively is achieved when f c = 5% while at higher material filling volume (f c = 10%) the respective
quality slightly drops from 67.85 to 66.2 wt% and from 47.8 to 44.7 wt%. In addition, Al2O3 grade
and recovery improve slightly when f c increases from 10% to 15%. Under the optimum material
filling volume (f c = 5%) the Al2O3 grade is increased by 9.2 wt% by taking into account the grade
in the 0.300–1.18 mm feed fraction. Under these conditions, the NMII product contains 13.51 wt%
Fe2O3 corresponding to a decrease of 30.1 wt% compared to the feed fraction, as seen in Figure 11b.
As material filling volume increases from 5 to 10 wt% the Fe2O3 grade also increases from 13.51 to
14.6 wt%, while the respective grade in the NMII product remains unchanged when f c increases to 15%.
The Fe2O3 recovery ranges between 30.5 and 32.7 wt% depending on the material filling volume tested.Minerals 2020, 10, x FOR PEER REVIEW 12 of 21 
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Figure 12a shows the Al2O3 grade and recovery in the cumulative non-magnetic product for the
−0.300 mm fraction when the material filling volume f c was 10%. It is seen that the Al2O3 recovery is
continuously increasing from 44.2 to 86.3 wt% in the cumulative non-magnetic product, but the Al2O3

grade slightly decreased from 60.7 to 58.6 wt%. A similar trend was observed for Fe2O3 recovery which
increased from 33.9 to 77.2 wt% by taking into account the same products (Figure 12b), indicating
that the separation is not satisfactory, especially in the NMIII product, and a large amount of iron
is distributed in the non-magnetic products. Thus, considering the Al2O3 and Fe2O3 recoveries in
the products a two stage magnetic separation (cumulative NMII product) is considered adequate for
better product quality. In addition, no significant differences in Al2O3, Fe2O3 grades and recoveries
at different material filling volumes were observed. In light of this, Al2O3 grade and recovery in the
cumulative NMII product varied between 59.4–60.3 wt% and 65–70.4 wt%, respectively, when f c varied
between 5% and 15%. This product contained about 21 wt% Fe2O3 with a recovery of about 56 wt%,
which corresponds to a 10.9–14.1 wt% reduction depending on the grade of the feed fraction at each
material filling volume.

Minerals 2020, 10, x FOR PEER REVIEW 12 of 21 

 

  
(a) (b) 

Figure 11. Effect of material filling volume fc on (a) Al2O3 grade and recovery and (b) Fe2O3 grade and 
recovery in the NMII product when the 0.300–1.18 mm fraction was subjected to magnetic 
separation. 

Figure 12a shows the Al2O3 grade and recovery in the cumulative non-magnetic product for the 
−0.300 mm fraction when the material filling volume fc was 10%. It is seen that the Al2O3 recovery is 
continuously increasing from 44.2 to 86.3 wt% in the cumulative non-magnetic product, but the 
Al2O3 grade slightly decreased from 60.7 to 58.6 wt%. A similar trend was observed for Fe2O3 
recovery which increased from 33.9 to 77.2 wt% by taking into account the same products (Figure 
12b), indicating that the separation is not satisfactory, especially in the NMIII product, and a large 
amount of iron is distributed in the non-magnetic products. Thus, considering the Al2O3 and Fe2O3 
recoveries in the products a two stage magnetic separation (cumulative NMII product) is considered 
adequate for better product quality. In addition, no significant differences in Al2O3, Fe2O3 grades and 
recoveries at different material filling volumes were observed. In light of this, Al2O3 grade and 
recovery in the cumulative NMII product varied between 59.4–60.3 wt% and 65–70.4 wt%, 
respectively, when fc varied between 5% and 15%. This product contained about 21 wt% Fe2O3 with a 
recovery of about 56 wt%, which corresponds to a 10.9–14.1 wt% reduction depending on the grade 
of the feed fraction at each material filling volume. 

  
(a) (b) 

Figure 12. (a) Al2O3 grade and recovery and (b) Fe2O3 grade and recovery in the cumulative 
non-magnetic product for the −0.300 mm fraction when the material filling volume fc was 10%. 

