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In order to achieve fully autonomous operation in an unknown environment,
many robots rely on cameras and vision algorithms to figure out where to
place an object, turn a screw, or weld two pieces of metal together. Mo-
bile robots must solve two basic problems: create a map of the environment
and position themselves into this map. Simultaneous localization and map-
ping (SLAM) approaches can incrementally construct a map of the robot’s
surrounding environment, while estimating the robot’s position in the map.
Visual SLAM (vSLAM) uses the camera to obtain corresponding two dimen-
sional digital images from the real three-dimensional world. Due to high
computational demands of vSLAM, scaled-down versions are used with smaller
resolution and less key features, resulting in poor estimations.

In this thesis, we propose an accelerated version of ORB vSLAM that uses a
GPU. In our version, we use high resolution images which results in more
accurate and rich results. Our system operates in NVIDIA Jetson Tx2 em-
bedded module which is suitable for autonomous robots due to low power
consumption.

In terms of performance results, our system performs almost identically to a
fully-powered desktop CPU, while consuming 5× less power. We also prove
that our system is as much accurate as the non-accelerated vSLAM system,
by using a well-established accuracy dataset.
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ΠΟΛΥΤΕΧΝΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιτάχυνση με Χρήση Κάρτας Γραφικών του Αλγορίθμου SLAM για
Χαρτογράφηση και Εντοπισμό Θέσης σε Μη Επανδρωμένα Αεροχήματα

βψ Φελέκης Παναγιώτης

Ενα αυτόνομο ρομπότ για να λειτουργήσει σε ένα άγνωστο περιβάλλον βασίζεται

σε κάμερες και αλγορίθμους όρασης. Τα κινούμενα ρομπότ πρέπει να λύσουν δύο

προβλήματα: να δημιουργήσουν έναν χάρτη από το γύρο περιβάλλον τους και στη

συνέχεια, να τοποθετηθούν σε αυτόν τον χάρτη. ΄Ενα σύστημα ταυτόχρονης χαρ-

τογράφησης και εντοπισμού θέσης (SLAM) χρησιμοποιείται για να δημιουργήσει
έναν χάρτη από κάποια σημεία αναφοράς και να εκτιμήσει τη θέση του ρομπότ,

σύμφωνα με αυτά τα σημεία. Το σύστημα SLAM μπορεί να εκτελεστεί χρησιμο-
ποιώντας κάμερα, η οποία προσφέρει εικόνες δύο διαστάσεων από το τρισδιάστατο

περιβάλλον. Οι κάμερες προσφέρουν εικόνες υψηλής ευκρίνειας, με πλούσιο χρώμα

και επιφάνειες όπου χρησιμοποιούνται για να δημιουργηθεί ένας πλούσιος χάρτης.

Λόγω των υψηλών υπολογιστικών απαιτήσεων του SLAM , χρησιμοποιούνται υ-
ποδεέστερες εκδοχές με μικρότερη ανάλυση και λιγότερα βασικά χαρακτηριστικά,

κάτι που έχει ως αποτέλεσμα κακές εκτιμήσεις.

Σε αυτή την έρευνα προτείνεται ένα SLAM σύστημα που χρησιμοποιεί κάρτα γρα-
φικών για την επιτάχυνση του. Με αυτό τον τρόπο μπορουν να χρησιμοποιη-

θούν περισσότερα δεδομένα από την κάμερα για πλουσιότερα αποτελέσματα. Το

σύστημα λειτουργεί σε ενσωματωμένο σύστημα NVIDIA Jetson Tx2 , το οποίο
είναι κατάλληλο για αυτόνομα ρομπότ, λόγω της υψηλής ενεργειακής απόδοσης

που παρέχει. Συγκρίνεται η ακρίβεια, η υπολογιστική και ενεργειακή απόδοση του

συστήματος που χρησιμοποιείται σε έναν προσωπικό υπολογιστή και στο ενσωμα-

τωμένο σύστημα.
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Chapter 1

Introduction

Simultaneous localization and mapping (SLAM) can trace its early develop-
ment back to the robotics industry in the 1980s and 1990s. This technique
was originally proposed to achieve autonomous control of robots [1] in a
well-know environment like a production line.

Today, SLAM technology is used in many industries and it has really opened
up opportunities to better mapping and understanding of environments whether
they are indoor[2][3], outdoor[4], in-air or underground[5]. SLAM gained
popularity with the emergence of mobile robotics in many sectors like Med-
ical and Healthcare, Warehousing and Defense. Mobile robots market also
advance in personal, every day applications, like drones, robot vacuums or
autonomous cars.

Important applications of SLAM include:

• Search and rescue scenarios where reaching with conventional means
is difficult.

• Autonomous driving of vehicles.

• Planetary, oceanic and aerospace exploration.

• Surveillance systems.

• Medicine delivery or transportation.

1.1 Motivation and Scientific Contributions

Visual SLAM, also known as vSLAM, calculates the position and orientation
of a device with respect to its surroundings while mapping the environment
at the same time, using only visual inputs from a camera. vSLAM typically
tracks points of interest through successive camera frames to triangulate the



2 Chapter 1. Introduction

3D position of the camera, this information is then utilized to build a 3D map.
The technique change slightly, depending on the type of camera sensor we
use, but the core functions and algorithm stays the same.

While visual SLAM only uses one low-cost sensor, the camera, lacks the per-
formance. The camera usually outputs images with millions of pixels, with
many layers of color information and light intensity data. Computer vision
aims to exploit patterns from all this data, in order to navigate safely in an un-
explored environment. Due to the dense data, the real-time operation, and
the unknown environment, vSLAM technologies usually make some com-
promises like limiting the image resolution, using high-end expensive sen-
sors or perform calculations remotely.

In the present study, we propose an accelerated version of visual SLAM in
order to handle high resolution images while maintaining real-time frames
per second. We attempt to increase the processing speed of the core functions
by using commercial graphic cards on embedded systems. We support that
high-resolution video will provide more information to the robot where it
can extract more meaningful features resulting in more accurate results.

In terms of results, we used a visual-inertial dataset that contains synchro-
nized images, IMU measurements, and ground truth to verify the accuracy
of our system. Afterwards, we used our dataset containing high-resolution
images to measure performance. After numerous testings, we concluded that
our system performs almost identical to a desktop CPU while consuming 5
times less power. More information will be presented in chapter 5.

1.2 Thesis Outline

• Chapter 2 - Related Work: We describe the types of unmanned vehicles
and popular SLAM technologies based on the sensor or the computa-
tional platform used.

• Chapter 3 - Theoretical Modeling: We break down the SLAM problem
to smaller steps and describe and compare techniques used through
time.

• Chapter 4 - System Architecture: Description of our system on a dual-
core CPU and how we accelerate it with GPU.
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• Chapter 5 - System Verification and Performance Evaluation: We com-
pare our two systems in a PC and embedded platform. We use two
datasets for efficiency and performance.

• Chapter 6 - Conclusions and Future Work: Conclusion of our work
and some future extensions and thoughts.
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Chapter 2

Related Work

2.1 Unmanned Vehicles

An unmanned or automated vehicle is a vehicle without a crew on board.
Unmanned vehicles can either be controlled remotely or sense the environ-
ment around them and navigate their own. Unmanned vehicles are used
nowadays for many applications that are dangerous or impossible for peo-
ple to execute. Throughout the years unmanned vehicles became more re-
liable and precise. In recent years, unmanned robots infiltrate the general
consumer market to assist their users. We distinguish unmanned vehicles
into three types based on the field of operation: ground, water, and air.

2.1.1 Unmanned Ground Vehicles

Unmanned Ground Vehicles (UGV) as the name suggest is a piece of mech-
anized equipment that moves through the surface of the earth. One of the
most popular forms of UGV nowadays is the self-driving cars that helped
to map public roads for navigation consumer platforms. Due to safety reg-
ulations and because the environment is unpredictable, a self-driving car is
equipped with state-of-art sensors like LiDar, Sonar, and cameras. A self-
driving car must always have excellent knowledge of its surroundings in
order to make decisions that are safe for both the passengers and other cars.

An additional field with increasing popularity for UGVs is warehouse in-
ventory management. Hundreds or sometimes thousands of swarm robots
cooperate to deliver orders much faster than humanly possible. Every robot
is equipped with sensors and a communication system to move around the
warehouse without crumbling one to the other. An algorithm controls the
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robot swarm by sending optimal delivery paths to each system entity for ef-
ficient outcomes. uu

FIGURE 2.1: Ocado’s robot warehouse(source).

2.1.2 Unmanned Underwater Vehicles

Unmanned Underwater Vehicles (UUVs) are designed for a variety of mis-
sions like intelligence gathering, mine-hunting, scientific exploration, and
ship hull inspection, providing an accurate picture under the surface. UUVs
are also equipped with multiple sensors, including obstacle avoidance sonars,
multi-beam echo sounder, and advanced navigation/positioning sensors.

2.1.3 Unmanned aerial vehicle

Unmanned aerial vehicles (UAVs) also popularly known as drones, are the
most common among the vehicles. The flight of a UAV may operate with
many degrees of autonomy: either under remote control by a human opera-
tor or autonomously with onboard controllers. UAVs originated for military
applications but their use is rapidly expanding to commercial, scientific, agri-
cultural, and many more fields.

UAVs come in two form factors: rotary-wing and fixed-wing. The first one is
easy to take off and maneuver in small areas with the cost of low battery life.
Fixed-wing is usually used for long travel distances but need open space to
operate.



