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Abstract: A review of mathematical models for elastic plates with buckling and contact phenomena
is provided. The state of the art in this domain is presented. Buckling effects are discussed on
an example of a system of nonlinear partial differential equations, describing large deflections
of the plate. Unilateral contact problems with buckling, including models for plates, resting on
elastic foundations, and contact models for delaminated composite plates, are formulated. Dynamic
nonlinear equations for elastic plates, which possess buckling and contact effects are also presented.
Most commonly used boundary and initial conditions are set up. The advantages and disadvantages
of analytical, semi-analytical, and numerical techniques for the buckling and contact problems are
discussed. The corresponding references are given.

Keywords: elastic plate model; partial differential equation; boundary conditions; initial conditions;
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1. Introduction

The present paper provides a review of existing mathematical plate models with both buckling
and contact phenomena together and recent progress in this area.

Plate theories have been created by reducing full three-dimensional solid mechanics problems
to two-dimensional ones, taking into account a small thickness of a plate. The aim of plate theories
is to calculate the strains (deformations) and stresses in the plate, subjected to loading forces.
Along with well known classical books for the plate theories, e.g., those of Duvaut and Lions [1],
Ciarlet [2], Ciarlet and Rabier [3], Landau and Lifshitz [4], Ambartsumyan [5], Panc [6], Lekhnitskii [7],
Goldenveizer and Kolos [8], Lubliner [9], Lurie [10], and Muskhelishvili [11], one can mention
the relatively new works of Inman [12], Vashakmadze [13], Reddy [14], Le van [15], Maceri [16],
and Wu [17], where the main principles of elastic plate theories are written in extended form with
additional material. The work by Szilard [18] contains extensive information about plates. Classical,
numerical, and engineering methods including finite elements, finite differences, Fourier series,
and variational approaches are applied for the analysis of plates.

In addition to the classical theories, there exist several non-classical approaches. For example, the
Cosserat continuum (e.g., Altenbach et al. [19]) is given by six material parameters, instead of two.
A non-classical new Mindlin plate model, based on a modified couple stress theory, is proposed in the
work of Ma et al. [20]. In the article of Niiranen and Niemi [21], the mechanical linear problems of the
sixth order for gradient-elastic Kirchhoff plate models are formulated in a variational form. Higher
order couple stress models for plates and shells are presented in the paper of Zozulya [22].

There are two basic classical linear plate models. The first one is based on the Kirchhoff–Love
principles and the second one issues from the Mindlin–Reissner theory for thick plates. The linear
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plate equations work best for small deflections of the plate ([23]). They become not so accurate in the
case of large displacements of the plate. To describe the large displacements, nonlinear models have
been created (e.g., those of Antmann [24], Lagnese [25], and Sokolnikov [26]). The nonlinear equations
originate from the Föppl–von Kármán nonlinear model. They have a wide spectrum of applications
in applied science and engineering. Solving the nonlinear von Kármán system is difficult in virtue
of the high order partial differential equations and presence of nonlinearity. Therefore, a classical
solution has not yet been found. However, some semi-analytical and numerical approaches have been
developed for solving this problem.

The classical linear and nonlinear plate equations are the main keys for creating various plate models,
including delamination of composite plates (Vasiliev and Morozov [27], Stavroulakis and Panagiotopoulos [28],
Storakers and Andersson [29], Xue et al. [30], and Haghani et al. [31]), contact problems (Ohtake et al. [32,33],
Borisovich et al. [34], and Malekzadeh and Setoodeh [35], Muradova and Stavroulakis [36–39], Muradova
et al. [40], Fichera [41]), analysis of buckled plates (Ciarlet and Rabier [3], Caloz and Rappaz [42], Matkowsky;
Putnick [43], Chien et al. [44], Chien et al. [45], Muradova [46–48], Dossou and Pierre [49]), etc.

Here, we focus our attention on the plate models, which combine buckling and unilateral
contact effects together. The buckling and contact problems are important subjects of investigation
in applied mechanics and engineering. Buckling occurs when the plate is compressed on its edges.
Most worthwhile is the investigation of postbuckling behavior and bifurcation phenomenon for
a solution in the nonlinear equations. Contact effects occur when the plate rests on elastic foundation
or when the plate is delaminated. The delamination has a place in the composite plates.

