
Technical University of Crete
School of Electrical and Computer Engineering
Division of Intelligent Systems Laboratory

Microservice Placement Strategies in Kubernetes

for Cost Optimization

Diploma Thesis
of

AZNAVOURIDIS ALKIVIADIS

Examination Committee : Professor Euripidis Petrakis (Supervisor)
Associate Professor Samoladas Vasileios
Associate Professor of Birkbeck, University of London,

Sotiriadis Stelios

Chania, February 2022

Technical University of Crete
School of Electrical and Computer Engineering
Division of Intelligent Systems Laboratory

Copyright © – All rights reserved.
Aznavouridis Alkiviadis, 2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-
hibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and
that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the
Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS
Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference is
included in the bibliographic references section.

(Signature)

. .
Aznavouridis Alkiviadis

February 2022

Abstract

The current Thesis proposes efficient microservice placement strategies in Kubernetes
for optimizing the total monetary costs for hosting an application running in a Cloud
environment. The problem of service placement is formulated as an application’s graph
clustering one. The services form graphs with nodes representing services and edges repre-
senting communicating services. Both nodes and edges are labeled by resources consumed
(i.e. mainly CPU and RAM resources) by the application’s microservices and affinities
between these microservices (i.e. messages load exchanged per second). The result of an
algorithm is a set clusters comprising nodes (i.e. microservices) communicating heavily
with each other. This in turn guides to placement of service clusters to nodes (or VMs) by
using heuristic methods. For collecting the essential data and for monitoring an applica-
tion, Service Mesh technologies, like Istio and its related services, are utilized to supervise
the network communication and the resource usage of the microservices. These strategies
are implemented and tested into two microservice-based applications, iXen and Google’s
OnlineBoutique eShop, into a homogeneous Cloud environment and particularly in the
Google Cloud Platform. The experimental results reveal that the proposed microservice
placement solutions reduce both the size of allocated resources and the network traffic of
the host machines. This is achieved by reducing the number of the utilized machines and
by increasing the internal communication volume of microservices in every host machine
respectively. As a result, these solutions minimize the total monetary cost for the end-user.

Keywords

Kubernetes, Cost-optimization, Microservices, Heuristics methods, Clustering algo-
rithms, Istio Service Mesh, Google Cloud Platform, iXen, OnlineBoutique eShop

Diploma Thesis 1

Περίληψη

Η παρούσα διπλωματική εργασία προτείνει αποδοτικές στρατηγικές τοποθέτησης μικροϋπη-

ρεσιών στο Kubernetes για την βελτιστοποίηση του συνολικού χρηματικού κόστους φιλοξ-
ενίας μιας εφαρμογής σε ένα περιβάλλον νέφους. Το πρόβλημα της τοποθέτησης μικροϋπηρε-

σιών διατυπώνεται ως πρόβλημα συσταδοποίησης του γράφου μιας εφαρμογής. Οι υπηρεσίες

σχηματίζουν γράφους με τους κόμβους να αντιπροσωπεύουν μικροϋπηρεσίες και οι ακμές να

αντιπροσωπεύουν επικοινωνούσες μικροϋπηρεσίες. Τόσο οι κόμβοι, όσο και οι ακμές, χαρακ-

τηρίζονται από τους πόρους που καταναλώνουν (δηλαδή κυρίως πόρους CPU και RAM) από
τις μικροϋπηρεσίες μιας εφαρμογής και από τις συσχετίσεις μεταξύ αυτών των μικροϋπηρεσιών

(δηλαδή το φορτίο των μηνυμάτων που ανταλλάσσονται ανά δευτερόλεπτο). Το αποτέλεσμα

ενός αλγορίθμου είναι ένα σύνολο συστάδων που περιλαμβάνει κόμβους (δηλαδή μικροϋπηρε-

σίες) που επικοινωνούν σε μεγάλο βαθμό μεταξύ τους. Αυτό με τη σειρά του οδηγεί στην

τοποθέτηση συστάδων υπηρεσιών σε κόμβους (ή VMs) χρησιμοποιώντας ευρηματικές μεθό-
δους. Για την συλλογή των απαραίτητων δεδομένων και την επόπτευση της εφαρμογής χρησι-

μοποιούνται τεχνολογίες εξυπηρέτησης πλέγματος (Service Mesh), όπως είναι το Istio και
οι επιμέρους υπηρεσίες του, για την επόπτευση της επικοινωνίας και της χρήσης πόρων των

υπηρεσιών. Οι στρατηγικές αυτές εφαρμόζονται και ελέγχονται σε δύο εφαρμογές μικροϋπηρε-

σιών, το iXen και το Google’s OnlineBoutique eShop, σε ένα ομοιογενές περιβάλλον νέφους
και συγκεκριμένα στο Google Cloud Platform. Τα πειραματικά αποτελέσματα αποκαλύπ-
τουν ότι οι προτεινόμενες λύσεις τοποθέτησης μικροϋπηρεσιών μειώνουν τόσο το μέγεθος

των κατανεμημένων πόρων, όσο και την κίνηση του δικτύου των μηχανών φιλοξενίας. Αυτό

επιτυγχάνεται μειώνοντας τον αριθμό των χρησιμοποιούμενων μηχανημάτων και αυξάνοντας

τον όγκο της εσωτερικής επικοινωνίας των μικροϋπηρεσιών σε κάθε μηχάνημα φιλοξενίας αν-

τίστοιχα. Ως αποτέλεσμα, αυτές οι λύσεις ελαχιστοποιούν το συνολικό χρηματικό κόστος για

τον τελικό χρήστη.

Λέξεις Κλειδιά

Kubernetes, Βελτιστοποίηση Κόστους, Μικροϋπηρεσίες, Ευρηματικές μέθοδοι, Αλγόρι-
θμοι ομαδοποίησης, Istio Service Mesh, Google Cloud Platform, iXen, OnlineBoutique eS-
hop

Diploma Thesis 3

to my family..

Acknowledgements

I would like to show my gratitude and appreciation to my supervisor professor Euripidis
Petrakis for his continuous support and enlightenment in the conduction of this Diploma
Thesis. His professional knowledge and progressive ideas have broaden my mind and
expanded my opportunities in the upcoming working and educational challenges.

Next, i would like to mention how grateful i am to my colleague and assistant of my
supervisor professor, in his MSc Diploma, Tsakos Konstantinos, for providing all the impor-
tant information, assistance and knowledge on the utilized infrastructures and technologies.
He was an essential support during the implementation of my Thesis and i wish him all
the best in his new career.

Crucial factor on my successful undergraduate studies were the educational and mental
support from my colleagues Maragkaki Maria, Katara Sotiria-Maria and Manara Christina.
More than friends to me, i hope them to excel in their careers and may some day cooperate
in future projects.

Finally, i would like to pay respects to my friends and family, and especially my mother
Eleftheria, my father Pavlos and my brother Konstantinos, who helped me become the
person i am today and provided me with all the important values to continuously chase
my dreams and ambitions and achieve my goals. They have always persuaded me to set
my standards and goals as high as possible so as to excel upon every aspect of my life.

Chania, February 2022

Aznavouridis Alkiviadis

Diploma Thesis 5

Table of Contents

Abstract 1

Περίληψη 3

Acknowledgements 5

Preface 15

1 Introduction 17
1.1 Problem Definition . 17
1.2 Scope of Thesis . 18
1.3 Chapters Structure . 18

2 Background and Related Work 21
2.1 Related Work on Service Placement . 21
2.2 Related Work on Graph Partitioning . 23

2.2.1 Theoretical Background of Algorithms 23
2.2.2 Service Affinities . 24
2.2.3 Related Algorithms . 25

2.3 Infrastructure and Tools . 31
2.3.1 Microservices . 31
2.3.2 Kubernetes . 32
2.3.3 Service Mesh and Istio . 37
2.3.4 Metric Tools and Agents . 39
2.3.5 Benchmark Stressing Tool . 41

3 System Design and Benchmarks 43
3.1 System Architecture . 43
3.2 Microservices Performance Metrics . 45

3.2.1 Requests per Second (RPS) . 46
3.2.2 Weighted Bidirectional Affinity (WBA) 47

3.3 Benchmark Algorithms . 48
3.3.1 Clustering Algorithms . 48
3.3.2 Adaptive Placement Algorithms . 52

3.4 Benchmark Applications . 54
3.4.1 iXen . 54

Diploma Thesis 7

TABLE OF CONTENTS

3.4.2 Google’s OnlineBoutique eShop . 56

4 Experimental Results 59
4.1 Service Placement Strategies . 59
4.2 Infrastructure . 60
4.3 Application Stress Testing . 62

4.3.1 iXen Stressing . 63
4.3.2 OnlineBoutique Stressing . 63

4.4 Cost Function . 65
4.5 Results . 68

4.5.1 K-value Selection for BKM Algorithm 69
4.5.2 Execution Time of each Placement Strategy 71
4.5.3 Number of Hosts . 73
4.5.4 Egress Traffic . 75
4.5.5 Total Monetary Cost of Cluster . 78

4.6 Discussion . 80

5 Conclusions and Future Work 83

Appendices 87

A Cluster Data Collection 89
A.1 Prometheus Data . 89
A.2 Kiali Graph . 91
A.3 Grafana Visualization . 93

Bibliography 97

List of Abbreviations 99

8 Diploma Thesis

List of Figures

2.1 Microservice Architecture [1] . 32
2.2 Kubernetes Components [2] . 34
2.3 Kubernetes Scheduling Process [3] . 37
2.4 Istio Architecture [4] . 38
2.5 Kiali Architecture [5] . 41

3.1 Pod’s Architecture . 44
3.2 Node’s Architecture . 45
3.3 Cluster’s Architecture in GCP . 46
3.4 Edge Contraction Process . 49
3.5 iXen Architecture . 55
3.6 Google Online Boutique Architecture [6] 57

4.1 Cluster infrastructure in GCP . 62
4.2 Number of hosts for different K-Value of BKM algorithm 69
4.3 Number of hosts for different K-Value of BKM algorithm with Stressing . . 69
4.4 Traffic Optimization for the various K-Values of BKM algorithm 70
4.5 Traffic Optimization for the various K-Values of BKM algorithm with

Stressing . 70
4.6 Execution time of algorithms for OnlineBoutique 71
4.7 Execution time of algorithms for OnlineBoutique with Stressing 72
4.8 Execution time of algorithms for iXen . 72
4.9 Number of Hosts used for OnlineBoutique 73
4.10 Number of Hosts used for OnlineBoutique with Stressing 74
4.11 Number of Hosts used for iXen . 74
4.12 Traffic Optimization by the Bytes of Requests for OnlineBoutique 75
4.13 Traffic Optimization by the Bytes of Requests for OnlineBoutique with

Stressing . 76
4.14 Traffic Optimization by the Bytes of Requests for iXen 76
4.15 Egress Variation per Month for OnlineBoutique 77
4.16 Egress Variation per Month for OnlineBoutique with Stressing 77
4.17 Egress Variation per Month for iXen . 78
4.18 Cluster cost per Month for OnlineBoutique 79
4.19 Cluster cost per Month for OnlineBoutique with Stressing 79
4.20 Cluster cost per Month for iXen . 80

Diploma Thesis 9

List of Images

A.1 PromQL query in Prometheus UI . 90
A.2 Kiali Graph for OnlineBoutique eShop application 92
A.3 Kiali Graph for iXen application . 92
A.4 Grafana Node Data . 93
A.5 Grafana Resource Graphs and I/O Operations 94

Diploma Thesis 11

List of Tables

4.1 Cluster Characteristics . 61
4.2 Node Pool Characteristics . 61
4.3 iXen Requests and Stressing test plan . 63
4.4 Online Boutique Requests [6] . 64
4.5 Apache JMeter Test Plan for OnlineBoutique 65
4.6 Cluster Abbreviations for Cost Function 65
4.7 GCP costs for e2-standard Machines . 68

A.1 Node PromQL Queries . 90
A.2 Pod PromQL Queries . 91
A.3 Kiali Graph Symbology . 91

Diploma Thesis 13

Preface

This Thesis is developed for acquiring the Diploma from the Electronics and Computer
Engineering Department of Technical University of Crete. It was originally suggested
from the supervisor of the Thesis, Professor Euripidis Petrakis and his MSc student and
laboratory stuff, Konstantinos Tsakos, who also implements microservice-based placement
strategies in Kubernetes clusters and attempts to make a comparison between the proposed
strategies and the ones he implements in his study for his MSc Thesis.

The contribution of both of them was crucial to my success in this stage of my studies
and a broad range of possibilities appeared after the comprehension and experimentation
with DevOps practises theoretically and practically. They led me to act and behave like
an Engineer with Divide and Conquer skills for locating solutions in real life applications.
The knowledge of these technologies and tools will support me for my future work and
activities.

I would like to show my appreciation to my colleague, Evangelos Stamos, who imple-
mented a LaTeX prototype for conducting various Diploma Thesis that can be utilized by
students from different Technological Universities, as it was implemented in the current
Thesis.

Hopefully, the DevOps practises and the Cloud Engineering will be my main area of
interest in the upcoming years. With patience and continuous persistent i hope to broaden
my skills and techniques on the Cloud infrastructures and extend my current work in future
projects.

Diploma Thesis 15

Chapter 1

Introduction

1.1 Problem Definition

Modern internet applications comprise of various innovative technologies, which can re-
duce the complexity of their creation, configuration, maintenance, deployment and observ-
ability. Containerization technologies, like Kubernetes, are common implementations in
many developers’ toolkits, enabling a more lightweight packing of services and facilitate the
deployment of applications across different types of infrastructures and computing systems.
These technologies are rapidly adapted by developers and organizations for increasing the
scalability of their applications and reducing the run-time hosting and maintenance costs.
Kubernetes clusters can efficiently host a wide range of different applications and secure
the consistency of the run-time execution. These technologies are far from the monolithic
approach and structure, making the troubleshooting process and fault isolation a simpli-
fied task for the developers. With the introduction of microservices in the modern era,
applications comprise independent communicating services, each one executing a part of
the application logic or even a simple task in the application. In this way, the complexity
for constructing an application is reduced and developers are less about services updates
or about extending the application with new services.

Furthermore, the continuous evolution of the internet applications and infrastructures,
especially in the area of the Cloud environments, consists a vital factor upon deploying
modern internet applications. Cloud computing provides an alternative solution to the
monolithic on-premises data centers, where developers must configure the data center’s
hardware, network, virtualization and provide maintenance to successfully host an appli-
cation. With Cloud computing, Cloud providers are responsible for all the above, providing
a wide variety of software and platform as a service. Cloud services can reduce the cost
of operations, complexity of the applications and increase the productivity of developers.
They provide users and organizations with essential tools to monitor, optimize and extend
each running application on their infrastructure.

All the above tools, improvements on applications and the Cloud infrastructures in-
crease the overall performance and reduce the complexity of creating and managing the im-
plemented applications. The utilization of Kubernetes can significantly reduce the run-time
costs and the infrastructure management of running applications. However, configuring a
Kubernetes cluster is not a simple task, if optimization of the network communication be-

Diploma Thesis 17

Chapter 1. Introduction

tween the microservices and the execution costs are taken into consideration. The Service
Placement (SP) problem [7] has raised concerns about the optimal placement solution of
an application’s services into a Cloud infrastructure’s host machines. The solution to this
problem is highly dependent on the factors that need to be optimized each time, either
separately or simultaneously. Taking into consideration the monetary cost of a Cloud’s
infrastructure, existing strategies for service placement may not always lead to a cost opti-
mized result, which is the desired result for this Thesis. Most Cloud vendors require extra
payment for the traffic communication of the utilized host machines and their allocated
computing resources and thus cost is considered a crucial factor upon building and de-
ploying an online application, especially on Cloud infrastructures. The placement of these
microservices in the available host machines can affect the cost and the network traffic of
the cluster and therefore efficient strategies must be implemented to optimize these factors
and further reduce the additional utilized resources and the overall Kubernetes cluster’s
costs. Additionally, the resource supply in CPU, RAM and storage, the availability and
the geographic reach of the applications’ host machines may be limited and further im-
provements of the service placement may be applied to address these issues and optimize
the performance of each application.

