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Abstract

In this thesis we start by defining the basic components that bring together a quantum circuit. We

explain basic gates, the concept of entanglement and why these are important for the construction of

quantum algorithms. Then we proceed by analyzing two basic quantum algorithms (Deutsch-Josza

and Grover’s algorithms), which are the earliest in quantum computing and illustrate the notion of

a quantum speed up. Next, we analyse the basic approaches for quantum optimization, including

the notions of quantum annealing and adiabatic quantum computing, and analyze the first main

algorithm of this thesis which is the Quantum Approximate Optimization Algorithm (QAOA). We

also introduce and explain the Variational Quantum Eigensolver (VQE) and its hardware efficient

version, which does not require specific gates decomposition and compare it with QAOA on the

context of solving MAXCUT problems. In the final part, we analyze QAOA on a more industrial

optimization setting, and solve instances of the Tail Assignment Problem for assigning planes in

different routes. For this problem we test QAOA using the conventional method of minimizing the

expectation value of the cost Hamiltonian and discuss the results. Finally, we also apply solve the

problem by an another method based on minimizing the Gibbs objective function where we see

improvements in the success probability. We analyse the inner workings of the algorithms, discuss

the results and compare the various methods for different problem sizes and instances. We run our

quantum algorithms in simulators, with noise and ideal ones, as well as on and prototype quantum

hardware available in the cloud in IBM Q and analyze the performance for different problem size

and qubit numbers.
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Chapter 1

Introduction

Quantum computing uses certain properties of quantum mechanics such as quantum superposition

and entanglement to perform calculations. The first model for a quantum computer was proposed by

Richard Feynman in 1981, at a conference held by MIT. In 1992 David Deutsch and Richard Josza

proposed the Deutsch-Josza algorithm [1]. The problem of boolean functions that this quantum

algorithm solves is the first example where a quantum algorithm surpasses the classical algorithm in

computational efficiency. Two years after, Peter Shor created the very well known Shor’s algorithm

[2] that solves the integer factorization problem. This quantum algorithm reduced the time com-

plexity from exponential to polynomial time. The integer factorization problem is the foundation

of the RSA encryption which is used vastly nowadays and Shor’s algorithm solves it in polynomial

time. However, Shor’s algorithm require a lot of qubits in order to factor large numbers and quan-

tum hardware nowdays comprises of up to 70-100 qubits. In 1996, Lov Grover create the Grover’s

algorithm for unstructured search [3] which has a quadratic speedup over the classical algorithms.

Implementation wise, in 1998 Isaac Chuang (Los Alamos National Laboratory), Neil Gershenfeld

(MIT) and Mark Kubinec (University of California, Berkeley) created the first Nuclear Magnetic

Resonance (NMR) Quantum Computer consisting of 2 qubits and it was used to solve the Deutsch’s

problem. In the past 23 years quantum computing has a very active research area and quantum

computers have been realized with the recent demonstrations of quantum supremacy by Google
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using 53 superconducting qubits. At this day there exists several companies that owns quantum

computers , some of which are freely accessed by the public. There exists many technologies that are

being used in order to create a quantum computer, such as trapped ions, superconducting qubits,

quantum dots.

Except gate based quantum computers non universal quantum computers called quantum an-

nealers. Specifically there exists quantum annealers with 5000 qubits and they are used in order

to solve optimization problems which will be the focus of this thesis. Their qubits have certain

topology i.e. they allow certain interactions between qubits, so they depend heavily on the problem

that they solve. In top of that quantum annealing requires a lot of time in order to find the optimal

solution to our problem.

Thesis outline

In this thesis we start by defining the basic components that bring together a quantum circuit. We

explain basic gates, the concept of entanglement and why these are important for the construction of

quantum algorithms. Then we proceed by analyzing two basic quantum algorithms (Deutsch-Josza

and the Grover’s algorithms), which are the entry gate to quantum computing. In chapter 3 we

explain the theory behind quantum optimization and explain the main concept of this thesis which

is the Quantum Approximate Optimization Algorithm (QAOA). Also we explain the Variational

Quantum Eigensolver (VQE) and compare it with QAOA on the context of MAXCUT problem.

In chapter 4 we analyze QAOA on a more industrial optimization problem, the Tail Assignment

Problem. For this problem we test QAOA using the conventional method of minimizing the expec-

tation value of the cost Hamiltonian. After this we test QAOA by minimizing the Gibbs objective

function where we see improvements in the success probability.
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Chapter 2

Introduction to quantum

computing

In this chapter we will set the backbone of quantum computing. First we start by the definition of

the qubit and the single and two qubit gates. Then we introduce entanglement between two qubits,

a powerful property of qubits. At last we combine all of the above concepts to introduce two basic

quantum algorithms, the Deutsch-Josza and the Grover’s algorithm. These algorithms were among

the first to provide a significant speed up over their classical counterparts and for this reason is

important to understand how these algorithms work before we move to the more advanced cases of

quantum optimization which is the core of this thesis later on.

2.1 What is a qubit?

From a computer scientist’s perspective, we can think of qubit as the fundamental information

that is used in quantum computers just like the bit in the classical computers. With risking

oversimplifying, we could say that the main difference between qubits and bits is that the latter is

deterministic. That is, a bit can be either ’0’ or ’1’. On the other hand a qubit can be in a linear

combination of ’0’ and ’1’ called superposition. We should note that a qubit is not equivalent with

7



a bit that has some probabilities to be ’0’ or ’1’, the quantum superposition is terms of quantum

amplitudes that can also destructively interfere. On other words, quantum probabilities can also

cancel each other.

Another suitable way of thinking for qubits is the spins of the electrons. In general the spin

of the electron has a direction which allows us to encode qubit states into these directions and as

vectors, they can be added or substracted. Another important aspect, is the measurement. In

reference of the Schrödinger’s experiment with the cat in the box, as long as we don’t open the box

and see the condition of the cat that is inside we can say that the cat is both dead and alive or she

is in a superposition of these states. The moment we open the box and see the cat, then we will

have a deterministic state, either alive or dead. Exactly as the experiment above, when we measure

the state of a qubit we say that it’s state collapses to one state and the superposition is lost. We

refer the reader to Nielsen and Chuang textbook [4] for a more detailed description of the physics,

here we will stay on the basics of the necessary maths behind quantum information, which is the

math of complex vector spaces. We will use bra-ket notation. In the simplest case a qubit can have

two states. The set of possible states is {|0〉 , |1〉} where,

|0〉 = |↑z〉 =

1

0

 |1〉 = |↓z〉 =

0

1


are called the base vectors because they represent an orthonormal base for our qubits . For a

base to be orthonormal the base vectors must be orthogonal to each other (their inner product is

zero) which can be shown easily, 〈0|1〉 = 〈1|0〉 = 0 , and their magnitudes must be equal to one ,

〈0|0〉 = 〈1|1〉 = 1.
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(a) Visualization of a qubit in
the state |0〉.

(b) Visualization of a qubit in
the state |1〉.

Figure 2.1: Bloch sphere representation of one qubit.

A superposition in that states space can be written as

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C

where

• |α|2 + |β|2 = 1 , Pr
(
|0〉
)

= |α|2 and Pr
(
|1〉
)

= |β|2 are the probabilities of finding |ψ〉 in the

|0〉 state and the |1〉 state respectively

To visualize the above state we need 4 real numbers, because α, β ∈ C. In the (figure) above

we see the visualization of quantum states in the Bloch sphere. The Bloch sphere is a 3-parameter

real (x,y,z) space which represents all the possible states-vectors for a qubit using rotations. We

can get from 4 real numbers to 3 by expressing the quantum state

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

Note that the above is a valid quantum state since

| cos

(
θ

2

)
|2 + |eiφ sin

(
θ

2

)
|2 = 1

By further expanding the quantum state we have
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|ψ〉 = cos

(
θ

2

)
|0〉+ (cosφ+ i sinφ) sin

(
θ

2

)
|1〉

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Note that the above representation is always unique. Now

we can convert this Cartesian coordinates (θ, φ) to spherical coordinates by using

x = sin θ cosφ y = sin θ sinφ z = cos θ

where we have assumed that radius r = 1 because all the quantum states that belong in the

Bloch sphere have || |ψ〉 ||2 = 1.

We can view the above (superposition) in the orthonormal base {|0〉 , |1〉} as follows

Figure 2.2: Visualization of the superposition |ψ〉 inside the orthonormal base {|0〉 , |1〉}.

2.2 Single qubit gates

Now we present some of the basic tools that are needed for the manipulation of quantum states.

Single qubit gates are unitary matrices that acts on a single qubit and produces a single qubit

output. We start by the Pauli gates

σx = X ≡

0 1

1 0



σy = Y ≡

0 −i

i 0
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σz = Z ≡

1 0

0 −1


Note that the above gates are unitary and have the below property

X2 = Y 2 = Z2 = −iXY Z = I

The action of each gate is shown below

• X gate X |0〉 = |1〉 X |1〉 = |0〉

• Y gate Y |0〉 = i |1〉 Y |1〉 = −i |0〉

• Z gate Z |0〉 = |0〉 Z |1〉 = − |1〉

It is also very important to note that Z |0〉 = (−1)0 |0〉 and Z |1〉 = (−1)1 |1〉. By writting the

action of the Z gate with this way we are able to get the state 0 or 1 in front of the ket like a

phase. This is used in many algorithms included quantum optimization ones, and Deutsch-Josza

algorithm. In general we have Z |x〉 = (−1)x |x〉

Some other important gates are the Hadamard gate which creates the superposition of a qubit

and the phase shift gate which adds a phase to our qubit. The Hadamard gate as a unitary matrix

H =
1√
2

1 1

1 −1


The action of the Hadamard gate onto the basis states

H |0〉 =
1√
2

(|0〉+ |1〉) H |1〉 =
1√
2

(|0〉 − |1〉)

The phase shift gate
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P (φ) =

1 0

0 eiφ


The action of the phase shift gate is to produce a phase shift of angle φ or eiφ when our qubit

is in the state |1〉 and do nothing if our qubit is in the state |0〉

P (φ) |0〉 = |0〉 P (φ) |1〉 = eiφ |1〉

Note here that this phase is not measurable. This means that the amplitude of |0〉,|1〉 is left

unchanged. In other words the probability of measuring either |0〉 or |1〉 is the same after the

appliance of the P (φ) gate. We can see that if we write

eiφ = cosφ+ i sinφ

Because of the Bloch sphere representation of qubits, we must also note the rotation operators.

These operators take as inputs an angle θ and rotate the qubit state around the respective axis by

that angle.

Rotation around the X axis

RX(θ) ≡ e−i θ2X = cos
θ

2
I− i sin

θ

2
X =

 cos θ2 −i sin θ
2

−i sin θ
2 cos θ2



RX(θ) |0〉 = cos
θ

2
|0〉 − i sin

θ

2
|1〉

RX(θ) |1〉 = cos
θ

2
|1〉 − i sin

θ

2
|0〉

Rotation around the Y axis
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RY (θ) ≡ e−i θ2Y = cos
θ

2
I− i sin

θ

2
Y =

 cos θ2 − sin θ
2

− sin θ
2 cos θ2



RY (θ) |0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉

RY (θ) |1〉 = cos
θ

2
|1〉 − sin

θ

2
|0〉

Rotation around the Z axis

RZ(θ) ≡ e−i θ2Z = cos
θ

2
I− i sin

θ

2
Z =

e−i θ2 0

0 ei
θ
2



RZ(θ) |0〉 = cos
θ

2
|0〉 − i sin

θ

2
|0〉 = (cos

θ

2
− i sin

θ

2
) |0〉

RZ(θ) |1〉 = cos
θ

2
|1〉+ i sin

θ

2
|1〉 = (cos

θ

2
+ i sin

θ

2
) |1〉

2.3 Two qubit gates

Now that we can represent and manipulate a single qubit, we can move forward and explore the

multi qubit space. The space of all the available states for 2 qubits is {|00〉 , |01〉 , |10〉 , |11〉} which

tell us that there are four possible states for a 2 qubit system. For a 3 qubit system the available

state space is {|000〉 , |001〉 , |010〉 , . . . , |111〉}. Each new qubit we add to our system multiply the

available states by 2. That is, if we have n qubits the available states will be 2n and the available

state space will be all the different bit strings of length n : {|00 . . . 0〉︸ ︷︷ ︸
n

, . . . , |11 . . . 1〉}

Let’s take the system of 2 qubits, x and y, where n = 2. Then we will have the space

Ω = {|00〉 , |01〉 , |10〉 , |11〉} .We write this space in a more compact form using the tensor product
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operator. That is Ω = {|0〉 , |1〉︸ ︷︷ ︸
x

} ⊗ {|0〉 , |1〉︸ ︷︷ ︸
y

}.

