
TECHNICAL UNIVERSITY OF
CRETE
SCHOOL OF ELECTRICAL AND
COMPUTER ENGINEERING

User Interface development for
the estimation of electric power
demand of plug in electric
vehicles through digital maps and
statistical data of traffic

Stefanos Lintas 2009030004

Thesis committee

Kanellos Fotios (supervisor)
Stavrakakis Georgios
Koutroulis Ephtichios

Χανιά , Οκτώβριος 2021

Acknowledgements

This thesis was written under the supervision of Prof. Fotios Kanellos for
whom I am thankful for his guidance and the chance to work on an interesting
subject that incorporates my personal interests as well.

1

Table of contents
CHAPTER: 1 INTRODUCTION 6

1.1 GENERAL: 6
1.2 AIMS AND OBJECTIVES: 7
1.3 RELATED WORK: 8
1.4 THESIS STRUCTURE 9

CHAPTER: 2 BACKGROUND 11

2.1 ELECTRIC VEHICLES 11
2.2 TYPES OF EVS 11
2.3 ADVANTAGES AND DISADVANTAGES 12
2.4 PEV CHARGING STRATEGIES 13
2.5 PEV CHARGING MODES 14

2.5.1 Mode 1: Slow charging (AC) 14
2.5.2 Mode 2: Slow charging (AC) with safety 14
2.5.3 Mode 3: Slow to semi-fast charging (AC) 15
2.5.4 Mode 4: Fast charging (DC) 15
2.5.5 Wireless charging 15

CHAPTER: 3 DATABASE 16

3.1 WE WILL SET THE FUNDAMENTALS OF OUR DATABASES (DBS) 16
3.2 DEFINING OUR DATABASE AND OUR SCHEMA 17
3.3 METHOD TO IMPORT/EXPORT DATA 20
3.4 REPRESENTATIONAL STATE TRANSFER/SIMPLE OBJECT ACCESS PROTOCOL APIS 20
3.5 INITIAL DATA 21
3.6 DB EXTENSION COST 21

CHAPTER: 4 TECHNOLOGIES 22

4.1 OUTLINE OF THE TECHNOLOGIES 22
4.1.1 Apache Tomcat 22
4.1.2 HTML and CSS 23
4.1.3 Rest API 23
4.1.4 Java 24

4.2 SOFTWARE ARCHITECTURE 25
4.2.1 Maven 25
4.2.2 Boundary Layer 26

4.3 UI COMPONENTS 27
4.4 GOOGLE MAPS 27
4.5 MOBILE PHONES VS PERSONAL COMPUTERS (PC) 28

CHAPTER: 5 IMPLEMENTATION 29

5.1 NETBEANS 29
5.2 JAVA PROJECT OBJECT MODEL (POM) 29
5.3 PARENT POM 29
5.4.1 CONTROL LAYER POM 30
5.4.2 CONTROL LAYER – CONTROLLER AND PROPERTIES 30
5.5.1 VIEW AND COMPARTMENTALIZATION 33
5.5.2 ESSENTIAL JAVASCRIPT FUNCTIONS 35
5.6.1 MODEL LAYER POM 41
5.6.2 MODEL LAYER ABSTRACT CLASS 42
5.7.1 PERSISTENCY LAYER POM 44
5.7.2 PERSISTENCY LAYER INTERNAL STRUCTURE 44
5.8 DATA AGGREGATION: PROCESSING AND VISUALIZATION 47

5.8.1 Data gathering and aggregation 47
5.8.2 Aggregated data processing 48

2

5.8.3 Excel Calculations 51
5.8.4 Chart creation and data visualization 53

5.9 DATA USED TO CREATE OUR DATA SET 55
5.9.1 Probability density for departure time and time spent idle 55

5.10 OPTIMIZATION FOR TRIP CREATION 56
5.10.1 Generating trips. 57

CHAPTER 6 FLOWCHARTS 59

6.1 CODE FLOW DURING TRIP PLANNING 59
6.2 CODE FLOW DURING GRAPH GENERATION 59
6.3 CODE FLOW DURING EXCEL GENERATION 60

CHAPTER 7 CONCLUSIONS AND FUTURE DEVELOPMENT 61

7.1 CONCLUSIONS 61
7.2 FUTURE DEVELOPMENT 61

REFERENCES 63

3

Figure 1 - Database schema 19
Figure - 2 Rest API example 25
Figure - 3 MVC Architecture 27
Figure 4 - Snapshot from Google Maps UI , depicting a marked/pinned
location on the map 29
Figure 5 - Parent .POM 30
Figure 6 - Control Layer POM 31
Figure 7 - Actions.Properties 31
Figure 8 - controller.java 33
Figure 9View Folder-Structure 34
Figure 10 – Head DOM Element: Contains external and internal resources of
VIEW 35
Figure 11 - Backbone-Body DOM Element. Made to segment each part of the
page. (header.jsp, footer.jsp and the content div where we load segmented
views) 36
Figure 12Ajax function in JavaScript 37
Figure 13 - EVModels function in JavaScript 38
Figure 14 - Welcome Page split into header, body, footer 39
Figure 15 – map_controller with its constructors and auxilary functions 40
Figure 16 - Restricted Autocompleted Destinations 40
Figure 17Calculation results 41
Figure 18 – Additional info for the selected EV 41
Figure 19 - Interactive Data Table Graph 41
Figure 20Model Layer POM 42
Figure 21 - ModelMVC abstract class definition 43
Figure 22 - Post Update Implementaion 44
Figure 23 - Persistency Layer POM 45
Figure 24 - DAOFactory MySQL implementation 46
Figure 25 - UserDAOImpl of signin 47
Figure 26 - UI full filters list 49
Figure 27 - process of DownloadExcel, creating a directory, gathering the
filters, contacting the db and writing the file 50
Figure 28 - Dispatch part of DownloadExcel.java configuring the response 51
Figure 29 - Download Prompt for the filtered data in a .xlsx file 51
Figure 30 - Username general information sheet 52
Figure 31 - Aggregate Information sheet 52

4

5

Table 1 - 1 Source: Statista (business data provider) Percentage of EVs
among all vehicles 6
Table 2 - Example Table of an SQL Data base 16
Table 3 - Two tables of an SQL database with primary/foreign key reference
17
Table 4 - Monetary value of electric power per hour of day example 21
Table 5 - Example of outputs between pure HTML and HTML with css 23
Table 6 - Probability density: Departure Time for each hour of day and type of
trip 55
Table 7 - Probability density: Time spent dwelling in minutes for each type of
trip 56

6

Chapter: 1 Introduction

1.1 General:

In recent years there has been a push throughout the world to change
from fossil fuels to renewable forms of energy such as wind and solar, due to
the finite nature of fossil fuels and their impact on our world and natural
environment. This situation has encouraged not only governments but also
industries around the world to move towards clean energy, including car
manufacturing.

Europe has slowly started to embrace the use of electric vehicles and is
trying to incentivize their widespread usage in the context of its broader
ambitious plan to reduce the carbon footprint of the whole continent. The set
target of the European Union is to achieve a 40% reduction of greenhouse
gasses emissions by 2030 compared to 1990. As an integral part of this
directive, the plug in vehicles have steadily increased their market share
through the recent years.

This table shows the market shares in Europe for the respective types of
battery electric vehicles and Plug-in hybrid electric vehicles

Battery electric Vehicles Plug-in hybrid electric vehicles
2017 0.7% 0.7%
2018 1% 0.8%
2019 2.1% 1.2%
2020 4.5% 4.7%

Table 1 - 1 Source: Statista (business data provider) Percentage of EVs
among all vehicles (Statista, n.d.)

As it can be seen in table 1-1, the market share of electric vehicles has
risen from 0% to 9.2% in 4 years and is predicted to reach 28% by 2030.
Considering that in Europe the total number of vehicles is circa 312.7 million
that predicted target would equate to 87 million electric vehicles. It should
also be noted that among those targets of the clean energy directive, there is
one that phases out conventional vehicles completely by 2050.

At this point we should clarify that although electric vehicles have zero
direct emissions and impact on the environment while being operated, their
manufacturing process has. Should the vehicles be fueled solely by clean and
renewable energy sources then that is considered to be a worthy tradeoff,

7

since electric vehicles have reduced “overall” emissions during their lifetimes,
leading to a net negative in the greenhouse emissions equation long term.

Despite relying currently on a predominantly fossil fuel based power
supply throughout Europe with not enough clean energy production, it is still
worth considering an increased usage of electric vehicles, especially in urban
areas. This is due to the fact that the generation of harmful gasses is shifted
from urban centers with high population density to ones that are more rural.
Where it effects only the people working in the power plants, while this is
obviously not ideal it is a good stopgap solution for the time being as well as
the immediate and obvious improvement of the air quality in urban centers.

Some governments (e.g. Norway, Sweden and France) have
established a very aggressive policies to promote the use of electric vehicles
and achieve those goals or even surpass them. The Norwegian and French
governments have even announced the banning of internal combustion
engine (ICE) sales by 2025. United Kingdom is set to follow by 2040 and
within a few decades, the rest of the EU will follow suit.

This considerable transition from conventional vehicles to electric
powered ones will have a substantial impact on the greenhouse gasses
emissions from cars but will also put a lot of strain on the power grids of every
country.

