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“Information contains an almost mystical power of free flow and self repli-
cation, just as water seeks its own level or sparks fly upward.”

Neal Stephenson
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Abstract
Machine learning and specifically deep learning methods have been applied
to complex signal processing problems with remarkable results. Recent break-
throughs in audio synthesis involve the use of end-to-end deep neural net-
works to model speech in the auditory domain. WaveNet is one such model
that is currently considered state-of-the-art in speech synthesis. In this the-
sis, we investigate the use of WaveNet and WaveRNN as vocoders for musi-
cal synthesis. Furthermore, we investigate WaveNet’s potential to capture
emotive patterns and create emotional music. Prior to choosing an opti-
mal set of parameters for each model, it was critical to consider the spec-
tral and structural distinctions between speech and music signals. Regard-
ing the vocoders, we employed mel spectrograms as temporal local labels
for audio reconstruction. The mood-conditional network received no struc-
tural instruction and was instead left to generate original audio, conditioned
only on a specific mood tag. The models were trained intensively for a mini-
mum of 9 days with WaveNet vocoder converging after 19 days. Synthesized
waveforms were evaluated subjectively by human judges, as well as objec-
tively with the use of the PESQ algorithm. Additionally, the respondents
were asked to evaluate the mood-conditional samples by guessing the mood
of each track. While WaveRNN eventually proved unfit for the nature of
our problem, WaveNet-reconstructed waveforms are extraordinarily similar
to the originals, with their 5-scale Mean Opinion Scores exceeding 4.0 in both
subjective and objective evaluation. Also, remarkably, the majority of respon-
ders accurately predicted the moods of all four tracks. This result leads us to
anticipate that with additional instruction, WaveNet will be able to respond
to emotional cues and automatically create music that is clearly influenced
by the range of human emotions.
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Περίληψη

Η μηχανική μάθηση και ιδιαίτερα οι μέθοδοι βαθιάς μάθησης, έχουν εφαρμοστεί

σε περίπλοκα προβλήματα επεξεργασίας σήματος με αξιοσημείωτα αποτελέσματα.

Πρόσφατες καινοτομίες στη σύνθεση ήχου βασίζονται στη χρήση πολύ βαθιών

νευρωνικών δικτύων για τη μοντελοποίηση της ομιλίας απευθείας στο πεδίο του

ήχου. Στην παρούσα διπλωματική εργασία, διερευνούμε τη σύνθεση μουσικής, α-

ξιοποιώντας τα δίκτυαWaveNet και WaveRNN ως κωδικοποιητές (vocoders).
Επιπλέον, διερευνούμε τη δυνατότητα του WaveNet να αποτυπώνει μοτίβα δι-
άθεσης και να δημιουργεί συναισθηματική μουσική. Πριν από την επιλογή ενός

βέλτιστου συνόλου παραμέτρων για κάθε μοντέλο, ήταν σημαντικό να ληφθούν

υπόψη οι φασματικές και δομικές διαφορές μεταξύ των σημάτων ομιλίας και μουσι-

κής. ΄Οσον αφορά τους κωδικοποιητές, χρησιμοποιήσαμε φασματογράμματα mel
ως ετικέτες για την ανακατασκευή ήχου. Το εξαρτώμενο από τη διάθεση δίκτυο

αντίθετα, δεν έλαβε καμία χωρική πληροφορία και αφέθηκε να παράγει πρωτότυ-

πο ήχο εξαρτώμενο μόνο από μία ετικέτα διάθεσης. Τα μοντέλα εκπαιδεύτηκαν

εντατικά για τουλάχιστον 9 ημέρες με τον κωδικοποιητή WaveNet να συγκλίνει
μετά από 19 ημέρες. Οι παραχθείσες κυματομορφές αξιολογήθηκαν υποκειμενικά

από ανθρώπινους κριτές, καθώς και αντικειμενικά μέσω του αλγορίθμου PESQ.
Επιπλέον, οι ερωτηθέντες κλήθηκαν να μαντέψουν τη διάθεση δειγμάτων που ε-

ίχαν παραχθεί από το μοντέλο με προκαθορισμένη διάθεση κατά το στάδιο της

σύνθεσης. Ενώ το WaveRNN αποδείχθηκε τελικά ακατάλληλο για τη φύση του
προβλήματός μας, οι κυματομορφές που έχουν ανακατασκευαστεί με τοWaveNet
είναι σχεδόν πανομοιότυπες με τις πρωτότυπες και επιτυγχάνουν Μέσες Βαθμολο-

γίες Γνώμης σε 5-βάθμια κλίμακα (MOS) που ξεπερνούν το 4,0 τόσο στην υποκει-
μενική όσο και στην αντικειμενική αξιολόγηση. Αξίζει επίσης να σημειωθεί πως η

πλειονότητα των κριτών προέβλεψε σωστά τις προκαθορισμένες διαθέσεις και των

τεσσάρων κομματιών. Με βάση τα παραπάνω θετικά ευρήματα, αναμένουμε πως,

με επιπρόσθετη καθοδήγηση, το WaveNet θα μπορεί να εντοπίζει συναισθηματι-
κά στοιχεία και να δημιουργεί με αυτόματο τρόπο μουσική με σαφή την παρουσία

ανθρώπινου συναισθήματος.
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Chapter 1

Introduction

Artificial Intelligence (AI) and its applications in an increasing number of
scientific fields are the subject of ongoing research. This integration is nec-
essary in an era when the amount of data available exceeds the capacity of
human labor. Thus, pattern recognition was introduced as a method for AI
systems to learn on their own by extracting patterns from data. This resulted
in the development of neural networks (NNs), which are computing systems
inspired by the function of the human brain. Deep learning via deep neural
networks (DNNs), or networks with a large number of layers, is frequently
used in research to improve data exploitation efficiency. The usage of deep
neural networks for commercial purposes has increased dramatically in the
recent years. Deep learning has become the state-of-the-art in most domains.

Neural networks have proven to be extremely effective at processing data
that people generally handle intuitively, such as sound and image. Very deep
generative neural networks are used in speech synthesis to generate human
voices after adequate training or to emulate someone’s tone. WaveNet [1]
and WaveRNN [2] are recent advances in the field of speech synthesis that
perform end-to-end audio generation with amazing results.

DeepMind, the team behind WaveNet and WaveRNN have also been suc-
cessful in generating music with these models. Even when not paired with
additional structural or symbolic information, WaveNet can produce audio
that sounds musical. WaveNet is a revelation in the field of end-to-end auto-
matic music creation posing the challenge of making the generated audio as
realistic as possible [3]. As poet Henry Wadsworth Longfellow said, "Music
is the universal language of mankind", and therefore it would be fascinating
to see how technology can interpret a language with such complex rules and
emotions.
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1.1 Motivation

Music theory constitutes a set of clear rules on how musical sequences should
be structured. One way to comprehend music is as a set of notes and chords
that conform to the rules of music theory. However, other aspects affect-
ing musical works, such as human emotions, make it more difficult for non-
human media to mimic the process of music synthesis.

FIGURE 1.1: Xenakis’ Stochastic representations in Pithoprakta

Musical composition is inherently related to mathematics. In 1954, Iannis
Xenakis introduced the use of statistics and probability concepts in musi-
cal composition to control the orchestral sound masses of Pithoprakta [4].
Later on, in 1956, he named this project Stochastic Music and began research-
ing its possibilities. His peculiar notation is shown in Figure 1.1. Xenakis
claimed that musical sequences are intrinsically random, hence his compo-
sitions were formulated through stochastic theory. This approach raises a
question:

“What is the minimum of logical constraints necessary for the construction of a
musical process? [5]”

Today, there is discussion around music synthesis and automated compo-
sitions involving Artificial Intelligence-driven software and deep neural net-
works. Yet how well would the human factor be simulated by such software?
And could it also get emotional? [6]

Combining Xenakis’ theory about music being stochastic and the concrete
rules of music theory, neural networks should be able to model these complex
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and contrasting factors. In essence, the output of a deep neural network
is fully deterministic, even though training methods are non-deterministic.
Furthermore, unlike organized representations, such as rules and grammars,
deep learning excels at processing unstructured data from which its layers
will generate higher-level representations tailored to the job.