1.2 Scope of Thesis

The scope of Thesis is to discover and implement microservice-based placement strate-
gies to improve the cost of a Kubernetes cluster running on a Cloud infrastructure. We will
attempt to solve the SP problem by taking into consideration the monetary cost factor and
specifically to reduce the infrastructure’s fee charges to the minimum. The infrastructure’s
total cost is related to the utilized computing resources and the network traffic between
services placed in different host machines (normally network traffic between services placed
in same node (or VM) comes for free). The goal is to provide placement solutions to fit ev-
ery Kubernetes cluster running on every available infrastructure without requiring a prior
knowledge of the application’s microservices and their connections. The goal is to optimize
all the factors connected to the cost function of each application’s hosting, so as to provide
an optimal solution to the SP problem (i.e. minimize the total monetary cost). In order to
achieve this, we will apply graph clustering algorithms to locate an efficient service place-
ment that can reduce the run-time costs of a Kubernetes cluster under different application
workloads and performance measures. The proposed clusters will be placed effectively into
the Cloud infrastructure by implementing heuristic methods, as a post-processing step.

1.3 Chapters Structure

This Thesis is organized in 5 main chapters, including the Introduction, and the Ap-
pendix chapter. In chapter 2, the related work on the SP problem and on graph partitioning
algorithms will be presented. Furthermore, the theoretical background of Kubernetes, mi-
croservices, the various metric tools and agents and the stressing tools, that will be utilized
for this Thesis, will be analyzed thoroughly. Chapter 3 includes the system design of the

18 Diploma Thesis

1.3 Chapters Structure

implemented Kubernetes clusters and the benchmark applications that will be utilized for
the performance testing of the placement strategies. Based on the graph partitioning al-
gorithms presented on chapter 2, the modifications and optimizations on the presented
algorithms will be explained to match to the utilized Cloud infrastructure. The perfor-
mance measures will be properly calculated and will be collected from the metric tools and
agents of the application to enable the estimation of each running Kubernetes cluster’s cost.
Chapter 4, the experimental phase of the Thesis, presents the service placement strategies
and the Cloud infrastructure that will be utilized for the experimentation process. This
chapter presents the actual calculations of the cluster’s cost in the Cloud environment so
as to execute the proposed strategies and produce the metrics data and the graph results
according to each optimization factor. Finally, the evaluation of the results will be made
to reveal the factors that can be optimized to reduce the infrastructure’s cost according
to each placement strategy, each benchmark application and each performance measure.
In chapter 5, the Thesis implementation and experimentation process will be revised and
the results will be commented on whether the Thesis goal is achieved. Moreover, improve-
ments for future work and projects that can improve the proposed strategies and provide
a more optimal solution to the SP problem will be presented. The last chapter, which is
the Appendix, provides information about the methods for collecting the required data for
executing the proposed placement strategies.

Diploma Thesis 19

Chapter 2

Background and Related Work

In this chapter the theoretical background of the Thesis will be described and explained
in detail. Related technologies are also presented and discussed. This includes algorithms,
metric tools and agents that will be utilized and modified for the purposes of the imple-
menting each applications and placement strategy.

2.1 Related Work on Service Placement

Service Placement (SP) problem has been discussed and analyzed rigorously in the
last years in various publications and scientific magazines. In [7] and [8], authors present
existing contributions to the SP problem for the Cloud and Fog environments respectively.
In these papers the work on SP problem is categorized by the optimization strategy and
the utilized infrastructure. The SP problem can be different for the various environments
like the Cloud, Fog or Edge. For each environment a divergent approach should be used
to face the problem.

In Cloud infrastructures, either on single Cloud [9], Multi-Cloud [10] or even Edge-
Cloud infrastructures [11], the proposed strategies in each paper respectively managed
to improve the overall performance (in terms of cost reduction) of the implemented in-
frastructure. In [9], service deployment strategies for minimizing the response time of a
graph-based application are presented by transforming a graph-based model of the appli-
cation into a minimum k-cut problem. Although a reduction in response times of services
is achieved, only one VM is utilized for the conduction of the experiments and thus the
strategies must be tested in a larger scale environment. In [10], authors present an efficient
scheduling of microservices across different types of Cloud infrastructures. Their study and
implementation of the proposed scheduling strategies reduced the communication traffic
of microservices, decreased the turn-around time of requests (i.e. amount of time taken
to fulfill a request) and led to higher satisfaction of user demands. They utilize weighted
affinities with heuristic-based strategies for scheduling the microservices across the vari-
ous Cloud environments. In [11], authors present a two-scale framework for joint service
placement and request scheduling in Edge Clouds for data-intensive applications. The pro-
posed framework improved the service placement performance and achieved a near-optimal
placement of services. However, they applied only synthetic and trace-driven simulations
for testing their strategy.

Diploma Thesis 21

Chapter 2. Background and Related Work

Service placement strategies have been also applied in Fog environments. In [12], an
architecture of service placement strategy is presented in order to minimize the energy
consumption in the fog computing paradigm by formulating a service placement plan to
utilize resources efficiently. Their architecture is not implemented into an actual Fog
environment and so their strategy is not tested. In [13], a decentralized microservices-based
application placement policy is applied for heterogeneous and resource constrained Fog
environments. The placement is achieved by assigning each microservice to the nearest data
center in order to minimize latency and network usage. The proposed strategy improved
the latency and reduced the delay in the network communication. However, none of these
papers take into consideration the run-time costs of an application in the Fog environment
and the network fees for the communication of application’s services.

In this Thesis, we utilize Kubernetes to orchestrate the proposed applications and at-
tempt to improve the performance of the SP problem in a Cloud Environment. We try to
solve the SP as a problem of graph partitioning in a microservice-based application. We
will focus in minimizing the number of partitions (equivalently the number of Kubernetes
nodes) of an application and at the same time minimize the amount or traffic (i.e. message
load exchanged per second) among these nodes. In fact, the methods attempts to maximize
intra-node (i.e Ingress network) communications (for which a the end-use is not charge)
and the same time minimize inter-node (i.e. Egress network communication for which
the user is charged). Our goal is to locate service placement strategies that will achieve
these goals. There have been several studies on the SP problem in Cloud infrastructures
using the Kubernetes. In [14], two Kubernetes schedulers are implemented to improve
the scheduling processes of services in a private Cloud infrastructure to serve the network
requirements of a University Campus. The proposed schedulers take into consideration the
historical data of requests and their priority queue on each service and apply an improved
scheduling strategy (i.e. strategy for accelerating the students’ requests) in comparison
with the default Kubernetes Scheduler. Their strategy led to better resource utilization,
decreased the scheduling time and increased the task throughput of processes. Finally, in
[15] and in [16], service placement strategies are presented to increase the performance of a
Kubernetes cluster and reduce the number of Nodes needed to host an application. In the
former paper, an adaptation mechanism based on the service affinities is implemented in
order to rearrange the services into the existing host machines initially placement from the
Kubernetes Scheduler. In the latter study, two graph-partitioning algorithms, the Binary
Partion and the K-Partition, and a post-processing placement algorithm, the Heuristic
Packing, are applied on a graph-based application to improve the service placement of the
services in the Cloud infrastructure. Both strategies present an increase on the successful
placement ratio (i.e theoretical optimal solution compared to the produced solution) and
a decrease on the number of VMs needed to host the proposed applications. However,
both strategies are tested under mock (i.e not realistic) evaluations and experimental en-
vironments and they are not tested in real-time applications on a Cloud infrastructure.
Our work is primarily based on the proposed algorithms in [15] and in [16], by implement-
ing and combining the proposed algorithms into our realistic benchmark applications on
the Google Cloud Platform (GCP). We want to test their behavior and their placement

22 Diploma Thesis

2.2 Related Work on Graph Partitioning

performance under realistic application’s and various synthetic workloads.

2.2 Related Work on Graph Partitioning

To address the SP problem, we will utilize graph partitioning algorithms, as mentioned
in the previous section. In this section, the utilized partitioning algorithms and their
theoretical background will be presented.

2.2.1 Theoretical Background of Algorithms

Bin-Packing Problem

The bin packing problem is an optimization problem, in which items of different sizes
must be packed into a finite number of bins or containers, each of a fixed given capacity,
in a way that minimizes the number of bins used [17][18]. Computationally, the problem is
NP-hard, and the corresponding decision problem is NP-complete. Despite its worst-case
hardness, optimal solutions to very large instances of the problem can be produced with
sophisticated algorithms like first-fit algorithm which provides a fast but often non-optimal
solution. A variant of bin packing that occurs in practice is when items can share space
when packed into a bin. Specifically, a set of items could occupy less space when packed
together than the sum of their individual sizes. This variant is known as Virtual Machine
(VM) packing since when virtual machines are packed in a server, their total memory and
CPU requirements could decrease due to pages shared by the VMs that need only be stored
once. If items can share space in arbitrary ways, the bin packing problem is hard to even
approximate. However, if the space sharing fits into a hierarchy, as is the case with memory
sharing in virtual machines, the bin packing problem can be efficiently approximated.

First-Fit Algorithm

The First-Fit algorithm is one kind of the solution to the bin packing problem and it
involves placing each item into the first bin in which it will fit [17]. The algorithm scans
the items in any order and every item is attempted to be placed in the available bins
sequentially [18]. If it does not fit into existing bins, then a new bin is created to place
the item. It requires Θ(nlogn) time, where n is the number of items to be packed. The
algorithm can be made much more effective by first sorting the list of items into decreasing
order. However, this still does not guarantee an optimal solution, and for longer lists may
increase the running time of the algorithm.

Minimum K-Cut

The minimum k-cut, is a combinatorial optimization problem that requires finding a
set of edges whose removal would partition the graph to at least k connected components
[19]. These edges are referred to as k-cut.

The goal is to find the minimum-weight k-cut. The problem assumes that given an
undirected graph G = (V, E), where V is the Node set and E the edge set, with an

Diploma Thesis 23

Chapter 2. Background and Related Work

assignment of weights to the edges and an input k value of desired partitions the algorithm
is to find a k-cut of minimum total weight of edges whose ends are in different components.
The problem is NP-Complete and for fixed k it can be solved in polynomial time and
specifically in O(|V |k2). Given a service-based application, we can represent it as a graph,
where the Nodes represent services and the weights of edges represent the traffic rate.
Specifically, the traffic rate from service si to service sj and the rate from service sj to
service si are represented as two edges respectively in the graph. Hence, finding a minimum
k-cut of the graph is equivalent to partitioning the application into k parts while keeping
overall traffic between different parts to a minimum. However, for arbitrary k, the minimum
k-cut problem is NP-hard [16].

Contraction Algorithm

In computer science and graph theory, the contraction algorithm, or as it is also known
as Karger’s algorithm, is a randomized algorithm to compute a minimum cut of a connected
graph [20]. The basic idea of the Karger’s algorithm is to randomly choose an edge from the
graph with probability proportional to the weight of edge and merge the Nodes assigned
to these edge into one Node (called edge contraction). In order to find a minimum cut,
the algorithm iteratively contracts the edges which are randomly chosen until the required
number of Nodes remain. The edges that remain are the output by the algorithm [16].
When the graph is represented using adjacency lists or an adjacency matrix, a single edge
contraction operation can be implemented with a linear number of updates to the data
structure, for a total running time of O(|V |2). Algorithm 2.1 presents the Contraction
Algorithm for an undirected graph application and k = 2. The contraction algorithm will
be used in conjunction with the partitioning algorithms, which will be presented in the
next section, in order to locate the application’s services partitions. For minimum k-cut,
the contraction algorithm is basically the same, except that it terminates when k nodes
remain and returns all the edges left in the graph G[16].

Algorithm 2.1: Contraction Algorithm (k = 2) [16]

Input: G = (V,E)
Output: a cut of G
while |V| ≥ k do

Choose and edge eu,v with probability proportional to its weight
G ← G - eu,v //Contract edge eu,v

end while
Return the cut in G

2.2.2 Service Affinities

Service affinity defines the relationship between services, specifying that the instances
of one service are started either on the same host as the other service (affinity) or on
a host different from the one used by the other service (anti-affinity)[21]. Affinities and
Anti-Affinities can be introduced and modified only by the cluster administrators of each

24 Diploma Thesis

2.2 Related Work on Graph Partitioning

application. Moreover, administrators can configure a service group to define the affinity
and anti-affinity conditions, which means that the service placement decision cannot be
adapted to the dynamic workload variations of an application. In this Thesis, service
affinities are used in Kubernetes to define the Pod and Node relationships of an application.
There are four affinity conditions:

• Hard affinity: Every service instance must run on the same host as the list of
service(s) or service group(s).

• Hard anti-affinity: Every service instance must run on a host different from the
list of service(s) or service group(s).

• Soft affinity: Every service instance is preferred to run on the same host as the list
of service(s) or service group(s).

• Soft anti-affinity: Every service instance is preferred to run on a host different
from the list of service(s) or service group(s).

2.2.3 Related Algorithms

In this section the algorithms that will be used during the implementation phase will
be briefly presented and analyzed. The theoretical background, the time complexity and
the pseudocodes of each algorithm will be displayed.

Heuristic First-Fit

Sampaio et al. on [15] propose a heuristic approach to optimize service placement in the
current infrastructure by moving services with higher affinity (i.e. higher traffic commu-
nication rates) on the same host machine. The proposed algorithm, a Heuristic First-Fit
variant algorithm, computes a new placement for the application services by accessing
the resource usage of the cluster Nodes and Pods and the available host machines of the
cluster. In this modified version of First-Fit, the algorithm reorganizes the microservices
in the available host machines of the cluster so that microservices with high affinity are
co-located, while microservices’ resource usage and availability of resources at the host are
taken into account.

Algorithm 2.2 presents the Heuristic First Fit Variant algorithm, which iterates over the
affinities which are sorted in descending order and attempts to co-locate the microservices
with higher traffic communication rates at the same host machine. For each associated
pair of microservices mi, mj linked by an affinity, the algorithm attempts to place mj onto
the host of mi (Hi). If Hi does not have enough resources, the algorithm tries to put
mi onto the host of mj , Hj . If both hosts do not have enough resources to co-locate mi

and mj , these microservices remain at their original hosts. When a microservice is placed
into a new host, it is marked as moved and cannot move anymore, even if it is connected
with another service in the application with less affinity traffic rates. In the end, a list of
movements is generated containing microservice identities and their new locations. This

Diploma Thesis 25

Chapter 2. Background and Related Work

algorithm does not guarantee that the list of moves computed is optimal for a cluster given
a set of microservices.

Algorithm 2.2: Heuristic First Fit Variant [15]

Input: Hosts (H), microservices (m), resources (r)
Output: Placement Solution
moved ← []
//Affinities are in decreasing order
for every pair of affinities do

mi ∈ Hi // mi located at host Hi

mj ∈ Hj // mj located at host Hj

mj 6= mi, Hj 6= Hi

hasMoved ← False
if r(mi) + r(mj) ≤ r(Hi) ∧ mj /∈ moved then

Hj ← Hj - mj

Hi ← Hi ∪ mj

hasMoved ← True
else if r(mi) + r(mj) ≤ r(Hj) ∧ mi /∈ moved then

Hi ← Hi - mi

Hj ← Hj ∪ mi

hasMoved ← True
end if
if hasMoved then

moved ← moved ∪ [mi, mj]
end if

end for

Binary Partition

Yang et al. in [16] present a strategy for optimizing service placement. Initially, the
application services are partitioned into groups of services to be placed into the available
infrastructure’s VMs. To be able to compare the resource allocations and capacities of
the Heterogeneous VMs (i.e. VMs with different resource allocation and OS) of the in-
frastructure, available, allocated and requested resources from services must be initially
normalized according to the maximum available resources of each host machine.