1.2 Aims and objectives:

The primary objective of this thesis is to create a tool that can estimate
the impact from a large fleet of electric vehicles. This will be done through the
development of a UI that uses Google Maps to achieve two objectives.

The primary objective of this thesis is to create a tool that can estimate
the kWh spent from a large fleet of electric vehicles. The second objective is
to provide the ability to use real world data through an appropriate UI and
Google Maps, to enable individuals to see their own expenditure and provide
them with useful information such as their total kWh consumption and
statistics on their use of EVs.

To make things more transparent, our stated primary objective has been
broken down into several individual goals which cumulatively will fulfill our
primary goal.

1. Prepare a database that can effectively gather the appropriate data for
individuals or families, their vehicles and their usage.

8

2. Prepare algorithms to receive that data as input and generate an output
that can categorize the users or in line with their daily activities and their
expenditure.

3. Use the aforementioned outputs to calculate the aggregate impact of a
car fleet.

4. Create a UI that will allow for the planning of a trip and deriving its
expected power demands. serving thus as a valuable decision making
tool on when they should recharge their vehicles

5. The data provided by the UI will be fully compatible with our database
and will be able to be used in future analysis, through the algorithms we
created at our first sub goal.

1.3 Related Work:

Several theses have been written and undertaken, trying to estimate the
impact of plug in electric vehicles on both the greenhouse gasses emissions
and kWh spent by their usage, utilizing various methods. What we hope to
achieve with this thesis is to make it easy to understand and comprehend the
advantages of EVs.

The most commonly used method is an agent based modeling which
simulates a fair load distribution by creating agents that represent large
blocks in the population distribution. Those agents govern the decision
making process. Another method that has been used is one which estimates
loads through reinforced learning of model driving patterns and optimal
charging policies. Lastly the use of statistical analysis and representation
using real world data provided by government agencies such as the NHTS
(National Household Travel Survey) or algorithmically generated data through
probability density based on experience and the aforementioned data.

In order to calculate those estimations, some assumptions have to be
made. A very important one is that people will charge their vehicles at home
during the night. However, as recharging stations become more widespread it
is expected that this behavior is likely to change creating the need for a
different profile to be taken into account in our simulations and future load
estimations.

Great considerations should also be given to the fact that while only
Grid-to-Vehicle (G2V) charging strategy is currently available for the electric
vehicles, this might not be the case in the future and Vehicle-to-Grid (V2G)
charging strategies might become just as widespread. Our load estimations
would utilize fuzzy logic to decide whether a vehicle should be charged, at

9

which point it should be recharged as well as to what extent, since a full
recharge might not be the optimal decision.

Parameters such as mileage and electric range will be taken from
existing databases and incorporated into our database; from there they will be
used for the estimations and simulations for the individual user as well as the
fleet of vehicles. Once the tool is completed it can be used in a similar fashion
for any country as long as the database is updated with the relevant data. In
Greece particularly there are few studies that deal with the subject of PEV
(Plug-in Electric Vehicle) penetration which on its own is considered to be at
an early stage. For our thesis we will attempt to create a framework which will
allow for Greece to be closely examined first and set the foundations to easily
check each country in the European Union.

Finally, in order to evaluate the large fleet of electric powered vehicles
we will assume that the battery model and electric power demands for
unidentified vehicles are the mean average of the known. This will allow us to
produce a fairly accurate simulation even for those unknown factors.

1.4 Thesis Structure
For easier comprehension we have divided our thesis structure into individual
chapters where we describe the key information that is to be presented. More
specifically, we will:

● In Chapter 2:
1. We will provide some background but fundamental information

regarding electric vehicles
2. Describe the current technologies for recharging PEVs (Plug-in

electric vehicles) as well as the most widely used charging
methods.

● In Chapter 3:
1. We will set the fundamentals of our database and define our

schema.
2. Furthermore we will correlate it and integrate it with the existing

database of NHTS to obtain real world data which then can be
used to generate simulated data for similar cases, not directly
associated with a specific location

3. Lastly we must have appropriate documentation on the database
in order to allow for future updates to provide Rest or SOAP APIs
support.

● In Chapter 4:

10

1. We will define the methods, assumptions and technologies to be
used in order to achieve our goals.

2. Furthermore design the Software Architecture for our UI and all of
its components.

3. Defining the components and use cases for our UI elements.
4. Importing the WAZE/Google Maps APIs.
5. Defining our target simulations output and its purposes. (such as

price, needed initial load estimations and recharging decision
making)

● In Chapter 5:
1. Set a goal for the UI and its expected uses.
2. Examine our use cases and their contribution towards achieving

our set goal.
3. Provide a UI prototype for those use cases.
4. Develop the UI prototype into a fully working UI.
5. Arrange the components of our software architecture to calculate

in accordance to our inputs and pass them through the appropriate
algorithms.

6. Validation of a use case and present the expected output of our
created tool.

● In Chapter 6:
1. Propose possible extensions for our tool.
2. Examine if providing a REST API to import data into our database

for further analysis and comparison.
3. Present conclusions from our tool and its output and propose

areas for future development. Such as cost analysis, ease of use
in certain locations.

11

Chapter: 2 Background

2.1 Electric Vehicles

An electric vehicle (hereafter “EV”) can be defined as any vehicle that
depends and runs on electric power. That power can be either provided to a
small vehicle/car via a battery or through other means such as in the case of
electric powered streetcars/ trams and train where the required power is
being provided through the surrounding facilities along their predetermined
routes.

EVs are not a new concept and the first practical electric vehicles were
produced back in the 1880s but advances in the conventional internal
combustion engines and their ease of use, left EVs lagging behind their
competition. This is due to the disadvantageous (for that time) cost-benefit
analysis ratio for researching and developing a competitive engine that uses
electric power only. Another major factor is the availability of electric power;
while through our modern “common sense” we view electricity as something
widely available everywhere it’s challenging to set up a power grid capable of
sustaining a large fleet of EVs even with modern technology. Also EVs can’t
penetrate easily rural areas. This relates directly to the previous point made
for electric grid distribution capable of handling immense loads, but it also
makes the point painfully obvious when compared to the availability of
internal combustion engines and fuel supply network, in which case simply
transporting gasoline is enough to keep conventional cars functional. Lastly
the operational convenience for conventional engines is a big factor and that
plays a major role in refueling and recharging techniques and times. When a
gas tank is empty you could simply refill it in a couple of minutes while
recharging a battery capable of running an EV could take from 15 minutes up
to several hours, depending on the charging rate.

The reason that EVs have started coming back into the foreground and
their advancement is being expedited despite the drawbacks we saw
previously, is that EVs have a reduced impact on the earth’s environment (at
least in the long run). This incentive for more eco-friendly technology has led
to many breakthroughs for the EVs that made them more competitive in the
current market such as the super-fast charging capability which could bring
the time needed to recharge an EV’s battery even down to 15 minutes.

12

2.2 Types of EVs

At this stage, it would be prudent and beneficial to distinguish the various
types of EV’s as well as those of charging strategies and modes, describing in a few
words their main differences, advantages and disadvantages

The Battery Electric Vehicles (BEV) is a fully-electric vehicle with
rechargeable batteries and no gasoline engine. Battery electric vehicles store
electricity onboard with high-capacity battery packs. Their battery power is
used to run the electric motor and all onboard electronics. BEVs do not emit
any harmful emissions like the traditional gasoline-powered vehicles. BEVs
are charged with electricity from an external source.

Hybrid Electric Vehicles (HEVs) are powered by both gasoline and
electricity. The electric energy is generated by the car’s own braking system
to recharge the battery. This is called ‘regenerative braking’, a process where
the electric motor helps to slow the vehicle down and recuperates some of
the energy normally converted to heat by the brakes. HEVs start off using the
electric motor, then the gasoline engine cuts in as load or speed rises. The
two motors are controlled by an internal computer, which targets optimum
economy for the specific driving conditions.

Plug-in Hybrid Electric Vehicles (PHEVs) can can have their battery
recharged through both regenerative braking and “plugging in” to an external
source of electrical power. While “standard” hybrids can (at low speed) go
about 1-2 miles before the gasoline engine turns on, PHEV models can go
anywhere from 10-40 miles before their gas engines are required to engage
and provide assistance.

2.3 Advantages and Disadvantages

There are quite a few important advantages that EVs have over
conventional internal combustion engines. Those advantages are:

1. They are eco-friendly as they do not emit CO2. If the energy that is used
as fuel to recharge their batteries comes from renewable resources,
then their use will have truly zero emissions. Even if the electricity they
use is produced by fossil fuels, the pollution will be concentrated around
the power plants and away from high population density urban areas.

2. Their maintenance costs are lower because ancillary requirements
related to ICE such as lubrication of the engines are not needed.

3. Limited noise pollution is another prime benefit and advantage, since
electric motors are much quieter. This is especially significant in urban

13

environments because of the substantial number of vehicles being
present there

4. Their driving is considered to be easier. Commercial electric vehicles
have an automatic transmission with one long gear. Thus, there is no
need for a clutch mechanism and the driver only uses the brake and
acceleration pedal enabling him to focus his attention on his
surroundings.

5. They can be cost-effective since many governments incentivize the EV
ownership through reduced car pricing schemes and registration taxes.
They only recharge at special recharge points or at the driver’s home
from the electricity grid.

