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Abstract

In this thesis we study quantum algorithms for solving linear systems of equations which

is a problem that arises both on each own and as a part of larger problems in academic and

industry. The first quantum linear solver that we study is the HHL algorithm[1]. HHL

was invented by A. W. Harrow, A. Hassidim and S. Lloyd in 2008 and is an exact quantum

algorithm that uses the quantum phase estimation as a subroutine for eigenvalue finding.

HHL scales tremendously well with respect to number of variables and size of equations,

but is qubit demanding and noise sensitive. The proper implementation of this algorithm

requires many and fully functional qubits. Neither of these prerequisites is satisfied in

today’s prototype quantum computers and for this reason, the attention has been recently

shifted towards variational hybrid-quantum classical algorithms that combine prototype

quantum hardware with classical optimizers. In the second part of this thesis we analyze

the variational quantum linear solver. After studying in detail the inner workings of both

algorithms, we experiment with various test equation sets of different size gap, condition

numbers and sparsity, running both perfect and noisy simulations as well as real hardware.

The result of these experiments, that were ran in the IBMQ devices on the cloud, is that

VQLS and HHL can produce the same result in regards to fidelity on perfect simulators,

but VQLS outperformed HHL while working on a realistic noisy setting, as it is the case

for current day prototype quantum processors. We conclude by discussing briefly possible

applications of the algorithms presented in this work in other areas including machine

learning.
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Introduction

Quantum computing is a recent field of research in the computing science which utilizes

certain properties of quantum mechanics such as quantum superposition, quantum en-

tanglement and quantum interference. Quantum computing is the merging of quantum

mechanics and computer science.

In classical computer science the bit is the fundamental unit of information. In a sim-

ilar fashion qubit (quantum bit) is the fundamental unit of quantum computing science.

Classical computations are performed on bits by logical gates such as ‘AND’ and ‘OR’

and quantum computations are performed similarly on quantum gates. However, there

are some core differences between bits and qubits and logical and quantum gates which

we will make clear through the course my thesis.

Quantum computing was born from the inefficiency of contemporary classical com-

puters to tackle a number of hard computational problems. The last few years we have

reached to a stalemate which prohibits the further miniaturization of transistors which

are printed on silicon substrates.

The transistor size nowadays is so small and as such it cannot function properly due

to the appearance of quantum phenomena. So, it is apparent that in order to achieve the

sufficient computational force we need a new perspective namely, quantum computing.

Quantum computers are more prominent than their classical counterparts in certain

tasks such as linear system solving and integer factorization because they harness quan-

tum properties such as quantum superposition that allows almost boundless (limited by

hardware inefficiencies) parallel computations and exponential speedups.

1



Introduction 2

Figure 1: The end of Moore’s law

In this thesis we will initially try to outline the fundamentals of quantum computing

and subsequently dive into the main subject of my thesis i.e exact and approximate quan-

tum algorithms for linear systems of equations and implementation in quantum hardware.

We will introduce two quantum algorithms that solve linear systems of equations. The

first quantum algorithm is HHL[1]which is completely quantum and the second is the vari-

ational quantum linear solver[2] which is a heuristic quantum-classical hybrid approach.

These algorithms offer two fundamentally different perspectives to the quantum linear

system problem. We will compare the way they work and also the pros and cons of each

approach. Finally we will run a diverse set of simulations on both perfect simulators and

noise imbued simulators in order to have a better understanding of how these algorithms

work.



Chapter 1

Background and basics of quantum

computing

Quantum computing is a relatively recent and fast evolving field of science. Although

quantum mechanics was first developed around 1900, quantum computers were initially

proposed nearly 80 years later by Paul Benioff who proposed a quantum mechanical

model of the Turing machine. Later Richard Feynman and Yuri Manin proposed the

universal quantum simulator[3]. Those early quantum simulators promised to solve prob-

lems unsolvable by classical computers, mainly chemistry problems at that time. The first

quantum algorithm was proposed by David Deutsch and Richard Jozsa [4] in 1992 and in

1994 Peter W. Shor[5] proposed the homonym algorithm, which is a factoring algorithm

that could theoretically break modern encryption protocols such as the RSA public-key

cryptosystem. Later in 1996 Lov K. Grover proposed a quantum mechanical algorithm

for database search[6]. Since 2000 the field has attracted the attention of the scientific

community and more and more people from diverse fields of technology and science get

involved in quantum computing leading to big quantum breakthroughs. The highlight

of the quantum hype was undoubtedly in September of 2019 when Google has reached

the so called "quantum supremacy" with an array of 54 qubits (out of which 53 were

functional), which were used to perform a series of operations in 200 seconds that would

3
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take a supercomputer about 10,000 years to complete[7].

1.1 Fundamentals of quantum computing

1.1.1 Qubit and quantum states

A bit(binary digit) is the basic unit of classical information and can be in the state of

either 0 or 1. It represents a logical state that can take one of two possible values. The

bit is most commonly physically represented as electrical voltage. Accordingly, the qubit

is the basic unit of quantum information and can be in the state of either |0〉 or |1〉.

Physically it can be represented as the spin of an electron with possible states spin up,

spin down or by the polarization of a photon in which the two possible states can be the

vertical and the horizontal polarization of the photon. The quantum states are written

according to Dirac’s bra-ket notation. Bra is a row vector and ket is a column vector.

The main difference between bits and qubits is that bits can be 1 or 0, in contrast qubits

can be in one of the two basis states |0〉 , |1〉 but also in a superposition of these states.

This can be written as a linear combination of the two basis states as follows[8]:

|ψ〉 = a |0〉+ b |1〉 , a , b ∈ C , |a|2 + |b|2 = 1

a,b complex coefficients are probability amplitudes. When we measure in the standard

basis we can find the qubit in the state |0〉 with probability |a|2 and in the state |1〉 with

probability |b|2. As we all know probabilities sum up to 1.
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Another way to represent a quantum state is the following:

|0〉 =

1
0

 , |1〉 =
0
1

 so , |ψ〉 = a |0〉+ b |1〉 = a

1
0

+ b

0
1

 =

a
0

+

0
b

 =

a
b


The complex conjugate of state |ψ〉 is the following:

〈ψ| = a∗ 〈0|+ b∗ 〈1| = a∗
[
1 0

]
+ b∗

[
0 1

]
=
[
a∗ b∗

]

The inner product of a quantum state is :

〈ψ | ψ〉 =
[
a∗ b∗

] a
b

 = a∗a+ b∗b = |a|2 + |b|2 = 1

The outer product of a quantum state is:

|ψ〉 〈ψ| =

a
b

[ a∗ b∗
]
=

 aa∗ ab∗

ba∗ bb∗


Linear algebra is the mathematical language used to describe quantum systems. A

base set of vectors B = {b0, b1...bn−1} in a vector space V is any set of vectors such that

any vector U in the span of the set can be written as a linear combination of the base

v = a0b0 + a0b1 + ...an−1bn−1 , a0, a1, ..an−1 ∈ C. Now, let us check if we can use {|0〉 , |1〉}

as a base set.|0〉 , |1〉 need to be orthonormal, meaning orthogonal and normalized.

|0〉 , |1〉 are orthogonal: 〈1 | 0〉 =
[
0 1

] 1
0

 = 0, 〈0 | 1〉 =
[
1 0

] 0
1

 = 0
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|0〉 , |1〉 are normalized: 〈1 | 1〉 =
[
0 1

] 0
1

 = 1, 〈0 | 0〉 =
[
1 0

] 1
0

 = 1

The general form of a quantum state is the following:

|ψ〉 = eiδ
(
cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
)
, δ ∈ [0, 2π), θ ∈ [0, π], ϕ ∈ [0, 2π)

eiδ is a global phase that can be ignored due to the fact that it has no physically observable

consequences.

Another way to think of the abstract until now concept of qubit is provided by the

geometrical representation of qubit, that of the Bloch Sphere.