1.1. Governing Equations

Let us consider a plate which is under load q in vertical z direction, as shown on Figure 1.
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Figure 1. A thin rectangular plate showing transverse loading and dimensions.

Below we present the Kirchhoff-Love linear equation and the von-Kármán nonlinear system.
Both of them are derived by using the principle of virtual work from the equilibrium equations
(Ciarlet [2], Reddy [14], Bloom; Coffin [50] etc).

Figure 1. A thin rectangular plate showing transverse loading and dimensions.

Below, we present the Kirchhoff–Love linear equation and the von Kármán nonlinear
system. Both are derived by using the principle of virtual work from the equilibrium equations
(e.g., Ciarlet [2], Reddy [14], and Bloom and Coffin [50]).

According to the Kirchhoff–Love linear theory for the deflection w = w(x, y) of two variables x, y
with taking into account the vertical loading q, the following equation holds

D∆2w = q, (x, y) ∈ G, (1)

where ∆2 is the biharmonic operator and G is the domain, occupied by the plate. In the case of
a rectangular plate, G = (0, l1)× (0, l2), where l1 and l2 are the lengths of sides of the plate. Further,
D = Eh3/12(1− ν2) is the flexural rigidity of the plate, h is the thickness of the plate, E is the Young
modulus, and ν is the Poisson coefficient.
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In the nonlinear case, the symmetric second rank Green–Saint Venant tensor (the Lagrangian
strain tensor) is applied (see, e.g., [9]). The following equation for the stress function ψ = ψ(x, y) holds

∆2ψ = −E
2
[w, w], (2)

and for the displacement w taking into account vertical loading q, the following equation reads

D∆2w = h[w, ψ] + q, (3)

where [w, ψ] is called the Monge Ampère form,

[w, ψ] = [ψ, w] =
∂2w
∂x2

∂2ψ

∂y2 +
∂2w
∂y2

∂2ψ

∂x2 − 2
∂2w
∂x∂y

∂2ψ

∂x∂y
.

Two fourth-order Equations (2) and (3) are coupled through the nonlinear terms. The considered
nonlinear model has been extended to the shallow shell model in the work of Vorovich [51]. Nonlinear
functional analysis is used to investigate the stability of the models.

In the linear case, one obtains two uncoupled equations:

(1) The Airy equation for plane stress:
∆2ψ = 0.

(2) The linear plate bending Kirchhoff–Love’s model in Equation (1) (originated from Germain’s equation).

1.2. Boundary Conditions

Most often, meet boundary conditions for plates are simply supported, partially clamped, totally
clamped, Robin’s and free boundary conditions along the edges of the plate (see, e.g., Bloom and Coffin [50],
Ciarlet and Rabier [3], and Chien et al. [52]).

If all edges of a plate are simply supported, then the displacement and the Airy stress potential
satisfy the following boundary conditions,

w = ∆w = 0,

ψ = ∆ψ = 0 in ∂G

in (0, T]× ∂G for the dynamic case.

A more appropriate condition in a physical sense for the stress function is (Schaeffer and
Golubitsky [53])

∂ψ

∂n
=

∂

∂n
∆ψ = 0,

where ∂/∂n denotes the normal derivative.
The simply supported boundary conditions are convenient from a mathematical point of view,

but they are notoriously difficult to achieve in experiments.
The most realistic are totally clamped boundary conditions,

w =
∂w
∂n

= 0,

ψ =
∂ψ

∂n
= 0, in ∂G for the static case)

in (0, T]× ∂G for the dynamic case.

The partially clamped boundary conditions are combinations of the simply supported and the
clamped boundary conditions.
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If the clamped boundary conditions are relaxed at the ends of the plate, then such boundary
conditions are called the Robin boundary conditions. For example,

g0(µ)
∂w
∂n

+ g1(µ)∆w = 0, x = 0, l1,

∆w = 0, y = 0, l2,

w = 0,
∂ψ

∂n
=

∂

∂n
∆ψ = 0, in ∂G for the static case

in (0, T]× ∂G for the dynamic case.

where gi(µ) ∈ R, i = 0, 1 are smooth functions and satisfy

g0(0)g1(1)g0(µ)g1(µ) 6= 0, µ ∈ (0, 1),
g0(1) = g1(0) = 0.