2.1. Unmanned Vehicles 7

FIGURE 2.2: UUV performing coral reef repopulation (source).

Drones are equipped with a variety of sensors depending on the mission
they must accomplice. The most used sensors are the camera and inertial
measurement unit (IMU). Depending on the mission UAVs and also have
accelerometers, GPS, LiDar, and many variants of cameras(Thermal, Stereo,
RGB).

FIGURE 2.3: UAVs during agriculture inspection(source).
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2.2 SLAM technologies

SLAM stands for simultaneous localization and mapping and it is the task of
estimating a map of the environment and at the same time localizing your
sensor or your robot in that map that you’re currently building. It is some-
thing that mobile robots need whenever they move into unknown or partially
unknown environments. If the map is given then the position of the robot is
much easier to find and if the pose estimate is given then the mapping is
also relatively easy, but solving both problems together is much harder and
computational challenging.

In order to solve the slam problem we have to distinguish between the front-
end and the back-end:

1. The front-end is the part that takes the raw sensor data and turns them
into an immediate representation such as constraints in an optimization
problem or probability distribution about the location of a landmark.
The front-end is a very task-specific part of slam

2. The back-end takes the intermediate representation of the front-end
and solves the underlying state estimation or optimization problem,
like estimating parameters that describe where objects are in the envi-
ronment or where my platform is in the world coordinates.

In the back-end, we typically find three different categories of approaches:

1. Extended Kalman Filter(EKF) is the nonlinear version of the Kalman
filter [6] [7]. Kalman filter is a two-step process, the prediction and cor-
rection step. The prediction step uses control commands, to estimate
the position of our system at the next point in time. The correction
step takes into account the sensor observations as a means to correct
for potential mistakes in the prediction step. Kalman filter makes two
assumptions. Firstly that the world is Gaussian and secondly all mod-
els are linear. Extended Kalmar Filter performs linearization, for every
model, via Taylor series in order to use Kalman filter in real-world sce-
narios.

2. Particle filter is a technique for estimating the state of a dynamic system
similar to the Kalman filter [8]. It updates the current belief based on
so-called motion information of control commands and based on ob-
servations. It allows us to describe arbitrary probability distributions
due to there is no assumption that we are in a Gaussian world. It uses
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many particles or samples which are hypotheses for the system being
in one single state. For every particle, we have a prediction step and
a correction step similar to a common filter. Rao–Blackwellized parti-
cle filtering (RBPF), derived from particle filter, was thus applied in the
algorithm proposed by Montemerlo, named FastSLAM [9].

3. Least squares or also known as Graph-based SLAM [10]. Graph-based
approaches are the most popular today and as the name suggests we
use a graph to represent the variables and the relations between those
variables. There are different types of graphs; the two most popular are
either the post-graph which is a graph that contains only the poses and
marginalizes out the map information or Factor graphs, which have a
vector sitting in between nodes and information coming from the front-
end or other sources.

SLAM technologies differ from the other based on the sensor and approach
used. We will firstly categorize SLAM based on the three common sensors
used: LiDar, sonar, and camera.

2.2.1 LiDar SLAM

LiDAR SLAM implementation uses a laser sensor. Compared to Visual SLAM
which used cameras, lasers are more precise and accurate. The high rate of
data capture with more precision allows LiDAR sensors for use in high-speed
applications such as moving vehicles such as self-driving cars and drones.
The only drawback is the sensor availability and high price. The output data
of LiDAR sensors often called point cloud data is available with 2D (x, y) or
3D (x, y, z) positional information.

The laser sensor point cloud provides high-precision distance measurements
and works very effectively for map construction with SLAM. Generally, move-
ment is estimated sequentially by matching the point clouds. The calculated
movement (traveled distance) is used for localizing the vehicle. For LiDAR
point cloud matching, iterative closest point (ICP) and normal distributions
transform (NDT) algorithms are used. 2D or 3D point cloud maps can be
represented as a grid map or voxel map.

The most widely used LiDAR-based SLAM libraries that have ROS wrappers
- Gmapping [11], Google Cartographer [12], and Hector SLAM [13].
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2.2.2 Sonar SLAM

Sonar imaging is a well-established technology mostly used for naval appli-
cations. Sound wavelengths in water are about 2,000 times longer than those
of visible light. Because of its longer wavelengths, sound can go around sus-
pended particles that would otherwise block and scatter light waves. Light
can’t penetrate very far in these conditions, making optical systems (like un-
derwater cameras) ineffective. Also, optical images lack the range informa-
tion found in sonar images.

The performance of an imaging sonar, from the distance at which they can
detect an object, to the clarity of the image, to the number of images they can
display per second, is determined by several specifications, most notably the
operating frequency, acoustic beamwidth and processing power and time to
form an image. Sound Metrics sonars use acoustic lens technology which
forms beams instantaneously using zero power.

Using the acoustic images from the sensor we can extract some features and
later on can be used to create a map. Generally speaking, a lower frequency
increases the distance at which an image can be captured. A higher frequency
and a smaller beamwidth used to map an object will deliver clearer images.

For all the above reasons, sonar SLAM technologies like [14] and [15] have
uses for underwater environments. For ground or aerial robots, a sonar sen-
sor is used in combination with other sensors for better mapping of nearby
objects [16].

2.3 Camera SLAM

Most visual SLAM systems work by tracking set points through successive
camera frames to triangulate their 3D position, while simultaneously using
this information to approximate camera pose. The goal of these systems is
to map their surroundings in relation to their location for the purposes of
navigation.

This is possible with a single 3D vision camera, unlike other forms of SLAM
technologies. As long as there are a sufficient number of points being tracked
through each frame, both the orientation of the sensor and the structure of the
surrounding physical environment can be rapidly understood.
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All visual SLAM systems are constantly working to minimize reprojection er-
ror, or the difference between the projected and actual points, usually through
an algorithmic solution called bundle adjustment. Visual SLAM systems
need to operate in real-time, so often location data and mapping data un-
dergo bundle adjustment separately, but simultaneously, to facilitate faster
processing speeds before they’re ultimately merged.

We will now present some popular visual SLAM systems that differ from the
others in the way they process the image data.

2.3.1 LSD SLAM

LSD-SLAM [17] is a novel, direct monocular SLAM technique: Instead of
using keypoints, it directly operates on image intensities both for tracking
and mapping. The camera is tracked using direct image alignment, while
geometry is estimated in the form of semi-dense depth maps, obtained by
filtering over many pixelwise stereo comparisons.

As a direct method, LSD-SLAM uses all information in the image, includ-
ing e.g. edges – while keypoint-based approaches can only use small patches
around corners. This leads to higher accuracy and more robustness in sparsely
textured environments (e.g. indoors), and a much denser 3D reconstruction.
Further, as the proposed pixelwise depth-filters incorporate many small-baseline
stereo comparisons instead of only a few large-baseline frames, there are
much fewer outliers.

2.3.2 OpenVSLAM

OpenVSLAM is based on an indirect SLAM algorithm with sparse features
[18]. One of the noteworthy features of OpenVSLAM is that the system can
deal with various types of camera models, such as perspective, fisheye, and
equirectangular. If needed, users can implement extra camera models (e.g.
dual fisheye, catadioptric) with ease.

OpenVSLAM implements the FAST algorithm for keypoint detection [19]
and binary vector for descriptor [20].
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2.3.3 ORB-SLAM2

The ORB-SLAM2 is the state-of-the-art indirect visual SLAM algorithm, sim-
ilar to OpenVSLAM. It is a complete SLAM system that works with monoc-
ular, stereo, and RGB-D cameras. It comes with map reuse, loop closing, and
re-localization capabilities. It is designed to work in real-time on standard a
CPU. In the past six years, hundreds of research papers have been published
related to ORB-SLAM2. ORB-SLAM2 works in a wide variety of environ-
ments, ranging from small hand-held sequences indoors to a car driven on
the street. Inspired by PTAM (Parallel Tracking and Mapping) [21], ORB-
SLAM2 uses ORB (Oriented FAST and rotated BRIEF) feature for feature
extraction, which performs better than PTAM’s FAST corner detection, es-
pecially in rotation. ORB-SLAM2 has three main parallel threads, as shown
in 2.4, 1: tracking, local mapping, and loop closing. The tracking thread is
considered to be the bottleneck of ORB-SLAM2 because it takes most of the
time, and each new frame can not be processed until the current frame is
completed. However, based on the nature of the FAST detection and ORB
feature extraction, there are many tasks that can be parallelized and offload
to GPU from CPU if the computing device has capable GPU on it like the
Nvidia Jetson boards.
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FIGURE 2.4: ORB-SLAM system overview. [20]

2.4 Processing platforms

Depending on the type of robot we have different types of processors. An
assembly line robot or a small autonomous toy car uses a simple micro-
controller because their tasks are limited. Since they have in-build memory
and analog-to-digital converter makes them appropriate for compact and fast
designs. On the other side of the spectrum, autonomous cars or humanoid
robots operate with general-purpose CPUs with multiple cores and many
layers of high-speed memory. For visual SLAM we need a great deal of pro-
cessing power, therefore in this thesis, we will focus on high-performance
processors.

2.4.1 The FPGA Perspective

Image processing is usually very computationally intensive due to complex
algorithms and the sheer amount of data. For many applications, real-time
image processing is difficult to achieve on a CPU. Hence, existing vision sys-
tems have dedicated hardware circuits such as ASICs, DSPs, FPGAs, or a
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combination thereof, which can exploit the inherent parallelism of many im-
age processing applications.

