Autonomous Drone Navigation for Landmark Position Estimation using Reinforcement Learning

Michalis Galanis Technical University of Crete

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE) Professor Michalis Zervakis (ECE) Associate Professor Panagiotis Partsinevelos (MRE)

INTRODUCTION

1.1 – Problem Statement

Let's assume a 3D environment, filled with **obstacles** and **markers** (targets).

Ч

• A UAV (drone) is spawned in a random location inside the environment.

OBJECTIVE: The UAV's goal is to **approach** the marker in the environment without **crashing** into any obstacle.

! CAUTION: No rules are given to the UAV about its objective or its environment whatsoever.

1.1

1.1 PROBLEM STATEMENT How do we solve this problem?

REQUIREMENTS: The agent must be able to safely navigate through the environment, detect and approach a predefined set of ArUco markers (landmarks).

RELATED WORK: Several approaches have been investigated to create autonomous navigation systems such as **Simultaneous Localization and Mapping** (SLAM).

IDEA: Reinforcement leaning (RL) is a promising alternative that focuses on learning by trial-and-error procedure, in which an agent interacts with its environment and receives continuous feedback based on each action.

THESIS CONTRIBUTION: This thesis explores a mapless approach to UAV autonomous navigation in completely unknown 3D environments using deep reinforcement learning (DRL), a reinforcement learning subfield that incorporates deep learning techniques (deep neural networks) to overcome dimensionality limitations.

BACKGROUND

2.1 - Reinforcement Learning
2.2 - Deep Reinforcement Learning
2.3 - Tools & Frameworks
2.4 - Sensors

3

2.1

Overview

In RL, the agent learns from its own experience by interacting with the environment. Agent The agent performs an **action** in the environment. action A₊ reward R state s The performed action yields a **new state**. R_{t+1} s_{t+1} Environment The environment evaluates the agent's action through a reward.

General Terms

Step: smallest possible unit of time. **Episode**: collection of steps (from an initial state to a terminal state). State: collection of variables and conditions that describe a situation of the environment at a specific point in time. fatal conditions lead to terminal states Episode ends, environment needs to be reset **State space**: set of every possible state in the environment (discrete / continuous) Action: the agent's method of interaction with the environment. Action space: set of every possible action the agent can make (discrete / continuous) **Policy**: strategy to determine the next action based on the current state. **Reward**: immediate feedback returned to the agent by the environment evaluating its previous action. **Q-value**: overall expected reward for an agent (when being in a current state s, performing an action a and obeying a policy π). 2.1

Goal & Rewards

RL GOAL: find an optimal sequence of actions that lead to the maximum cumulative reward in search for a goal (optimal policy).

REWARD IMPORTANCE: Rewards are an integral part of a reinforcement learning problem.

- **bigher** rewards motivate the agent to repeat an action in a similar situation
 - **lower** rewards teach the agent to avoid a certain behavior
 - Subsequent rewards are increasingly **discounted**, to **reduce their importance** (future rewards hold less accurate reward information due to uncertainty)

2.1 REINFORCEMENT LEARNING RL Algorithms Algorithm Taxonomy Model-Based **Model-Free** There is currently a large variety of reinforcement learning algorithms to Value-Based choose from. **Off-policy Policy-Based** Learn Model **Given Model** On-policy This thesis focuses on model-free, E value-based, off-policy approaches. Q-Learning is an algorithm to learn <2000s the Q-value of an action in a Dyna-Q Q-Learning REINFORCE MCTS AC Sarsa particular state. replay 2010-2015 memory DQN DDPG DPG DDQN Q-Learning seems promising. Let's take 2016 a look. **Dueling DQN** A3C Double Q-Learning >2017 I2A World Model AlphaZero C51 TD3 2.1

10

The Q-Learning Algorithm: Overview & Limitations

OVERVIEW: Q-Learning is a TD off-policy algorithm, finds optimal policy using a Q-function.

SUMMARY: Iteratively updates Q-Values for each state-action pair using the bellman equations until the q-function converges to the optimal q-value.

Q-Values are stored in a **Q-table**, a table of states and actions in which Q-values are stored for each pair.

PROBLEM: Curse of dimensionality. Q-Learning only works well with small discrete state and action spaces. Larger spaces render the tabular approach incredibly inefficient.

SOLUTION: Value function approximation, generalize value estimation of similar states to reduce complexity. DQN uses neural networks to approximate the value function.

2.2 DEEP REINFORCEMENT LEARNING

The DQN Algorithm: Overview & Major Features

DQN CONCEPT: DQN incorporates deep learning techniques (deep neural networks) for value function approximation.

Practically, it can handle very large state spaces.