No we can define the basis vectors for Ω which is a space with length equal to 4. In a strictly

mathematical manner we see the elements that Ω consists of and we can do the calculations. We

have

|u0〉 = |00〉 = |0〉 ⊗ |0〉 =

1

0

⊗
1

0

 =



1

0

0

0



|u1〉 = |01〉 = |0〉 ⊗ |1〉 =

1

0

⊗
0

1

 =



0

1

0

0



|u2〉 = |10〉 = |1〉 ⊗ |0〉 =

0

1

⊗
1

0

 =



0

0

1

0



|u3〉 = |11〉 = |1〉 ⊗ |1〉 =

0

1

⊗
0

1

 =



0

0

0

1


From the above we see a beautiful symmetry on the statevectors spanned from Ω. This is

happening because we want our base to be orthonormal i.e.
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〈
ui
∣∣uj〉 =


0 , i 6= j

1 , i = j

Now that we have our 2 qubit orthonormal base we can define a superposition in this base

|ψ〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉

where |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1 are the probabilities to find our system in the appropriate

state. That is Pr(|11〉) = | 〈00|ψ〉 |2 = |α3|2 (Born rule)

A very useful gate that takes two inputs and has two outputs is the Controlled Not gate. With

respect to our basis Ω, the matrix representation of the CNOT gate is

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


This gate has two qubits as the input, one serves as the select qubit and one as the target qubit.

If the select qubit is |0〉 then we do nothing to the target qubit. If the select qubit is |1〉 then we

apply a X gate to the target qubit.

If we denote as |s〉 the selector qubit and |t〉 the target qubit then we see that

CNOT |s, t〉 = |s, s⊕ t〉

where the truth table for the XOR gate is

• 0⊕ 0 = 0

• 0⊕ 1 = 1

• 1⊕ 0 = 1
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• 1⊕ 1 = 0

With this in hand we can see the action of the CNOT more closely

• CNOT |00〉 = |00〉

• CNOT |01〉 = |01〉

• CNOT |10〉 = |11〉

• CNOT |11〉 = |10〉

So if we apply the CNOT gate onto the 2 qubit state |ψ〉 we will have the amplitudes of |10〉

and |11〉 swapped.

CNOT |ψ〉 = α0 |00〉+ α1 |01〉+ α2 |11〉+ α3 |10〉

We must also note that we can create a general control U gate, that has the same principle with

the CNOT gate but it applies the U gate when the selector qubit is |1〉. The way we can construct

such a gate is to say that :

Suppose U is

U =

u00 u01

u10 u11


We want this gate to act on a state and map that state as follows

|00〉 7→ |00〉 |01〉 7→ |01〉 |10〉 7→ |1〉 ⊗ U |0〉 |11〉 7→ |1〉 ⊗ U |1〉

We see that

U |0〉 =

u00

u10

 U |1〉 =

u01

u11


Now that we know the action of U onto it’s base states we can define the Controlled U gate or

CU for short as follows
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CU =



1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11


where we can see that the upper left 2x2 elements denote the unitary I matrix which is the part

that the selector do nothing to the target qubit and the lower right 2x2 elements denote the matrix

U for the case that we want to apply U to our target state.

2.4 Entanglement

Einstein characterized entanglement as a spooky action at a distance. Entanglement is a property

that two particles-qubits can have after they interact with each other even if they are very far apart.

To better understand the concept of entanglement, let’s see how we can create entanglement

between two qubits. All we need in order to create entanglement are a Hadamard and a Control

Not gate.

|0〉 H
1√
2
(|00〉+ |11〉)

|0〉

|ψ0〉 |ψ1〉

Figure 2.3: Quantum circuit for Bell’s state.

We start with the state |ψ0〉 = |00〉. Then we apply a Hadamard to the first qubit while applying

unity to the second qubit (e.g do nothing on the 2nd qubit ).

(H ⊗ I) |00〉 =
1√
2

(|00〉+ |10〉) = |ψ1〉

Now we apply a CNOT gate using the first qubit as control and the second as the target
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CNOT |ψ2〉 =
1√
2

(|00〉+ |11〉)

Suppose that the first qubit is a random variable X and the second qubit is a random variable

Y. Then we can write the output state as 1√
2
(|0X0Y 〉 + |1X1Y 〉). Now we can define the mutual

information between these two random variables as the amount of information for X given that we

measure Y.

We can define this mutual information as

I(X;Y ) = H(X)−H(X|Y )

where

H(X) = −
∑
X=x

P (X = x)logP (X = x) =
1

2

is the uncertainty for the random variable X or the entropy of X and H(X|Y ) is the uncertainty

we have about X given that we observed Y.

Notice that at the start of the circuit these two random variables are uncorrelated, so I(X;Y ) =

0.

For the output state we have that

i) If we measure Y to be 0, then X must be 0

ii) If we measure Y to be 1, then X must be 1

We can see that I(X;Y ) = H(X) = 1
2 since H(X|Y ) = 0, because if we measure Y we are

certain about the outcome of X. This means that our qubits started as uncorrelated but at the end

of the circuit there exists information between them and therefore they are correlated. This tells us

that we can use entanglement to share information about qubits which is useful for many quantum

communication protocols in which sharing information between qubits is needed. Examples of

such cases are teleportation and superdense coding. In the later, we can communicate two bits of
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information by only sending one qubit physically while sharing an entangled state in advance.

Figure 2.4: Superdense coding protocol. A third party runs the bell circuit and produces state
|β00〉 which encodes the classical bit string ’00’ or ’11’ as information. Then he sends one qubit to
Alice and one qubit to Bob, wherever they are. Then Alice (the sender of the message) encodes the
message and sends her qubit to Bob. At last, Bob performs a CNOT followed by a Hadamard gate
and then he measures his qubits. At the end he will have the 2bit message that Alice sent.

The example we used above is based on the first of the four Bell’s states. These states are

maximally entangled and can be produced using the (circuit) above but varying the inputs i.e start

with |00〉 for first Bell state, |01〉 for the second Bell state, |10〉 for the third Bell state and |11〉 for

the fourth Bell state.

A concrete way for representing the 4 Bell states is the following

βxy =
1√
2

(|0y〉+ (−1)x |1ȳ〉)

where x ∈ {0, 1}, y ∈ {0, 1} and ȳ is the negation of y.

2.5 Deutsch-Josza algorithm for boolean functions

We will now exploit another interesting property of quantum computers called quantum paral-

lelism. This is a property that come to us through the superposition of qubits. When we have a
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superposition of n qubits we can instantaneously manipulate all the 2n possible states.

We will see that quantum parallelism give us a computational advantage over classical comput-

ers. In order to see why this interference of qubits is helpful we will present the Deutsch-Josza

algorithm. It was created by David Deutsch and Richard Josza in 1992. This algorithm is the first

quantum algorithms that created and has proven speed up over it’s classical counterpart.

2.5.1 The problem

We start with a boolean function with n inputs and a boolean output, f : {0, 1}n → {0, 1}. This

means that f has for input a bit string of length n e.g. 110 . . . 000︸ ︷︷ ︸
n

. Assume that one of this

functions is guaranteed to be constant or balanced (i.e. has an equal number of 0’s and 1’s). The

goal of this algorithm is to determine whether the aforementioned function is constant or balanced.

A classical computer will need to evaluate at best half the inputs plus the next one in order to be

certain that the function is constant or balanced. The worst case scenario for a classical computer

will require O(n). The Deutsch-Josza algorithm solves this problem with a single evaluation of f .

2.5.2 The oracle

Figure 2.5: Deutsch-Josza quantum circuit.

In the figure (above) we see the quantum circuit for the Deutsch-Josza algorithm. The new gate-

operator we see here is called the oracle (noted as U) and it is a 2n+1 × 2n+1 matrix that acts

on n + 1 qubits. We can think of the oracle as a blackbox that we have to use in order to pass
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information to all qubits simultaneously, and that information will be the value of f(x) for each x.

Because we want the oracle to be a valid gate for the circuit it must be represented by a Unitary

matrix. We define the action of oracle to be

U |x, y〉 =
∣∣x, y ⊕ f(x)

〉
Now if we recall the action of the CNOT gate in a state

CNOT |s, t〉 = |s, s⊕ t〉

We can see that the action of oracle can be realized as a control operation where now the control

is a function of our qubits rather that the qubits themselves.

Now notice that in the quantum circuit we have a NOT gate followed by a Hadamard acting on

the last qubit (first two gates of the second qubit). That is

HX |0〉 = H |1〉 =
1√
2

(|0〉 − |1〉) = y

The key here is that we start y in this state , so that

y ⊕ f(x) =
1√
2

(
∣∣0⊕ f(x)

〉
−
∣∣1⊕ f(x)

〉
) =

1√
2

(−1)f(x)(|0〉 − |1〉)

which can be shown by taking f(x) = 0 and f(x) = 1.

2.5.3 The algorithm

The Deutsch-Josza algorithm consists of five steps

(i) We start with n+ 1 qubits where we mark the first n qubits as x and the last qubit as y. All

qubits are initialized in the all zero state and then we apply a NOT gate to qubit y.

(ii) We apply a NOT gate to qubit y and then we apply Hadamard gates to all qubits.

(iii) We act with the oracle U on all our qubits.
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(iv) We apply Hadamard gates to qubits x .

(v) We measure the qubits x.

In order to understand this algorithm we will solve the quantum circuit by executing steps i) to

v).

(i) Preparation step

|ψ0〉 = |0〉⊗n |1〉︸ ︷︷ ︸
n+1

(ii) Apply Hadamards to the n+ 1 qubits

(H⊗n ⊗H) |ψ0〉 = H⊗n |0〉⊗n ⊗H |1〉 =
1√
2n

∑
x∈{0,1}n

|x〉 ⊗ 1√
2

(|0〉 − |1〉) =

=
1√

2n+1

∑
x∈{0,1}n

|x〉 (|0〉 − |1〉) = |ψ1〉

(iii) Apply the oracle on |ψ1〉

The oracle acts on a state as

U |x, y〉 =
∣∣x, y ⊕ f(x)

〉

U |ψ1〉 =
1√

2n+1

∑
x∈{0,1}n

|x〉 (
∣∣0⊕ f(x)

〉
−
∣∣1⊕ f(x)

〉
) =

1√
2n+1

∑
x∈{0,1}n

(−1)f(x) |x〉 (|0〉− |1〉) = |ψ2〉

(iv) Apply Hadamard gates to the first n qubits

From now we will leave the last qubit out of the total wavefunction since it won’t be measured,

|ψ2〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x) |x〉
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H⊗n |ψ2〉 =
1

2n

∑
x∈{0,1}n

(−1)f(x)
∑

y∈{0,1}n
(−1)x·y |y〉 =

1

2n

∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)f(x)(−1)x·y |y〉 = |ψ3〉

where

x · y = x0y0 ⊕ x1y1 ⊕ . . .⊕ xn−1yn−1

Note that the above bitwise product will produce a 1 output when we have odd number of xiyi = 1,

otherwise it will produce 0.

(v) Measure the first n qubits

Now we want to measure the first n qubits, so let’s find the probability of measuring the all 0

state |0〉⊗n from |ψ3〉

Pr(00 . . . 000︸ ︷︷ ︸
n

) = | 〈0|⊗n |ψ3〉 |2 =
∣∣ 1

2n

∑
x∈{0,1}n

(−1)f(x)
∣∣2

where now we only have the internal summation over the x because we projected |ψ3〉 onto the

all 0 state and because of the orthonormal basis of our n qubits we have exactly 1 term of the

summation over y equal to 1, namely 〈00 . . . 000|00 . . . 000〉 = 1, 〈00 . . . 000|00 . . . 001〉 = 0.

Now we have two possibilities, either the function f(x) is constant or balanced, so we can fix

f(x) and check the probability again. That is

Pr(00 . . . 000) =


| 1
2n 2n|2 = 1 if f(x) is constant

| 1
2n (n2 −

n
2 )|2 = 0 if f(x) is balanced

where we used that
∣∣∑

x∈{0,1}n(−1)f(x)
∣∣= 2n if f(x) is constant and

∣∣∑
x∈{0,1}n(−1)f(x)

∣∣= n
2−

n
2

if f(x) is balanced.

We see that by measuring at the end of the quantum circuit we expect two outcomes. If we

measure and find the all 0 state then we are certain that f(x) is constant. If we measure and don’t

find the all 0 state then we are certain that f(x) is balanced. Notice that we run the quantum
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algorithm exactly 1 time and we can be certain about a property of some function f(x), while the

classical algorithm would need 2n − 1 evaluations of f(x).

2.6 Grover’s algorithm for database searching

2.6.1 The problem

Suppose that we have the name of a doctor but we are missing his/her number. So we want to

search a database of all the doctors in the area to find the doctor with the same name and obtain

his number. Suppose that this database has N elements-doctors. The classical computer will need

to search each of these doctor’s names and compare with the one we have. This solution will give

us complexity O(N) since we would have to search all the elements of the database in the worst

case scenario. Grover’s algorithm give us a squared root speedup which means that it has O(
√
N)

complexity.

2.6.2 The oracle

We want to construct an algorithm which is independent of the database in work. For this reason

we will assume that the total elements of the database is N = 2n and we will focus on the indices

of this elements 0 ≤ i ≤ N − 1, where i is the integer index of the elements. We also want a way of

determining if the element in question is actually the element we are looking for. For this reason

we need a function f which takes as input an index x in the range of 0 to N − 1. We can then say

that f(x) = 1 iff x is a solution to the search problem and f(x) = 0 iff x is not a solution to the

search problem.

Now that we have the function f(x) which determines whether an element is a solution to our

problem or not, we take it for granted that we have an oracle that does exactly this work. The

next step is to figure out a way that we take the answer of this oracle, while leaving the indices

unchanged for further calculations e.g the search. For this we need an extra ancilla or oracle qubit.

We can then describe the oracle as a unitary operator O
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|x〉 |q〉 O−→ |x〉
∣∣q ⊕ f(x)

〉
where |x〉 is the index register and |q〉 is the oracle qubit. We can say now that by preparing

|x〉 |0〉 and applying the oracle O, if the oracle qubit has been flipped then x is a solution to our

problem.