Figure 1.1: Bloch Sphere
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1.1.2 Single qubit gates

Now that I have defined the quantum state ,we are able to perform computations using

qubits. We can go from one quantum state to another by applying certain operators

called quantum gates. Since we have only discussed one qubit state until this point, we

will deal only with single qubit gates. Since a single qubit state is a 2x1 column vector,

a quantum gate must be 2x2 matrix. Let A be a 2x2 quantum gate then:

A =

 c d

e f

 , |ψ〉 = a |0〉+ b |1〉 → A |ψ〉 =

 c d

e f


a
b

 =

ac+ db

ea+ fb

 =
∣∣∣ψ′〉

∣∣ψ′〉 should remain a quantum state :

〈
ψ
′
∣∣∣ψ′〉 =

[
(a · c+ d · b)∗ (e · a+ f · b)∗

]a · c+ d · b

e · a+ f · b

 =

= (a · c+ d · b)∗ (a · c+ d · b) + (e · a+ f · b)∗ (e · a+ f · b) = |a|2|c|2 + |b|2|d|2 + |a|2|e|2 + |b|2|f |2

= |a|2
(
|c|2 + |e|2

)
+ |b|2

(
|d|2 + |f |2

)
= 1 = |a|2 + |b|2 ⇒ |c|2 + |e|2 = 1, |d|2 + |f |2 = 1

Operators that obey this condition are the unitary operators. An operator is called

unitary if and only if it satisfies the condition: UU † = U †U = I where I is the identity

matrix (do-nothing matrix) and U † is the conjugate transpose of U. Another applicable

group of gates are the Hermitian operators. Hermitian operators can be turned into uni-

tary operators (U = eiA). A operator equals its conjugate transpose. The most commonly

known Hermitian operators are the Pauli operators.
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Pauli operators
Operator matrix representation circuit symbol

I = σI=ID
[
1 0
0 1

]
I

X = σx=NOT
[
0 1
1 0

]
X

Z = σz

[
1 0
0 −1

]
Z

Y = σy

[
0 −i
i 0

]
Y

Table 1.1: Pauli operators

• The Pauli Matrices are involutory, which means that each Pauli matrix squared

equals the identity matrix: I2 = X2 = Y 2 = Z2 = I

• The Pauli matrices are anti-commute: {X,Z}=0, XZ=-ZX,{X,Y}=0, XY=-YX,{Y,Z}=0,

YZ=-ZY

Other notable single qubit gates are the Hadamard gate, the rotation gates and the

phase shift gates.

The Hadamard gate is the gate that creates superposition:

H =
1√
2

 1 1

1 1

 , H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉x , H |1〉 =

1√
2
(|0〉 − |1〉) = |−〉 x
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Phase shift gates

P (π) =

[
1 0
0 eiπ

]
=

[
1 0
0 −1

]
= Z

P
(
π
2

)
=

[
1 0
0 ei

π
2

]
=

[
1 0
0 i

]
=
√
Z = S

P
(
π
4

)
=

[
1 0
0 ei

π
4

]
=

[
1 0
0 1√

2
(1 + i)

]
=
√
S = T

Table 1.2: Phase shift gates

Rotation gates

Rx(θ) = e−iX
θ
2 =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]

Ry(θ) = e−iY
θ
2 =

[
cos
(
θ
2

)
− sin

(
θ
2

)
− sin

(
θ
2

)
cos
(
θ
2

) ]

Rz(θ) = e−iZ
θ
2 =

[
e−i

θ
2 0

0 ei
θ
2

]

Table 1.3: Rotation gates

Another set of single qubit quantum gates, are the general U gates. These gates are

parameterized gates of the form:

U (θ, ϕ, λ) =

 cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)


By choosing the right parameters we can get any single qubit gate:
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U
(π
2
, 0, π

)
=

 cos
(
π
4

)
−eiπ sin

(
π
4

)
sin
(
π
4

)
eiπ cos

(
π
4

)
 =

1√
2

 1 1

1 −1

 = H

U (0, 0, π) =

 cos (0) −eiπ sin (0)

ei0 sin (0) eiπ cos (0)

 =

 1 0

0 −1

 = Z

U (π, 0, 0) =

 cos
(
π
2

)
−ei0 sin

(
π
2

)
ei0 sin

(
π
2

)
ei0 cos

(
π
2

)
 =

 0 1

1 0

 = X

U (0, 0, 0) =

 cos (0) −ei0 sin (0)

ei0 sin (0) ei0 cos (0)

 =

 1 0

0 1

 = I

1.1.3 Multiple qubit state

Now that we have outlined how a single qubit works, it is time to present how multi-

ple qubit states and multiple qubit operators work. In order to design useful quantum

algorithms many qubits are needed to encode information and interact with each other

for the algorithm to produce the desired results. We will first show what a 2-qubit state

looks like and later we will introduce several qubit systems. Earlier we have shown that

a qubit can be in one of the two basis states, or in a superposition of these two basis

states |ψ〉 = a |0〉 + b |1〉 , a , b ∈ C , |a|2 + |b|2 = 1. Now it is essential to introduce

the tensor product. The tensor product of each basis state with itself is the following:

|0〉 ⊗ |0〉 =

1
0

⊗
1
0

 =



1 ·

1
0


0 ·

1
0




=



1

0

0

0


= |0〉 |0〉
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|1〉 ⊗ |1〉 =

0
1

⊗
0
1

 =



0 ·

0
1


1 ·

0
1




=



0

0

0

1


= |1〉 |1〉

So, let |ψ1〉 , |ψ1〉 two separate qubits can be described more concisely as a composite

system as follows:

|ψ1〉 = a |0〉+ b |1〉 a , b ∈ C , |a|2 + |b|2 = 1

|ψ2〉 = c |0〉+ d |1〉 c, d ∈ C , |c|2 + |d|2 = 1

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = a |0〉+ b |1〉 ⊗ c |0〉+ d |1〉 = ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉

ac, ad, bc, bd ∈ C , |ac|2 + |ad|2 + |bc|2 + |bd|2 = 1

We can alternatively write the 2-qubit system as follows :

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 =

= a



1

0

0

0


+ b



0

1

0

0


+ c



0

0

1

0


+ d



0

0

0

1


=



a

b

c

d


a, b, c, d ∈ C , |a|2 + |b|2 + |c|2 + |d|2 = 1

We added one qubit to our system and the coefficient vector has doubled in size.

Generally, if we have an n-qubit state, which denotes a system that consists of n qubits,

the coefficient vector will be N = 2n.
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1.1.4 Multiple qubit gates

Earlier we acted on the single qubit state using single qubit operators. In the same way

we can act on two qubit quantum states using 2-qubit operators. We have constructed the

qubit state by applying the tensor product and we will do the same in order to construct

a 2-qubit operator. First, we will examine the 2-qubit X gate[9].

X ⊗X =

 0 1

1 0

⊗
 0 1

1 0

 =


0

 0 1

1 0

 1

 0 1

1 0


1

 0 1

1 0

 0

 0 1

1 0




=



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


We can construct any 2-qubit version of the Pauli matrices accordingly. However, it is

evident that there is no difference between applying the X gate to each qubit separately

and applying the 2-qubit X gate to a 2-qubit state. Until this point the qubits do not

really interact with each other, they just coexist. Another perspective on quantum oper-

ators can be given by the spectral decomposition theorem:

Let operator A with eigenvalues {λ1, λ2, ...λn} and eigenvectors {|v1〉 , |v2〉 , ... |vn〉} can

be written as :

Â =
n∑
j=1

λi |vi〉 〈vi|

There is a commonly used set of multiple qubit gates, the control-U gates that use

one or more qubits as control and the other qubit as target. The control gate changes

the target qubit quantum state if the Control qubit is |1〉 and does nothing to the target

qubit if the control qubit is |0〉.
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Generally, C-unitary gates have the following form :

Let unitary operator U=

 a b

c d

 , C − U =



1 0 0 0

0 1 0 0

0 0 a b

0 0 c d


|q0〉
|q1〉

|q2〉 U

Accordingly, CC-unitary gates have two control qubits and one target qubit, and they

have the following form:

CC - U =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 a b

0 0 0 0 0 0 c d



|q0〉
|q1〉

|q2〉 U

The matrix representation of the control unitary changes according to which qubit is

the control and which is the target. For example if we use the first qubit as control and

the second as target:

C - NOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


|q0〉

|q1〉

And if we use the first qubit as target and the second as control:

C - NOT =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


|q0〉

|q1〉
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Other notable multiqubit gates are the following:

Toffoli=CC-Z=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



|q0〉
|q1〉

|q2〉

SWAP=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


|q0〉

|q1〉
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1.2 Quantum circuit

Quantum circuit is a sequence of quantum gates (reversible transformations) acting on

qubits with the intention to perform a desired computation. A quantum circuit consists of

qubits (later we will refer to them as quantum registers) which appear like wires that move

horizontally in the schematic representation. Qubits are aligned vertically, are enumerated

and do not cross each other’s route. Quantum gates look like nodes in which the wires

go through. Each node has a name that describes its action, and the vertical lines show

which qubit acts as the target and which as the control.

Figure 1.2: Quantum circuit example

1.2.1 Quantum register

A classical register is the storage used by a classical processor. Accordingly, a quantum

register “stores” the value of one or many qubits in order to be used for computations in

a quantum processor. A classical register of n size can store just one of the 2n possible

bitstrings on the other hand, the quantum register can store all 2n possible bitstrings at

once. However, there are some things that a classical register can do that the quantum
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register can not. For example, if we want to fetch a value from a classical register, we can

do it without losing the rest of the stored data. On the other hand, if we make a single

measurement on a quantum register, we get one value, and all the other information is

gone. We will analyze this uniquely quantum phenomenon in chapter 1.4. Another thing

that we can not do with a quantum register is to make a copy of a stored value. This is

known as the "No-cloning theorem"[10].

1.3 Quantum entanglement

Now, this is a feature only found in quantum mechanics. There is no classical analogue.