MAJOR FEATURE 1: Experience Replay, breaks sample correlation \rightarrow improves performance

★ MAJOR FEATURE 2: Target Network, uses 2nd network for loss calculation with frozen weights improves stability

+ MINOR FEATURE 1: Clipping Rewards, cuts off extreme reward values \rightarrow solves instability

MINOR FEATURE 2: Skipping Frames, consecutive frames contain overlapping information → increases training speed

MINOR FEATURE 3: History Preprocessing, train neural network with a stack of last several frames

2.2 DEEP REINFORCEMENT LEARNING

The DQN Algorithm: Processing Diagram

2.4 SENSORS

Optical Camera, 2D LIDAR, SONAR

Optical Camera: Sealed Box with small hole (aperture) that allows light to reach a lightsensitive sensor. Captures RGB image frames.

LIDAR Technology: Pulses of light moving outwards, reaching objects and reflecting the light back to the receiver.

Calculates distance by bouncing time difference

Oreates 2D map of estimated distances

(•)) SONAR Technology: Similar to LIDAR, except it uses sound waves instead of light pulses.

2.4

Lower Accuracy, lower Cost than LIDAR.

16

3.1 – UAV & Sensors

3.2 – Environment

3.3 – Deep Reinforcement Learning Pipeline

2

•••••••••••••••••

MODEL: "hector_quadrotor" (category of general-purpose ROS packages related to modeling, control and simulations of UAV quadcopter systems). It contains:

Optical Camera Marker detection

0.

- 2D Laser Rangefinder (LIDAR) Horizontal distance measurements
- ((•)) 2 x Ultrasonic Sensor (SONAR) Vertical distance measurements

REQUIREMENTS

ROBUSTNESS: We need a robust enough environment which offers a **variety of situations** for our agent to experience, without being overly complicated and thus affecting training speed.

IMPLEMENTATION: a highly-configurable custom world generation system was created

variable **obstacle** and **marker generation**

Enables creation of **difficulty levels** for benchmarking

3.2 ENVIRONMENT Environment **Examples** (Gazebo Images) <>>

3.2

3.3 DEEP REINFORCEMENT LEARNING PIPELINE States & Observations: Overview

OBSERVATION: Snapshot of the UAV's sensor measurements

OBSERVATION REQUIREMENTS: Two types of observations are required!

- **Target Information:** required to **find and approach** the target \bigcirc
- Surroundings Information: required to avoid collisions with obstacles and walls (situational awareness)

3.3 DEEP REINFORCEMENT LEARNING PIPELINE States & Observations: Target Information

Ø TARGET INFORMATION: Can be achieved in two ways!

APPROACH 1: Optical Camera (Real-World Scenario)

Scan Image Plane for ArUco Markers using OpenCV detection algorithm.

The algorithm estimates the **marker's pose** (position + rotation) relative to UAV's camera.

Estimate final **relative pose** between UAV and marker using **Transformations**.

APPROACH 2: Simulator Information (Training purposes only)

Skip camera setup, extract information from the simulator itself!

Isn't this Cheating? Wo! From RL perspective, we are only interested in training our neural network.

Marker position is now estimated. UAV's optimal approach point is defined as 2 meters (arbitrarily selected) in front of the marker!

Target Information Vector: $T = \begin{bmatrix} x_{delta} & y_{delta} & y_{delta} & y_{aw_{delta}} & y_{aw_{global}} \end{bmatrix}$ (5 values)

States & Observations: Surroundings Information

SURROUNDINGS INFORMATION: Contains LIDAR and SONAR data!

Surroundings Information Vector: $D = \begin{bmatrix} L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & S_1 & S_2 \end{bmatrix}$ (8 values)

3.3 DEEP REINFORCEMENT LEARNING PIPELINE States & Observations: Terminal States

If a terminal state occurs, the environment is reset, and a new episode begins.

Mission Fatal: if any distance measurement is less than 0.4 meters, we presume a collision has occurred! $Fatal = \exists D_i < 0.4, D_i \in D$

Mission Complete: If the maximum distance of every dimension between the drone and the target point is less or equal than 0.8 meters, we presume a successful target point approach! $Complete = max(x_{rel}, y_{rel}, z_{rel}) \le 0.8m$

A state is terminal if the drone's mission is either fatal or complete. $Terminal = Fatal \lor Complete$

Time Expired: a cap of 5.000 maximum steps for each episode was implemented in order to avoid endless episodes.

ACTION SPACE: Continuous Discrete (a manual flight would involve analog velocity input of the UAV)

PROBLEM: DQN and other algorithms **do not** usually **support continuous action spaces**.

SOLUTION: Classify actions into eight (8) discrete options to control velocity of each axis.

