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Contribution
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• Find a solution to a problem that burdens the surveys on bioinformatics and

specific on phylogeny.

• Describe some possible accelerators of time-consuming functions.

• Design and construct units that implement the requisite computations of the

accelerator.

• Distribute and manage the available resource in order to surpass a simple

CPU’s speed.

• Propose hardware platforms that can load and execute effectively the

demands of the accelerator.
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Phylogenetics-Phylogenetic Tree

Phylogenetic Trees are classified as rooted (i) or unrooted (ii) trees.
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Both rooted and unrooted trees can

be either bifurcating or multifurcating.



Enumerating Trees
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Given a bifurcating tree we can have rooted subtrees

and unrooted subtrees

Among bifurcating trees, the number of unrooted trees with n leaves

is equal to the number of rooted trees with n-1 leaves.



Enumerating Trees
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As the number of species (node leaves)

increases, the possible trees increase

significantly, making it difficult to identify

the authentic phylogenetic tree that

contains all known species so far.
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Maximum Likelihood
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• Maximum likelihood is a general statistical method for estimating unknown

parameters of a probability model.

• In phylogenetics, there are many parameters, including rates, differential

transformation costs, and, most importantly, the tree itself.

• In this case, Maximum Likelihood can be used as an optimality measure for

choosing a preferred tree or set of trees.

• The Likelihood is defined to be a quantity proportional to the probability of

observing the data given the model, P(D|M).



Models of Amino Acid Replacement
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• All models used for the study of ML, assume that all amino acid sites in an alignment

evolve independently. They have the property to be time-reversible.

• The probability of amino acid i being replaced by amino acid j over time T is Pij(T),

called replacement matrices.

• In the maximum likelihood (ML) method, they are used to compute substitution

probabilities along tree branches and hence the likelihood of the data. These

matrices are calculated as P(T) = exp(TQ).



Calculating Tree’s Probability
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The probability of the tree can be estimated by calculating a score for each

assumption made for all data, following ML and FPA.



Calculating Tree’s Probability
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Assuming that B and C have A as common

ancestor, the likelihood of root A must

be calculated for each site N of B and C.



Calculating Tree’s Probability
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• Each sequence split into N * 80 vectors for 

each site N of amino acid sequence.

• Each separate vector consists of 4 sites

• Each site contains 20 probabilities

• The probabilities of N vectors frames a 4x20 

matrix for each site of N sequences.

• Substitution Matrices are called LEFT & 

RIGHT. Left for B child and Right for C child



Calculating Tree’s Probability
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The likelihood of site i+1 is calculated as :

After that, the likelihoods of the common ancestor A are multiplied with the base

frequencies p of the 20 different amino acids :

Total probability of the tree is computed by multiplying the probabilities of its i sites of 

common ancestor A between them :



Calculating Tree’s Probability
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The likelihood of site i+1 is calculated as :

After that, the likelihoods of the common ancestor A are multiplied with the base

frequencies p of the 20 different amino acids :

Total probability of the tree is computed by multiplying the probabilities of its i sites of 

common ancestor A between them :



Adjustments on ML for RAxML
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Discrete 

Gamma Model

Accumulate uniformly all different substitution matrices of all i sites of N vectors.



Adjustments on ML for RAxML
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Adjustments on ML for RAxML

30

Eigen Vector (EV) is the eigenvectors of the relationship P(s)=e^Qs.

K = 20 likelihoods of one i site of the

vector A and corresponds to 20

eigenvectors of matrix EV
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Phylogenetic Likelihood Library
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➢ NewView() or PLF (Phylogenetic Likelihood Function)

➢Evaluate()

➢coreDerivative()

➢ sumGAMMA()



Phylogenetic Likelihood Library

33

➢ PLF() >= 85% of total time

➢ Evaluate() < 2% of total time

➢coreDerivative() < 2% of total time

➢ sumGAMMA() =~ 5% of total time

Profiling of PLL



Phylogenetic Likelihood Library
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➢ PLF() >= 85% of total time

➢ Evaluate() < 2% of total time

➢coreDerivative() < 2% of total time

➢ sumGAMMA() =~ 5% of total time

Profiling of PLL
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Amdahl’s law
1)

2)



Estimated Speedup
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Amdahl’s law
1)

2)

PLF RAxML

Inner - Inner X1.82 X1.63

All cases X7.7

SumGAMMA RAxML

Inner - Inner X1.92 X1.02

All cases X1.05



DAER ARCHITECTURE
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Using DAER architecture, the application is split into two parts, the part of data

processing and the data fetching.