If a plate, for example, has a free edge parallel to the axis y at x = l1, then the following boundary
conditions are considered

∂2w
∂x2 + ν

∂2w
∂y2 = 0,

∂3w
∂x3 + (2− ν)

∂3w
∂x∂y2 = 0, at x = l1.

∂2ψ

∂x2 + ν
∂2ψ

∂y2 = 0,
∂3ψ

∂x3 + (2− ν)
∂3ψ

∂x∂y2 = 0. at x = l1.

2. Buckling Phenomenon

In this section, we define buckling and postbuckling effects on example of the nonlinear static
equations for the plate. A general analysis of plate buckling and postbuckling behavior is given in the
handbook of Bloom and Coffin [50]. In particular, a derivation of von Kármán nonlinear system with
buckling is presented.

If, except vertical loads q, in-plane distributed loads are given along the boundary ∂G of the plate
as a regular function θ(x, y), defined on G, then Equation (3) for the vertical displacement w yields

D∆2w− h[w, ψ]− [θ, w] = q, (x, y) ∈ G. (4)

The values of θ depend on the portion of the boundary, subjected to compression or tension.
Various problems can be modeled by θ(x, y). The load can be considered compressive (−) or tensile
(+). If we have compressive loads on all the sides of the plate, then

θ(x, y) = −λ

2
(x2 + y2),

where λ is the scalar compressive loading factor (magnitude). Compression, for example, along two
x-parallel sides, is denoted

θ(x, y) = −λ

2
y2.

If a plate is compressed along two x-parallel sides and the other sides are under tension, then

θ(x, y) =
1
2
(λ′x2 − λy2),

where λ′ is the tensile loading parameter. Analogous expressions hold for the other cases.
The compression and tension of the plate are shown in Figure 2.
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If q ≡ 0, then Equation (4) with the most commonly used boundary conditions becomes
an eigenvalue problem.
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D∆2w− h[w, ψ] + λLw = q. (6)

According to the results of [38] if the compressive loading factor λ is greater than Euler critical value
λE (the first eigenvalue of the linearized problem for the nonlinear equation (6) with the fixed tensile
loading (λ′ = λ′f ) then the plate buckles and there exist at least three solutions for (6), (2): (w, ψ),
(−w, ψ) for w 6= 0 and ψ 6= 0, and (0, 0). Otherwise, the plate is not deformed and it remains flat. The
critical buckling loading factor usually depends on Poisson’s ratio and Young’s modulus. The Euler
critical value λE also depends on the tensile loading factor λ′f . If the tensile (stretching) load increases
then λE = λE(λ

′) increases as well.

Figure 2. (a) Compressive load along x-parallel and along y-parallel sides. (b) Compressive load along
y-parallel and tensile load along x-parallel sides.

For the problems in Equations (2) and (4), the following cases are true

L =





∆, four sides by compr. load,
∂11, two x-sides by compr. load,

∂22, two y-sides by compr. load,

∂11 −
λ′

λ
∂22, comp. on x-sides and tens. on y-sides,

∂22 −
λ′

λ
∂11, comp. on y-sides and tens. on x-sides,

(5)

where λLw = [θ, w], ∂11 = ∂2/∂x2, ∂22 = ∂2/∂y2. Then, from Equation (4) and the definitions in
Equation (5), we obtain

D∆2w− h[w, ψ] + λLw = q. (6)

According to the results of [38], if the compressive loading factor λ is greater than the Euler critical
value λE (the first eigenvalue of the linearized problem for the nonlinear equation in Equation (6) with
the fixed tensile loading (λ′ = λ′f ), then the plate buckles up and there exist at least three solutions
to Equations (2) and (6): (w, ψ), (−w, ψ) for w 6= 0 and ψ 6= 0, and (0, 0). Otherwise, the plate is not
deformed and it remains flat. The critical buckling loading factor usually depends on Poisson’s ratio
and Young’s modulus. The Euler critical value λE also depends on the tensile loading factor λ′f . If the
tensile (stretching) load increases, then λE = λE(λ

′) increases as well.
Below, we discuss the existing semi-analytical and numerical techniques for treating buckling

and contact plate problems and the state of the art in this direction.
As it is mentioned above, a classical solution for Equations (2) and (6) has not yet been

found. However, the buckling and postbuckling behavior of the solution of the nonlinear model
in Equations (2) and (6) has intensively been studied numerically by many authors, e.g., Caloz
and Rappaz [42], Dossou and Pierre [49], Chien et al. [44], Chien et al. [52], Muradova [46,47],
and Matkowsky and Putnick [43]. The existing techniques for treating the nonlinear mechanical
model are mainly based on finite element analysis, finite difference approximations, and spectral and
pseudo-spectral methods.