Considering multi-resource demands of different services, threshold α is introduced to
determine the size of allocated resources each partition can have so as to be successfully
placed into the application’s VMs. Threshold α denotes the upper bound of the resource
demands of partitioned parts, which means that the partition algorithms are executed
continuously until the total resource demands from each part do not exceed α or no part
contains more than one service. The value of threshold α ranges between [0, 1] after the
normalization process of the resource values and each part of the application partitions
must not exceed this threshold.

Taking the set of services of an application in the input, the Binary Partition (BP)
method of Algorithm 2.3 attempts to create smaller groups of services so that the source
demands of each group (partition) does not exceed threshold α or no part contains more

26 Diploma Thesis

2.2 Related Work on Graph Partitioning

than one service. This is achieved by dividing the processed part each time into two sub-
partitions. The initial partition is P = S and the algorithm’s requirements are examined.
Foe each algorithm’s step execution (i.e for each processing application’s partition) a service
graph G = (V,E) is constructed from the current part and the contraction algorithm for
K = 2 is applied in order for the part to be divided according to the minimum K-cut.
The contraction algorithm is repeated n = |V | times, where |V | is the total number of
Nodes, and for each iteration the produced graph is compared with the minimum graph
that has been calculated in previous iterations (according to the total sum of service affinity
rates). After this process, a two new sub-partitions (Sx, Sy) of the current part is produced
according to the minimum graph that has been previously calculated and the two sub-parts
are stored into the vector of the application’s partitions P . The algorithm is executed
repeatedly until all requirements are met.

The time complexity of the Binary Partition is O(n2mlog2n), where n is the number
of services and m the total edges of the application. The algorithm can produce at most
n partitions and for each iteration of the algorithm the contraction algorithm is executed
n times at most. Finally, the contraction algorithm is executed in O(mlog2n).

Algorithm 2.3: Binary Partition [16]

Input: Service-Based Application (S), threshold α
Output: Partition P = {S1, S2, ..., SN}
P ← {S}
while exists part Si in P that total resource demands exceed α and part Si contains
more than one service do

P ← P - Si //Remove partition i from application’s partitions P
Construct graph G = (V, E) based on Si service affinities
n ← |V|
Gmin ← G
t ← 0
while t ≤ n do

Perform Contraction Algorithm (k = 2) to get a cut G′

Gmin ← min(Gmin, G
′)

t ← t + 1
end while
Create two sub-partitions {Sx, Sy} from part Si according to Gmin

P ← P ∪ {S1, S2, ..., Sk}
end while
Return P

K-Partition

Similar to BP algorithm, K-Partition (KP) algorithm [16], attempts to produce a parti-
tion of the available services of the application, with the same requirements and algorithmic
logic as Binary Partition algorithm. The main difference between these algorithms is that
Binary Partition divides the processed part into two sub-parts by applying the contraction
algorithm for K = 2, while K-Partition increases the value of K upon each iteration of the

Diploma Thesis 27

Chapter 2. Background and Related Work

algorithm. This can lead to the creation of affinity hubs instead of affinity tuples between
the microservices and can accelerate the partition process. The basic process of the algo-
rithm remains the same as the Binary Partition. The contraction algorithm is executed
also N times, but the total partitions is increased upon each iteration, with K = 2 to be
the initial value. By increasing the number of partitions at each iteration, the time com-
plexity of the algorithm increases exponentially. Each iteration of contraction algorithm
produces a minimum graph (compared to the total sum of service affinities) and the best
solution produces the desired k (the number of partitions created upon every iteration)
sub-partitions, {S1, S2,...,Sk}. Similarly, this process would be repeatedly performed until
the resource demands from each part do not exceed threshold α or no part contains more
than one service. K-Partition can decrease the execution calls of the contraction algorithm
upon each step compared with the Binary Partition, but there is always the possibility
of over splitting a partition and thus produce a larger number of application’s partitions.
The pseudocode of the K-Partition is presented in Algorithm 2.4.

Algorithm 2.4: K-Partition [16]

Input: Service-Based Application (S), threshold α
Output: Partition P = {S1, S2, ..., SN}
P ← {S}
k ← 1
while exists part Si in P that total resource demands exceed α and part Si contains
more than one service do

P ← P - Si //Remove partition i from application’s partitions P
Construct graph G = (V,E) based on Si service affinities
n ← |V|
Gmin ← G
k ← k + 1
t ← 0
while t ≤ n do

Perform Contraction Algorithm until k Nodes remain to get a k-Cut G′

Gmin ← min(Gmin, G
′)

t ← t + 1
end while
Create k sub-partitions {S1, S2,...,Sk} from part Si according to Gmin

P ← P ∪ {S1, S2, ..., Sk}
end while
Return P

Bisecting K-Means

Bisecting K-Means (BKM) is a divisive hierarchical clustering algorithm [22] and is
based on the K-Means algorithm. Given a data set, all available data points are initially
assigned to a single cluster and the algorithm utilizes the K-Means algorithm to select the
two best fit sub-clusters to partition the data points. Upon each iteration, Sum of Squares
Error (SSE) is calculated in order for the inter-cluster dissimilarity (i.e the distance from
the selected points to the centroids) to be measured and so the next centroids can be se-

28 Diploma Thesis

2.2 Related Work on Graph Partitioning

lected respectively. Then, the proposed sub-cluster is selected to be divided according to
the SSE producing the two new sub-clusters. This process is repeated until the algorithm
reaches the desired number of K clusters, which is an input given by the users. The algo-
rithm generates binary clustering hierarchy, it is highly affected from the initial centroids
selection and may not converge to global optima. Algorithm 2.5 shows the pseudocode of
the Bisecting K-Means algorithm.

Algorithm 2.5: Bisecting K-Means [22]

Input: Cluster C, number k of desired clusters
Output: k Clusters of Application
i ← 1
while i < k do

Select a parent cluster, C to split
for fixed number of iterations do

Use K-Means to split C into C1 and C2

Calculate inter-cluster dissimilarity for C1 and C2

end for
Select the sub-clusters with highest inter-cluster dissimilarity
i ← 1 + 1

end while

However, the selection of K is an important factor and can cause large deviation be-
tween the results and, eventually, produce sub-optimal results [23]. Furthermore, the selec-
tion of sub-clusters, which are produced randomly, can increase the deviation and increase
the errors of clustering the data points. The selection of K must be selected properly in
order for the intra-cluster similarity to be increased and the inter-cluster difference to be
decreased.

Heuristic Packing

Heuristic Packing (HP), which is presented also in [16], is a placement algorithm at-
tempting to pack each part of the given application partitions into the application’s host
machines. This algorithm is executed as a post-processing step of the graph partitioning
algorithm (BP and KP) to reduce the size of the utilized VMs to host the application’s
partitions. Without considering the traffic rate, the problem can be formulated as a clas-
sical multi-dimensional bin packing problem, which is known to be NP-hard. When there
is a large amount of services involved in the application, it is infeasible to find the optimal
solution in polynomial time. In this algorithm, two greedy heuristics are introduced, the
Traffic Awareness (tf) and Most-Loaded Situation (ml) heuristics, considering the time
complexity and the packing quality factors. Given a set of services S and a set of host
machines m, the former heuristic is the sum of the traffic rate between the services in
part Si and the services that have been determined to be packed into machine mj before
(services from another already processed partition). The latter is a scalar value of the load
situation between the vector of resource demands from part Si and the vector of avail-
able resources on machine mj . Cases in which Traffic Awareness factors are equal, the

Diploma Thesis 29

Chapter 2. Background and Related Work

Most-Loaded heuristic prioritizes the machines in which services will be placed.
Algorithm 2.6, presents the Heuristic Packing algorithm. Inputs to the algorithm are

the application’s partitions produced by the partitioning algorithms P = {S1, S2, ..., SN}
and the available resources on each machine V = {(V1, V2, ..., VM}. The algorithm will pro-
duce a placement solution if each part can be placed into at least one machine. Initially,
all parts are processed sequentially and for each part and available VM, that can host that
specific part, Traffic Awareness and Most-Loaded heuristics are calculated according to
the services of the specific part using the formulas below. HP algorithm is affected from
the produced application’s partitions and will not always produce an optimized placement
solution (compared to the utilized VMs). If each partition can be efficiently hosted in at
least one infrastructure’s VM, then HP will always produce an optimal placement solution.

Traffic Awareness is calculated as follows:

tf ←
∑

tuv (2.1)

Where:

• tf → the total traffic rate of all services

• tuv → traffic rate between services u, v

and Most-Load Situation is calculated by the below equation:

ml←
R∑

k=1

d
′k
i

vkj
(2.2)

Where:

• ml → the most loaded situation value

• R → the set of resource types (CPU, RAM, Storage etc)

• d
′k
i → amount of resource rk that service si demands

• vkj → amount of resource rk available on machine mj

The higher ml rate, the more loaded the host machine is. The idea of this heuristic is
to improve the resource efficiency by packing each part to the most loaded machine. As
our main goal is to minimize the inter-machine traffic, the algorithm is designed to first
prioritize the machines based on the factors of tf . If the factors of tf are the same, it then
prioritizes the machines based on the factors of ml. Finally, if there is no VM to host that
specific part of the application’s partition, then the algorithm terminates and the specific
partition can not be placed into the available host machines.

The time complexity for the Heuristic packing is O(nM+ n2). Upon every algorithmic
execution all n parts in the application’s partition are processed and for each part all
the available Mmachines are examined for hosting that part. For each part that can be
packed into an available host machine factor tf is calculated. The overall time complexity
of calculating the factor tf in one execution of the algorithm is O(n2).

30 Diploma Thesis

2.3 Infrastructure and Tools

Algorithm 2.6: Heuristic Packing [16]

Input: Partition P = (S1, S2...SN) of application, vectors of available resources on each
machine V = (V1, V2...VM)
Output: a placement solution X
Calculate vectors of resource demands of each part a (D′

1, D
′
2...D

′
N)

X ← [xij = 0] for every part and host machine
for i ← 1; i ≤ N

′ ; i++ do
tf ← 0, ml ← 0, y ← 0
for j ← 1; j ≤ M; j++ do

if part Si can be packed into machine mj then
tf ←

∑
tuv

ml ←
∑R

k=1
d
′k
i

vkj
if tfj ≥ tf then

tf ← tfj , ml ← mlj , y ← j
else if tfj == tf and mlj > ml then

tf ← tfj , ml ← mlj , y ← j
end if

end if
end for
if y == 0 then

Return null
else

Vy ← Vy - D′
i

xiy ← 1
end if

end for
Return X

2.3 Infrastructure and Tools

In the section the infrastructure, in which applications will be hosted and orchestrated,
and the various metric tools and agents, that will be utilized to collect the desired data,
will be presented. The microservice architecture, in which are applications are based, and
the Kubernetes orchestration platform will be explained. The idea of Service mesh will
be introduced and analyzed through the Istio Service Mesh. Finally, the essential tools of
Istio, which will be used to monitor the infrastructure and collect all the essential data,
and the stressing tool for testing each application will be presented.

2.3.1 Microservices

Microservice architecture is an architectural style that structures an application as a
collection of services that are highly maintainable and testable, loosely coupled and in-
dependently deployable. The microservice architecture enables the rapid, frequent and
reliable delivery of large, complex applications. It also enables an organization to evolve
its technology stack [1]. As applications grow in size and become more complex, microser-
vices architecture enables high availability and much easier expansion and scalability. De-

Diploma Thesis 31

Chapter 2. Background and Related Work

veloper teams can co-operate and apply changes to different parts of the application, isolate
problematic services and application errors and fix the problems separately without alter-
ing other services in this process. When using microservices, software functionality can
be isolated into multiple independent modules that are individually responsible for per-
forming precisely defined, standalone tasks. These modules communicate with each other
through simple, universally accessible Application Programming Interfaces (APIs). Figure
2.1 displays the microservices architecture and the way of communication from different
end-users.

Figure 2.1. Microservice Architecture [1]

2.3.2 Kubernetes

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation [24].

The application of service containers is preferred among the other traditional options
of physical servers or VMs running on a specific computer and Operating System (OS)
due to the fact that containers have relaxed isolation properties to share the OS among
the applications. They are considered lightweight and they are capable of allocating spe-
cific resources and disk space on their own. They are highly portable across Clouds and
OS distributions. Containers achieve high efficiency on image creation and ease of use,
continuous development, good observability on the application and metrics, they provide
resource isolation, utilization and they decouple applications from the infrastructure.

Kubernetes provides all the essential tools and a framework to run distributed systems
resiliently and handle the behavior and maintenance of containers. It handles the scaling
of the application and containers, the fail over situations and provides efficient deployment
patterns. It must be mentioned that Kubernetes does not limit the types of applications
supported, nor does it deploy automatically source code or build the application. Fur-

32 Diploma Thesis

2.3 Infrastructure and Tools

thermore, it does not provide developers with dictating logging, monitoring or alerting
solutions.

Kubernetes main features are:

• Service discovery and load balancing

• Storage orchestration

• Automated roll outs and rollbacks

• Automatic bin packing

• Self-healing

• Secret and configuration management

Related Components

By deploying Kubernetes into an application, a cluster is initialized. A Kubernetes
cluster consists of a set of worker machines, called Nodes, that run containerized appli-
cations. The worker Nodes host the Pods that are the components of the application’s
workloads. The Control Plane manages the worker Nodes and the Pods in the cluster. In
production environments, the Control Plane usually runs across multiple computers and a
cluster usually runs multiple Nodes, providing fault-tolerance and high availability [2].

Control Plane consists of several components, the most important being the kube-
apiserver, etcd and kube-scheduler. The API server is a component of the Kubernetes
Control Plane that exposes the Kubernetes API to be accessed externally or internally.
Etcd component is a consistent key-value storage used as Kubernetes backing repository
for all cluster data. Kubernetes Scheduler is a component, which schedules newly created
pods to nodes (VMs) and will be further analyzed in the next paragraphs.

Apart from the Control Plane, which is the brain of Kubernetes, there are some Node
components that run on every Node, maintaining running Pods and providing information
about the Kubernetes runtime environment, known as kubelet, kube-proxy and container
runtime. Kubelet is an agent that runs on each Node in the cluster. It makes sure that
containers are running in a Pod. Kube-proxy is a network proxy that runs on each Node
in the cluster, implementing part of the Kubernetes orchestration logic and maintains the
network policies of Nodes (i.e network traffic open ports, protocols of communication etc).
Finally, container runtime is the software that is responsible for running containers. All
these components, along with some extra Add-ons services are presented below in Figure
2.2, which displays the Kubernetes components.

Cluster Infrastructure

Implementation of Kubernetes refers to the initialization of a cluster into the desired
infrastructure. The cluster consists of one or more Nodes with predefined or upon demand
resource allocation of any type. Upon the initialization of the cluster, the requirements of

Diploma Thesis 33

Chapter 2. Background and Related Work

Figure 2.2. Kubernetes Components [2]

Nodes in CPU, RAM and Storage, as well as the total number of VMs (Nodes), should be
configured properly according to each application’s requirements.

Each application consists of Kubernetes manifests that are applied on an existing clus-
ter and include all the essential components of an application to be deployed. These
manifests are a set of YAML files, which are in JSON representation, contain key-value
pairs describing the respective components of the application. These manifests describe
the Deployment, the Services, the Stateful sets and Configurations, known as ConfigMaps,
of each application. Deployments provide information about each application’s Pod and
their replicas. The container image and a label of each service must be also configured
in order to for the Pod to be successfully initialized into the cluster. Service files enable
the exposure of a specific Pod Deployment of the application into the network, whether it
is on localhost or on a Cloud provider, and configure the network policies. Stateful sets
are files, which preserve the identification of each created Pod that can not be modified
after the rescheduling process of the Pod. It is mainly used for storing volumes and thus is
utilized mainly for databases. A ConfigMap is an API object used to store non-confidential
data in key-value pairs. Pods can be connected with ConfigMaps as environment variables,
command-line arguments, or as configuration files in a volume. The manifests are applied
to the Kubernetes cluster through the API server with a kubectl request command.