One popular FPGA implementation [22] offers up to four cameras input, fu-
sion with IMU, and FAST feature extraction. The total FPGA speed-up is
almost 3x times in comparison to stand-alone CPU. Similarly, [23] accelerate
the ORB feature extraction, achieving up to 20fps for 640x480 input video.

2.4.2 GPU for computer vision

Symmetric multiprocessing (SMP) has been around since the 60s, and his-
torically became mainstream architecture for parallelization. Almost every
system today uses them and has Thread API like POSIX threads. Paralleliza-
tion tools like Boost, OpenMP are built on top of the thread APIs. Since these
tools were created, even more, abstract libraries were developed on top of
them, making parallelization even easier. If you try to program using raw
pthreads, CPU parallelization will not seem that easy.

When it comes to GPUs, historically they were used mainly for graphics,
hence the name. Manual parallelization is not needed if you are doing com-
mon graphics tasks, you can just use libraries like OpenGL. Using general-
purpose GPU programming for other tasks like HPC, and scientific comput-
ing is a relatively new trend. GPUs not only have different hardware architec-
ture but are also designed for highly SIMD-oriented computing. This means
the parallelization paradigm is not equivalent to that of CPUs. GPUs can per-
form specific tasks extremely fast, but they cannot perform a lot of other com-
mon programming tasks, especially ones with high branching uncertainty.
This is why NVIDIA calls them accelerators, rather than CPU killers.

A modern CPU has special physical and logical parts that allow it to plan
and enforce scheduling for all system components as well as generally higher
single-core speeds (often upwards of 3.5–4GHz). This makes them good at
performing single, complex math problems in a short time. Moreover, a CPU
is equipped with multiple processing cores for parallel execution. A typical
CPU has 2 to 8 cores and double the processing threads. Conversely, GPUs
have low relative clock speeds (somewhere between 1–2GHz), but hundreds
or even thousands of processing cores. In 2011 you had to be a Ph.D and
needed to write complex CUDA code to accelerate numerical computing.
Today, you can be a high school student and write a more efficient GPU ac-
celerated program in 11 lines of Python code. There are many new GPU
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FIGURE 2.5: CPU and GPU simple architecture model.

acceleration libraries on the rise that cover more and more parallelization
options, for example, CuPY.

To summarize, GPUs can’t do all the tasks that CPUs can, but what they
can do, they do it much faster. Because of their architecture differences, new
abstractions needed to be developed specifically for GPU computing. Today,
there are many tools you can use to parallelize/accelerate your code with
ease, and in the future, fewer and fewer tasks will require manual low-level
parallelization.

2.4.3 NVIDIA Hardware

Graphics Processing Units(GPUs) were originally designed to accelerate the
graphics for computer games, a market segment in which NVIDIA has been
quite strong for a long time. The gaming community kept growing and,
along with it, so did NVIDIA. Now, GPUs became a widely used technol-
ogy for many computer-aided procedures in different research or industry
areas that require high algorithmic computation and large-scale calculations.
Fields like bioinformatics, artificial intelligence, and computer vision involve
processing very large datasets that are easily parreliazed in GPU.

NVIDIA in 2015 introduced the Jetson modules which are low-cost, low-
power but powerful computers with integrated GPU. As shown in the ta-
ble below, the cheapest and smallest is the Jetson Nano, then the TX series,
and lastly the high-end Xavier modules. Due to their low weight and power
consumption, they are widely used on robots to increase their computational
robustness.
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Jetson family is designed by NVIDIA to speed up machine learning applica-
tions with a low power system design, high-performance capability, and flex-
ible form factors to build software-defined intelligent machines for a wide
range of edge applications. These qualifications make the NVIDIA Jetson
family ideal for all deep learning, AI, and visualization processes.

Nano TX2 Xavier

GPU 128-core Maxwell 256-core Pascal 512-core Pascal GPU
with 64 Tensor cores

CPU Quad-core ARM
Cortex A57

Dual-core Denver 2
64-bit CPU and
Quad-core ARM Cortex
A57
MPCore processors

8-core NVIDIA Carmel
ARM v8.2 64-bit CPU

Memory 4GB 64-bit LPDDR4
25.6 GB/s

8GB 128-bit LPDDR4
59.7 GB/s

32GB 256-bit LPDDR4
136.5 GB/s

Size &
Power

69.6 mm x 45mm
5W| 10W

87mm x 50mm
7.5W | 15W

100mm x 87mm
10W | 15W | 30W

2.5 Computer Vision Software

Lastly, we will describe the software used in our system.

2.5.1 CUDA programming

Compute Unified Device Architecture(CUDA) is a parallel computing plat-
form and programming model developed by NVIDIA for general computing
on its own GPUs. CUDA lets developers use languages they are familiar with
— C, C++, and Python — to build general-purpose applications for graphics
processing units. CUDA Deep Neural Network library (cuDNN) is a library
for deep neural nets built using CUDA. It provides GPU accelerated func-
tionality for common operations in deep neural nets. You could use it directly
yourself, but other libraries like TensorFlow already have built abstractions
backed by cuDNN.

2.5.2 OpenCv

OpenCV is the huge open-source library for computer vision, machine learn-
ing, and image processing and now it plays a major role in real-time opera-
tion which is very important in today’s systems. By using it, one can process
images and videos to identify objects, faces, or even handwriting of a human.
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It was introduced in 1999 by Intel Corporation and nowadays is the standard
library for vision-based algorithms. Since 2010 CUDA module for OpenCV
is available to speed up the algorithms using NVIDIA GPUs and achieving
real-time performance.
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Chapter 3

Theoretical Modeling

In this chapter, we break down the SLAM problem into its core functions.
Widely accepted techniques for each sub-algorithm are described below. We
also tested the functions using our own code, to verify their operation. All
examples shown in this chapter were developed in a context in this thesis.
For our tests we used up-to-date Python programming language.

3.1 Feature Extraction

Image features, such as edges and interest points, provide rich information
on the image content. They correspond to local regions in the image and are
fundamental in many applications in image analysis: recognition, matching,
reconstruction, etc. Image features yield two different types of problems:
the detection of an area of interest in the image, typically contours, and the
description of local regions in the image, typically for matching in different
images. In any case, they relate to the differential properties of the intensity
function, for instance, the gradient or the Laplacian that are used to detect
intensity discontinuities that occur at contours.

Every machine that loads an image stores it as a matrix. The size of the ma-
trix depends on the number of pixels of the input image, also called image
resolution. Every pixel has a value that describes how bright that pixel is,
and what color it should be. Smaller numbers closer to zero represent black
while larger numbers which are closer to 255 denote white. In the case of a
colored image, we have three matrices, also called channels, with values from
0 to 255, describing the presence of the color in the image. The three-channel
format represents Red, Green, and Blue (RGB) values for each pixel.

In most cases, we have images with many millions of pixels and want to
extract specific points of interest we need for localization. One of the most
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important features is the edges. Physical edges provide important visual in-
formation since they correspond to discontinuities in the physical, photo-
metrical, and geometrical properties of scene objects. Since image intensity
is proportional to scene radiance [24], physical edges are represented in the
image by changes in the intensity function.

There are many methods of detecting edges [25]; the majority of different
methods may be grouped into these two categories:

1. Gradient: The gradient method detects the edges by looking for the
maximum and minimum in the first derivative of the image. For ex-
ample Roberts, Prewitt, Sobel where detected features have very sharp
edges.

2. Laplacian: The Laplacian method searches for zero crossings in the sec-
ond derivative of the image to find edges e.g. Marr-Hildreth, Laplacian
of Gaussian, etc. An edge has a one-dimensional shape of a ramp and
calculating the derivative of the image can highlight its location.

3.1.1 Sobel-Feldman operators

In this paper, we will focus on Sobel-Feldman operators for edge detection.
It is firstly introduced by Irwin Sobel and Gary Feldman in 1968 at Stanford
Artificial Intelligence Laboratory. The Sobel-Feldman operator consists of
two isotropic 3x3 kernels:

Gx =

1 0 −1
2 0 −2
1 0 −1

 ∗ A (3.1)

and

Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ A (3.2)

where A is the source digital image. Essentially Sobel-Feldman operators
are trying to find out the amount of difference between a region of an image,
firstly in the X-axis (3.1), and then in the Y-axis (3.2). Once we filter our image
with X and Y operators we can calculate the magnitude:

G =
√

G2
x + G2

y (3.3)
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Lastly, using the above, we can calculate the corner direction with:

Θ = arctan
Gy

Gx
(3.4)

Where, for example, Θ is 0 for a vertical edge that is lighter on the right side.
Later on, we will use 3.4 to determine corners.