1.2 Related Work

For a long time, automatic music generation has been a topic of active re-
search involving early digital computers [7] or, as previously discussed, pure
mathematics [5]. Speech synthesis practices, such as concatenative synthesis,
can also be applied in music [8],[9]. The majority of modern music synthesis
tools work with symbolic musical representations like MIDI, Piano Roll, or
ABC notation. A synthesizer is then used to convert these representations
into audio signals.

RNNs with LSTM (Long Short Term Memory) layers are the current state-
of-the-art technology for handling symbolic data. Magenta’s Performance-
RNN module [10] takes MIDI sequences as input and is capable of creating
intricate polyphonic musical patterns. While data remains symbolic in its
majority, note timings and velocities are taken into account during training,
which makes the outcome sound more natural. However, due to the weak-
ness of RNNs to capture long term dependencies, the patterns generated are
not particularly interesting or original for extended duration.

Yet, pattern distinctiveness is sometimes more important than originality of
a composition. DeepBach [11] is another example of an RNN symbolic music
generator that uses a variation of Gibbs sampling [12] to produce notes in the
style of Bach chorales. Here, the network is used to capture and reproduce a
specific composing style rather than be creative.

The symbolic approach simplifies the modeling problem by operating on a
lower-dimensional space. However, there are limitations on what music is
generated by these models. These limitations led to the pursuit of the non-
symbolic approach through direct modeling in the signal domain. WaveNet
[1], as an autoregressive CNN-based model, outperformed parametric and
concatenative models in terms of naturalness and fidelity of text-to-speech
(TTS) synthesis despite its great computational complexity.
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End-to-end music synthesis with neural networks is a rather under-explored
domain in comparison to speech synthesis. Likelihood-based models like
WaveNet and SampleRNN [13] are so far dominant in the field of raw au-
dio generation both for speech and music synthesis. Apart from autoregre-
sive models other approaches involve the use of Generative Adversarial Net-
works (GANs) which also have remarkable outcomes in the image domain
[14]. WaveGAN[15] was the first attempt and, while the resulting samples’
fidelity was not perfect, it inspired other works, like GANSynth [16], that
operates on the spectral domain to produce high fidelity musical instrument
timbres.

1.3 Thesis Contribution and Problem Statement

In this thesis, we aim to explore how well generative deep neural networks
imitate music synthesis in terms of sound quality and naturalness. Our ex-
periments are focused on commercially available deep neural networks for
end-to-end speech synthesis.

WaveNet and its successor, WaveRNN, are dominant in text-to-speech syn-
thesis performance. By combining important communication layers of the
human voice, such as accents, emotion, and intonation, WaveNet seeks to
generate voices that sound more natural than those produced by previous
systems. WaveNet voices are currently used in popular Google applications,
such as Google Assistant [17]. With WaveNet and WaveRNN currently being
state-of-the-art in end-to-end raw audio synthesis, we decided to invest more
into testing their limits in music making. WaveNet was preferred over other
tools mentioned above, because of its novel network architecture and ability
to capture long term dependencies over time. WaveRNN was considered a
faster alternative to the long inference times of WaveNet.

Our first goal is to use WaveNet and WaveRNN as vocoders to reproduce
high fidelity audio. We compare the generated result with the original piece.
Secondly, we attempt to introduce the subjective aspect of human emotion
into the training, to influence the generated audio. We divide the dataset into
four moods, chosen subjectively by a group of human judges, and we try to
enforce this trait to the generated audio. In this case, we are no longer using
WaveNet as a vocoder, but rather we exploit its ability to capture long term
structure and let it compose with no local information to influence structure
over time. The results are highly interesting in both cases.
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1.4 Thesis Outline

• Chapter 2 - Theoretical Background: A review of theoretical concepts
explored in the thesis.

• Chapter 3 - Deep Music Synthesis: Detailed presentation of WaveNet
and WaveRNN models in terms of architecture and operational
properties.

• Chapter 4 - Experiments: Detailed analysis of the testing phase and an
evaluation of the results.

• Chapter 5 - Conclusions and Related Work: A summary of the mate-
rial of the thesis, discussion and suggestions for future work.
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Chapter 2

Theoretical Background

2.1 Convolutional Neural Networks

Convolutional Neural Networks or CNNs are a class of deep neural net-
works made to imitate human vision in analyzing visual data. They were
first used to identify handwritten numbers in the 1980s. However, because
of the lack in data and computational resources at the time, CNNs failed to
enter the world of industry and were limited to menial tasks. CNNs were
revisited in 2012, when enough data and computer resources were available.

FIGURE 2.1: A basic Convolutional Neural Network.

As the name implies, the main component of convolutional networks is the
convolutional layer that tries to learn the feature representation of the inputs.
It is made up of many filters (kernels) that are utilized to compute the various
feature maps. So, depending on the problem, a n × n filter is chosen and
applied to the input data to produce the convolutional features (Figure 2.1).
For instance, Figure 2.2 depicts an example with a 3× 3 kernel applied to an
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image. After adding bias and applying an appropriate activation function,
this convolution feature is passed on to the next layer.

FIGURE 2.2: Convolution operation performed on image data.

In-between successive convolutional layers there is usually a pooling layer
that reduces the resolution of the feature maps and the amount of parameters
and computations in order to also prevent overfitting. The most common
pooling operations are max and average pooling.

After feature extraction there are one or more fully connected layers. Neu-
rons in a fully connected layer have full connections to all activations in the
previous layer, as seen in regular Neural Networks. Their activations can
hence be computed with a matrix multiplication followed by a bias offset.

Convolutional Neural Networks have been used mostly in image recognition
and generation tasks, yet it can be fit for speech, sound or video data as well.
The main difference is the representation of each kind of input; sound is rep-
resented as a one-dimensional matrix, plus one extra dimension for channels
and image as a two-dimensional matrix, plus one dimension for channels.
For images therefore the convolutions are two-dimensional and the process
looks like Figure 2.1 and Figure 2.2, whereas for sound data one-dimensional
convolution is applied with a kernel sized 1× n.

The key feature that makes CNNs suitable to handle sound and image in-
put is the compartmentalization of the signal achieved through convolutions.
The notion of convolutions is not only limited to computer vision and image
data. Many state-of-the art networks used for speech or natural language
processing, amongst which is WaveNet [1], incorporate convolutional me-
chanisms at some point in their architecture.



2.2. Recurrent Neural Networks 9

2.2 Recurrent Neural Networks

RNNs (recurrent neural networks) are a type of neural network that can be
used to model sequential data. The core property of RNNs is that they em-
ploy an internal state that functions like human memory. This way they re-
tain important attributes of the input, which enables them to predict time-
series data, such as speech, text, audio, financial time-series, the weather and
so on.

FIGURE 2.3: Visual comparison of a feed-forward Neural Net-
work and a RNN.

Contrary to RNNs, classic feed-forward neural networks have trouble pre-
dicting the next state in a sequence due to their lack of memory. Feed-Forward
networks perform poorly, when it comes to data with time dependency, as
they only focus on the current input and ignore previous states. Any infor-
mation about the past is assimilated through training, so there is no notion of
order. In RNNs, on the other hand, data do not circulate forward, but rather
in a loop where each decision takes into consideration previously acquired
information (Figure 2.3)

FIGURE 2.4: An expanded view of the RNN hidden layer.

Figure 2.4 shows the main structure of a RNN as well as an expanded view
of its structure. RNNs consist of an Input Layer, Hidden Layer, and Output
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Layer. The looping arrow in the hidden state is the recurrence, which gives
the network its memory. The input at time t is xt and st refers to the memory
at time t:

st = f (Uxt + Wst − 1)

where f is an activation function, W is the weight of the input, U represents
the weight of the current sample input, and V is the weight of the sample
output. In short, information about the immediate past is added to the cur-
rent state. Unlike CNNs, these parameters are shared through the network,
which greatly minimizes the number of trained and estimated parameters.

Weights in a RNN are modified both through gradient descent and through
a process called Backpropagation Through Time or BPPT. For BBPT it is im-
portant to remember that the error of a timestep depends on the previous
time step. With that in mind, the error is calculated for each timestep by
back-propagating the error from the last step to the first and the weights are
updated. Naturally, for a large number of timesteps this procedure can be
computationally expensive.