FOUR-STAGE VELOCITY SYSTEM

- Each axis has a minimum and a maximum velocity. Every action results in an increase/decrease in velocity of a particular axis by a specific increment.
- **Four (4)** total **increment stages** for each axis. This allows the drone to delicately **fine-tune its velocity when it's near the target** for increased stability.

3.3

Action
Increase pitch
Decrease pitch
Increase Roll
Decrease Roll
Increase Throttle
Decrease Throttle
Increase Yaw
Decrease Yaw

Reward System: Overview

REWARD SYSTEM REQUIREMENTS: An effective reward system is crucial for training.

INFO: Usually, the **trickiest** part of a RL problem, since there are no rules, no absolute restrictions and it is tied up with an environment's state space. Although there are some general guidelines to follow.

! We need to avoid sparse rewards.

! Rewards need to be clipped to a range of [-1,1] to avoid instabilities to the neural network.

REWARD SYSTEM: Two (2) reward functions, each focusing on a specific aspect of the UAV's mission.

B Wall Distance Reward (WDR) → Surroundings Information

Velocity Direction Reward (VDR) → Target Information

Total reward is produced by just summing up both reward functions: $R_t = WDR + VDR$

Reward System: Wall Distance Reward

WALL DISTANCE REWARD: penalizes the agent for being close to obstacles and walls.

 $WDR = \begin{cases} 0.1, & x > 2\\ 1.01 - 1.16x^{-0.35}, & 0.4 \le x \le 2\\ -1, & x < 0.4 \end{cases}$

$$x = \min(D)$$
, $D = [L_1 \ L_2 \ L_3 \ L_4 \ L_5 \ L_6 \ S_1 \ S_2]$

3.3

Reward System: Velocity Direction Reward

Deep Neural Network

-**NEURAL NETWORK REQUIREMENTS & OBSERVATIONS:**

- The original DQN paper used entire RGB image frames as input.
- Our input data only consists of a small number of parameters (13 scalar values x 4 frames = 52 total parameters).
- Our data is unrelated & tabular (lacks structure). Best Option: Fully Connected Layers (Dense)

Layer Name	Layer Type	Input Shape	Output Shape	Activation Function	Initializer	Parameters
input_1	InputLayer	(-, 4, 13)	(-, 4, 13)	- ////	-	0
flatten	Flatten	(-, 4, 13)	(-, 52)	-	-	0
dense	Dense	(-, 52)	(-, 256)	relu	he_uniform	13.568
dense_1	Dense	(-, 256)	(-, 512)	relu	he_uniform	131.584
dense_2	Dense	(-, 512)	(-, 128)	relu	he_uniform	64.664
dense_3	Dense	(-, 128)	(-, 8)	linear	he_uniform	1.032

3.3

EXPERIMENTS

4.1 – Experimental Setup

4.2 – Training Results

4.3 – Result Discussion

5

.

TIMING CONFIGURATIONS: Six (6) training configurations were created based on training length

- Several parameters are training-time-dependent and require adjustments in order to become more suitable.
- [24] The two largest configurations "Large" and "Marathon" are utilized. Shorter are preferred for internal use and debugging.
 - Having discrete timing options can help standardize benchmarking results.

#	Configuration Name	Total Steps	Total Duration	Time Multiplier	Epsilon Decay Steps	Memory Size	Start Train Steps	Train Frequency	Target Update Frequency
1	Demo	5K	5m	1	1.9K	1K	200	20	500
2	Instant	30K	25m	6	25.5K	15K	5K	100	5K
3	Quick	125K	1h, 30m	25	100K	50K	15K	250	25K
4	Standard	400K	5h	80	320K	150K	30K	500	80K
5	Large	1.5M	16h	300	1.2M	600K	80K	750	187.5K
6	Marathon	ЗM	32h	600	2.4M	1M	100K	1K	500K

Q

One of the goals of this project is to evaluate the agent's behavior over a number of scenarios with varying difficulty.

WORLD PROFILES: Five (5) world profiles of increasing difficulty were created.

World difficulty is dependent on UAV / marker spawning locations and obstacle quantity.

#	World Profile Name	UAV Spawn Location	Marker Spawn Location	Obstacle Spawn Location	Obstacle Quantity	Timing Configuration Used
1	Ridiculous	fixed	fixed	-	0	"Large"
2	Easy	random	fixed	-	0	"Large"
3	Medium	random	random	-	0	"Large"
4	Hard	random	random	random	6	"Marathon"
5	Extreme	random	random	random	12	"Marathon"

unreliable & non-practical useful information but not always practical useful & very practical information

TOTAL REWARD (TR): Total accumulated reward during training. Most popular metric. Not always reliable.