Despite the benefits described above, there are many challenges that
are delaying the establishment of EVs as the main car type choice:

1. The driving range of EVs is being limited by their battery capacity
although this problem is continuously being addressed through latest
research and technology. As of now, the most recent EVs with a low
price have a range of 80-160 km and some models can reach up to
600km+ range.

2. They still have a higher price than conventional vehicles even when
looking at the more affordable brands. This is due to the equipment
used and mostly to the batteries which account for a third of the total
price. As EV penetration rate rises, the technology used will become
mainstream and their price will gradually fall.

3. Their batteries need replacement because of the limited life cycle.
Depending on the type and usage, the most recent ones are expected
to not degrade below 80% within 8-10 years (100.000 miles).

4. They have longer recharge times compared to the refueling time
required for their conventional counterparts (ICE vehicles). Depending
on the type of the charging strategy the time required to fully recharge
an EV might require a few minutes up to 24 hours.

2.4 PEV charging Strategies

There are three main charging strategies that allow the driver to have
varied control of the timing that the charging process starts and one strategy
for the driver to sell energy back to the grid:

1. The uncontrolled or “dumb charging”. Due to the low EV penetration
there is a scarcity of charging stations and this strategy offers a lot of
convenience since it can be done at home without any special
preparation or set up. Although the process starts as soon as the EV

14

is connected to the electric grid and continues until the state of
charge (SoC) is fully restored. While convenient this uncontrolled
charging puts a lot strain on the network since the bulk of EVs will
recharge at the same time and cost more for the owner of the EV
since the price of electrical energy fluctuates during the day.

2. The time of use tariff. This strategy divides the day in sections in
order to take advantage of the lower price for energy, but again if too
many people do this at the same time the load on the power grid will
be substantial. Obviously this effect will be exasperated as the EV
penetration goes higher.

3. The smart charging strategy. This strategy assumes that a network
which will take care of the problems that occur with the “dumb
charging” and time-tariff. It can manage to minimize the cost of
recharging EVs until they have reached their appropriate SoC that
the driver has decided on.

4. The vehicle to grid (V2G). This strategy is an extension of the smart
charging in essence. The new assumption made is simply that the
EV connected to the grid is also able to send the stored electric
powered instead of only receiving. Obviously a network that informs
each individual EV just like in the smart charging strategy can do this
effectively. This means that V2G will allow owners of EVs to sell
electricity back to the grid during peak hours when electricity is at its
price peak and buy it back to recharge their own batteries during its
lowest price points.

2.5 PEV charging modes

In this section, we’ll look at different EV charging modes specified by
the International Electro technical Commission (IEC). These four modes are
specified in the IEC 61851 standard that deals with electric vehicle conductive
charging systems.

2.5.1 Mode 1: Slow charging (AC)

With this mode, the EV is directly connected to a household socket. The
maximum current of this mode is 16 A and its voltage should not exceed 250
V with a single-phase system and 480 V in the case of a three-phase
network. Mode 1 is the simplest possible charging mode and does not
support any communication between the EV and the charge point. This
charging mode is prohibited or restricted in many countries.

15

2.5.2 Mode 2: Slow charging (AC) with safety

Household socket-outlets do not always provide electric power
according to the actual standards. Besides, socket-outlets and plugs
designed for household applications might not be able to tolerate continuous
current draw at the maximum rated value.

That’s why connecting an EV to the socket-outlet for a long time with no
control and safety functions can increase the risk of electric shock. To solve
this problem, specialists developed charging mode 2 that uses a special type
of charging cable equipped with an in-cable control and protection device
(IC-CPD).

The IC-CPD performs the required control and safety functions. The
maximum current of this mode is 32 A and its maximum voltage should not
exceed 250 V single-phase or 480 V three-phase. Mode 2 can be used with
both household and industrial sockets.

The safety functions of this mode can detect and monitor the protective
earth connection. Over-current and over-temperature protection are two other
safety functions that mode 2 supports. Moreover, the Electric Vehicle Supply
Equipment (EVSE) can perform functional switching as it detects connection
to the EV and analyzes its charging power demand.

2.5.3 Mode 3: Slow to semi-fast charging (AC)

This mode utilizes a dedicated Electric Vehicle Supply Equipment
(EVSE) along with the EV on-board charger. The AC current from the
charging station is applied to the on-board circuitry to charge the battery.
Several control and protection functions are employed to guarantee public
safety. These include verifying the protective earth connection and the
connection between the EVSE and the EV.

Moreover, this mode can adjust the charging current to the maximum
current capability of the cable assembly. The maximum current of this
charging mode is 250 A with either a 250 V 1-phase or 480 V 3-phase
network. It also supports an operational mode compatible with mode 2 where
the maximum current is limited to less than 32 A for both 1-phase and
3-phase cases.

16

2.5.4 Mode 4: Fast charging (DC)

This is the only charging mode that incorporates an off-board
charger with a DC output. The DC current is delivered directly to the battery
and the on-board charger is bypassed. This mode can provide 600 V DC with
a maximum current of 400 A. The high power level involved in this mode
mandates a higher level of communication and stricter safety features.

Mode 4 only allows a case C connection, where the charging cable is
permanently connected to the charging station.

2.5.5 Wireless charging

Inductive charging works by creating a magnetic-resonance field
between a transmitting pad on the ground (which is physically connected to
the grid) and a receiving pad on the underside of the vehicle. Wireless signals
sent between the vehicle and charging system initiate and stop charging.

High frequencies are used to overcome the air hap and usually the coils
from the two sides are tuned to the same resonance frequency for optimal
results. The electric power output is about 20kW and the efficiency close to
70%. Some recent research is focusing on integrating wireless chargers on
the roads so the vehicle can recharge tis battery while moving. While this
looks like a very good solution it’s fairly wasteful since its effectiveness is 70%
and it will have a big impact on the electric grid but will be very convenient for
the users if they become widespread.

Chapter: 3 Database

3.1 We will set the fundamentals Fundamentals of the databases (DBs)

There are multiple types of databases such as noSQL, Object-oriented,
distributed etc. For the purpose of our thesis we are going to use the standard
relational database and more specifically MySQL. The reason for this choice
lies to the functionality that we require. Relational databases store data in
tables and those tables are made from columns and rows, their intersection is
a cell in which data is stored.

COLUMN 1 COLUMN 2

17

https://www.researchgate.net/publication/338586995_EV_Charging_Definitions_Modes_Levels_Communication_Protocols_and_Applied_Standards_Technical_Report
https://www.researchgate.net/publication/338586995_EV_Charging_Definitions_Modes_Levels_Communication_Protocols_and_Applied_Standards_Technical_Report

ROW 1 Cell 1.1 Cell 1.2
ROW 2 Cell 2.1 Cell 2.2

Table 2 - Example Table of an SQL Data base

Each row represents a complete instance of data which is referred to as
a tuple, in our example the first tuple would be Row 1 = { Cell 1.1 , Cell 1.2 }.
The type of data that is stored in each cell is defined by its column. If for
example column 1 is of type integer (int) then the cells 1.1, 2.1 will have an
integer, also the columns define the “size” that of data that can be stored.
Using int(4) would mean that the cells of that column can hold data up to 4
digits similarly int(11) indicates that data up to 11 digits can be stored etc.
There are a lot of types of data that can be stored but the needed knowledge
for the next chapter will need the types of:

● Integer: (int) a number without a floating point
● Varchar: can store any sequence of characters
● Timestamp: an instance of type and date (example: '1970-01-01

00:00:01' UTC)

● Float: A number with a floating point (1.001 etc)

Now that we understand how data is stored in a table the next step is to
understand how tables connect with each other since there will always be
more than one table in a database.

This process is done by using primary keys (PK) and foreign keys (FK).
For each table in our database (schema) one or more columns will be the
designated primary key. This means that the value of the cells for that column
will be unique throughout the table, in case we have more than 1 column as a
primary key then their combination must be unique. Foreign keys on the other
hand are columns that must always have a correspondence with an existing
value of a primary key of another table. This is easier to understand with an
example:

Table 1 Column 1 (int 4 PK) Column 2 (data)
Tuple 1 1 Data 1
Tuple 2 2 Data 2
Tuple 3 3 Data 3
Tuple … … …
Tuple N N Data N
Table 2 Column 1 (int 4 PK) Column 2 (int 4 FK) Column 3 (data)
Tuple 1 6 1 Data t1
Tuple 2 7 2 Data t2
Tuple 3 8 3 Data t3

18

Table 3 - Two tables of an SQL database with primary/foreign key reference

As we can see in our example table 2 uses column 2 (FK) to refer to table
1. This means that each row of table 2 will always have a reference to table 1.
There are ways to make it possible for table 2 to have a FK and accept null
values but that is bad practice that creates problems during the operation of
the database. The only null values that should be accepted in any column are
those that are not required and even in that case it’s common to use a default
value instead of null. This is done to avoid issues during data selection since
handling null values requires a lot more testing.

Lastly we will refer to the alternatives of data types for future references.
● PK: Primary key
● FK: Foreign Key
● NN: Not null value
● AI: Auto increment. This means that each subsequent insertion in

the table will automatically take the last value and add 1
● UN: unsigned value

3.2 Definition of the our database and its schema

The database for the tool we are creating will be done with MySQL which is a
relational database (DB). The other contender for our database is
PostgreSQL but it will not be selected for our tool. The reasons for selecting
MySQL are:

● It is a widespread technology and can be moved to a cloud.
Specifically both Google cloud and Amazon WS (Web services)
come with support for MySQL.