Algorithm 1 Sobel-Feldman edge detection

1: A= input(image)
2: B= rgb2gray(A)
3: [rows,columns]= size(B)
4: Sobelx= [1, 0, -1], [2, 0, -2], [1, 0, -1]
5: Sobely= [1, 2, 1], [0, 0, 0], [-1, -2, -1]
6: for x do=2 to rows
7: for y do=2 to columns
8: Gx(x, y) = B(x, y) ∗ Sobelx
9: Gy(x, y) = B(x, y) ∗ Sobely

10: G(x, y) = sqrt(Gx2 + Gy2)
11: Output= G(x,y)

3.1.2 Canny Edge Detector

Canny edge detector [26] was developed by John F. Canny in 1986 and it
is still widely used today in many different improved forms [27] or GPU
accelerated [28] [29]. Canny edge detector simply takes as input, the output
of Sobel-Feldman operator and makes it more useful. Here are the steps of
the Canny edge detector:

1. Before we start any operation, we apply Gaussian blur to our grayscale
image 3.2b 3.2c. Gaussian blur is used as a pre-processing stage in al-
most all computer vision algorithms [30]. The Gaussian blur feature is
obtained by blurring (smoothing) an image using a Gaussian function
to reduce the noise level. It can be considered as a low-pass filter and
it is achieved by convolving an image with a Gaussian kernel. For our
image, a 2-D Gaussian kernel is expressed as:

G(x, y) =
1√

2πσ
e−

x2+y2

2σ2 (3.5)

where σ is the standard deviation of the distribution and x and y are
the location indices.
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(A) Input image (B) Sobel-Feldman X axis operator

(C) Sobel-Feldman Y axis operator (D) Sobel-Feldman X Y axis operator

FIGURE 3.1: Sobel-Feldman operators
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2. The next step is to use Sobel-Feldman operators to find the edge gradi-
ent strength and direction for each pixel. First the Sobel-Feldman op-
erators 3.1, 3.2 are applied to the 3x3 pixel neighborhood of the current
pixel, in both the x and y directions. Then the sum of each mask value
times the corresponding pixel is computed as the Gx and Gy values,
respectively. The square root of Gx squared plus Gy squared equals
the edge strength 3.3. The inverse tangent of Gx / Gy yields the edge
direction 3.4. The edge direction is then approximated to one of four
possible values that make up the possible directions an edge could be
in an image made up of a square pixel grid.

3. The following step is to trace along the edges based on the previously
calculated gradient strengths and edge directions. Each pixel is cycled
through using two nested for loops. If the current pixel has a gradient
strength greater than its neighbor, then a switch is executed. The switch
is determined by the edge direction of the current pixel. It stores the
row and column of the next possible pixel in that direction and then
tests the edge direction and gradient strength of that pixel. If it has the
same edge direction and a gradient strength greater than a threshold
we choose, that pixel is set to white and the next pixel along that edge
is tested. In this manner, any significantly sharp edge is detected and
set to white while all other pixels are set to black.

4. The final step is to find weak edges that are parallel to strong edges and
eliminate them. This is accomplished by examining the pixels perpen-
dicular to a particular edge pixel and eliminating the non-maximum
edges 3.2d.

Canny edge detector aims to satisfy the three general criteria of edge detec-
tion
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(A) Input image (B) Gray-scale image

(C) Gaussian blur (D) Canny edge detection

FIGURE 3.2: Step-by-step Canny edge detection

3.1.3 Harris Corner Detection

Harris Corner Detector [31] detection operator that is commonly used in
computer vision algorithms to extract corners and infer features of an im-
age. It was first introduced by Chris Harris and Mike Stephens in 1988 upon
the improvement of Moravec’s corner detector [32]. It is popular because it
is rotation, scale, and illumination variation independent.

Corners in images represent critical information in describing object features,
which play a crucial and irreplaceable role in computer vision and image
processing. The difference between edge and corner is that the second has
a significant change in intensity in both the X and Y-axis. For this reason, if
we rotate the input image we can detect the same corners as before. Harris
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Corner Detector uses Sobel-Feldman operators 3.1 to detect changes in light
intensity. For this reason, steps 1,2,3 are the same as Canny edge detector
3.2d. The next steps are:

1. For each pixel in the grayscale image, consider a 3×3 window around it
and compute the corner strength function. Call this its Harris value.

2. Detect all pixels that exceed a certain threshold and are the local max-
ima within a certain window. For each pixel, we also compute a de-
scriptor.

The Harris value or score is described by the equation:

E(u, v) = ∑
x,y

w(x, y)[I(x + u, y + v)− I(x, y)]2 (3.6)

where E(u, v) is the Harris value, w(x, y) is the pixel position and I(x+ u, y+
v) is the intensity variation around the pixel.
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(A) Input image

(B) Harris corner detector

3.1.4 Scale-Invariant Feature Transform

Scale-Invariant Feature Transform (SIFT) and was first presented in 2004, by
D.Lowe, University of British Columbia [33]. The SIFT algorithm transforms
the image into a collection of local feature vectors. These feature vectors are
aimed to be distinctive and invariant to any scaling, rotation or translation of
the image.

In the initial step, the feature locations are resolved as the local extrema of
Difference of Gaussians (DOG pyramid):

D(x, y, σ) = (G(x, y, σ)− G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ (3.7)

To carry out the DOG pyramid the information image is convolved itera-
tively with a Gaussian kernel:

G(x, y, σ) =
1

2πσ2 exp−(x2+y2)/2 (3.8)

This technique is rehashed as long as the down-sampling is conceivable. Ev-
ery assortment of images of a similar size is called an octave. All octaves
construct together with the alleged Gaussian pyramid, which is represented
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by a 3D function:
L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.9)

The local extrema (maxima or minima) of DOG function are identified by
contrasting every pixel and its 26 neighbors in the scale-space. The search for
extrema prohibits the first and the last image in every octave since they don’t
have a scale above and a scale beneath individually. Scale-space extrema
identification creates an excessive number of keypoint candidates, where
some of which are temperamental and less helpful. In the subsequent stage,
an itemized fit is performed to the close-by information to track down the
precise area, scale, and proportion of head curves.

(A) Input image (B) SIFT features with orientation

For every applicant keypoint, the interjection of the close-by information is
utilized to accurately estimate its position. The insertion is finished utiliz-
ing the quadratic Taylor extension of the Difference-of-Gaussian scale-space
function with the candidate keypoint as the origin. This Taylor extension is
given as:

D(x) = D +
δDT

δx
x +

1
2

xT δ2D
δx2 x, (3.10)

Where D and its derivatives are evaluated at the candidate keypoint and
x = (x, y, σ) is the offset from this point.

In the following stage, for each keypoint, at least one orientation is appointed
dependent on nearby image gradient directions. This is a helpful advance
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in accomplishing invariance to rotations as the keypoint descriptor can be
addressed comparative with this direction and subsequently accomplishes
invariance to image rotation. To start with, the Gaussian-smoothed image
L(x, y, σ the scale is taken so all calculations are performed in a scale-invariant
way. For an image sample L(x, y) at scale σ, the angle extent, and orientation
are precomputed utilizing pixel differences as:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + L(x, y + 1)− L(x, y− 1) (3.11)

θ(x, y) = tan−1 L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y

(3.12)

3.1.5 Speed-up Robust Features

There have been many attempts to improve SIFT algorithm. Speed-up Ro-
bust Features(SURF) [34] is inspired by SIFT descriptor and promises better
results with a fraction of computational power. SURF is based on Hessian
matrix for feature extraction and Haar wavelet responses for feature descrip-
tion

For feature point detection, the input image is convolved with the Gaussian
kernel to obtain DOG pyramid 3.9, 3.7. The SURF operator uses the Hessian
matrix to detect extreme points. For a point X = (x, y) in an image I, the
Hessian matrix H(X, σ) of the point at scale σ is:

H(x, σ) =

[
Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

]
(3.13)

Where Lxx(x, σ) indicates that the Gaussian first-order partial derivative is
convolved with the image I at X and σ indicates the scale value at which
the feature point is located. In order to accurately approximate the Gaussian
kernel function, the H matrix discriminant is:

det(Happrox) = DxxDyy − (wDxy)
2 (3.14)

After using the Hessian matrix to find the extremum, the non-maximum sup-
pression is performed in the 3×3×3 stereo neighborhood, only 9 of the upper
and lower scales and 8 of the 26 neighborhoods around the scale are both
large or small extreme points, they can be used as candidate feature points,
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and then interpolated in scale space and image space to obtain stable feature
point positions.

(A) Input image (B) SURF features with orientation

Before we find the descriptor, we need to determine the orientation to ensure
rotation invariance. SURF uses Haar wavelet responses in the horizontal and
vertical direction for a neighborhood of size 6s, and then Gaussian weight
coefficients are assigned to these response values, so that the response con-
tribution to the feature points is large, thereby obtaining a series of vectors.
The dominant orientation is estimated by calculating the sum of all responses
within a sliding orientation window of angle 60 degrees.

Lastly, after determining the direction of the feature point a neighborhood
of size 20sX20s is taken around the keypoint where s is the size. The de-
scriptor window is divided into 4x4 sub-regions, and within each subregion,
the Haar wavelet response in the range of 25s is calculated, and the Haar
wavelet responses dx and dy are recorded in horizontal and vertical direc-
tion respectively. Then Gaussian weights are assigned to these responses,
and finally, the response values of each sub-region and the absolute values of
the responses are added to generate the feature vector V´ of the descriptor:

V′ = (∑ dx, ∑ dy, ∑ |dx|, ∑ |dy|) (3.15)
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3.1.6 Oriented FAST and Rotated BRIEF

Oriented FAST and Rotated BRIEF(ORB) was introduced by Ethan Rublee
at Opencv labs in 2011. It is commonly used as a better alternative to SIFT
and SURF due to its low computational cost. As the name suggests, it uses
a slightly alternated FAST for keypoint detection and BRIEF for descriptor
generator.

