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Abstract

In recent years, the rapid increase of internet based services raises signif-

icant information security concerns. A large amount of network traffic

data is generated on a daily basis with high speed while security threats

become increasingly more complex. Fast and efficient detection of in-

trusive activities in such conditions is a challenging task. In order to

address this issue, we propose a distributed intrusion detection system

that utilizes machine learning classifiers to identify malicious network

activity in real-time. Specifically, we use the Chi-Squared algorithm to

select important features, based on which we build Decision Tree, Ran-

dom Forest, and Extreme Gradient Boosting classification models on

Apache Spark Big Data platform. The proposed system supports scala-

bility in all of its different layers and provides a user-friendly graphical

interface to visualize network activity. Experimental results against

the NSL-KDD dataset demonstrate that the system can perform bi-

nary classification with an area under ROC curve of 97% using the

Random Forest machine learning model.
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Chapter 1

Introduction

1.1 Motivation

The rapid increase of internet based services in recent years, leads to

a significant rise of cyber security concerns. The amount of data be-

ing generated every day exceeds the level of petabytes including infor-

mation about the activity of internet users. This information can be

traces that they leave when they access a website, a mobile applica-

tion, a network, etc. This influx of log data is caused not only by one

but by multiple kinds of sources. The wise utilization of these logs is of

paramount importance if we aim to maintain stable, reliable and secure

computer networks.

Security incidents are becoming increasingly more complex and fre-

quent. In the latest years, a significant percentage of today’s organi-

zations are experiencing burst attacks, based on Cisco Cybersecurity

Reports [1]. These attacks are characterized by the fact that they can

take place in a small time-frame and can cripple security systems within

minutes. The development of real-time network traffic monitoring sys-

tems [2] [3] that can detect malicious activity, scale to the amount of

data being ingested and act quickly in terms of response time can give

an edge over such types of attacks.

Distributed processing platforms, such as Apache Spark [4], Apache

Flink [5], and Apache Storm [6], are increasingly being used in order to
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ingest and process huge amounts of data in real-time with low latency.

The ability to act as soon as events are generated improves an organi-

zation’s responsiveness and effectiveness. Big data stream processing

platforms find a good fit in a variety of industries such as:

• Healthcare - Real-time analytics allow clinicians to quickly get

insights about their patients and enable them to save time, im-

prove care, and acquire critical metrics. The ability to access data

in real-time can dramatically aid clinicians in lifesaving decisions.

• Fraudulent transactions - In order to prevent fraud, the pre-

dictive model must decide if the transaction needs to be accepted

or rejected, in real-time.

• Manufacturing - In an industry where every delay or shutdown

directly impacts the financial stability of an organization, sensors

are used to monitor the state of equipment in real-time. This

data can also be used to optimize the product quality, supply

planning, output forecasting or increase energy efficiency.

With the aid of these big data frameworks, a threat detection system

can instantly identify anomalous behaviour or suspicious activities and

flag them for immediate investigation while also being able to manage

heavy workloads. Therefore, such technologies can prove to be a valu-

able ally for cybersecurity and assist network monitoring systems in

overcoming current challenges.

Another matter that requires further investigation is whether or not

traditional monitoring systems that analyze, filter packets, or operate

based on specific rules, are sufficient for more complex security cases.

In this context, a promising alternative for classifying network traffic

and detecting threats is to apply Machine Learning (ML) techniques.

These techniques can analyze patterns and learn from them to help pre-

vent attacks and respond to changing behaviour. Rather than creating

something to solve a problem, we create something that learns how to

solve a problem.

Machine learning techniques work well in conjuction with the strong

points of big data processing platforms. In a supervised learning sce-
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nario, the more samples we are able to ingest, the better we can train

the classifiers to detect potential threats. Thus, machine learning can

be further enhanced to provide fast, accurate, efficient, automated se-

curity systems that are able to predict threat patterns in real-time,

adapt to novel malicious behaviours, and withstand huge workloads.
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1.2 Objectives

The overall objective of our work is to develop a data analytics pipeline

to process incoming logs and detect network anomalies in real-time.

Specifically, it can be divided into separate parts:

• Handle generated logs as soon as they arrive and make them

reliably available for the rest of the pipeline.

• Build a Machine learning component that processes logs in real-

time and makes predictive analysis.

• Visualize the results of the monitoring process.

• Provide scalability among all components of the system so that

its computational efficiency can adapt to increased load.

• Include a layer that ensures ease of deployment and helps in the

orchestration and configuration of all services.

For each individual goal of our project, we have employed a different

set of tools to tackle each problem accordingly.
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1.3 Solution Overview

Our solution combines machine learning, distributed stream processing,

virtualization, along with other tools in order to provide an accurate,

scalable, real-time threat detection system that meets the current de-

mand. To validate the proposed framework, we perform the classifica-

tion of network flows of the NSL-KDD [7] dataset, a popular dataset

widely used as a benchmark for modern-day internet traffic monitoring

systems.

There are three main stages that form the system’s pipeline. In

the first stage, unlabeled testing network flows are converted into a

stream to emulate a real-time traffic data source. The data is continu-

ously passed to a distributed messaging broker, namely Apache Kafka

[8], whose role is to work as a fault-tolerant substrate for the stream

processing section. It stores and handles the input network connection

records reliably in order to feed it to the rest of the pipeline at the rate

that it arrives or at another preferable rate dictated by the processing

component that follows.

In the second stage, the main processing and classification takes

place. It is implemented on Apache Spark [4] framework, an analytics

engine for large-scale data processing, and specifically on its Structured

Streaming and MLlib APIs. Initially, a feature selection algorithm,

namely Chi-Squared algorithm, extracts important features from the

input data. This leads to a reduction of the computational power re-

quired, and increases the accuracy by removing irrelevant features. Sub-

sequently, three methods of supervised classification, namely Decision

Tree, Random Forest and XGBoost(eXtreme Gradient Boosting), are

employed to separate the incoming flows between attacks and normal

connections in real time. The models of the feature selection algorithm

as well as the ML classifiers are already built from a previous training

phase based on labeled time-invariable training data.

In the last stage, the storage and visualization of the classified net-

work flows takes place. For this role we use Elasticsearch [9], a dis-

tributed search and analytics engine, to provide a fast search and stor-

age service, and its close partner Kibana that retrieves the stored data
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in ElasticSearch through queries. Kibana exposes the results in real-

time or in a specific time range, allowing us to monitor network traffic

in a dashboard of our design.

All the aforementioned services are containerized using Docker [10].

Docker is a virtualization tool that enables a flexible, lightweight, eas-

ily scalable implementation of our system. Docker containers allow our

application to run anywhere and be deployed distributively in a clus-

ter with the only requirement being the installation of Docker on each

node. In addition, Docker helps with the orchestration of all the in-

dividual components so we can launch each one in the correct order

with respect to each other and to the training and testing phases of the

threat detection system.

For the evaluation of our system, as well as a base for the implemen-

tation of the pipeline, we have chosen NSL-KDD dataset. NSL-KDD

dataset [11] is an improved version of the popular KDD’99 dataset [12],

commonly used for testing similar network monitoring systems. This

dataset was used in the Third International Knowledge Discovery and

Data Mining Tools Competition, which was held in conjunction with

KDD-99 The Third International Conference on Knowledge Discovery

and Data Mining. The competition task was to build a network intru-

sion detector, a predictive model capable of distinguishing between bad

connections, called intrusions or attacks, and good normal connections.

This database contains a standard set of data to be audited, which

includes a wide variety of intrusions simulated in a military network

environment.

The rest of the report is organized as follows. In Chapter 2, we

provide information about each technology used in this work. Chap-

ter 3 presents the proposed system and its components. Specifically,

Section 3.1 contains detailed information about the NSL-KDD dataset

as well as its improvements compared to its predecessor. In Section

3.2, we describe the architecture of the proposed system and explain

the details of its functionality. The containerization of each service of

the system using Docker is explained in Section 3.3 and Section 3.4

presents experimental results. Finally, Chapter 4 provides conclusions
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and offers new possibilities for the development of future work.
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Chapter 2

Background

2.1 Big Data Processing

Today developers analyze Terabytes and Petabytes of data for different

purposes. There are many projects on which they rely on to speed

up their work. All of these projects are based on two aspects, batch

processing and stream processing.