Quantum entanglement can be described as the invisible link between two or more par-

ticles. These particles remain entangled no matter how far apart is one from the other

and any measurement (observation) of any of these particles affects the other particles as

well. We can not describe the quantum state of one of these particles without referring

to the others. They share a common unified state. Now let us see how we can create an

entangled pair (a Bell state or an EPR pair).

|x〉 H

|ψout〉 = |0,y〉+(−1)x|1,ȳ〉√
2

|y〉

x = |0〉 , y = |0〉 , |ψout〉 =
|00〉+ |11〉√

2
= B00 , x = |0〉 , y = |1〉 , |ψout〉 =

|01〉+ |10〉√
2

= B01

x = |1〉 , y = |0〉 , |ψout〉 =
|00〉 − |11〉√

2
= B10 , x = |1〉 , y = |1〉 , |ψout〉 =

|01〉 − |10〉√
2

= B11

1.4 Quantum Measurement

Quantum measurement plays a fundamental role in quantum computation because, at

some point, we have to be able to get information out of the computational system. Let
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us consider a general qubit |ψ〉 = a |0〉+b |1〉 , a , b ∈ C . When a measurement is made,

the qubit will be forced into the state |ψ〉 7→ |0〉 or |ψ〉 7→ |1〉. After measurement, the

original state is lost, and the quantum superposition collapses. With a single measurement

it is not possible to determine a, b. So, if we want to extract information about the

complex coefficients a,b we have to produce the same state and measure it over and

over. So, given a quantum state |ψ〉 = a |0〉 + b |1〉 , a , b ∈ C what is the probability

of measuring |0〉 or |1〉? The most common measurement model is the projective or Von

Neumann measurement. At this point we must present the projection operator.

Projection operators are Hermitian⇒ P = P †

Projection operators are involutory⇒ P 2 = P

Projection operators are orthogonal⇒ P0 ∗ P1 = P1 ∗ P0 = 0

P0 = |0〉 〈0| =

 1 0

0 0

 , P1 = |1〉 〈1| =

 0 0

0 1

 ,
2∑
i=1

Pi = P0 + P1 =

 1 0

0 1

 = I

The probability of measuring |ψ〉 in the state |0〉 is Pr(0) = 〈ψ|P0 |ψ〉 = Tr (P0 |ψ〉 〈ψ|)

The probability of measuring |ψ〉 in the state |1〉 is Pr(1) = 〈ψ|P1 |ψ〉 = Tr (P1 |ψ〉 〈ψ|)



Chapter 2

Basic quantum algorithms and

subroutines

The main quantum linear solving algorithm that we are going to analyse in my thesis

is the HHL algorithm invented by A. W. Harrow, A. Hassidim and S. Lloyd in 2008[1].

The quantum algorithms that are presented in this chapter are vital parts of the HHL.

The quantum phase estimation algorithm lies in the heart of HHL and quantum Fourier

transform is a key subroutine for quantum phase estimation.

Figure 2.1: HHL QPE QFT

18
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2.1 Quantum Fourier transform

The quantum Fourier transform (QFT)[11] is the quantum analogue of the classical inverse

discrete Fourier transform (IDFT).The Fourier transform (FT) is one of the most useful

mathematical tools in modern science and engineering. FT transforms data from the time

domain to the frequency domain. It is used, amongst many other things, to:

• remove noise from data

• produce holograms

• compress data

• process digital signals

The FT is especially useful when we process data with underlying periodicity.

Figure 2.2: Fourier transform

For example, imagine a sinusoid wave with a high-frequency noise:

1. We apply classical Fourier transform to the data in order to obtain the frequency

spectrum

2. We discard the high frequency peak (and its mirrored peak!)
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3. We apply inverse Fourier transform

4. Finally, we retrieve the original data without the high-pitched noise

First, we must define the discrete version of the Fourier transform, which will form

the basis for the quantum algorithm. DFT acts on a sequence of N complex numbers,

for instance a column vector x = (x1, x2,...xN−1)
T maps it to a new column vector y =

(y1, y2,...yN−1)
T using the following mapping formula:

yk =
1√
N

N−1∑
j=0

xje
−2πi kj

N =
1√
N

N−1∑
j=0

xj

[
cos

(
2πi

kj

N

)
− i sin

(
2πi

kj

N

)]
The discrete Fourier transform is an invertible linear transformation. The inverse dis-

crete Fourier transform given the same sequence of complex N numbers has the following

form:

yk =
1√
N

N−1∑
j=0

xje
2πi kj

N =
1√
N

N−1∑
j=0

xj

[
cos

(
2πi

kj

N

)
+ i sin

(
2πi

kj

N

)]

Fast Fourier transform

As the name implies, the fast Fourier transform (FFT) is an algorithm that determines

the discrete Fourier transform of an input significantly faster than computing it directly.

The main idea behind the FFT is that of “divide and conquer”. In other words, if we

split the problem size until we are left with groups of two and then directly compute

the discrete Fourier transform for each of these pairs and then merge the results of these

discrete DFTs we can get a significant speedup over applying DFT on the original N-size

sequence.

However, the speedup depends on the size of the sequence. If N=2n the FFT provides

maximum speedup O(N log2N). If N is a prime number, then FFT provides no speedup

O(N2) and if N fits neither case FFT provides a significant speedup. There are many

different FFT variations such as the Cooley-Tukey algorithm and Bruun’s FFT algorithm.
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Some FFT algorithms manage to produce results with complexity O(N2) no matter the

size of N.

Quantum Fourier transform

Since quantum states are vectors of complex numbers, we can also apply the DFT on

them, only this time we call it quantum Fourier transform(QFT). QFT is the quantum

analogue of the inverse discrete Fourier transform.

QFT acts on a quantum state : |ψ〉 =
N−1∑
j=0

aj |j〉 and transforms it to the quantum

state: |ψ′〉 =
N−1∑
k=0

bk |k〉. Now, the complex coefficients are written on the Fourier basis:

bk =
1√
N

N−1∑
j=0

aje
2πi kj

N and |ψ′〉 has the following form:

|ψ′〉 = 1√
N

N−1∑
k=0

N−1∑
j=0

aje
2πi kj

N |k〉

QFT operator

We have mentioned in the first chapter that all applicable quantum operators are unitary.

Therefore, if we want to apply the QFT on a quantum state we must find a unitary

operator F̂ that acts on a quantum state and transforms it to its IDFT. By definition a

unitary operator satisfies the condition: UU † = U †U = I. The QFT operator and the

inverse QFT operator can be written as follows:

F̂ =
N−1∑
j,k=0

1√
N
e2πi kj

N |k〉 〈j| , F̂ † =
N−1∑
j,k=0

1√
N
e−2πi jk

N |j〉 〈k|

And the quantum Fourier transformation as follows:

QFT : F̂ |ψ〉 =
N−1∑
j,k=0

1√
N
e2πi kj

N |k〉 〈j|
N−1∑
j=0

aj |j〉 =
1√
N

N−1∑
j,k=0

e
2πikj
N aj |k〉
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Figure 2.3: General circuit QFT

Figure 2.4: General circuit IQFT

Now that we have presented the preliminaries of generalized QFT let us see the QFT

in more detail. The 2-qubit QFT is implemented by the following circuit:

Figure 2.5: 2-qubit QFT

Steps of the QFT

1. |ψ0〉 = |x1〉 ⊗ |x0〉 = |x1x0〉

2. |ψ1〉 = H ⊗ I |ψ0〉

3. |ψ2〉 = C −R2 |ψ1〉
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4. |ψ3〉 = I ⊗H |ψ2〉

5. |ψ4〉 = SWAP |ψ3〉

QFT consists almost entirely of Hadamard gates and controlled rotation gates. The

SWAP gates at the end can be avoided simply by classically rearranging the qubits after

measurement. The sequence of gates is fully decomposed below:

• H⊗I = 1√
2

 1 1

1 −1

⊗
 1 0

0 1

 = 1√
2


1

 1 0

0 1

 1

 1 0

0 1


1

 1 0

0 1

 −1

 1 0

0 1




= 1√

2



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



• C −Rn =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
2πi
2n


⇒ C −R2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
2πi
22


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i



• I⊗H =

 1 0

0 1

⊗ 1√
2

 1 1

1 −1

 = 1√
2


1

 1 1

1 −1

 0

 1 1

1 −1


0

 1 1

1 −1

 1

 1 1

1 −1




= 1√

2



1 1

1 −1

0 0

0 0

0 0

0 0

1 1

1 −1



• SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



hence F̂2 = SWAP (I ⊗H)(C −R2)(H ⊗ I) =
1

2



1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i
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IBM Qiskit
At this stage we are ready to confirm the math behind this algorithm by simulating

some proof of principle examples using the IBM platform Qiskit. IBM has built work-

ing quantum computers and has also developed a software platform based on the open

quantum assembly language (OpenQASM). IBM has made an open source framework

for developing and testing quantum algorithms, called the quantum information science

kit (Qiskit) and the cloud computing platform IBM Q Experience. Qiskit is a Python

package that combines highlevel interface with OpenQASM language. Qiskit lets the user

run quantum simulations locally as well as on IBM’s backends, quantum simulators and

quantum computers[12].