S TOTAL MARKERS FOUND (TMF)

S AVERAGE SAMPLE REWARD

S LOSS (LO): loss occurred during training

RELATIVE MARKER APPROACH (RMA): When collision occurred, how close was it? $\frac{distance\ from\ target\ at\ death}{distance\ from\ target\ at\ spawn}$

S EPISODE OUTCOMES OF LAST 100 EPISODES:

Collision Rate Last 100 (CR100): measures how frequently collisions occur (mission fatal).
 total collisions last 100

100

• Markers Found Rate Last 100 (MFR100): measures how frequently markers are found (mission complete). total markers found last 100

100

 Episode Expire Rate Last 100: measures how frequently endless episodes occur. <u>total expired episodes last 100</u> 100

Ridiculous Difficulty, Large Training 🥚 Easy Difficulty, Large Training 🥚 Medium Difficulty, Large Training Hard Difficulty, Marathon Training 🥚 Extreme Difficulty, Marathon Training

TOTAL REWARD (TR) 1^{e+5} 5e+4 0 _5e+4 _1e+5 _1.5e+5 3M 0 500k 1M 1.5M 2M 2.5M Steps

AVERAGE SAMPLE REWARD

Ridiculous Difficulty, Large Training Easy Difficulty, Large Training 🥚 Medium Difficulty, Large Training 🧲 Hard Difficulty, Marathon Training Extreme Difficulty, Marathon Training

4.2 TRAINING RESULTS

Chart Highlights

3.5

3

2.5

2

1.5

1

0.5

0

2k

Ridiculous Difficulty, Large Training 🥚 Easy Difficulty, Large Training 🥚 Medium Difficulty, Large Training 🧲 Hard Difficulty, Marathon Training 🥚 Extreme Difficulty, Marathon Training

41

4.3 RESULT DISCUSSION

Is our agent really learning?

World Difficulty Level	Training Steps	Marker Found Rate Last 100 (MFR100)	Collision Rate Last 100 (CR100)	Average Relative Marker Approach (RMA)	Total Reward
Ridiculous	1.5M	0.46	0.54	0.79	105.450
Easy	1.5M	0.71	0.29	0.76	44.446
Medium	1.5M	0.22	0.78	0.64	6.145
Hard	3M	0.4	0.6	0.65	-32.784
Extreme	3M	0.28	0.72	0.77	-167.170

OBSERVATION 1: as training progresses, collision rate (CR100) always decreases, marker found rate (MFR100) always increases. Increasing rate of MFR100 means exponential increase of total markers found (TMF).

OBSERVATION 2: Every training session concluded with an average RMA of <0.8 which indicates that the agent was consistently approaching the target before colliding.

OBSERVATION 3: "Ridiculous" performed surprisingly poor. "Easy" managed an impressive MFR100 of 71% completing its mission more than 1500 times. "Medium" was slow to catch up, required more training and was outperformed by "Hard" and "Extreme".

RESULTS OVERALL: Results appear to be promising. In every difficulty, metrics show a **poor initial agent behavior** and a **significantly improved version by the end** of each training session. Results can be improved with longer training sessions.

5.1 – Summary

5.2 – Limitations & Future Work

3

2

1

- **SUMMARY:** Proof-of-concept mapless approach to UAV autonomous navigation tasks in fully unknown 3D environments. DQN incorporates deep learning techniques into a well-defined reinforcement learning problem (MDP) and integrates several key features including a replay memory and a target network.
- **RESULTS:** Five (5) experiments were conducted to evaluate agent's performance.
 - Presults suggest that the agent can successfully learn to navigate in the environment and avoid obstacles.
 - Proof that DQN can be applied in a large variety of custom environments (not just ATARI games).

5.2 LIMITATIONS & FUTURE WORK

How can we improve our results?

TRAINING SPEED OPTIMIZATIONS:

- **Prioritized Experience Replay:** In this DQN implementation, experience tuples are uniformly sampled from the replay memory. Prioritizing samples with higher loss values will result in faster network convergence.
 - **Drone Swarms:** Multiple parallel drone training will increase training speed. Each UAV would separately send input parameters to a shared neural network, allowing for faster exploration and sample extraction.
 - **Better Pause-Resume Gazebo System:** Current implementation relies on services to pause and resume the simulation. Slows down training process by 30%.

TRAINING QUALITY OPTIMIZATIONS:

Environment Representation: Current obstacle variation is limited to primitive shapes to save computer resources. This is a trade-off between higher-quality complex objects and training speed.

COST-SAVING OPTIMIZATIONS:

(•) **Replace LIDAR:** In current implementation, LIDAR is overkill. Replace LIDAR with six SONAR sensors around UAV's frame.

THE END Thank you for your time