The distinction between batch processing and stream processing

is one of the most fundamental principles within the big data world.

When most people use these terms, they usually mean the following:

• Batch processing model: A set of data is collected over time,

then fed into an analytics system. In other words, you collect a

batch of information, then send it in for processing.

• Stream processing model: Data is fed into analytics tools

piece-by-piece. The processing is usually done in real time.

2.1.1 Batch Processing

In batch processing, blocks of data that have been stored over a period

of time, are scheduled to be processed. For example, processing all the

transactions that have been performed by a major financial firm in a

week. This data contains millions of records corresponding to each day

and are stored as files. These files undergo processing at the end of the
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day for various analyses that lead to useful insights and conclusions for

the firm.

Batch processing works well in situations where you do not need

real-time analytics results, and when it is more important to process

large volumes of information than it is to get fast analytics results. To

generalize, we should lean towards batch processing when:

• We are working with large datasets and are running a complex

algorithm that requires access to the entire batch e.g. sorting the

entire dataset.

• We get access to the data in batches rather than in streams.

• We are joining tables in relational databases.

2.1.2 Stream Processing

Stream processing requires the ingestion of a sequence of data, also

known as data streams. Data streaming is the process of sending data

records continuously rather than in batches. The data is generated by

multiple sources simultaneously, and in small sizes. Stream processing

allows you to analyze data in real-time and gives you insights into a

wide range of activities, such as server activity, geolocation of devices,

or user activity on a website.

Stream processing is key if we need analytics results in real-time. It

is ideally suited to data that has no beginning or end and is optimal

for time series and detecting patterns over time. It is often used for

real-time aggregation, correlation, filtering of data, or for incremental

updates on metrics, reports, and summary statistics in response to

each arriving data record. Indications that stream processing is the

right approach are:

• Data is generated in a continuous manner.

• Low latency is crucial.
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2.2 Apache Spark

Apache Spark [13] is a powerful big data processing platform which fol-

lows a hybrid approach. As a hybrid framework, Spark offers support

for both batch and stream processing capabilities. It started as a re-

search project at the UC Berkeley AMPLab in 2009, grew into a broad

developer community, and moved to the Apache Software Foundation

in 2013.

Even though Spark uses many similar principles to Hadoops MapRe-

duce engine, Spark outperforms the latter in terms of performance. For

instance, given the same batch processing workload, Spark can be faster

due to the full in-memory computation feature compared to the tradi-

tional read and write to the disk approach of MapReduce.

1) Spark Batch Processing Model: The strongest advantage of Spark

over MapReduce is the in-memory computation. Spark interacts with

the disk only for two tasks: loading the data initially into the memory

and storing the final results back to the disk. All other results in-

between are processed in-memory. This in-memory processing makes

Spark significantly faster that its batch processing competitor, the

Hadoop framework. To support the in-memory computation feature,

Spark uses Resilient Distributed Datasets (RDD). RDD is a read-only

data structure maintained in memory to make Spark a fault tolerance

framework without having to write to the disk after every operation.

2) Spark Stream Processing Model: In addition to batch process-

ing, Spark provides stream processing abilities with the use of micro-

batches. Micro-batching data streams are treated as a group of very

small batches which are in turn handled as a regular task by Spark

batch engine. Even though this micro-batching procedure works well,

it could still lead to some differences in terms of performance as opposed

to true stream processing frameworks.

Spark provides high-level APIs in Java, Scala, Python, R, and an

optimized engine that supports general execution graphs. Specifically,

these APIs are:

• Spark SQL for structured data processing.
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• MLlib for machine learning.

• GraphX for graph processing.

• Spark (Structured) Streaming for incremental computation and

stream processing.

Figure 2.1: Apache Spark Ecosystem

2.2.1 Spark Core

All the functionalities being provided by Apache Spark are built on the

top of Spark Core. It delivers speed by providing in-memory compu-

tation capability. Spark Core is the the base engine for parallel and

distributed processing of huge datasets. Other key features of Apache

Spark Core are:

• Interaction with storage systems.

• Scheduling and monitoring jobs on a cluster.

• Distributed task dispatching.

• Memory management and fault recovery.
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Resilient Distributed Dataset (RDD)

Spark Core is embedded with a special collection called RDD (resilient

distributed dataset). RDDs are immutable distributed collections of

elements of data that can be stored in memory or disk across a cluster

of nodes [14]. The data is partitioned across nodes in a cluster that can

be operated in parallel with a low-level API.

RDDs can only be created through deterministic operations on data

that reside in stable storage or on other RDDs. They do not need to

be materialized at all times. Instead, an RDD has enough information

about how it was derived from other datasets (its lineage) to compute

its partitions from data in stable storage.

We can control two aspects of RDDs: persistence and partitioning.

We can indicate which RDDs we will reuse and choose a storage strategy

that best fits our needs such as in-memory storage. We can also set the

partitioning method of RDDs across the cluster. For example, we can

partition based on a key in each record. This is useful for placement

optimizations, such as ensuring that two datasets that will be joined

together are hash-partitioned in the same way.

There are two operations performed on RDDs: Transformations and

Actions.

• Transformation: It is a function that produces new RDD from

the existing RDDs. It takes an RDD as input and produces one

or more RDD as output. Applying transformations, builds an

RDD lineage. RDD lineage, also known as RDD operator graph,

is a logical execution plan i.e., a Directed Acyclic Graph(DAG) of

its parent RDDS and their transformations. All transformations

in Spark are lazy, in that they do not compute their results right

away. Instead, they just remember the transformations applied

to some base dataset (e.g. a file). The transformations are only

computed when an action requires a result to be returned to the

driver program. This design enables Spark to run more efficiently.

• Action: Transformations create RDDs from each other, but when

we want to work with the actual dataset, we need to call an
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Action. An Action is a Spark RDD operation that gives non-

RDD values. The values of Actions are returned to the driver

program after running a computation. They bring the laziness of

RDDs into motion.

2.2.2 Spark SQL

Spark SQL is a module in Apache Spark that integrates relational

processing with Spark’s functional programming API. Spark SQL lets

Spark programmers leverage the benefits of relational processing (e.g.

declarative queries and optimized storage), and lets SQL users call com-

plex analytics libraries in Spark [15].

Spark SQL also includes a highly extensible optimizer, Catalyst,

built using features of the Scala programming language, that makes

it easy to add composable rules, control code generation, and define

extension points.

DataFrame

The main abstraction in Spark SQL’s API is a DataFrame, an im-

mutable distributed collection of rows with the same schema. A Data-

Frame is equivalent to a table in a relational database, and can also

be manipulated in similar ways to the native distributed collections

in Spark, the RDDs. Unlike RDDs, DataFrames keep track of their

schema and support various relational operations that lead to more

optimized execution.

DataFrames can be constructed from tables in a system catalog

(based on external data sources) or from existing RDDs. Once con-

structed, they can be manipulated with various relational operators,

such as where and groupBy, which take expressions in a domain-specific

language. Each DataFrame can also be viewed as an RDD of Row ob-

jects, allowing users to call procedural Spark APIs such as map.

Spark DataFrames are lazy, in that each DataFrame object repre-

sents a logical plan to compute a dataset, but no execution occurs until

the user calls an action operation such as save.
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2.2.3 Spark Structured Streaming

Structured Streaming is a scalable and fault-tolerant stream processing

engine built on the Spark SQL engine [16]. The key idea in Struc-

tured Streaming is to treat a live data stream as a table that is being

continuously appended. This leads to a stream processing model that

is similar to a batch processing model. We can design our streaming

computations as standard batch-like queries, and Spark runs them as

incremental queries on the unbounded input table.

Consider the input data stream as the “Input Table”. Every data

item that arrives, is appended to the Input Table as new row.