In the works [46,47], the Fourier transform is proposed for Equations (2) and (6). The solution is
expanded into double Fourier series and the partial sums are considered. The coefficients in the series
are good guides for following branches of the solution and the trigonometrical functions reflect the
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shape of the eigenfunctions. A detailed bifurcation analysis, based on spectral approach, for the simply
supported, partially clamped, and totally clamped plates is presented in [47]. The buckling loads are
computed and trained by the neural network for prediction in the paper [54]. A topology of bifurcation
diagrams for the von Kármán problem for totally clamped plate is analyzed by finite elements,
combined with Newton-GMRES algorithm, in [49] and by the spectral method with numerical
continuation in [46]. A finite element method (FEM) together with a predictor-corrector method
and block GMRES algorithm was implemented by Chien et al. [44] for tracing curves of the solution
for the partially clamped plate. The mode jumping phenomenon, which implies non-stability of the
primary solution branches through further bifurcations, for the partially clamped boundary conditions
was investigated by Holder and Schaeffer [55], Schaeffer and Golubitsky [53], and later by Chien
et al. [45].

In the case of employing spectral or pseudo-spectral approaches, the choice of the global basic
functions depends on the type of boundary conditions. For example, for the simply supported,
partially clamped, and totally clamped plates, the global basic functions are constructed, based on
trigonometrical and Legendre’s polynomials. In the case of the presence of free plate edges,
a combination of trigonometrical functions and the Chebyshev polynomials can be used. In this
case, the spatial discretization can be done through a collocation method.

The spectral and pseudo-spectral methods give a high accuracy of computations while finite
elements are more flexible due to the local choice of the bases.

3. Contact Models with Elastic Foundations

If instead of the transversal loading forces q we have elastic foundation forces in Equation (6), then

q = −p(w, ∂1w, ∂2w, ∂12w, . . . , ∂2222w),

where p is the reaction of a general subgrade model for nonlinear elastic foundations. The function p
is the distributed reaction force per unit area.

The plate comes in contact with the upper or lower foundations (obstacles) if w > 0 or w < 0,
respectively (see Figure 3).
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where T is a constant representing the tension action of a thin elastic membrane, and shear
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p = kw− kg∆w, (8)

where kg is the shear modulus, in others words the interaction parameter. Another type of description
is Hetényi model,

p = kw− S∆2w, (9)

where S is the flexural rigidity of the soil layer. The foundation models (7), (8), (9) and other type
models are presented in the works of Dillard et al [56] and Wang et al [57]. They are all particular cases
of the general subgrade model.

For many practical foundations

p = p(w, ∆w) = k1w− k2w3 − kg∆w. (10)

The expression (10) consists of separated nonlinear elastic Winkler-type foundation springs with
contribution k1w− k2w3 and shear Pasternak-type foundation contribution kg∆w. The constants of the
foundations depend on the displacement in a nonsmooth way.

Figure 3. The cross section of the deformed plate with the thickness h after buckling loads λ, restrained
by unilateral contact with the elastic foundation of Winkler’s spring type with the intensity p.

If p ≡ k1w, then we deal with a linear Winkler-type elastic foundation. The coefficient k1 is
the spring constant of the soil. A review of Winkler’s foundation and numerous applications of it,
including adhesion and historical perspective, is given in the paper of Dillard et al. [56]. The adaptation
and influence of the Winkler’s model on the displacement are also discussed. Various extensions of
the Winkler’s model are given.
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The Winkler’s spring model usually does not simulate all the properties of the soil. Therefore,
the two-parameter foundation has been introduced to describe interaction among the springs. The most
used two-parameter foundations are Filonenko–Borodich,

p = kw− T∆w, (7)

where T is a constant representing the tension action of a thin elastic membrane, and shear
Pasternak-type foundation model

p = kw− kg∆w, (8)

where kg is the shear modulus, in others words the interaction parameter. Another type of description
is Hetényi model,

p = kw− S∆2w, (9)

where S is the flexural rigidity of the soil layer. The foundation models in Equations (7)–(9) and other
type models are presented in the works of Dillard et al. [56] and Wang et al. [57]. They are all particular
cases of the general subgrade model.