● It’s easy to import data from other sources such as .CSV files.
● Compared to other contenders such as PostgreSQL, MySQL offers

great ease of use.
● Its efficiency is better in an “out of the box” set up. Although it should

be mentioned that MySQL internally arrays data in B+ tree and is
made to only support this specific data structure. While PostgreSQL
can support different data structures to increase the efficiency of the
database it is an altogether too different subject for the optimizations
of the database. Therefore we will use MySQL for the
aforementioned reasons since it is more than enough in our case.

At this point for better comprehension it would be prudent to clarify the
term B+ tree. A B+ tree is an m-ary tree with a variable but often large
number of children per node. B+ trees consist of a root internal nodes and
leaves. The root may be either a leaf or a node with two or more children.
B+ trees are categorized by the value of b which is the maximum number
of children allowed per node while m is the number of children of a node.

19

The tables of our schema will consist of car_model, family, person and
trip. The first table car_model will be filled with the relevant data of all existing
EVs which we will directly import into our DB. Family will contain data about
the family to which each person belongs to, for people who are living alone
this will be represented as a one person family. Person and Trip tables have
no special circumstances and now we will see each table on each own.

References: (primary key: PK, not null: NN, unsigned: UN, auto increment:
AI)

Table: car_model
● id (PK, NN, AI int 11): is the primary key of the table and is the

reference point for other tables.
● Manufacturer (NN varchar 45): will represent the name of the

manufacturer.
● Model (NN varchar 45): will represent the specific model of the car.
● Range (NN int 11): the integer that represents the range of an EV

under ideal conditions in km.
● Efficiency (NN float): energy consumption per km represented in

wh/km.
● Charge_type (NN varchar 45): type of charging available for each

model
● Batter_load (int 11): the capacity of the battery.

Table: family
● Id (PK, NN, AI int 11): is the primary key of the table and is the

reference point for other tables.
● Location (NN varchar 120): the full address of the family.

Table: person
● Family_id (PK, NN int 11): foreign key which references the family

each person belongs to.
● Id (PK, NN, AI int 11): is the primary key of the table and is the

reference point for other tables.
● Car_id (PK, NN int 11): foreign key which references the car_model

each person uses.
● Name (varchar 45): name of the person.
● Surname (varchar 45): surname of the person.
● Age (int 11): age of the person

Table: trip
● id (PK, NN, AI int 11): is the primary key of the table and is the

reference point for other tables.

20

● Person_id (NN int 11): foreign key which references the person.
● From (NN varchar 120): starting location.
● To (NN varchar 120): desired location:
● Starting_time (NN TIMESTAMP)
● Ending_time (NN TIMESTAMP)
● Type (NN varchar 45): Type of trip urban/rural
● Distance (NN int 11): The distance to be traveled measured in kms

Figure 1 - Database schema

3.3 Method to Import/Export data

21

There are multiple methods to import data into a MySQL DB, either create
a program that reads the .CSV files which will parse them and then import
them into the database or use a tool such as HeidiSQL.

The advantage of the 2nd approach lies in the fact that it has a quick and
user-friendly interface, making the whole input process more straightforward.

The merits of the 1st approach are not as obvious but it will allow us to set
up our own tool in such a way that future import of data would be possible in
a remote manner

While an existing tool will provide significant ease, it runs locally. This
means that if our database is moved onto a cloud (Google cloud/Amazon
WS) it would be no longer usable. The tool we create needs to be able to do it
by itself. The same holds true for exporting data as well. While exporting data
in a .SQL file can be done through the native libraries of MySQL and then
downloaded from the cloud, if in future iterations it needs to export data in
other formats then it has to be done in the same fashion as the 1st approach.
If it is implemented as described in the 1st approach then we need to set up
our server in a way that it can accept files and create the appropriate
protocols and UI parts that will allow for its usage, similar to an admin panel
of a web page.

3.4 Representational state transfer/Simple Object Access Protocol
APIs

Representational state transfer (Rest) and Simple Object Access Protocol
(SOAP) are methods through which applications interact with each other.
They are bot based on the HTTP protocol but are meant for different
purposes.

Representational state transfer (Rest) is usually used for web services in
order to transfer data mostly to users (business to user). Rest can work with a
multitude of formats such as Hypertext Markup Language (HTML), JavaScript
Object Notation (JSON), extensible Markup Language (XML) but it is almost
always used with the first two. The reason for this is simple; since our UI will
display its data and tools to the user in HTML through a web browser and the
response of a Rest call can be in HTML, integrating the response into our UI
is very simple, a good comparison would be copying pasting a small part of
another web application. In the case that data has to be transferred along
with the HTML, the data is formatted in JSON. JSON was actually created for
this purpose as the preexisting formats (XML) had a bad useful data to
useless data ratio and hence reduce efficiency.

22

Simple Object Access Protocol (SOAP) is a messaging protocol
specification for exchanging structured information of web services. SOAP
uses the XML format only and is mostly used for exchanging information
between businesses. Its advantage over Rest is due to the fact that it
provides a solid framework for large data exchanges (business to business).
It should be noted that SOAP requires an extensive frame to work and a lot
more effort to set up compared to Rest. Each message consists of the
envelope (mandatory), header, body (mandatory) and fault. It can be sent
and received through both simple message transfer protocol (SMTP) and
HTTP but it is typically used with HTTP since HTTP has gained wider
acceptance and works well with modern infrastructure.

3.5 Initial Data

Our car_model table in our DB will be initialized with data extracted from
https://ev-database.org/ which is an online database of EVs from the
European Union.

In addition should there be a need for it, there is the National Household
Travel Survey which can be utilized and is readily available to create profiles
of behavioral usage and generate a realistic dataset that we can use to test
and show the results of our web application implementation. the National
Household Travel Survey (NHTS) is freely available on http://nhts.orgnl.gov.

3.6 DB extension cost

In order to be able define the cost of a kW and take it into account when
making our tool, it needs to be imported into our database.

The table cost will be created with its primary key set as the country id and
a range of hours per day. This will provide us with the framework to create
multiple hour-zones for any country and set the appropriate price for a kW.
For example:

Id Hour-zone cost
GR 00:00-04:00 0.186 €
GR 04:00-06:00 0.182 €

Table 4 - Monetary value of electric power per hour of day example

23

https://ev-database.org/
http://nhts.orgnl.gov

This example was made with the data from the Hellenic Electricity
transmission company. Similar data can be extracted from each country’s
electric transmission providers as well.

*Note: Appropriate modifications on the existing schema (Figure 1) will be
made as needed for the completion of this thesis.

24

Chapter: 4 Technologies

4.1 Outline of the technologies

The creation of our UI will be based on a web application that will make
up the full implementation of our tool. The general outline of the technologies
that will be used for the first phase are:

● Apache Tomcat
● HTML
● CSS
● Rest API
● Java
● MySQL
Next we will examine the use and the reasons for each of the

aforementioned technologies with the exception of MySQL since we reviewed
it in the previous chapter.

4.1.1 Apache Tomcat

Apache tomcat will serve as the servlet of our application. A servlet is a
piece of software that is responsible for exchanging messages between a
client and web applications. Those messages are passed through ports, in
our case the port 8080, and read by the servlet and then sent to our
application for processing. Servlets also provide other benefits such as thread
management. When a messages are received concurrently from clients, our
CPU will be under stress since each CPU can support a specific number of
threads at the same time. If this is done in a sub optimal manner it can cause
the application to crush. Additionally, servlets provide security and are
responsible for the advanced secure protocol Hypertext Transfer Protocol
Secure (HTTPs) and it is where.

Secure sockets layer (SSL) certificates are stored and checked. HTTPs
merely means that the connection is secured; in modern web browsers (such
as Firefox) it is denoted by the lock on the left side of each web address. SSL
certificates are provided by trusted sources and are used in order to make the
messages exchanged unreadable by 3rd parties through cryptography.

The reasons for picking apache tomcat are twofold; firstly it’s a free and
open source software, secondly it is excellent compared to other free servlets
and popular enough to have innate support on cloud based services since it

25

allows for more personalization such as the ports that will be used and
libraries to be included.

As far as security is concerned, the foundations provided by Apache
Tomcat will be unused since SSL certificates that are recognized by browsers
have to be bought and self-signed SSL certificates are seen as malicious or
at the very least suspicious web pages.

4.1.2 HTML and CSS

Hypertext Markup Language (HTML) and Cascading Style Sheets
(CSS) will be explained together since they are always used together unless
the messages exchanged are strictly text. In order to understand the relation
of those two it’s easy to think of HTML as the bones of a body and CSS the
flesh. This means that HTML is the data that you want to see while CSS is
the format in which it is presented.

A simple example of text is presented below:

Input Output

Pure HTML Hello World!

With CSS
<span style=”font-weight: bold;
text-decoration: underline;”> Hello
World!

Table 5 - Example of outputs between pure HTML and HTML with css

Obviously CSS can do a lot more than simply underlining and making
the letters bold. Usually it is done through .css files that include the
decorations for all the data we are presenting instead of writing directly on an
element of our web page.