It is more convenient for us to encode this f(x) in the phase of the appropriate state. We do

this because we don’t have to measure to obtain f(x), because if we measure a quantum state then

the protocol has ended. So we can use that

|x〉 |0〉 − |1〉√
2

O−→ (−1)f(x) |x〉 |0〉 − |1〉√
2

To go one step further we can say that since the state of the second qubit has not changed before

and after the appliance of the oracle O, we can for simplicity not write it in the total wavefunction.

So overall we have that

|x〉 O−→ (−1)f(x) |x〉

So we have successfully mark the correct solution to our problem since we will get a negative

phase when f(x) = 1, but keep in mind that this phase is not relevant. This means that if

we measure, the probability of finding this state have not changed. Ideally we would want this

probability, after some modifications, to be equal to 1 and so measure the correct solution to our

problem.
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2.6.3 The algorithm

Figure 2.6: Grover operator. This is a subroutine
of the main algorithm.

Figure 2.7: Quantum search algorithm. Here we
apply the Grover operator after we have put the n
qubits in superposition using the Hadamard gate
in all of them.

The algorithm starts with the quantum computer in the state |0〉⊗n. Then we use the Hadamard

transform to put the quantum computer in the equal superposition state

|ψ〉 =
1√
N

N−1∑
x=0

|x〉

Then the algorithm makes use of a subroutine called Grover iteration or Grover operator which

we denote as G. This subroutine consists of 4 steps

• (1) Apply the oracle O

• (2) Apply H⊗n

• (3) Perform a conditional phase shift with every index except 0 receiving a phase shift of −1

• (4) Apply H⊗n

Note that the conditional phase shift can be represented by the delta function as follows

|x〉 7→ −(−1)δx0 |x〉

where

δx0 =


0 , x 6= 0

1 , x = 0
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This mapping indeed produces a minus 1 phase when the state |x〉 is not the 0 state. But when

we are writing a circuit all the components must be unitaries so we must represent this conditional

phase shift as a unitary. This unitary is

U = 2 |0〉 〈0| − I

We can verify the above since

if x = 0→ (2 |0〉 〈0| − I) |0〉 = |0〉

if x 6= 0→ (2 |0〉 〈0| − I) |x〉 = − |x〉

So we can see that this unitary has the same effect as the conditional phase shift using the delta

function. In the left (figure) we see the grover operator which consists of steps 1-4 and it is denoted

by G.

We can combine steps 2,3,4 so that

H⊗n(2 |0〉 〈0| − I)H⊗n = 2 |ψ〉 〈ψ| − I

where |ψ〉 = 1√
N

∑N−1
x=0 |x〉. Thus Grover operator can be written as

G = (2 |ψ〉 〈ψ| − I)O

where O is the operator for the oracle action O |x〉 → (−1)f(x) |x〉

In the right (figure) we see the overall quantum search algorithm. By using a set of Hadamard

gates and the Grover operator approximately
√
N times we can find the element we are looking for.

2.6.4 Geometric visualization and complexity of Grover’s algorithm

Now that we have all the components of the algorithm we can generalize the problem. Assume

that we have a database with N elements and M solutions to the search problem. Let’s define the
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normalized states

|α〉 ≡ 1√
N −M

∑
x∈A
|x〉

where the sum runs over all N-M indices which are not solutions. Here A is the set of elements

besides the M solutions with |A| = N −M

|β〉 ≡ 1√
M

∑
x∈B
|x〉

where the sum runs over all M indices which are solutions. Here B is the set of elements that are

solutions to our problem with |B| = M .

Then we can define the initial state of our database as

|ψ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

where we define c =
√

N−M
N and d =

√
M
N for convenience in the math below.

What we achieved with this reformation of our problem is that now the initial state is defined

in the space spanned by |α〉 and |β〉, the vector containing all elements besides the solutions and

the vector containing the solutions to the searching problem.

Note that the oracle acting on the initial state |ψ〉 gives us

O(c |α〉+ d |β〉) = c |α〉 − d |β〉

because the oracle acts only on the vector that contains the solutions to the problem by applying

a −1 phase. So after the action of the oracle on the initial state we see that only the amplitude of

the solution vector has changed. In the space spanned by |α〉 and |β〉 this is equal to a reflection of

the initial state about the |α〉 axis as we see below.

Similarly the remaining steps of the Grover operator which we have denoted as 2 |ψ〉 〈ψ|− I also
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Figure 2.8: Visualization of oracle’s action. We start at the state |ψ〉 and after the appliance of the
oracle the state |ψ〉 has been reflected by the axis |α〉.

performs a reflection. To see this let’s apply this operator on a general state
∑
k αk |k〉. We have

(2 |ψ〉 〈ψ| − I)
∑
k

αk |k〉 =
∑
k

(
2

N

∑
k

|k〉 〈k| − I)αk |k〉 =
∑
k

2αk
N

∑
k

|k〉 − αk |k〉 =

=
∑
k

(2
∑
k

αk
N
− αk) |k〉 ⇔

(2 |ψ〉 〈ψ| − I)
∑
k

αk |k〉 =
∑
k

(2 〈α〉 − αk) |k〉

where we used that |ψ〉 〈ψ| = 1
N

∑
k |k〉 〈k| since |ψ〉 is the equal superposition of all k possible

states and 〈α〉 ≡
∑
k
αk
N is the mean value of the amplitudes of the k possible states. With this in

mind we can see that the state after the action of 2 |ψ〉 〈ψ| − I will be in the same space spanned

by |α〉 and |β〉 but each amplitude is inverted around the state |ψ〉.

It is important to note that the result of two reflections is a rotation which tells us that if we

apply the Grover operator k times the resulting state will still be in the space spanned by |α〉 and

|β〉.
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Figure 2.9: Grover operator’s action. After the appliance of the oracle we are at the state O |ψ〉.
Then we apply the Grover operator G and we reflect the state O |ψ〉 by the state |ψ〉. This is the
key feature of the algorithm because we achieved to raise the probability of the marked element.

So if we assume that cos θ2 =
√

N−M
N and sin θ

2 =
√

M
N then

|ψ〉 = cos
θ

2
|α〉+ sin

θ

2
|β〉

Below we see the action of the Grover operator in the angle dependent state |ψ〉

As we can see above the resulting state will have an angle of θ
2 + θ = 3θ

2 . So after one appliance

of the Grover operator we will have the state

G |ψ〉 = cos
3θ

2
|α〉+ sin

3θ

2
|β〉

which can be generalized for k applications of G.

Gk |ψ〉 = cos
(2k + 1

2
θ
)
|α〉+ sin

(2k + 1

2
θ
)
|β〉 (**)

The goal now is to rotate the state |ψ〉 near the state |β〉. We want to find the minimum
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number that we are going to use the Grover operator in order to find the correct solution with high

probability. We know that

sin
θ

2
≤ θ

2
∀θ ∈ R+

We will use the fact that sin θ
2 =
√

M
N , so

θ

2
≥
√
M

N
⇔ θ ≥ 2

√
M

N

The above gives us a lower bound for the angle θ. We can also obtain the maximum probability

of error from the lower bound of θ.

Pr(error) = sin2

√
M

N

To obtain a lower bound for k which is the number of Grover iterations that we need, we must

see that in the ideal case we want the amplitude of |b〉 in the (**) equation to be equal to 1. So

kθ =
π

2
→ sin kθ = 1 and cos kθ = 0

kθ =
π

2
⇔ k =

π

2θ

Now we can see that θ is on the denominator so by using the lower bound of θ we obtain an

upper bound for k.

k =
π

4

√
N

M

and therefore we can say that for a database that uses N elements and we are searching for M

solutions we need to use the Grover operator O(
√

N
M ) times. This gives us a quadratic speedup over

the classical computer which runs in O(NM ). We can see that as kθ gets close to π
2 the probability

of success goes to 1 because Pr(success) = sin2 kθ .
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Chapter 3

Quantum optimization

In this section we will see how we can apply quantum algorithms to solve optimization problems.

In general we have two types of quantum algorithms that are used today, the gate model algorithms

and the non gate model algorithms or quantum annealers. The first runs on a quantum computer

that consists of universal type gates like the Pauli matrices and is problem independent. That

means that you can use the same algorithm to solve many combinatorial problems. The latter is

based on the adiabatic theorem of quantum mechanics and its goal is to find a minimum energy

state of a given Hamiltonian which corresponds to the minimum value of some cost function. The

problem in this type of algorithms is that they are problem dependent. This dependance comes in

the quantum hardware of the annealers. On top of that, the time of their execution needs to be

long enough in order to find the optimal solution.

Optimization problems are the problems where we want to find the absolute best solution from a

set of feasible solutions. Such problems arise in many research fields, for example in mathematics an

optimization problem is to find the maximum area between two integrals, in finance an optimization

problem is to maximize the income of a company while keeping the risk of firing personnel at the

minimum, in physics an optimization problem is to maximize the volume of a box while knowing

its dimensions but we have limited material to create it, in chemistry an optimization problem is

to find the minimum energy state of a molecule.
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Such problems are generally time consuming and in many cases they cannot be solved in poly-

nomial time. For that reason approximation algorithms are introduced. These algorithms goal is

to find approximations of the best solution rather than the best solution itself and it is proved that

in many cases the time complexity that they use is reduced.

Optimization problems can be divided in two categories with respect to the variables that we

use, if we use continuous variables then the optimization problem is called continuous and if we use

discrete variables then the optimization problem is called discrete(Dimitri Bertsekas [5]). In the

next section we will see a category of discrete optimization problems.

3.1 Quadratic unconstrained binary optimization

Quadratic Unconstrained Binary Optimization (QUBO) is a combinatorial optimization problem

with a wide range of applications from finance to machine learning. Problems like Partition prob-

lems, Graph coloring problems, Task Allocation Problems have been translated to QUBO problems.

Let f : Bn → R where B = {0, 1} be a quadratic polynomial over binary variables. We have

fQ(x) =

n∑
i=1

i∑
j=1

qijxixj +

n∑
i=1

hixi (m.1)

with xi ∈ B , quadratic coefficients qij ∈ R for 1 ≤ j ≤ i ≤ n and linear coefficients hi ∈ R of the

binary variables. The QUBO problem consists of finding a binary vector x? that is minimal w.r.t.

f among all other binary vectors. That is

x? = min
x∈Bn

f(x)

We can also use the matrix formulation for the QUBO problem which is

fQ(x) = xTQx

where Q ∈ Rn×n is the symmetric n× n matrix containing the coefficients qij .
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To better understand this formulation let’s solve an example. Suppose you have the optimization

problem

Minimize y = −2x1 − 3x2 + 8x3 + 4x4 + 4x1x2 + 5x1x3 + 6x2x3 + 10x3x4

where the variables xi are binary. We see that function y is a quadratic function with binary

variables. That is we have some linear terms −2x1 − 3x2 + 8x3 + 4x4 and some quadratic terms

4x1x2 + 5x1x3 + 6x2x3 + 10x3x4.

A very useful property of binary variables is that xi = x2
i , so we can write the linear terms

as −2x2
1 − 3x2

2 + 8x2
3 + 4x2

4. We did that in order to obtain the matrix formulation of the QUBO

problem

Minimize y =

(
x1 x2 x3 x4

)


−2 2 2.5 0

2 −3 3 0

2.5 0 8 5

0 3 5 4





x1

x2

x3

x4


= xTQx

The solution of the above problem is : y = −3 for x1 = x3 = x4 = 0 and x2 = 1.

In general, QUBO problems represents NP-hard problems (Fred Glover et al. [6]). These

problems are hard to optimize due to the fact that the quadratic function might have several local

minima. This model of optimization is of great significance to the quantum computing world. That

is because it has a close connection to the Ising model as we will see in the next section.

3.2 The Ising model and QUBO

Quantum computers that we have today require a bit of understanding of the underlying physics.

For that reason in this section we will describe a classical model of statistical mechanics called the

Classical Ising Model also used to solve QUBO problems. It is a physical model that allows us to

have a lattice of spins where the neighboring pairs of spins can interact with each other. Also it
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makes use of a magnetic field that allows us to control these spins.

Each spin can be though of as a magnet. If a spin has the north pole facing up we represent it

with a variable σi = 1 and if it has the south pole facing up we represent it with σi = −1.

Suppose we have three magnets as shown in the figure below.

Figure 3.1: Three interacting magnets in the configuration of the Classical Ising Model

To represent the total energy or Hamiltonian of this system we write

H = σ1σ2 + σ2σ3 + h1σ1 + h2σ2 + h3σ3 ⇔

H =
∑
(i,j)

Jijσiσj +
∑
i

hiσi (r.1)

where Jij represents the coupling strength between spin i and j , and hi represents the external

magnetic field on spin i (see (figure)) .

In many problems that occurs in physics and in other sciences, one is interested in finding the

minimum energy of a given physical system. As in the QUBO problems, the energy configuration

might have local optima that will make the task of finding the true minimum energy difficult.
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(a) Energy configuration of a Classi-
cal Ising Model. Here we see that
there exists a local minimum that
might destroy the optimization of the
energy function.