FIGURE 2.5: Mapping options of RNNs. [18]

RNNs also have the ability to map not only one input to one output, but also
one to many, many to one, and many to many (Figure 2.5). This allows them
to deal with a wide range of applications.

2.2.1 Drawbacks of RNNs

Vanilla RNN usually manifests the problems of either vanishing or exploding
gradients. Exploding gradients is an issue commonly encountered in artifi-
cial neural networks that perform backpropagation and involve gradients in
the learning process. In this case, due to the way the RNN functions, the
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magnitudes of the weights get extremely large over timesteps, so the gradi-
ents "explode". This issue however is usually solved by performing gradient
clipping or truncation.

With vanishing gradients, weights with smaller values completely vanish,
disrupting the training process, as the model is no longer learning or is learn-
ing too slowly. Fortunately, this issue can be solved by using gated RNN
cells, such as LSTM.

2.2.2 The LSTM Cell

Long Short-Term memory (LSTM) networks are a helpful addition to the
RNN structure, which practically extends the memory of the network. The
LSTM cell is a gated cell which decides whether a piece of information is im-
portant or not, based on weight assignment. While the algorithm is learning
the weights, it is simultaneously learning to differentiate between valuable
and unnecessary data.

FIGURE 2.6: The gated LSTM cell.[19]

There are three gates in an LSTM: input, forget, and output. These gates
determine whether incoming data should be allowed (input gate), whether
it should be deleted because it isn’t important (forget gate), or whether it
should have an impact on the output at the current timestep (output gate).
The gated LSTM cell is shown in Figure 2.6. This effective algorithm was
further improved with the introduction of Gated Recurrent Unit or GRU [20].
This variant combines the forget and input gates into a single update gate, as
well as the data unit state and hidden state, resulting in a model structure
that is simpler than LSTM.
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2.3 Speech Synthesis

Speech Synthesis is a research field related to the production of artificial hu-
man voices and speech. With the implementation of Text-To-Speech (TTS),
written text can be converted to synthesized speech. Speech synthesis sys-
tems have evolved throughout time in response to recent trends and new
possibilities in data collection and processing. While concatenative TTS and
parametric TTS have long been the two main methods of Text-to-Speech con-
version, the introduction of Deep Learning has brought a new perspective
to the problem of speech synthesis, shifting the focus away from human-
developed speech features and toward fully machine-obtained parameters.

2.3.1 Concatenative Synthesis

FIGURE 2.7: Concatenative Synthesis

Concatenative TTS is based on the use of high-quality audio snippets that
are joined to generate the speech. Voice actors are recorded expressing a
variety of speech parts, ranging from full sentences to syllables, which are
then tagged and segmented into linguistic features ranging from phonemes
to phrases and sentences, resulting in a large database. For speech synthesis,
a Text-to-Speech engine matches the input text with relevant content from
the database, concatenates them and generates an audio file (Figure 2.7).

Amongst the benefits of this method is the high audio quality in terms of
intelligibility and the possibility of retaining the original actor’s voice. How-
ever, concatenative systems are time consuming, as they require large databases
and hard-coding the combinations to form these words. Also, this mix and
match method does not guarantee that the emotion, prosody and other speech
features will be preserved in the final output speech. The database may be
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huge, but it is extremely unlikely for the TTS engine to find recordings that
match all of these factors. Therefore, sometimes the result may sound flat
and unnatural.

2.3.2 Statistical Parametric Synthesis

FIGURE 2.8: Parametric or HMM-based Synthesis [21]

Statistical parametric synthesis [22] is a statistical, model-based alternative
to the rigid concatenative method. The goal is to generalise the statistical
profile of speech in order to train a universal speech model to generate all
kinds of speech. The profile of speech is described by parameters, such as
fundamental frequency, magnitude spectrum, etc., which are used to train
the model. These characteristics are often modeled with the use of Hidden
Markov Models (HMMs) as in Figure 2.8.

The parametric method generates more natural speech samples, yet not as
intelligible as the concatenative method. There are a lot of artifacts in the pro-
duced speech and voices generated may sound flat and robotic. This method
is very weak in creating emotional voices, yet incorporates speaker identities
and characteristics very well. Parametric systems are also easy to develop,
which is why they have been so popular with TTS applications.

2.3.3 The Deep Learning Approach

Deep Neural Network synthesis is a parametric synthesis method with the
ability to simulate more complicated dependencies. The audio features used
to train a generative deep neural network are usually mel-filter banks or
generalized spectrograms of speech segments. WaveNet [1], which debuted
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in 2016, transformed the area by allowing for the production of natural-
sounding speech. Neural speech synthesis has been rapidly evolving since
then. As an example, WaveRNN, the more compact RNN version of WaveNet
was recently involved in the previously impossible project of giving people
with progressive neurological diseases (ALS, Parkinson’s etc.) their voices
back [23].

2.4 Mel Scale

While vanilla spectrograms provide important information about how a sig-
nal’s frequencies are distributed across time, they are frequently insufficient.
Pairs of similarly spaced sounds picked from higher frequencies sound sub-
stantially closer in pitch than pairs of equally spaced frequencies chosen from
lower frequencies, according to a psychoacoustics experiment [24]. In fact,
the experiment proved that humans perceive frequency logarithmically, and
not linearly as is depicted in vanilla spectrograms.

FIGURE 2.9: The mel scale.

This realization led to the mel scale ()Figure 2.9, a perceptual scale of pitches
believed by listeners to be equal distance apart. As a reference, 1000 mels
were assigned to 1000 Hz. Roughly, 2 octaves in Hz equal about 1 octave in
mels above 500 Hz. A more intuitive representation is shown in Figure 2.10
with the help of a somewhat warped keyboard.

Obtaining the Mel representation of a signal is pretty straightforward:

1. Calculate Short-Time Fourier Transform

2. Convert amplitudes to decibels (dB)

3. Convert Frequencies to Mels
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FIGURE 2.10: A warped keyboard reflecting the step distances
of the mel scale.

Conversion from frequency (f) to Mels (m) and vice versa can be done ac-
cording to the following two formulas:

m = 2595 · log10(1 +
f

700
) (2.1)

f = 700 · (10m/2595 − 1) (2.2)

Mel-based spectral representation has a number of benefits, when used as a
local conditioner for speech processing in deep neural networks. First, it is
a non-linear frequency analysis that approximates the way human hearing
works. Also, although it is based on a rather simple formula, Mel spectrum
introduces a great level of detail into synthesis and suits various different
applications in sound processing and synthesis.

A useful tutorial on Mel filter banks can be found in [25].
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Chapter 3

Deep Music Synthesis

In this section, we analyze the main models that were employed for deep
music synthesis, namely WaveNet [1], WaveRNN [2], and variations thereof.
Both models were thoroughly tested as vocoders conditioned on mel-filter
bank labels.

3.1 WaveNet

WaveNet [1] is a recently introduced deep generative convolutional neural
network, designed for audio synthesis. It is trained on and generates raw
audio waveforms in an auto-regressive and probabilistic manner, a property
that makes it suitable for dealing with more complex speech synthesis tasks.
Evaluation in comparison with parametric and concatenative models indi-
cates a radical improvement over the previous state-of-the-art in terms of
naturalness and fidelity of text-to-speech (TTS) synthesis. Some samples of
speech synthesis are available on Google Deep Mind’s blog [26].

Despite its impressive results, WaveNet was too computationally demand-
ing to be considered for use in real-world applications, at the time of its re-
lease. More specifically, both training and generating tasks of the initially
proposed model, involve great computational complexity that eventually
slows down the whole process. However, since 2017, faster, optimized ver-
sions of WaveNet have been published [27] [28], thereby facilitating the use of
WaveNet voices for common TTS applications, such as Google Assistant [17].
Furthermore, WaveNet shows promising results in music modeling tasks.

The following sections offer an overview of WaveNet’s main characteristics
and architecture.
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3.1.1 WaveNet Architecture

The design of WaveNet [1] is largely based on the PixelCNN [29], a network
with the ability to predict an image’s next pixel by conditioning on previ-
ously generated pixels. PixelCNN operates on the two-dimensional space
of images so, with WaveNet, the same logic is applied to one-dimensional
audio waveforms.