Lastly it should be mentioned that there are a lot of ready-made CSS
frameworks such as bootstrap which we can use in order to shorten the
development phase since creating a truly good CSS framework is work that
requires extensive resources and not usually performed by a single person
since it would require testing and design on multiple devices (phones, PCs),
displays (different resolutions) and environments (Android, Linux, Windows
etc). These frameworks take into account the size of each screen and
different resolutions on various devices, yielding usually similar or even better
quality results in a more efficient and effective manner, compared to what a
single source individual developer would.

26

4.1.3 Rest API
Our UI depends on showing maps and calculating the distance between

points on map. This is something far beyond the scope of this thesis and for
this reason we will rely on Google Maps. In addition, since tools such Google
Maps and Waze currently exist and are readily available, it would be
meaningless and wholly inefficient for that matter to create such a tool from
scratch. Google Maps will be integrated into our tool through the Rest API
that Google provides as a service. Rest API refers to a part of our web
application that is imported from an external source. This technology is widely
spread and even though we don’t realize it, we use it daily. One common
example is logging in different web sites through Google/Facebook.

Figure - 2 Rest API example

The first two buttons on this form are essentially messages that will be
passed from the application that you want to use to their respective external
source. Those sources will then verify you as a user and send a key to the
web application which will be used to identify you through it.

A quick Example with Client, Application and Google for better
comprehension:

Client A requests to log in at our web application through Google. The
Web application calls the relevant Rest API from Google. Once Google
answers our application it will pass the message to the client through a dialog
window where the client has a direct interaction with Google; the window will
then prompt and ask the user if he/she indeed wants to log in. When the
Client confirms that, Google will either pass all the relevant data to the web
application (to Facebook for example) or a key (minor web applications). At

27

this point the web application has confirmation and auto creates our account
with the data from Google.

4.1.4 Java
Java is software language that is object oriented. That means that it is

based around the concept of objects which may contain data, in the form of
fields, often known as attributes. The code is mostly written in the form of
procedures/methods within objects. The reason for selecting Java is its
widespread use which in turn ensures constant support and updates. Another
major benefit for using java is the fact that the code can be easily transferred
between different terminals and work compared to other languages,
something that is actually an exception to the rule.

4.2 Software Architecture
The UI will use Maven (see below) to implement the

Model-View-Controller (MVC) architecture and a boundary layer for its
connection and exchange of data with the database.

4.2.1 Maven
Maven is a software project management and comprehension tool

primarily used in Java projects and it allows for easy and fast deployment and
maintenance of the code. Since the MVC architecture (explained in 4.2.2)
alone splits our web application up into three separate programs and those
programs might have other sub programs, it is a good practice to use a
software management tool. Maven contains a .pom file that is essentially an
XML format document which states the structure and relations between the
multiple programs that it contains. Each program inside the Maven directory
has its own .pom files which themselves have data on what programs can
“see” each other and their relations. Those .pom files essentially create a tree
structure that makes understanding and maintaining the code simple.

4.2.2 Model-View-Controller
The MVC architecture essentially breaks down our web application into

3no. different and distinct parts:

● View
● Controller
● Model

View is responsible for what the client sees, this is the part that has
HTML/CSS. Τhe Controller receives the requests from the client and then
decides which part of the Model can process the request. Lastly, the Model is
the part that actually does the processing for each request. If data exchange

28

has to happen in order to process the request of the client, then it uses the
boundary layer to read from the database. We will examine how the boundary
layer is constructed in section 4.2.2. of this thesis, further below. Once the
processing is done, it sends a reply directly through the controller to the
client. The other case is that the reply is in simple text in which case View is
bypassed.

Furthermore, this division of roles is strict which is not apparent. The
controller for example knows only which class in the Model is capable of
handling a specific request; the controller itself can’t process it. The Model on
the other hand can’t receive messages other than those the controller sends,
with each part of the model being able to only process a very specific request.
This means that for every possible request that the controller can receive the
model needs a corresponding java class that can process it.

A simplified picture for the understanding of the MVC architecture:

Figure - 3 MVC Architecture

4.2.2 Boundary Layer

29

The Boundary Layer is an architecture that conceals the database from
the web application. Although this sounds at first counter-intuitive, it is a
technique which allows to further divide the role of each sub-program in our
architecture and simultaneously decouple the processing of data from the
managing the database. The reason two main reasons this is worth the extra
trouble, firstly it allows us to treat the code as building blocks instead which
makes reusing them easy and also makes debugging and understanding the
flow of the code easy since you only need to watch the flow of five to six
relatively small blocks of code instead of an extremely complicated large one.

As we saw in the MVC architecture, each part has a strict role. The
boundary layer provides an interface (the java class type) which allows the
Model to receive data from the database without direct access. This is very
useful and could be proven beneficial in our case for various reasons but the
three important ones are:

1. The database connection can be easily set up through a single
object which can be called upon without creating it from scratch
every time.

2. If we change the database connection in any way the Model which
uses the Boundary layer will not be changed since it can only access
the interface of the boundary layer.

3. The boundary layers makes the code clean and easy to maintain and
understand.

4.3 UI components

The UI will be composed of a few fundamental components:
1. Header

a. Breadcrumbs style directory
b. Logging buttons

2. Body
a. Imported Frame through the Rest API
b. Input fields for the basic data from our users
c. Dropdown List with the available EV models
d. Divs (HTML component) for displaying the relevant data

3. Footer
The imported frame will be explained in chapter 4.4. The basic data of

our users will be auto completed when our users have logged in or manually
inserted. The dropdown list will be directly autofilled from the database,
although it’s much easier to directly put it on the HTML page; this will mean
that whenever something is changed on the EV list it will have to be updated
on every single page and in the case of importing the list from the database it
will only have to be updated once. Lastly the div components are simple
boxes for displaying the results of the user’s/client’s request.

30

4.4 Google Maps

Google Maps is an application programming interface (API) which
allows the importation and usage of the services provided by Google at
https://www.Google.com/maps, notably: satellite imagery, aerial photography,
street maps, 360° interactive panoramic views of streets, real-time traffic
conditions, and route planning for traveling by foot, car, air and public
transportation.

Figure 4 - Snapshot from Google Maps UI , depicting a marked/pinned
location on the map

4.5 Mobile Phones vs Personal Computers (PC)

We are going to implement this thesis for a PC environment instead of a
mobile application even though the internet use market share has seen
constant increase of mobile phones usage since 2001. There are three key
points that have led to this decision:

1. Personal computers have greater computational power which will allow
our web application to shift some of the processing load on the client

31

https://www.google.com/maps

side and make development cheaper. Note that developing and running
a web app on a cloud is charged by the number of threads used.

2. Creating the web app in strict accordance to the MVC and boundary
layer architecture will make a future development of a mobile app a lot
easier since the only part of the web app that needs to change is the
View.

3. A web application based on a web browser can be used by both PCs
and Mobile phones.

32

Chapter: 5 Implementation

5.1 NetBeans
Our software has been made through the NetBeans integrated

development environment (IDE) therefore most of the subsequent
screenshots presented below as well as any links for the code, will be viewed
through its environment.

5.2 Java Project Object Model (POM)
The anatomy of .POM consists of the below tags:

● Group id
● Artifact id
● Parent id (if it exists)
● Dependencies

The Group ID as the name suggests denotes the group to which the
.POM folder belongs to. This grouping allows for easy interdependency and
packaging.

The artifact ID is the individual identification for a program within the
group.

The Parent ID is the artifact ID of the parent POM
Dependencies are the artifact IDs of the other programs and libraries

that need to be packaged with our code in order to produce the executable
files.

5.3 Parent POM
As discussed previously within section 4.2, making a large software

project can be very challenging and hard to maintain and continuously
develop in an efficient manner. Thus a strict structure is required to make the
code readable and usable. This is done through the Maven .POM files that
declare the sub programs (Modules) that combine to produce our thesis. In
our project our parent .POM file is

33

Figure 5 - Parent .POM

As seen in the above figure the parent .POM declares that it contains 4
modules (controlLayer, modelLayer, persistencyLayer, javabeans). Note that
the parent .POM does not state the relations between its modules but only
declares their existence. Their relations are expressed by the .POM of their
modules.

5.4.1 Control Layer POM
The control layer project contains the controller, Views and model Layer

and it belongs the parent .POM of diploma within its group. This is expressed
in its .POM which calls upon the model layer project and denotes its parent’s
artifact ID.

Figure 6 - Control Layer POM

5.4.2 Control Layer – Controller and properties
The two main files inside the control Layer are the Actions.properties

file and the controller.java. Firstly, the Actions.properties file is in essence a
34

hash table that has all the acceptable commands for the controller as well as
the class that implements them and it looks like this:

Figure 7 - Actions.Properties

35

For example should the controller receives the command ‘GET
backbone’ then it will find through the Actions.properties file which class of
the model Layer can resolve this request and execute it. This method
presents many advantages but the two most important are noted below;

1. It makes it easier to maintain the code since one glance is enough to
know which use cases are already implemented and can be used.

2. It makes cross-site scripting/SQL injection a lot harder to do since
the controller understands and executes only very specific
commands. (Cross site scripting is writing on code on the page/URL
directly and then requesting the controller to implement it and SQL
injection is the same but instead of attacking the controller it tries to
attack the database directly)

36

Next is the controller.java class which executes the role of the
Controller in the MVC Architecture.