(b) Configuration of the 2D Ising
model on a square lattice. The arrows
represent spin up (red) and spin down
(blue). Picture originally created by
Sascha Wald

In the statistical model we described above we have not used any quantum mechanics. Since we

are interested in solving problems on a quantum computer and utilize the possibilities for quantum

tunneling and quantum speed ups let’s see in the next section how we can transform the Classical

Ising Model into it’s quantum counterpart. The quantum version of the Ising Model can be obtained

with only one single change in the Ising Hamiltonian H. First, since we are talking in the quantum

mechanics world, everything that we use is described by operators. Eventually this operator that

we will call quantum Ising Hamiltonian, will act on some state.

The key here is to note that the variables that we have in the classical Ising Hamiltonian are the

spins σi = ±1 . These variables have the same values as the eigenvalues of the Z operator. Let’s

remember the action of the Z operator on the basis states from (Chapter 2)

σz |0〉 = |0〉 , σz |1〉 = − |1〉

With the above action we can get the values of σi as probability amplitudes in the states where

our Hamiltonian operator will act. So the quantum version of the H from equation (r.1) is the same

with the only difference being that we have σzi operators instead of σi integers. With that being

said, we have
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HQ = H =
∑
(i,j)

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i (r.2)

as the quantum version of the Ising Hamiltonian.

Let’s rewrite the QUBO model and the quantum version of the Ising model in order to compare

them

QUBO fQ(x) =

n∑
i=1

i∑
j=1

qijxixj +

n∑
i=1

hixi

Quantum Ising Hamiltonian HQ = H =
∑
(i,j)

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

The above equations are very similar, but the first obeys laws from the classical world while the

second obeys laws of the quantum world. Thankfully, there exists a mapping between these two

functions that requires only two steps. In the first step we map the the binary variables xi ∈ {0, 1}

to spins/magnets si ∈ {−1, 1} using the below transformation

xi =
si + 1

2

In the second step, one must replace these spins variables with pauli Z operators. By doing so

we have translated our original QUBO problem to a quantum Hamiltonian. Now we can use the

quantum computer to find the lowest energy state of the quantum Hamiltonian and therefore solve

the QUBO problem!

3.3 Adiabatic quantum and quantum annealers

As its name suggests, Adiabatic Quantum Optimization (AQO) is based on the Adiabatic Theorem

of Quantum Mechanics.

Adiabatic Theorem of Quantum Mechanics 1 A physical system remains in its instantaneous
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eigenstate if a given pertubation is acting on it slowly enough and if there is a gap between the eigen-

value and the rest of the Hamiltonian’s spectrum Max Born and Vladimir Folk 1928

This theorem tells us that if we apply some external conditions to our quantum system that

change slow in time,then it will adapt its form. To understand this theorem let’s see an example.

Suppose we have a Hamiltonian HP whose ground state encodes the solution to our optimization

problem and an initial Hamiltonian H0 whose ground state is easy to prepare. In many problems

H0 =
∑n
i=1 σ

i
x which tell us that we apply an X gate to each of our n qubits . If we prepare a

quantum system to be in the ground state of H0 and then evolve our system using a time dependent

Hamiltonian

H(t) = (1− t

T
)H0 +

t

T
HP

then our system will remain to its ground state at all times, which means that for t = T our system

will be in the ground state of Hp which is our solution. We chose the particular time dependent

Hamiltonian because H(0) = H0 and H(T ) = HP . Following these adiabatic theorem we must be

very careful in how we evolve our system. That is that the time T that we will use scales with

O(g−2
min) where gmin is the minimum energy gap between the ground state and the next excited

state of H(t). For that reason, if gmin is very small then the time T will be very large and the

whole process will be computationally difficult. Despite this, AQO has inspired quantum computing

techniques such as the Quantum Annealing and has a close relation to the Quantum Approximate

Optimization Algorithm (QAOA) which we will use later.

Quantum Annealing (QA) identifies the ground state of the time dependent Hamiltonian H(t)

that we had above. Although it fails to meet some of the conditions of the Adiabatic Theorem.

This is useful because it relaxes the control of our quantum system e.g. the preparation of a pure

quantum state that evolves under strictly adiabatic dynamics. However this relaxation allows our

quantum state to mix with nearby energy eigenstates giving us a probabilistic model. For this

reason after the QA has finished one needs to sample the observed outcome from a distribution of

the energy eigenstates which will give us the correct solution with some probability.
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In this day D-Wave has built quantum annealers that solves optimization problems by trans-

ferring the original optimization problem to a hardware connected graph (CHIMERA for example)

that allows nearest neighbor interactions of qubits.

Figure 3.3: Cost-energy configuration. Using thermal jumps physical systems must go above the
barrier while quantum tunneling can go through the barrier

Figure 3.4: Enegy and probability distribution while running a quantum annealer, from the DWave
manual handbook

In the figure (above) we see how the energy and probability distribution changes while running

a quantum annealer. We see that for t = 0 the energy as well as the probability are equally

distributed. For 0 ≤ t ≤ T we see that the energy distribution starts to show some minimums while

the probability for those minimums is bigger than the other values of the energy. Finally for t = T

we see that energy has exactly one minimum value for which the probability is the biggest.
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3.4 Variational quantum algorithms

We will now tackle the optimization problems using a hybrid quantum-classical model of compu-

tation. This model uses the quantum computer to obtain a parametrized wavefunction and then

uses the classical computer to maximize/minimize the expected value of the problem Hamiltonian.

It was suggested to circumvent the issue of going slow in the quantum annealers as well as imple-

menting the Hamiltonian of the problem at hand in the available hardware. In general we create

a parametrized quantum circuit which depends on some angle θ and then the classical computer

varies this θ with the purpose of maximizing/minimizing E(θ) =
〈
ψ(θ)

∣∣H ∣∣ψ(θ)
〉
. Furthermore, we

will analyze and compare the performance of two quantum variational algorithms for the MAXCUT

problem, the Quantum Approximate Optimization Algorithm, Fahri et al. [7] and the Variational

Quantum Eigensolver, Dı́ez-Valle et al. [8] . The latter does not even require implementing the

specific Hamiltonian but uses a more generic hardware and thus is also called hardware efficient,

albeit it can be harder to optimize.

3.5 Solving MAXCUT with quantum computers

Figure 3.5: MAXCUT solution on 5 node graph

We are given an undirected graph G = (V,E) where V is the set of nodes in the graph and E is

the set of edges. We know that |V | is the number of nodes and |E| is the number of edges in the

graph. The MAXCUT problem states as follows :

We want to split the set of nodes into two mutually exclusive sets while maximizing the edges

that begin from one set and end to the other set.
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As we can see in the figure above by splitting the nodes in the red and blue set we have achieved

the maximum cut of 5 edges. The cost function to be maximized in this case is

C(x) =
∑
i,j∈E

xi + xj − 2xixj

where xi ∈ {0, 1}. We can see that if xi + xj − 2xixj = 1, then xi and xj belongs in different sets

and if xi +xj − 2xixj = 0, then xi and xj are both equal to 1 or 0 meaning that they belong to the

same set. For this derivation we will use the two steps that we show at section (The Ising Model

and QUBO).

We start by setting xi = si+1
2 we get

C(s) =
∑
i,j∈E

s1 + 1

2
+
sj + 1

2
− 2

si + 1

2

sj + 1

2
⇔

C(s) =
1

2

∑
i,j∈E

si + 1 + sj + 1− sisj − si − sj − 1⇔

C(s) =
1

2

∑
i,j∈E

1− sisj

Now we replace the spin variables with pauli Z operators and obtain the quantum Ising Hamil-

tonian

C =
1

2

∑
(i,j)∈E

1− σzi σzj (v1)

3.6 Quantum approximate optimization algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm that

solves optimization problems. Hybrid quantum algorithms consists of a parametrized quantum

circuit that depends on some variational parameters. They are called hybrids because they work

alongside a classical computer whose purpose is to optimize the output of the quantum circuit with

respect to the problem that we are trying to solve. In general, optimization problems require a lot
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of steps in any algorithmic approach and therefore it are not easy for classical computers to solve

them. For this reason approximation algorithms came to light, where their goal is to approximate

the best solution rather than absolutely calculating the best solution. Solving the MAXCUT with

QAOA will give the reader a good first understanding of the algorithm.

This algorithm is based on two unitaries U(C, γ), U(B, β) and an integer p ≥ 1. The two

unitaries corresponds to some rotations on our qubits while the integer p denotes the depth of our

circuit.

We define the operator C to be the quantum Ising Hamiltonian eq. (v1) for the MAXCUT

problem

C =
1

2

∑
(i,j)∈E

1− σzi σzj

We define the first unitary operator that depends on an angle γ as

U(C, γ) = e−iγC =
∏

(i,j)∈E

e−iγC(i,j)

where γ lies between 0 and 2π.

We define the operator B which is the sum of single bit σx operators as

B =

n∑
j=1

σxj

where σxj denotes the Pauli X gate acting on the j-th qubit.

Now we define the second unitary operator that depends on an angle β

U(B, β) = e−iβB = e−iβ
∑n
j=1 σ

x
j =

n∏
j=1

e−iβσ
x
j

where β lies between 0 and π. This is true because

e−iβσ
x
j = cos(β)I− i sin(β)σxj
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and if we replace the angle β with β + π we have

cos(β + π)I− i sin(β + π)σxj = −(cos(β)I− i sin(β)σxj )

which is the same as rotating qubit j around the x axis with an angle β, since the minus sign

upfront is a global phase and thus does not affect overall state.

Figure 3.6: Variational loop of QAOA. For every p, we add an extra blue layer. We see that
after computing the expectation value of C, we pass it as input to a classical optimizer that mini-
mize/maximize it by running the quantum circuit and produces the best angles ~γ, ~β.

The starting state of the algorithm, as seen above, is the uniform superposition over 2n different

bit strings |s〉 = 1√
2n

∑
z |z〉.

The output of the algorithm is the state

∣∣∣ψ(~γ, ~β)
〉

= U(B, βp)U(C, γp) . . . U(B, β1)U(C, γ1) |s〉

which depends solely on the angles ~γ = (γ1, γ2, . . . , γp), ~β = (β1, β2, . . . , βp) .

So for each level p we apply the unitary U(C, γp) followed by the unitary U(B, βp). This means

that we have a total of 2p angles of the algorithm. We will also define the expectation value of the

cost Hamiltonian C as
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Fp(~γ, ~β) =
〈
ψ(~γ, ~β)

∣∣∣C ∣∣∣ψ(~γ, ~β)
〉

and let Mp be the maximum of Fp over the angles

Mp = max
~γ,~β

Fp(~γ, ~β)

Now let’s examine the two operators U(C, γ) and U(B, β), and see how we can construct them

using quantum gates. First we apply U(C, γ), for p = 1 , on an arbitrary quantum state

U(C, γ) |0 . . . 00〉 = e−iγ1C |0 . . . 00〉 = e−iγ1
1
2

∑
i,j∈E(1−σzi σ

z
j ) |0 . . . 00〉 ⇔

U(C, γ) |0 . . . 00〉 =
∏
i,j∈E

e−iγ1
1
2 (1−σzi σ

z
j ) |0 . . . 00〉 (x.1)

A very important theorem of the linear algebra states that

eA |u〉 = eλ |u〉 , iff A |u〉 = λ |u〉 (x.2)

If we look at a single term of the product at (x.1) we have

e−iγ1
1
2 (1−σzi σ

z
j ) |0 . . . 00〉 =

= e−iγ1
1
2 eiγ1

1
2σ

z
i σ
z
j |0 . . . 00〉 (x.3)

In general we have 4 different possibilities for that term and by using equation (x.2) we get

eiγ1
1
2σ

z
i σ
z
j |00〉 = eiγ1

1
2 1∗1 |00〉 = eiγ1

1
2 |00〉

eiγ1
1
2σ

z
i σ
z
j |01〉 = eiγ1

1
2 1∗(−1) |01〉 = e−iγ1

1
2 |01〉

eiγ1
1
2σ

z
i σ
z
j |10〉 = eiγ1

1
2 (−1)∗1 |10〉 = e−iγ1

1
2 |10〉
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eiγ1
1
2σ

z
i σ
z
j |11〉 = eiγ1

1
2 (−1)∗(−1) |11〉 = eiγ1

1
2 |11〉

So we can see that if bits i and j are the same then the coefficient of (x.3) becomes

e−iγ1
1
2 eiγ1

1
2 = 1

and if bits i and j are different then we have

e−iγ1
1
2 e−iγ1

1
2 = e−iγ1

Remember that the MAXCUT problem wants to split the nodes into two sets while maximizing

the edges from one set to another. So if bits i and j are in the different set and there exists an

edge between them, rotate the output state around the z axis by an angle of 2γ1. Note that the

angle we rotate is 2γ1 because the Bloch sphere requires a half angle representation, remember that

RZ(θ) = e−i
θ
2σ

z

and therefore to rotate around z with an angle γ1 we must give 2γ1 as input to

RZ .

(Below) we see the quantum circuit for U(C, γ) (left) and for U(B, β) (right).
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Figure 3.7: Left:Quantum circuit for one term of the operator U(C, π8 ), the blue gate represents
the CNOT gate. Right: Quantum circuit for the operator U(B, 0.9).

In order to prove that this is the circuit in the figure, we start solving from left to right and

apply the gate to an arbitrary state |x, y〉. So we have

CNOT |x, y〉 = |x, x⊕ y〉

(I⊗RZ) |x, x⊕ y〉 = e−i(−1)x⊗y |x, x⊗ y〉

CNOTe−i(−1)x⊕y |x, x⊗ y〉 = e−i(−1)x⊗y |x, y〉

So we see that the quantum circuit (above) indeed produces a single term of the operator

U(C, γ1).