For many practical foundations,

p = p(w, ∆w) = k1w− k2w3 − kg∆w. (10)

Equation (10) consists of separated nonlinear elastic Winkler-type foundation springs with
contribution k1w − k2w3 and shear Pasternak-type foundation contribution kg∆w. The constants
of the foundations depend on the displacement in a non-smooth way.

When contact occurs (p 6= 0) and the reaction forces of the foundation are evaluated by
Equation (10), the Euler critical value is the first eigenvalue of the linearized equation,

D∆2w + λLw + k1w− kg∆w = 0 (x, y) ∈ G . (11)

of the problems in Equations (2) and (4).
Various types of contact problems in solid mechanics and numerical treatments of them are

considered along with others in the books of Wrigers [58] and Selvadurai [59]; and in the works
of Dumir and Bhakar [60], Katsikadelis and Yiotis [61], and Papanikolaou and Doudoumis [62].
The mathematical theory for unilateral constraints including the Kirchoff plates was developed by
Fichera [41]. There are few devoted to the investigation of the two phenomena buckling and contact
together in the nonlinear cases. Nevertheless, one can mention the articles of Yu and Wang [63],
Bielski and Telega [64], Shen [65], Borisovich et al. [34], Muradova et al. [40], and Muradova and
Stavroulakis [37,38]. The works by Borisovich et al. [34] and Muradova et al. [40] are devoted to the
exploration of stability of a rectangular, isotropic plate on the linear Winkler-type foundation. In [40],
an application of the contact model to the problem from biomechanics and the numerical treatment of
it are presented. Buckling and postbuckling analysis of the simply supported plate with the nonlinear
foundation of the type in Equation (10) is studied in the work [65] and also in [37,38]. In the paper of
Holanda and Goncalves [66], the buckling and postbuckling behavior of plates laterally constrained by
a tensionless foundation and subjected to in-plane compressive forces are investigated. Mechanical
models for buckling of unilaterally constrained by nonlinear elastic foundations rectangular and
infinite plates are given in the papers of Shahwan and Waas [67,68], respectively. In [67], the influence
of different boundary conditions for the rectangular plates, material orthotropy, and transverse load
distributions are investigated. The classical plate theory, employing the Kirchhoff–Love hypotheses,
is used in [68]. Simply supported and clamped-free boundary conditions on the unloaded edges are
considered. Combined experimental and finite element techniques were suggested by Chai [69] to
elucidate the postbuckling response of unilaterally constrained plates under monotonically increasing
edge forces. Bifurcation phenomena for buckled partially and totally clamped plates resting on
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nonlinear elastic foundations are investigated in the work [38]. The influence of linear Winkler-type
and shear nonlinear Pasternak-type foundation parameters is investigated.

A detail analysis of influence of Winkler-type foundation and other types foundations can be
found in the works of [56,57].

Another well-known approach for constructing contact models is a penalty method. The variational
principle with penalty is used for development of variational unilateral contact problem in the works of
Ohtake et al. [32,33]. The variational model with penalty for buckling was also considered by Muradova
and Stavroulakis [36]. In this case, Equation (6) becomes inequality

p = D∆2w− h[w, ψ] + λLw ≥ 0, (x, y) ∈ G. (12)

Here, p is transverse reaction on the plate and p(w + b) = 0, w ≥ −b.
If we introduce the integral forms

K(w, z) =
∫

G
∆w∆zdG, A(w, ψ, z) =

∫

G
[w, ψ]zdG, B(w, z) =

∫

G
Lwz

then Equations (2) and (12) are written as variational inequality,

DK(w, z)− hA(w, ψ, z) + λB(w, z) ≥ 0 ,

K(ψ, v) +
E
2

A(w, w, v) = 0 ,
(13)

where the functions z, v ∈W2,2(G) (W2,2 is the Sobolev space).
Applying the penalty method to Equation (13), one obtains

DK(wε, z)− hA(wε, ψε, z) + λB(wε, z) + ε−1π(wε, z) = 0,

K(ψε, v) +
E
2

A(wε, wε, v) = 0,

where ε is a small positive number and π(wε, z) is the penalty, defined as:

π(wε, z) =
∫

G
(wε + b)−zdG ((wε + b)− is the Heaviside function).