Deployment manifests can further specify the Pod requests in storage, RAM and CPU,
the Pod Affinities and/or Anti-Affinities with other Pods of the application and many
more attributes, which configure the Pod Deployments respectively. Specifically, for Pod
Affinity/Anti-Affinity the label of the related Pod and the explicit Node must be described
to enable these attributes. Except from the Pod Affinities, Node Affinities can be specified
in Pod Deployments, so that Pods will or won’t be deployed in specific Nodes of the cluster.

Furthermore, in Deployment and Service manifests, container port must be specified to
enable the network communication among the services of the application. Additionally the
network rules of the cluster should be configured accordingly to enable traffic communica-
tion between these ports. Service manifests specify the type of Service for each associated
Pod, which can be configured mainly as Cluster IP, NodePort or LoadBalancer. Clus-
ter IP refers to internal traffic from clients (i.e end-users) to internal IP addresses, which

34 Diploma Thesis

2.3 Infrastructure and Tools

are accessible only within the cluster’s environment. NodePort enables the requests from
clients between the cluster’s Nodes. Each Pod Service defined as NodePort does not have
a separate IP Address to communicate externally and uses the Node’s External IP (allows
communication from everywhere inside and outside the cluster). Finally, LoadBalancer
enables the requests from clients through an Internal or an External IP of the network.
Each Service defined as LoadBalancer is associated with a separate External IP from the
Node IP. LoadBalancer handles efficiently the load balancing between the application’s
containers.

Scheduling Process

In Kubernetes, scheduling refers to assuring that Pods are matched to Nodes so that
kubelet can run them. A scheduler observes for newly initialized Pods that have not
assigned to any of the cluster’s Nodes. For every Pod that is discovered, the scheduler
becomes responsible for finding the most suitable Node for that Pod to run on [25]. Ku-
bernetes provides the kube-scheduler, which is the default scheduler for Kubernetes Pods
and runs as part of the Control Plane. It is designed to be easily extended, modified or
customized according to the requirements of each application.

For every newly created Pod or other unscheduled Pods, kube-scheduler selects an
optimal Node for them to run on. However, every container in Pods has different resource
and scheduling requirements. Therefore, existing Nodes need to be examined according to
these specific requirements to be able to host the new Pods. In a cluster, Nodes that meet
the scheduling requirements for a Pod are called feasible Nodes. If none of the Nodes are
suitable, the Pod remains unscheduled until the scheduler is able to place it.

The Kubernetes Scheduling process takes place into two cycles, the Scheduling and
the Binding process of the Pod [3]. The former cycle, which is highly extendable and can
be modified as required, attempts to find a feasible Node to host the desired Pod. This
process is running serially and can handle only one Pod per scheduling cycle. The steps,
also called plugins, of locating a feasible Node for the desired Pod are presented briefly
below.

• Sort: Sorts the Pods that are going to be scheduled so that the serial scheduling
process can initialize.

• PreFilter: Pre-process of Pod information. Examines specific requirements of clus-
ter to deploy the Pod. Upon error the process is terminated.

• Filter: Exclude Nodes that cannot schedule the Pod according to configuration
policies pre-defined on Scheduler. All policies must be fulfilled in order to deploy the
Pod. Nodes may be evaluated concurrently.

• PostFilter: This plugin is called if there is no available Node to host the desired
Pod. Examines the case whether some policies from the previous step are fulfilled
and locates a feasible Node.

Diploma Thesis 35

Chapter 2. Background and Related Work

• PreScore: Implements pre-scoring tasks to generate the state of the desired Pod.
Upon any failure the process is aborted.

• Score: Rank the feasible Nodes according to configuration file of Scheduler, which
defines the weights of the priorities. Minimum and maximum score rates are exam-
ined for the feasible Nodes scoring.

• Normalize Score: Normalize the scoring values before the final ranking of the
Nodes to optimize the ranking process. Upon any error the process is terminated.

• Reserve: Consists of two methods, the Reserve and Unreserve. The Reserve method
is called to reserve adequate cache memory in order for the Pod to be deployed into
a Node. The cache is reserved until the Reserve phase is completed. Upon a failure
on the Reserve phase or a later phase, the Unreserve method is executed to free the
reserved cache.

• Permit: Invoked at the end of the Scheduling cycle. It approves, denies or delays the
scheduling of the desired Pod into the candidate Node. The wait process is occurred
when a Pod is waiting for approval and includes a timeout time, in which the process
will be terminated with failure.

The latter cycle, the Binding process, notifies the Kubernetes API server about the
scheduling decision of the desired Pod into the specific Node. The Binding Cycle can not
be extended further, but it can run concurrently for many Pods, which are selected for
scheduling. The main steps of the Binding Cycle are presented briefly below.

• WaitOnPermit: A plugin executed when a wait signal is occurred and a wait
process is called. It delays the binding process of the desired Pod until an approval
or a denial signal occurs.

• PreBind: Pre-work for binding the Pod to the Node, like provisioning a network
volume to be mount on the Node. Upon failure the binding process is terminated.

• Bind: Process to bind the Pod into the Node. It is executed after all the PreBind
processes are completed.

• PostBind: Used to clean up associated resources for the binding cycle of the Pod.

The Scheduling Process is displayed in figure 2.3. Factors that need to be taken into
account for scheduling decisions include individual and collective resource requirements,
hardware, software and policy constraints, affinity and anti-affinity relationships on Pods
and Nodes, data locality and so on. The filtering and scoring step are relied on the Schedul-
ing Policies that have been prespecified on the Kubernetes Scheduler JSON configuration
file. In this file, the policies of the predicates, for the filtering step, and the weights of the
priorities, for the scoring step, are specified according to the demands of each Kubernetes
Scheduler and by default predicates have predefined policies and priorities equal weights.
For the scoring step, if more than one feasible Nodes gather the same amount of score,
then kube-scheduler selects one of these Nodes randomly.

36 Diploma Thesis

2.3 Infrastructure and Tools

Figure 2.3. Kubernetes Scheduling Process [3]

In addition to this scheduling strategy, kube-scheduler can be further extended by
specifying the Node and Pod Affinities or Anti-Affinities [26], which can be configured
and overwritten in the YAML files by the end-users. With prior knowledge of each ap-
plication’s graph and communication edges between the application’s services, Kubernetes
Pods can be scheduled in specific Nodes and with associated Pods (Affinity) or vice versa
(Anti-Affinity). This affinity can be either soft or hard depending on each application’s re-
quirements. With this strategy Kubernetes placement can be further improved and achieve
better performance by co-locating services with higher affinity score into the same Node.

2.3.3 Service Mesh and Istio

A service mesh is a dedicated infrastructure layer that can be added to any application
and it transparently allows adding capabilities like observability, traffic management and
security without adding extra lines of code [4]. In a service mesh, requests are routed
between microservices through proxies in their own infrastructure layer. Without a service
mesh, each microservice needs to be coded with logic to govern service-to-service commu-
nication, which means developers are less focused on business goals [27]. It also means
communication failures are harder to diagnose because the logic that governs inter-service
communication is hidden within each service. A service mesh achieves better management
of applications, especially in distributed environments, like Kubernetes-based systems, as
they grow in size and complexity. The service mesh is usually implemented by provid-
ing a proxy instance, called a sidecar proxy, for each service instance. Sidecars Proxies
handle inter-service communications, monitoring, and security-related concerns. This way,
developers can handle only the development, the support, and the maintenance of the appli-
cation’s structure and code of the microservices. Sidecars Proxies monitor the application
and each sidecar collects metrics for the resources of the application for benchmarking and
testing purposes.

Istio is an open source service mesh that is configured and installed onto existing dis-
tributed applications to monitor them [4]. Istio exploits the benefits of Service Mesh and
injects istio sidecar proxies into the application associated with each Pod in order to moni-
tor the traffic, resources and add an extra layer of protection for users authentication. Istio
is designed for extensibility and can handle a diverse range of deployment needs. Istio’s

Diploma Thesis 37

Chapter 2. Background and Related Work

Control Plane, which will be presented next, runs on Kubernetes, enabling the connection
of the deployed application to the mesh, extending the mesh to connect various clusters, or
even connecting VMs or other endpoints running outside of Kubernetes. Figure 2.4 shows
how the Istio service mesh works.

Figure 2.4. Istio Architecture [4]

Istio consists of two components, the Data Plane and the Control Plane [4]. The former
is responsible for the communication between application’s microservices and is achieved by
injecting the Istio Envoy Proxies on each application’s service running in VMs, enabling to
identify the network traffic of the application, the protocols of communication and the type
of data exchanged between the source and destination communicating services. The latter
monitors the network traffic and dynamically programs the envoy proxies, according to
the configuration policies specified by the developers, allowing or denying communication
between specific services or specific types of requests. Furthermore, Control Plane secures
service-to-service communication with Transport Layer Security (TLS) by specifying the
policies of network external and internal inbound or outbound traffic in the respective
configuration files.

Istio maintains an internal service registry containing the set of services and their corre-
sponding service endpoints running on the service mesh [4]. This internal service stores all
the discovery configuration certificates of the existing sidecar proxies. Istio utilizes the ser-
vice registry to generate Envoy configuration and the Envoy proxies can then direct traffic
to the relevant services. Most microservice-based applications have multiple instances of
each service workload to handle service traffic, sometimes referred to as a load balancing
pool. By default, the Envoy proxies distribute traffic across each service’s load balancing
pool using a round-robin model, where requests are sent to each pool member in turn,
returning to the top of the pool once each service instance has received a request.

38 Diploma Thesis

2.3 Infrastructure and Tools

2.3.4 Metric Tools and Agents

In this section the various metric tools and agents, that will be utilized in the imple-
mentation phase, will be mentioned and described. These are the essential tools that will
be installed into the Kubernetes clusters and cooperate with Istio Service Mesh to gather
the desired Pod and Node metrics in order to implement the proposed service placement
strategies.

Prometheus

Prometheus is an open-source system monitoring and alerting service, which collects
and stores its metrics as time series data, which means that metrics information is stored
with the timestamp at which it was recorded, alongside optional key-value pairs called
labels [28]. It records real-time metrics in a time series database (allowing for high dimen-
sionality) built using a HTTP pull model, with flexible queries and real-time alerting.

Prometheus has various components that work together to track and report on system
health, behavior, and performance. The primary method of data collection is extracting
metrics from instrumented applications and services, which expose metrics in a plain text
format via HTTP endpoints. The Prometheus architecture facilitates the discovery of
services and enables gathering data from these services. Prometheus stores the extracted
data, which can be analyzed with the Prometheus Query Language (PromQL).

Prometheus extracts metrics from application’s services by applying PromQL queries
to that service. It stores all gathered samples locally and runs rules over this data to either
aggregate and record new time series from existing data or generate alerts. Grafana or other
API consumers can be used to visualize the collected data. It works well for recording any
purely numeric time series. It fits both machine-centric monitoring as well as monitoring of
highly dynamic service-oriented architectures. In a world of microservices, its support for
multi-dimensional data collection and querying is a particular strength. It is designed for
reliability and allows to quickly diagnose application problems. Each Prometheus server is
standalone, not depending on network storage or other remote services.

Prometheus provides a functional query language called PromQL (Prometheus Query
Language) that allows the user to select and aggregate time series data in real time. The re-
sult of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s
expression browser, or consumed by external systems via the HTTP API of Prometheus.
PromQL uses three data types: scalars, range vectors, and instant vectors. It also uses
strings, but only as literals. It is also a nested functional language (NFLs), where data
appears as nested expressions within larger expressions. The outermost, or overall, expres-
sion defines the final value, while nested expressions represent values for arguments and
operands. PromQL enables the user to acquire the desirable metrics from the microser-
vices or from the orchestration mechanism of each application by using the implemented
functions and operations and specifying time series selectors.

In order to pull the desired metrics from the Cloud and the Kubernetes cluster of the
application, it is vital to install some version of exporter. For this purpose, Prometheus
Node Exporter is installed and injected into each VM of the cluster so it can pull Node data.

Diploma Thesis 39

Chapter 2. Background and Related Work

The Prometheus Node exporter is an exporter for physical and virtual machine metrics –
hardware and kernel metrics that collects technical information from Linux Nodes. They
must be configured to listen on a dedicated port (9100 by default). Because exporters are
effectively single-purpose monitoring agents, to collect metrics from other services on the
same host requires additional exporters with their own service management/supervision
and dedicated network ports. The Node exporter enables measuring various VM resources
such as memory, disk and CPU utilization.

Kiali

Kiali is a management console for an Istio-based service mesh. It provides dashboards,
observability, and enables operating a service mesh with robust configuration and validation
capabilities [5]. It shows the structure of the service mesh by inferring traffic topology
and displays the health of the mesh. Kiali provides detailed metrics, powerful validation,
Grafana access and strong integration for distributed tracing with Jaeger, which traces
the requests from source to destination services. It visualizes the service mesh topology
and provides visibility into features like request routing, circuit breakers, request rates,
latency and more. Kiali offers insights about the mesh components at different levels, from
abstract applications to services and workloads in detail.

The Kiali graph provides a powerful way to visualize the topology of the service mesh.
It displays the services’ communication and their respective traffic rates and latencies be-
tween them, which helps visually identify and troubleshoot problem areas and quickly
pinpoint issues. Kiali provides graphs that show a high-level view of service interactions
and a low level view of workloads or a logical view of applications. It identifies security
issues, request and configuration errors and alerts users visually about the status of appli-
cation and requests. Along with all these attributes, Kiali graph enables traffic animation
for visualization of traffic communication between the microservices in HTTP and TCP
protocols.

Kiali is a management console for Istio, and as such, Istio is a requirement. It provides
and controls the Service Mesh. Kiali needs to retrieves Istio data and configurations, which
are exposed from Prometheus and the Cluster API. Kiali collects Prometheus data for the
resources and the Service Mesh of the application and uses the API of the container appli-
cation platform (Cluster API) in order to collect and resolve Service Mesh configurations.
Through the API developers can assemble all the information provided by Kiali service
and the Kiali graph. Figure 2.5 demonstrates the Kiali architecture.

Grafana

Grafana is a multi-platform open source analytics and interactive visualization appli-
cation. When connected to supported data sources, it can visualize the gathered data
in charts and graphs. It provides users with tools to turn time-series database (TSDB)
data into graphs and visualizations [29]. Grafana supports querying Prometheus and is an
essential tool to understand the application metrics produced by Prometheus. Prometheus
data are injected into Grafana by end users, who can create complex monitoring dash-

40 Diploma Thesis

2.3 Infrastructure and Tools

Figure 2.5. Kiali Architecture [5]

boards using interactive query builders or import a pre-build dashboard from the Grafana
official website. Information about Node and Pod metrics, such as CPU and RAM usage
or the availability in storage and resources, can be displayed visually in these dashboards
and processed by the users accordingly.

2.3.5 Benchmark Stressing Tool

Apache JMeter

The Apache JMeter application is open source software, designed to load test functional
behavior and measure performance [30]. It can be successfully used to test performance
both on static and dynamic resources. It can simulate heavy load on a server, group
of servers or network to test and analyze the overall performance under different load
types and load distributions. It can easily load and test performance of application’s
microservices and their exchanged requests over HTTP protocol. Apache JMeter offers
easy correlation through the ability to extract data to most suitable response formats, like
HTML, JSON or XML, is a full multi-threading framework that allows concurrent and
simultaneous sampling and it is highly extensible. Furthermore, it allows users to apply
distributed requests of any type to an application to produce a more realistic stress testing.

