
Design and Implementation of a

cloud based FPGA accelerator for
phylogeny reconstruction

ANASTASIOS BOKALIDIS

Electrical & Computer
Engineering School Technical
University of Crete

Table Of Contents

 Introduction

2

 Theoretical Background

 Maximum Likelihood Method

 Related Work

 Architecture Design

 FPGA Implementation

 Results

 Conclusions

Introduction

3

Introduction

Introduction

5

Introduction

6

Introduction

7

PERSONAL COMPUTERS

Introduction

8

PERSONAL COMPUTERS SUPER COMPUTERS

Introduction

9

PERSONAL COMPUTERS SUPER COMPUTERS

Introduction

10

GPUs FPGAs

Contribution

11

• Find a solution to a problem that burdens the surveys on bioinformatics and

specific on phylogeny.

• Describe some possible accelerators of time-consuming functions.

• Design and construct units that implement the requisite computations of the

accelerator.

• Distribute and manage the available resource in order to surpass a simple

CPU’s speed.

• Propose hardware platforms that can load and execute effectively the

demands of the accelerator.

Theoretical

Background

12

Phylogenetics-Phylogenetic Tree

13

Phylogenetics Phylogenetic Tree

Phylogenetics-Phylogenetic Tree

Phylogenetic Trees are classified as rooted (i) or unrooted (ii) trees.

14

Both rooted and unrooted trees can

be either bifurcating or multifurcating.

Enumerating Trees

15

Given a bifurcating tree we can have rooted subtrees

and unrooted subtrees

Among bifurcating trees, the number of unrooted trees with n leaves

is equal to the number of rooted trees with n-1 leaves.

Enumerating Trees

16

As the number of species (node leaves)

increases, the possible trees increase

significantly, making it difficult to identify

the authentic phylogenetic tree that

contains all known species so far.

Related Work

17

Related Work

Technology Section Algorithms Data

FPGA

Sequence Comparison
BLAST

CAST

DNA

PROTEINS

Multiple Sequence Alignment
MAAFT

T-Coffee

DNA

DNA

Prediction of RNA and protein

secondary structure

Zuker

Predator

PROTEINS,DNA

PROTEINS,DNA

Gene identification Glimmer GENES

Phylogenetic Trees
Bayesian

RAxML

DNA

PROTEINS,DNA

Intel MIC Phylogenetic Trees
RAxML-Light

EXaML

DNA

DNA

GPU Phylogenetic Trees
RAxML-Light

EXaML

DNA

DNA

18

Related Work

Technology Section Algorithms Data

FPGA

Sequence Comparison
BLAST

CAST

DNA

PROTEINS

Multiple Sequence Alignment
MAAFT

T-Coffee

DNA

DNA

Prediction of RNA and protein

secondary structure

Zuker

Predator

PROTEINS,DNA

PROTEINS,DNA

Gene identification Glimmer GENES

Phylogenetic Trees
Bayesian

RAxML

DNA

PROTEINS,DNA

Intel MIC Phylogenetic Trees
RAxML-Light

EXaML

DNA

DNA

GPU Phylogenetic Trees
RAxML-Light

EXaML

DNA

DNA

19

Maximum

Likelihood Method

20

Maximum Likelihood

21

• Maximum likelihood is a general statistical method for estimating unknown

parameters of a probability model.

• In phylogenetics, there are many parameters, including rates, differential

transformation costs, and, most importantly, the tree itself.

• In this case, Maximum Likelihood can be used as an optimality measure for

choosing a preferred tree or set of trees.

• The Likelihood is defined to be a quantity proportional to the probability of

observing the data given the model, P(D|M).

Models of Amino Acid Replacement

22

• All models used for the study of ML, assume that all amino acid sites in an alignment

evolve independently. They have the property to be time-reversible.

• The probability of amino acid i being replaced by amino acid j over time T is Pij(T),

called replacement matrices.

• In the maximum likelihood (ML) method, they are used to compute substitution

probabilities along tree branches and hence the likelihood of the data. These

matrices are calculated as P(T) = exp(TQ).

Calculating Tree’s Probability

23

The probability of the tree can be estimated by calculating a score for each

assumption made for all data, following ML and FPA.

Calculating Tree’s Probability

24

Assuming that B and C have A as common

ancestor, the likelihood of root A must

be calculated for each site N of B and C.

Calculating Tree’s Probability

25

• Each sequence split into N * 80 vectors for

each site N of amino acid sequence.

• Each separate vector consists of 4 sites

• Each site contains 20 probabilities

• The probabilities of N vectors frames a 4x20

matrix for each site of N sequences.