Figure 13 presents the Al2O3 enrichment ratio for the non-magnetic products obtained after 
magnetic separation of different feed fractions for various material filling volumes fc. The feed size 
indicated in this figure is the upper size of the tested size class. It is observed, for all material filling 
volumes used, that no major changes of the Al2O3 enrichment ratio occur. More specifically, the 
Al2O3 enrichment ratio increased slightly when the feed fraction increased from −0.300 to 0.300–1.18 
mm and then dropped slightly for the coarse fraction 1.18–3.35 mm. The maximum ratio of 1.16 was 
achieved for the product fraction 0.300–1.18 mm when the material filling volume was 5%. 

Figure 12. (a) Al2O3 grade and recovery and (b) Fe2O3 grade and recovery in the cumulative
non-magnetic product for the −0.300 mm fraction when the material filling volume f c was 10%.

Figure 13 presents the Al2O3 enrichment ratio for the non-magnetic products obtained after
magnetic separation of different feed fractions for various material filling volumes f c. The feed size
indicated in this figure is the upper size of the tested size class. It is observed, for all material filling
volumes used, that no major changes of the Al2O3 enrichment ratio occur. More specifically, the Al2O3

enrichment ratio increased slightly when the feed fraction increased from −0.300 to 0.300–1.18 mm and
then dropped slightly for the coarse fraction 1.18–3.35 mm. The maximum ratio of 1.16 was achieved
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The magnetic separation efficiency was also investigated using the Fuerstenau-II upgrading
curves which relate recoveries of components in products [56,57]. Figure 14a shows the Fuerstenau-II
upgrading plots of different feed fractions when the material filling volume f c was 10%. It is shown
that better separation of Al2O3 from Fe2O3 in the concentrate (non-magnetic product) is achieved
when the 0.300–1.18 mm feed fraction was used, while the efficiency of magnetic separation is lower
when the coarse fraction 1.18–3.35 mm was used. As shown in Figure 14b, which presents the effect of
the material filling volume on the separation efficiency for the 0.300–1.18 mm fraction, slightly better
results were obtained when the material filling volume was 15%. Overall, it can be concluded that in
terms of Al2O3 and Fe2O3 recoveries in the non-magnetic products, better separation efficiency was
achieved when the 0.300–1.18 mm fraction was subjected to magnetic separation using 15% material
filling volume.
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4.4. Magnetic Separation Efficiency after Reduction Roasting of Bauxite

A reduction roasting–magnetic separation process can modify the distribution of aluminium
and iron phases. In the reduction roasting process, weak magnetic iron-containing minerals such as
hematite can be converted into strong ones, e.g., magnetite, or even metallic iron, which can be easily
separated after magnetic separation [58–60]. Higher reductant dosage may result in the formation of
magnetite. However, other studies indicated that the excess of coal affects negatively the magnetic
separation efficiency, due to the further reduction of magnetite to wüstite (FeO) [17]. The following
reactions can take place during reduction roasting,

3Fe2O3 + C→ 2Fe3O4 + CO (3)

Fe2O3 + 3C→ 2Fe + 3CO (4)

Additionally, in the presence of soda (Na2CO3), the main constituents of bauxite ore, e.g., Al2O3

and Fe2O3 may react according to Reaction (5), where M is a trivalent metal such as Al and Fe [61].

M2O3 + Na2CO3 → 2NaMO2 + CO2 (5)