WaveNet models the probability distribution of an audio sequence condi-
tioned on all of the previous samples. Given a sequence of previously gener-
ated samples x = {x1, ..., xt−1}, WaveNet produces the conditional probabil-
ity distribution for sample xt as a chain product:

p(x) =
t

∏
t=1

p(xt|x1, ..., xt−1) (3.1)

By conditioning each sample to the previous ones, WaveNet achieves a new
level of naturalness and fluidity in the modeled sound wave. The above
property accounts for WaveNet’s description as a fully probabilistic [30] and
autoregressive [31] model.

In Figure 3.1 the basic layout of the network is shown as originally seen in [1].
Through the following sections, WaveNet is broken down into six different
parts, to further clarify the network’s architecture as a whole. Those parts are
preprocessing, dilated causal convolutions, gated activation units, residual
and skip connections, and finally post-processing.

FIGURE 3.1: WaveNet Block Architecture
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Preprocessing

Typically, audio referred to as CD-quality has a sampling frequency of 41000
Hz and 16-bit depth. According to the Nyquist Theorem, a sampling rate of
41000 Hz covers the entire human hearing range without aliasing. However,
since WaveNet is probabilistic, input needs to be processed and encoded to
minimize network complexity. As a first step, audio is converted to 16000
Hz PCM, which is a popular setup for speech synthesis applications and an
adequate compromise for music. Then, audio samples are transformed using
µ-law transformation

f (xt) = sign(xt)
ln(1 + µ|xt|)

ln(1 + µ)
, (3.2)

where xt ∈ [−1, 1] and µ = 255. Furthermore, audio is quantized into 256
integer values. This way, audio depth is reduced to 8-bits. Finally, audio
samples are encoded to one-hot vectors. As seen in the experiments section,
the audio quality reduction induced by storing audio as 8-bit integers does
not impact signal reconstruction negatively.

Dilated Convolutions

A key component of WaveNet architecture is the concept of dilated causal
convolutions. One-dimensional causal convolutional layers capture the time
dependence on the previous samples by combining the properties of causal
and dilated convolution filters [32]. The difference between causal and di-
lated convolution layers is shown in Figure 3.2. The term "causal" indicates
that only previous samples are used to predict the next one, thus preserving
the time-linearity of the time series. "Dilated" refers to skipping samples by
doubling a dilation factor on each filter until a set limit is reached and then
repeating the dilation sequence (1, 2, 4, ..., 256, 512, 1, 2, ..., 512, 1, 2, ... 512).
The dilated causal filters are then stacked to form the setup in Figure 3.2(c).

Stacked dilated causal convolutional layers are used to increase the receptive
field without increasing the depth of the network, while preserving the initial
input resolution. As suggested in [33], the exponential increase of the dila-
tion factor of the layers leads to an exponential growth of the receptive field
with depth. Dilated causal convolution stacks have longer receptive fields
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FIGURE 3.2: Visualization of a stack of convolutional layers.
(a) Dilated Convolution. (b) Causal Convolution. (c) Dilated

Causal Convolution [32]

in comparison with non-causal, non-dilated stacks and are considered com-
putationally efficient and ideal for capturing the temporal characteristics of
audio waveforms.

Gated Activation Units

Instead of the typical tanh non-linearity, WaveNet features gated activation
units after the dilation stacks, which help the network model more complex
operations. As first used in PixelCNN [29]:

z = tanh(W f ,k ∗ r)� σ(Wg,k ∗ r) (3.3)

where r is the input of the residual unit, ∗ is a dilated causal convolution o-
peration,� denotes the Haddamard product or element-wise multiplication,
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k is the index of the layer, tanh is the tangent hyperbolic function, σ is the sig-
moid function, W f ,k and Wg,k are the learnable weight matrices of the filter
and the gate respectively. The activation unit essentially decides which infor-
mation is valuable and worth keeping and which is irrelevant and will be dis-
carded. Both in the WaveNet and the PixelCNN papers it is suggested that,
following experiments, gated activation functions work better than rectified
linear unit (ReLu) activation functions specifically for audio signal modeling
[1] , [29].

Residual and Skip Connections

WaveNet also utilizes residual and skip connection logic to promote faster
convergence and, overall, aid in training deeper models. Those connections
can be seen in Figure 3.1 as part of the whole architecture. Shortcut con-
nections are implemented by skip connections and identity mappings. This
is clarified in Figure 3.3 where we use the nomenclature introduced in the
work of He et. al. [34].

FIGURE 3.3: The Residual Network

Skip connections F2(r) bypass future residual layers, whereas identity map-
pings are formed by the element-wise addition of the residual input r to the
non-linear output F1(r). The residual architecture ensures and facilitates gra-
dient propagation throughout the layers, thus solving the vanishing gradient
problem, a frequently encountered phenomenon in deep neural networks.
Furthermore, a DNN including skip and residual connections is much faster
to train than architectures without this utility [34].

Post-processing

Throughout the network, the input data are subjected to numerous opera-
tions and, as a result, the depth of the input often increases. A common way
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to modify the depth or number of feature maps is to implement 1x1 convolu-
tions. 1x1 filters are often referred to as projection layers or channel pooling
layers and are used to control the depth of the feature maps. Back in Sec-
tion 3.1.1, one such layer was implemented to ensure that the depth of the
input matches the dimension of the output for addition [32] [35]. In the post-
processing section, two 1x1 convolutional layers before the SoftMax function,
bring the number of non-normalized probabilities down to the initial discrete
values to be classified.

The non-normalized probability distribution predicted by the network is trans-
formed to a proper probability distribution through a SoftMax function:

σ(z)i =
ezi

∑K
j=1 ezj

(3.4)

The SoftMax function simply turns a vector of K real values into a vector
of K real values that sum to 1. Therefore, by the end of the post-processing
section, WaveNet predicts the normalized probability distribution.

3.1.2 WaveNet as a Vocoder

In order to use WaveNet as a music synthesis tool, temporal consistency was
a major requirement. Without temporal information, the output of WaveNet
would be incoherent and without structure, therefore we needed to explore
the use of WaveNet as a vocoder for music.

Conditioning

Conditioning introduces parameters to the probability distribution function
so that it does not only depend on previous samples, but also on some other
variables that further describe the audio to be generated.

FIGURE 3.4: Conditioning in the WaveNet model
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Conditioning is divided into two types, local and global. Global conditioning
refers to an inherent property of an audio piece that can be applied in the
form of a tag or an embedding vector and is irrelevant to time. On the other
hand, temporal information in the form of an additional time series alongside
the raw audio is considered local conditioning. An example of a conditioned
network is demonstrated in Figure 3.4. In the field of audio synthesis, the
two types of conditioning are a common way of guiding the characteristics
of the generated audio.

In general, given an input h we can model the conditional probability distri-
bution p(x|h) of the audio, given the input h:

p(x|h) =
T

∏
t=1

p(xt|x1, ..., xt−1, h) (3.5)

By modifying the initial probability distribution to include h, WaveNet can
incorporate this information into the generated output audio and lead to pro-
ductions with certain characteristics. In our case, we first needed a way to
incorporate temporal information to get structured output audio, and then
a way to embed information about the overall mood of the musical piece
(happy, sad, aggressive, or peaceful). The first requirement falls into the cat-
egory of local conditioning, whereas the latter falls into global conditioning.

In the following paragraphs, we demonstrate how the two methods were
deployed in relation to our problem statement.

Local Conditioning

Unconditional WaveNets produce sound in terms of the timbre, temperature,
and overall nature of the audio, yet they, alone, cannot provide structure
to the generated piece. Likewise, Wavenet trained on voice audio without
temporal data, would produce mumbling sounds resembling the speaker’s
tone. In our case, the musical output would sound fairly random, as if a cat
were skipping on a piano.