Figure 2.6: IBM quantum computer at New York US
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Qiskit simulation 4-qubit QFT

We will show 3 distinct runs to show what the algorithm really does.

Case 1 :|ψIN〉 = |0000〉

Figure 2.7: QFT circuit |ψIN〉 = |0000〉

Figure 2.8: |ψIN〉 = |0000〉

Figure 2.9: |ψOUT 〉 = |++++〉
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Case 2 :|ψIN〉 = |0100〉

Figure 2.10: QFT circuit |ψIN〉 = |0100〉

Figure 2.11: |ψIN〉 = |0100〉

Figure 2.12: |ψOY T 〉 = |+〉 |+〉 |−〉 1√
2
(|0〉+ i |1〉)

Case 3 :|ψIN〉 = |1000〉

Figure 2.13: QFT circuit |ψIN〉 = |1000〉
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Figure 2.14: |ψIN〉 = |1000〉

Figure 2.15: |ψOY T 〉 = |+〉 |+〉 |+〉 |−〉

As we can see the QFT takes as input a number in binary form, which acts as the

frequency for the rotation around the z axis. These rotations on the XY hyper-plane are

controlled by the frequency. For example :

|ψIN〉 = |x3x2x1x0〉 = |1000〉 = 810

|ψout〉 =
1√
2
(|0〉+e2·(2.(2·(2πi 8

16))) |1〉) 1√
2
(|0〉+e2.(2·(2πi 8

16)) |1〉) 1√
2
(|0〉+e2·(2πi 8

16) |1〉) 1√
2
(|0〉+e2πi 8

16 |1〉)

|ψout〉 =
1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉) = |+〉 |+〉 |+〉 |−〉

Now it is obvious that the LSB(x0) rotates with frequency 8:input
16=24:4 qubitQFT

= 1
2
. x1

rotates two times faster than x0. x2 rotates two times faster than x1 and four times faster

than x0 and so on.
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Classical vs quantum Fourier transform

Time complexities and quantum speedup

As we have already seen the QFT circuit consists of Hadamard and controlled rotation

gates and possibly SWAP gates . We can avoid the Swap gates if we classically rearrange

the qubits. We can estimate the space complexity of QFT by counting the number of

gates in the circuit :

• Hadamard and C-Rotation gates :1 + 2 + 3 + ...+ n =
n∑
i=1

i = n(n+1)
2

• SWAP gates:
⌊
n
2

⌋

QFT : O(n2) Gates , n number of qubits

DFT : O(22n) Gates , n numbers of bits

FFT : O(n2n) Gates , n numbers of bits

The best QFT algorithms manage to achieve efficient approximations with just O(n log n)

gates, n number of qubits.
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2.2 Quantum phase estimation

Quantum phase estimation (QPE) is a quantum algorithm[13] which estimates the eigen-

value(phase) of an eigenvector of a unitary U operator. As we have shown in chapter 1,

we can write an operator according to the spectral decomposition theorem as follows:

Let operator A with eigenvalues {λ1, λ2, ...λn} and eigenvectors {|v1〉 , |v2〉 , ... |vn〉} can

be written as :

Â =
n∑
j=1

λi |vi〉 〈vi|

The eigenvalues of unitary operators are roots of unity and can be written as follows:

λi = e2πiϕ , ϕ = 0.ϕ1.ϕ2...ϕN , 0 6 ϕ < 1

It is useful for the rest of this QPE overview to present φ as a binary fraction. Let vi

an eigenvector of a unitary matrix U and λi its corresponding eigenvalue then:

U |vi〉 = λi |vi〉 = e2πiϕ |vi〉

The algorithm takes as input arguments the unitary matrix U accessed by an oracle

and a vector b and outputs an eigenvalue φ of U. Actually, the algorithm outputs a

quantum state |2nφ〉 where, n is the number of qubits in the vector register and ϕ =

0.ϕ1.ϕ2...ϕN . The quantum circuit consists of 2 quantum registers Ra, Rv. Ra is an m-

qubit ancillary quantum eegister that is initialized on |0〉⊗m. It is important to choose the

right size(accuracy) for this register because it is the register that will eventually store

the eigenvalue. Rv is an n-qubit register that stores the inputted eigenvector of U. The

initial and the ultimate state of the algorithm are the following:

|ψIN〉 = |Ra〉 |Rv〉 = |0〉⊗m|v〉n : Initial state

|ψOUT 〉 =
1

2m

2m−1∑
k,j=0

e−2πιj
(k−2mϕ)

2m |k〉 |v〉n : Output state
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Figure 2.16: Quantum phase estimation generalized circuit

Steps of QPE

• |ψ0〉 = |Ra〉 |Rv〉 = |0〉⊗m|v〉n : Initial state

• |ψ1〉 = 1√
2m

2m−1∑
j=0

|j〉|v〉n : Superposition in anc register

• |ψ2〉 = C − U2j |ψ1〉 = 1√
2m

2m−1∑
j=0

e2πiϕj |j〉|v〉n : Control Rotations

• |ψ3〉 = 1
2m

2m−1∑
k,j=0

e−2πιj
(k−2mϕ)

2m |k〉 |v〉n : QFT† on anc register

QPE measurement

The end state of the algorithm is the following:

|ψout〉 =
1

2m

2m−1∑
k,j=0

e−2πιj
(k−2mϕ)

2m |k〉 |v〉n , ϕ ∈ R , 0 6 ϕ < 1 , k ∈ N

From this expression arise two possible cases:

Case 1: 2mϕ ∈ N

In this case if we make a measurement we get the following:

Pr (|2mϕ〉) =

∣∣∣∣∣〈2mϕ| 1

2m

2m−1∑
k,j=0

e−2πij
(k−2mϕ)

2m |k〉

∣∣∣∣∣
2

=

∣∣∣∣∣〈2mϕ| 1

2m

2m−1∑
j=0

e−2πij
(2mϕ−2mϕ)

2m |2mϕ〉

∣∣∣∣∣
2

=
1

22m

∣∣∣∣∣
2m−1∑
j=0

e−2πij
(2mϕ−2mϕ)

2m 〈2mϕ | 2mϕ〉

∣∣∣∣∣
2

=
1

22m

∣∣∣∣∣
2m−1∑
j=0

e0

∣∣∣∣∣
2

=
22m

22m
= 1
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Case 2: 2mϕ /∈ N

Now we can only approximate the value of φ by rounding 2mϕ to the nearest integer. So,

we write 2mϕ = 2mδ + α where α is the nearest integer to 2mϕ and 0 6 |2mδ| 6 1
2
.We

reform the final state as follows:

|ψout〉 =
1

2m

2m−1∑
k,j=0

e−2πιj
(k−(2mδ+α))

2m |k〉 = 1

2m

2m−1∑
k,j=0

e−2πιj
(k−a)
2m e2πijδ |k〉

Now, this is the probability of measuring the best possible approximation α:

Pr (|α〉) =

∣∣∣∣∣〈α| 1

2m

2m−1∑
k,j=0

e−2πιj
(k−a)
2m e2πijδ |k〉

∣∣∣∣∣
2

=

∣∣∣∣∣〈α| 1

2m

2m−1∑
j=0

e−2πιj
(a−a)
2m e2πijδ |α〉

∣∣∣∣∣
2

=
1

22m

∣∣∣∣∣
2m−1∑
j=0

e0e2πijδ 〈α | α〉

∣∣∣∣∣
2

=
1

22m

∣∣∣∣∣
2m−1∑
j=0

e2πijδ

∣∣∣∣∣
2

Pr (|α〉) = 1

22m

∣∣∣∣1− e2πiδ2m

1− e2πiδ

∣∣∣∣2 , δ 6= 0

=
1

22m

∣∣∣∣2 sin (π2mδ)2 sin (πδ)

∣∣∣∣2 = 1

22m

∣∣∣∣sin (π2mδ)sin (πδ)

∣∣∣∣2 ,
∣∣1− e2ix

∣∣2 = 4|sin (x)|2

>
1

22m

∣∣∣∣sin (π2mδ)πδ

∣∣∣∣2 , |sin (πδ)| 6 |πδ| for δ 6 1

2m
+ 1

>
1

22m

|2 · 2mδ|2

|πδ|2
, |2 · 2mδ| 6 |sin (π2mδ)| for δ 6 1

2m
+ 1

=
1

22m

2222mδ2

π2δ2
=

4

π2
≈ 0.405
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QPE Qiskit simulation

The first gate we ran was the phase gate S which is a diagonal matrix so, we can

easily find its eigenvectors and corresponding eigenvalues. S gate has the following matrix

representation[14]:

Phase gate S :

 1 0

0 i

 =

 1 0

0 e2πi 1
4

 = 1 ·

 1

0

+ e2πi 1
4

 0

1


|v1〉 = |0〉 , λ1 = 1

|v2〉 = |1〉 , λ2 = i = e2πi 1
4

Figure 2.17: QPE S gate Qiskit circuit

|2mϕ〉 = |01〉 , 22ϕ = 1⇒ ϕ =
1

4
⇒ e2πiϕ = e

πi
2 = i

Figure 2.18: QPE S gate QASM Sim Figure 2.19: QPE S gate Ibmq Lima
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Next, we ran the QPE algorithm for the phase gate T which has the following matrix

representation:

PhaseGate T :

 1 0

0 e2πi 1
8

 = 1 ·

 1

0

+ e2πi 1
8

 0

1


|v1〉 = |0〉 , λ1 = 1

|v2〉 = |1〉 , λ2 = e
πi
4 = cos

(
πi

4

)
+ i sin

(
πi

4

)
=

1√
2
+

i√
2

Figure 2.20: QPE T gate Qiskit circuit

|2mϕ〉 = |001〉 , 23ϕ = 1⇒ ϕ =
1

8
⇒ e2πiϕ = e

πi
4 =

1√
2
+

i√
2

Figure 2.21: QPE T gate QASM sim
Figure 2.22: QPE T gate Ibmq Manila
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Finally, we ran QPE for a random gate that has ϕ = 31
32
.

