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Abstract: A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene
derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM
photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level
offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well
as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation,
electron transfer facilitator and thus improved overall photovoltaic performance. The engineering
optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted
in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc)
of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G
illumination. This photovoltaic performance was improved by approximately 12% with respect to
the control binary device.

Keywords: organic solar cells; ternary blend; bulk heterojunction; cascade effect; charge transfer;
additive; benzothiadiazole; small molecule

1. Introduction

The prevalent research rush of the scientific community towards cost-effective and reliable
alternative energy sources involves the whole spectrum of research on photovoltaic technologies and
corresponding material science. Recent progress in the subfield of organic solar cells (OSCs) highlights
and even updates their potential as ideal, low-cost alternatives to the conventional inorganic silicon
technology. This is attributed to their advantages, such as light-weight and solution-processability,
as well as their compatibility with flexible substrates and upscaling techniques [1–3]. The emergence of
novel materials [4–7], advancements of device’s engineering [1,8,9] for enhanced light harvesting and
trapping by extending the absorption spectrum or introducing optical cavities [10,11], and additionally
leading theoretical studies [12,13], have so far skyrocketed their efficiency over 13% [8].
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Solution-processed bulk-heterojunction (BHJ) photovoltaics constitute a subcategory of OSCs
that already enjoys immense research. The careful selection of polymer donor and fullerene acceptor
materials, having in mind the proper energy level matching and appropriate degree of phase separation
inside the blend, has introduced additional degrees of freedom into OSC research and scientific
advancement [14–16]. Polymers, including P3HT [17] and PTB7 [18], as well as fullerene derivatives
with most notable PC61BM [19] and PC71BM [20] have been under study for years while demonstrating
exceptional efficiencies (>5%) for P3HT:PC61BM [21] and above 7% for PTB7:PC71BM based devices [22].
On the other hand, a very promising subfield of OSC research employs non-fullerene acceptors (NFAs)
that yield state-of-the-art OSC cells with impressive efficiencies exceeding 16% [23–25]. However, NFA
based OSCs remain partially explored and extensive optimization efforts are required, in order to counter
the competitive advantages of conventional fullerene-based materials. For instance, PC71BM-based
active blends result to OSCs that yield better photostability under operational conditions [26–28].
On top of that, tailor-made polymer fabrication is an additional way of research towards efficient
OSCs. Many polymers have been prepared through alternating copolymerization of donor (D) and
electron acceptor (A) units, thereby resulting in D–A pairs that effectively (a) exhibit multiple and
complementary absorptions; and (b) enhance charge transfer ability [4].

Another effective, yet simple strategy to enhance the OSC’s photovoltaic performance is the
adoption of a ternary structure into a binary system. This can be secured with the integration into the
active layer of a third component [29–32]. This third element could be a polymer [32–35], an organic
small molecule [36–49], a dye [50–52], a fullerene derivative [53], a graphene and a two dimensional
(2D)-based material [54–59], or a nanocrystal [60]. The introduction and the availability of materials
to be leveraged as third element support the better engineering of this architecture towards better
photovoltaic OSCs’ performances. The third component within ternary organic solar cells (TOSCs)
may function as a charge relay for electron and hole transport [56,58], as an energy transfer step, act
as a second donor [61], as well as create a new organic blend with new physical characteristics in
conjunction with the donor. In the cases where the charge transfer mechanism prevails, the third
component needs to be placed at the interface of the host donor and the acceptor in order, efficient
charge transfer to take place; the so-called energy level “cascade” phenomenon [29,57]. Careful design
and selection of the third component, as a function of its energy levels, electrical conductivity, electron
mobility and chemical properties, necessitate to ensure efficient charge transfer through the active layer
of TOSC [62]. The careful selection and introduction of the third element impacts the photovoltaic
properties of the resulting solar cell such as optical properties, the extension of the absorption’s
bandwidth and intensity, the improved charge or energy transfer efficiency, by regulating the local
environment at the D:A interfaces, thereby securing a better exciton generation and dissociation [36,37].
As a consequence, an improvement in efficiency may end up to power conversion efficiency (PCE)
values of the order of 8–10% [33,37,63].

2,1,3-Benzothiadiazole (BT), an electron-deficient unit, is among the most common building blocks
utilized for the lowering of potential and electron affinity of electron- transport materials [64,65].
BT is a n-type building block consisting of a benzene ring fused to one of thiadiazole [66,67], that can
be coupled with an electronically rich molecule to form low bandgap functional polymers or small
molecules [68]. Moreover, the cyano groups bound to the benzene ring can operate as electron
scavenging units. Following this recipe, the lowest unoccupied molecular orbital (LUMO) level of the
polymer can be reportedly lowered due to the benzene ring in an effective way [69].