4. Delamination of the Buckled Plate

In this section, we discuss about mathematical contact models for buckled composite plates with
delamination. The composite plates consist of several layers. After applying in-plane forces, different
layers become separated (delaminated) and then buckle away from each other. Most commonly, a thin
layer will buckle away from a thicker layer, typically of lower modulus of elasticity. When the bonding
action between the layers is ignorable, this type of buckling problem can be considered in a state of
unilateral contact.

The unilateral contact buckling behavior of delaminated rectangular plates in a composite member
is analyzed, e.g., in the article of Ma et al. [70]. In the paper of Biggers and Pageau [71], tailored
plates with buckling are investigated. Shen and Li [72] investigated postbuckling responses of shear
deformable laminated plates resting on elastic foundation, subjected to in-plane compressive edge loads
and a uniform temperature. The plates are constrained by an elastic foundation. The formulations are
based on the large deflection plate theory, i.e., the von Kármán-type of kinematic non-linearity, and take
into account the plate-foundation interaction. In the work [73], a delamination of buckled laminated
plates is considered. Each laminate is modeled as an orthotropic Mindlin plate. For numerical solving,
a combination of finite elements and asymptotic expansion is applied.

Uy and Bradford [74] studied numerically buckling of composite steel plates. Ovesy and Kharazi
in [75] investigated the compressive bucking and postbuckling behavior of composite laminates with
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through-the-width delamination. The analytical method is based on the first-order shear deformation
theory, and its formulation is developed on the basis of the Rayleigh–Ritz approximation technique.

The behavior of elliptical sublaminates, created by delaminations in composite plates,
was investigated by Peck and Springer [76]. The plates are subjected to in-plane compressive, shear,
and thermal loads. The developed model takes into account the stresses, strains, and displacements of
the sublaminate as well as the loads applied to the plate.

The laminated composite plates are modeled mathematically using two higher-order shear
deformation theories in conjunction with finite elements in the work of Sahoo et al. [77]. The final
form of the governing equations of the bending and the free vibration responses are obtained using
the variational method and the classical Hamilton principle, respectively.

In the paper of Yeh et al. [78], the Lagrangian formulation is proposed to analyze the bending
behavior of the laminated plates and the local buckling phenomenon of the sublaminates in the
delaminated region.

A mathematical model for analyzing delaminated plates is developed using three-dimensional
(3D) degenerated elements in the work of Tiwari et al. [79]. The elements are introduced, applying the
degenerated solid approach based on the Reissner–Mindlin assumptions.

In the article [80], a relevant survey on the various analytical models and numerical analysis for
the free vibration of delaminated composites is provided. A basic understanding of the influence of the
delamination on the natural frequencies and the mode shapes of composite laminates is considered.

Some delamination mathematical models are issued from the classical linear plate theories, namely
from the Kirchhoff–Love and the Mindlin–Reissner principles, although many works related with
buckling and delaminations of the plate are solved directly by FEMs or other numerical techniques
(e.g., Obdrzalek and Vrbka [81]).

Below, we consider an example of unilateral contact buckling behavior of delaminated plates in
a composite member. Buckling of two contacting plates is shown in Figure 4.
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, i = 1, 2,

where wic and wi are the vertical displacements in the contact and non-contact regions, respectively, of
plate i, Di is the rigidity of plate i, qr is the contact force between the two plates and σxi is the normal
stress in the x-direction.

Delamination and unilateral contact in nonsmooth mechanics are investigated, e.g., by
Stavroulakis and Panagiotopoulos in [28] and Demyanov et al [82]. A mathematical model for
frictionless, adhesive and contact between a viscoelastic body and a rigid obstacle is studied, for
example, in the article of Chau et al. [83].

5. Nonlinear dynamic equations

In comparison with the static case the dynamic initial-boundary value problem for the two
coupled nonlinear dynamic equations has a unique solution according to the classical theory of
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FEMs are employed for the dynamic nonlinear model by Gordnier and Fithen in [90]. Kirby and
Yosibash [91] apply the pseudo-spectral method in space.