For the operator U(B, β1) = e−iβ1B =
∏n
j=1 e

−iβ1σ
x
j , we see that it is a rotation of all the n

qubits with an angle 2β around the x axis. So in terms of quantum gates we just use a RX(2β)
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from section (Two qubit gates).

Figure 3.8: Variational loop of QAOA. For every p, we add an extra blue layer. We see that
after computing the expectation value of C, we pass it as input to a classical optimizer that mini-
mize/maximize it by running the quantum circuit and produces the best angles ~γ, ~β.

Let’s go one step back and remember that QAOA is a variational algorithm. That means that

a classical computer is cooperating with a quantum computer. We saw before that the output of

the quantum computer is

∣∣∣ψ(~γ, ~β)
〉

= U(B, βp)U(C, γp) . . . U(B, β1)U(C, γ1) |s〉

where |s〉 is the equal superposition of the 2n states.

Now we can view this output state as a distribution of the 2n bitstrings. For example if n = 2

and p = 1 then the output state might be something like

∣∣ψ(γ, β)
〉

= δ0(γ, β) |00〉+ δ1(γ, β) |01〉+ δ2(γ, β) |10〉+ δ3(γ, β) |11〉

where |δi(γ, β)|2 represents the probability of
∣∣ψ(γ, β)

〉
to be in one of the 22 states and it

depends solely on γ, β. Remember from section (what is a qubit?) that the sum of the probabilities
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of the quantum state must be equal to one, i.e.

|δ0(γ, β)|2 + |δ1(γ, β)|2 + |δ2(γ, β)|2 + |δ3(γ, β)|2 = 1

Since this quantum state is measurable, we see that it takes values from {00, 01, 10, 11} with

some probability and these probabilities sum to one so we have the right to define the probability

mass function of the quantum state. For example this (pmf) might look something like

Figure 3.9: The probability mass function of a quantum state ψ consisting of 2 qubits. We have
that Pr(|ψ〉 = 00) = 0.1,Pr(|ψ〉 = 01) = Pr(|ψ〉 = 10) = Pr(|ψ〉 = 11) = 0.3

In general we view the output of this algorithm as a distribution over all possible 2n bit-strings.

From this distribution our goal is to approximate the expected value of the cost function.

We can do that if we see that

Fp(~γ, ~β) =
〈
ψ(~γ, ~β)

∣∣∣C ∣∣∣ψ(~γ, ~β)
〉

=
〈
ψ(~γ, ~β)

∣∣∣ ∑
x∈{0,1}n

C(x) |x〉
〈
x
∣∣∣ψ(~γ, ~β)

〉
=

∑
x∈{0,1}n

C(x)
〈
ψ(~γ, ~β)

∣∣∣x〉〈x∣∣∣ψ(~γ, ~β)
〉
⇔

Fp(~γ, ~β) =
∑

x∈{0,1}n
C(x)|

〈
x
∣∣∣ψ(~γ, ~β)

〉
|2 (y.1)

where we have used the fact that C is diagonal in the computational basis and therefore we can
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write it as

C =
∑

x∈{0,1}

C(x) |x〉 〈x|

The above is an interesting property of diagonal matrices like C. So we saw how we can

approximate the expected value of the cost function using a quantum computer. Note here that

the sum in (y.1) runs in O(2n) so for n > 15 the above method of approximation of the expected

value of the cost function is not very efficient.

Last but not least, we will define the approximation ratio α which is a metric of how good our

approximation is to the actual best value of the cost function. In the context of MAXCUT the

approximation ratio is defines as

α =
Fp(~γ, ~β)

Cmax

3.6.1 Using QAOA to solve the MAXCUT problem

With that being said we can now solve the MAXCUT for different graphs. We will start by solving

the MAXCUT problem on a 5-node fully connected graph.

After constructing the graph, we must create the quantum circuit for QAOA. We start for p = 1,

so we need the gates for U(C, γ) for each edge and then a RX(β) for each node/qubit. We can see

the quantum circuit below
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(a) 5 node fully connected graph

(b) Quantum circuit for QAOA. In the red boxes we see operators U(C, γ) for each edge from node 0 to
1, 4, 3, 2 respectively. The rotations around x can be seen for every qubit as the last gate. At the end we
measure all the qubits in order to compute the weighted average.

Keep in mind that this circuit is being executed a lot of times because we want to optimize the

expected value of the MAXCUT cost Hamiltonian F1(γ, β) over the angles γ, β. For this example

I chose the COBYLA (Constrained Optimization By Linear Approximation) optimizer.

For this (graph) we have Cmax = 6. We can see that if we split the nodes in two sets, where

the one set will contain 3 nodes and the other set it will contain 2 nodes. With this in mind all the

possible bit strings that are solutions to our problem are the ones with three ’1’ and two ’0’ bits
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and vice versa. We visualize the solution (below)

Figure 3.11: Solution for the MAXCUT in a 5 node fully connected graph. Bit string solution is
’010101’ with cost function value Cmax = 6

The results from QAOA can be seen below. In figure (3.12) we have the results from the

COBYLA optimizer for p = 1. First we see that M1(γ, β) = 5.920 and the best angles to be

γ = 1.793 and β = 2.875. We see that the optimizer ran the quantum circuit 32 times until it

converges to a solution. Note that optimizers in python solve only minimization problems, so we

told it to minimize the negative of the cost function which is the same as maximizing it.

In figure (3.13) we see the histogram of all the possible solutions to the problem. Since we

have multiple solutions to our problem we see that QAOA produces them with relatively high

probability. In order to produce this histogram we chose the best angles from the optimizer from

(3.12) and then we ran the quantum circuit again. This time the estimated energy was a little

higher F1(γ = 1.793, β = 2.875) = 5.949 and we got the approximation ratio α = 5.949
6 = 0.9915.
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Figure 3.12: COBYLA statistics. We see here that after 32 cost function evaluations, we got
M1(γ, β) = 5.920. The -5.91 we see at the minimizer’s results exists because we are solving the
MAXCUT problem which is a maximization and python only has minimizer functions.
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Figure 3.13: Histogram. We see here that the probabilities of the solutions to the MAXCUT
problem for the 5 node graph almost sum up to 1.

Another interesting graph we plotted is the (distribution) of the cost function. For this we

took 1024 measurements from the optimized quantum circuit and we found that 1016 out of 1024

measurements corresponded to the best solution. We can see the figure below

Figure 3.14: Distribution of the cost function. We see that almost all measurements that was made
in the output distribution (after optimizing the circuit) produce the best cut.
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To make things a little more interesting we ran the same problem in a real quantum computer,

although I was not able to see or touch the quantum computer itself. This 5 qubit quantum

computer is provided from IBM and we can assign it a quantum circuit to run directly from the

cloud without any charge. The interesting fact here is that in a real quantum computer noise exists.

With this in mind the approximation ratio dropped as well as the estimated cost function. Below

we see the results

Figure 3.15: Histogram, due to the noise we see that amplitudes of bitstring that in the noisless
simulation were 0, now they have probability to be sampled.

In the figure above we see that sampling from quantum computer becomes more difficult when

noise is present. The approximation ratio dropped from 0.99 (noiseless simulator) to 0.83 (real

quantum computer) and the estimated energy dropped from 5.949 to 4.984. With these results we

can see that quantum computers are still young and have a lot of potential to grow.
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Figure 3.16: COBYLA statistics. The presence of noise can be seen in the optimization of the
variational circuit.

We will now test the algorithm in a 17 fully connected graph. The simulations we ran here are

all noiseless since the only quantum computer that we have access consists of 5 qubits.

We start by showing the graph that we are working with which have the max cost function value

of Cmax = 72.

55



Figure 3.17: Fully connected graph with 17 nodes.

Here we will plot the approximation ratio vs the depth of the quantum circuit p. Results are

shown (below) for 1 ≤ p ≤ 5

Figure 3.18: Approximation ratio vs p. We see that as p grows the approximation ratio improves.

In the figure (above) we see that as p grows the approximation ratio gets closer to 1. This

experimental result corresponds to the theoretical results that states
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lim
p→∞

Mp = max
z
C(z)

where Mp =
〈
~γ, ~β

∣∣∣C ∣∣∣~γ, ~β〉 ((Appendix)).

In general we see that in the absence of noise, QAOA produces an approximation ratio of over

0.9 for p = 1 and it only gets better. Although in order to really experiment with this algorithm,

noise must be present in all the experiments because noise exists in the quantum hardware that this

algorithm is supposed to run. As a final experiment we tested the approximation ratio of QAOA

on fully connected graphs of different size. In particular we tested graphs with number of nodes q

= number of qubits with 6 ≤ q ≤ 17. Below we see the results

Figure 3.19: Approximation ratio vs number of qubits, for different graphs.

Overall, QAOA is a probabilistic algorithm in nature. This means that it produces a distribution

of the cost function that relies on the depth of the quantum circuit p as well as the angles ~γ, ~β.

MAXCUT is a combinatorial optimization problem that has been studied for many many years.

In general there exists classical algorithms that outperforms QAOA like the Michel X. Goemans

and David P. Williamson approximation algorithm [9]. The MAXCUT problem is also used in the
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original QAOA paper (Fahri et al. [7]) to study the performance of QAOA due to the relative ease

of the problem and the well defined cost function. For me personally MAXCUT was a good first

introduction to QAOA.

3.7 Variational quantum eigensolver

The Variational Quantum Eigensolver (VQE) is a hybrid quantum classical algorithm. It’s goal is

to approximate the minimum eigenvalue λmin and corresponding eigenvector |ψmin〉 of a problem

Hamiltonian. This has many applications from chemistry to finance. In general we can encode an

optimization problem (QUBO) to a Hermitian matrix i.e. the Hamiltonian and use this algorithm

to find λmin which corresponds to the minimum solution of our problem.

VQE provides an estimate λ~θ that bounds λmin as

λmin ≤ λ~θ ≡
〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

In the same fashion as QAOA, VQE also uses a parametrized quantum circuit controlled by the

parameter vector ~θ.

Figure 3.20: Variational loop of VQE. Here we see the quantum part of the algorithm (state
preparation + expectation estimation) that cooperates with the classical part (optimizer).
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Before explaining the quantum circuit let’s understand how this algorithm works.

We represent the quantum circuit as an operator U(~θ). We apply this operator to a starting

state |ψ〉 which in the most cases is the all 0 state i.e |ψ〉 = |00 . . . 0〉. The action of the quantum

circuit upon this state is represented by the equation

U(~θ) |ψ〉 =
∣∣∣ψ(~θ)

〉
We then use a classical optimizer to optimize

∣∣∣ψ(~θ
〉

) such that

〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉
≈ λmin

where H is the Hamiltonian encoding our optimization problem.

The quantum circuit for VQE is hardware efficient for the NISQ era. What this means is that

it uses gates that exists in quantum processors in this era. These gates are rotations around the y

axis and controlled Z operations. (Below) we see the quantum circuit

Figure 3.21: Quantum circuit for VQE with 5 qubits and 2 layers. Uent is composed of controlled
Z gates between bearest neighbors qubits. Note that at the very start we apply an RY gate to all
the qubits. Using this structure we have 15 variables to optimize (angles of RY gates).

By using this configuration of gates for the VQE we are using linear entanglement [8]. Here

we use the term linear entanglement because each Controlled Z gate is applied between nearest

neighbors qubits. So we are using this circuit to create entangling states. The circuit responsible
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for this is shown in the figure (above). This circuit’s wavefunction can be written as

U~θ =

L∏
l=1

[ N∏
n=1

eiθnlσ
y
nUent

] N∏
n=1

eiθn0σ
y
n

where Uent is the entangling unitary, N is the number of qubits that we have and L is the number

of layers. In total we have N(L+ 1) variables to optimize. The linear entangling gate Uent can be

written as

Uent =

N∏
i=1

ei
π
4 (I−σzi )(I−σzi+1)

where σzi is the Pauli Z gate acting on qubit i. We initialize θn0 = π
4 in order to get the uniform

superposition over all qubits. We also put an angle of θn0 = π
4 in the entangling gate because of

the double angle representation. So for example, if we have one layer, when the above terms gets

multiplied then qubit i will get rotated for
2π4
2 = π

4 and we will get the equal superposition of the

qubits.

3.8 Comparison of QAOA and VQE

In this section we compare the performance of QAOA and VQE for the MAXCUT problem. First

we extract the theoretical complexities for both algorithms, with respect to the number of gates

and the number of variables they use. Then we run the algorithms for different complete graphs so

that we can see the relation between the approximation ratio and the number of nodes or qubits.

At last we plot the number of cost function evaluations (circuit runs) in the different MAXCUT

problems that we solved. Since both algorithms are variational, the time complexity that they have

depends heavily on the classical optimization part.

More particular, for complete graphs only, the total number of gates that QAOA uses scales with

O(pn2) while VQE uses O(pn) gates. Although the number of variational parameters for QAOA

is 2p while for VQE it is n(p + 1), where n is the total number of qubits and p is the number of

layers in both algorithms. The number of gates and the number of variational variables for the two
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algorithms can be seen below.

Figure 3.22: Number of gates between QAOA and VQE for p = 1 (one layer of gates)

Figure 3.23: Number of variational variables between QAOA and VQE for 5 qubits. Keep in mind
that the only dependence on the number of qubits comes from VQE.