In this work, a ladder-type vinyl complex based on cyanovinylene bonds, 4,7-dithien-benzothiadiazole
as central unit and thiophene rings as terminal units, was synthesized and characterized in terms of
its photophysical and electrochemical properties. The synthesized conjugated small molecule (CSM),
named compound T [70], was integrated as the third component, into a binary BHJ PTB7:PC71BM
active layer in different concentrations (3–15%) ratio to the polymeric donor. Upon the incorporation
of compound T in 5% as optimum determined concentration, a PCE of 8.34% was achieved for the
champion inverted TOSC device, improved by 12% with respect to the control inverted binary device.
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2. Materials and Methods

2.1. Materials and Instruments

PTB7 was purchased from Solaris Chem, while PC71BM and PFN were both purchased from
Solenne BV. CSM was synthesized according to a multi-step procedure, successively containing
donor–acceptor moieties seriatim. More specifically, two phenyl or thiophene rings were linked to
the 4,7-dithienbenzothiadiazole core unit, through a cyano-substituted vinylene bond. The chemical
structures of PTB7, compound T and PC71BM, employed in the ternary BHJ, are illustrated in
Figure 1. Such an approach is popular and is widely utilized to reduce the band gap of conjugated
semiconductors [71,72]. The exact synthetic procedure of compound T can be found in another
publication of our research team and is analyzed in Figure S1 [70].
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Figure 1. Chemical structures and energy levels of ternary blend’s component.

UV-vis absorption spectra were taken using a Shimadzu UV-2401 PC spectrophotometer to
a wavelength range of 300–800 nm. The photoluminescence (PL) spectra of the ternary active layers
were conducted at room temperature (RT) and set through a UV sensitive, calibrated CCD camera,
liquid N2 cooled—over a wavelength range of 600–950 nm. The excitation source employed was
a He–Cd CW laser at 325 nm with a full power of P0 = 35 mW. The morphologies of the surfaces
were examined with an atomic force microscope (Park Systems XE7). The OSC device photovoltaic
parameters (Jsc, Voc, FF and PCE) were measured at room temperature within glove box (MBRAUN)
conditions ((O2 < 0.1 ppm), moisture-free (H2O < 0.1 ppm)) and under standard illumination conditions
(at AM 1.5 G and an intensity of 1000 Wm−2). The external quantum efficiency (EQE) curves of the
devices were extracted under short-circuit conditions immediately, in order to avoid any device
degradation, using an integrated system (Enlitech, Taiwan) equipped with a lock-in amplifier with
a current preamplifier. To further enhance the credibility of our measurements, a monocrystalline
photodetector of known spectral response was used to calibrate the spectrum of the solar simulator.
OSC devices were assessed using a xenon (Xe) lamp, as well as an optical chopper at low frequencies
(200 Hz) in order to get the maximum sound/noise (S/N) ratio. To ensure the reproducibility of
the J–V characteristics, ten same devices consisting of six photovoltaics cells each were fabricated
and evaluated.

2.2. Device Fabrication

A conventional procedure was followed for OSC devices fabrication [16]. More specifically, OSCs
were fabricated onto glass substrates sputtered with indium-tin-oxide (ITO) that exhibited a 20 Ω sq−1

sheet resistance. To remove any impurities from the ITO glass, ultrasonic bath (Elma S 30 H Elmasonic)
for 10 min was applied using three different washing components, namely Hellmanex III detergent,
acetone and isopropanol in subsecutive steps, and then dried in an oven. Finally, a UV-ozone treatment
was performed for 15 min. The inverted structure was preferred for fabricating the OSC devices.
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PFN solution, with concentration 0.5 mg/mL, was dispersed in 1 mL of methanol (MeOH) and 2 µL
of acetic acid and was stirred overnight. Then PFN layer (ETL) was spin-cast at 1000 rpm for 45 s
but, in order to achieve layer thickness of approximately 10 nm, a multilayer approach was used.
Specifically, four layers of PFN solution were developed with intermittent annealing steps at 150 ◦C
for 30 s between each spin-coating stage. PTB7 and PC71BM, were blended (25 mg/mL, ratio 1:1.5) in
chlorobenzene (CB):DIO (97:3 vol%) solvents’ mixture. The said photoactive layer was subsequently
developed by spin-coating of the blend solutions at 1500 rpm on top of the PFN layer with a thickness
of 85 nm. Thereafter, a MoO3 layer (8 nm) and the Al electrode (100 nm) were thermally evaporated
through a shadow mask hence defining an active area of 4 mm2 for each device.

3. Results and Discussion

3.1. Photophysical Properties

Compound T was characterized using UV-vis, FT-IR and PL spectroscopy. The UV-vis absorption
spectrum of a thin film pristine compound T exhibited two main peaks at 398 nm and 485 nm,
respectively (Figure 2), which were both due to the π→π* electron transition.
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Figure 2. Normalized UV-Visible absorption spectra of Compound, PTB7 and PC71BM in thin films.