Figure 8 - controller.java

This java class declares a web servlet with name controller which will
capture all requests after the pattern ‘/Controller/*’ (Lines 26). The asterisk (*)
is a wildcard which means that any pattern or combination is valid. Next we
declare the HashMap type variable named events which is fill from our
Actions.Properties file (Lines 31-42). Lastly the two default web servlet
functions of doGet and doPost which refer to the HTTP methods. The

37

important lines are 61 where we used the hash key (command) to load the
appropriate class and line 68 where we call the function process of the
aforementioned class.

As it can be seen from Figure 8 the controller looks simple and short,
but that’s precisely how it needs to be since the Controller will be called and
executed for every single the user takes. As an example the request type of
updating the owned EVs table at the database will be rarely used therefore
even if the code is verbose it is not an issue, but the class implementing the
Controller will be used hundreds of times more. Therefore it must simply
receive the requests finds the corresponding class (Lines 54-55).
Furthermore the Actions.Properties is put inside the initiation function in order
to make sure we call it only once during the start up of our servlet since the
Controller has to be extremely frugal with the computational actions. Next
ModelMVC is of the abstract type which allows us to use a single declaration
to load and execute all appropriate commands and we will see how it works
internally on the next chapter. The remarkable part of this method is that the
controller does not know and does not need to know how a request will be
resolved it only knows what request it receives and which class is appropriate
to resolve it. Additionally because all the implementations of the ModelMVC
that are responsible for resolving the requests have the .process function a
single call is enough to proceed.

5.5.1 View and Compartmentalization
Within the controller Layer project there is also the View Layer. As

previously discussed the View Layer is responsible for presenting data in an
appropriate manner. Typically as developers we do not want every view to be
directly accessible to the user (client); that is the case for segmented views or
for security purposes to disable direct access to Views that contain personal
data.Those views are stored in the WEB-INF folder which is only accessible
through the controller.java. The View is typically composed of the web pages
folder that has by default the sub folders of META-INF and WEB-INF; in our
case we have the addition of a resource folder to further group relevant files.

38

Figure 9View Folder-Structure

The first file that needs to be understood is web.xml which declares
some basic information about our project such as the session timer or our
welcome page. Typically this file is automatically created when making a new
project. Next is index.html which is the default welcome page, in our case we
have changed the welcome to Home.jsp.

The base folder contains the 4 basic parts of our web page and those
are:

● Head
● Body

o Header
o Body
o Footer

The head refers to the <head> tag of a web page which includes
meta-info and the necessary parts for our web-page to work properly. It
includes the content type, the relevant cascading style sheets (.css),
JavaScript files, Google Maps Embedded Constructors and libraries as well
as the title of the page.

39

Figure 10 – Head DOM Element: Contains external and internal resources of
VIEW

Next is the body, as seen below it contains basic HTML elements as
well as a few java commands. The <%@ include file =”…”%> are telling the
view to load another segmented page and to show it the user as one. This is
a good practice since it breaks up the page into parts which can be loaded
separately and not reload the whole page after every request. Lastly, the
onload trigger event on the body tag at line 11 is calling the initialization
function of the JavaScript file to set up and fully load the page. When loading
large external libraries (Google Maps in our case) it is good practice not to
wait until the whole page has been rendered but instead to do it
asynchronously as to provide the user with a smoother experience.

40

Figure 11 - Backbone-Body DOM Element. Made to segment each part of the
page. (header.jsp, footer.jsp and the content div where we load segmented

views)

Lastly, the segments folder contains segmented Views which can be
called through Asynchronous JavaScript And XML (AJAX calls). This means
that we will only need to render the whole View once and afterwards simply
render the segments we only need to change.

5.5.2 Essential JavaScript functions
There are multiple .js files in our projects but most of them are

concerned with View manipulation, error prevention and rendering. The file
ajax_controller.js though is responsible and acts a pseudo controller on the
client side but not in the same sense as the controller.java does for our
project. Ajax_controller is concerned with primarily with three objectives:

1. Communicating with controller.java
2. Using client side computational resources instead of the server side
3. Google Maps manipulation

41

Figure 12Ajax function in JavaScript

As seen above first we declare a function called ajax which handles and
sends requests to the controller. The ajax functions parameters are very
important:

1. The first parameter is the command which will be sent to the controller
2. the second is the data that will be sent along with the command
3. the third declares the format in which the data will be sent
4. last the wait parameter which decides whether the execution of the ajax

called will be synchronously or asynchronously.

Following the execution of the function, the data that has been received
will be either further processed by other functions or directly displayed if it is
only calling a View.

42

The reason we partly process or store data on the client side instead of
the server is to cut down on the processing resources that the server
requires. This way even a “low end” PC will be able to provide more
computational power than a single server which is divided and used by every
user. Next we will see an example of these methods and how they integrate
with the rest of the program:

Figure 13 - EVModels function in JavaScript

In order to group up functions that target similar subjects, a variable that
will contain the former is made, especially so in the case that storing some
data on the client side will make the overall performance increase. For
example it can’t be expected of our users to be able to remember and know
all Variants of every EV and be able to write the model and variant name
exactly as stated by the manufacturer. Thusly, once the welcome page loads,
we make on the initialization function an ajax call to get the full list of EVs and
then fill in an autocomplete list in the fields that require it. Also, if for example
our user tries to see a graph and then decides to head back into the main
page to see how much he should charge his EV before his trip, the input field
will be able to reload the complete list without contacting the server again
since the list has been already saved on the client side.

43

As seen above, the complete EVModels function is capable of far more
and contains a few auxiliary functions as well such as find the EVModel by id
and the reverse.

Lastly the third important part of ajax_controller.js is the Google Maps
Manipulation. This is done in a similar fashion with the function
map_controller which also is saved as a variable on the client side. Although
the differentiation in this case is that it is required by API since it works that
way only.

In the following section we will review the welcome Page.

Figure 14 - Welcome Page split into header, body, footer

As soon as our user logs in, ajax_controller.js will auto generate the
user’s EV data and attempt to use the map_controller to locate the user. In
order to access the location of the user permission is required, if the user
does not consent with sharing his location then the start input will have to be
filled in manually. Additionally both the start and destination inputs have
autocompleted lists of destinations that are asynchronously called. Once our
user has filled chosen a destination from the list then he can use the calculate
function. The lists of valid inputs are filled in through the Google Maps API
and will not constrain the users while ensuring that the input data is valid.

44

Figure 15 – map_controller with its constructors and auxilary functions

The names of each sub-function of the function map_controller can
provide a pretty clear idea about its purpose. Also, many of them call each
other, for example the on_destination_change function will check through the
docmplete_places_destination for the validation of inputs. Next we will see
the typical use case of a user checking on how much time will be required for
recharging the EV in order to complete the trip and cover the desired trip
distance, as well as check the details for the EV used on this trip and lastly an
interactive data table graph of all EVs in order to see comparisons between
them.

Figure 16 - Restricted Autocompleted Destinations

In order to reduce computational expenses and the API cost, the
map_controller will automatically restrict the autocomplete list of destinations
within the country of origin. Once the destination is selected, the user can
calculate his predicted needed load, duration of trip and distance.

45

Figure 17Calculation results

Furthermore, additional details for his/her personal EV can be
displayed, note that the EV Model input can be changed in order to see a
different EV’s data and compare:

Figure 18 – Additional info for the selected EV

Lastly, the ajax controller will be called once the user calculates his trip
and the origin, destination, EV model and user id will be automatically stored
in the database. Given enough time and users we can proceed to use this
data to produce statistical data which can be used by both us for further
research and users that want to get personalized information about their
planned trip.

The last important View for the user is that of Graphs it provides a way
for our users and ourselves to visualize data which will make understanding
that data easier. Additionally users can download their personal data in an
.xlsx (MS Excel) file and filter it by date, origin, destination, EV Model,
distance, duration and username:

46

Figure 19 - Interactive Data Table Graph

5.6.1 Model Layer POM

As seen previously in the control Layer, the Model layer’s POM contains
its parent’s ID, group and dependencies. The first dependency
javaee-web-api is the standard java enterprise edition web API, the fourth
dependency gson is the standard library to read and convert java classes
from and to JSON.

47

Figure 20Model Layer POM

As for the second dependency, it is from our project the persistency
layer which handles the connection from and to the database. Finally, we
have the third dependency JavaBeans which is part of our project and it is
used in order to make classes to contain the data that is moved between the
projects different components.

5.6.2 Model Layer abstract class

The integral component of the model Layer is the ModelMVC abstract
class:

48

Figure 21 - ModelMVC abstract class definition

This ensures that every class in the model Layer that inherits and is its
subclass will also possess and implement, process and dispatch methods.
This restriction in combination with the polymorphism attribute of java classes
are precisely what allows our controller to be so simple and elegant.

In the following example we will examine the use case for updating the
owned EVs of a user to see the flow of the code. The class name usually
consists of the http method followed by a keyword or keywords that make the
class’s intended use clear. This case will be name PostUpdate; post means
that there is data to read on the server side and update since we are doing an
update on the owned EVs of the user. The user’s ID is stored in his session
and it is the first variable we will have to use. Next, we instantiate the
DAOFactory interface and get the relevant implementation (details on
DAOFactory at 6.7). After DAOFactory has been used to insert and delete
tuples on the database the process function ends and calls the dispatch
which will send an answer to the client that the list of EVs has been updated.
In the case of updating there is no need to change or manipulate the View
from the server side thus a confirmation message will suffice but on other
cases that dispatch would call upon a View to answer the request.