For example, suppose we want to solve the MAXCUT problem for a 20 qubit fully connected

graph using only one layer of gates. QAOA would need 400 gates with only 2 variational variables.

VQE on the other hand would need 20 gates with 40 variables to be optimized. With these in

mind we can see a tradeoff between number of gates and number of variational parameters in these
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algorithm.

With that being said, below we see the performance of both algorithms in the context of MAX-

CUT. More particular in the (figure) below we see the approximation ratio of the algorithms vs

the number of qubits. Both algorithms were tested for one layer of gates and we found that VQE

produces a better approximation ratio. The biggest difference in the approximation ratios comes

for the 6 node graph and it is of the order of 0.2. In general, QAOA has an average approximation

ratio of 0.943 while VQE has the average of 0.99977. So we can see that in average VQE performs

better, but the difference is small.

Figure 3.24: Approximation ratio vs number of qubits, for p = 1. Although both algorithms perform
with an approximation ratio almost over 0.9, VQE has better accuracy.

(Below) lies the essence of this section. We see the cost function/quantum circuit evaluations

for both algorithms. These evaluations affect the time complexity for both algorithms. QAOA has

an average of 30.88 evaluations while VQE has an average of 434.33. Keep in mind that for these

experiments we set the maximum evaluations of the classical optimizer at 500. So we see that after

6 qubits VQE always reaches the maximum evaluations.
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Figure 3.25: Cost function evaluations vs number of qubits, for p = 1. Maximum number of
evaluation was set to 500. Even for the 5-node complete graph, VQE requires 198 cost function
evaluations while QAOA needs only 32.

Both algorithms promise great things to the combinatorial optimization theory. Researchers like

Ioannis Kolotouros and Petros Wallden [10] have showed that by changing the conventional cost

function to a cost function that comes from the Conditional Value at Risk (CVaR), better results

can be achieved both in performance and time complexity. Also research is being conducted in how

we can reduce the number of two qubit gates in QAOA (Li Li et al. [11]) or how we can use an

encoding scheme to reduce the n number of qubits to log2 n + 1 qubits (Benjamin Tan Angelakis

Dimitris et al. [12]). The latter work allows for industrial level problems to be tackled with near

term quantum processors.
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Chapter 4

Applications of quantum

optimization algorithms in real

world scenarios: the tail

assignment problem

4.1 Tail assignment problem

In this chapter we will focus on applying QAOA in optimization problems that exists in the com-

munity, one such problem is the Tail Assignment Problem (TAP). This problem comes from the

airplane industries and it is the task of assigning individual air crafts to a given set of flights mini-

mizing the overall cost. Because the problem here is very generic and generic optimization problems

have many constraints we will focus on the decision version of the problem.

Decision optimization problems can be answered with a yes or no, so we produce an answer to

the problem and we ask, is this a good answer? if the answer is good we accept it otherwise we
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don’t. In general we are interested in QUBO problems so we are looking to reduce bigger problems

to QUBO problems. That is exactly what we are going to do with the TAP. The decision version

of the TAP problem is called the Exact Cover Problem which is NP complete (Richard M. Karp

[13]) .

The Exact Cover Problem is stated as follows : Consider a set U = {1, . . . , n} and subsets

Vi ⊆ U(i = 1, . . . ,m) such that U = ∪iVi. The question we ask is : Is there a subset called R that

contains sets Vi, such that the elements of R are disjoint sets and the union of elements of R is U?

In this day there exists a classical algorithm called algorithm X that solves this problem in O(mn)

(proposed by Donald Kuth [14]).

First let’s state the problem that we are going to solve. This problem includes 80 flights which

we declare in a set

F = {0, 1, . . . , 79}

How we are going to name these flights have no meaning to the problem itself. We will also

define 8 routes in the set

R = {0, 1 . . . , 7}

Each route 0, 1, 2, . . . contains a random number of flights from F. The strict definition of a

route is a continuation of individual flights. The question we ask here is : In what way we split

the elements of R such that we create a new set Y whose elements are disjoint and their union is

F? By answering the previous question we solve the Exact Cover Problem and then we assign each

element of Y to a different aircraft and solve the TAP. In particular we assign binary variables to

the elements of Y (1 if we include the route in Y and 0 otherwise). We do that in order to have a

bit string that represent the solution to our problem i.e. bit string ’00001111’ means that we assign

routes 0, 1, 2, 3 to 4 different air crafts and we have covered all the flights.

The problem that we will solve is shown in the (table) below

65



Routes Flights

0 0,1,...,19
1 20,21,...,39
2 40,41,...,59
3 60,61,...,79
4 6,20,40,60
5 4,41,21,61
6 5,22,62
7 2,43,63

Figure 4.1: Table of the flights that exist in each route. The solution to our problem is the bit
string ’00001111’.

I chose this problem because the solution is easy to find i.e. R0 ∪ R1 ∪ R2 ∪ R3 = F and

R0 ∩R1 ∩R2 ∩R3 = ∅.

From this table we can get the problem graph. In the problem graph we represent each route

with a node and edges exists between routes/nodes that share a flight.

Figure 4.2: 8 route, 80 flight graph. Routes are represented with number 0 to 7.

Now it’s time to move to the mathematics behind the problem. First we need to define the cost

function to be minimized (as showed by Pontus Vikst̊al et al. [15]). That is

C(~x) =

|F |∑
f=1

(1−
|R|∑
r=1

αfrxr)
2 (z.1)

Where αfr = 1 iff flight f exists in route r and xr = {0, 1} is the r-th bit of solution vector ~x.
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This cost function has a minimum value of 0. It is easy to check that

C(00001111) = 0

The squared term of the cost function makes the minimum value to be 0. To see that we must

check when the squared term is equal to 0, that is when

|R|∑
r=1

αfrxr = 1

or when each flight exists in only one route. If one flight exists in more that one route then the

cost function rises.

4.2 Minimizing the expected value of the quantum ising

hamiltonian

In order to solve this problem using a quantum computer we must map the cost function (z.1) to

a quantum Ising Hamiltonian that looks like

HC =
∑
i<j

Jijσ
z
i σ

z
j +

n∑
i=1

hiσ
z
i (z.2)

We start with the cost function from (z.1) and we do the mapping as suggested in section (The

ising model and QUBO). That is we first map the binary variables xr ∈ {0, 1} to spins sr ∈ {−1, 1}

with xr = sr+1
2 . So equation (z.1) becomes

C(~s) =

|F |∑
f=1

(1−
|R|∑
r=1

αfr
sr + 1

2
)2

Now we develop the squared term and we have

C(~s) =
1

4

|F |∑
f=1

|R|∑
r=1

|R|∑
r′=1

αfrαfr′ srsr′

67



+
1

2

|F |∑
f=1

|R|∑
r=1

αfrsr

( |R|∑
r′=1

αfr′ − 2
)

+
1

4

|F |∑
f=1

( |R|∑
r=1

αfr − 2
)2

In order to get C(~s) in the form of (z.2) we define

Jrr′ =
1

2

|F |∑
f=1

αfrαfr′ (z.3)

hr =
1

2

|F |∑
f=1

αfr

( |R|∑
r′=1

αfr′ − 2
)

(z.4)

const =
1

4

|F |∑
f=1

( |R|∑
r=1

αfr − 2
)2

(z.5)

where (z.3) represents the interaction terms of the quantum Ising Hamiltonian between routes

r and r′. It gives a penalty to the cost function if routes r and r′ share a flight. Equation (z.4)

represents the linear terms of the quantum Ising Hamiltonian for each route r. This term gives a

penalty to the cost function if a flight belongs to two or more routes and rewards the cost function

if the flight belongs only in one route. Lastly equation (z.5) is the constant term of the quantum

Ising Hamiltonian which we can exclude for the optimization part.

So the cost function that we will use in this problem is the quantum Ising Hamiltonian

HC =
1

2

|R|∑
r=1

|R|∑
r′=1

Jrr′σ
z
rσ
′z
r +

n∑
i=1

hiσ
z
i (z.6)

At this point we have the closed mathematical form of the quantum Ising Hamiltonian which

represents our cost function. So, we have achieved to encode the solution of the Exact Cover

Problem into the quantum Ising Hamiltonian. More particular we will have

HC |xsol〉 = 0 |xsol〉 = 0
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where xsol =′ 00001111′ is the solution to our problem.

The next step is to create the quantum circuit for QAOA. In order to do this we must find the

operator U(HC , γ). We can directly compute this operator if we directly compute the HC matrix.

To compute HC all we need is the interaction term matrix J and the linear term matrix h. We will

start by calculating J from (z.3) for each edge in the problem graph. We have

J =



10 0 0 0 0.5 0.5 0.5 0.5

0 10 0 0 0.5 0.5 0.5 0

0 0 10 0 0.5 0.5 0 0.5

0 0 0 10 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 2 0 0 0

0.5 0.5 0.5 0.5 0 2 0 0

0.5 0.5 0 0.5 0 0 1.5 0

0.5 0 0.5 0.5 0 0 0 1.5


where for example J04 = 0.5 because route 0 and route 4 have 1 flight in common and J00 = 10

because route 0 has 20 elements in total.

We calculate the linear terms matrix from (z.4) and we have

h =

(
−8 −8.5 −8.5 −8 0 0 0 0

)
where h0 = −8 because from the 20 elements of route 0, 4 elements exists in exactly 2 routes

and 16 elements exists in 1 routes so h0 = 1
2 (4 ∗ 0 + 16 ∗ (−1)) = −8.

Now we calculate HC using equation (z.6)

HC = 47 +
1

2
(Z0Z4 + Z0Z5 + Z0Z6 + Z0Z7 + Z1Z4 + Z1Z5 + Z1Z6 + Z2Z4 + Z2Z5 + Z2Z7

+Z3Z4 + Z3Z5 + Z3Z6 + Z3Z7)− 8Z0 − 8.5Z1 − 8.5Z2 − 8Z3 (z.7)
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where we have grouped together terms like 0.5Z0Z4 and 0.5Z4Z0 since the contribution of edge

(0, 4) is the same with (4, 0).

Now we can compute the operator U(HC , γ) = e−iγHC

U(HC , γ) = e−i47γe−i
γ
2Z0Z4e−i

γ
2Z0Z5e−i

γ
2Z0Z6e−i

γ
2Z0Z7e−i

γ
2Z1Z4e−i

γ
2Z1Z5e−i

γ
2Z1Z6

e−i
γ
2Z2Z4e−i

γ
2Z2Z5e−i

γ
2Z2Z7e−i

γ
2Z3Z4e−i

γ
2Z3Z5e−i

γ
2Z3Z6e−i

γ
2Z3Z7ei8γZ0ei8.5γZ1ei8.5γZ2ei8γZ3 (z.8)

Here we can exclude e−i47γ since it is a global phase and thus not measurable. What we have

achieved by writting this product of exponents is that we know a-priori the gates and the coefficients

that we are going to use in our quantum circuit. Operator U(B, β) is still a rotation around the x

axis on all the qubits.
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Figure 4.3: Quantum circuit for the 8 route, 80 flights problem. In contrast with the quantum
circuit used for the MAXCUT problem, here we see the linear coefficients in the red dashed box.

Keep in mind that here we do not measure at the end of the quantum circuit. We did that in

order to get the statevector of the quantum circuit. The statevector is a vector of dimensions 2n×1

that holds the coefficients of each state. For example if we have 2 qubits and the output state is

|ψ〉 = 1
2 |00〉+ 1

2 |01〉+ 1
2 |10〉+ 1

2 |11〉, then the statevector would be

sv =



1
2

1
2

1
2

1
2


From this statevetor we can get the probability of each state if we get the square of each element.
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Before analyzing the results from QAOA,first we see the optimization strategy that we used for

this particular problem.

Figure 4.4: Parallel optimization of the objective function for the TAP at hand.

For this problem we used parallel optimization. In particular we ran the Bashinhopping al-

gorithm from each CPU with a total of 4 CPUs. The Bashinhopping algorithm is a stochastic

algorithm which is designed to find the global minimum. Each CPU gives the algorithm one ran-

dom starting point i.e ~γ, ~β and then the Bashinhopping algorithm runs a local optimizer 40 times.

After each local optimizer have finished it runs the Metropolis criterion in order to accept or reject

the optimized value. As a local optimizer we used the L-BFGS-B. At the end all 4 CPUs have

finished and we choose the minimum value. So in total we are doing 160 local minimizations for

each p. For 1 ≤ p ≤ 3 this algorithm always converged to the global minimum, but for p ≥ 4 the

algorithm did not always converged.
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We start by running QAOA and we minimize the expected value of the quantum Ising Hamil-

tonian. We calculate this expected value using the equation (y.1)

〈HC〉 = Fp(~γ, ~β) =

2n−1∑
x=0

P (x)C(x)

where P (x) is the probability of state |x〉 which we get from the statevector and C(x) is the

cost of state x which we can get from HC .

With this in mind we have the below figure for 1 ≤ p ≤ 7.

Figure 4.5: Results from QAOA for the 8 route 80 flights graph.

In the left figure we have plotted the expected value of HC . The goal here is to get 〈HC〉 = 0.

The smallest value was found at p = 7 with 〈HC〉 = 2.13. In the right figure we have plotted the

success probability. Since we have a single solution to our problem we expect the probability of the

solution to grow as the 〈HC〉 goes to 0. Indeed we see that as 〈HC〉 goes to 0 the probability of

success raises.