In comparison with the static case where we can only consider compressive forces, in the dynamic
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In [70], to describe a behavior of two interacting plates, the linear deflection Kirchhoff–Love
equation for each plate is used, i.e.,

Di

(
∆wic + ki

∂2wic
∂x2

)
=

{
qr, i = 1, qr ≥ 0,

−qr, i = 2, qr ≥ 0,

Di

(
∆wi + ki

∂2wi
∂x2

)
= 0, ki =

σxihi
Di

, i = 1, 2,

where wic and wi are the vertical displacements in the contact and non-contact regions, respectively, of
plate i, Di is the rigidity of plate i, qr is the contact force between the two plates, and σxi is the normal
stress in the x-direction.

Delamination and unilateral contact in non-smooth mechanics were investigated, e.g., by Stavroulakis
and Panagiotopoulos [28] and Demyanov et al. [82]. A mathematical model for frictionless, adhesive,
and contact between a viscoelastic body and a rigid obstacle is studied, for example, in the article of Chau
et al. [83].
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5. Nonlinear Dynamic Equations

In comparison with the static case, the dynamic initial-boundary value problem for the two
coupled nonlinear dynamic equations has a unique solution according to the classical theory of
nonlinear elasticity (Lasiecka [84] and Matkowsky and Putnick [85]).

The nonlinear plate dynamic equations are studied, for example, in the works of Shivamoggi [86],
Morozov [87], Chia [88], and Langese [25].

Several numerical models for treating the dynamic system have been developed, for example,
Nath and Kumar [89] developed one that uses Chebyshev’s series. Finite differences and C1h-version
FEMs are employed for the dynamic nonlinear model by Gordnier and Fithen in [90]. Kirby and
Yosibash [91] applied the pseudo-spectral method in space.

In comparison with the static case where we can only consider compressive forces, in the dynamic
system, we can study both buckling and stretching phenomena together as well as separately. The
nonlinear dynamic system of two coupled nonlinear hyperbolic type partial differential equations of
vibrations of a rectangular isotropic elastic plate, taking into account viscosity, reads

hρ wtt − ρ
h3

12
∆wtt + hc wt + D∆2w + λLtw = h[w, ψ] + q(t, x, y), (14)

∆2ψ = −E
2
[w, w], in Ω, (15)

where w(t, x, y) is the deflection function of time and spatial variables (vertical displacement of the
plate), ψ(t, x, y) is the Airy stress function of time and spatial variables, describing as before internal
stresses appearing due to the deformation of the plate (e.g., [1,3]), and q(t, x, y) are the external
disturbance forces. The domain of definition is Ω = (0, T]× G, where T is the final time and G is the
shape of the plate as before. Further, in the system in Equations (14) and (15), ρ is the density of the
material and c is the structural viscosity coefficient. The operator Lt in Equation (14) is a function of
time and characterizes an external (compressive or tensile) constant force applied to the edges of the
plate. It is defined according to the above-mentioned assumptions (see [48]),

Lt =





∆, comp. along four edges,
−∆, tens. along four edges,
∂11, comp. along two x-parl. sides,
−∂11, tens. along two x-parl. sides,
∂22, comp. along two y-parl. sides,
−∂22, tens. along two y-parl. sides,

∂11 −
λ′

λ
∂22, comp. λ on x-sides and tens. λ′ on y-sides,

∂22 −
λ′

λ
∂11, comp. λ on y-sides and tens. λ′ on x-sides,

Here, λ = λ(t) and λ′ = λ′(t) are the factors of moving compressive and tensile loads uniformly
distributed on the edges of the plate. If q(t, x, y) = 0, λ = 0, and λ′ = 0, then we have free vibrations.

Equations (14) and (15) describe vibrations of the plate, subjected to compressive and tensile
(stretching) non-constant loading, applied simultaneously or separately. The exciting forces can change
with time and they are uniformly applied on the edges of the plate. If the Monge Ampère part does
not present, then we have the dynamic linear plate model.

If the structure is also unilaterally supported by the upper and/or lower elastic foundations
with different stiffnesses, then, as discussed in Section 3, the transversal loading q = −p(w, ...),
i.e., the dynamic buckling problem, involves contact phenomenon. The cases when the nonlinear
foundations are modeled in terms of the nonlinear elastic Winkler-type and shear Pasternak-type are
considered in the paper of Muradova and Stavroulakis [39].
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In the work of Kanto and Yagawa [92], the penalty function method is applied to incorporate the
contact conditions in the equation of motion and a trial and error method is used. The technique is
applied to a dynamic buckling problem involving contact phenomenon.