49

Figure 22 - Post Update Implementaion

50

5.7.1 Persistency Layer POM

As previously seen this .POM has similar components; the only library
imported outside of our project is the mysql-connector for java which we use
to connect to the database.

Figure 23 - Persistency Layer POM

5.7.2 Persistency Layer Internal structure

There are two integral components in the persistency Layer. First the
DAOFactory an abstract class similar to ModelMVC, this time though it has
an implementation besides the declaration of the class. This implementation
is responsible for connection to the database and it contains the address of
the database the possible interfaces that implement the MySQLDAOFactory
and the function which instantiates a connection.

51

52

Figure 24 - DAOFactory MySQL implementation

The benefits for using this roundabout method to implement the
database connection are primarily two.

1. First,in case of a data base migration it will not disturb the other sub
modules of our project since they won’t need to change.

2. Second, it hides what has been done from Model Layer in the same
manner that Model Layer hides the implementation from the Control
Layer this means that the other modules that call upon this class
underneath them will be extremely simplified.

53

The EVModelsDAO and UserDAO are interfaces with the advantages
as stated previously, the DRIVER is the literal driver used for the connection
while the DBURL stands for data base universal resource locator and it’s the
address of the database.

Next we will examine the example of the sign in process to the
database from the UserDAOImpl:

Figure 25 - UserDAOImpl of signin

As seen in the above code extract, the first action we take in every
function of a DAO implementation is to get a connection to the database.
Following that, we instantiate the relevant JavaBean that we will use to pass
the data between modules. Next, we create the query for the database, grab
the results and send them back to the Model layer in accordance to the MVC
architecture to be dispatched to the View and then be presented to our user.

54

5.8 Data aggregation: processing and visualization

The data that we gather can be processed with various methods on
either individual users or individual trips. As our stated objectives at section
1.2 we have:

1. The database that can store and use data for users their EVs and their
trips.

2. The UI of the web application can store into the database their planned
trips.

3. The users can get recommendations on their predicted expenditure.

In order to fully complete our stated goals the last step is to implement
the aggregation of the above. Specifically the ability to filter and draw data
from the database not for an individual trip (using an EV to go from point A to
point B) but a multitude of trips.

5.8.1 Data gathering and aggregation

Data aggregation and more specifically gathering large data blocks is
simple for our web application since the persistency can handle the gathering
of data and packing it in a list in the form of javabeans array list to ease the
processing further down the code flow. Specifically this is down through the
boundryLayer and more specifically the TripDAOImpl.java class.

The query to get the data from the database is dynamically constructed
using the information from the client side. The client accepts 7 types of filters
with mix/max values when applicable, those types are :

1. Date (min/max)
2. Destination
3. Origin
4. EV Model
5. Distance (min/max)
6. Duration (min/max)
7. Username

Our user can choose and fill in the values for the filters he/she desires.
Note that figure 26 displays an example of a fully filled filter list, the web app
when loading the graphs page will have the filter list empty and fill/update its
values only after the user adds the filters for visual clarity. Once the filters are

55

decided ajax_controller.js will gather the filters and form them into JSON data
that will be sent to the servlet for further processing.

Figure 26 - UI full filters list

Once our user has selected the relevant filters he can either Draw the
data or download the results in a .xlsx file.

5.8.2 Aggregated data processing

When the controller receives the request for a filter query he will load
the appropriate class from the ModelMVC depending on whether the user
wants to display the data (getGraphData.java) or download it in a .xlsx file
(DownloadExcel.java). We will go step by step how the DownloadExcel.java
works since it contains the getGraphData.java with the additional processing
for transforming the data into an .xlsx file and sending it back.

56

Figure 27 - process of DownloadExcel, creating a directory, gathering the
filters, contacting the db and writing the file

Once the DownloadExcel.java is called we first create a directory. The
directory’s path is the one that is currently running our code which will be the
location of the servlet (Apache tomcat section 4.1.1). The file’s name will be
made from the user’s username which we can access through the session.
Once created we do a check if the file already exists, if it does then we delete
it. This is done to avoid issues of having multiple files that simply waste space
and trying to write over a preexisting file and causing an IOException. Next
we read the filters sent by the users and transform them from JSON data to
javabeans using the Gson class. Note that the JSON data are directly
converted to the PreparedStatementConstructor class which takes the filters
sent by the user and by calling the .prepareQuerry() method it construct the
query needed. Once our query is ready we can contact the database through
the data access objects (DAO), in this case TripDAO and store the results in
an array list of trips. The next step is checking whether the list is empty, since

57

if it is, it will cause errors by trying to print the nonexistent. Finally we call the
ExcelWriter class to print the results in a .xlsx file and proceed to dispatch the
request.

Figure 28 - Dispatch part of DownloadExcel.java configuring the response

Once we start the dispatch we call upon the DirectoryControl class
again to target the file we just created from the dispatch side. Next we
configure the response, since we are sending a file which can be rather large
and not simple text we need to transform our file into an array of bytes. After
the conversion into a byte array we set the necessary attributes such as
charster and content type and proceed to send it back to the user. When sent
ajax_controller.js will read the byte array transform it back to an .xlsx file and
prompt the user to download it

58

Figure 29 - Download Prompt for the filtered data in a .xlsx file

In the case of getGraphData.java we would dispatch and display the
data after getting them from the database.

5.8.3 Excel Calculations

The excel file is split into 3 separate sheets. This was done for clarity
since the sheet of the trips alone will contain many rows of data and ease of
use. The first sheet contains the user’s info and EV model details (Username
General information), the second sheet contains the aggregate information
and the last sheet has the trips in details.

Figure 30 - Username general information sheet

59

Figure 31 - Aggregate Information sheet

The displayed information has the starting and end date so that the user
can see the timeframe that corresponds with the data. Next the sum of the
distance he has covered in the trips within that timeframe as well as the time
spent driving. The total idle time refers to the time spend not driving after
leaving home (work, shopping, socializing). An estimation of the kWh spent
which is done by using either averages or specific EV model data. Lastly we
see the charge that was needed to cover the distance sum. Optimal load
refers to an optimistic calculation that uses the nominal range as stated by
the manufacturers at face value, while the realistic approach estimates that
the real nominal range of an EV is about 80% of the optimal.

60

Figure 32 - Trips List

The labels for each columns in the trip list are:
● Origin
● Destination
● Date, time
● Distance
● Duration
● Optimal Needed Load
● Optimal Recharge Needed
● Realistic Needed Load
● Realistic Recharge Needed
● Type

The optimal needed load is calculated by dividing the distance with
nominal range, while the realistic needed load is calculated the same way
but with 80% of the nominal range. Lastly idle time (sheet no.2) is
calculated trip by trip by using the time difference between the trips.

Trip A,B (arrival time, duration)

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝐵 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝐴 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐵

61

Figure 33 - Completed Trips defined as leaving and returning Home

As seen in figure 32 it is difficult for a human to understand the raw data
therefore we created the pseudo trip defined as a collection of trips that start
since the moment the user has left his Home and end when he/she returns.
Although this list is easier to understand it might still be difficult for many
users.

5.8.4 Chart creation and data visualization

Last but not least our users can directly use the filters they like to make
charts and see the data in real time. The next 4 examples are graphical
representations of an aggregated data set.

Figure 34 - Chart screenshot displaying the total duration of driving per day
(in mins) from date 01/01 to 01/28

In this example (figure 34) we display the sum of time spent driving EVs
during each day for a range of dates (01/01 – 01/28).

Additionally the total distance, total driving time(duration), numbers of
trips and total kW spent for our date range are printed on the bottom right of
the screen.

The dropdown list in the top right corner of the screenshot once used
will change the chart to display the new relevant information in detail for the

aforementioned calculations.

62

Figure 35 - Chart display the number of trips in each day

As displayed in figure 35 the chart displays the number of trips per day and for
additional clarification the user can simply use his mouse to see the info represented by
the data bar in detail.

Figure 36 - Chart Displaying Distance covered in km

63

Figure 37 – kws by EVs for our time range

5.9 Data used to create our data set

The data set that we used for the implementation of this thesis has
been created by using the data from the National Household Travel Survey
(NHTS). NHTS is a governmental agency from the US. Using their data as a
basis we have access to the probability densities of departure time and time
spent idle (idle EV) for each trip.

5.9.1 Probability density for departure time and time spent idle

The two following arrays contain the probability of an EV departing and
its dwelling time on its destination. The probabilities for departure change by
the time of day for each type of trip while the probabilities for dwelling time
change by type of trip. This data is imported and used by our web application
through the ExcelReader.java class.