Although this probabilities reffer to single shot measurements of the distribution of states after

running QAOA for each p. We can also run QAOA for p=3 and obtain the distribution of possible

solutions with Pr(′00001111′) = 0.515. Now we can measure this distribution m times and still

obtain the correct solution. In particular the probability of having observed the solution at least

once after m measurements is
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1− (1− Pr(′00001111′))m (z.9)

To get this equation we define that each measurement is independent of the others and (1 −

Pr(′00001111′))m is the probability to measure the other states in the m measurements. We want

to have at worst 1− ε probability to measure the correct solution. So

1− (1− Pr(′00001111′))m < 1− ε⇔

(1− Pr(′00001111′))m > ε⇔

log
(

(1− Pr(′00001111′))m
)
> log ε⇔

m >
log ε

log
(
1− Pr(′00001111′)

)
So if we set ε = 0.01 we get the probability to measure the correct solution to be at worst 0.99

after measuring the quantum circuit m = 7 times. Overall we would have to optimize the quantum

circuit for p = 3, then obtain the variational parameters ~γ, ~β, prepare the quantum circuit with the

aforementioned variational parameters and measure 7 times. If we follow this procedure we will

measure the correct solution at least once with probability 0.99.

Overall, if we compare these results with the ones from the MAXCUT problem we see that for

p = 1 the expectation value is not even close to 0. This shows us the difficulty of the Exact Cover

Problem.

4.3 Minimizing the Gibbs objective function

Another approach to this problem is to modify the function that is going to be optimized (Li Li et

al. [11]).

The objective function that we will use now is
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f(η) = − log
〈
e−ηHC

〉
(z.10)

We see that the above objective function has a minimum at f(η) = 0 because HC = 0 will give

us e−ηHC = 1 and then f(η) = − log 1 = 0. So our goal remains the same, try and get f(η) as close

to 0 as possible.

Here η is a hyperparameter which we define it’s value with respect to the problem we want

to solve. Essentially f(η) is the cumulant generating function of the energy HC . The cumulant

generating function is the log of the moment generating function of HC .To see how η affects the

Gibbs objective function we must write the Taylor expansion of f(η),

f(η) = 〈HC〉 η − σ2 η
2

2
+ κ3

η3

6
+ . . . (z.11)

where σ2 is the variance of HC . We see from (z.11) that for small η, namely η < 1, all the

terms after 〈HC〉 η contains η2, η3, . . . that eventually goes to 0. So if we choose to minimize f(η)

for small η it will be the same as minimizing 〈HC〉 since only the first term of f(η) will survive.

For bigger η the other cumulants affect the objective function.

This objective function can serve two purposes: (i) we can use η < 1 and minimize the ex-

pectation value of the quantum Ising Hamiltonian 〈HC〉 and (ii) we can use η ≥ 1 and maximize

probability of finding the ground state (HC = 0). Note here that the quantum circuit as well as

equations (z.3) to (z.6) that we calculated in the analysis before stays the same in this analysis.

First let’s see how the Gibbs objective function bounds the probability of finding the ground

state. Suppose

P (X ≤ α) = P (e−tX ≥ e−tα)

where t is a parameter, X is a random variable and α is a constant. Note here that e−tX is a

non-negative function of a random variable and therefore we can apply the Markov’s inequality.
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P (e−tX ≥ e−tα) ≤ E[e−tX ]

e−tα

By applying the Markov’s inequality we obtained the so called generic Chernoff bound for the

random variable X. Now if we replace x = HC ,α = E0 and t = η we have

P (HC ≤ E0) ≤ E[e−ηHC ]

e−ηE0
⇔

P (HC ≤ E0) ≤ eηE0

〈
e−ηHC

〉
⇔

P (HC ≤ E0) ≤
〈
e−η(HC−E0)

〉
(z.12)

We have proved that we can bound the probability of low energy from above. So if we choose

an η that minimizes the right side of (z.12) we will get the maximum of the left side, since we have

the minus sign in the exponent of the right side.

To better understand the Gibbs objective function we will use several different values of η,

namely η = 500, 250, 100, 50, 1, 0.1, 0.01.

(Below) we give the plot for f(η) for different values of p. Here we see that smaller values of the

Gibbs function are obtained for smaller η. In combination with the (figure) of the expected value

of the cost Hamiltonian, we see that smaller f(η) corresponds to smaller expected value.
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Figure 4.6: Gibbs objective function f(η).

Figure 4.7: Right : Expected value of the cost Hamiltonian, 〈HC〉. Left : Probability of success

|
〈

00001111
∣∣∣ψp(~γ, ~β〉 |2.

In the (figure) above it is worth noticing that the minimum expectation value comes from

η = 0.01. Also for η = 0.01 we see the minimum probability of success to be obtained. This is

happening because small expectation value does not necessarily mean high probability of success.

For example we can find a state with small expected value but this state might be a superposition

of some states and therefore the probability that we measure the correct solution out of this state

could be small.
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We also see that for η ≥ 1 the probability of success is at the highest value for several p.

(Below) we compare the results from (Minimizing the expected value of the quantum Ising

Hamiltonian) with the results we got from minimizing the Gibbs ocjective function.

Figure 4.8: Comparison of the Gibbs method and the conventional QAOA method which we mark
as QAOA in the figure. Right : Expected value of the cost Hamiltonian, 〈HC〉. Left : Probability

of success |
〈

00001111
∣∣∣ψp(~γ, ~β〉 |2.

Overall we see that for η ≥ 1 we have bigger probability of success than the QAOA method

starting even for p = 2, which is why we tried this method in the first place. Also we see that the

expectation value in this case is smaller for the QAOA method for up to p = 3 but for p ≥ 6 the

difference is very small. With this in mind we can see that the Gibbs objective function is more

flexible than the conventional QAOA method.

In the original paper from Pontus Vikst̊al et al. [15] for the TAP problem, they mention this

method for future work. The reason why I tested this method is that the objective function is

the same as in the previous section for the TAP, we just take the log of the expected value of the

exponent of the cost Hamiltonian. Indeed we see better results with respect to the probability of

success.
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Chapter 5

Conclusion and future work

In this thesis we focused on solving optimization problems using quantum algorithms. In partic-

ular we analyze the Quantum Approximate Optimization Algorithm (QAOA) and the Variational

Quantum Eigensolver (VQE) for the MAXCUT problem in complete graphs. In addition we analyze

the performance of QAOA in an instance of the Tail Assignment Problem called the Exact Cover

Problem. We test the algorithm using the conventional method of minimizing the expected value

of the cost Hamiltonian and also we use the method of minimizing the Gibbs objective function in

an 8 route, 80 flights graph.

The results we got from the conventional method of QAOA coincides with the ones found at

Pontus Vikst̊al et al. [15]. In the conclusion of that paper, they mention the Gibbs objective

function and that results from this objective function will be better with respect to the success

probability. In the results we got the success probability was higher than the conventional method

of QAOA ((figure)). Although we tested the Gibbs objective function in one graph, further testing

must be done.
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5.1 Future work

In the Tail Assignment Problem, the most computationally heavy task was to optimize the varia-

tional parameters ~γ, ~β. Even for a small number of qubits (n=8) and parallel optimization using 4

CPUs, the above task took hours for p > 5. There exist ways that we can reduce this time. For

example in Pontus Vikst̊al et al. [15] they have found patterns in the variational parameters that

helped to speed up the optimization time. Although patterns might exist in particular optimization

problems, in the TAP it allowed them to run the quantum circuit for instances of 8,15,25 qubits

and for 1 ≤ p ≤ 20, so I think it is worth exploring. Another perspective is to change the objective

function. In this thesis I used the Gibbs objective function but there exist also a CVaR objective

function (Panagiotis Kl. Barkoutsos et al. [16]) and an evolving CVaR objective function (Ioannis

Kolotouros and Petros Wallden [10]) that produces better results for VQE and QAOA than the

conventional methods. Also work has been done by Benjamin Tan and Dimitris Angelakis et al.

[12] at Angelakis Research Group, where they cut down the number of qubits for VQE from n to

log2n + 1 allowing for real world problems to be considered. 10.000 variables for example require

of the order of few dozen qubits at the minimal enconding.

Also it is worth exploring these quantum algorithms in the context of other optimization prob-

lems including finance and route optimization, as I listed in the (Appendix). The most industrial

one is the Vehicle Routing Problem for which QAOA have been applied to by Stuart Hardwood et

al. [17].In my future MSc studies, I would like to explore more of these problems with a focus to

reduce the qubit requirements so near term quantum processors can be used to attack real world

problems and build a systematic approach extending the work by Tan et al. [12].
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Chapter 6

Appendix

6.1 Classical optimization problems and solutions

6.1.1 0/1 Knapsack problem

Imagine a scenario where you want to go camping with your friends and before you leave you want

to prepare a knapsack or backpack to get with you. Ideally you want to have all the items that will

give you comfort on your camping but you also don’t want to be overweight since you will probably

walk a lot! So the optimization problem that is formed here is the following, you want to maximize

the items in your backpack in order for you to be comfortable in the camping with the constraint

that these items will not weight more than you can carry.

To solve this problem we must first make a few definitions from Professor John Guttag lectures

[18]. We will define an item to be inserted in the backpack as a tuple described by two variables

Item =< value,weight >

where the value is a positive number that represents the importance of the item on your trip, for

example water should be of high importance while a hairdryer should be of low importance. The

weight variable is a positive number which represents the weight of the item. We will also represent
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the maximum weight that you can carry as a global integer

W as the max weight of the backpack

It is also good to have all the available items in a vector so

I as the vector of available items

We will also define a vector V which

V[i] = 1 if I[i] has been taken , V[i] = 0 if I[i] has not been taken

Now we can define the objective function that we want to maximize as

∑
i

V [i]I[i].value

where I[i].value is the value component of the item. Essentially the objective function tells us

that we want to maximize the value of the items we take. To see this more clearly note that if

we don’t take the item i then V [i] = 0, so the sum above contains only items that we put in the

backpack.

The constraint of this problem is that we want our total backpack weight to be less or equal to

the weight W that we can carry.

∑
i

V [i]I[i].weight ≤W

So to solve this problem we must look at all the possible V vectors that are created. So if we

have n items then we have 2n different binary vectors V. With this in mind we can see that for

n = 50 the algorithm will take years to finish. Although by using dynamic programming for this

algorithm reduces its complexity to O(nW),polynomial time with respect to the max weight.
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6.1.2 Supply chain problem

Supply chain optimization problems occurs in large corporations where hundreds of facilities (dis-

tributors,plants,suppliers) are involved. The goals of corporate are to provide customers with the

products that they need in the most efficient way possible. In order to do so there are a lot of

decisions that must be made from the corporate as discussed by Arthur F. Veinott, Jr. at [19].

Some of these decisions are how much, when and where to produce the product; how much and

when to ship from one facility to another; how much,when and where to store the product; how

much,when and where to charge for products. Another very important factor that supply chain

must account for is uncertainty.

First we will start by formulating the supply chain optimization problem for an n-period without

uncertainty. In this problem we have the number of products for the i-th period as xi, the number

of products in storage for the i-th period as yi and the given demand for the product in the i-th

period as si. We also define the cost of producing k products as ci(k) and the cost of storing k

products as hi(k). With this in mind the cost function we want to minimize is

C(x, y) =

n∑
i=1

ci(xi) + hi(yi)

, and is read as the sum over n periods of the cost of producing xi products plus the cost of storing

yi products.

The constraint that follow this problem is

xi + yi−1 − yi = si, i = 1, . . . , n

, which means that we want the demand si to be equal to the xi products we produce plus the yi−1

products which have been stored in the previous period minus the yi products we have stored in

the current period.

For the problem to be complete we must also assume that all the above discrete variables are

non negative.
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Figure 6.1: Minimum cost network flow problem.The edges (0,1),(0,2),(0,3),(0,4) are called the
production edges and represent the production at period i. The edges (1,2),(2,3),(3,4) are called
storage edges and represent the products in store between the specified periods.

Such linear cost problems can be easily mapped to a network flow problem as seen in figure

(above). The solution here is to find a minimum cost chain or directed path on the graph from

node 0 to i while satisfying the demand at i by shipping along that chain.

By using dynamic programming we can define the minimum cost at period i as

Ci = min(ci, hi−1 + Ci−1), i = 1, . . . , n

This tells us that for each period i we choose the smallest between two options : i) production

cost ci is sufficient for the demand at period i, production edge is sufficient or ii) storage cost hi−1

and total cost Ci−1 at previous period, storage edge (i − 1, i) and previous node are sufficient.

This recursive method allow us to split the bigger problem of finding the minimum cost into sub

problems for which we find the minimum cost.

The complexity of this algorithm is O(n) because at worst we have to calculate n different Ci.

Each calculation consists of one addition and one comparison.

6.1.3 Portfolio optimization problem

Suppose you are an investor with some initial capital in your disposal. The problem is that you

want to invest your capital in a number of different securities so that you have certain return with
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minimum risk involved. There are two main types of risks involved with the above problem; (1)

the risk of having less return as expected and (2) the risk of a not well-diversified portfolio which

comes from not having enough different types of securities in the portfolio.

A very compact portfolio optimization model was introduced by Harry Markowitz in a 1952

essay called Modern Portfolio Theory (MTP) or mean-variance analysis. Before explaining the

model we must first define the variables that we will work with (Hassan Rahnama [20]).