• Substitution Matrices are called LEFT &

RIGHT. Left for B child and Right for C child

Calculating Tree’s Probability

26

The likelihood of site i+1 is calculated as :

After that, the likelihoods of the common ancestor A are multiplied with the base

frequencies p of the 20 different amino acids :

Total probability of the tree is computed by multiplying the probabilities of its i sites of

common ancestor A between them :

Calculating Tree’s Probability

27

The likelihood of site i+1 is calculated as :

After that, the likelihoods of the common ancestor A are multiplied with the base

frequencies p of the 20 different amino acids :

Total probability of the tree is computed by multiplying the probabilities of its i sites of

common ancestor A between them :

Adjustments on ML for RAxML

28

Discrete

Gamma Model

Accumulate uniformly all different substitution matrices of all i sites of N vectors.

Adjustments on ML for RAxML

29

Adjustments on ML for RAxML

30

Eigen Vector (EV) is the eigenvectors of the relationship P(s)=e^Qs.

K = 20 likelihoods of one i site of the

vector A and corresponds to 20

eigenvectors of matrix EV

Architecture Design

31

Phylogenetic Likelihood Library

32

➢ NewView() or PLF (Phylogenetic Likelihood Function)

➢Evaluate()

➢coreDerivative()

➢ sumGAMMA()

Phylogenetic Likelihood Library

33

➢ PLF() >= 85% of total time

➢ Evaluate() < 2% of total time

➢coreDerivative() < 2% of total time

➢ sumGAMMA() =~ 5% of total time

Profiling of PLL

Phylogenetic Likelihood Library

34

➢ PLF() >= 85% of total time

➢ Evaluate() < 2% of total time

➢coreDerivative() < 2% of total time

➢ sumGAMMA() =~ 5% of total time

Profiling of PLL

Estimated Speedup

35

Amdahl’s law
1)

2)

Estimated Speedup

36

Amdahl’s law
1)

2)

PLF RAxML

Inner - Inner X1.82 X1.63

All cases X7.7

SumGAMMA RAxML

Inner - Inner X1.92 X1.02

All cases X1.05

DAER ARCHITECTURE

37

Using DAER architecture, the application is split into two parts, the part of data

processing and the data fetching.

FETCH UNITS

 Use Fetch Units for the two inputs and one output.

 Each Fetch Unit consists of 2 functions, BurstMem and BurstConv.

 BurstMem passes input values to streams. Input values and streams are
ap_uint<512> type.

 BurstConv converts input streams into DataType streams.

 Knowing the available bandwidth of platforms and the size of data, we

can calculate the optimal II .

 We can adjust the fetch units in order to achieve II <= optimal II.

38

PROCESSING UNITS

39

PROCESSING UNITS

40

PROCESSING UNITS

41

PROCESSING UNITS

42

Multiplications For The Calculation of UMP for X1,X2 input vectors

PROCESSING UNITS

43

Summation of TMP vector to produce UMPX1 and UMPX2 and

their multiplication for X1pX2

PROCESSING UNITS

44

Calculation of likelihoods for a j site

PROCESSING UNITS

45

Data Flow of Processing Unit :
Likelihood Calculation

Processing Units

46

Processing Units

47

Multiplication Of EV with X1pX2 and a recursive addition for X3

Processing Units

48

Final Calculation of a j site of X3 vector

Processing Units

49

Processing Units

50

Scaling process of X3 vector

Processing Units

51

Data Flow of Processing Unit : EV Final Calculation

Processing Units

52

Processing Units

53

Processing Units

54

SumGAMMA - Detailed Data Flow

Processing Units

55

FPGA

Implementation

56

Tools

 Vivado High Level Synthesis (HLS)

 Vivado SDx (SDSoc & SDAccel)

 Vivado IDE

57

Vivado High Level Synthesis (HLS)

58

Synthesis Report : Latency, Iteration Latency, Initiation Interval, Pipelined, Area (BRAM,

URAM, FF, DSP, LUT)

Optimization Directives :

▪ Interface : Maps the top-level function’s arguments to RTL ports to configure the IP

block’s functionality. The interface directive specifies each argument’s port type.

▪ Dataflow : Enables parallel execution of functions and loops, increasing throughput

and latency. It is used on our top level function.

▪ Pipeline : Reduces the number of clock cycles a function or loop can accept new

inputs, by allowing the concurrent execution of operations.

▪ Inline : Removes a function as a separate entity in the hierarchy.

▪ Array Partition : Partitions an array into multiple smaller arrays or assigns each

array’s element to its register.

▪ Resource : Specifies the resource (core) is used to implement a variable.

SDSoc & SDAccel

59

SDSoc Directives :

• Data access pattern : Specifies the data access pattern in the hardware function so

as to determine the hardware interface to synthesize.

• Data copy : Means that data are explicitly copied between the host processor

memory and the hardware function.

• Data zero_copy : Means that the hardware function accesses the data directly from

shared memory through an AXI master bus interface.

• Data mem_attribute : Tells the compiler whether the arguments have been allocated

in physically contiguous memory.

• Data sys_port : Used in order to assign the arguments to specific memory ports.

In SDAccel environment we use OpenCL to build the kernel and the communication

with the host on devices

Vivado IDE

60

Strategies & Directives :

• OPT_DESIGN = ExploreArea : Runs multiple passes of optimization with an emphasis

on reducing combinational logic.