Features from Accelerated and Segments Test(FAST) compares the brightness
of 16 pixels around a given pixel p. If more than 8 pixels are brighter or
darker than the pixel p then it is selected as a keypoint.

Even though FAST has a very low cost compare to other methods, it doesn’t
offer orientation and multi-scale features. For this reason, ORB implements a
resolution pyramid that detects features in different resolutions for the same
image. After locating keypoints we set orientation to each point using inten-
sity centroid. We expect that the corner is offset from its center and the vector
is assigned for orientation. The coordinates of the centroid is computed by
using moments:

mpq = ∑
x,y

xpyp I(x, y), (3.16)

and the coordinates are calculated by:

c = (
m01

m00
,

m01

m00
). (3.17)

The vector is constructed by the keypoint’s center O to the centroid C with
orientation:

θ = atan2(m01, m10) (3.18)

where atan2 is the quadrant-aware version of arctan. For descriptor, ORB
uses rotation-aware BRIEF. The BRIEF descriptor is a bit string description of
an image patch constructed from a set of binary intensity tests. Consider a
smoothed image patch, p. A binary test τ is defined by:

τ(p; x, y) =

1 :p(x) < p(y)

0 :p(x) ≤ p(y)
(3.19)

where p(x) is the intensity of p at a point x. The feature is defined as a vector
of n binary tests:

fn(p) = ∑
i≤i≤n

2i−1τ(p; x, y) (3.20)
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In case we rotate the features slightly the performance of BRIEF falls off
sharply. In that case, ORB suggests to steer BRIEF to the orientation of key-
points. For any feature set of n binary test at location(x,y), we define a 2 x n
matrix:

S =

(
x1 ..... xn
y1 ..... y1

)
(3.21)

By using the patch orientation θ and the corresponding rotation matrix Rθ,
we construct a steered version of S:

Sθ = RθS (3.22)

Now the steered BRIEF operator is:

gn(p, θ) = fn(p)|(xi, yi)εSθ (3.23)

(A) Input image (B) ORB features extraction

3.2 Feature Matching

Feature matching or feature correspondence serves as a core technique for
image analysis and understanding. There is a wide range of applications
that are closely related to it, such as object recognition, image retrieval, 3D
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reconstruction, image enhancement, and so on. The problems of correspon-
dence involve clutter background, a significant, amount of outline and occlu-
sion. Moreover, multiple translations, orientations, and deformations also
negatively affect the matching of features in terms of precision, recall, and
efficiency.

FIGURE 3.7: Matching ORB features between an image and a
rotated version of the same image.

3.2.1 Brute Force Matching

Brute force matching is a simple algorithm for feature matching. It uses one
descriptor from the image and calculates the Hamming or Euclidean distance
for the descriptors of the second image. Binary bit-string descriptors like
BRISK and ORB, utilize Hamming distance with very fast execution but low
robustness. On the other hand, SIFT and SURF use Euclidean distance be-
tween descriptors and they are more robust but require more computational
time. Take the two descriptors K1 and K2 from the descriptors obtained from
feature extraction:

K1 = x0, x1, x2, ...x255 K2 = y0, y1, y2, ...y255 (3.24)
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We apply XOR operation on the Hamming/Euclidean distance to determine
the similarity degree of feature descriptors:

D(K1, K2) =
i=255

∑
i=0

xi ⊕ yi (3.25)

The smaller the D(K1, K2) the bigger the similarity between the two descrip-
tors K1, K2. When the similarity reaches about 50% then it is considered to be
similar.

3.2.2 FLANN Based Matcher

FLANN stands for Fast Library for Approximate Nearest Neighbors. It ef-
ficiently searches an M-dimensional data-set of ND points to find, approx-
imately, the nearest neighbors to a set of NQ query points. For a general
dataset, the only way to compute the exact nearest neighbors requires, for
each of NQ query points, the computation of the distance to each of the ND
data points, requiring NQ*ND such calculations. There is no known method
that can significantly decrease the cost of this brute force approach. FLANN
offers an approach that significantly speeds up the computation, at the price
of only being able to guarantee that the results are approximate. The user
specifies the degree of approximation that is acceptable.

FLANN consists of many algorithms for the nearest neighbors problem. The
user inputs the features data-set and the desired degree of accuracy and
FLANN will automatically choose the best algorithm for each occasion. The
optimal algorithm for fast approximate nearest neighbor search is highly de-
pendent on several factors such as the structure of the dataset(whether there
is any correlation between the features in the dataset), the size, and desired
precision.

3.3 Three Dimensions Reconstruction

In this section, we explore methods used to obtain three-dimension informa-
tion from images. Given that we already extracted and matched features, we
proceed to the localization and mapping.
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3.3.1 Camera Calibration

Camera calibration is the process of estimating the parameters of a camera
model. These parameters are the mathematical description of how a camera
projects a 3D point of the world to the 2D plane of the image. Typically the
camera model parameters are divided into two categories: Extrinsic and
Intrinsic.

Extrinsic describe where is the camera in the 3d world. We have the location
or position matrix:

Xo =

X
Y
Z

 (3.26)

and the orientation, or where the camera is looking, matrix:

θ =

α

β

γ

 (3.27)

So if we want to perform camera localization we have to calculate a 6 degree
of freedom or 6 dimensional vector:

6Dvector =



X
Y
Z
α

β

γ


(3.28)

.

We calculate the Extrinsic by finding the projection center of our camera. For
the pinhole camera model, the projection center is the point where all rays
intersect.

Intrinsics are the parameters that "sit" inside the camera. It describes how a
point in the 3D world is mapped onto the 2D image plane, assuming that the
camera sits in the origin and has zero orientation. To describe the intrinsic we
use at least 4 or 5 parameters, depends if we have a digital or analog camera.
The intrinsic parameters are:
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1. The camera constant c, which is the distance of the image plane to the
production center.

2. The scale difference m, in x and y. Depending on the literature some-
times one also uses focal length x f x and focal length in the y f y as two
parameters, but they are basically equivalent

3. The principle point P(xH, yH) is the pixel in the image, through which
the optical axis of the camera passes. Usually, the principle point is
somewhere near the center of the image but of course not precisely be-
cause the camera chip is not precisely glued into the camera lens.

4. In the case of an analog camera, we have the Sheer, S, parameter which
is near zero for the digital cameras.

Using the parameters from Extrinsic and Intrinsic we can describe with a
mathematical model how a point from the 3D world is mapped onto the im-
age plane. This procedure is called Direct Linear Transform (DLT). DLT is an
11 degree of freedom transformation, taking the 6 parameters from extrinsic
and the five parameters from intrinsic. DLT is an approximation because it
assumes that we have a fine camera model or a camera with no distortions in-
volved. We can compute DLT with 6 control points, which helps us estimate
the intrinsic and extrinsic parameters.

In practice, we have additional non-linear parameters involved for lens dis-
tortions like barrel or pincution distortion.

Having all the above parameters we can map with high precision every point
from 3D world to 2D image plane using:

x = PX (3.29)

where x is the 2D pixel coordinates, X is the 3D world coordinates and P is
the matrix which includes Intrinsic, Extrinsic, and distortion parameters.

3.3.2 Zhang’s camera calibration method

Zhengyou Zhang developed a camera calibration algorithm using images of
chess patterns [35]. The algorithm computes the elements of its 3x3 matrix K,
which consists of 5 intrinsic parameters of a camera: c,m,xH, yH,s. We assume
that we have a calibration pattern in the Z=0 of the world coordinates and we
are taking images of this pattern from different viewpoints.
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FIGURE 3.8: Zhang’s calibration

For every observed camera point x:

x = KR[I3 − Xo]X (3.30)

Where R and Xo are the rotation and translation in xyz coordinates, and X is
the control point in the world.

The matrix form of the equation is:

x
y
1

 =

c cs xH

0 c(1 + m) yH

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3




X
Y
Z
1

 (3.31)
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Since we assume that Z=0 we can simplify the above:x
y
1

 =

c cs xH

0 c(1 + m) yH

0 0 1


r11 r12 t1

r21 r22 t2

r31 r32 t3


X

Y
1

 (3.32)

Similar to DLT we can estimate a 3x3 homography, by exploiting at least 4
points in our images. This provides an estimate of H:

H = [h1, h2, h3] =

c cs xH

0 c(1 + m) yH

0 0 1


r11 r12 t1

r21 r22 t2

r31 r32 t3

 (3.33)

Given the homography H we can compute K in four step procedure:

1. Exploit constrains like:

[r1, r2, t] = K−1[h1, h2, h3] =⇒ r1 = K−1h1 and r2 = K−1h2 (3.34)

rT
1 r2 = 0 (3.35)

||r1|| = ||r2|| (3.36)

2. Define a matrix B = K−TK−1.

3. The matrix B has 6 unknowns that we can obtain from 3 different cam-
era positions.

4. Solve the equations using linear least-squares method.

3.3.3 Random Sample Consensus

Random Sample Consensus(RANSAC) is a try-and-error approach to group
data points into inliers and outliers. Sensor data will always be imperfect,
and quite often the data points will not be explained to the real world. This
will result in data associations between two images that are incorrect (out-
liers) and negatively affect the localization result.

RANSAC is a 3 step procedure:

1. Sample: We sample a subset of data points and we consider them to be
inliers.

2. Compute: We use the sample subset and compute the model.
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3. Score: We calculate a score for the sample by checking how many of
the remaining data points will support this model.

This process is repeated many times and we use the solution with the highest
score.