Both of these cases require a second time-series to map the sound generated
across time, a method called local conditioning. Distinct examples include
the linguistic features of a TTS model, spectral information, or in a music-
related scenario the scores in MIDI representation .
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Assume we have another timeseries ht providing temporal information about
the music piece. Of course, most times ht has a lower sampling rate than the
corresponding audio timeseries. To resolve this, it is proposed in [1] that ht

is transformed, by using transposed convolution or repeated sampling, to a
new time series y = f (ht) with the same resolution as the audio. The activa-
tion function from (3.3) now is:

z = tanh(W f ,k ∗ x + Vf ,k ∗ y)� σ(Wg,k ∗ x + Vg,k ∗ y) (3.6)

where Vf ,k, Vg,k are learnable linear projections of the filter and gate respec-
tively. Naturally, if structure across time were the only concern, then MIDI
representation would be a very accurate and flexible condition to feed to the
network. A MIDI vector has the form of a binary vector, whose size depends
on the quantization values of the audio in the dataset and reads 1, if a note is
played in a certain key, and 0, if not.

Therefore, while the use of MIDI as local conditioning appeared fairly simple,
we decided in our work to experiment with a more quality-oriented condi-
tioning parameter, such as Mel filter banks.

Conditioning on Mel Filter Banks

A common method of local conditioning in sound synthesis applications is
the use of Mel Filter Banks. In vocoder context, filter banks are used to ana-
lyze the amplitude information of the sub-bands of a modulator signal (such
as a voice) and are then used to control the amplitude of the sub-bands of
a carrier signal (such as the output of a synthesizer or another voice), thus
imposing the dynamic characteristics of the modulator on the carrier [36].

Mel Filter Banks are obtained by applying triangular filters, like those of Fig-
ure 3.5a on a Mel-scale to the power spectrum of the audio. The result is a
snapshot of the content of each frequency sub-band for every timeframe of
the audio. In Figure 3.5b we provide the resulting spectrogram of one of the
songs in our dataset. Specifics about the parameters used are analyzed in
Chapter 4.
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(A) Mel Filter Banks.

(B) Mel Spectrogram.

FIGURE 3.5: Visualization of Mel Scale Local Conditioning
information fed to the Network.
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Conversion from frequency (f) to Mels (m) can be done according to the fol-
lowing two formulas:

m = 2595 · log10(1 +
f

700
) (3.7)

f = 700 · (10m/2595 − 1) (3.8)

Mel-based spectral representation has a number of benefits, when used as
a local conditioner. First, it is a non-linear frequency analysis that approxi-
mates the way human hearing works. Also, although it is based on a rather
simple formula, Mel spectrum introduces a great level of detail into synthesis
and suits various different applications in sound processing and synthesis.

Global Conditioning

Global conditioning refers to a general identity or property that influences
the output distribution across all time-steps. By implementing global con-
ditioning, WaveNet can impose general characteristics of the input on the
generated audio. Such characteristics can be speaker identity, the mood of a
song, the genre of a song, etc.

Using global conditioning input h, equation (3.3) of the gated activation unit
becomes:

z = tanh(W f ,k ∗ x + VT
f ,kh)� σ(Wg,k ∗ x + VT

g,kh) (3.9)

where VTh is a learnable transformation of h, which is broadcast across all
steps.

In our WaveNet implementation for music synthesis, global conditioning
seems like a reasonable first step in introducing the mood of a musical piece
to the training and generation processes. More specifically, we assign tags in
order to characterize each song in the dataset as either happy, sad, aggressive,
or peaceful.
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3.1.3 Inference and Generation

The remarkably realistic results produced by WaveNet can be attributed to
the exploitation of both time dependency and the auto-regressiveness of the
model. However, one costly disadvantage of auto-regressive models is that
inference is slow.

Parallel WaveNet [27] enabled the incorporation of WaveNet in production
environments, where speed is pivotal. Parallel WaveNet is inspired by paral-
lel architectures encountered in modern computers, and generation is done
by a parallel feed-forward network from a trained WaveNet. This method
is referred to as distillation and essentially involves transferring knowledge
from a large model to a smaller one. This version is nearly 1000 times faster
than the prototype of Oord et. al[1], creating one second of speech in 50 mil-
liseconds.

Another helpful alteration is the Fast WaveNet [37] algorithm. The main
concept of the Fast WaveNet algorithm is the implementation of queues to
prevent redundant convolution calculations (Figure 3.6).

(A) Parallel WaveNet (B) Fast WaveNet Algorithm.

FIGURE 3.6: Fast WaveNet Implementations

All this research towards compactness and speed has led to WaveRNN, which
is analyzed in the following section.
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3.2 WaveRNN

Another model worth exploring and experimenting with is WaveRNN [2],
whose performance is comparable to that of the state-of-the-art WaveNet. In
fact, a WaveRNN model with a rather large number of units achieves results
similar to those of the largest WaveNet.

As discussed in previous sections, sequential models imply sampling in a
serial manner. However, due to its serial nature, the sampling process can
grow prohibitively large. That could happen if, for example, the number of
samples increases or if the network is very deep (like WaveNet[1]). Another
case, common in deep neural networks, is having large computation times or
overhead due to a large number of parameters or too wide layers [2].

The goal in developing WaveRNN was to enable voice synthesis models to
run on minimal devices efficiently, whilst maintaining the quality of the gen-
erated samples.

3.2.1 Generation efficiency requirements

The generation speed of the sequence generation model, is expressed by the
subsequent formula :

T(u) = |u|
N

∑
i=1

(c(opi) + d(opi)) (3.10)

T(u) refers to the time needed to pronounce a sentence u, there being |u|
samples in total. As expected, high-fidelity audio has a large number of sam-
ples. There is also N representing the number of layers of the neural network.
N scales with the number of layers in the network.

c(op) represents the calculation time of each layer. If the network is very
wide, or the network has many kernels, the calculation time will be long.

d(op) represents the overhead time of the hardware execution program, in-
cluding the time of calling the program and extracting the parameters.

In order to generate speech fast, each of the parameters in (3.10) has to be
minimized.
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3.2.2 WaveRNN Architecture

The architecture of WaveRNN relies on the core property of RNNs that a
single recurrent layer applied to the previous state can produce a highly
non-linear transformation of the context. It is a single-layer recurrent neural
network (RNN) with a dual softmax layer, designed to predict 16-bit audio
samples.

FIGURE 3.7: The architecture of the WaveRNN with the dual
softmax layer. [2]

Kalchbrenner et. al [2] intended to make the sampling process faster by effi-
ciently minimizing impactful factors, such as the number of layers, the over-
head, computation time, etc. Taking into consideration that sampling is more
computationally expensive as the number of parameters increases, the aim is
to fully exploit a set number of parameters. This translates essentially to
achieving maximum performance for the given computational resources.

This type of architecture requires a small number of operations at each step,
less training data, and is faster to train.
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Basic computations of WaveRNN can be seen in (3.11):

xt = [ct−1, ft−1, ct]

ut = σ (Ruht−1 + I∗uxt)

rt = σ (Rrht−1 + I∗r xt)

et = τ (rt � (Reht−1) + I∗e xt)

ht = ut · ht−1 + (1− ut) · et

yc, y f = split (ht)

P (ct) = softmax (O2 relu (O1yc))

P (ft) = softmax
(
O4 relu

(
O3y f

))

(3.11)

where I∗ is a masked matrix by which the last coarse input ct is only con-
nected to the fine part of states ut, rt, et and ht and therefore only affects the
fine output y f . The R matrices refer to the contributions to all three gates ut,
rt, et, as a variation of the GRU cell [38]. Also, σ and τ are known non-linear
functions sigmoid and tanh.

The state of the RNN is divided into two parts that predict the 8 more signif-
icant (coarse) bits ct and the 8 least significant (fine) bits ft respectively of the
16-bit audio sample ( Figure 3.7) with the split(ht) function. Each 8-bit part
passes through a SoftMax layer and the fine bits are predicted conditioned on
the coarse bits. This logic is named Dual SoftMax layer in [2], and achieves
more efficient prediction of the 16-bit samples by making use of two smaller
spaces of 28 values each, rather than the more computationally expensive sin-
gle large space of 216 values. A visualization of the process described above
is demonstrated in Figure 3.8.