Figure 2.2: Data stream in Spark

The computations are executed on the same optimized Spark SQL

engine. Finally, the system ensures exactly-once fault-tolerance guaran-

tees through checkpointing and Write-Ahead Logs. In short, Structured

Streaming provides fast, scalable, fault-tolerant, end-to-end exactly-

once stream processing and abstracts away the intricasies of stream

processing from the user.
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2.2.4 Spark MLlib

MLlib is Spark’s machine learning (ML) library [17]. Its goal is to make

practical machine learning scalable and easy. At a high level, the MLlib

API provides tools such as:

• Implementation of common ML Algorithms such as classification,

regression, clustering, and collaborative filtering.

• Feature extraction methods, transformation, dimensionality re-

duction, and feature selection.

• Tools for constructing, evaluating, and tuning ML Pipelines.

• Persistence through saving and loading built models, and Pipelines.

2.2.5 Spark Architecture

As illustrated in figure 2.3, the architecture of Apache Spark consists

of a master node which runs a driver program that is in charge of

calling the main program of an application. The driver program is

the code written by the user. This driver program is responsible for

creating Spark context. Spark context behaves like a gateway to all of

the functionalities of Apache Spark. Both Spark context and the driver

collectively handle the execution of the job within the cluster.

The cluster manager first takes care of the resource allocation. Then,

the job is split into numerous tasks that are assigned to the worker

nodes. The worker nodes execute the tasks that are assigned to them

by the manager and return the results back to the spark context. The

executors carry out the execution of the individual tasks. In order to

increase the performance of the system, the number of worker nodes

must be increased so that the computations can be divided further into

more logical portions.
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Figure 2.3: Spark Architecture

2.3 Machine Learning

Machine learning is a subfield of artificial intelligence, which is broadly

defined as the capability of a machine to imitate intelligent human

behavior. Artificial intelligence systems are used to perform complex

tasks in a way that is similar to how humans solve problems.

The goal of AI is to create computer models that exhibit “intelli-

gent behaviors” like humans. This means models that can recognize a

visual scene, understand a text written in natural language, or perform

an action in the physical world. Traditional programming requires cre-

ating detailed instructions for the computer to follow. But in some

cases, writing a program for the machine to follow is time-consuming

or impossible, such as training a computer to recognize pictures of dif-

ferent people. While this is an easy task for humans to complete, it is

difficult to instruct a computer how to do it through traditional pro-

gramming. Machine learning takes the approach of letting computers

learn to program themselves through experience.

The function of a machine learning system can be:
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• Descriptive: The system uses the data to explain what hap-

pened.

• Predictive: The system uses the data to predict what will hap-

pen.

• Prescriptive: The system uses the data to make suggestions

about what action we should take.

Broadly speaking, machine learning approaches are divided into

three types: supervised learning, unsupervised learning, and reinforce-

ment learning. In unsupervised machine learning, a program looks for

patterns in unlabeled data. Unsupervised machine learning can find

patterns or trends that people are not explicitly looking for. For exam-

ple, an unsupervised machine learning program could look through on-

line sales data and identify different types of clients making purchases.

Reinforcement machine learning trains machines through trial and error

to take the best action by establishing a reward system. Reinforcement

learning can train models to play games or train autonomous vehicles

to drive by telling the machine when it made the right decisions, which

helps it learn over time what actions it should take.

2.3.1 Supervised Learning

Supervised machine learning models are trained with labeled data sets,

which allow the models to learn and become more accurate over time.

For example, an algorithm would be trained with pictures of dogs and

other things, all labeled by humans, and the machine would learn ways

to identify pictures of dogs on its own. Supervised machine learning is

a common machine learning approach used today and is the method of

learning that we incorporated in this work.

Decision Tree

Decision Tree is a popular classification algorithm and quite straight-

forward to understand and interpret. Decision Tree algorithm belongs
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to the family of supervised learning algorithms. Unlike other super-

vised learning algorithms, the Decision Tree algorithm can be used for

solving regression and classification problems too.

The goal of using a Decision Tree is to create a training model

that can be used to predict the class or value of the target variable by

learning simple decision rules inferred from prior data(training data).

In Decision Trees, for predicting a class label for a record we start from

the root of the tree. We compare the values of the root attribute with

the record’s attribute. On the basis of comparison, we follow the branch

corresponding to that value and jump to the next node.

Important terminology related to Decision Trees:

1. Root Node: It represents the entire population or sample and this

further gets divided into two or more homogeneous sets.

2. Splitting: It is a process of dividing a node into two or more

sub-nodes.

3. Decision Node: When a sub-node splits into further sub-nodes,

then it is called the decision node.

4. Leaf / Terminal Node: Nodes do not split is called Leaf or Ter-

minal node.

5. Pruning: When we remove sub-nodes of a decision node, this

process is called pruning.

6. Branch / Sub-Tree: A subsection of the entire tree is called branch

or sub-tree.

7. Parent and Child Node: A node, which is divided into sub-nodes

is called a parent node of sub-nodes whereas sub-nodes are the

child of a parent node.
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Figure 2.4: Decision Tree depiction

Decision Trees classify the examples by sorting them down the tree

from the root to some leaf/terminal node, with the leaf/terminal node

providing the classification of the example. Each node in the tree acts

as a test case for some attribute, and each edge descending from the

node corresponds to the possible answers to the test case. This process

is recursive in nature and is repeated for every subtree of the new node.

Random Forest

Random Forest is another supervised learning algorithm. The forest

it builds, is an ensemble of decision trees, usually trained with the

“bagging” method. The general idea of the bagging method is that a

combination of learning models increases the overall result.

Essentially, Random Forest builds multiple decision trees

and merges them together to get a more accurate and stable

prediction. One big advantage of Random Forest is that it can be

used for both classification and regression problems, which form the

majority of current machine learning systems. Below is an image with

an example of a Random Forest with two trees.
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Figure 2.5: Random Forest depiction

Random Forest introduces additional randomness to the model,

while growing the trees. Instead of searching for the most important

feature while splitting a node, it searches for the best feature among a

random subset of features. This results in a wide diversity that gen-

erally results in a better model. Therefore, only a random subset of

the features is taken into consideration by the algorithm on splitting a

node.

Extreme Gradient Boosting

Extreme Gradient Boosting, or otherwise, XGBoost is a specific imple-

mentation of the Gradient Boosting method. Like Random Forest, Gra-

dient Boosting is another technique for performing supervised machine

learning tasks, like classification and regression. XGBoost is particu-

larly popular because it has been the winning algorithm in a number

of recent machine learning competitions.



27

Similar to Random Forests, Gradient Boosting is an ensemble al-

gorithm. This means it creates a final model based on a collection of

individual models. The predictive power of these individual models is

weak and prone to overfitting but combining such weak models in an

ensemble leads to an overall improved result. In Gradient Boosting

machines, the most common type of model used is Decision Trees -

another parallel to Random Forests.

Boosting builds models from individual so called weak learners in

an iterative way. In boosting, the individual models are not built on

completely random subsets of data and features but sequentially by

putting more weight on instances with wrong predictions and high er-

rors. The general idea behind this is that instances, which are hard to

predict correctly (“difficult” cases) will be focused on during learning,

so that the model learns from past mistakes.

XGBoost, compared to other gradient boosting methods, uses more

accurate approximations to find the best tree model. While regular

gradient boosting uses the loss function of the base model (e.g. de-

cision tree) as a proxy for minimizing the error of the overall model,

XGBoost uses the 2nd order derivative as an approximation. It also

utilizes advanced regularization, which improves model generalization.

Additional advantages of XGBoost are that the training is very fast

and can be distributed across clusters.

2.4 Docker

Docker is an open source software platform to create, deploy and man-

age virtualized application containers on different operating systems.

Docker packages, provisions and runs containers. Container tech-

nology is available through the operating system. A container packages

the application service or function with all of the libraries, configura-

tion files, dependencies, and other necessary parts required to operate.

Each container shares the services of the underlying operating system.

Docker uses resource isolation in the OS kernel to run multiple con-

tainers on the same OS. This is different than virtual machines (VMs),
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which encapsulate an entire OS with executable code on top of an ab-

stracted layer of physical hardware resources.

Figure 2.6: Docker Stack

Each container starts with a Dockerfile. This text file provides a

set of instructions to build a Docker image, including the operating sys-

tem, languages, environmental variables, file locations, network ports,

and any other components it needs to run.