A simple 2D example in shown in 3.9:

(A) Sample with inline score=3

(B) Sample with inline score=7

FIGURE 3.9: 2D RANSAC example

3.3.4 Structure from motion

It is impossible to recover the 3D coordinates from a single image due to the
loss of depth information. One of the solutions is to use multiple views of the
same scene. By extracting information from one view and matching it to the
other, slightly altered perspective, we can estimate with high precision the
depth. This technique is called structure-from-motion and it uses epipolar
geometry to find the depth of an image.

As shown in 3.10, we have P which is a real-world point mapped in P0 at
the image plane of camera C0 and P1 at the image plane of camera C1. The
vector or the line connecting the cameras C0 and C1 is called the epipolar axis
and the points, e1 and e1, that meet each plane are called epipoles. P1 lies
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somewhere in the line P - P0 and all the possible positions of P1 create a line
called epipolar line. In that case, if the P0 is known we only need to search
for P1 in a 1D line instead of a 2D image.

FIGURE 3.10: Epipolar Geometry

In the case of calibrated camera, we know to location and orientation of a
moving camera. With the epipolar geometry, we can calculate the 3D coordi-
nates of a real-world point with a low computational cost. This procedure is
also called triangulation.
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Chapter 4

System Architecture

The current development of visual SLAM has been relatively mature, and
there are various types of solutions, including sparse method, semi-dense
method, and dense method, as well as feature point method based on im-
age features and direct method based on image grayscale. The execution
efficiency, positioning accuracy, and robustness of these algorithms perform
well in specific experimental environments. However, most of these algo-
rithms are performed on desktop-level high-power platforms, and there is
very little work to solve visual SLAM problems for embedded platforms.

Our work mainly studies how GPU parallel computing can accelerate pro-
cessing for high-resolution videos input. Although there has been sufficient
research on parallel computing to accelerate certain parts of SLAM [36] [37],
most of them performed on desktop GPUs.

In summary, we modeled our system with certain goals:

• An efficient SLAM algorithm working in both PC and GPU embedded
platforms.

• Tuned and optimized to perform best for high-resolution videos with
as many as features possible.

• Fast enough to work in "real-time" scenarios.
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FIGURE 4.1: Jetson Tx2 hardware design.

4.1 vSLAM CPU implementation

We divided the vSLAM into 6 steps:

1. System initialization: The first step is to load SLAM parameters, cal-
ibrate the camera and initialize the CPU threads. Lastly, we read the
input frame in a loop.

2. Feature extraction: For this step, we have many options. As shown in
the previous chapter, ORB is the newest successor of all the other fea-
ture extraction methods. ORB take improves upon the fastest methods
for keypoint detection and descriptor generation, making them more
efficient while maintaining their speed advantage.

3. Feature matching: Feature matching is the second most computation-
heavy part of our vSLAM. Here we have two options: Brute force or
FLANN matching. Depending on the size of the features the results
variate. Brute force matching is usually faster for a small number of
features while the FLANN is better for a large number. Using GPU to
accelerate our system, we found out that Brute force benefits more from
parallel execution.
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FIGURE 4.2: Using a second CPU core for visualization.

4. Localization: For this step, we use random sample consensus(RANSAC)
algorithm to localize our camera through the environment.

5. Mapping: We use epipolar geometry to obtain the three-dimension co-
ordinates of features points.

6. Visualization: For the last step we use a python fork of open source
library, Pangolin, to visualize both the camera position and the key-
points, in a 3D environment.

Feature extraction and matching are the main focus of this work. They con-
sume more than half of the computing resources and are particularly suit-
able for parallelization. Initialization runs once at the start of our system.
After we obtain camera Intrinsics and distortion parameters, we just loop
the video frames. Localization and Mapping consist of many branches and
loops making them applicable for CPU processing.

For visualization, we dedicate a separate CPU core. We visualize the position
and keypoints in a 3D environment without requiring synchronization with
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the rest of the steps. For this reason, we "isolate" the visualization part and we
only associate it with the three-dimension coordinates of the SLAM output.

4.2 GPU acceleration

There is an inherent overhead in the GPU processing flow due to the transfer
of the images between the CPU and GPU memories. Such overhead can be
minimized if all the processing operations are performed in the GPU, and
only the initial and final images are transferred:

Toverhead = Tupload + Tdownload (4.1)

A speed gain will be obtained if and only if:

TCPU > Toverhead + TGPU, (4.2)

where TCPU and TGPU are the execution times for CPU and GPU respectively.

To determine which parts are worth accelerating, we experiment on some
videos for the CPU model. For 1920x1080 pixel images and 500 features total,
the average time of every step is:

Desktop CPU Average time Dependence

Initialization 7-10 ms Image resolution,
Image format

Extraction 100-110 ms Image resolution
Matching 32-40 ms Number of features

Localization 28-30 ms Number of matches
Mapping 15-20 ms Number of features

TABLE 4.1: Average desktop CPU execution time for every
SLAM step and what parameters affect it.

In this work, we accelerated some parts of ORB feature extraction and Brute
force matching.
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FIGURE 4.3: CPU to GPU data flow.

4.2.1 GPU implementation of oFAST

After we read a frame from our camera the first step is to build a Gaussian
pyramid based on the original image first. The next step is to extract feature
points and vectors from each Gaussian level of the pyramid. This step pro-
vides scale-invariant to our features. Lastly, all the keypoints will be mapped
back to the original image. This step will result in keypoints being too dense
and repetitive. Consequently, it is crucial to remove duplicate feature points
by performing non-maximum suppression algorithm.

Gaussian pyramid. Creating a Gaussian pyramid is a repeated two-step pro-
cess. Firstly we apply a Gaussian blur to our image and we sub-sample to
half resolution. This process is repeated up to 4 times. As disgusted be-
fore(3.1.6), there are two benefits to performing this method. Firstly, Gaus-
sian blur removes the camera noise, and secondly by sub-sampling the image
the feature points have orientation and are multi-scaled. Performing Gaus-
sian blur we only need data from the neighboring pixels, depending on the
kernel size of the blur filter. Moreover, every level of the pyramid has no data
association from the previous one, meaning we can execute Gaussian blur to
all levels in parallel.

FAST features. The next step is to perform FAST feature detection in each
image layer of the Gaussian pyramid. FAST algorithm compares the pixel
intensity with its neighbors and calculates a score. If the score is above the
threshold we require, then this pixel is a feature point. Like the previous step,
we only need data for the neighbors of every pixel and all the pyramid layers
are independent.
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FIGURE 4.4: Building Gaussian Pyramid.

Coordinate normalization. All the feature points of every pyramid level must
be mapped to the original image. The end result consists of many dupli-
cate feature points where we must choose the one with the biggest score.
Lastly, we perform Non-maximum suppression in order to spread the fea-
tures points in the image. Every point is compared to all the adjacent points
and we select the one with the highest response value.

After further analysis of the ORB feature extraction we concluded that:

1. There is no data communication among the Gaussian layers during the
FAST feature detection. Therefore we can perform FAST to each layer
independently, which can be parallelized.
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FIGURE 4.5: FAST feature detection illustration. We compare
the intensity of pixel P with the surrounding 16 pixels to deter-

mine if it is a feature point.

2. For every pixel that we apply FAST, we only need data from its sur-
rounding neighbors.

3. Non-maximum suppression has many branches and loops making it
optimal for CPU to calculate.

Algorithm 2 Feature extraction using CUDA.
Input: Image frame.
Output: A list of FAST features.

1: img← readInput;
2: cudaMemCopyHostToDevice(img);
3: for i← 0 to PyramidLevel do:
4: layerMem[i]← gpuBuildGaussianPyramid(img);
5: Pt[k]← gpuFastFeatureExtraction(layerMem[i]);
6: cudaMemCopyDeviceToHost(Pt[k]);
7: Pt[y]← nonmaximumSuppression(Pt[k]);
8: Pt[y]← nonmaximumSuppression(Pt[k]);
9: Output← Pt[y];

The first way to speed up the GPU time is to properly allocate the computa-
tional resources, for parallel execution. When a CUDA program is running
on the GPU, the user has to arrange the size of thread blocks and grids, and
from there the kernel creates the threads into the streaming multiprocessor
(SM) of the GPU. In our case, because the images are high resolution we can
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FIGURE 4.6: Coordinate normalization and non-maximum sup-
pression

use more threads in parallel resulting in more performance boost from the
SMs.

After testing multiple thread arrangements, we ended up with one thread
per 4 pixels. The thread block is two-dimensional with a size of 32x8. Lastly,
the grid size a dynamic size to match the resolution size of the image. For
example, the original size of our input image is 1920x1080 pixels. The grid
size is:

Grid f eature =
imgx

blockx
×

imgy

blocky
=

1920pixels
8blocks

× 1080pixels
32blocks

= 240× 34 (4.3)

Allocating fewer threads in the thread block, can increase the idle time of the
SM when accessing global memory. On the contrary, allocating more threads
will result in extensive computational demands that the register memory can
not handle, as a result some data will stored in global memory with higher
latency.

Finally, we calculate the orientation of FAST features. Feature points requires
data from the neighbor pixels to be involved in the calculation. For each
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FIGURE 4.7: GPU computational resources allocation

feature point, we assign 32 threads to calculate the orientation information.
Thread block size is set to 32x8 and the grid has the size of the maximum
number of feature points, which can be altered by the user. Every frame has a
diverse number of feature points where we allocate computational resources
based on the maximum number of feature points. In case of fewer points, the
allocated threads are empty.