Figure 15a shows the Al2O3 grade and recovery in the magnetic and non-magnetic products
obtained after reduction roasting followed by magnetic separation. The non-magnetic product has
higher Al2O3 grade compared to the magnetic one and reached 67.3 wt%, corresponding to an increase
of 11.2 wt% compared to the feed fraction. However, its recovery is quite low and does not exceed
the value of 35 wt%. On the other hand, the magnetic product contained 57.4 wt% Al2O3 with
corresponding recovery 64.9 wt% which indicates the strong association of alumina containing phases
with iron-bearing minerals. As seen in Figure 15b, which shows the Fe2O3 grade and recovery in the
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magnetic separation products, Fe2O3 grade decreased to 5.1 wt% in the non-magnetic product from a
feed fraction grade of 20.8 wt% (75.5% decrease) with corresponding recovery equals to 8 wt%. On the
other hand, the magnetic product contained 28 wt% Fe2O3 with its recovery presenting very high
value, i.e., 92.2 wt%. Overall, the results indicate that reduction roasting–magnetic separation is very
efficient in reducing the iron content of bauxites. In cases where a lower grade bauxite was treated,
unlike the one used in this study, this integrated approach could be beneficial in reducing the iron
content (e.g., below 2–2.5 wt%), thus rendering bauxite suitable for other applications such as for the
production of refractories and ceramics.
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Figure 15. (a) Al2O3 grade and recovery and (b) Fe2O3 grade and recovery in the magnetic and
non-magnetic products obtained after reduction roasting followed by magnetic separation.

4.5. Characterization of Magnetic Separation Products

Figure 16 shows the XRD patterns of the products, namely the non-magnetic product NMI and
the magnetic product MIII obtained after magnetic separation of the −0.300 mm fraction, following the
procedure seen in Figure 1b. The results indicate that the aluminum hydroxide phases, i.e., diaspore and
boehmite present in this fraction have higher intensities in the non-magnetic product, while hematite
is more abundant in the magnetic one. The characteristic peaks of anatase in the non-magnetic product
were found to be more intense than those in the magnetic product, while no differences were observed
for kaolinite in the two products examined. However, based on the results of the quantitative Rietveld
analysis, it is revealed that kaolinite is slightly more abundant in the magnetic product indicating the
poor liberation of this mineral phase which is associated with the iron-bearing phases prevailing in
the ore.
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The XRD patterns of the non-magnetic and magnetic products obtained after reduction roasting
followed by magnetic separation when carbon to bauxite (C/B) ratio was 0.15 are seen in Figure 17.
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It is seen from Figure 17 that the mineral phases present in the raw ore, i.e., diaspore, boehmite,
anatase and kaolinite were not detected in the magnetic separation products, whereas less intense peaks
of hematite are shown after reduction. Phase transformation took place during reduction roasting and
the main minerals identified by XRD were corundum [α-Al2O3], hematite [Fe2O3], metallic iron [Fe],
maghemite [γ-Fe2O3], magnetite [Fe3O4], pseudo-mullite [Al5SiO9.5], perovskite [CaTiO3], sodium
aluminate [NaAlO2] and sodium magnesium aluminum oxide [Na2OMgO(Al2O3)5]. As a result,
all alumina containing phases in the raw ore were transformed into corundum, sodium aluminate,
sodium magnesium aluminum oxide and pseudo-mullite, while hematite was partially converted
to magnetite, maghemite and metallic iron. According to previous studies, at ~780 ◦C diaspore
and kaolinite transform into corundum and meta-kaolinite, respectively, whereas at temperature
higher than 980 ◦C the formation of γ-Al2O3, amorphous SiO2 and mullite is promoted [22]. In the
temperature range of 200–250 ◦C, hematite transforms to magnetite, while the formation of metallic
iron starts at temperatures higher than 900 ◦C [62]. In addition, despite the overlapping peaks of
hematite, maghemite and magnetite at around 2-Theta = 35.6◦, the remaining strongest peak of
hematite at 2-Theta = 33.15◦ in the magnetic separation products reveals that this phase was not
completely converted. The presence of perovskite in the roasted samples indicates that there was some
amount of calcium in the raw ore, despite the fact that no Ca-bearing phases were identified by XRD.
Comparing the magnetic separation products obtained after reduction roasting (Figure 17), it can be
seen that the characteristic peaks of iron-bearing phases in the magnetic product have in general higher
intensities than in the non-magnetic one, but no great difference was observed between the corundum
peaks. Sodium aluminate, sodium magnesium aluminum oxide and pseudo-mullite although more
abundant in the non-magnetic product are still present in the magnetic product indicating that the
formed magnetic phases after reduction are associated with the non-magnetic ones. Thus, the complex
mineralogy of the samples in combination with the incomplete hematite reduction results in a large
amount of non-magnetic phases being trapped in the magnetic product.