Figure 2.23: QPE random gate Qiskit circuit

Figure 2.24: QPE random gate Qasm Simulator
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Figure 2.25: QPE random gate Ibmq Melbourne comprising of 14 qubits

|2mϕ〉 = |11111〉 , 25ϕ = 31⇒ ϕ =
31

32



Chapter 3

Quantum linear system solver

3.1 Introduction

The linear system problem (LSP) is a very common mathematical problem that arises

both on each own and as a subroutine in more complex problems. A general system of m

linear equations and n unknowns can be written as follows:

a11x1 + a12x2 + ...+ a1nxn = bn

a21x1 + a22x2 + ...+ a2nxn = b2

...

am1x1 + am2x2 + ...+ amnxn = bm

x1



a11

a21

...

am1


+x2



a12

a22

...

am2


+· · ·+xn



a1n

a2n

...

amn


=



b1

b2

...

bm


→



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn





x1

x2

...

xn


=



b1

b2

...

bm
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The general definition of the LSP is the following:

Given an invertible matrix A ∈ CN×N , and a vector b ∈ CN find a vector x ∈ CN such that:

A~x = ~b

3.2 Classical approaches for solving linear equations

3.2.1 Gaussian elimination

The most common way to solve a system of linear equations is Gaussian elimination.

Gaussian elimination is an algorithm that makes use of elementary row operations in

order to produce a convenient matrix decomposition of the original matrix (row echelon

form and reduced row echelon form), assign values to the independent variables and use

back substitution to determine the values of the dependent variables.

Elementary row operations:

1. Swap the positions of two rows

2. Multiply by a non-zero scalar

3. Add to one row a scalar multiple of another

A matrix is in row echelon form if and only if all the following conditions hold:

1. The first nonzero entry in each row is 1

2. Each successive row has its first nonzero entry in a later column

3. All entries below the first nonzero entry of each row are zero

4. All full rows of zeroes are the final rows of the matrix
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A =



1 a b c

0 1 d e

0 0 1 f

0 0 0 1


matrix in row echelon form

The Gaussian elimination algorithm has arithmetic complexity O(n3), n: number of

variables.

3.2.2 Conjugate gradient descent

Another classical algorithm that solves the LSP is the conjugate gradient descent[15]. In

this case we must add some limitations to the given matrix A. For this algorithm to work

A must be positive semi-definite and sparse.

• A matrixM is said to be positive semi - definite if x∗Mx > 0 for all x ∈ Cn

• A matrix M is s-sparse if it has at most s nonzero entries per row

If we meet those expectations, then the conjugate gradient descent can iteratively find

a solution for the LSP. To simply outline this method :

• The algorithm makes a guess for the solution x

• And then gradually minimizes the quadratic function ‖Ax− b‖2 to finds its global

minimum.

Conjugate gradient descent has complexity: O
(
nks log

(
1
ε

))
where s defines the sparsness

of A, k is the condition number of A, cond (A) = ‖A‖∞‖A−1‖∞, n: number of variables,

ε: the accepted error.
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Classical linear system solvers for large matrices

Classical computers are evolving at a tremendous rate both in hardware and algorith-

mic efficiency allowing us to solve bigger and bigger linear systems of equations. With the

increased speed comes an increase in the size of problems that can be solved in reasonable

time, provided that sufficient memory is available.

More precisely we present a list below that shows the biggest solvable matrices from

1993 to 2021. The data is from the TOP500[? ]

Figure 3.1: Largest solvable matrices

3.3 Quantum approach

As we have previously seen the classical approach on LSP has reached a certain stale-

mate. Quantum computers promise to solve efficiently that kind of problems. Due to the

nature of quantum computation, the size of the linear system grows exponentially with

the increasing number of functional qubits.

There are two main ways to solve LSP using quantum computers:

• Exact algorithms: Exact algorithms such as the HHL [1], which is completely quan-

tum and is the first algorithm that we will go through.

• Approximate algorithms: Approximate algorithms that are hybrid quantum-classical

algorithms. In the next chapter we will work with the variational quantum linear
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solver (VQLS) [2].

We will cross-examine these two algorithms in respect to circuit depth, number of qubits

needed and result fidelity.

3.3.1 HHL algorithm

The HHL algorithm was introduced by A. W. Harrow, A. Hassidim and S. Lloyd in 2009

in order to solve the quantum variation of the linear system problem. The definition of

the quantum linear system problem is the following:

Let A N× N Hermitian matrix and |b〉 unit vector, find |x〉 such that: A |x〉 = |b〉

There are some restrictions on matrix A. A must be sparse, square and well condi-

tioned. If matrix A is not Hermitian, we can reformulate the problem as follows:

if A 6= A† then

 0 A

A† 0


 0

−→x

 =

 −→b
0


Matrix A is accessed by an oracle and the input vector b should be normalized to be

initialized.

|b〉 :=

∑
i

bi |i〉∥∥∥∥∑
i

bi |i〉
∥∥∥∥

2

The goal of the algorithm is to find a |x〉 solution vector such that A |x〉 = |b〉. So, all

we need to do is to construct |x〉 as follows:

A |x〉 = |b〉 ⇒ |x〉 = A−1 |b〉

We need to apply the reciprocal of matrix A to vector |b〉 to get the solution vector |x〉.

This is the reason that many refer to this problem as quantum matrix inversion problem.
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The HHL is an exact algorithm, that finds a |x̃〉 vector, which is proportional to |x〉.

If we use HHL to obtain the whole |x〉, we lose the computational speedup over the

classical algorithms. Instead, we can extract information about the global properties of

the solution vector |x〉 by computing the expectation value 〈x|M |x〉 where M is a Pauli

operator.

Now, we must introduce some notations. We need three quantum registers for this

problem.

• Memory register: is initialized to |b〉 and will eventually store the solution vector

|x〉. This register will store n qubits where n = log2N where N: number of variables

• Eigenvalue register: is initialized to 0 and it has the necessary size to store the

eigenvalues of A. So, its size depends on the accuracy, which we need for the first

step of the algorithm(QPE) to work efficiently

• Ancillary register: is initialized to 0 and lets us perform the controlled-rotations

in the second step of the algorithm. At the end of the algorithm, we postprocess

(value=1) this register that will also serve as a flag indicating the success or failure

of the algorithm. The ancillary register stores just one qubit.

Figure 3.2: HHL general circuit



Quantum linear system solver 42

State progression

|ψI〉 = |0〉a |0〉
⊗m
m
|b〉v

clock−−−→ |0〉α

√
2

T

T−1∑
τ=0

sin

(
π (τ + 1/2)

T

)
|τ〉m|b〉v = |ψ1〉

|ψ1〉 = |0〉α

√
2

T

T−1∑
τ=0

sin

(
π (τ + 1/2)

T

)
|τ〉m|b〉v

QPE−−−→
2n−1∑
j=0

|0〉a|λj〉mβj |uj〉v = |ψ2〉

|ψ2〉 =

2n−1∑
j=0

|0〉a|λj〉mβj |uj〉v
ancRotation−−−−−−−−→

2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|λj〉mβj |uj〉v = |ψ3〉

|ψ3〉 =
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|λj〉mβj |uj〉v

QPE−1

−−−−−→
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|0〉⊗m

m
βj |uj〉v

|ψ4〉 =
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|0〉⊗m

m
βj |uj〉v

post selection−−−−−−−−→
2n−1∑
j=0

(
C

λj
βj

)
|1〉a |0〉

⊗m
m

βj |uj〉v = |ψ5〉

HHL consists of 4 main steps:

1. Quantum phase estimation in order to extract the eigenvalues λj of matrix A

2. Controlled-rotation on the ancilla qubit to create 1
λj

3. Inverse quantum phase estimation to uncompute the eigenvalue register

4. Classical post-selection on the ancillary register and then the computation of the expecta-

tion value 〈x|M |x〉

If we decompose matrix A according to the eigendecomposition, we get the following:

A |x〉 = |b〉 initial⇒ R†ΛR |x〉 = |b〉
QPE⇒ ΛR |x〉 = R |b〉 ancRt⇒ R |x〉 = Λ−1R |b〉

QPE−1

⇒ |x〉 = R†Λ−1R |b〉

Step1: Quantum phase estimation

In the HHL algorithm the given matrix A is not unitary but Hermitian. A is Hermitian and we

know that eiAt is unitary, so we need to apply conditional Hamiltonian evolution to create eiAt.