Diploma Thesis 41

Chapter 3

System Design and Benchmarks

In this chapter we will describe the implementation phase of our service placement
strategy, by displaying the cluster’s infrastructure and the various benchmarks that will
be injected into the Kubernetes cluster. First and foremost, the cluster’s architecture and
the configuration of Istio Service Mesh in the cluster will be presented by analyzing its
separate components and their associations in the cluster. Then, the performance metrics,
which will be utilized to measure the traffic rates of the application’s microservices, will
be analyzed and their respective formulas will be displayed. As we attempt to solve the
SP problem with graph partitioning algorithms, we will present the vital modifications on
the benchmark algorithms to fit our cluster’s and applications requirements and we will
categorize them according to their purpose on the implemented strategies. The benchmark
use-cases, in which we will implement the proposed service placement strategies, will be
presented and, finally, the estimated cost of a Kubernetes cluster running on a Cloud
infrastructure will be formulated to target the factors that impact the cluster’s charges.

3.1 System Architecture

Each application running on Kubernetes must be initially configured properly to enable
the communication of all its microservices. For our use-case applications, we describe each
microsevice as a Deployment in the Kubernetes manifests and we utilize one Pod per each
microservice (i.e one replica per each Pod) as we do not want to create a larger scale of
each application. For each Deployment file, which is associated with a microservice’s Pod,
a respective Service file, linked to a specific port, must be configured to enable network
communication with the other microservices and external services. For every Service de-
scribed as NodePort or LoadBalancer type, the cluster’s networks rules in the Cloud are
configured to enable the network traffic from these ports. The type of Service is selected
according to the requirements of each application. For our system, every LoadBalancing
Service is converted into NodePort type in order to reduce the cluster’s run-time costs, as
we do not want to apply load balancing among the application’s microservices. Horizontal
and Vertical auto-scaling, which are extensions of Kubernetes for managing the Node and
Pods size and resource allocation, are disabled, as we want to specify the initial number
of Nodes that will be used to host each application and the respective resources for each
Node.

Diploma Thesis 43

Chapter 3. System Design and Benchmarks

Each Pod is associated with a respective Service component for enabling network com-
munication. The implementation of the Istio Service Mesh into the application requires
the configuration of Pods by injecting the Istio Envoy Proxies into every application’s Pod.
Upon every internal or external network communication of Pods, the traffic is re-directed
through the Envoy proxies injected into the Pods. Envoys are responsible to receive any
new request and forward it to the application’s microservice through its respective Ku-
bernetes Service component and vice versa. The Pod architecture, with the Istio Envoy
injected in it, is presented in 3.1.

Figure 3.1. Pod’s Architecture

Each application’s Node can host a finite number of Pods, including some of the Istio
Services and Kubernetes Components, depending on the available resources size of the
Node and the requested resources size of the Pod. Istio is responsible for monitoring
the application’s network traffic and exchanged messages through the Istio’s Data Plane.
Every Pod’s Envoy is communicating with all the other Pods inside the Node forming the
Istio Mesh Traffic. Every Pod that is created into the application is injected with the Istio
Envoy. Istio’s Control Plane is responsible for monitoring the status of existing Envoys
and for injecting Envoy Proxies to the newly-created Pods. The Envoy Proxy will send
a configuration certificate to the Istio’s Control Plane, so it can join the existing Mesh
Traffic. Istio services are installed in the cluster as Pods inside the cluster’s Nodes. Node
Exporters are installed in every cluster’s Node and they are responsible to monitor the
Node’s resources. Prometheus Server extracts these metrics by requesting the data from
the Node Exporters. In this way, Grafana can request the data for every Node and Pod by
applying the respective PromQL queries from the Prometheus Server and visualize them in
a UI. In the same manner, Kiali collects these data from the Prometheus Server to create
the application’s graph. The Node’s architecture and the communication among the Istio
Services and the application’s Pods is displayed in 3.2.

The installed Istio Services are randomly placed inside the cluster’s Nodes according to
the decision of the Kubernetes Scheduler. The Istio Services are not injected with Envoys
Proxies, as they are not part of the application’s Data Plane and extract only metrics

44 Diploma Thesis

3.2 Microservices Performance Metrics

Figure 3.2. Node’s Architecture

from the cluster’s Pods and Nodes. Every Kubernetes cluster consists of a finite number
of Nodes, according to each application’s requirements. Every Node inside the cluster is
communicating through the Istio’s Data Plane via the Pods’ Envoy Proxies. Kubernetes
cluster is in control of creating and managing the Node and Pods. Any data extracted
from external sources and services regarding the Nodes and Pods information is requested
from the Kubernetes cluster. In 3.3, the cluster’s architecture is presented in a Cloud
infrastructure, like GCP. GCP provides users with two engines, the Kubernetes Engine
and the Compute Engine, to manage the Kubernetes clusters and the cluster’s Nodes (or
VMs) respectively needed to host each application.

3.2 Microservices Performance Metrics

In this section, the methods for extracting the performance metrics of the microservices
traffic rates will be presented and analyzed. These metrics will be collected from the
respective metric tools and agents and will be utilized to implement the proposed service
placement strategies. Two performance metrics are presented below, the Requests per
Second (RPS) metric and the Weighted Bidirectional Affinity (WBA) metric. For the

Diploma Thesis 45

Chapter 3. System Design and Benchmarks

Figure 3.3. Cluster’s Architecture in GCP

purpose of this Thesis, the performance metrics will also be referred as affinity metrics.

3.2.1 Requests per Second (RPS)

Requests per Second (RPS) is a performance measure of the amount of search traffic an
information-retrieval system, such as a search engine or a database, receives in one second
[31]. It’s purpose is to calculate the traffic rates between two services and in our case we
exploit this measure to define the communication relationships between the microservices
of each implemented application. Additionally, it is a performance measure that can be
easily acquired through the Kiali without any further modifications and calculations.

RPS performance metric is acquired from the Kiali Graph, which is collected through
the Kiali API. The JSON file of the Kiali Graph contains information about the mean
value of requests per second, which are applied on a specific time range of the application
lifespan. It does not provide any further information about the size or count of messages,
only the requested traffic rate from one service to another. Though it does not provide in-

46 Diploma Thesis

3.2 Microservices Performance Metrics

formation about those additional metrics, it can provide useful information about the scale
of the traffic rates and the microservices’ affinities. The formula of RPS is presented in Fig-
ure 3.1. For every service i applying requests to another service j, RPS is calculated as the
mean value of the total number of requests executed in one second for a specific time range.

RPSi→j =

∑Tsec
t=1 Rt(i→ j)

Tsec
(3.1)

Where,

• i is the source service

• j is the destination service

• t is the time (second) of measuring the requests

• Tsec is the total seconds of measurement

• Rt is the total requests applied in second t

In section 3.1, we mentioned that every Pod (or workload) is associated with a Ser-
vice component to enable the network communication. Every other Pod, which applies
requests to that specific workload, has to communicate initially with the Service of that
specific Pod. The RPS rate of a workload (Pod) j is calculated as the sum of all the RPS
metrics received at that Pod’s service from every other service i in the application. The
formula of the total RPS metric measured at a Pod from application’s services that have
an affinity edge is presented in Figure 3.2.

Ajworkload
=

∑
i

A(i→ jservice) (3.2)

Where,

• Ajworkload
is the RPS metric measured on workload j

• A(i→ jservice) is the RPS metric from every workload i to the jservice

Further information about the collection of the RPS traffic rates from the Kiali graph
will be presented in Appendix A.

3.2.2 Weighted Bidirectional Affinity (WBA)

Weighted Bidirectional Affinity is a microservice performance metric that is introduced
in [15]. This metric exploits the size of the exchanged messages in bytes between the mi-
croservices and the total number of these messages to calculate the affinity metric between
two microservices. The formula of the WBA is presented below.

Diploma Thesis 47

Chapter 3. System Design and Benchmarks

Aa,b = w ·
ma,b

m
+ (1− w) ·

da,b
d

(3.3)

Where,

• Aa,b is the affinity metric between service a and service b

• m is the total number of messages exchanged

• ma,b is the messages exchanged between a and b

• d is the total amount of data exchanged in bytes

• da,b is the amount of data exchanged in bytes between service a and service b

• w is the weight, such that
{
w ∈ R | 0 ≤ w ≤ 1

}
, used to define the significance of

each affinity variable (size or count of messages)

The weight factor is selected according to the importance of the variables, which are
calculated to get the total affinity metric between two microservices. For this Thesis, the
importance for the variables of the size of messages and the count of messages will be equal,
by assigning w with the value of 0.5. The reason behind this selection is because there is
no strong preference between these two variables, nor is it assumed that giving different
weights will produce a better solution for the service placement problem.

3.3 Benchmark Algorithms

In this section the modification and further analysis on the algorithms presented on
the previous chapter will be applied. We categorize the algorithms into 2 major groups,
the Clustering algorithms and the Adaptive Placement algorithms. It should be mentioned
that these algorithms require prior knowledge of the cluster’s data information and resource
allocation. We utilize these algorithms and combine them to form the service placement
strategies as will be implemented and will be described in the experiments chapter.

3.3.1 Clustering Algorithms

The Clustering algorithms do not require any prior knowledge about the initial service
placement of the microservices in the Kubernetes cluster (e.g. one that is produced by
another placement algorithm or by the default Kubernetes scheduler). These algorithms
require only information about the service affinities, the service requests in CPU and RAM
and the service list of each application.

The implemented algorithms are the Binary Partition, the K-Partition and the Bisect-
ing K-Means. They require the construction of application’s graph as a pre-processing
step for each placement strategy. Graph G is constructed with the nodes representing the
application’s microservices and the edges representing the weights of the communication
traffic rates (or the service affinity rates). Given an application’s set of services and their
affinities, graph G is constructed as presented in Algorithm 3.1

48 Diploma Thesis

3.3 Benchmark Algorithms

Algorithm 3.1: Graph Construction [32]

Input: Service List (S), Service affinities (A)
Output: Graph of application (G)
Initialize G = ()
for every source service u in A do

for every destination service v in A(u) do
if S contains (u,v) and G(u → v) does not exist then

Create G(u → v)
end if

end for
end for
Return G

In the next paragraphs we will present the modified algorithms for the Contraction
process of BP and KP algorithms and the modified Bisecting K-Means to match our
directed graph-based applications. BP and KP algorithms will be utilized as presented in
Algorithms 2.3 and 2.4.

Contraction Algorithm

Before analyzing the clustering algorithms, the vital modifications on the Karger’s
Contraction algorithm should be discussed, which is utilized by the Binary Partition and
the K-Partition algorithms. The problem with contraction algorithm was that it is designed
and presented in [16] so as to find a minimum k-Cut in an undirected graph. However, in
our Microservice-based Applications the graph is a directed graph and thus the algorithm
should be configured properly to meet these criteria.

Figure 3.4. Edge Contraction Process

Algorithm 3.2 diplays the pseudocode for the modified contraction algorithm to find
the minimum k-Cut in a DAG.

Given randomly a source service from G, modified contraction algorithm attempts to
contract a destination node and rearrange the incoming and outgoing affinities from the
destination service to the selected source service. The basic idea of the Algorithm 3.2 is to

Diploma Thesis 49

Chapter 3. System Design and Benchmarks

Algorithm 3.2: Contraction algorithm for Directed Graph

Input: Application Graph (G) with Nodes (V) and Edges (E), Service affinities (A),
k-Cut value (K)
Output: minimum k-Cut of the Graph

while V > K and E > K - 1 do
Select random source Node (Vsrc) and random destination Node (Vdest from G
if A(Vdest) is not empty then

for every node Vi except (Vsrc)) and (Vdest) with edge Ei in A(Vdest) do
if A(Vsrc) contains Ei then

A(Vsrc→i) = A(Vsrc→i) +A(Vdest→i)
else

A(Vsrc→i) = A(Vdest→i)
end if

end for
Remove Vdest from G

end if
for every node (Vi) in G except Vdest and Vsrc do

if A(Vi) contains Vdest as destination node then
if A(Vsrc) contains Vi as destination node then

A(Vi→src) = A(Vi→src) +A(Vi→dest)
else

A(Vi→src) = A(Vi→dest)
end if

end if
end for
Remove affinity A(Vsrc→dest) and edge Ei

end while
Return G

randomly choose an edge from the graph with probability proportional to the weight of the
edge and merge the nodes assigned to this edge into one node (called edge contraction).
In order to find a minimum cut, the algorithm iteratively contracts the edges which are
randomly chosen until the required number of nodes remain. The algorithm iteratively
selects a random edge in G and removes it until the graph contains only the desired K
Nodes or K-1 edges. To remove an edge, we examine whether the selected destination node
has affinity edges with other Nodes in G. If applicable, all affinities are redirected from the
destination node to the selected source node, as it is displayed in Figure 3.4. The algorithm
returns an updated graph G with only K nodes and K − 1 edges. The time complexity of
the algorithm is O(2N(N −K)) or O(N2) for a small K value compared to the size of N .

Bisecting K-Means

Bisecting K-Means (BKM) algorithm produces a finite group of services with high
affinity traffic rates given a set of microservices. The specific number of K clusters or
groups of services is selected by the end-user. As mentioned in the previous chapter,
BKM relies on the K-Means algorithm and the Sum of Squared Errors (SSE), which is

50 Diploma Thesis

3.3 Benchmark Algorithms

calculated from every point in the cluster with the cluster’s centroid point. These points
are represented in Cartesian form and the calculation of SSE can be found from various
formulas, according to the coordinates of these points. However, in a Cloud environment,
microservices are just points which can’t be represented in 2D form and thus the SSE
can’t be calculated accurately. To face this problem, we introduce a modified Bisecting
K-Means algorithm, which is relied basically on the affinities edges of the microservices.
Algorithm 3.3 shows the pseudocode which is used to implement the Bisecting K-Means
for a Microservice Architecture.

Algorithm 3.3: Bisecting K-Means for Microservices Architecture

Input: Service-based application (S), Initial partition (P), Number K of desired clusters,
Service affinities (A)

Output: Partition of Services in K Clusters
P ← {S}
while size{P} < K do

Select a cluster from P with the least sum of service affinities rates in total, Ci

P ← P − {Ci}
Pick and remove two microservices - centroids, msx and msy, from Ci

with no or the least affinity rate between them
Ci ← Ci - {msx, msy}
Cx ← msx
Cy ← msy
P ← P ∪ {Cx, Cy}
for every microservice (msi) in Ci do

if A(msi → msx) > A(msi → msy) then
Cx ← Cx ∪ {msi}

else if A(msi → msx) < A(msi → msy) then
Cy ← Cy ∪ {msi}

else
Select and place msi randomly among Cx and Cy

end if
end for

end while
Return P

The solution to match the Microservice Architecture restrictions for applying the BKM
algorithm successfully is to estimate the error by the affinity metric of the microservices.
Specifically, microservices with little or no affinity metric should be separated and produce
two sub-clusters with higher affinity score. The non existence of a communication edge
between these microservices is preferred, algorithmic logic will select them as two clusters
and will not continue processing the next affinity edges. The remaining microservices,
in the processed cluster, are assigned according to the affinity metric with the selected
sub-clusters centroids or randomly if there is no affinity edge or strong preference between
them. The fact that the centroid choice is made randomly among the microservices with the
same affinity metric does not always lead to an optimal solution. Moreover, microservice
assignment on the available cluster centroids is made only by the affinity score with the

Diploma Thesis 51

Chapter 3. System Design and Benchmarks

centroid of the cluster and not with the other affinities pairs with the microservices inside
the initial cluster. However, this version of BKM algorithm reduces the time complexity
and produces most times a sub-optimal result, which can be further enhanced with the
Heuristic Packing.