SEM-BSE images of the products along with EDS analyses obtained after magnetic separation of
the −0.300 mm fraction, namely the non-magnetic product NMI and the magnetic product MIII are
shown in Figure 18a–d. As shown in Figure 18a, the bright particles corresponding to hematite almost
disappeared in the non-magnetic product NMI and were limited to those Fe-rich particles (mostly
Fe-Ti oxides) embedded in minor quantities in the diasporic matrix, thus their complete removal
was difficult.
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Figure 18. Cross-sectional SEM-BSE images of polished surfaces of (a) non-magnetic product NMI and
(b) magnetic product MIII obtained after magnetic separation of the −0.300 mm fraction. EDS spectra
obtained in regions (marked by white rectangle) of (c) non-magnetic product NMI and (d) magnetic
product MIII confirm the metal content (Fe and Ti) increase in the MIII sample and the subsequent
decrease of Al content.

On the other hand, microscopic characterization of the magnetic product MIII shows much greater
bright area compared to the non-magnetic product NMI due to higher content in hematite, displayed
both in the form of mixed and individual particles (Figure 18b). By comparing regional EDS spectra of
non-magnetic product NMI and magnetic product MIII shown in Figure 18c,d, respectively, it was
found that the metal content (Fe and Ti) of the MIII sample increased significantly; the Fe content
increased from 9.02 to 24.78 wt%, the Ti content increased from 1.35 to 4.75 wt% while the Al content
decreased from 41.61 to 28.68 wt%. This result is in accordance with XRD results shown in Figure 16
and suggests that the methodological procedure seen in Figure 1b effectively succeeded in separating
the magnetic particles of the −0.300 mm fraction.

Figure 19 shows SEM-BSE images of the non-magnetic and magnetic products obtained after
reduction roasting followed by magnetic separation when carbon to bauxite (C/B) ratio was 0.15. On
the one hand, and in line with XRD results shown in Figure 17, SEM analysis along with EDS spectra
data confirmed the depletion of the major Al-bearing phases present in the bauxite ore (feed material),
namely diaspore and boehmite as well as gangue mineral phases such as anatase and kaolinite in
both magnetic separation products; hematite was only detected in some places. On the other hand,
bauxite particles have undergone excessive transformation during reduction roasting; this resulted in a
micro-structure filled either with reduced particles entrapped in the matrix (non-magnetic product) or
liberated/aggregated (magnetic product) as shown in Figure 19a,b–d, respectively.
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Figure 19. Cross sectional SEM-BSE images of polished surfaces of (a) non-magnetic product NMI
and (b–d) magnetic product MIII obtained after reduction roasting followed by magnetic separation
when carbon to bauxite (C/B) ratio was 0.15. EDS spectra obtained in several spot locations show the
presence of newly formed metallic oxides (H: Hematite; Mt: Magnetite; Mh: Maghemite; Fe: Metallic
iron; Pv: Perovskite).

In this context, and due to the addition of Na2CO3 during the roasting process, the transformation
of Al-bearing phases into corundum, sodium aluminate, sodium magnesium aluminum oxide and
pseudo-mullite is detected based on EDS point analyses conducted in both magnetic separation products.
Reduction of hematite present in the bauxite ore and transformation into magnetite, maghemite and
metallic iron is more clearly visible in the magnetic product as expected. More specifically, large particles
of magnetite and maghemite (up to 100 µm) can be detected in the magnetic product while metallic
iron is also formed in smaller particles (up to 5 µm). Figure 19c (zoom of rectangular area of Figure 19b)
shows in detail the presence of metallic iron developed in the rim region/shell of hematite particles as
well as aggregated and scattered in the matrix [63]. As can be seen in Figure 19d, perovskite [CaTiO3]
is the only Ti-rich oxide observed as needle-like infillings present at the internal space of the magnetic
product thus indirectly confirming the calcium content in the bauxite ore (feed material).