6. Conclusions

Mathematical models with buckling and contact phenomena are discussed in this paper.
The effects of buckling, which occurs when in-plane forces are applied on the edges of the plate,
is shown on examples. Different types of boundary conditions for the plate are discussed.

The contact phenomenon is caused by the presence of elastic foundations or interaction of parts
of a delaminated composite plate. The contemporary models with buckling, including subgrade
model for linear and nonlinear foundations, penalty method, used in studies with buckling, namely
subgrade model, and delamination plates are described. The semi-analytical and numerical techniques
for resolving these problems are also briefly discussed. The references relevant to the considered topics
are given. The advantages and disadvantages of the previous research are shown.

The buckling and contact problems have a long history. The basic principles of understanding of
buckling and contact effects arising in elastic plates and the methods of treating the problems related
with them are discussed in the previous sections. Based on the previous research results, one can
conclude that the mathematical models, combining buckling and contact phenomena together are
studied, in the majority of the publications, either with the help of finite element methods or by using
analytical or semi-analytical approaches [93,94].

The finite element analysis is suitable for the mechanical problems for plates with complicated
geometry and contact nonlinearity. It can provide meaningful and accurate results regardless
material properties, boundary conditions, and loading. FEMs also work perfectly for bifurcation
analysis (e.g., [42,44,45,49]) and contact and delamination problems (e.g., [62,66,69,73,77]). Together
with variational Galerkin method, they can provide effective analysis for buckling nonlinear plate
problems [42]. A mixed Galerkin-perturbation technique can be used to determine thermal buckling
loads and post-buckling equilibrium paths. Effective mathematical study of different types of buckling
such as plastic, dynamic, and external is supported by FEMs [94].

Although FEMs are most widely used and dependable in buckling models, contact problems,
and buckling analysis of laminated plates plate problems, there are some disadvantages in applications
of them. In particular, FEMs are sensitive to mesh density, the rate of convergence in simulation,
element type, computational time, and shear locking. Shear locking is an error that occurs in finite
element analysis due to the linear nature of quadrilateral elements.

FEMs are flexible for the geometry of the structure, but analytical and semi-analytical methods
provide higher accuracy. FEMs require large amount of computational resources for reaching high
accuracy, which may be more suitable for detailed analysis rather than overall demonstration of
structural performance. In contrast, analytical or semi-analytical approaches provide a high accuracy
of computations and can show overall behavior of plates (e.g., [88,95]).

Most of the analytical buckling approaches are based on the energy principles ([82,93]).
Approximation models for buckling problems usually employ energy principle or semi-analytical
approaches to determine the critical buckling load of structures, of which the Rayleigh–Ritz method,
Kantorovich method, finite strip method, etc. are commonly used (e.g., [75,93]).

Note that delamination usually involves contact leading to nonlinear post-buckling problems,
and analytical models might not give consideration of all the factors simultaneously. Numerical
simulations and experiments are needed to provide further investigation on the phenomenon.

The disadvantages of the analytical methods are their restricted applicability to relatively simple
shapes and boundary conditions, as well as to buckling and contact of plates with finite sizes. Some
assumptions and large simplifications should be done in material model, geometry, and boundary
conditions. These obstacles can be decreased by applications of semi-analytical methods for some cases.
For example, for rectangular elastic plates, which is widely used in civil engineering, the semi-analytical
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methods based on variational principles (spectral or pseudo-spectral methods) work best and can
provide a high accuracy of computations ([38,47,89,91]).

Summarizing, one can say that the choice of the method for treating the coupled buckling and
contact problems in elastic plates depends on many factors, such as material properties, boundary
conditions, required accuracy of computations, geometry of the structure, etc. The advantages and
disadvantages of the techniques should be taken into account.

Although sufficient research work has been done for the investigation buckling and contact
phenomena together for thin plates, there are still open questions in creation of new effective models
or modification of the existent ones and then applications of them to complex nonlinear problems in
science and engineering.

Investigations of the nonlinear systems including buckling and contact effects are keys for solving
various problems in biomechanics, cell wall mechanics, and deformations of thin membranes, where
exploration of interactions between buckled plate and elastic foundation or buckled parts of composite
structures is important and challenging. Therefore, since most nonlinear models cannot be solved
analytically, it is necessary also to develop effective semi-analytical and/or numerical techniques
allowing to overcome barriers in simulation of complex systems.
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