The conditional Hamiltonian evolution is conditioned over t (time). The eigenvalue register will

be initialized as a clock register in order to apply properly the conditional Hamiltonian evolution.
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|ψI〉 = |0〉a |0〉
⊗m
m
|b〉v

clock−−−→ |0〉α

√
2

T

T−1∑
τ=0

sin

(
π (τ + 1/2)

T

)
|τ〉m|b〉v = |ψ1〉

The conditional Hamiltonian operator is the following:

T−1∑
τ=0

|τ〉 〈τ | ⊗ e
ιAτt0
T

So, if We apply conditional Hamiltonian evolution on the clock register we get :

(
T−1∑
τ=0

|τ〉 〈τ | ⊗ e
ιAτt0
T

)√
2

T

T−1∑
τ=0

sin

(
π (τ + 1/2)

T

)
|τ〉m⊗|b〉v =

=

√
2

T

T−1∑
τ=0

|τ〉 〈τ | sin
(
π (τ + 1/2)

T

)
|τ〉m⊗ e

ιAτt0
T |b〉v

Where T = 2t and t0 = O
(
κ
ε

)
. It is possible to run a proof of principle example with a

simpler clock (Haddamard superposition) but this uniform clock minimizes error.

After the conditional Hamiltonian simulation, we apply inverse quantum Fourier transform

to the memory-clock register and we get the following quantum state:

|ψ1〉 = |0〉α

√
2

T

T−1∑
τ=0

sin

(
π (τ + 1/2)

T

)
|τ〉m|b〉v

QPE−−−→
2n−1∑
j=0

|0〉a|λj〉mβj |uj〉v = |ψ2〉

Step2: Controlled rotation on the ancillary register

In this step we implement a non-unitary map : |λj〉
map−−→ λj

−1 |λj〉. We perform a controlled

unitary transformation Ry (θj) on the ancilla register, controlled by the eigenvalue register.

Ry (θj) = U (θ, ϕ = 0, λ = 0) =

 cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(λ+ϕ) cos

(
θ
2

)
 =

 cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)


Where θj = cos−1
(
C
λ̃j

)
, λ̃j is a m-qubit approximation of λj and C 6 min |λj |

If the eigenvalues of A are too small, then the matrix is ill-conditioned, and we can not perform
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the matrix inversion. After this step our system is in the following state:

|ψ2〉 =

2n−1∑
j=0

|0〉a|λj〉mβj |uj〉v
ancRotation−−−−−−−−→

2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|λj〉mβj |uj〉v = |ψ3〉

Step3: Inverse quantum phase estimation

Now that we have successfully created the reciprocal of the eigenvalues
√

1− C2

λ2j
|0〉a + C

λj
|1〉a

we no longer need the memory register. We perform inverse quantum phase estimation (IQPE)

to disentangle (uncompute) the memory register. The system is now:

|ψ3〉 =
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|λj〉mβj |uj〉v

QPE−1

−−−−−→
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|0〉⊗m

m
βj |uj〉v

Step4: Post selection and expectation values

At this point if we make a measurement and get 1 on the ancilla register, then we know we

have successfully “constructed” a state that is proportional to the desired solution.

|ψ4〉 =
2n−1∑
j=0

(√
1− C2

λ2
j

|0〉a +
C

λj
|1〉a

)
|0〉⊗m

m
βj |uj〉v

post selection−−−−−−−−→
2n−1∑
j=0

(
C

λj
βj

)
|1〉a |0〉

⊗m
m

βj |uj〉v = |ψ5〉

We know that a measurement on the vector register will yield just one of the eigenvectors. In

order to make full use of the quantum superposition we have created, we measure an expectation

value instead. It is possible to get the full solution but in order to do so we will need many

successive runs and all the quantum speedup will be lost.

Computational complexity: quantum vs classical
As we have mentioned before the best-known classical algorithm that solves LSP is the conju-

gate gradient descent with complexity: O
(
Nks log

(
1
ε

))
. HHL has complexity: O

(
log (N) k2s2 1

ε

)
where, N:number of variables, k:condition number=k(A) =

∥∥A−1
∥∥
∞‖A‖∞ , s:sparsity = maxi-

mum non-zero entries per row, ε= accepted error



Quantum linear system solver 45

HHL provides an exponential speedup over the number of variables, but it is sensitive to the

changes of sparseness, condition number and error. We can see that eventually the algorithm

can be useful for inverting big matrices with the condition that the future quantum hardware is

able to provide a plethora of functional qubits.

3.3.2 HHL implementation

We ran the HHL algorithm in Qiskit with 3 ancillary qubits and the conditional Hamiltonian

evolution has expansion_mode= ‘Suzuki’ and number of slices =30 We ran it first without noise

using the state vector Simulator as backend and then we added noise using the noise model from

ibmq_quito.

Figure 3.3: HHL circuit for a 2x2 optimized problem

The above Gate sequence implements the following Linear System:

 3
2

1
2

1
2

3
2

 for |b〉 = 0,
1√
2

 1

1

 ,
1√
2

 1

−1
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Figure 3.4: ibmq_quito circuit comprising of 5 qubits connected as in the figure

Figure 3.5: ibmq_quito noise model

The measured variables for the subsequent simulations are the following:

• fidelity: fid (x, y) = Tr
(√√

xy
√
x
)2

, x = HHL
‖HHL‖2

, y = classical
‖classical‖2

• Circuit depth

• Circuit width (minimum qubits needed)

The test matrices are on the appendix A.2

2x2 matrix implementation in Qiskit
We ran the HHL algorithm from IBM Qiskit Textbook [16] with 3 ancillary qubits and apply

the conditional Hamiltonian evolution with expansion_mode= ‘Suzuki’ and number of slices =30

for 7 different diagonal 2x2 matrices with condition numbers (1, 1.5, 2, 5, 10, 100, 1000) to see

what is the correlation between condition number and fidelity. As backend we have used the

‘state_vector_simulator’
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Figure 3.6: 2x2 diagonal matrices ‘state_vector_simulator’

Afterwards we ran one more simulation for the 2x2 case but this time we ran the HHL for 5

matrices with condition numbers(1.5, 2, 5, 10, 100) with s=1 and s=2 respectively. By doing so

we opt to show the correlation between sparsity and fidelity.

Figure 3.7: 2x2 matrices with s=1,2 ‘state_vector_simulator’

In the last simulation for the 2x2 case we added noise using the ibmq_quito noise model and

ran the previous simulation for 5 matrices with condition numbers(1.5, 2, 5, 10, 100) with s=1
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and s=2 in order to show how noise sensitive is the algorithm.

Figure 3.8: 2x2 matrices with s=1,2 noisy simulation

4x4 Matrix implementation in Qiskit
We ran the HHL algorithm from IBM Qiskit Textbook [16] with 3 ancillary qubits and apply

the conditional Hamiltonian evolution with expansion_mode= ‘Suzuki’ and number of slices =30

for 7 different 4x4 diagonal matrices with condition numbers (1, 1.5, 2, 5, 10, 100, 1000) to see

what is the correlation between condition number and fidelity. As backend we have used the

‘state_vector_simulator’

Figure 3.9: 4x4 diagonal matrices ‘state_Vector_simulator’

Afterwards, we ran the HHL for 4 matrices with condition number (10) with s=1-4. By doing

so we opt to show the correlation between sparsity and fidelity.
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Figure 3.10: 4x4 matrices with s=1-4, c=10 ‘state_Vector_simulator’

In the last simulation for the 4x4 case we added noise using the ibmq_quito noise model and

ran a noisy simulation for five 4x4 matrices with condition numbers(1. 5, 2, 5, 10, 100) with

s=1,2 respectively in order to show how noise sensitive is the algorithm.

Figure 3.11: 4x4 matrices with s=1,2 noisy simulation
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8x8 Matrix implementation in Qiskit
We ran the HHL algorithm from IBM Qiskit Textbook[16] while keeping the default argu-

ments (3 ancillary qubits, expansion_mode= ‘Suzuki’) for 7 different diagonal 8x8 matrices with

condition numbers (1, 1.5, 2, 5, 10, 50, 100) to see what is the correlation between condition

number and fidelity. We run it first without noise (backend : ‘state_Vector_simulator’) and

then with noise (noise model=ibmq_quito). The results are presented below:

Figure 3.12: 8x8 diagonal matrices ‘state_vector_simulator’

Figure 3.13: 8x8 diagonal matrices noisy simulation
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3.3.3 Running HHL on a real quantum device: optimised exam-

ple

In the previous section we ran the standard algorithm provided in Qiskit and saw that it uses 7

qubits, has a depth of ∼ 100 gates and requires a total of 54 CNOT gates[17]. These numbers are

not feasible for the current available hardware, therefore we need to decrease these quantities.