FETCH UNITS

 Use Fetch Units for the two inputs and one output.

 Each Fetch Unit consists of 2 functions, BurstMem and BurstConv.

 BurstMem passes input values to streams. Input values and streams are 
ap_uint<512> type.

 BurstConv converts input streams into DataType streams.

 Knowing the available bandwidth of platforms and the size of data, we 

can calculate the optimal II .

 We can adjust the fetch units in order to achieve II <= optimal II.  
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PROCESSING UNITS

42

Multiplications For The Calculation of UMP for X1,X2 input vectors



PROCESSING UNITS
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Summation of TMP vector to produce UMPX1 and UMPX2 and

their multiplication for X1pX2



PROCESSING UNITS
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Calculation of likelihoods for a j site



PROCESSING UNITS
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Data Flow of Processing Unit : 
Likelihood Calculation
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Processing Units
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Multiplication Of EV with X1pX2 and a recursive addition for X3



Processing Units
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Final Calculation of a j site of X3 vector



Processing Units
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Processing Units
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Scaling process of X3 vector



Processing Units
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Data Flow of Processing Unit : EV Final Calculation
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Processing Units
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SumGAMMA - Detailed Data Flow



Processing Units
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Implementation
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Tools

 Vivado High Level Synthesis (HLS) 

 Vivado SDx (SDSoc & SDAccel)

 Vivado IDE
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Vivado High Level Synthesis (HLS) 
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Synthesis Report : Latency, Iteration Latency, Initiation Interval, Pipelined, Area (BRAM,

URAM, FF, DSP, LUT)

Optimization Directives :

▪ Interface : Maps the top-level function’s arguments to RTL ports to configure the IP 

block’s functionality. The interface directive specifies each argument’s port type.

▪ Dataflow : Enables parallel execution of functions and loops, increasing throughput 

and latency. It is used on our top level function.

▪ Pipeline : Reduces the number of clock cycles a function or loop can accept new 

inputs, by allowing the concurrent execution of operations.

▪ Inline : Removes a function as a separate entity in the hierarchy.

▪ Array Partition : Partitions an array into multiple smaller arrays or assigns each 

array’s element to its register.

▪ Resource : Specifies the resource (core) is used to implement a variable.



SDSoc & SDAccel
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SDSoc Directives :

• Data access pattern : Specifies the data access pattern in the hardware function so 

as to determine the hardware interface to synthesize.

• Data copy : Means that data are explicitly copied between the host processor 

memory and the hardware function.

• Data zero_copy : Means that the hardware function accesses the data directly from 

shared memory through an AXI master bus interface.

• Data mem_attribute : Tells the compiler whether the arguments have been allocated 

in physically contiguous memory. 

• Data sys_port : Used in order to assign the arguments to specific memory ports.

In SDAccel environment we use OpenCL to build the kernel and the communication

with the host on devices



Vivado IDE
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Strategies & Directives :

• OPT_DESIGN = ExploreArea : Runs multiple passes of optimization with an emphasis 

on reducing combinational logic.

• PLACE_DESIGN = SSI_BalanceSLRs : Partitions across Super Logic Regions (SLRs) 

while attempting to balance Super Logic Lines (SLLs) between SLRs. In other words, 

trying to balance resources on all SLRs of the platform.

• PHYS_OPT_DESIGN = AggresiveFanoutOpt : Uses different algorithms for fanout-

related optimizations with more aggressive goals.

• ROUTE_DESIGN = AlternateCLBRouting : Chooses alternate routing algorithms that 

require extra runtime but may help resolve routing congestion.

• POST_ROUTE_DESIGN = AggressiveExplore : Higher and aggressive placer effort in 

detail placement and post-placement optimization goals.