• PLACE_DESIGN = SSI_BalanceSLRs : Partitions across Super Logic Regions (SLRs)

while attempting to balance Super Logic Lines (SLLs) between SLRs. In other words,

trying to balance resources on all SLRs of the platform.

• PHYS_OPT_DESIGN = AggresiveFanoutOpt : Uses different algorithms for fanout-

related optimizations with more aggressive goals.

• ROUTE_DESIGN = AlternateCLBRouting : Chooses alternate routing algorithms that

require extra runtime but may help resolve routing congestion.

• POST_ROUTE_DESIGN = AggressiveExplore : Higher and aggressive placer effort in

detail placement and post-placement optimization goals.

FPGA Platforms

 ZCU102 : includes 4GB of DDR4 for the Processing System, 512MB of DDR4

for the Programmable Logic, 264MB Quad-SPI Flash, and an SDIO card

interface. Its CPU frequency is 1200(MHz).

 AWS EC2 F1 Instance : includes four channels of DDR4-2400 DIMMs (64GB),

the expanded partial reconfiguration flow for high fabric resource

availability, and Xilinx DMA Subsystem for PCI Express with PCIe Gen3 x16

connectivity. Its runtime is OpenCL. Moreover, its CPU frequency is 2.3GHz

on basic mode and it can reach the peak of 2.7GHz on turbo mode.

61

FPGA Platforms

62

ZCU102

AWS F1

Results

63

Software Performance

64

RAxML

Software Performance

 Both total execution time and the functions’ time increase proportionally

with the increase of the number of alignment patterns & with the increase

of the number of taxa.

 Increased Alignment Patterns => Increased Function’s Execution Time.

 Increased Taxa => Too many recalls of functions => Increased Total
Execution Time.

 Using AVX instructions => Good Acceleration of the Sequential version.

65

Observations

Hardware Performance

66

ZCU102 - SumGAMMAPROT

• II = 80

• Clk = 200 MHz

Hardware Performance

67

ZCU102 - PLF

• II = 160

• Clk = 100 MHz

Hardware Performance

68

ZCU102 - PLF

• II = 160

• Clk = 100 MHz

Hardware Performance

69

ZCU102 - PLF

• II = 160

• Clk = 100 MHz

Hardware Performance

70

AWS F1 - SumGAMMAPROT

• II = 10

• Clk = 350 MHz

Hardware Performance

71

AWS F1 - PLF

• II = 160

• Clk = 150 MHz

Hardware Performance

72

AWS F1 - PLF

• II = 160

• Clk = 150 MHz

Hardware Performance

73

AWS F1 - PLF

• II = 160

• Clk = 150 MHz

Performance Model

74

• We achieved to pass completely the synthesis

process of our PLF design with II = 80, 40, 20.

• We designed a performance model that could

simulate an approximate performance framework.

• This model counts in the time of data transfer and

setup of kernel arguments.

• There is a comparison among the new

performance and the AVX one which was our

threshold.

Performance Model

75PLF using 10 Taxa

Performance Model

76PLF using 25 Taxa

Performance Model

77PLF using 50 Taxa

Performance Model

78PLF using 100 Taxa

Performance Model

79
SPEEDUP PERFORMANCE

Performance Model

80SPEEDUP PERFORMANCE

Analysis and Final Performance

✓ Both on ZCU102 and on AWS F1 Instance, there is acceleration of the sequential
version of PLF function using our totally completed kernels.

▪ Still can not surpass threshold the AVX performance

✓ On AWS F1 Instance there is acceleration of the SumGAMMAPROT function, using our
totally completed kernel.

▪ Restriction is the big number of Alignment Patterns.

✓ On AWS F1 instance, there is acceleration of the PLF function surpassing the
performance of AVX version using an implemented theoretical performance model.

▪ It could not be placed & routed on any available platform.

✓ Subsequently to the above success, whole RAxML can be accelerated by an
approximate x1.47 factor.

▪ This fact comes from the theoretical performance model.

81

Conclusions

82

Conclusions

In this thesis we achieved to :

 Examine and analyze the optimal performances of our systems, taking

advantage of the specifications of the given platforms such as the clock

frequencies, memory access patterns, and bandwidths.

 Design hardware kernels with as far as possible minimum resources of the

targeted platforms.

 Accelerate the initial functions (both sequential and AVX versions), using

these kernels, by a significant factor.

 Propose one of the least implemented accelerators of an algorithm that

targets the usage and processing of amino acids data.

83

Future Work

Optimizations :

 A Better and sufficient technique for the transfer of the data from Host to
Device and vice versa.

 A better way of recalling the kernel and transfer data without time losses
during the total run of RAxML.

 Use a larger platform to achieve the optimal II and export the conclusion for
the accelerators.

 Gather real data sets from scientists to run them and show the performance of
the accelerators.

 Integration of the other two cases (tip-tip & tip-inner) of these functions into
the kernels.

84

Thank You!

Any Questions?

85