Moreover, based on weight pruning techniques [40] applied during train-
ing, large and sparser models outperform short, dense models over the same
number of parameters.
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(A) Coarse bits WaveRNN Generation

(B) Fine Bits WaveRNN Generation

FIGURE 3.8: A schematic representation of generation
computations used in WaveRNN [39]
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3.2.3 Subscaling

In addition to the elements mentioned in the previous section, [2] proposes a
highly parallel speech generation algorithm called subscaling. Longer audio
segments can be generated a lot faster through parallelism offered by this
algorithm.

FIGURE 3.9: The dependency scheme of WaveRNN
Subscaling method.

The main idea of subscaling is to "trade past for future", that is trade-off some
past context of a few samples in exchange for some future context of other
samples. Given a target batch size B, this is achieved by having the RNN
sampling at 1/Bth of the waveform sample rate clock rate, with a time offset.
Each RNN of the batch sees a different context based on what has already
been generated (Figure 3.9). This way, midway through the generation pro-
cess, B samples shall be generated at the time:

T(u) =
|u|
B

N

∑
i=1

(c(opB
i ) + d(opB

i )) (3.12)

This innovative approach manages to exploit the batch dimension in a way
that efficiently exploits the system’s computational capacity without sacrific-
ing generation quality. This property renders WaveRNN an excellent choice
for speech generation on small low-power mobile CPUs.
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Chapter 4

Experiments

4.1 Datasets

The correct choice of dataset is pivotal in every deep learning challenge.
When given enough data, both models used in this thesis generate substan-
tially better audio. In our case, we used two high-quality raw audio datasets,
which are discussed briefly below.

4.1.1 MAESTRO

MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organi-
zation), first introduced in [41], is a dataset containing about 200 hours of
virtuosic piano performances. The full dataset contains around 200 hours of
paired audio and MIDI recordings from the International Piano-e-Competition,
recorded over a ten-year period. Uncompressed audio is of CD-quality at
44.1–48 kHz 16-bit PCM stereo.

We were interested in the raw audio data, so we did not use the MIDI. For
portability reasons we isolated approximately 40 hours of audio from the
full 200-hour dataset, thus obtaining a more compact, yet adequate, version
of the dataset. This dataset containing single instrument recordings is ideal
for music synthesis with the wavenet vocoder.

4.1.2 Harvard’s MusicMood

The MusicMood dataset [42], as the name implies, is focused on music and
emotion study using optimal design in factorial manipulation of musical fea-
tures. It is composed of 200 short audio clips that repeat 4-5 basic musical
themes played in various manners. The metadata accompanying the dataset
are shown in Table 4.1:
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TABLE 4.1: Harvard MusicMood Metadata overview.

Factor Description
Register 6 levels (53, 59, 65, 71, 77, and 83 in MIDI pitch, see the

paper for details).
Mode 2 levels (1 major, 2 minor)
Tempo 5 levels (1.2, 2, 2.8, 4.4, and 6 NPS, see the paper for

details)
Sound level 5 levels (-10, -5, 0, +5, +10 dB)
Articulation 4 levels (1, 0.75, 0.5, 0.25 from legato to staccato, see

paper for details)
Timbre 3 levels (1= trumpet, 2 = flute, 3 = horn)
Melody 4 categories (1 = Sad [T01.mid], 2 = Happy [G04.mid],

3 = Scary [P02.mid], 4 = Peaceful [A02.mid]

The four mood categories used (Sad, Happy, Scary, and Peaceful) were not
picked at random, but rather according to Russel’s psychoacoustic model
[43], [44] depicted in Figure 4.1. There are also mean mood ratings from
human listeners included with the metadata, which we used as subjective
labels for the task of generating mood-specific music.

FIGURE 4.1: Russell’s two-dimensional Valence-Arousal space
for mood definition.

Despite the fact that this dataset only contains one hour of audio, it was cho-
sen because the short duration of the audio clips ensures consistency in mood
selection.
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4.2 Experimental Setup

In general, all networks were developed in Python 3.6 and implemented with
Tensorflow 1.15. Table 4.2 shows the minimal requirements that apply to all
network versions.

TABLE 4.2: Minimum Project Requirements.

Package Version
cudatoolkit 10.0
cudnn 7.6
pip -
python 3.6
tensorflow-estimator 1.15.1
tensorflow-gpu 1.15
matplotlib -
numpy -
librosa 0.6

Initial parameter testing of all models was done on a personal computer with
8GB RAM and an NVIDIA GeForce GTX 1050Ti GPU. Within the PyCharm
IDE [45] we established an Anaconda [46] environment with the technical
specifications of Table 4.2. This configuration, however, quickly proved in-
effective and slow, therefore all final models were trained on an HPC unit,
provided by the Greek Research and Technology Network, or GRNET [47]
On the HPC, we had access to Tesla K40m GPUs and 48GB RAM, which was
a considerable performance gain over our previous setup and significantly
accelerated the training process.

As previously stated, the research topic of this thesis can be divided into two
tasks. The first is vocoder-based music synthesis, and the second is musical
theme generation with mood conditioning. Because each case was treated as
a separate problem, different models and setups were employed.

4.2.1 WaveNet and WaveRNN with Local Conditioning

We experimented with vocoder implementations for WaveNet and WaveRNN.
Code for both WaveNet and WaveRNN vocoders is courtesy of Dr. Tsiaras
[48], whom we thank deeply. The goal was to train WaveNet and WaveRNN
deep neural networks providing local conditioning data along with the audio
files. For the vocoder networks we used our large dataset, MAESTRO.
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Preprocessing of the Musical Data

Firstly, audio tracks were mixed from stereo to mono (i.e. single audio chan-
nel) and were downsampled to 16kHz. Note that this was done to both
datasets to relax computational requirements.

Next, we employed compute_mel_fbanks_librosa.py script to extract the lo-
cal conditioning information, i.e. the Mel-Filter Banks from the MAESTRO
dataset. Package librosa [49] is used for audio handling and preprocessing
of the audio files. The following set of parameters for the filter banks was
defined:

frame_length = 0.020 # in seconds

frame_shift = 0.005 # in seconds

n_fft = 2048 # number of FFT components

n_mels = 100 # number of Mel bands to generate

Our script builds the appropriate mel filter through the command
librosa.filters.mel(sample_rate, n_fft, n_mels=n_mels).
The filter generated is shown in Figure 4.2 :

FIGURE 4.2: The Mel filter generated with Librosa.
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Following the creation of the mel basis, the signal is pre-emphasized and
Short-Time Fourier Transform is applied, yielding the Complex-valued ma-
trix (numpy array) of short-term Fourier transform coefficients. Then, the
mel filter of Figure 4.2 is applied to the spectrogram, amplitudes are con-
verted to decibels (dB) and levels are normalized according to a minimum
volume level in dB.

If signal_length is the duration of an audio clip in seconds then the number
of frames of the clip’s label can be calculated through (4.1) :

n_ f rames =
signal_length− f rame_length

f rame_shi f t
(4.1)

We obtain the local conditioning labels in the form of numpy arrays of size
(n_mels x n_frames) by repeating the process described above for the entire
dataset. Naturally, the number of frames of each label is less than the total
number of samples of the original audio. This means that before the label is
fed to the network, it must be upsampled, so that it is alligned with the audio
samples.

Network Parameters

The greatest challenge we encountered during the experimentation phase
was determining which parameters to use for each network. The configu-
ration of WaveRNN is shown in Table 4.3.

TABLE 4.3: Parameters set for WaveRNN model.

parameter value
label_dim 80
sample_rate 16000
frame_length 0.025
frame_shift 0.010
segment_length 640
segment_shift 640
n_hidden_units 1024
O1_size 256
quantization_channels 256
use_ema true

First, we attempted to set up WaveRNN with the same parameters that we
would use for training on speech samples. Given the dynamic nature of mu-
sical data, we decided to greatly increase the receptive field of the network
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by increasing the number of hidden units from 512 to 1024 . Unfortunately,
the training of WaveRNN eventually failed, despite the changes we made.
Results slightly improved by lowering the learning rate and applying Gradi-
ent Clipping [50] to stabilize training. Generally, RNNs are not the optimal
choice for modeling such long term dependencies, as those present in a musi-
cal piece. In our case, the issue was that the model could not converge, when
trained on musical data.