A Docker image is a portable, read-only, executable file containing

instructions for creating a container and specifications based on which,

software components of the container will run and how.

The Docker Engine is the underlying technology that handles the

tasks and workflows involved in building container-based applications.

The engine creates a server-side daemon process that hosts images,

containers, networks and storage volumes. The daemon also provides a

client-side command-line interface (CLI) for users to interact with the

daemon through the Docker application programming interface.

Docker Swarm is a mode in Docker Engine that supports cluster

load balancing for Docker. Multiple Docker host resources are pooled
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together to act as one, which enables users to quickly scale up container

deployments to multiple hosts.

Docker Compose is a command-line tool to define and run multi-

container Docker applications. It allows you to create, start, stop,

rebuild all the services from your configuration, view the status and log

output of all running services.

2.5 Apache Kafka

Apache Kafka is an open source project for a distributed publish-

subscribe messaging system rethought as a distributed commit log.

Kafka stores messages in topics that are partitioned and replicated

across multiple brokers in a cluster. Kafka provides three main func-

tions to its users:

• Publish and subscribe to topics.

• Reliably store streams of records.

• Process streams of records in real-time.

Kafka is primarily used to build real-time streaming data pipelines

and applications that adapt to the data streams. It combines messag-

ing, storage, and stream processing to allow storage and analysis of

both historical and real-time data.

Commit Log

The Kafka commit log provides a persistent ordered data structure.

Records cannot be directly deleted or modified, only appended onto

the log. The order of items in Kafka logs is guaranteed. The Kafka

cluster creates and updates a partitioned commit log for each topic

that exists. All messages sent to the same partition are stored in the

order that they arrive. Because of this, the sequence of the records

within this commit log structure is ordered and immutable. Kafka also

assigns each record a unique sequential ID known as an offset, which is

used to retrieve data.
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Figure 2.7: Commit Log

Kafka APIs

Apache Kafka offers four key APIs: the Producer API, Consumer API,

Streams API, and Connector API.

• Producer API: used to publish a stream of records to a Kafka

topic.

• Consumer API: used to subscribe to topics and process their

streams of records.

• Streams API: enables applications to behave as stream proces-

sors, which take in an input stream from topic(s) and transform

it to an output stream which goes into different output topic(s).

• Connector API: allows users to seamlessly automate the addi-

tion of another application or data system to their current Kafka

topics.

A Kafka topic defines a channel through which data is streamed.

Producers publish messages to topics, and consumers read messages

from the topic they subscribe to. Topics organize and structure mes-

sages, with particular types of messages published to particular topics.

Topics are identified by unique names within a Kafka cluster, and there

is no limit on the number of topics that can be created.
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How it works

Applications (producers) send messages (records) to a Kafka node (bro-

ker) to be processed by other applications called consumers. These

records get stored in a topic and consumers subscribe to the topic to

receive new messages.

Figure 2.8: Kafka Functionality

As topics can get quite big, they get split into partitions of a smaller

size for better performance and scalability. Kafka guarantees that all

messages inside a partition are ordered in the sequence they came in.

2.6 Elasticsearch and Kibana

Elasticsearch and Kibana are two of the three main components of the

ELK Stack. The ELK Stack is a popular log management platform. It

is designed to provide analytics solutions by monitoring modern appli-

cations and the infrastructure they are deployed on.

2.6.1 Elasticsearch

Elasticsearch is a distributed, open-source search engine built on Apache

Lucene and developed in Java. It started as a scalable version of the

Lucene open-source search framework and added the ability to horizon-

tally scale Lucene indices. Elasticsearch allows you to store, search, and



32

analyze huge volumes of data quickly and in near real-time and give

back answers in milliseconds. It is able to achieve fast search responses

because instead of searching the text directly, it searches an index. It

uses a structure based on documents instead of traditional relational

tables. Elasticsearch comes with extensive REST APIs for storing and

searching the data.

Document

Documents are the basic unit of information that can be indexed in

Elasticsearch. They are expressed in JSON format, which is the global

internet data interchange format. A document is similar to a row of

a relational database, representing a given entity. In Elasticsearch, a

document can be more than just text, it can be any structured data

encoded in JSON. That data can be things like numbers, strings, and

dates. Each document has a unique ID and a given data type, which

describes what kind of entity the document is.

Index

An index is a collection of documents that have similar characteristics.

It is the highest level entity that you can query against in Elasticsearch.

You can think of the index as being similar to a database in a relational

database schema. Any documents in an index are typically logically

related.

Cluster

An Elasticsearch cluster is a group of one or more node instances that

are connected together. The power of an Elasticsearch cluster lies in

the distribution of tasks, searching, and indexing across all the nodes

in the cluster.

Node

A node is a single server that is a part of a cluster. A node stores data

and participates in the cluster’s indexing and search capabilities. An



33

Elasticsearch node can be configured in different ways:

• Master Node: Controls the Elasticsearch cluster and is respon-

sible for all cluster-wide operations like creating or deleting an

index as well as adding or removing nodes.

• Data Node: Stores data and executes data-related operations

such as search and aggregation.

• Client Node: Forwards cluster requests to the master node and

data-related requests to data nodes.

Shards

Elasticsearch provides the ability to subdivide the index into multi-

ple pieces called shards. Each shard is in itself a fully-functional and

independent index that can be hosted on any node within a cluster.

By distributing the documents in an index across multiple shards, and

those shards across multiple nodes, Elasticsearch ensures redundancy.

Redundancy protects against hardware failures and increases query per-

formance as nodes are added to a cluster.

Replicas

Elasticsearch allows us to make one or more copies of our index’s shards

which are called replica shards or just replicas. Basically, a replica shard

is a copy of a primary shard. Each document in an index belongs to

one primary shard. Replicas provide redundant copies of your data

to protect against hardware failure and increase capacity to serve read

requests like searching or retrieving a document.

2.6.2 Kibana

Kibana is a data visualization and management tool for Elasticsearch

that provides real-time histograms, line graphs, pie charts, and maps.

It enables us to navigate and give shape to Elasticsearch data. With

Kibana, we can:
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• Search and observe: From discovering documents to analyzing

logs, Kibana is a portal for accessing this capabilities and more.

• Visualize and analyze data: Search for hidden insights, visual-

ize them in charts, maps, line graphs, and combine them in a

dashboard.

• Manage and monitor the cluster: Manage indices, ingest pipelines,

monitor the health of the Elasticsearch cluster, and control users

permissions.

However, a major drawback is that every visualization can only

work against a single index pattern. So, if we have indices with strictly

different data, we have to create separate visualizations.
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Chapter 3

Network Intrusion Detection

Application

In this chapter we describe the architecture of our network intrusion

detection system and present the details of its implementation and

functionality.

The backbone of the system is the use of Apache Spark frame-

work as the main distributed processing core. We chose Spark and

its Structured Streaming API over other stream-processing platforms.

This decision was made due to the ease of implementation that Spark

provides, its native and community-wide support for using machine

learning algorithms with MLlib API, and because it presents the best

fault tolerance performance [18] compared to Apache Storm or Apache

Flink. Spark ensures end-to-end exactly-once semantics under any fail-

ure, making our application robust. Spark runs in a cluster following

the master/worker model, where workers can expand and reduce re-

sources, providing scalability to the system.

We also decided to develop our application using the Scala pro-

gramming language instead of Java or Python. Since Spark is written

in Scala, it is faster in processing data and offers better user APIs.

Python and Bash have also been employed to create scripts for specific

purposes along the way as will be explained later on.

Additionally, Docker, Apache Kafka, Elasticsearch, and Kibana were

clear choices for the roles that they were called to fulfill. Docker en-
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ables us to package our system with a virtualization layer so that it can

run regardless of the underlying infrastructure. Apache Kafka acts as a

reliable messaging service that handles the input streaming data. Elas-

ticsearch and kibana allow us to store and visualize results in real-time.

Also, all of these techonologies contribute to the intended distributed

and scalable nature of our threat detection system.

The proposed system is available as an opensource solution that

can be found at the corresponding repository along with instructions

on how to deploy and use it.