Finally, the average chemical composition (in oxides) of the non-magnetic product NMI and the
magnetic product MIII obtained after reduction roasting followed by magnetic separation based on
EDS analyses conducted on respresentative regions of their polished surfaces are shown in Table 4.
Results are given in comparison with the corresponding values obtained for the feed material (bauxite)
and shown in Table 2. It is seen that the metal oxide content (Fe and Ti) of the non-magnetic product
NMI decreased significantly; the Fe2O3 content decreased from 22.39 to 16.58 wt%, the TiO2 content
decreased from 3.94 to 1.14 wt% while the Al2O3 content increased from 57.25 to 68.23 wt% This result
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suggests that the approach involving reduction roasting and magnetic separation has a synergistic and
noticeable effect on bauxite beneficiation.

Table 4. Average chemical composition of the non-magnetic product NMI and the magnetic product
MIII obtained after reduction roasting followed by magnetic separation in comparison with the
feed material.

Sample Al2O3 (wt%) Fe2O3 (wt%) SiO2 (wt%) TiO2 (wt%) LOI a (wt%)

NMI 68.23 16.58 2.32 1.14 9.73
MIII 58.05 27.25 0.89 5.14 7.67

Feed material (bauxite) 57.95 22.39 1.65 3.94 13.0
a Loss on Ignition.

5. Conclusions

The present experimental study aimed to optimize selective grinding of a Greek bauxite ore and
explore potential beneficiation options that affect the distribution of Al- and Fe-containing phases.

Grinding kinetics showed that the breakage rate varies with grinding time, and therefore grinding
of bauxite exhibits non-first-order behavior. The reduction rate depents on the particle size range as
well as the material filling volume used in the mill. Coarse particles were ground more efficiently
compared to the fine ones while the lower the material filling volume the higher was the reduction
rate. Selective grinding showed that the content of Al2O3 increased slightly in the coarser fractions,
while the Fe2O3 grade increased in the finer ones. However, the mass recovery in the coarser fractions
and consequently the overall Al2O3 recovery was very low. Grinding time and material filling volume
affected the grade and recovery of Fe2O3 and Al2O3 in the products. Best results were obtained for
the coarser than 0.300 mm product fraction, after 2 min of grinding and when the material filling
volume used was 10%. Under these conditions, the Al2O3 grade increased by almost 10% to 64 wt%
with corresponding recovery 73 wt%, while the Fe2O3 grade decreased by 18.3% and its recovery was
65.4 wt%.

The magnetic separation of the products obtained after selective grinding showed that the feed
fraction had significant effect on process efficiency. Thus, the non-magnetic product obtained from the
0.300–1.18 mm fraction was more rich in Al2O3 compared to 1.18–3.35 mm fraction, despite the fact
that finer feed fractions contained less Al2O3. The maximum Al2O3 grade and recovery, i.e., 67.85 and
47.8 wt%, respectively, were obtained for a material filling volume of 5%. Under these conditions,
the non-magnetic product contained 13.5 wt% Fe2O3, which corresponds to a decrease of 30.1%.
The results of magnetic separation implemented after reduction roasting showed that a non-magnetic
product containing 67.3 wt% Al2O3 but with quite low recovery (~35%) was obtained. In this product,
Fe2O3 grade decreased by 75.5%, from 20.8 to 5.1 wt%, but in this case the corresponding recovery
(8 wt%) was very low.

The results of this study indicate that reduction roasting followed by magnetic separation can be an
effective approach for reducing the iron content of bauxites, but due to the complex mineralogy of the
ores significant amounts of non-magnetic phases may be trapped in the magnetic fraction. To optimize
grinding and roasting and maximize the efficiency and the cost effectiveness of the proposed integrated
process, complete mineralogical and modelling studies are required to fully characterize the bauxite
ore, select the proper mill and its best operating parameters and carry out reduction roasting at the
correct temperature. In this case, improved beneficiation results are anticipated, especially for lower
grade bauxite ores.
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