According to the FT-IR spectrum of compound T [70] (Figure S2) a characteristic peak at 2214 cm−1

appears, due to the CN-stretching bond. The peak at 3103 cm−1 is ascribed to aromatic C–H stretching,
while the absorption bands at 1652 cm−1, 1577 cm−1, 1533 cm−1, 1520 cm−1, 1479 cm−1 and 1441 cm−1

correspond to C=C aromatic stretching bonds, respectively. Finally, peaks at 1267 cm−1, 1252 cm−1,
1243 cm−1, 1224 cm−1, 1203 cm−1, 1189 cm−1, 1097 cm−1, 1080 cm−1 and 1048 cm−1 are attributed to
the benzene ring of benzothiazole. On the other hand, the PL spectrum of compound T in solid state
was recorded in the range of 600−900 nm, upon photoexcitation at 485 nm, as depicted in Figure S3.
Compound T exhibited a broad peak at 700 nm.

In Figure 3 the absorption spectra of the ternary active layers are illustrated. It is observable that
the absorption intensity slightly increased as the concentration of compound T got 5% across the full
spectrum range and especially between 400 and 560 nm, where the host PTB7 and compound T spectra
overlapped. Moreover, the common peak of compound T and fullerene derivative PC71BM got higher
values, while the absorption peak of PTB7, decreased. According to relevant existing literature [73], two
broad absorption peaks at around 614 and 682 nm are attributed to the characteristic π–π* transition of
the PTB7 polymer.
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in different concentrations.

In the latter, the photoluminescence (PL) spectrum of PTB7:compound T was quenched as
an optimum concentration value of the third element was approaching its optimum value. The PL
quenching is clear evidence of the improved exciton dissociation, between compound T and PTB7, as the
emission of the latter quenched (Figure 4). The best charge extraction was observed after the addition of
5% v/v Compound T, compared to the reference binary system (PTB7:PC71BM). This is a possible reason
for the enhanced PV parameters in the case of 3% and 5% ternary devices, as demonstrated below in
Table 1. This fact proves that compound T could act as an electron cascade material that facilitates the
higher electron extraction from PTB7 towards PC71BM compared to the binary reference system.
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3.2. Photovoltaic Performance

A schematic representation of the inverted ternary OSC structured as ITO/PFN/PTB7:compound
T:PC71BM/MoO3/Al is depicted in Figure 5, while the respective configuration and energy diagram of
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the device with the HOMO and LUMO energy levels of the materials selected are depicted in Figure 1.
Due to the energy level offset between PTB7 [74], compound T [70] and PC71BM [74] (3.31 eV, 3.58 eV
and 4.3 eV in LUMO level and 5.15 eV, 5.48 eV and 6.0 eV in the HOMO level, respectively) the charge
transfer is enhanced. This is clear evidence, that the addition of compound T up to an optimum
concentration, promoted the electron-cascade effect. More specifically, excitons are dissociated at the
D:A interfaces throughout the blend layer. Since the HOMO levels of compound T and the conjugated
polymer PTB7 perfect match, holes’ transport was facilitated through the compound T en route to the
anode electrode. In Figure 5, current-to-voltage characteristics based on the PTB7:PC71BM and the
ternary PTB7:compound T:PC71BM active layers, are also depicted. The corresponding PV performance
parameters are listed in Table 1. The reference binary device exhibited a short circuit current density
(Jsc) of 16.10 mA cm−2, an open circuit voltage (Voc) at 0.72 V, a fill factor (FF) at 64.6% and a PCE
of 7.51%.
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Figure 5. Current density to voltage characteristics of different concentrations of compound T in
PTB7:PC71BM blend (a) and a schematic representation of the ternary bulk heterojunction device
structure (b).

As shown, Jsc did not follow the rising trend of compound T concentration, but instead it increased
from 3% to 5% and then started to decay as the concentration of compound T got higher values.
This was attributed to the degradation of the interfaces between compound T and the polymer donor
material. On the other hand, the Voc obtained in the ternary cells was almost identical to the binary
PTB7:PC71BM, reflecting that charge transfer state energy (ECT) does not change upon the addition of
Compound T [75].

Table 1. Summary of solar cell parameters of PTB7:PC71BM and ternary PTB7:compound T:PC71BM
blend with different concentrations *.