Figure 3.1: Technologies used in this work.

https://github.com/Diomf/network-intrusion-detection-system
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3.1 Dataset Selection

Intelligent intrusion detection systems can only be built if there is avail-

ability of an effective dataset. The internet traffic record data that we

selected to evaluate our intrusion detection system and base our imple-

mentation is one of the most common datasets used as a benchmark for

modern-day internet traffic monitoring tools. NSL-KDD dataset [19] is

a refined, cleaned-up version of the KDD’99 dataset.

The dataset contains 43 features per record, with 41 of the features

referring to the traffic input itself while the last two are labels describing

whether it is a normal connection or an attack, and the severity of

the traffic input. There are four different classes of attacks within

the dataset: Denial of Service (DoS), Probe, User to Root(U2R), and

Remote to Local (R2L). A brief description of each attack can be seen

below:

• DoS is an attack meant to shut down a machine or network, mak-

ing it inaccessible to its intended users. DoS attacks accomplish

this by flooding the target with traffic, or sending it information

that triggers a crash. In both instances, the attack deprives le-

gitimate users (i.e. employees, members, or account holders) of

the service or resource they expected. DoS attacks often target

web servers of high-profile organizations such as banking, com-

merce, and media companies, or government and trade organiza-

tions [20].

• Probing is a type of attack in which the intruder scans network de-

vices to determine weaknesses in topology design or some opened

ports and then use them in the future for illegal access to personal

information [21].

• A U2R attack occurs when an attacker who has already achieved

user access on a system, tries to gain privileged access. Vari-

ous buffer overflow attacks against network services fall in this

category.
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• An R2L attack occurs when an attacker who has the ability to

send packets to a machine over a network but who does not have

an account on that machine, exploits some vulnerability to gain

local access as a user of that machine.

Although these attacks exist in the dataset, the distribution is heav-

ily skewed. Essentially, more than half of the records that exist in each

dataset are normal traffic, and the distributions of U2R and R2L are

extremely low. Despite its bias, this is an accurate representation of

the distribution of modern-day internet traffic attacks, where the most

common attack is DoS while U2R and R2L are hardly ever seen.

Breakdown of features

A connection record of this dataset summarizes the packets of a commu-

nication session between a connection initiator with a specified source

IP address and a destination IPaddress over a pair of TCP/UDP ports

[22]. These traffic records can be broken down into four categories:

Basic, Content-based, Host-based, and Time-based.

1. Basic features can be derived from the header of the packet with-

out looking into the payload itself, and hold the basic information

about the packet such as the protocol, service, and duration of

a connection. This category contains the first up until the ninth

feature.

2. The content-based features hold information about the content,

such as the login activity. With this information, the system can

access the payload. This category contains features from number

10 to 22.

3. Time-based features hold the analysis of the traffic input over a

two-second window and contain information about connections

related to the same host. These features are mostly counts and

rates rather than information about the content of the traffic

input. This category contains features 23–31.
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4. Host-based features are similar to Time-based features, except

instead of analyzing over a two-second window, they are designed

to describe attacks, which span longer than a two-second window.

This category contains features 32–41.

There are four types of features in this dataset:

• Categorical: Text type data that generally take a limited number

of possible values.

• Binary: Discrete data that can be in only one of two categories.

• Discrete: Numeric variables that have a finite number of values

within a specific range.

• Continuous: Numeric variables that have an infinite number of

values within a specific range.

A subset of the total features and their meaning is shown in the

table below:
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# Feature Name Description Type

1 Duration
Length of time duration of the

connection
Continuous

2 Protocol Type Protocol used in the connection Categorical

3 Service
Destination network service

used
Categorical

4 Flag
Status of the connection –

Normal or Error
Categorical

5 Src Bytes

Number of data bytes

transferred from source to

destination in single connection

Continuous

6 Dst Bytes

Number of data bytes

transferred from destination

to source in single connection

Continuous

7 Land

If source and destination IP

addresses and port numbers

are equal then, this variable

takes value 1 else 0

Binary

8 Wrong Fragment
Total number of wrong fragments

in this connection
Discrete

9 Urgent

Number of urgent packets in this

connection. Urgent packets are

packets with the urgent bit activated

Discrete

10 Hot

Number of ”hot” indicators in the

content such as: entering a system

directory, creating programs and

executing programs

Continuous

Improvements on the original KDD’99 dataset

NSL-KDD is a dataset suggested to solve some of the inherent problems

of the KDD’99 [23]. The advantages over the original set are:

• No redundant records in the train set, so the classifiers will not

produce any biased result.

• There is no duplicate records in the proposed test set, therefore,

the performance of the learners is not biased towards the methods

which have better detection rates on the frequent records.
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• The number of selected records from each difficulty level group

is inversely proportional to the percentage of records in the orig-

inal KDD dataset. As a result, the classification rates of distinct

machine learning methods vary in a wider range, which makes it

more efficient to have an accurate evaluation of different learning

techniques.

Despite its improvements, this new version of the KDD dataset

still suffers from some of the problems of the original set and may

not be a perfect representative of existing real networks. However, it

can, certainly, still be applied as an effective benchmark for different

intrusion detection methods.



42

3.2 System Architecture

The functionality of the system follows a Supervised Learning approach

and consists of two phases. In the Offline preprocessing phase, the

training dataset is inserted into the system in order to build the re-

quired feature extraction and machine learning models.In the Online

phase, the pre-built models are loaded in order to classify the incoming

network traffic in real-time by labeling each flow as an attack or as a

normal connection based on the algorithm’s prediction. The flow of

data, mainly during the Online phase, forms a pipeline which is essen-

tially split into three stages. The architecture of the system as a whole

and its different stages can be viewed in figure 3.2.

1. Input Handling Stage: In this stage, Apache Kafka, as a dis-

tributed messaging queue, is responsible for ingesting the incom-

ing streaming network data. This data is stored in a Kafka topic

that is created during the launch of our system. A Kafka console

producer sends connection logs of the NSL-KDD testing set into

the partitions of the topic at random intervals in order to test

the performance of the system. In a real world scenario, a Kafka

Connector named Spooldir is constantly watching a directory for

new network traffic logs and immediately sends them to the Kafka

topic.

2. Processing Stage: Apache Spark is the processing backbone

of the application. It is in charge of all data operations within

the Processing Stage. The two phases of the system, Offline and

Online, are implemented as two separate Spark jobs that are sub-

mitted to the Spark cluster consecutively. The first to run is the

Offline phase that produces and saves the required models. As

soon as the job finishes, the Online Spark job gets submitted to

the cluster, loads the pre-built models, starts ”listening” to the

Kafka topic for new network logs and passes them through the

trained ML models to label them as malicious or benign connec-

tions.
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3. Visualization Stage: The classified records are stored in the

Elasticsearch search engine through a direct Spark-Elasticsearch

connection. Kibana queries the search engine, receives the re-

sponse and presents it in a user-friendly dashboard to provide

insights and various metrics of the network traffic in near real-

time or in a specific time range, based on user’s choice.

Figure 3.2: Architecture Overview of the Network Intrusion Detection

System
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The individual components of the system run in Docker containers

and with Docker Compose, we deploy them to all the available ma-

chines of the Docker Swarm cluster. The virtualization layer added

by employing Docker enables us to easily deploy each service. It also

allows us to configure the scalability level of each part of the system by

simply, tuning the parameters in the running scripts.

Docker makes it possible for a user to deploy the system regardless of

the underlying infrastructure. The only requirement is the installation

of Docker (instead of all the individual technologies and dependencies

used) and the assignment of Swarm-Labels on each machine, based on

our preferences, so that Docker knows what services to deploy on each

node.

3.2.1 Offline Phase

Figure 3.3: Offline Phase
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We have to note that the Offline phase or, in other words, the training

of the Machine Learning and Feature extraction models, takes place

entirely within the Processing Stage of the pipeline as shown in figure

3.3 and therefore uses only Apache Spark for its batch processing. A

more detailed flowchart with all data processes of this phase can be

viewed in figure 3.4 at the end of this section.