Probability density: Departure Time
Time
(Hour)

Home Shopping, Social Work

1 0,002539645 0,002102653 0,000338

2 0,001777952 0,001424255 0,0017808

3 0,000836537 0,001783512 0,0023155

4 0,000929415 0,001696862 0,0098972

5 0,001796834 0,005870751 0,0409441

6 0,005971318 0,011079306 0,1092366

7 0,012049346 0,020879644 0,2215048

8 0,017120482 0,041741603 0,2010203

9 0,018686449 0,068144992 0,0927608

10 0,026487605 0,092743305 0,050821

11 0,040749545 0,09403961 0,0372432

12 0,052283648 0,086530946 0,040547

64

https://nhts.ornl.gov/
https://nhts.ornl.gov/
https://nhts.ornl.gov/

13 0,051574667 0,084833912 0,0535365

14 0,060379781 0,085553721 0,0398391

15 0,088594954 0,086021487 0,0308463

16 0,121180194 0,090677751 0,024371

17 0,144419655 0,090632454 0,0170565

18 0,090427256 0,064820261 0,0100092

19 0,074110724 0,036181876 0,0044899

20 0,0671996 0,018310989 0,0023366

21 0,054506258 0,008945268 0,0024516

22 0,031424761 0,003929825 0,0029605

23 0,024450724 0,001544306 0,0013622

24 0,01050265 0,00051071 0,0023314

Table 6 - Probability density: Departure Time for each hour of day and type of
trip

Probability density: EV dwelling time
Time (minutes) Home Shopping, Social Work
0 0 0 0
60 0 0,567109 0,085704
120 0 0,216752 0,075198
180 0,016238 0,099668 0,079044
240 0,136169 0,049388 0,097816
300 0,132222 0,029642 0,071127
360 0,094092 0,018527 0,049591
420 0,089135 0,008448 0,05331
480 0,156414 0,007311 0,129888
540 0,200023 0,003156 0,196163
600 0,099929 0 0,097692
660 0,042098 0 0,040912
720 0,018042 0 0,017977
780 0,012028 0 0,005579
840 0,003608 0 0
900 0 0 0
960 0 0 0
1020 0 0 0
1080 0 0 0
1140 0 0 0
1200 0 0 0
1260 0 0 0
1320 0 0 0
1380 0 0 0

65

1440 0 0 0
Table 7 - Probability density: Time spent dwelling in minutes for each type of

trip

5.10 Optimization for trip creation

Next we will see how the data set was generated while using the
probability density arrays seen at 5.9.1 and Google Maps. Firstly we created
a list of destinations within the city Chania, Greece, then paired those
destinations in every combination possible and used Google maps to find the
distance and duration of the trip between those two destinations. Note that
destination A towards destination B does not necessarily have the same
duration and distance as destination B towards Destination A. After the
processing we had a list of origin, destination, distance, duration which we
saved on our database. This was done because during trip generation we will
need to reuse those trip routes several times and making a new HTTP
request for each of them will be slow and expensive, therefore we effectively
pre-load all possible results we will need from Google Maps during our trip
generation. Once this procedure is complete we are ready to use the
TripGenerator.java class.

5.10.1 Generating trips.

Initially during the trip generation we instantiate all the needed classes
and get the data we will need from the database. As seen on the figure (38)
below the variable altue contains a list with all the users we have generated
and the variable alt contains the list with the routes we will use to generate
trips while the variable odi contains the probability density arrays. Then we
proceed for each generated user to generate trips that will span over a
month. The trips generated for each user will be stored into a sub-list
(subList) of trips which is added to the total list of trips(alt).

66

Figure 38 - Trip Generator main function

We define a complete trip as a list of trips that start from the moment he
left his/her home and end when the user returns. Additionally each trip might
contain multiple instances of the user going to work, shopping, socializing
more than once in a day based on probability densities we saw. Therefore we
have a recursive function that generates trips with the end condition of
returning home. We should also note that we consider each user to have a
single home and work locations therefore we use the TripSeed type variable
to pass that information along inside the recursion.

Figure 39 - Recursion function to generate Trips for each user

Lastly we have the trip individual trip generation function split into two
parts. The first part has the assignment of type, date-time, origin, destination,
distance and duration for each trip.

67

Figure 40 - Trip generation. Assigning type, date-time, origin and destination

The TripDataSet tds variable contains the distance and duration of the
trip from the dataset we had preloaded into the database. If this was not done
and we wanted to recalculate the distance and duration through Google Maps
we would instead run the code in green.

Figure 41 - Calculating date-time after trip, percentage of battery left and
recharging if needed

With the values of distance and the nominal range we can proceed to
calculate the battery load we will need to complete the trip as well as check if
recharging is required to complete the trip.

68

Chapter 6 Flowcharts

6.1 Code flow during trip planning

We will see a flowcharts of everything that happens during the trip
planning use case. Example screenshots of what the user sees during this
flowcharts are in section 5.5.2: Figure 14, Figure 17.

6.2 Code flow during graph generation

This flowchart will show a step by step example of generating charts by
the user. Example screenshots of what this process looks like are in section
5.8.4: Figure 34, Figure 35, Figure 36, Figure 37 as well as information on
how this process is implemented in section 5.8.

69

6.3 Code flow during excel generation

This flowchart will show a step by step example of generating results in
an excel by the user. Example screenshots of what this process looks like are
in section 5.8.4: Figure 34, Figure 35, Figure 36, Figure 37 as well as
information on how this process is implemented in section 5.8.

70

Chapter 7 Conclusions and Future
Development

7.1 Conclusions

EVs are the future for a more efficient and clean “mode” of
transportation, their development and study are essential as well as tools that
can serve to complement their use such as the tool we created in this thesis.
As of 2021 there is no infrastructure in Greece where this web application
was developed which constrains our ability to further develop more use cases
for our web app such as planning for recharge stations. Even though we had
those constrains we succeeded in implementing and completing all of our
stated goals. We have set up a fully-fledged web application capable of
storing information about planned trips with all the accompanying data that
each trip needs, functionality for our users and us the developers to use the
data and calculate its aggregates in order to predict the kWh spent by a fleet
of EVs.

Besides the theoretical research we had decided to complete this thesis
in the form of a web application instead of other alternatives in order to make
it more accessible and have prospects of reuse and further development.
While using conventional software tools would have been faster to complete
the “fleet of EVs” objective it would be harder to use in the future and
maintained, since only the developer and those with access, knowledge and
understanding of the source code would be able to reuse it. This is not the
case for our thesis since a web application can be accessed and used easily
by anyone and be publicly available. The main tools used for the
implementation were Java, JS, Maven and Apache Tomcat, the first 3 ensure
that our web application is easily transferable between terminals/servers
while Apache tomcat is the servlet we used for demonstration and
development.

The results we had in this attempt were very satisfactory since
achieving the data aggregation and processing in times that are comparable
to locally run functions (excluding the download time). Furthermore the data
can be directly downloaded in a .xlsx file which makes reuse simple. Lastly
our results and predicted values are very reliable since the input we use
comes directly from Google Maps instead of estimations or auto-generated
data sets.

71

7.2 Future Development

Lastly we are fully aware that the modern trends for this type of web
application is to go towards mobile phones. This was the main reason we
chose to implement the project in strict accordance to the MVC architecture.
Right now the only thing needed for an IOs or Android app to work is an
interface since the backend is implemented in java and has been tested on
cloud services. The major advantage of a web application based on PCs
instead of mobile phones is computational power. Creating graphs and
statistics on the data the way we’ve implemented, it shifts part of the weight
on the client side. If the same is to be done for mobile phones it has to shift
most of the computational weight back on the server side which will be costly
since Google APIs are not free and outside the scope of a thesis.

In the case that a web app is created using our web app’s backend and
further popularized, real time large data gathering will be available. While it
already is with our current implementation, users that prefer mobile phones
will not be easily tempted to participate in our web application without a
specific app.

Additionally besides the technical improvements that can be made we
can also implement an extra functionality on the existing web application. The
next step would be calculating the impact that such a fleet of EVs would have
on the electric grid, predicting their recharging times and estimating whether
the electric grid is capable of handling the extra load. The only missing
components to add this functionality is the probability density function for the
time of recharging EVs, the respective function for the charging decision and
the decision making process for thw drivers to access to closest available
charging point.

72

References

Apache Software Foundation. (n.d.). Apache Maven. Retrieved from Apache Maven
Project: https://maven.apache.org/

Apache Software Foundation. (n.d.). Apache Tomcat. Retrieved from Apache Tomcat:
http://tomcat.apache.org/

Apache Software Foundation. (n.d.). Netbeans. Retrieved from
https://netbeans.apache.org/

energy, U. d. (n.d.). The history of the electric car. Retrieved from
https://www.energy.gov/articles/history-electric-car

Frank Buschmann, K. H. (n.d.). Pattern-oriented software architecture.
Google INC. Google Maps API. https://developers.google.com/maps/apis-by-platform
M. Ehsani, Y. G. (2018). Modern Electric, Hybrid Electric and Fuel Cell Vehicles:

Fundamentals, Theory and Design. CRC Press .
MySQL. (n.d.). MySQL. Retrieved from https://www.mysql.com/
Oracle. (n.d.). Java SDK. Retrieved from

https://www.oracle.com/java/technologies/downloads/
Sruvey, N. H. (n.d.). NHTS. Retrieved from https://nhts.ornl.gov/
Statista. (n.d.). Retrieved from

https://www.statista.com/statistics/1010938/share-of-ev-on-total-number-of-registere
d-cars-in-european-countries/

Ulalah, A. (n.d.). Model-View-Controller (MVC). Retrieved from https://tinyurl.com/yuhf8ake

73