FPGA Platforms

 ZCU102 : includes 4GB of DDR4 for the Processing System, 512MB of DDR4 

for the Programmable Logic, 264MB Quad-SPI Flash, and an SDIO card 

interface. Its CPU frequency is 1200(MHz).

 AWS EC2 F1 Instance : includes four channels of DDR4-2400 DIMMs (64GB), 

the expanded partial reconfiguration flow for high fabric resource 

availability, and Xilinx DMA Subsystem for PCI Express with PCIe Gen3 x16 

connectivity. Its runtime is OpenCL. Moreover, its CPU frequency is 2.3GHz 

on basic mode and it can reach the peak of 2.7GHz on turbo mode.
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FPGA Platforms
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ZCU102

AWS F1



Results
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Software Performance
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RAxML



Software Performance

 Both total execution time and the functions’ time increase proportionally 

with the increase of the number of alignment patterns & with the increase 

of the number of taxa.

 Increased Alignment Patterns => Increased Function’s Execution Time.

 Increased Taxa => Too many recalls of functions => Increased Total 
Execution Time.

 Using AVX instructions => Good Acceleration of the Sequential version.
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Observations



Hardware Performance
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ZCU102 - SumGAMMAPROT

• II = 80 

• Clk = 200 MHz



Hardware Performance
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ZCU102 - PLF

• II = 160 

• Clk = 100 MHz
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ZCU102 - PLF

• II = 160 

• Clk = 100 MHz



Hardware Performance
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ZCU102 - PLF

• II = 160 

• Clk = 100 MHz



Hardware Performance
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AWS F1 - SumGAMMAPROT

• II = 10 

• Clk = 350 MHz



Hardware Performance
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AWS F1 - PLF

• II = 160 

• Clk = 150 MHz



Hardware Performance
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AWS F1 - PLF

• II = 160 

• Clk = 150 MHz



Hardware Performance
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AWS F1 - PLF

• II = 160 

• Clk = 150 MHz



Performance Model
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• We achieved to pass completely the synthesis

process of our PLF design with II = 80, 40, 20.

• We designed a performance model that could

simulate an approximate performance framework.

• This model counts in the time of data transfer and

setup of kernel arguments.

• There is a comparison among the new

performance and the AVX one which was our

threshold.



Performance Model
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Performance Model

77PLF using 50 Taxa



Performance Model

78PLF using 100 Taxa



Performance Model
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Analysis and Final Performance

✓ Both on ZCU102 and on AWS F1 Instance, there is acceleration of the sequential
version of PLF function using our totally completed kernels.

▪ Still can not surpass threshold the AVX performance

✓ On AWS F1 Instance there is acceleration of the SumGAMMAPROT function, using our
totally completed kernel.

▪ Restriction is the big number of Alignment Patterns.

✓ On AWS F1 instance, there is acceleration of the PLF function surpassing the
performance of AVX version using an implemented theoretical performance model.

▪ It could not be placed & routed on any available platform.

✓ Subsequently to the above success, whole RAxML can be accelerated by an
approximate x1.47 factor.

▪ This fact comes from the theoretical performance model.
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Conclusions

In this thesis we achieved to :

 Examine and analyze the optimal performances of our systems, taking

advantage of the specifications of the given platforms such as the clock

frequencies, memory access patterns, and bandwidths.

 Design hardware kernels with as far as possible minimum resources of the

targeted platforms.

 Accelerate the initial functions (both sequential and AVX versions), using

these kernels, by a significant factor.

 Propose one of the least implemented accelerators of an algorithm that

targets the usage and processing of amino acids data.
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Future Work

Optimizations :

 A Better and sufficient technique for the transfer of the data from Host to
Device and vice versa.

 A better way of recalling the kernel and transfer data without time losses
during the total run of RAxML.

 Use a larger platform to achieve the optimal II and export the conclusion for
the accelerators.

 Gather real data sets from scientists to run them and show the performance of
the accelerators.

 Integration of the other two cases (tip-tip & tip-inner) of these functions into 
the kernels.
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Thank You!

Any Questions?
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