3.3.2 Adaptive Placement Algorithms

Clustering algorithms can effectively partition an application according to the microser-
vice affinities traffic rates. However, it can not be guaranteed that these partitions can
be successfully hosted into the application’s Nodes (or VMs). In addition to the mone-
tary cost optimization goal, we must ensure that these partitions would allocate the least
amount of resources inside the cluster. For these reasons, We group the Heuristic Packing
and the Heuristic First-Fit as post-processing algorithms, which require prior knowledge of
the initial service placement or application’s partitions and the Node resources to produce
an optimized service placement result with heuristic methods. Heuristic Packing is imple-
mented in conjunction with the Clustering algorithms, as it requires the partitioning result
produced by them. However, Heuristic First-Fit is processed and executed independently
from the other clustering algorithms in one step execution, without requiring the execution
of Heuristic Packing. Finally, we will present a Top-Level algorithm to combine some of
the clustering and the placement algorithms, called Placement Finding presented in [16].

Heuristic Packing

Heuristic Packing (HP) is used in conjunction with the Binary Partition and K-Partition
and efficiently places each partition into the cluster nodes ensuring that the least amount of
resources will be allocated. The algorithm requires prior knowledge of the Node resources
and the Pod requested resources in order to locate a cost-optimized placement solution.

HP algorithm is mainly consistent with the Algorithm 2.6, presented in the previous
chapter. The input to the algorithm is the application’s partitions produced by BP, KP
or BKM algorithms, the Node and Pod requested resources, the list of services and the
service affinities list. For each part of the partition, the total CPU and RAM requests
are calculated according to the services placed into that specific part and the algorithm
examines and processes all the hosts that contain enough resources to host that specific
part. For every Node that can efficiently host the processed part, the traffic rates between
services in the processed partition and services that are already located into the specific
Node are calculated. Prioritizing the traffic rates, then the CPU most-loaded resources and
finally the RAM most-loaded resource requirements, we can determine the most suitable
Node to host that specific part. The procedure is repeated for every application’s partitions
until all partitions are successfully hosted inside the cluster’s nodes or there is at least one
partition that can not be hosted into the available Nodes.

Prior to applying the HP algorithm after the clustering process, we calculate the avail-
able and allocated Node resources properly so as to locate a correct microservice placement
solution. Upon collecting the Node data from the Metrics service and Agents, we take into
consideration the initial service placement of each application. To effectively apply the HP

52 Diploma Thesis

3.3 Benchmark Algorithms

algorithm, we process the collected data so as to not include the requested data for each
Pod. We must ensure that each Node contains only the metrics and Kubernetes services
to find a placement solution.

Heuristic First-Fit

Heuristic First Fit (HFF) algorithm is a single-step processing algorithm, which is
given as input the application’s initial service placement and configures this placement by
moving microservices with high affinity traffic rates in the same host machine. Additionally,
the application’s microservices affinities must be sorted in descending order. In this way
microservices with higher affinity metric (or graph weight) are processed first and the
produced service placement becomes as optimal as possible. Upon each iteration of the
algorithm and for each processed affinity edge, we store the source and destination nodes,
their initial hosting VMs and their resource requests in separate values to make easier the
execution process of the algorithm. If two services belong at the same host machine, the
algorithm stops the current iteration and services are marked as moved in order to remain
at the same host machine until the termination of the algorithmic execution. On the other
hand, if microservices belong at different host machines then the algorithm examines if the
destination service can move to the source host or vice versa. Either way, available and
allocated resources of the host machines are re-calculated and configured accordingly for
the next iteration and microservice communication edge. The algorithmic logic remains
the same as the original algorithm, presented in Algorithm 2.2.

Heuristic First-Fit will not attempt to perform some kind of clustering to the available
services, instead it will apply a First-Fit variant packing, as mentioned previously, and
will process and modify the current service placement produced by the default Kubernetes
Scheduler. The algorithm is executed only once and the fact that microservices previously
checked and marked as moved, and therefore can’t be moved for the next iterations, pro-
duces a sub-optimal placement solution most of the executed times. Furthermore, it can’t
be guaranteed that a series of iterations of the algorithm for the current service placement
will produce an optimal service placement. It can be concluded that the algorithm won’t
converge for a finite number of iterations and in some cases it can theoretically produce
a non-optimal result with higher inter-machine traffic (Egress traffic) between the host
machines of the cluster.

Placement Finding Process

Binary Partition and K-Partitions algorithms, in conjunction with the Heuristic Pack-
ing algorithm as a post-processing step, can not guarantee that a placement solution will
be located upon each execution. In order to partition the application and attempt to place
the produced partitions into the available host machines, threshold α is required for these
placement strategies. However, giving an appropriate deterministic threshold α is difficult,
as it cannot be guaranteed that the algorithm can find a placement solution through the
randomized partition and the heuristic packing under a certain threshold α. Intuitively,
the higher threshold α results in less application’s partitions, which leads to less traffic

Diploma Thesis 53

Chapter 3. System Design and Benchmarks

rate between different parts. Thus, Algorithm 3.4 presented in [16], the Placement Finding
algorithm, is introduced in order to find the best choice of threshold α by enumerating
from the larger value of α to smaller with a predetermined step ∆. For each value of
threshold α, Binary Partition or K-Partition algorithms are executed in order to partition
the application services. Then, the produced partition is processed by the Heuristic Pack-
ing algorithm for a placement solution to be found. If Heuristic Packing can not find an
application placement solution, then threshold is decreased by ∆ and the algorithm’s steps
are repeated until a placement solution is found.

Algorithm 3.4: Placement Finding Process [16]

Input: Service-based application S, vectors of available resources on each machine V =
(V1, V2...VM)
Output: a placement solution X
X ← [xij = 0] for every part and host machine
α ← 1.0
∆ ← 0.1
while α ≥ 0.0 do

P ← Binary Partition(S,α) or K-Partition(S,α)
X

′ ← Heuristic Packing(P, V)
if X ′ 6= null then

Calculate X according to X ′ and P
Return X

end if
α ← α - ∆

end while
Return null

3.4 Benchmark Applications

To implement and apply the proposed service placement strategies we utilize two bench-
mark applications, iXen and Google OnlineBoutique eShop. These applications are ini-
tialized into a separate Kubernetes clusters in a Homogeneous environment with the same
resource capacities and infrastructure.

3.4.1 iXen

iXen [33] [34] is a prototype software architecture for an IoT scenario based on Service
Oriented Architecture (SOA) principles. For the purposes of this Thesis, it was converted
from a bare metal deployed SOA architecture to a microservice-based architecture. As a
result, each microservice is independent from the others, becomes portable, has its own
data storage, can be scaled independently and be orchestrated by container orchestrators
such as Kubernetes. For each microservice we can monitor its traffic, define the minimum
demands on resources and declare the infrastructure it will be deployed on.

iXen follows a 3-tier architecture model. At the first layer the Infrastructure Owners
– System Administrators have the right to install and connect to physical devices, such

54 Diploma Thesis

3.4 Benchmark Applications

as sensors or actuators, of the same or different type that may be located in different
geographic areas. At the second layer, application developers can create subscriptions to
devices in order to exploit their data for building applications. At the third layer, end-
users, called application customers, can create subscriptions to applications in order to
access them. This 3-tier architecture help to extend the system to all 3 layers by adding
more devices of different type and applications of different application fields. The iXen
architecture is displayed on Figure 3.5. Each different color on edges depicts a separate
type of request that can be applied in the application either internally or externally with
a HTTP request.

Figure 3.5. iXen Architecture

iXen consists of 15 different software units (containers) which are all orchestrated by
one of them called application logic. All requests and responses are received from the appli-
cation logic microservice coming from the Web Application or Devices and are dispatched
suitably to the other Services depending on the request type a device or application op-
eration triggers. Application Logic also exposes a Web UI for all User Operations and
a Device Interface where all devices send their measures via HTTP protocol. Below the
microservices of iXen are described briefly.

• Keyrock Identity Management: Service contains all users and their roles. It
provides a REST API in order to register users , add policies about their rights to
access resources on the application and authorize them via OAuth2.0 protocol. It is
connected with a MySQL database in order to store the necessary information.

• AuthzForce: Provides a feature in order to apply more advances authorization poli-
cies to our applications via an OASIS standard in XACML format via an Attribute-
Based Access Control (ABAC) framework.

Diploma Thesis 55

Chapter 3. System Design and Benchmarks

• Pep proxy: Combined with Keyrock IDM and AuthzForce services in order to hide
microservice APIs from unauthorized users and services according the policies that
have been defined on Keyrock and AuthzForce. Every request is forwarded to the
backend protected service by pep proxy, only if the client has the right to access it
and conduct the relative operation.

• Orion Context Broker: A publish/subscribe mechanism which provides a REST
API for storing and retrieving data from a Mongo Database. It stores data about
devices with the NGSI format, e.g. as entity types with attributes like the name
, the type and the current measure. Furthermore, it gives the ability to users and
other services to subscribe on different device in order to be notified for new measure
changes and other events referred to them.

• Querying Sensors: Service converts a custom query syntax to mongo queries on
the Mongo Db where devices are stored as entities with attributes by the Context
Brokers. It accepts query for device searching relatively their location, Model type,
the type of measure they collect, the unit measure and their firm.

• Cygnus: Accepts data streams compliant formatted with the NGSI model and can
store them on multiple types of Databases like MongoDB, mySQL, CKAN, Dy-
namoDB. It can store data as RAW or aggregate them without being aware of the
database which is used at the backend.

• Comet: Manages historic data as time series, which are produced by the attribute
changes at the entities stored to the Orion Context Broker at a NGSI representation.
Comet is used for data retrieval and exposes a set of different aggregated statistical
information.

• Mashup service: Contains the Node Red service which creates multiple applications
on the system combining data from the devices. There is a calculation service in the
Mashup Service which contains all the algorithms for retrieving data from COMET
service.

3.4.2 Google’s OnlineBoutique eShop

Online Boutique is a cloud-native microservices demo application as described in the
official GitHub page of the application [6] implemented by Google Cloud Platform (GCP)
for benchmarking and demonstrating purposes of a microservice-based application in the
Google Cloud. The application is a web-based e-commerce application, where users can
browse items, add them to shopping cart and finally purchase them.

Online Boutique consists of 12 microservices communicating with Remote Procedure
Calls (RPC) via gRPC and HTTP (HyperText Transfer Protocol) and users can access the
frontend of the application via HTTP. Google exploits the application to demonstrate use
of technologies like Kubernetes/GKE, Istio, Stackdriver, gRPC protocol and OpenCensus,
but for the current thesis Kubernetes on GKE and Istio services will be applied to orches-

56 Diploma Thesis

3.4 Benchmark Applications

trate the microservices and gather the essential cluster metrics respectively to efficiently
apply our proposed microservice placement strategies.

The gRPC protocol is applied instead of HTTP because it can efficiently connect ser-
vices in and across data centers with pluggable support for load balancing, tracing, health
checking and authentication [35]. It uses protocol buffers to transfer data among microser-
vices, enables bi-directional streaming, can be implemented in a variety of programming
languages and platforms and can be highly scalable as presented in the official website.

Figure 3.6. Google Online Boutique Architecture [6]

Figure 3.6 demonstrates the architecture of Online Boutique application and the com-
munication edges between the microservices. All microservice logic is utilized to communi-
cate via gRPC protocol and nearly all microservices are written in different programming
languages for demonstrating purposes only. The application’s various microservices are
presented concisely below, along with the programming language of the implementation
for each service and a short description about their usage in the current application.

It should be mentioned that this application is suitable for the implementation of the
presented algorithms due to the fact that it is already tested, the main reason behind its
creation was for benchmarking reasons and demonstrating purposes, contains no errors for
initializing it into a Kubernetes cluster and the installation of this application into the
Cloud infrastructure is described thoroughly in the documentation of the application on
GitHub.

The application’s microservices, as described in [6] are:

• Frontend: Written in Go. Exposes an HTTP server to serve the website. Does not
require signup/login and generates session IDs for all users automatically.

• Cart Service: Written in C#. Stores the items in the user’s shopping cart in Redis
and retrieves it.

• Product Catalog Service: Written in Go. Provides the list of products from a
JSON file and ability to search products and get individual products.

• Currency Service: Written in NodeJS. Converts one money amount to another
currency. Uses real values fetched from the European Central Bank. It’s the highest

Diploma Thesis 57

Chapter 3. System Design and Benchmarks

QPS service.

• Payment Service: Written in NodeJS. Charges the given credit card info (mock)
with the given amount and returns a transaction ID.

• Shipping Service: Written in Go. Gives shipping cost estimates based on the
shopping cart. Ships items to the given address (mock).

• Email Service: Written in Python. Sends users an order confirmation email (mock).

• Checkout Service: Written in Go. Retrieves the user’s cart, prepares orders and
orchestrates the payment, shipping and the email notification.

• Recommendation Service: Written in Python. Recommends other products
based on what is stored in the cart.

• Advertisement Service: Written in Java. Provides text ads based on given context
words.

• Load Generator: Written in Python/Locust. Continuously sends requests imitat-
ing realistic user shopping flows to the frontend.

Figure 3.6 displays all the available application’s microservices. However, there is an
additional microservice that has direct communication with Cart Service over Transmission
Communication Protocol (TCP) and stores the products, that the client has added to
the purchase cart, remaining there until the order is submitted or deleted. This service,
called Redis-Cart, is a storage microservice and it is installed in the existing application’s
Kubernetes cluster as a separate Pod, as it was implemented from the developers of the
application.

58 Diploma Thesis

Chapter 4

Experimental Results

In this chapter we will mainly present the experimental results upon executing the
proposed service placement strategies in Kubernetes environment. The utilized Cloud in-
frastructure will be analyzed, along with the characteristics of the Kubernetes cluster.
Next, the application stress testing modules, the type of requests and the distribution of
these requests will be analyzed and presented for both applications, iXen and OnlineBou-
tique eShop. Before displaying the results for each placement strategy, application and
affinity metric, we will specify the cost function calculated from the used Cloud provider
cluster fees. Finally, the results of the implemented service placement algorithms will be
presented in bar graphs for all the Clustering and Heuristic algorithms.

4.1 Service Placement Strategies

The benchmark algorithms presented in 3.3 categorize the proposed algorithms into two
main categories, the partitioning of an application’s graph into groups of services and the
post-processing step for placing these partitions into the available host machines. As we at-
tempt to minimize the partitions of the benchmark applications, minimize the traffic rates
across different VMs, increase the intra-machine affinity and decrease the inter-machine
affinities, we must combine some of these algorithms to produce the service placement
strategies that will implemented in the cluster. The implemented service placement strate-
gies are presented below.

• Heuristic First Fit (HFF)

• Binary Partition - Heuristic Packing (BP-HP)

• K-Partition - Heuristic Packing (KP-HP)

• Bisecting K-Means - Heuristic Packing (BKM-HP)

The partitioning algorithms presented in section 3.3.1 can effectively partition an appli-
cation and create clusters with high intra-partition affinity. However, the produced parts
must be placed in the Kubernetes cluster and thus a packing strategy is executed in con-
junction with these algorithms. In section 3.3.2, a heuristic packing strategy was presented
that can utilize the partitions produced by the clustering algorithms and place them into

Diploma Thesis 59

Chapter 4. Experimental Results

the available host machines in order to reduce the size of VMs for hosting each application,
increase the intra-machine affinity and reduce the inter-machine traffic.

The reason behind the utilization of HP algorithm as a post-processing step for our
graph partitioning algorithms relies mainly on minimizing the monetary cost of the cluster.
BP, KP and BKM algorithms can effectively partition an application, but they can not
guarantee that each and every of these partitions can be successfully hosted in the cluster’s
nodes (or VMs). These algorithms are combined with HP to construct a two-step execution
placement strategy to locate a cost efficient microservice placement strategy.