Let xi represent the proportion of the total capital invested in security i. It is fair to assume

that this xi can be represented by a random variable. With this in mind we denote µi as the

expected return of xi and σ2
i the covariance for each security i = 1, . . . , n. We can now define the

portfolio which is a vector of xi and we will denote as x̄ = (x1, x2, . . . , xn). So we can define the

total expected return and variance of the portfolio as follows

E[x̄] = x1µ1 + x2µ2 + · · ·+ xnµn = µT x̄

Var[x̄] =
∑
i,j

ρijσiσjxixj = x̄TΣx̄

where µ = (µ1, µ2, . . . , µn) is the vector of the expected values, ρij is the correlation coefficient

between securities i and j (ρii = 1) and Σij = ρijσiσj is the covariance matrix of the portfolio.

The model introduced by Harry Markowitz can be formulated in 3 ways. First, we minimize the

variance or risk of the portfolio while bounding the expected return of the portfolio. Second, we

maximize the expected return of the portfolio while bounding the risk or variance of the portfolio.

Lastly, we combine the previous two and also using a new variable q which is called risk tolerance.

• Minimization the portfolio variance

Here the cost function to be minimized is

min
x̄

x̄TΣx̄

In order to solve the optimization problem we need to bound the expected return. For this
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reason we use R, so suppose we want our expected return to be greater of equal than R. Therefore

E[x̄] = µT x̄ ≥ R

Two constraints that goes along with our problem are

∑
n

xi = 1

which means that the proportions of the total capital should sum to 1 .Also we must assume

that xi ≥ 0 ∀i.

• Maximization of the total expected outcome

Here the cost function to be maximized is the expected outcome of our portfolio

max
x̄
µT x̄

while bounding the variance of the porfolio by a constant σ2

x̄TΣx̄ ≤ σ2

The two extra constrains from above also apply in this case.

• Combination of the above

The cost function to be minimized here is

min
x̄

x̄TΣx̄− qµT x̄

where q ∈ [0,∞) is the risk tolerance and it is assumed known for the problem. We see that for

q = 0 we get the estimator which minimized the risk (1st bullet) and as q grows we get a mixture

of the problem.
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Also in this model we have the two extra constraints

∑
n

xi = 1

and xi ≥ 0 ∀i.

In order to solve the above models we can either make use of non linear programming or swap

the inequality constraints with equality constraints and solve using the lagrance multipliers.

6.1.4 Vehicle routing problem

The Vehicle Routing problem (VRP) is defined on a graph G = (V,A) where V = {u1, u2, . . . , un}

is a set of vertices and A = {(ui, uj) : i 6= j, ui, uj ∈ V }. We will call vertex v1 the ”depot” which

means the starting node of our m vehicles. The rest of the nodes can be cites or customers. The

VRP is the problem of finding m vehicle routes of minimum total cost,where the total cost can be

travel costs or travel time or distance,starting and ending at the depot, such that each remaining

vertex is visited exactly once by one vehicle and satisfying some constraints.

The most common type of constraints are : time window constraints when each vertex-costumer

must be visited within a specified time interval, duration constraints when the total length of a

route must be less or equal than some constant L, capacity constraints when the vehicle for example

has capacity Q then the ”goods” that the vehicle picked up on a route must be less or equal than

Q.

This problem can be thought of as m different Travelling Salesperson problem (TSP). For the

TSP prolem there exists many algorithms and APIs in this day capable of producing good solutions.

The best known algorithm for the VRP is called the Taburoute algorithm of Gendreau,Hertz and

Laporte (1994). Recently Stuart Harwood et al. [17] tested the QAOA on the VRP and had some

promising results.

There exists many different formulations for the VRP that they differ with respect to the

constraints. We will consider the VRP problem with time windows constraints. Here the decisions

to be made are whether routes are travelled or not.
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We will define a route as a sequence of nodes (v1, v2, . . . , vP ) for some route-specific positive

integer P .Note that a route must begin and end at the depot so v1 = vp = d.

For each feasible route the sum of the product delivered/picked up must be physically possible

:0 ≤ Q0 +
∑p
j=2 qvj ≤ Q, where Q0 is the initial cargo of the vehicle, Q is the max cargo that the

vehicle can carry and qvj is the cargo that a vehicle received at node vj .

We associate each node vj with a time window [αvj , βvj ]. We can let Tv1 = 0 be the starting time

of the depot node, then the arrival time at node vp+1 is given by Tvp+1 = max{αvp+1 , Tvp + tvp,vp+1}

where Tvp + tvp,vp+1
is the starting time at node vp plus the time between nodes vp and vp+1.

Although a vehicle cannot arrive after the time window has closed i.e. Tvp ≤ βvp .

We define the set of routes to be R. If route r ∈ R has node sequence (v1, v2, . . . , vP ), then it

has cost cr =
∑P−1
p=1 cvp,vp+1

.

Finally, we define δv,r to be equal to 1 iff route r contains node v and 0 otherwise.

We also have the binary variable xr which is equal to 1 iff a vehicle travels route r and 0

otherwise. So we have the objective function to be minimized

∑
r∈R

crxr

and the constraints to be ∑
r∈R

δv,rxr = 1 ∀v ∈ V

6.2 The cost function as an eigenvalue of the cost hamilto-

nian matrix

In this section we will prove how we can get the value of the cost function of the MAXCUT problem

as an eigenvalue of the cost Hamiltonian matrix. We have

C(s) =
1

2

∑
(i,j)∈E

(1− sisj)
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where s ∈ {−1, 1}n , G = (V,E) is a graph with n = |V | the number of nodes in the graph and E

is the set of edges. We can construct the cost Hamiltonian for the MAXCUT if we replace the si

variables with σzi (pauli Z-matrix acting on qubit i). So we have the following cost Hamiltonian

C =
1

2

∑
(i,j)∈E

(I− σzi σzj )

What we want from the cost Hamiltonian is to get the cost of each of the possible 2n bit-strings

as an eigenvalue of the cost Hamiltonian matrix. We can see this happening by applying the cost

Hamiltonian on an arbitrary bit-string

C |x〉 =
1

2

∑
(i,j)∈E

(I− σzi σzj ) |x〉 ⇔

C |x〉 =
1

2

∑
(i,j)∈E

|x〉 − σzi σzj |x〉 ⇔

C |x〉 =
1

2

∑
(i,j)∈E

|x〉 − (−1)xi(−1)xj |x〉 ⇔

C |x〉 =
1

2

∑
(i,j)∈E

(1− (−1)xi(−1)xj ) |x〉 ⇔

C |x〉 = C(x) |x〉

where we have used σzi |xi〉 = (−1)xi |xi〉 and that xi = 0 → (−1)xi = 1 = si, xi = 1 →

(−1)xi = −1 = si so that we can write the cost function that depends on x ∈ {0, 1}n as C(x) =

1
2

∑
i,j∈E(1− (−1)xi(−1)xj ).

So we proved that after applying C on an arbitrary state we can get the bit-string’s cost function

as an eigenvalue.
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6.3 Classical pre-processing on bounded degree graphs

Now we will see a way to compute the expectation value of the cost Hamiltonian on a classical

computer. Note that this computation occurs when we consider the MAXCUT problem for graphs

with bounded degree. First we write the cost Hamiltonian as a sum of local terms,

C =
∑
(j,k)

C(j,k)

where (j, k) refers to an edge from the total edge set of the graph and C(j,k) = 1
2 (I− σzjσzk)

For p = 1 we have the expected value of the cost Hamiltonian as

F1(γ, β) =
〈
ψ(γ, β)

∣∣C ∣∣ψ(γ, β)
〉

Due to the linearity of the expectation value

E[
∑
(j,k)

C(j,k)] =
∑
(j,k)

E[C(j,k)]

We can write the expected value of the cost Hamiltonian as the sum of some local expected

values

F1(γ, β) =
∑
(j,k)

〈s|U†(C, γ)U†(B, β)C(j,k)U(B, β)U(C, γ) |s〉

where we have expanded
∣∣ψ(γ, β)

〉
= U(B, β)U(C, γ) |s〉 and it’s complex conjugate

〈
ψ(γ, β)

∣∣ =

〈s|U†(C, γ)U†(B, β) with |s〉 = |+〉1 |+〉2 . . . |+〉n to be the equal superposition of n qubits.

In this moment we must remember that the goal of this algorithm, in the MAXCUT problem,

is to maximize the above expected value. By expressing this value into the sum of local terms our

goal is to divide the bigger problem (computing the expected value of the cost Hamiltonian) to

smaller problems (compute local terms of the expected value of the cost Hamiltonian). By doing so

we can restrict F1(γ, β) to depend on nodes that exist on some sub graphs instead of all the nodes

on the graph. This is more computationally efficient and we can do it before we even run QAOA
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on a quantum computer since it depends only on sub graphs.

Before explaining any further, let’s first see what lead the authors to search for this kind of

solution to the problem [7]. We analyze a single term of the sum of F1(γ, β). That is

U†(C, γ)U†(B, β)C(j,k)U(B, β)U(C, γ) (y.2)

where I deliberately left out |s〉 and 〈s| since the analysis will be the same if we include them

or not.

Let’s write the operator U(B, β) = e−iβ
∑n
j=1 σ

x
j in (y.2)

U†(C, γ) eiβ
∑n
j=1 σ

x
j C(j,k)e

−iβ
∑n
j=1 σ

x
j︸ ︷︷ ︸U(C, γ)

Focus on the under brace of the above equation. Note that terms from the right exponent that

do not involve qubits j and k commute through C(j,k) and cancel out. This happens because C(j,k)

only acts on qubits j and k leaving the other unchanged while U(B, β) acts on all qubits. So we

can write the above equation as

U†(C, γ) eiβ(σxj +σxk)C(j,k)e
−iβ(σxj +σxk)︸ ︷︷ ︸U(C, γ)

Factors of U(C, γ) which does not involve qubits j and k will also commute through and cancel

out. We see that each term of the expected value of the cost Hamiltonian depends on edge (j, k)

and edges adjacent to this one (for p = 1). For a bounded degree graph that means that these

terms are independent of the graph size which give us the right to efficiently compute these terms

on a classical computer. For every p that we add, edges that contribute to the total expected value

are at most p steps away from the edge we are considering.

For example let’s consider graphs with bounded degree 3. For any graph there exists 3 types of

sub graphs that are shown in the (figure) below

With this in mind we can define the expected value of the cost Hamiltonian with respect to

these sub graph types. We define
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Figure 6.2: (1)Nodes j and k have 3 connected edges,(2)Nodes j and k have 2 connected
edges,(3)Nodes j and k have 1 connected edge

CG =
∑

(l,l′)∈G

C(l,l′)

which is the cost for a sub graph G. We will also define operators U(C, γ), U(B, β) for a sub

graph G as

U(CG, γ) = e−iγCG

and

U(BG, β) = e−iβBG

where BG =
∑
j∈G σ

x
j . At last we define the state |s,G〉 to be the superposition of the qubits

that are in the sub graph G,

|s,G〉 =
∏
l∈G

|+〉l

Now we can write the expectation value of each edge (j, k) as the expectation value on the sub

graph. Each edge (j, k) is associated with a sub graph g(j, k) with a local expectation value with

respect to the sub graph depending state. We define this local expectation value as

fg(~γ, ~β) =
〈
s, g(j, k)

∣∣U†(Cg(j,k), γ1) . . . U†(Bg(j,k), βp)C(j,k)U(Bg(j,k), βp) . . . U(Cg(j,k), γ1)
∣∣s, g(j, k)

〉
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Recall the expectation value of the cost Hamiltonian

Fp(~γ, ~β) =
∑
(j,k)

〈s|U†(C, γ1) . . . U†(B, βp)C(j,k)U(B, βp) . . . U(C, γ1) |s〉

If two different terms of the sum produce sub graphs that are isomorphic then their contribution

to the total expected value will be the same. This is due to the fact that isomorphic graphs are

edge preserving so they will have the same cost. With this in mind we can count the available

sub graphs that occur in the problem graph (for the 3-regular graphs we only have 3 different kind

of sub graphs), compute the sub graph dependent expectation value of the cost and add them to

obtain the total expectation value. We can write the above in the following equation

Fp(~γ, ~β) =
∑
g

wgfg(~γ, ~β)

where wg is the number of occurrences of sub graph g in the original graph.

We see that fg(~γ, ~β) depends only on the qubits/nodes of the sub graph g. The maximum

number of qubits in a sub graph comes when the sub graph is a tree, independent of the number

of nodes and clauses in the problem graph. Using this notation we can also read wg directly from

the problem graph and compute Fp(~γ, ~β) in a classical computer with matrices and vectors whose

dimensions are independent of the problem size. The only dependence on the problem size exists

in the weights wg.

6.4 Connection of QAOA and the adiabatic quantum algo-

rithm

Here we note the connection of QAOA to the Adiabatic Quantum Algorithm (Edward Fahri et al.

[21]). This algorithm is designed to find the best solution if the time T that we run the system

is long enough. This creates a continuous path that depends on time T from the starting state

to the optimal state. QAOA can produce a Trotterized approximation to this path by splitting
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the continuous path into smaller discrete ones. This happens by applying U(C, γ), U(B, β) on the

starting state for each p, where the sum of the angles is the total run time T. This suggests that

limp→∞Mp = maxz C(z). Although due to its approximation nature we don’t necessarily need to

make p large to get a good solution.
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