On the personal computer, a single epoch, or one complete passing of the en-
tire dataset, took about 10 hours. We discuss the results of Section 4.3.1, de-
spite the fact that we dismissed further testing with WaveRNN in the hopes
that WaveNet would yield better results.

WaveNet does, in fact, allow more flexibility over the network’s density and
complexity. Our initial choice of parameters can be seen in Table 4.4. As with
WaveRNN, these parameters were derived from previous experience with
voice synthesis models. This set of parameters corresponds to a receptive
field of 1152 samples or 72 milliseconds. .

TABLE 4.4: Parameters for the small WaveNet model.

parameter value
label_dim 80
sample_rate 16000
frame_length 0.025
frame_shift 0.010
quantization_channels 256
n_residual_channels 32
n_skip_channels 128
filter_width 2
dilations [1,2,4,8,16,32,64,128,256,512,

1,2,4,8,16,32,64,128,256,512,
1,2,4,8,16,32,64,128,256,512,
1,2,4,8,16,32,64,128,256,512 ]

use_ema true

These were considered to be the minimum requirements at the time. Yet, we
came to a halt with this set of parameters as well, as the receptive field was
too small to capture all aspects of a music clip. Because voice synthesis and
music synthesis are two distinct problems, these minimum requirements were
not sufficient in the music domain.
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More specifically, the bandwidth of the music spectrum is twice that of the
speech spectrum. Music can stretch past the upper limits of the ear’s re-
sponse at 20 kHz, whereas speech has 90 percent of its power concentrated
in frequencies lower than 4 kHz (and limited to 8 kHz). In general, lower fre-
quencies contain the majority of the signal power in music waveforms. [51].
Following the facts stated above, we scaled the model up arriving at the final
set of WaveNet parameters shown in Table 4.5.

TABLE 4.5: Parameters for the large WaveNet model.

parameter value
label_dim 100
sample_rate 16000
frame_length 0.02
frame_shift 0.005
n_residual_channels 64
n_skip_channels 128
filter_width 3
quantization_channels 256
dilations [1,2,4,8,16,32,64,128,256,512,

1,2,4,8,16,32,64,128,256,512,
1,2,4,8,16,32,64,128,256,512,
1,2,4,8,16,32,64,128,256,512 ]

use_ema false

By increasing the convolution filter width to 3 we obtain a receptive field of
8187 or 0.5 seconds. This time, the goal was to achieve a balance between the
efficiency of the network and the quality of the produced audio. Naturally,
for this denser version, training took much longer with one epoch completing
in 14 hours on the HPC node. The final trained model has been trained for
over 500,000 iterations, which is equivalent to 19 days uptime.

4.2.2 WaveNet with Mood Global Conditioning

The MusicMood dataset was chosen over MAESTRO for the purpose of emo-
tion conditioning, since the mood of the audio clips in it is already rated by
human judges. We first attempted to train an implementation of WaveNet
both with local labels (mel filter banks) and the mood global label. Each
audio clip of the dataset is labeled with one of the four moods (0 = sad, 1
= happy, 2 = scary, 3 = peaceful), and fed to the network as an embedding
vector.
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By using the vocoder, we aimed at reconstructing the testing clips and also
altering their overall feeling through the global label. However, the first chal-
lenge we faced was that even upon convergence, the mood label did not seem
to be incorporated during inference. It is not clear whether this was a bug or
an issue with our initial approach of using both local conditioning and global
conditioning.

Thus, the strategy was slightly diverted to letting an unconditioned model
compose a few samples, while influenced by the mood label. For this reason,
we chose to set up the open source version of WaveNet, which was imple-
mented by Igor Babushkin and the wider community of GitHub [52]. This
version, albeit far from perfected, does support unconditioned inference and
global conditioning. We chose the parameters of Table 4.6 for our network.

TABLE 4.6: Parameters set for the WaveNet model, with global
mood conditioning, but no local conditioning.

parameter value
filter_width 2
sample_rate 16000
dilations [1,2,4,8,16,32,64,128,256,512,1014,2048,

1,2,4,8,16,32,64,128,256,512,1024,2048,
1,2,4,8,16,32,64,128,256,512,1024,2048,
1,2,4,8,16,32,64,128,256,512,1024,2048,
1,2,4,8,16,32,64,128,256,512,1024,2048,
1,2,4,8,16,32,64 ]

residual_channels 32
dilation_channels 32
quantization_channels 256
skip_channels 512
initial_filter_width 32

This setup raises the receptive field to an impressive 20,594 samples or 1.28
seconds. The training time was similar to that of the WaveNet vocoder with
the model reaching 300,000 steps in approximately 9 days. This time, the
label was audible inside the generated audio clips.

4.3 Results Evaluation

The results of WaveRNN and WaveNet vocoders are evaluated with both
objective and subjective rating methods. The mood conditioning network
has been evaluated only subjectively through a poll.
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As a subjective means of evaluation, a questionnaire was distributed blindly
through social media requiring no particular knowledge of the participants.
It was created in Google Forms [53] and can be found in Appendix A. The
questionnaire asked the participants to compare ten original clips and their
reconstructions and rate the result on a scale from 1 to 5. Participants were
instructed to base their rating on the noise, clicks, closeness to the original
and overall perceived quality of the synthesized audio clip.

The first part of the questionnaire included three clips generated with Wa-
veRNN, four clips generated with WaveNet at 300,000 steps and three clips
generated with WaveNet at 500,000 steps. Clip comparisons were presented
in random order.

The second part comprised of four 20 second waveforms generated by the
mood conditional model with one of the four mood tags specified during
generation. Participants were asked to listen to each one of the four audio
tracks and guess the specified mood.

The subjective evaluation is derived from 35 respondents. In the following
sections, we analyze the results for both the vocoder and mood experiments.
All musical samples from our experiments can be found here.

4.3.1 WaveNet and WaveRNN Vocoders

An objective evaluation method was deemed necessary for the vocoders, so
we used the PESQ (Perceptual Evaluation of Speech Quality) Algorithm [54]
which predicts subjective opinion scores of a degraded audio sample. The
PESQ score ranges from -0.5 to 4.5, with higher scores indicating higher qual-
ity. PESQ is a software program that analyzes audio factors, such as time
warping, variable delays, transcoding, and noise. It is primarily intended
for use in codec evaluation and network testing, but it may be also used to
any audio transmission, according to the developers. PESQ can be thought
of as a set of perfect ears capable of evaluating any system. The output of
the PESQ algorithm was mapped from [-0.5,4.5] to [1,5] in order to match the
score range of the subjective method.

WaveRNN objective and subjective mean opinion scores (MOS) are shown in
Table 4.7. As expected WaveRNN had a negative impact both on the listen-
ers and on the objective algorithm. The poor audio quality compared to the
original waveforms led to low scores.

https://drive.google.com/drive/folders/1JJipaDDvElaDJN6jMN_KgZVolrEcUllO?usp=sharing
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TABLE 4.7: MOS for WaveRNN

Sample Objective MOS Subjective MOS
MusicMood_002 1.438 1.286
Tchaikovsky - Lullaby, Op. 16/1 2.392 1.514
Chopin Etude No. 8 in F 1.997 1.514
Overall Score 1.915 1.438

More specifically, in the case of WaveRNN, the respondents’ ratings of the
synthesized waveforms are much more strict than the PESQ ratings, which
take into account various objective parameters, such as the noise levels. This
finding however is not surprising, given how eerie and unnatural the syn-
thesized audio actually sounds to human ears. While WaveRNN is currently
considered state-of-the-art in speech synthesis, it is not yet scalable enough
to deal with the much more dynamic spectrum of musical data.

FIGURE 4.3: Spectral comparison of WaveRNN waveform re-
construction

In Figure 4.3 we present a joint plot of the spectral content of one of the au-
dio clips of Table 4.7 and its reconstruction by WaveRNN [55]. The green
dashed line shows the amplitude difference of the two signals. There is also
a heatmap, where colder regions indicate larger differences in favor of the



4.3. Results Evaluation 43

original track. WaveRNN synthesis, as seen in the graphs, follows the wave-
form in a broad sense, but lacks spectral detail, which explains the low MOS
scores.