HFF placement strategy is based on the algorithm presented in 3.3.2 and does not
require the HP algorithm to optimize the placement solution. The algorithm, as mentioned
previously, does not attempt to partition the application, only to relocate the microservices
for the purpose of reducing the intra-machine traffic and reserve as few hosts as possible
for hosting each application. It is considered as a complete placement strategy that can be
implemented into our Kubernetes cluster in a single execution step, optimize the service
placement and reduce the cluster’s cost.

4.2 Infrastructure

For the Kubernetes environment, we initialize a Kubernetes cluster into the Google
Cloud Platform (GCP) and specifically in the Google Kubernetes Engine (GKE), which will
host the desired cluster. GKE is responsible for monitoring and handling the Kubernetes
clusters and provides a wide variety of tools to optimize their performance. Each Node
or VM will be monitored and observed from the Compute Engine service of GCP, which
communicates with GKE to locate the essential number of VMs with specific resources
for efficiently hosting the Kubernetes cluster. In this section, we will present the cluster’s
structure and design to carry on the experiments.

Cluster Design

For each application, iXen and OnlineBoutique, we initialize a cluster in GKE with the
same characteristics and variables. Each cluster is created in europe-west3-b Zonal location
type. We disable horizontal and vertical autoscaling for the purposes of the Thesis, so that
available VMs and their resource allocation remain the same for the implementation and
experimentation of the algorithms, as mentioned in 3.1. We examine the performance of
the placement strategies within an homogeneous environment with VMs allocating the
same amount of resources.

Furthermore, GKE provides end-users with many optimizing tools for the initiated
cluster, such as Load Balancing, Client certificates, Basic authentication and many more,
however we are not going to exploit them for this Thesis. Last but not least, we enable
Cloud logging and Cloud Monitoring at the existing clusters to access the cluster data and
monitor its status and health. Table 4.1 displays the essential characteristics of the clusters
for each application.

60 Diploma Thesis

4.2 Infrastructure

Table 4.1. Cluster Characteristics

Cluster Attributes Option

Location Type Zonal

Zone europe-west3-b

Release Channel Regular

Cluster Version Type Stable

Cluster Version 1.20.9-gke.1001

Horizontal Autoscaling Disabled

Vertical Autoscaling Disabled

Cloud Logging Enabled

Cloud Monitoring Enabled

Each cluster contains a node pool to initiate Nodes (or VMs) for the existing Kuber-
netes clusters. The node pool creates an Instance Group, in which Virtual Machines are
created upon the resize of Node Pool of the existing cluster to the desired number of VMs.
This node pool is constructed upon the construction of the cluster and is responsible for
communicating with the Compute Engine service of GCP to resize the number of cluster’s
Nodes. The node pools instantiate machines of e2-standard-2 type in europe-west3-b zone
and images of Container-Optimized OS with Docker type. The autoscaling attribute is
deactivated, so that we can manage the Node size that are created. The boot disk type
is standard type with size of 100GB. The Nodes are not preemptible, which means that
we allocate resources or reserve a finite number of VMs upon demand for initializing each
application. Table 4.6 displays the main characteristics of the cluster’s node pool for each
application.

Table 4.2. Node Pool Characteristics

Node Pool Attributes Option

Machine Type e2-standard-2 (E2-standard)

vCPU 2

RAM 8GB

Zone europe-west3-b

Image type Container-Optimized OS with Docker

Autoscaling Disabled

Preemptible Nodes No

Boot Disk Type Standard

Boot Disk Size 100GB

Kubernetes nodes are characterized by their type and the volume of the allocated re-
sources, which is CPU and RAM. Both applications reserve resources, not only for Istio and
the various Metric Tools and Agents, but also for the Kubernetes services, like kube-proxy,
kube-dns, kubelet, metrics server etc. To implement the service placement strategies, we
utilize 4 Node Machines with 2vCPU and 8GB RAM per each Node to host each appli-

Diploma Thesis 61

Chapter 4. Experimental Results

cation adequately, according to the Pod and Node restrictions and for testing the cost
optimization case, after each successful execution of the proposed strategies. Figure 4.1
displays the cluster infrastructure in GCP.

Figure 4.1. Cluster infrastructure in GCP

Upon consecutive initializations of the cluster, we have reached to the assumption
that both applications require at least 2 VMs to host them efficiently, including Istio and
Kubernetes services. The selection of the number of Nodes was made for presenting a
realistic use-case with feasible requirements and restricted size of available VMs to test the
cost optimization problem. This selection may applies in real-life challenges and projects,
in which a DevOps team may have an upper bound to the available VMs for hosting an
application with high restrictions on resource allocation. An initialized volume of Nodes
greater than 4 for hosting these applications is considered to be a surplus and will only
produce higher monetary cost-optimization rates as the size of Nodes grows, which will
not provide additional information about the performance of the placement strategies.

4.3 Application Stress Testing

In this section we will present the Stress testing process, which is applied to create
traffic flows to each application. This Stress testing can be achieved through various tools,
but for this Thesis we will utilize Apache JMeter service [30]. Every Stressing module and
technique that will be applied resorts to synthetic workloads and not realistic, as we do not
apply a stressing technique according to historical data of requests for each application.
Synthetic workloads enable to project various use-cases of each application according to the
implemented type and size of requests without increasing the complexity of the stressing
process. In the upcoming subsections we will thoroughly present the stressing methods,
which are applied for both iXen and OnlineBoutique applications.

62 Diploma Thesis

4.3 Application Stress Testing

4.3.1 iXen Stressing

For iXen Stressing, we must initially create a test plan and configure the application’s
variables, which are the External IP (i.e endpoint of a Node or VM) of a cluster, the
number of threads to be created and the service ports for accessing the application services
from the Apache JMeter. For iXen Stressing we attempt to stress the application for a
specific time period of 15 minutes. In total, 100 threads are created in the test plan and
we apply distributed requests in the selected time range to the application’s endpoints.
These requests are selected among the available type of requests and some of them require
additional information as input parameters. Below, on table 4.3, we present examples of
all the types of requests, that will be applied in order to stress the application and create
workflows among all microservices.

Table 4.3. iXen Requests and Stressing test plan

Request Type Requests Distribution

Login into the App POST 12.5%

Access Device measurements POST 12.5%

Access Device subscriptions POST 12.5%

Deploy a new Mashup application POST 12.5%

Search an existing application GET 12.5%

Search for subscriptions GET 12.5%

Make a new customer subscription POST 12.5%

Access a Mashup application GET 12.5%

4.3.2 OnlineBoutique Stressing

In OnlineBoutique application we utilize two synthetic workload modules for stressing
the application. The first one is the stressing applied from LoadGenerator microservice,
which is applied by default into the application. This microservice consists a part of the
OnlineBoutique application and its role is to create network traffic into the application by
applying random requests. The second stressing method is the additional stressing test
plan implemented through Apache JMeter, as implemented in the iXen application. Both
stressing methods are described and analyzed below. Both modules apply greater synthetic
workloads in size and number of requests into the application than the iXen stressing.

Stressing with LoadGenerator Microservice

The former of these methods of stressing the application is the LoadGenerator microser-
vice, which is initialized upon the launch of the application into the Kubernetes cluster.
This microservice generates random HTTP requests towards the application’s microser-
vices. The initial Kiali graph (the graph is presented in Appendix - Figure A.2 is produced
through the load stressing applied from the LoadGenerator microservice, so the application
is constantly under stressing for nearly 3 requests per seconds. LoadGenerator microser-
vice applies randomly generated requests from the available ones. Table 4.4 displays the

Diploma Thesis 63

Chapter 4. Experimental Results

available application’s requests and their request type.

Table 4.4. Online Boutique Requests [6]

Request Type Description

Index GET Return index page

Set Currency POST Change currency

Browse product GET Return random product

View Cart GET Access the cart page

Add to Cart POST Add random item into the cart

Checkout POST Buy the cart’s products with customer information (Mock)

Stressing with Apache JMeter

The second stressing method is the stress testing applied through the Apache JMeter
service. As mentioned previously on the iXen Stressing sub-section, we initially create a
Test Plan for the stressing process of the application. Then, we define the desired user
defined variables, which are the External IP (i.e Node or VM IP address) of one of the
available Cluster Nodes to access the application via HTTP and the Node Port of the
frontend service, from which we can send requests to all the application’s microservices.
Then we define four major Thread Groups to apply the desired requests. The first one,
applies 450 requests by initializing the same number of Threads to fetch the index page of
the application through the frontend service. The second one tests the successful checkout
of the stored products into the cart. We initialize 150 Threads in total and we add two
random products into the cart, after locating them in the products list, and finally submit
the order with the current products of the cart. The third Thread Group, accesses the
cart service for 350 Threads in total and finally the forth one attempts to change the
payment currency randomly for 250 Threads. Only the Second Thread Group runs 5 type
of requests for 150 threads each, so 750 requests are applied via this group. The difference
between the iXen Stressing is that for this application we aim to submit a finite number
of distributed requests, while on the iXen application we applied a finite and distributed
number of requests for a specific time range of 15 minutes.

Totally, for OnlineBoutique application, 1800 normally distributed requests are applied
within 1 minute time range via 1200 total threads. We repeat this Test Plan for 6 times
in total and nearly 6 minutes in total time execution. We apply 10800 requests into the
application, which can be calculated as nearly 30 requests per second for that specific time
range. Table 4.5 makes the synopsis for all these thread groups by each type of request.

For the experiments part and only for the OnlineBoutique application, we will gather
resources and produce a service placement solution for each of the proposed strategies,
initially from the default stressing module, which is the LoadGenerator microservice and
then we will apply additional stressing from the Apache JMeter service. In this way, we
can test the application under different types of loads and monitor the behavior of the
placement strategies to each stressing method.

64 Diploma Thesis

4.4 Cost Function

Table 4.5. Apache JMeter Test Plan for OnlineBoutique

Thread Group Threads Total Requests Requests Distribution

GET index 450 450 25.0%

POST products order 150 750 41.66%

GET cart 350 350 19.44%

POST change currency 250 250 13.88%

Total (One round) 1200 1800 16.66%

Application Stressing 7200 10800 100%

4.4 Cost Function

The final step prior to executing the service placement strategies and present the ex-
perimental results is to describe the cost function of our implemented cluster and locate
the factors that can alter this function. In this section, we will present the cost function
of our Kubernetes clusters and present the GCP pricing for the utilized resources.

The utilized system is running on a Cloud infrastructure orchestrated by Kubernetes.
The cluster of each benchmark use-case consists of various Nodes and Pods with specific
resource allocation and requirements. Moreover, Pods communicate either internally be-
tween Pods in the same Node (Ingress) or externally with Pods in a different Node (Egress)
and store various data according to every application logic. All these factors are charged
separately in a Cloud infrastructure and a cost function must be configured to estimate
the cluster’s fees. In table 4.6 we present the abbreviations that will need to define the
cost function.

Table 4.6. Cluster Abbreviations for Cost Function

Description Symbol

Cluster C

Node N

Number of Nodes n

CPU allocation (Cores) c

RAM allocation (GB) r

Ingress Traffic (Bytes) tin

Egress Traffic (Bytes) te

Storage (GB) s

Machine Type M

Time of usage (hours) h

Region R

There are many factors which can vary the cost of a Kubernetes cluster. Mainly, most
Cloud Providers determine the cost according to the Network Traffic, especially between

Diploma Thesis 65

Chapter 4. Experimental Results

VMs and even more between VMs locating in different zone areas (i.e Egress Traffic).
Resource allocation is also a crucial factor upon an initialization of a Kubernetes cluster,
which is mostly referred to CPU, RAM and Storage allocation. The different machine types
or the image type of VMs can also affect the cost of the cluster. In the following equation,
we will present an estimation of the cost function of a Kubernetes cluster according to the
factors mentioned earlier and will be used next to formulate the actual cost of the utilized
Kubernetes cluster.

TotalCost = CostCPU + CostRAM + CostTraffic + CostStorage (4.1)

CostCPU =

N∑
i=1

cpucost(Mi) · hi (4.2)

CostRAM =
N∑
i=1

ramcost(Mi) · hi (4.3)

CostTraffic =

N∑
i=1

N∑
j=1,j 6=i

[tin(i→ j) · costingress + te(i→ j) · costegress] (4.4)

CostStorage =
N∑
i=1

si · storagecost(Mi) (4.5)

It should be noted that these equations are described as a generalized function of the
cluster’s cost and there may be many factors to differentiate the total cost in a Cloud
infrastructure. In some cases there are additional costs for the GPU usage according to
the requirements, the optimizations tools (i.e load balancing, auto-scaling of Pods etc) of
the cluster in the Cloud or even some extra network fees to enable external communication
(i.e Egress Traffic or access outside the Cloud infrastructure).

Cloud Provider’s Cost

In this Thesis, we utilize GCP as Cloud provider and therefore we will present the
respective costs according to the GCP pricing. Although, the main equation of the total
summary of costs (which presented previously) remains the same, the respective cost factors
differentiate according to the costs given in the GCP documentation [36]. The following
equations present the respective cost factors according to the GCP pricing.

CostCPU =

R∑
r=1

N∑
i=1

cpucost [Mi(r)] · hi (4.6)

CostRAM =

R∑
r=1

N∑
i=1

ramcost [Mi(r)] · hi (4.7)

66 Diploma Thesis

4.4 Cost Function

CostTraffic =

R∑
r=1

N∑
i=1

N∑
j=1,j 6=i

[te(i→ j, r) · costegress(r)] (4.8)

CostStorage =
N∑
i=1

storagecost(Mi) · hi (4.9)

Cost of CPU and RAM relies only on the Machine types, the Region of the cluster
and the run-time hours of the cluster’s VMs. Storage, which is the disk size in our case,
is connected with any new cluster initialization and varies according to disk type. Finally,
Ingress Traffic is not charged in GCP Cloud, however Egress Traffic is charged according to
the Zone and Region of each VM and the size of GB exchanged between the host machines.

Cluster Cost

Prior to presenting the actual cost equations for the experiments part, we must sum-
up that we utilize a homogeneous environment in Kubernetes infrastructure, where every
machine lies on the same Zone area and Region, with the same resource allocation at-
tributes. In this way, the cost for initializing the requested number of VMs is the same
and therefore the sum of each cost factor is replaced by the VM cost times the number
of the VMs used. The size of each application, their services, Istio services and the data
stored in the allocated disk of the cluster is relatively low in volume and thus the cost
of storage is considered negligible. As we mentioned previously, the main equation of the
summary of the costs for all the resource factors (Equation 4.1) remain the same, however
the individual costs are modified according to the characteristics of the initialized clusters,
as displayed below.

CostCPU = n · 2vCPU · cpucost · hi (4.10)

CostRAM = n · 8GB(RAM) · ramcost · hi (4.11)

CostTraffic = costegress ·
N∑
i=1

N∑
j=1,j 6=i

te(i→ j) (4.12)

CostStorage ' 0 (4.13)

We can conclude that cost of CPU and RAM depends only on the hours of running
each Node and the total size of Nodes in the existing cluster. Cost of storage is not charged
additionally and the cost of Egress depends only on the requested data bytes from services
that do not belong at the same Node (communication between the VMs). The responsed
bytes of requests are considered as ingress traffic and there is no additional fees for them.
As VMs belong in the same Zone and Region, the cost of Egress is fixed and respective to
the total amount of GB requested from the Nodes in the cluster. In the following table 4.7
we present the actual GCP costs for the utilized cluster infrastructure and VMs.

Diploma Thesis 67

Chapter 4. Experimental Results

Table 4.7. GCP costs for e2-standard Machines

Description Cost (USD)

Predefined vCPU $0.028103/vCPU/hour

Predefined RAM $0.003766/GB/hour

VM-to-VM Egress traffic $0.01/GB

As we initialize 4 VMs in our cluster and with prior knowledge of the hourly fees of
the GCP, we can present the total monetary hourly cost function of our infrastructure in
the following equation.

TotalCost = 0.345336 · hi + 0.01/GBhi
(4.14)

It must be referred that in the results section we display the cost results of the clusters
per month of usage. The hourly costs presented in table 4.7 are modified accordingly to
produce the value of the respective cost factors per month of usage.