In particular, the goal will be to reduce the number of CNOTs by a factor of 5 since they have

worse fidelity than single-qubit gates. Furthermore, we can reduce the number of qubits to 4 as

was the original statement of the problem: the Qiskit method was written for a general problem

and that is why it requires 3 additional auxiliary qubits.

However, solely decreasing the number of gates and qubits will not give a good approximation to

the solution on real hardware. This is because there are two sources of errors: those that occur

during the run of the circuit and readout errors.

Qiskit provides a module to mitigate the readout errors by individually preparing and measuring

all basis states, a detailed treatment on the topic can be found in the paper by Dewes et al.[3]

To deal with the errors occurring during the run of the circuit, Richardson extrapolation can be

used to calculate the error to the zero limit by running the circuit three times, each replacing

each CNOT gate by 1, 3 and 5 CNOTs respectively[4]. The idea is that theoretically the three

circuits should produce the same result, but in real hardware adding CNOTs means amplifying

the error. Since we know that we have obtained results with an amplified error, and we can

estimate by how much the error was amplified in each case, we can recombine the quantities

to obtain a new result that is a closer approximation to the analytic solution than any of the

previous obtained values.
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Below we give the optimised circuit that can be used for any problem of the form

A =

 a b

b a

 and |b〉 =

 cos (θ)

sin (θ)

 , a, b, θ ∈ R

Figure 3.14: HHL optimized circuit
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Figure 3.15: IBM 5-qubit quantum processor

The following plot, shows the results from running the circuit above on real hardware for 10

different initial states[18]. The x-axis represents the angle θ defining the initial state in each case.

The results where obtained after mitigating the readout error and then extrapolating the errors

arising during the run of the circuit from the results with the circuits with 1, 3 and 5 CNOTs.

The next plot shows results without error mitigation nor extrapolation from the CNOTs[18].
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HHL implementation-results analysis
After experimenting with different matrix sizes, condition numbers and sparsities we have reached

the following conclusions:

• As expected, the condition number relates strongly to fidelity. The bigger the condition

number ,the lower the fidelity. Especially when k=1-10 (identity matrix) fidelity is almost

1 and when we run the extremely ill-conditioned (k=100) matrices, fidelity is close to 0

• Sparsity does not affect the fidelity in this proof of principle example

• Noise affects fidelity strongly in each case

• The max depth of the circuit does not vary with different condition numbers and sparsity

Matrix size 2x2 4x4 8x8
Qubits 7 8 9

Max depth 101 104 111

Table 3.1: HHL circuit depth, circuit width



Chapter 4

Variational quantum linear solver

4.1 Variational algorithms

Variational algorithms are hybrid quantum-classical algorithms that can be utilized in order

to solve general optimization problems as long as we can represent the problem as quantum

observable. Variational algorithms are heuristic. In quantum mechanics, variational algorithms

are commonly used to approximate the lowest energy state (ground state) of a quantum system for

chemistry problems[19]. Variational algorithms can also be utilized for linear system solving[2].

The procedure of a variational algorithm is the following:

• Construct an Ansatz, which is trainable gate sequence with some parameters. One can

vary both, the structure of the whole circuit and the parameters

• Make an initial guess by feeding the Ansatz with a quantum state

• The algorithm defines an efficient quantum circuit as the cost function

• The result of the cost function gets classically minimized. The classical optimizer returns

the set of parameters which are then fed to the quantum Ansatz

• This loop continues until the cost function reaches an accepted minimum value

55
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VQLS is a hybrid quantum-classical approach to the quantum linear system problem using

both classical and quantum computing methods to solve linear systems of equations. VQLS is

not an iteration on the HHL, but a proposed intermediate solution to HHL’s high demand of

qubits. The variational nature of the algorithm allows for it to be performed on NISQ(noisy

intermediate-scale quantum) devices.

Figure 4.1: Variational quantum linear solver general scheme[2]

Inputs and outputs
Inputs:

• Matrix A written as a linear combination of unitaries A =
L∑
l=1

clAl

• |b〉 which is prepared by a short-depth unitary transformation U such that: U |0〉 = |b〉

Output:

• The output of VQLS is a quantum state |x〉 which is proportional to the solution x of the

linear system: Ax = b

Hybrid optimization loop
The algorithm starts with the creation of an Ansatz V(a), which is a circuit that prepares an

arbitrary state |ψ(k)〉 = V (a) |0〉 as a potential solution |x(a)〉 = |ψ(k)〉 = V (a) |0〉 a, k parameters.

The VQLS algorithm defines a cost function in terms of overlap between the quantum states

|b〉 and A|x〉√
〈x|A†A|x〉

.

The result of the cost function C(a) is inputted to the classical device in order to be optimized

via a classical optimization algorithm which adjusts a, k in attempt to reduce the value of the

cost function. The process is iterated a number of times until the cost function’s output reaches
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a predetermined lower bound γ such that: C(a) 6 γ

Quantum Ansatz
The quantum Ansatz prepares a potential solution |x(a)〉 = V(a) |0〉 where V(a) is a trainable

gate sequence. V(a) can be expressed as a sequence of L gates V (a) = GKL(θL)...GK1(θ1), where

GK(θ) is the kth gate with input θ. Therefore a encompasses both k and θ(a=(k,θ)). k is a

discrete parameter determining the circuit layout, k ∈ N. θ are continuous parameters such as

rotational angles of gates. If we choose to vary both of the parameters k,θ we get a variable

structure ansatz and if we choose to vary one of the parameters k,θ we get a fixed structure

Ansatz[20].

For this example we will use a fixed structure Ansatz so, the configuration of the gates re-

mains the same for each run of the quantum circuit and all that changes are the θ parameters.

Cost function
The output of the quantum circuit is |Φ〉 = A |ψ(k)〉 =

L∑
l=1

clAl(V (a) |0〉). At this point we need

to introduce an efficient cost function that comprises the overlap between a projector |ψ〉 〈ψ| and

the subspace orthogonal to |b〉 where |ψ〉 = A |x〉.

We want the cost function’s output to be:

• very small when |Φ〉 = A |ψ(k)〉 is almost parallel to |b〉

• very large when |Φ〉 , |b〉 are close to orthogonal

Here we need to introduce the projection Hamiltonian :HP = I − |b〉 〈b|

CP = 〈Φ|HP |Φ〉 = 〈Φ| (I − |b〉 〈b|) |Φ〉 = 〈Φ | Φ〉 − 〈Φ | b〉 〈b | Φ〉

From the latter equation arise 2 terms :

The first term is : 〈Φ | Φ〉 = ‖|Φ〉‖2

The second term is: 〈Φ | b〉 〈b | Φ〉 = ‖〈b | Φ〉‖2
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Even if ‖〈b | Φ〉‖2 is small, which means |Φ〉 , |b〉 are close to orthogonal, if ‖|Φ〉‖2 is also small

(|Φ〉 has small norm) the cost function will still be low, which is not the desired result. So, if we

want to make our cost function even better we can replace |Φ〉 with |Φ〉√
〈Φ|Φ〉

.

The revised cost function will be the following:

ĈP =
〈Φ|√
〈Φ | Φ〉

HP
|Φ〉√
〈Φ | Φ〉

=
〈Φ|√
〈Φ | Φ〉

(I−|b〉 〈b|) |Φ〉√
〈Φ | Φ〉

=
〈Φ | Φ〉
〈Φ | Φ〉

−〈Φ | b〉 〈b | Φ〉
〈Φ | Φ〉

= 1−‖〈b | Φ〉‖
2

‖|Φ〉‖2

So, all we need to do is to calculate these two terms.

Hadamard test
The Hadamard test is a quantum subroutine that allows us to find the expectation value 〈ψ|U |ψ〉

of a unitary U with respect to a state |ψ〉.