At launch of the application in a cluster setup, the training network

flows of the NSL-KDD dataset are stored in the form of CSV files in

a distributed storage supported by Hadoop such as HDFS, Cassandra,

HBase, Amazon S3, etc. Due to the ease of use that it provides, we em-

ployed Amazon S3 as a distributed storage service in order to conduct

our experiments.

As a first step, the CSV training file is read from an Amazon S3

bucket by Spark Context into a Spark Dataframe with an already de-

signed data schema that corresponds to the fields of the KDD dataset.

We, then, clean the dataframe by removing the unnecessary Score col-

umn and possible empty rows or rows containing null values. An extra

field is added at this point with the function categorizeKdd2Labels

that describes the connection as attack or normal connection based on

the already existing class label of the dataset. NSL-KDD contains a

variety of attacks but since we perform binary classification we need to

categorize all connections to only two classes. Our initial goal was to

perform multi-class classification but due to dataset-specific issues that

are explained in Experimental Results, we resorted to binary.

Before walking through the next steps let us go briefly through

the concepts of Spark ML pipelines. ML pipelines are a set of high

level APIs built on top of the DataFrames which make it easier to

combine multiple algorithms into a single process. The main elements

of a pipeline are the transformer and the estimator. The first can

represent an algorithm that can transform a DataFrame into another

DataFrame, and the latter is an algorithm that can fit on a DataFrame

to produce a transformer.
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As a first transformer we use the StringIndexer() to encode the

categorical columns from String format to Numeric indices since the

following algorithms require numeric features. The feature extraction

method that we employed is only applicable to categorical data so, after

the StringIndexer step, we need to discretize the continuous features

before we apply the algorithm. For this purpose, we use Spark ML’s

QuantileDiscretizer() transformer which bucketizes the continuous

features and turns them into binned categorical ones. Afterwards, we

assemble the prepared columns into a single feature vector that is added

to the dataframe as a new column using VectorAssembler() such as

in the example:

Feat1 Feat2 Feat3 ... Feat41

18 1 0.0 ... 4.0
→

Feature Vector

[18.0, 1.0, 0.0, ..., 4.0]

We can now perform feature extraction on the assembled dataframe.

Feature Extraction

Feature Extraction is a machine learning technique which reduces the

amount of data to be analyzed by decreasing the dimensionality of

a dataset to include only important features and discard others that

do not add much value to the learning process or contain meaningless

noise [24]. Choosing relevant features out of the 41 features of our

dataset is a vital step in the process as this has a notable impact on

improving its performance in terms of training and detection time but

also on increasing its accuracy. In this work, we separate the optimal set

of features by using the well-known filter-based Chi-Squared selection

algorithm.

Chi-Squared algorithm uses the statistical Chi-Squared test of in-

dependence to determine the dependency of two variables. If a tar-

get variable (e.g. the class label) is independent of a feature variable,

we can discard that feature variable as non-important. Therefore, the

more dependent a feature variable is to a target variable, the more it
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can contribute to the prediction process and should be included in the

final set of features. The chi-squared statistic (X2), based on which we

make this decision, derives from the following equation and is essen-

tially a measure of the difference between the observed and expected

frequencies of the outcomes of a set of events or variables.

X2
c =

∑ (Oi − Ei)
2

Ei

Where c translates to the degrees of freedom, O is the observed

value(s) and E is the expected value(s).

The function applyChiSqSelection() performs the Chi-Squared

test of Spark MLlib on the dataframe with the assembled features and

returns a vector containing the calculated Chi-Squared statistics that

correspond to each feature. These statistics are then indexed and sorted

so we can choose the 10 best features. The number of final selected

features was empirically chosen because it produced the best results in

our experiments but it can change on runtime since it is a parameter of

the function. The final Chi-Squared model is built by passing this array

with the indices of best features to a VectorSlicer() transformer that

extracts the selected features out of all the features.

Instead of using the ChiSqSelector() that MLlib provides and

directly produce the selection model, we thought it would be better to

perform the test manually and then use a VectorSlicer because, in this

way, we have slightly more control over the implementation.

Building the Machine Learning models

After passing the dataframe through the Chi-Squared selection model,

a new column is added that contains a vector with the final set of

features. Based on this column along with the class label column, we

train and build the Machine Learning models.

Selecting a fitting Machine Learning approach and suitable classi-

fiers is an important stage in the development process. The availability
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of an effective world-class dataset with a sizable amount of quality

labeled training and testing data has lead us to follow a Supervised

Learning approach instead of an Unsupervised one. More specifically,

the classifiers that we train are:

1. Decision Tree

Decision Trees are a popular and effective method of classification.

They support both numerical and categorical data and they can

handle large datasets. A Decision Tree can be represented with

nodes and edges. It is composed of a root node that performs

the first split and leaf nodes in which we can find the predicted

results. In this work we used Decision Tree due to the fact that

they are supported by Spark MLlib, they are easy to interpret, do

not require feature scaling, are able to handle feature interactions

and they are non-parametric, therefore, more flexible.

2. Random Forest

Many of the strong points of Decision Trees are inherited by Ran-

dom Forests since they are ensembles of decision trees. Random

Forest grows, in parallel, many decision trees, each giving a clas-

sification , and merges them while selecting the classification with

the most votes in order to get a more accurate and stable pre-

diction. They inject randomness inside the training process by

selecting a random subset of features so that each decision tree is

different from the other. In addition to the strengths of decision

trees, random forests reduce the risk of overfitting that sometimes

’deep’ decision trees have and are generally great predictors. Ran-

dom Forest is natively supported by Spark MLlib.

3. Extreme Gradient Boosting(XGBoost)

Extreme Gradient Boosting is another decision-tree-based ensem-

ble algorithm that uses a gradient boosting framework. It grows

decision trees consecutively while, each time, trying to improve

the prediction rate by making small adjustments to the predic-

tion function in order to optimize it. What XGBoost adds to the
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Gradient Boosting method is that it uses regularization methods

to avoid over-fitting. XGBoost is widely used in solving Ma-

chine learning problems and has gained popularity as a strong

contender in competitions. It is not currently supported by the

official Spark MLlib but we incorporate it as an external library

built on top of Spark’s API.

We included all three of them in our implementation not only to

provide the user with the opportunity to select his preffered method

but also to experiment with and compare their performances. The con-

struction of these three machine learning models concludes the Offline

phase.

All the aforementioned models (i.e the Chi-Squared model, the ML

models and the Pipeline model that contains the data preparation

steps) are stored in Amazon S3 to be loaded and used during the Online

phase.

Figure 3.4: Offline Phase Flowchart
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3.2.2 Online Phase

As soon as the machine learning models are trained and stored, the

training Spark job exits. The Docker service responsible for submitting

it to the cluster gets terminated and the container is stopped. A sep-

arate service is constantly pinging the training service through a bash

script to find out whether it is still running or not. When the ping com-

mand returns one, it means that it did not receive a reply, therefore the

training is complete and we can kickstart the Online Phase. This sepa-

rate service is also in charge of submitting the Real-Time Classification

Spark job to the spark cluster.

It should be noted that all the Docker services that take part in

the Online Phase are already up and running at this point and with

submitting this second Spark job, the pipeline is complete and ready

to process the incoming flow of data.

Input Handling

In order to simulate a realistic flow of network logs we utilized two

python scripts that send the unlabeled NSL-KDD network records to

Kafka. The first script sends each flow at random intervals, between

zero and four seconds with zero being the most probable interval, to

monitor how well the system responds to random network connections

and how soon we can see the results in the visualization dashboard.

The second script streams the testing CSV file at a specific rate, such

as 3000 records/sec to test the processing efficiency of the spark cluster.

A Kafka Console Producer sends this stream of unlabeled records

to the partitions of the Kafka Topic that is created at launch. The
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producer connects to the Docker IPs of these partitions via network

and Kafka distributes the incoming records to all available brokers.

The number of partitions should be at least the same as the number of

Spark workers in the cluster for the optimal parallel processing of data.

In a real world case scenario, some other hypothetical application

dumps network logs to a specific location. In such a case, we have

included a Kafka Connector named Spooldir that is tasked with watch-

ing this directory for new logs and sending them immediately, tuple by

tuple, to the Kafka topic, essentially playing the role of a monitoring

tool.