4.2.2 GPU implementation of BRIEF

Calculating BRIEF descriptors for our feature points is a straightforward pro-
cedure with low computational cost, but very power full way to describe
points in an image. As depicted in 3.1.6, we compare the intensities of fixed
pairs of pixels and we generate a bit stream for each feature point. In BRIEF
case we generate 32 bytes for every descriptor.

Similar to feature orientation the size of GPU grid is fixed to the maximum
number of feature points. The thread block is set to two dimensions with a
32x8 size and for every keypoint we allocate 32 threads. The thread allocation
scheme is the same as the feature orientation: 32 threads for each feature
point to calculate orientation/descriptor, 8 features per block, and the grid
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size is fixed to the maximum number of feature points.

Gridmatcher =
maxFeautures

blocky
(4.4)

FIGURE 4.8: Comparing pair intensities around the feature
point to create BRIEF descriptor.

4.2.3 GPU brute force matching

Feature matching is the second most time-consuming part of SLAM algo-
rithm. After we extracted features from an image we compare the descrip-
tors with a list of the previous feature points. While visual SLAM runs the
list of features will gradually grow, increasing the complexity of matching.
In order to reduce the computation time, we perform local point selection,
meaning we only choose points that are more likely to match depending on
the frame order.

In our case, the descriptors of feature points are binary, meaning that the
feature matching is trivial and fast to compare. Every BRIEF descriptor is
256 bits long and compares the Hamming distance between them:

dHamming(B1, B2) = sum(xor(B1, B2)). (4.5)

Therefore we allocate 256 threads for each block to compute in parallel the
Hamming distance between descriptors. The thread grid is one dimension
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Algorithm 3 Feature matching using CUDA.
Input: Query and train descriptors.
Output: Feature Matches.

1: cudaMemCopyHostToDevice(queryDes);
2: cudaMemCopyHostToDevice(trainDes);
3: for i← 0 to numQuery do:
4: for y← 0 to numDes do:
5: distanceTemp← calcHammingDistance(queryDes[i], trainDes[y]);
6: if distanceTemp ≤ distance then:
7: distance← distanceTemp;
8: tempMatch[i]← gpuPointsIn f ormation();
9: Matches[i]← keepGoodMatches(tempMatch[i]);

10: Output← Matches;

with the size of the feature list from previous feature points, divided by 256.
Usually, the size of the list is fixed, depending on the maximum feature points
we extract in every frame, in order to not overflow the global memory in case
of long SLAM.

Griddescriptor =
maxFeautures

blocky
(4.6)

FIGURE 4.9: A graph depicting every sub-step of feature extrac-
tion and matching.

4.2.4 Task allocation timing

We can further optimize the parallel execution of SLAM, by reducing the idle
time of both CPU and GPU. They operate asynchronously, and by adjusting
the task allocation we can use the CPU while waiting for results in GPU. As
stated before, non-maximum suppression is better operated in CPU due to it
has a lot of branches and loops. Moreover, each level of Gaussian pyramid
is independent, meaning we can perform feature detection while building
the Gaussian pyramid meaning we can exploit more block threads. We can
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also download each layer’s results to the CPU to decrease the idle time of the
CPU while GPU performs feature detection. Therefore here are the steps for
task optimization:

1. For each layer of Gaussian pyramid we perform feature detection be-
fore moving to the next layer.

2. Each layer’s results are sent back to the CPU to calculate non-maximum
detection.

3. When the Gaussian pyramid and feature detection is finished, the CPU
has only the last layer of the pyramid to calculate. Then the results are
sent back to GPU for calculation of feature orientation.

FIGURE 4.10: Before and after comparison of task allocation.
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Chapter 5

System Verification and
Performance Evaluation

5.1 Specifications of platforms

This study is an attempt to accelerate visual SLAM with NVIDIA GPU sys-
tems and specifically the Jetson TX2 embedded system. Moreover, we will
test the same approach on a Desktop PC with far more GPU cores and CPU
speed. The desktop test aims to prove that it works on different systems and
occasions like remote sensing.

5.1.1 Jetson TX2

The NVIDIA Jetson series are embedded computing boards known for their
low weight and power consumption. What distinguishes the Jetson series
from other computing boards, is that it includes a GPU processor. Jetson
TX2 is the middle-performance board between the low power-performance
Jetson Nano and the high-end Jetson Xavier.

NVIDIA Jetson TX2
GPU 256 NVIDIA Cuda cores, Pascal architecture
CPU Dual-cor Denver 2 and quad-core ARM A57 complex CPUs
RAM 8 GB 128-bit LPDDR4

Storage 32 GB eMMC 5.1
Size 87mm X 50mm

Power 7.5W/15W

TABLE 5.1: NVIDIA Jetson TX2 specifications(Link).

https://developer.nvidia.com/embedded/jetson-tx2
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Moreover, Jetson TX2 has 5 operation modes where we will test most of them.
Every operation mode configures different CPU cores and clock speeds on
7,5/15W power consumption.

Property Max-N
(Mode 0)

Max-Q
(Mode 1)

Max-P
Core-All
(Mode 2)

Max-P
ARM

(Mode 3)

Max-P
Denver

(Mode 4)
Denver 2
cores/freq

(Ghz)
2 / 2 N/A 2 / 1.4 N/A 1 / 2

ARM A57
cores/freq

(Ghz)
4 / 2 4 / 1.2 4 / 1.4 4 / 2 1 / 0,34

RAM
freq

(Ghz)
1.86 1.33 1.6 1.6 1.6

GPU
freq

(Ghz)
1.30 0.85 1.12 1.12 1.12

Power
budget N/A 7.5W 15W 15W 15W

TABLE 5.2: NVIDIA Jetson TX2 clock configuration with power
modes(Link).

5.1.2 Desktop PC

We also tested the same vSLAM algorithm in a personal desktop computer
equipped with Intel Core i7 6700 CPU, NVIDIA GTX 1060 GPU and 16GB
DDR4 RAM. It’s important to mention that the Jetson TX2 and the GTX 1060
have the same Pascal GPU architecture, making them slightly more fair com-
pare in contrast to newer more sophisticated architectures. The specifications
of the system are presented in table 5.3:

https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/
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CPU
Cores/Threads 4/8

Frequency base/boost 3.4 GHz/ 4.0 GHz
Cashe 8 MB
Power 65 W

GPU
CUDA cores 1280

Frequency base/boost 1.5 GHz/ 1.7 Ghz
Memory Size 6 GB GDDR5

Memory Bandwidth 192 GB/sec
Memory Interface 192 bit

Power 120 W

TABLE 5.3: Desktop PC specifications

5.2 Datasets and Performance Metrics

We tested two types of datasets: EuRoC MAV dataset [38] and our own full
high definition drone video. The first one provides videos taken from a micro
aerial vehicle(MAV) with a stereo camera. Moreover, it provides extra sen-
sors like an internal measurement unit(IMU), a motion capture system, and
a laser tracker. The combination of all these sensors results in a very accu-
rate movement and position of the drone where we will try to replicate with
our algorithm. The EuRoC dataset is divided into three levels of difficulty:
easy, medium, and difficult. The difficulty is based on the manoeuvres the
drone does and the difference in light exposure during the video. Our goal
with this dataset is to confirm that our vSLAM is accurate and reliable. We
expect to have some performance improvement but our focus is on design
verification.

For our dataset, we also used a MAV available in our laboratory. The differ-
ence is that we used a monocular camera set to 1920x1080 pixels video at 30
frames per second. Our footage replicates the EuRoC’s levels of difficulty:
from flying in a straight line to making fast-turning manoeuvres. With this
dataset, we only aim to measure the performance improvements comparing
the CPU-only and the GPU accelerated version of our system.

5.2.1 EuRoc Dataset

EuRoC dataset [38] uses stereo cameras during the drone recording with res-
olution of 752x480 pixels. The dataset format include:

• Data collected from every sensor accompany with timestamps.
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• Calibration parameters for each sensor.

• Ground truth estimation for every frame.

Out first test is to find features in two random consecutive images from the
dataset and feature match the results. The test involves our system before
and after the GPU-acceleration.

(A) Feature detection in image 1 (B) Feature detection in image 2

(C) Feature matching between image 1 and 2

FIGURE 5.1: GPU feature extraction and feature matching.