Figure 4.2: Hadamard test

|ψ1〉 =
|0〉+ |1〉√

2
⊗ |ψ〉 =

|0〉 ⊗ |ψ〉+ |1〉 ⊗ |ψ〉√
2

|ψ2〉 =
|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉√

2

|ψ3〉 =
1

2
((|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉)

|ψ3〉 =
|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉√

2
→ 1

2
[(|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉]

⇒ 1

2
[|0〉 ⊗ |ψ〉+ |1〉 ⊗ |ψ〉+ |0〉 ⊗ U |ψ〉 − |1〉 ⊗ U |ψ〉] =

1

2
[|0〉 ⊗ (I + U) |ψ〉+ |1〉 ⊗ (I − U) |ψ〉]
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P (01) = 〈ψ3|P0 ⊗ I |ψ3〉

P0 ⊗ I |ψ3〉 = |0〉 〈0| ⊗ I |ψ3〉 = |0〉 〈0| ⊗ I 1

2
[|0〉 ⊗ (I + U) |ψ〉+ |1〉 ⊗ (I − U) |ψ〉]

=
1

2
[|0〉 〈0| |0〉 ⊗ (I + U) |ψ〉+ |0〉 〈0| |1〉 ⊗ (I − U) |ψ〉] =

1

2
[|0〉 ⊗ (I + U) |ψ〉]

P (01) = 〈ψ3|P0 ⊗ I |ψ3〉 =
1

2
[〈0| ⊗ 〈ψ| (I + U †) + 〈1| ⊗ 〈ψ| (I − U †)] 1

2
[|0〉 ⊗ (I + U) |ψ〉]

=
1

4
[〈0| |0〉 ⊗ 〈ψ| (I + U †)(I + U) |ψ〉] =

1

4
[〈ψ| (I + U †)(I + U) |ψ〉] =

1

4
[〈ψ| I2 + U + U † + UU † |ψ〉]

=
1

4
[〈ψ| 2I + U + U † |ψ〉] =

1

4
[2 + 〈ψ|U |ψ〉∗ + 〈ψ|U |ψ〉] =

1

2
(1 + Re 〈ψ|U |ψ〉)

•P (11) =
1

2
(1− Re 〈ψ|U |ψ〉)

P (01)− P (11) =
1

2
(1 + Re 〈ψ|U |ψ〉)− 1

2
(1− Re 〈ψ|U |ψ〉) = Re 〈ψ|U |ψ〉

We want to calculate the term: 〈Φ | Φ〉 = ‖|Φ〉‖2

• |Φ〉 = A |ψ(k)〉 , |ψ(k)〉 = V (k) |0〉 , A =

L∑
l=1

clAl

〈Φ | Φ〉 = 〈ψ(k)|A†A |ψ(k)〉 = 〈0|V (k)†A†AV (k) |0〉 = 〈0|V (k)†(
∑
n

cnAn)†
∑
n

cnAnV (k) |0〉

〈Φ | Φ〉 =
∑
m

∑
n

cm
∗cn 〈0|V (k)†Am

†AnV (k) |0〉

We want to calculate the term: ‖〈b | Φ〉‖2
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‖〈b | Φ〉‖2 = |〈b|AV (k) |0〉|2 =
∣∣∣〈0|U †AV (k) |0〉

∣∣∣2
= 〈0|U †AV (k) |0〉 (〈0|U †AV (k) |0〉)†

= 〈0|U †AV (k) |0〉 〈0|V (k)†A†U |0〉

=
∑
m

∑
n

cm
∗cn 〈0|U †AnV (k) |0〉 〈0|V (k)†Am

†U |0〉

For this Qiskit demonstration: 〈0|U †AV (k) |0〉 = (〈0|U †AV (k) |0〉)† = 〈0|V (k)†A†U |0〉

So, ‖〈b | Φ〉‖2 =
∑
m

∑
n
cmcn 〈0|U †AnV (k) |0〉 〈0|U †AmV (k) |0〉

4.2 VQLS implementation

We ran the VQLS algorithm in Qiskit utilizing the "COBYLA" minimizer with maximum

iterations=200[21]. We ran it first without noise using the state_vector_simulator as backend

and then we added noise using the noise model from ibmq_quito.

We did not run any simulation on quantum hardware because it would take too much time

due to backend’s queue and the required iterations.

Figure 4.3: ibmq_quito circuit comprising of 5 qubits connected as in the figure
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Figure 4.4: ibmq_quito noise model

The measured variables for the subsequent simulations are the following:

• fidelity: fid (x, y) = Tr
(√√

xy
√
x
)2

, x = V QLS
‖V QLS‖2

, y = classical
‖classical‖2

• Circuit depth

• Circuit width(minimum qubits needed)

The test matrices are on the appendix A.2

2x2 matrix implementation in Qiskit
We ran the VQLS algorithm from IBM Qiskit textbook [21] with the above arguments for 6

different 2x2 matrices with condition numbers (1, 1.5, 2, 5, 10, 100) and s=1, 2 to see what is

the correlation between condition number, sparsity and fidelity. As backend we have used the

‘state_vector_simulator’.

Figure 4.5: VQLS 2x2 simulation, s=1, 2

Afterwards we ran the VQLS algorithm from IBM Qiskit textbook [21] for 6 different 2x2

matrices with condition numbers (1, 1.5, 2, 5, 10, 100) and s=1, 2 adding noise, to see how the
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additive noise affects fidelity. We have used the noise model from ibmq_quito and the results

are presented below:

Figure 4.6: VQLS 2x2 noisy simulation s=1, 2

4x4 matrix implementation in Qiskit We ran the VQLS algorithm from IBMQiskit

textbook [21] with the above arguments for 6 different 4x4 matrices with condition numbers (1,

1.5, 2, 5, 10, 100) and s=1, 2 to see what is the correlation between condition number, sparsity

and fidelity. As backend we have used the ‘state_vector_simulator’ and the results are presented

below:

Figure 4.7: VQLS 4x4 simulation s=1, 2
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Afterwards, we ran the VQLS algorithm from IBM Qiskit textbook [21] for 6 different 4x4

matrices with condition numbers (1, 1.5, 2, 5, 10, 100) and s=1, 2 adding noise, to see how the

additive noise affects fidelity. We have used the noise model from ibmq_quito and the results

are presented below:

Figure 4.8: VQLS 4x4 noisy simulation s=1, 2

8x8 matrix implementation in Qiskit
We ran the VQLS algorithm from IBM Qiskit textbook [21] with the above arguments for 6

diagonal 8x8 matrices with condition numbers (1, 1.5, 2, 5, 10, 100) initially without and then

with noise to see what is the correlation between condition number, noise and fidelity.
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Figure 4.9: VQLS 8x8 diagonal matrices with and without noise simulation

VQLS implementation-results analysis
After experimenting with different matrix sizes, condition numbers and sparsities we have reached

the following conclusions:

• As expected, similarly to HHL, for the VQLS the condition number relates strongly to

fidelity. The bigger the condition number, the lower the fidelity

• The max depth of the circuit does not vary with different condition numbers and sparsity

• Noise does affect the results fidelity but not as much as in the HHL simulations. This is

expected since we already know that variational algorithms can work efficiently on NISQ

devices

• Circuit depth may seem small but we iterate on it multiple times

Matrix size 2x2 4x4 8x8
Qubits 3 4 5

Max depth 8 10 26

Table 4.1: VQLS circuit depth, width



Conclusion

In the course of this thesis we have experimented on many different simulations on 2 different

approaches to the quantum linear system problem. HHL is a fully quantum algorithm while

VQLS is a hybrid approach that utilizes both quantum properties and classical optimizers. At

this moment neither of those algorithms can provide any significant advantage over their classical

counterparts. HHL has a complexity of O
(
log (N) k2s2 1

ε

)
which scales extremely promisingly

on number of variables but is too sensitive to error and condition number. On the other hand,

VQLS has heuristic scaling and is less sensitive to error and condition number. Another vital

difference between these two algorithms is that of the qubit dependency. HHL requires 2n+1

qubits and many steps(big circuit depth) to produce results. The quantum phase estimation

part of HHL (conditional Hamiltonian evolution) is the most demanding on computational steps.

VQLS requires less qubits and has a significantly shallower circuit which makes it much more

feasible to run on near term quantum hardware. Furthermore both these algorithms insert some

restrictions when it comes to the input data such as square Hermitian matrices. Another problem

that arises when it comes to input data is that of the quantum representation of the original

data and also that of the storing of these data.

Quantum linear solvers and variational approaches on optimization problems are in the midst

of the ongoing research and may soon with the improvement of quantum hardware and the further

development of efficient algorithms be able to solve real life problems and change the way we

solve linear systems of equations.

The linear system problem (LSP) is a very common mathematical problem that arises both

on each own and as a subroutine in more complex problems. Linear systems of equations can

be found in problems of various different fields, such as engineering, physics, chemistry and

65
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economics. Quantum linear system solving algorithms like HHL can estimate exponentially

faster useful features of the solution of a linear system. For this reason it has many applications.

HHL managed to solve the radar cross-section of a complex shape which is a problem that

appears in electromagnetic scattering [22] while providing exponential speedups over its classical

counterpart. Other notable applications of HHL are the finite element method and the linear

differential equation solving. The quantum algorithm for linear systems of equations is applicable

for machine learning tasks. Tasks in machine learning frequently involve manipulating and

classifying a large volume of data in high-dimensional vector spaces. Quantum computers can

process these high-dimensional vectors using tensor product spaces. Quantum linear system

solver has already been applied to a support vector machine. Rebentrost et al.[23] has shown

that quantum support vector machine can be used for big data classification and achieve an

exponential speedup over classical methods.
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Appendices

A.1 Test Matrices

2x2 Test Matrices

4x4 Test Matrices
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Figure A.1: 4x4 diagonal Test Matrices

Figure A.2: 4x4 non diagonal Test Matrices

8x8 Test Matrices
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Figure A.3: 8x8 diagonal Test Matrices

A.2 Code

QFT
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QPE
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HHL



Appendices 77

VQLS
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Quantum library incomplete
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