Real-Time Classification

When the corresponding Docker service submits the Live Classification

job, Spark starts a Structured Streaming application, the progress and

details of which can be viewed live in the Spark UI on the configured

ip and port through the browser.

At the beginning, all the pre-built models are loaded back into the

Spark Workers from Amazon S3. Those are the Decision Tree, Ran-

dom Forest, XGBoost, Chi-Squared Selection, and Machine Learning

preprocessing pipeline models. The user has the option of selecting

which of the ML models wishes to be used as a classifier of the incom-

ing network flows.

Spark workers are listening to the Kafka topic and read the stream of

new network flows that arrive into a Spark DataFrame. This DataFra-

me represents an unbounded table containing the streaming network

data. Structured Streaming treats a live data stream as a table that is

being continuously appended.

The following transformations resemble the course of action of the

Offline Phase. A cleaning step takes place to remove the Score col-

umn and possible null containing rows. Subsequently, the dataframe

is fit on the Pipeline model that contains all the preparation opera-

tions required which are now performed on each and every row of the
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incoming stream. The resulting stream containing now an assembled

feature vector passes through the pre-built Chi-Squared model which is

essentially a VectorSlicer estimator that directly separates the already

selected features.

Afterwards, based on our initial choice, each network tuple passes

through the corresponding Classifier model that adds a label based on

its prediction. Using an IndexToString() transformer, the predictions

of numeric type are translated back to a String type for readability. Fi-

nally, with the addition of a Timestamp column, the classified stream of

tuples is translated into documents and stored in Elasticsearch through

the use of elasticsearch-hadoop library that provides native integration.

Visualization

Elasticsearch acts as a highly scalable document oriented database that

receives the classified flows and stores them as serialized JSON docu-

ments on an index that is created during launch. Based on the number

of Elasticsearch nodes that we setup, the stored documents are dis-

tributed across the cluster and can be searched for from Kibana in near

real-time (i.e. within one second).

Kibana’s interface allows us to query the data stored in the Elas-

ticsearch index and then visualize the results through a collection of

charts, graphs, metrics, and searches that together form the designed

dashboard. This pre-created dashboard is loaded on our Kibana service

on setup and, with the usage of the Timestamp column that was added

to the data, can be configured to present its insights based on a specific

time range or in a continuous fashion. In our case, we included metrics

that we thought would be of value such as:

• Comparison between the number of attacks and normal connec-

tions with respect to the total number of connections recorded so

far in figure 3.5.

• Time chart displaying the number of attacks or normal connec-

tions that happened within the selected time range in figure 3.5.
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• The number of source bytes, destination bytes, and of successfull

login attempts in attack connections recorded so far in figure 3.5.

• The distribution of protocols (tcp-udp-icmp) recorded in all con-

nections in figure 3.7.

• The service distribution in connections displayed as a pie chart

in figure 3.7.

• Information about the latest attacks containing the values of the

fields stored in the Elasticsearch index in figure 3.8.

Figure 3.5: Kibana Dashboard - Connection distribution and different

metrics
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Figure 3.6: Kibana Dashboard - Protocol and service distribution

Figure 3.7: Kibana Dashboard - Latest attacks information (1)
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Figure 3.8: Kibana Dashboard - Latest attacks information (2)
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3.3 Containerization and Orchestration

Docker allows the automated deployment of the whole system on a

Docker Swarm cluster with a single command. Every technology used

in this work is launched with a configuration detailed in the docker-

compose file.

Initially, Docker starts up all services in the form of containers and

deploys them. Using Docker Compose, we can either deploy it distribu-

tively in a cluster among all nodes in Swarm mode or as a single-server

application in local mode for testing.

The services launched as containers are:

• Zookeeper: A service required by Kafka. Kafka uses Zookeeper

to do leadership election of Kafka Broker and Topic Partition

pairs. It acts as a manager and sends changes of the topology

to Kafka, so each node in the cluster knows when a new bro-

ker joined, a Broker died, a topic was removed or a topic was

added, etc. Zookeeper provides an in-sync view of Kafka Cluster

configuration.

• Kafka: Creates the cluster of brokers that provide the Kafka ser-

vice and scales them accordingly, based on the Docker Swarm

labels of the nodes. Depends on Zookeeper. Also, configured

to automatically create a topic for the network traffic with the

number of partitions being equal to the number of spark workers.

• Spark Master: In the master-worker architecture of a spark stan-

dalone cluster, Spark Master is the resource manager for the clus-

ter in charge of allocating the resources among the Spark appli-

cations. The resources are used to run the Spark Driver and

Executors. Configured to deploy on a node with the master role

label and communicates with workers through the exposed ports

of the container. The Spark UI can also be viewed through the

browser on one of these ports.

• Spark Worker(s): Launches the fleet of workers that constitute

the spark cluster and enlists them through communication with
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the Spark Master on its exposed ports. The replicas configuration

option dictates the numbers of workers.

• Spark-submit for Training job: Service that utilizes the Spark-

submit script provided by Apache Spark to launch applications on

the cluster. It submits the jar package that contains our code and

its dependencies to the Spark master. This service runs a specific

main class corresponding to the Training process and starts after

the Spark Master and Worker(s) services have already started. In

other words, the training starts after the spark cluster have been

setup. The image that we created for this service packages the

spark-submit service of Apache Spark along with the jar file of

our application and some additional functionality.

• Spark-submit for Real-Time Classification job: We use the same

image as the previous service but through a parameter setting in

Docker, a different main class is used and the Real-time Classi-

fication Spark job is submitted to the cluster to start the new

Structured Streaming application. Within the script that sub-

mits the application, we ping the previous service to figure out

whether or not it has completed so we can kickstart the Online

Phase.

• Elasticsearch: Creates the search engine cluster. The names of

the Swarm nodes that correspond to Elasticsearch nodes have to

be provided for inter-node discovery. The number of nodes is

equal to the number of nodes with the ’esnode’ role label.

• Kibana: Launches the visualization service. Single instance since

that is all that is required. The port 5601 is exposed by this

container in order for a user to connect through his browser on

the ip of the node that this service runs and view the created

dashboard.

• Elasticsearch-Kibana Setup service: Single container that con-

tains a simple environment running a script that creates Elas-

ticsearch index for the storage of the classified network flows and



58

also loads the pre-created Kibana dashboard. This separate setup

service was required because the dashboard and index have to be

created after the Elasticsearch and Kibana services are already

up and running.

Every main component of the system is by design distributed and

able to support scalability, one of the intended features of our intru-

sion detection system. The number of Kafka brokers, Spark workers

and Elasticsearch nodes can be increased or decreased based on our

demands. To add new nodes to the Swarm and make these resources

available for scaling-up the services, we just have to enlist and label

them with the corresponding Docker commands.

Instead of managing the deployment of each part of our system man-

ually, Docker offers us a more automated way. It enables us to adjust

the desired amount of resources simply by configuring the parameters

regarding the number of replicas of each service. Docker Swarm han-

dles the necessary management and offers clustering, scheduling and

integration capabilities for our distributed application.

One other advantage of Docker is that it provides restart policies to

control whether your containers start automatically when they exit, or

when Docker restarts. If one of service fails, Docker will automatically

attempt to restart it on one of the available nodes. This policy can be

configured in the Docker-Compose file. In our case, the policy of the

Spark-submit Training job service is set to only restart upon failure

and not on completion. This is because we need it to run exactly once

successfully for the machine learning algorithms to be trained.
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3.4 Experimental Results

3.4.1 Algorithm Performance Metrics

Our initial intention, when designing the intrusion detection system,

was to perform multi-class classification and thus, train the machine

learning algorithms to be able to successfully recognize whether the

incoming network records are normal connections, dos, probe, r2l or u2r

attacks. These are the five label categories included in the NSL-KDD

dataset. Though, as explained below, due to certain issues regarding

the number of training samples corresponding to each attack class of

the dataset we switched to binary classification.