For our next experiment, we calculated the average feature matches on the
different difficulties provided from EuRoc dataset. We compared the CPU
and GPU average results after 10 runs:

CPU only GPU accelerated
MH01_easy 349 326

MH03_medium 299 256
MH04_difficult 278 219

Here we noticed that the GPU version has fewer matches. We believe that
this happens because we perform feature detection and non-maximum sup-
pression in each layer of Gaussian pyramid. Non-maximum suppression re-
moves more matches in total but the difference does not reduce the efficiency
notably.
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For our following test, we compared the ground truth data with our cam-
era motion trajectory estimation. We used the python package evo [39] to
visualize the trajectories of our system. The comparison is between with and
without GPU acceleration shown in 5.2.
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(A) (B)

(C)

FIGURE 5.2: Trajectory comparisons between ground truth,
CPU and GPU versions using evo package[39]

From the above figures, we can conclude that with GPU acceleration we do
not have any negative effect on the accuracy. We can also calculate the ab-
solute error between the ground truth provided and our GPU system. We
can further examine the difference by calculating the root-mean-square error
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(RMSE):

RMSE((θ)) =
√

MSE(θ) (5.1)

Where mean square error (MSE) is calculated from the absolute error. More-
over we measure the square root of deviation, Standard Deviation (STD) be-
tween the actual value and the observed. The measurments are shown in the
table 5.4:

Mean(m) Median(m) RNSE(m) STD(m)
MH01 0.255 0.251 0.280 0.138
MH03 0.450 0.405 0.501 0.261
MH04 0.445 0.441 0.515 0.255

TABLE 5.4: Absolute error between estimated and true trajecto-
ries

Next, we tested the performance for every EuRoc dataset. We used the PC
platform for both CPU and GPU versions, and the Jetson Tx2 CPU and GPU
version. According to EuRoc [38], the images have 752x480 resolution the
datasets characteristics are:

Video Time Total Frames
MH01_easy 182s 1820

MH03_medium 132s 1320
MH04_difficult 99s 990

The performance results are shown in 5.3:

Note that for all the above tests we used 500 max features. We notice a perfor-
mance boost with GPU acceleration even though it is not our primary reso-
lution goal. The boost is even more apparent for the Jetson platform because
it is designed for GPU workflows. The speed-up for every dataset are shown
in 5.5

PC
speedup

Jetson Tx2
speedup

MH01 x1.164 x1.545
MH03 x1.197 x1.609
MH04 x1.116 x1.553

TABLE 5.5: Speed up for PC and Jetson platform between CPU
and GPU versions
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(A) PC execution times for CPU-only and GPU-accelerated ver-
sions.

(B) Nvidia Jetson execution times for CPU-only and GPU-
accelerated versions.

FIGURE 5.3: Execution time(seconds) of EuRoc datasets for A)
PC platform, B) Nvidia Jetson.

Lastly, we compare the average feature extraction and matching times for
500, 1000, and 1500 features per image. According to 4.1, feature matching,
localization and mapping are affected by the maximum number of features
per image. For this test, we aim to measure the speed up for Brute-force step.
The results are shown in 5.4
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(A) Feature Extraction for 500, 1000 and 1500 total features.

(B) Feature Matching for 500, 1000 and 1500 total features.

FIGURE 5.4: Execution time(milliseconds) of A) Feature extrac-
tion, B) Feature Matching.

5.2.2 Our Dataset

For our dataset, we included three 1920x1080 pixel drone videos. We manou-
vred around the campus buildings. Every video has a difficulty level similar
to EuRoc dataset. The difficulty is defined based on the drone movement
speed and the path trajectory.

For camera calibration parameters we used 12 pictures of a 7x9 chessboard.
Using the Zhang camera calibration algorithm we obtain the intrinsic matrix
and the distortion parameters.

Distortion parameters we can be used to undistort and re-map our images.
In our case, the results are:

• Fx: 1448
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FIGURE 5.5: Zhang method for camera calibration

• Fy: 1446

• Cx: 969

• Cy: 539

• dist: [k1, k2, p1, p2, k3]=[0.0158, 0.038, -0.005, 0.002, -0.289]

With the calibrated camera we move on to our final test. We use a 1920x1080
pixel video captured by our own lab drone. The video is 30 frames per second
and MPEG-4 format, meaning we have to get rid of some extra data in the
initialization step. We tested for 500, 1000, and 1500 max features. The results
are shown in 5.6
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(A) PC execution time(seconds) for 500, 1000 and 1500 total fea-
tures.

(B) Nvidia Jetson execution time(seconds) for 500, 1000 and 1500
total features.

FIGURE 5.6: Execution time of our dataset for A) PC platform,
B) Nvidia Jetson.

The speed-up for every test is shown in table 5.6:
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PC
speedup

Jetson Tx2
speedup

500 features x1.773 x1.599
1000 features x1.692 x1.465
1500 features x1.644 x1.356

TABLE 5.6: SLAM speed-up for PC and Jetson platform, be-
tween CPU and GPU versions.

As the results show, we have almost similar results with lower resolutions.
Even though GPU accelerates feature extraction and feature matching, we
rest of SLAM operates under CPU processing. Moreover, according to 4.1
Toverhead increase exponentially with the image resolution, moving back-and-
forth from CPU to GPU memory. Jetson Tx2 due to the nature of its platform
has low powered CPU with limited memory speeds compared to a desktop
PC.

The results are more promising if we compare only feature extraction and
matching times. For 1500 max feature points the results are shown in 5.7:

FIGURE 5.7: Execution time of feature extraction and matching
for 1920x1080 pixel video with 1500 max feature point

The GPU accelerated version of our system feature extraction creates a speed-
up of up to 4.8 times to the CPU-only counterpart. We use the FLANN-based
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feature matching, shown in 3.2.2, because it is more efficient for more than
500 features. For the GPU matching version, we achieve x1.3 speed-up.

5.3 Summary of Results

In the previous sections, we verified that our system works with high preci-
sion using EuRoc dataset. Later on, we tested our dataset with high-resolution
videos which is the goal of this thesis. Our system performed great on the
SLAM parts where we used GPU to accelerated. As shown in 5.7, we achieved
x4.8 speed-up for feature extraction and x1.3 speed-up on feature matching.
However, our system did not achieve great results to the whole SLAM algo-
rithm, picking at x1.6 speed up at best.

Nevertheless, it is unfair to compare a desktop PC with an embedded sys-
tem only in terms of performance. Therefore, for our last benchmark, we
will compare the energy consumption of each platform using CPU-only and
GPU-accelerated versions.

As a benchmark, we used our own 1920x1080 pixel video with 500 max fea-
tures where the results are shown in 5.6. Some metrics include:

1. Static power: represents the average amount of power consumed when
no active computation is taking place(idle power). In both PC and Jet-
son platforms we have a monitor connected drawing some insignificant
idle power.

2. Dynamic power: represents the average amount of power consumed
during SLAM operation.

3. Performance: measured with the frames per second. As a speed-up
reference we use the PC CPU-only platform.

4. Energy per frame: represents the amount of energy consumed in Joules
per frame:

Energy/Frame =
PowerConsumed(Watt)

Framespersecond
(5.2)

5. Total Efficiency: a combination of performance and energy efficiency:

TotalE f f iciency = Per f ormance× EnergyE f f iciency (5.3)
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The results are shown in the table 5.7:

PC CPU
only

PC GPU
accelarated

Jetson CPU
only

Jetson GPU
accelarated

Name i7 6700 Gtx 1060 Arm A57 256 core
Pascal

Total On-Chip
power (Watt) 65 120 ∼6 ∼15(6 + 9)

Idle Power
(Watt) 5 8 1.2 0.5

SLAM Power
Cons. (Watt) 38.1 44.6 + 36 6 6 + 9

Frames per
Second (fps) 4.70 8.38 2.81 4.50

Performance x1 x1.78 x0.60 x0.95
Energy per Frame

(Joule/frame) 8.10 9.64 2.14 3.33

Energy Efficiency x1 x0.84 x3.70 x2.43
Total Efficiency
(Perf. × Energy) x1 x1.49 x2.20 x2.30

TABLE 5.7: Summary of various results.

As expected, the PC platform is 1.5-3x faster than the Jetson counterpart but
consumes 2.5-3.5x more power. As a result, our system is fast enough to be
eligible but also consumes small amounts of power making it a perfect fit for
an unmanned vehicle.

We want to mention here that in the PC platform we only used the 55% to
60% of CPU resources and about 25% to 30% of GPU. This means that the
PC platform is capable to run many more multiple processes while we used
almost the 80-90% of Jetson resources.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Future Work

Visual SLAM is the process to create a map of the environment and estimate
the robot’s position on the map. The only data input is from the camera sen-
sor in form of images. In order to have optimum results, we process a high
resolution of image data where the current embedded platforms struggle to
accomplice. In this paper, we propose a GPU accelerated version of ORB fea-
tures SLAM, aimed towards high-resolution images. Our proposed method
improved the execution speed and efficiency while maintaining the accuracy
need for vSLAM.

Navigating in an unknown environment creates a plethora of problems where
vSLAM solves only a part of them. There will always be unexpected prob-
lems that the robot must encounter, but by increasing the efficiency of SLAM
we have more time and resources available. Here are some thoughts for fu-
ture autonomous mobile robots:

• Modern SLAMs has many other features that we did not include in our
project. One popular feature is the loop close where we can detect if
the robot is in the same position as before. Our system only stores a set
amount of features, meaning after a short time we loose info of early
keypoints. An additional element is an adequate pathfinder within the
created map of SLAM. Lastly, there are some proposed solutions to the
kidnapped problem where the robot in operation is carried to an arbi-
trary location and must localize itself again.

• In this thesis we proposed a solution for GPU emended system that
has already exited 4 years now. By checking the NVIDIA Jetson hard-
ware roadmap, the Jetson Orin family will be introduced in early 2022.

https://developer.nvidia.com/embedded/develop/roadmap


68 Chapter 6. Conclusions and Future Work

With newer GPU architecture NVIDIA might add hardware encoding
and decoding support in GStreamer. This will hugely increase Jetson’s
performance and it will be more competitive to hardware-accelerated
boards.

• There are more platforms to be explored like FPGA or ASIC. Both of
them have more complex design flow but usually outperform convec-
tional CPUs or GPUs in processing speed, power consumption, and
cost. We think this could be interesting since there are researches [40]
proving that an ASIC performs better than a GPU or a CPU in their
specific case.
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