Concentration of Compound T Calc. Jsc
(mA cm−2)

Jsc
(mA cm−2)

Voc
(V)

FF
(%)

PCE
(%)

Reference 15.62 16.10 ± 0.08 0.72 ± 0.04 64.6 ± 0.6 7.51 ± 0.12

3% v/v 16.00 16.44 ± 0.11 0.73 ± 0.02 65.9 ± 0.3 7.96 ± 0.11

5% v/v 16.20 16.70 ± 0.05 0.73 ± 0.01 67.7 ± 0.4 8.25 ± 0.09

10% v/v 15.58 16.06 ± 0.11 0.73 ± 0.02 64.0 ± 0.3 7.50 ± 0.11

15% v/v 15.14 15.61 ± 0.13 0.72 ± 0.01 63.3 ± 0.1 7.11 ± 0.09

* The data were averaged from ten identical organic solar cell (OSC) devices with six cells each.
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3.3. Charge Transfer Properties

In view of further investigating the origin of the Jsc increase upon the addition of the compound T
up to an optimum concentration, the incident photon to electron conversion efficiency was measured
(IPCE) for each device (Figure 6). From EQE curves, it was deduced that the 5% concentration (v/v)
had the best response at both main absorption peaks, which indicates that this ratio might yield the
most efficient charge transportation and collection due to a better domain engineering within the active
layer of the ternary system.

Carriers’ mobilities of the reference device (PTB7:PC71BM) and the ternary one, incorporating 5%
compound T, were also obtained by space charge limited current (SCLC) method. To this end, hole
and electron only devices of the structure ITO/PEDOT:PSS/active layer/MoO3/Au and ITO/PFN/active
layer/Ca/Al were respectively fabricated and J-V2 characteristic curves are reported ( Figure S5).
Calculations were based on the Mott–Gurney equation [76]:

JSCLC =
9
8
εrε0µ

(V −Vbi)
2

d3 , (1)

where εr is the relative dielectric constant, ε0 is the permittivity of free space, µ is the charge carrier
mobility, V is the applied voltage, Vbi is the built-in potential and d is the thickness of the active layer.
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The µh and µe values for holes and electrons mobilities of the reference and 5% compound
T ternary device are summarized in Table 2, respectively. It is obvious that the incorporation
of compound T into the binary solution resulted to the improvement of hole mobility, an even
higher increase in electron mobility and most important the more balanced ratio between hole
and electron mobilities. Moreover, the fact that the µh/µe ratio is closer to one for the case of the
ternary device, is a key prerequisite in avoiding charge accumulation in the device and thus higher
photovoltaic performances. The aforementioned result confirms the previous assumption for the
electron-cascade-role of compound T.
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Table 2. Hole and electron mobilities of PTB7:PC71BM and ternary blend PTB7:compound T
(5%):PC71BM *.

Active Layer µh (cm2
·V−1·s−1) µe (cm2

·V−1·s−1) Ratio (µh/µe)

PTB7:PC71BM
(reference) 9.91 × 10−5 8.01 × 10−5 1.24

5% compound T 1.01 × 10−4 8.61 × 10−5 1.17

* The data were averaged from ten identical OSC devices with six cells each.

3.4. Morphology

In order to study the effect of compound T on active layer’s morphology, a reference and a ternary
blend layer of 5% (v/v) concentration were subjected to AFM measurements. Subsequent results
(Figure S4) indicate a better morphology together with a reduction in roughness (RMS) for the ternary
device containing 5% of compound T, by approximately 9.1%. In particular, the RMS value for
the reference binary layer was 1.4 nm, whereas the ternary layer demonstrated an RMS value of
approximately 1.28 nm. This is proof that the addition of compound T enhances the interface quality
between the active layer and hole transport layer, thereby indicating an improvement in FF and other
PV parameters [77].

4. Conclusions

In conclusion, simple ternary inverted organic solar cells incorporating the soluble compound
T, into the photoactive layer of the binary PTB7:PC71BM blend were fabricated by differentiating
additive’s concentration from 3% to 15%. The incorporation of the compound T led to a favorable
energy alignment between the energy levels of PTB7 donor and PC71BM acceptor, thus facilitating the
electron-cascade effect. The champion ternary blend device based on the ITO/PFN/PTB7:compound
T:PC71BM/MoO3/Al structure, with a 5% (v/v) concentration of compound T, resulted in a PCE of
8.34%, with an enhancement of 12% compared to the reference device. Therefore, since compound T
had a wide optical bandgap and low HOMO level, it demonstrated the potential for boosting device
performance of other visible, as well as the near-infrared non-fullerene blends like, which are of great
interest for the OSC community.

Supplementary Materials: The synthetic procedure of compound T and its intermediate stages, as well as
explanations of experimental details to understanding and reproducing the research are available online at
http://www.mdpi.com/1996-1073/13/2/450/s1, Figure S1: Five-step synthesis of compound T, Figure S2: FT-IR
spectrum of compound T, Figure S3: Normalized PL spectrum of compound T in thin film, Figure S4: AFM
images of (a) binary and (b) ternary bulk heterojunction film with 5% compound T content, Figure S5: J–V2

characteristics of the fabricated (a) electron-only and (b) hole-only devices, upon the addition of 5% compound T,
for the determination of carriers’ mobilities.
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