Multi-class Classification

The issue that arises when trying to classify the records into its five

classes is due to class imbalance. Class imbalance is a problem that

occurs in machine learning classification problems and it tells us that

the occurence of one of the classes is very high compared to other classes

present. Due to the difference in class frequencies, the algorithms tend

to get biased towards the majority values and do not perform well on

the minority values. This affects the overall predictability of the models

since the algorithms do not have enough data to learn the patterns

present in the minority classes.

In an attempt to combat this issue, we added class weights to take

into account the skewed distribution of the classes. The difference in

weights will influence the classification of the classes during the training

phase. The whole purpose is to penalize the misclassification made by

a minority class by setting a higher class weight and at the same time

reducing weight for the majority class. The weights that we added are

calculated during the training phase based on the number of occurences

of each class.
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We also tuned hyperparameters such as the number of features se-

lected by Chi-Squared selection or the depth of the trees of the three

algorithms in order to find the optimal settings.

For the evaluation and performance comparison of our classifiers,

we utilized a suite of metrics provided by Apache Spark’s MLlib that

are calculated by comparing the predicted labels against the already

existing labels of the NSL-KDD testing set. The metrics are as follows:

Metric Description Formula

Accuracy
Accuracy measures precision

across all labels
AC = TP+TN

TP+FP+TN+FN

Precision

Proportion of correct labels

that were classified

over all labels

P = TP
TP+FP

Recall

Proportion of correct labels

that were classfied over

all positive labels

R = TP
TP+FN

F-measure
Harmonic average of

Precision and Recall
FM = 2 ∗ P∗R

P+R

Where TP = True Positives, TN = True Negatives, FP = False

Positives and FN = False Negatives.

After experimenting with different values for the number of selected

features out of the total 41 features and the depth parameter, the best

results generated are:

• Decision Tree - With the number of selected features = 25 and

tree depth = 7
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Accuracy F-measure

With Class Weights 0.755 0.731

Without Class Weights 0.732 0.689

• Random Forest - With the number of selected features = 25 and

tree depth = 7

Accuracy F-measure

With Class Weights 0.761 0.717

Without Class Weights 0.739 0.691

• XGBoost - With the number of selected features = 7 and tree

depth = 7

Accuracy F-measure

With Class Weights 0.783 0.741

Without Class Weights 0.768 0.725

As we can see here, the best performance was produced by the

XGBoost algorithm with an accuracy of 78% and an F-measure of 74%.

Also, we notice that the addition of class weights does increase the

predictability of the models but only slightly.

Even though with this parametarization we manage to yield sig-

nificant accuracy percentages, upon further inspection of the classified

results in the spark dataframe we noticed that the low-appearing classes

(R2L or U2R) were very rarely correctly identified by the ML models.

That means that a U2R or R2L attack will probably not be classified

correctly. This is due to the low quantity of training samples corre-

sponding to these classes in the NSL-KDD dataset.

Therefore, instead of providing predictors that would identify three

out of the five classes and almost always misclassify the other two, we
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decided to resort to binary classification and provide a better overall

predictability.

Binary Classification

Essentially, we merged all the attack classes into a single label called

attack and noticed that it was easier for the models to identify these

records as attacks instead of recognizing the specific attack class.

For the evaluation and performance comparison of the binary clas-

sifiers, we went with a different set of metrics of Apache Spark. The

area under ROC and area under PR. This is because the accuracy is

not a reliable measure when distinguishing between only two classes.

For example, in a dataset where there are 70% positive values and 30%

negative, a classifier that always predicts the positive value, would still

have an 70% accuracy.

AUC - ROC curve is a performance measurement for the classifica-

tion problems at various threshold settings. ROC is a probability curve

and AUC represents the degree or measure of separability. Essentially,

it depicts how capable is the model in distinguishing classes. It is a

plot between the true positive rate and the false positive rate.

A precision-recall curve is a plot of the precision and the recall

for different probability thresholds. A high area under the PR curve

represents both high recall and high precision, where high precision

relates to a low false positive rate, and high recall relates to a low false

negative rate.

The results generated with the optimal parameter values found are:

• Decision Tree - With selected features = 7 and tree depth = 7

Area under ROC Area under PR

0.913 0.934

• Random Forest - With selected features = 10 and tree depth = 7
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Area under ROC Area under PR

0.970 0.974

• XGBoost - With selected features = 10 and tree depth = 7

Area under ROC Area under PR

0.951 0.953

We can see here that with performing binary classification we man-

age to get significantly better results. Especially from the Random

Forest model that yields 0.97 at both metrics (the closer to one at both

values, the better the predictability).

3.4.2 Scalability

In order to assess the scalability of the system and investigate how well

its processing capabilities respond to heavy load of incoming data, we

utilized a script written in Python that streams the CSV testing file at

an increasing rate as shown in the figures below. This procedure was

followed for different cluster setups with a gradually increased factor

of parallelism. Since the streaming rates are quite high and the script

reaches the end of testing file quickly, we adjusted it so it reopens and

sends the same file. In this way, we manage to have a continuous flow

of data for an adequate testing time period.

Spark Cluster Setup

The experiments in this section were performed in an AWS cluster with

an increasing number of Spark workers in each test. Each single-thread

worker node had four cores and 1GB of RAM.
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Experiments

At first, the configuration of the application used two worker nodes to

run the experiment. This is translated as two Spark worker containers

that were created as replicas.

Figure 3.9: Spark UI 2 workers

As depicted in figure 3.9, we gradually increased the input rate to

assess the processing efficiency of this setup. At an input rate of 1000

records/sec, the process rate was able to meet the demand while main-

taining a batch duration of one second. The same happens at the 3000

records/sec with no increase of the batch duration which means that
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the cluster was able to handle this load without problems. Though,

with a further increase of the input rate, we notice that the batch du-

ration start increasing dramatically. This state shows that we reached

the limit of its processing power. The maximum process rate that it

was able to reach is around 4000 records/sec.

Figure 3.10: Spark UI 4 workers

In figure 3.10 that shows the performance of the Spark cluster with

four workers, we can see that it follows a similar pattern. The applica-

tion can handle the increasing input rate with a steady batch duration

but after a certain point, the batch duration skyrockets. At this point,
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the maximum processing rate reached with 4 workers is around 4800-

5000 records/sec.

Figure 3.11: Spark UI 6 workers

Finally, in the last experiment with a cluster of six workers, the ap-

plication manages to reach a maximum processing rate of around 6000

records/sec at the threshold where the batch duration starts escalating.
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Number of workers Maximum processing rate

2 around 4000 records/sec

4 4800-5000 records/sec

6 around 6000 records/sec

Table 3.1: Summarized results

By observing the summarized results of the aforementioned exper-

iments in the table 3.1 we can conclude that the processing capacity

of the designed intrusion detection system does indeed scale with fur-

ther resources that are added into the topology in the form of Docker

containers on new nodes.
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Chapter 4

Conclusion and Future work

4.1 Conclusion

In this work, we discussed the need for a fast, real-time intrusion de-

tection system to handle evolutive network traffic and provide classi-

fications to protect a network as well as live insights on the nature of

connections through a visualization panel. Our proposed system uses

Apache Spark Structured Streaming to process and detect anomalies

in real-time. The end product is a distributed, scalable, fault toler-

ant and easily deployed system that was tested in AWS to showcase

its performance within a distributed cloud infrastructure. We used the

NSL-KDD dataset to evaluate it against cyber-threats and managed to

yield classifiers with a 97% accuracy. In addition, the proposed sys-

tem is designed to be deployable on any environment regardless of the

underlying infrastructure. The only requirement is the installation of

Docker.

4.2 Future work

As a future possible improvement, utilizing the newly introduced fea-

ture of Spark Structured Streaming: continuous streaming could yield

better results with regards to the speed of data processing. Even though

it is still an experimental feature, it is claimed to enable end-to-end data
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processing of one millisecond. Also, a useful feature would be the abil-

ity to configure the scalability level of the application without affecting

the already running Spark job.

In conjuction with the proposed system, a secondary application

that further recognizes the exact type of attack and provide more in-

sights could be a useful addition. Alternatively, a threat prevention tool

could start to take action against the incoming threat when alerted.

There are several ways to take preventive measures such as sending

an alarm to the administrator, blocking traffic from specific source ad-

dresses, or changing firewall configurations.
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