The WaveNet Vocoder on the other hand exceeded our expectations. For ref-
erence, we extracted results at two different stages during training, at the
minimum of 300,000 iterations (Table 4.8) and upon convergence at approxi-
mately 500,000 iterations (Table 4.9).

TABLE 4.8: MOS for WaveNet (300,000 iterations)

Sample Objective MOS Subjective MOS
Yiruma - River Flows in You 3.082 4.543
Liszt - Prelude in C Maj 3.657 3.429
Bach - Prelude & Fugue No.16 3.424 3.829
Haydn - Sonata No.62 3.295 3.171
Overall Score 3.365 3.743

TABLE 4.9: MOS for WaveNet (500,000 iterations)

Sample Objective MOS Subjective MOS
Yiruma - River Flows in You 4.066 4.457
Liszt - Prelude in C Maj 3.885 4.257
Bach - Prelude & Fugue No.16 4.013 4.514
Overall Score 3.988 4.410

The first milestone at 300,000 iterations was reached after 10 days of training
and was the point where the generated waveforms started to contain audi-
bly fewer errors and clicks. Objective and subjective MOS are significantly
higher than those of WaveRNN even at this early training stage. Objective
scores fall close to the opinion of the respondents. The algorithm seems to
be sensitive to noise crackles and overall errors of the audio that affect the
objective score, while in some tracks the human ear seems to overlook minor
losses and award a higher rating to the synthesis.

In Figure 4.4 the spectral content of the two waveforms is almost identical as
opposed to the WaveRNN case. Although the synthesized waveform exhibits
some level discrepancies at some points, there is definitely greater fidelity to
the original piece with WaveNet even at 300,000 steps.

Results are nearly perfected upon convergence (Table 4.9) after 19 days of
training. At 526,000 steps, differences are barely distinguishable. The PESQ
algorithm obviously still spots energy discrepancies and minor noise inter-
ference, but overall there is an improvement in objective scores as well.
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FIGURE 4.4: Spectral comparison of WaveNet waveform recon-
struction at 300,000 steps

FIGURE 4.5: Spectral comparison of WaveNet waveform recon-
struction at 526,000 steps
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It is worth noting that out of all songs reconstructed, Yiruma’s "River Flows
in You" is the only track not belonging to the MAESTRO dataset, yet it achieves
remarkably high objective and subjective MOS with the WaveNet model. The
choice of this audio clip was a deliberate test of WaveNet’s ability of general-
izing the distribution learnt.

High subjective MOS is of great significance at this stage, because it means
the synthesized audio could possibly deceive even keen listeners. This can
be confirmed by observing the spectrum comparison of Figure 4.5. Upon
convergence the synthesized waveform is almost identical to the original,
with minor differences in some key frequencies. The spectral differences of
the converged model, however, are not as pronounced as those in the early
training stage comparison.

With WaveNet, we achieve high resolution end-to-end audio reconstruction
with a subjective mean opinion score of 4.41 for the final model, which is a
massive improvement over the 1.48 subjective score of WaveRNN. Therefore,
the high fidelity results we achieved by experimenting with music synthe-
sis prove that the capabilities of WaveNet, as demonstrated through Deep-
Mind’s paper, are definitely not limited to speech synthesis.

4.3.2 WaveNet with Mood Global Conditioning

For this challenge, local conditioning proved to be too strict, in that WaveNet
would not compose freeform tracks.Therefore, we trained open source net-
work on the MusicMood dataset for 300,000 iterations with only global con-
ditioning over four mood labels (Happy, Sad, Angry, Peaceful). Then, we
generated samples of approximately 20 seconds to ensure prediction consis-
tency and specified a mood label for each generated waveform.

After numerous attempts the most representative sample was selected for
each mood and these four samples were included in the second part of the
questionnaire. Participants were asked to identify the true mood of each
generated sample by listening to it, knowing that there is one of each mood.

As the generated samples are rather cacophonous, rating them proved to be
a challenging task. Inference is mode seeking, i.e. it gets stuck in specific
patterns, and thus yields monotonous samples. However, some of the gener-
ated audio clips incorporate the influence of the specified mood. For exam-
ple, happy tracks are exhibiting more prominent patterns in major scales, or
scary tracks aggregate their content in the bass frequencies.
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These peculiar patterns that hint the conditioned mood for each sample were
apparently clear to most of the respondents as well. Figure 4.6 demonstrates
the distribution of the answers obtained through the second part of the sur-
vey in the form of cumulative bar graphs.

(A) Synthesis labeled "Peaceful" (B) Synthesis labeled "Scary"

(C) Synthesis labeled "Happy" (D) Synthesis labeled "Sad"

FIGURE 4.6: Graphical representation of the answers given by
respondents asked to identify the mood of each of the four gen-

erated musical samples.

The majority of replies for each of the four queries gravitates to the true
mood, as shown in the graphs, which is astounding, given the challenges
discussed before. For the tracks labeled as scary (4.6b) and sad (4.6d) the poll
decision was definitive with over half of the 35 respondents choosing the cor-
rect label. On the contrary, the peaceful (4.6a) and happy (4.6c) tracks were
considered more obscure, so the consensus is not as clear as with the other
two moods.

The key to the success of this particular experiment is first and foremost the
fact that it was based entirely on subjectivity. The mood labels included in
the MusicMood dataset derive from mean opinion scores of human listeners.
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We chose to maintain the anthropocentric nature of this challenge, given that
emotions are complex and difficult to model by artificial means.

It’s also worth mentioning that these intriguing results were obtained just
through experimentation in the audio domain, utilizing WaveNet’s capabil-
ities without any extra training with symbolic models or other representa-
tions, other than mood tags.
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Chapter 5

Conclusions & Future Work

The purpose of this thesis was the assessment of the capabilities of deep neu-
ral networks outside the field of speech synthesis by using WaveNet and
WaveRNN to synthesize musical pieces with an end-to-end approach. As a
separate task, we tried to incorporate the subjective part of human emotion
into the training in order to impact the audio that is generated. To achieve
these goals, we first trained WaveNet and WaveRNN as vocoders, locally
conditioned on mel spectrograms for music reconstruction, then we trained
a WaveNet model with only global conditioning on four mood labels and let
it generate short mood-based audio clips. All deep learning models were im-
plemented in the Python programming language and utilize Tensorflow 1.15
as the main tool. After an "optimal" (within our investigation) set of param-
eters was acquired for each problem, the models were trained for more than
nine days and were used to generate waveforms.

The results are very promising in both cases. All generated waveforms were
evaluated by human judges in terms of clarity, noise presence, closeness to
the original and overall audio quality. We also recommended that the PESQ
algorithm be used as an objective evaluation metric for generic audio sce-
narios that are not confined to telecommunication setups. While WaveRNN
was unable to produce high quality samples, WaveNet-generated waveforms
achieved 5-scale MOSs above 4.0 both in subjective and objective evaluation.
These scores are comparable to those presented in the original WaveNet pa-
per. For the mood-conditioned WaveNet we evaluated the results by having
listeners guess the specified mood of each generated sample. The experiment
was successful as most respondents guessed correctly. Overall, the model
proved to be surprisingly creative and capable of incorporating patterns in-
trinsic to the different moods.
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As future work, we suggest further experimentation with emotional condi-
tioning in music synthesis. To circumvent the restrictions imposed by func-
tioning just in the auditory domain, WaveNet could be combined with sym-
bolic models to substitute subjective mood descriptors. A possible arrange-
ment would involve an LSTM model generating mood-conditioned origi-
nal musical pieces as MIDI and utilizing these as local conditioning for a
WaveNet trained in the audio domain on emotional chromas and timbres. A
successful attempt at emotional music synthesis, however, would almost cer-
tainly necessitate additional research in the psychology and psychoacoustics
literature. Deep neural networks have shown great promise for automatic
music generation in general, so it would be interesting to try to make them
emotive as well.
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Appendix A

Questionnaire

All musical samples from experiments can be found here (Google Drive Link)

https://drive.google.com/drive/folders/1JJipaDDvElaDJN6jMN_KgZVolrEcUllO?usp=sharing
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