4.5 Results

Making the summary of our implemented infrastructure, we initialize 4 Nodes into
a Kubernetes cluster in GCP, with predefined resource allocation of 2vCPU and 8GB
RAM per Node. The environment is homogeneous and all the Nodes reside at the same
Region. Initially, we let the default Kubernetes Scheduler decide upon the initial service
placement for each application into the existing Nodes without specifying the Pod and
Node Affinities/Anti-Affinities. The scheduler distributes equally the services into the
cluster Nodes according to the Pod and Node restrictions and requirements.

To implement the service placement strategies, we primarily access the Cluster API
and the Metric tools to collect the important Node and Pod data (allocated space, re-
source requirements, available volume in resources etc) in order to produce the essential
data structures for executing the proposed strategies. Then, we implement one by one
the proposed placement strategies and produce the service placement for each use-case.
Below, we display the results produced after applying the placement strategies. We divide
this section into five major subsections, one for the selection of the K-Value of the BKM
algorithm and the other four for each examination factor of the implemented placement
strategies.

For OnlineBoutique and iXen applications, we utilize two performance measures as de-
scribed in section 3.2, the RPS and the WBA performance measures. For both performance
measures and for each microservice placement strategy we will apply the synthetic stressing
workloads to create network communication among the applications’ microservices. For
the next subsections, we will present the produced graphs for each placement strategy for
both applications, iXen and OnlineBoutique, both performance measures and specifically
for OnlineBoutique application both stressing methods. For each produced graph, we will
comment the results and justify their performance.

68 Diploma Thesis

4.5 Results

4.5.1 K-value Selection for BKM Algorithm

First and foremost, we need to justify the selection of the BKM K-value, which will be
used to execute the BKM placement strategy and produce the graph results. Although we
select the K-Value, mostly, to match the initialized number of VMs, we examine various
cases of the K-value, which are the total number of hosts and the Egress traffic optimization
upon executing the BKM placement strategy to the initial service placement. We examine
only the case for the OnlineBoutique application and the WBA affinity metric. As both
applications have almost the same Pod and Node resource requirements, we presume that
the selection of the K-Value is independent on the scale of these applications. In Figures
4.2 and 4.3, we display the results for the produced host machines required to run the
application for the various K-values.

Figure 4.2. Number of hosts for different K-Value of BKM algorithm

Figure 4.3. Number of hosts for different K-Value of BKM algorithm with Stressing

Diploma Thesis 69

Chapter 4. Experimental Results

Below, in Figures 4.4 and 4.5, we display the results for the traffic optimization for the
K-Values according to the initial service requested bytes among the Nodes.

Figure 4.4. Traffic Optimization for the various K-Values of BKM algorithm

Figure 4.5. Traffic Optimization for the various K-Values of BKM algorithm with Stress-
ing

We examined the case for 2, 4, 6 and 8 cluster centroids, which is the K-Value of the
BKM algorithm, to partition each application into K clusters. As the cost of the cluster is
relied basically on the Egress traffic and the allocated resources (or the number of nodes),
we will select the K value according to the number that minimizes the total cost. From
the produced graphs, we can conclude that number of hosts after each placement strategy
remains almost the same for every case and increases slightly for the case of K = 8 but
still is less than the initial placement, for both ways of Stressing.

The desired reduction in the service requested bytes in Egress traffic between the dif-

70 Diploma Thesis

4.5 Results

ferent VMs is achieved mainly for K = 4 and K = 6 clusters, with the former producing
the best reduction for the case of the additional Stressing and the latter remaining almost
the same for both ways of Stressing. However, BKM resides in random methods for the
selection of the centroids, which may not always be optimal. Moreover, the scale of both
applications is relatively small and we can not reach a safe conclusion for the behavior
of the algorithm in a much more dense graph with many unconnected services. It can
be concluded that for both K = 4 and K = 6 values the placement strategies would be
optimal for these applications. We selected the K = 4 number to match the cluster’s initial
number of Nodes.

4.5.2 Execution Time of each Placement Strategy

An important factor of examining the placement strategies is the execution time of each
implemented strategy and to crosscheck the theoretical time complexity of each algorithm
with the measured execution time. We expect the time of executing the placement strate-
gies, which utilize the Heuristic Packing and the Contraction algorithm, to be greater than
the others. However, these execution times are expected to be relatively low as we use
random methods to produce each application’s partitions. In Figure 4.6, we display the
results for the Online Boutique application for both performance measures (i.e RPS and
WBA affinity metrics) and for all the proposed strategies.

Figure 4.6. Execution time of algorithms for OnlineBoutique

Below, in Figure 4.7, we present the results for the Online Boutique application un-
der the additional Stressing from the Apache JMeter service as described in the previous
sections.

Finally, in Figure 4.8, we display the respective results for the iXen application for the
utilized performance measures and placement strategies.

As for the execution time of each placement strategy, we can conclude that all the
strategies are relatively fast and can produce a service placement within few seconds. All
algorithms perform the same for both applications and performance measures, with only

Diploma Thesis 71

Chapter 4. Experimental Results

Figure 4.7. Execution time of algorithms for OnlineBoutique with Stressing

Figure 4.8. Execution time of algorithms for iXen

difference the execution time between BP and KP. We expect KP to have lower execution
time than BP, which on the OnlineBoutique application for Stressing is accurate, but with
the loadGenerator Stressing module we can observe that Binary Partition’s execution time
is lower. The reason behind the better performance in the time complexity of the KP is
that, upon each iteration, K value increases and thus the complexity of the contraction
algorithm is reduced. For iXen application, BP has higher execution time than the KP
too, which is based on the better partitioning that is applied for small microservice-based
applications, like iXen and OnlineBoutique. HFF and BKM strategies have the lower
execution times and in most cases the former has lower execution time than the latter.
This is because BKM algorithm utilizes the Heuristic Packing to place the partitions into
the available hosts and thus its time complexity slightly increases. However, for the iXen
application BKM has lower execution time and this can be due to the partitioning process

72 Diploma Thesis

4.5 Results

of the application’s services.
It must be noted that the low rates of execution time is due to the fact that the appli-

cations are relatively small in number of microservices and communication edges between
them. As the application services increase in size we expect an increase in the execution
time of each placement strategy, mainly for the BP and KP algorithms. However, the fact
that the partitioning algorithms rely on random methods to calculate each application’s
partitions will still have a better performance in time complexity than other algorithmic
methods.

4.5.3 Number of Hosts

The first factor to determine the total cost of the cluster is the variation in the number
of Hosts needed to run the application in the GCP cluster. The initial number of hosts
is selected to 4 Nodes and in the following figures we present the results for each appli-
cation and affinity method. In Figure 4.9, we display the results for the Online Boutique
application for both performance measures and for all the proposed strategies.

Figure 4.9. Number of Hosts used for OnlineBoutique

Below, in Figure 4.10, we present the results for the Online Boutique application un-
der the additional Stressing from the Apache JMeter service as described in the previous
sections.

Finally, in Figure 4.11, we display the respective results for the iXen application for
the utilized performance measures and placement strategies.

As displayed above, for both applications and performance metrics and for all the
service placement strategies, we can observe a significant reduction on the utilized VMs
needed to host each application. For OnlineBoutique application, we can observe that
almost all placement strategies reduce the number of utilized hosts by 25%, while BKM
strategy reduces the number of hosts for both methods of Stressing by 50%. For iXen
application, HFF resulted in utilizing 2 VMs, while most of the other service placement
strategies resulted in 3 VMs.

Diploma Thesis 73

Chapter 4. Experimental Results

Figure 4.10. Number of Hosts used for OnlineBoutique with Stressing

Figure 4.11. Number of Hosts used for iXen

We expected a reduction in the number of hosts, as have already mentioned, because
each application requires only 2 VMs to operate successfully. The reason behind the
utilization of 3 VMs instead of 2 for the most service placement strategies is different
for the placement and the clustering algorithms. HFF has some restrictions upon the
movement of microservices into other Nodes and therefore initial placement highly affects
the produced results. For BP and KP strategies, algorithms produce partitions, which then
are packed into the available VMs. However, the available VMs host also some Istio and
Kubernetes Services and in conjunction with the random methods that are utilized from
these algorithms result in a sub-optimal result most times. BKM algorithm resides also in
random methods, however the initial placement and the affinity performance metric can
vary the number of VMs, as shown in the iXen results.

74 Diploma Thesis

4.5 Results

4.5.4 Egress Traffic

Requested Bytes

The next case we examine is whether the traffic optimization is achieved by each place-
ment strategy and specifically the reduction in the requested bytes from services belonging
to different hosts. The goal is to reduce this amount from the initial’s placement egress
traffic rates. GCP charges only for the Egress traffic and therefore for the requests between
services in different host machines. In Figure 4.12, we display the results for the Online
Boutique application for both performance measures and for all the proposed strategies.

Figure 4.12. Traffic Optimization by the Bytes of Requests for OnlineBoutique

Below, in Figure 4.13, we present the results for the Online Boutique application un-
der the additional Stressing from the Apache JMeter service as described in the previous
sections.

Finally, in Figure 4.14, we display the respective results for the iXen application for
the utilized performance measures and placement strategies.

Diploma Thesis 75

Chapter 4. Experimental Results

Figure 4.13. Traffic Optimization by the Bytes of Requests for OnlineBoutique with
Stressing

Figure 4.14. Traffic Optimization by the Bytes of Requests for iXen

Monthly Variation

Though traffic optimization shows significant reduction in the size of the Egress re-
quested bytes between the cluster’s Nodes, we present another case parameter, which is
the monthly Egress Variation in GB for the proposed placement strategies. This measure-
ment is used to further comprehend the reduction in the Egress Traffic and to calculate
the monthly cost, which is displayed in the next section. In Figure 4.15, we display the
results for the Online Boutique application for both performance measures and for all the
proposed strategies.

Below, in Figure 4.16, we present the results for the Online Boutique application un-
der the additional Stressing from the Apache JMeter service as described in the previous

76 Diploma Thesis

4.5 Results

Figure 4.15. Egress Variation per Month for OnlineBoutique

sections.

Figure 4.16. Egress Variation per Month for OnlineBoutique with Stressing

Finally, in Figure 4.17, we display the respective results for the iXen application for
the utilized performance measures and placement strategies.

By examining the results on the Egress variation and the service requested bytes after
each placement strategy, we can conclude that there is a major reduction in the traffic
requested bytes and thus the monthly Egress variation after the implementation of the
proposed service placement strategies. For both applications and performance measures,
we can observe reduction greater than 50% in the egress traffic communication between
the application’s microservices.

For OnlineBoutique application, HFF is the only placement strategy with stable re-
duction rate in the traffic bytes. The other partitioning strategies perform almost equal

Diploma Thesis 77

Chapter 4. Experimental Results

Figure 4.17. Egress Variation per Month for iXen

results and in every case they reduce the traffic bytes, although in some cases the rates
of reduction varies. This is due to the fact that for every execution of each placement
strategy, a new partition plan is proposed. This means that the final service placement
may vary and thus the traffic requested bytes behave accordingly. All in all, the total
traffic is reduced with the HFF producing the best results.

For iXen application, HFF and BP produce almost the same results for both perfor-
mance measures, however we can observer a variation between the results of the KP and
BKM placement strategy. In the case of the WBA affinity, the reduction in traffic requested
bytes is greater than the reduction made with the RPS affinity. This is down to the perfor-
mance measures and specifically the more reliable affinity metric, which is WBA affinity
and can produce more accurate performance measures between each application’s services.
In this way the placement strategies can produce a more optimal placement strategy with
the aid of the Heuristic Packing algorithm. Moreover, HFF has the higher reduction rate
than the other strategies.

4.5.5 Total Monetary Cost of Cluster

Finally, we present the total cost of each cluster according to the parameters mentioned
previously. Cost function resides mainly on the number of VMs and the Egress traffic bytes.
In the previous results sections, we presented the reduction of these two parameters, so
we expect the total cost to be also reduced. For better presentation of the results, we
calculate the total cost of each cluster for a monthly period. Given the prices from the GCP
documentation and the optimization on these parameters, we produce the below graphs
for the total cost of each cluster. In Figure 4.18, we display the results for the Online
Boutique application for both performance measures and for all the proposed strategies.

Below, in Figure 4.19, we present the results for the Online Boutique application un-
der the additional Stressing from the Apache JMeter service as described in the previous
sections.

78 Diploma Thesis

4.5 Results

Figure 4.18. Cluster cost per Month for OnlineBoutique

Figure 4.19. Cluster cost per Month for OnlineBoutique with Stressing

Finally, in Figure 4.20, we display the respective results for the iXen application for
the utilized performance measures and placement strategies.

As cost optimization is the main goal of this Thesis, we can admit that we achieved a
significant cost reduction for the Kubernetes cluster costs in comparison with the default
Kubernetes Scheduler strategy.

The cost reduction in most cases is up to 25% and in some cases over 50%. This relies
mostly on the reduction on the utilized Nodes needed to run the application, which means
that less VMs, and therefore less CPU and RAM allocation, would result in a larger cost
reduction. Traffic optimization can reduce the cost of the cluster too, however for these
applications its significance is relatively low as the cost for the monthly Egress traffic is
lower than 1 USD, when the total cost of the cluster rise up to 125 and 190 USD according
to the number of hosts required for each cluster and placement strategy. For an application

Diploma Thesis 79

Chapter 4. Experimental Results

Figure 4.20. Cluster cost per Month for iXen

greater in scale with higher traffic communication rates in size of exchanged requests, we
expect the Egress traffic to have greater impact on the cost function.

It must be referred that the time of the cluster’s lifespan was different for conducting the
experiments and thus some modifications were made to find the appropriate monthly cost.
Specifically, OnlineBoutique application was running for about 3 hours after executing the
proposed placement strategies. After the successful execution of each strategy, we applied
the additional Stressing from the Apache JMeter service and repeated the same process.
We multiplied, accordingly, the respective parameters to match the monthly time range
and produced the monthly results, expecting the same behavior throughout the monthly
time range. For the iXen application, the time of lifespan was about 15 minutes before
executing the placement strategies and thus the monthly cost was modified accordingly.

4.6 Discussion

In this section we will evaluate the utilized applications, the performance metrics and
the service placement strategies implemented in this Thesis and we will compare them
between them. This evaluation will further support the justification of the produced results
and the resulted placement solutions.

Comparison of the Performance Metrics

For the purposes of this Thesis we utilized two performance metrics between each ap-
plication’s microservices, the Requests per Second and the Weighted Bidirectional Affinity.
The former can be easily collected from the Kiali graph, while the latter must be calculated
according to the size and the number of the exchanged messages and thus it is considered as
a more accurate metric. The important variations between the two performance measures
can be observed when two services contain a high RPS affinity, but the size and number
of messages is relatively low. This can lead to different application partitions and service

80 Diploma Thesis

4.6 Discussion

placement between the two performance measures, as the significance of each affinity varies
from one affinity metric to another. For the most cases, we can conclude that WBA affin-
ity has better overall performance over the RPS affinity, especially in traffic optimization.
However, in some cases, RPS affinity might produce better results, but this can be due
to various factors, as the initial service placement or the random methods selected for the
clustering algorithms. We believe that for larger applications, WBA affinity will have even
greater performance rates than RPS affinity.

Comparison of the Applications

Primarily, a comparison between the utilized applications must be made to better
comprehend the produced results. Both applications are microservice-based applications
running on a Kubernetes cluster in the same Region and Zone and with the same cluster
resource allocation. In both applications we execute the placement strategies with the same
parameters and restrictions. The number of services and affinity edges are relatively the
same in size, so we can easily compare the placement strategies and come to a conclusion
about their overall performance. Additionally, both applications can be hosted totally in
2 VMs, however we allocate 4 Nodes to benchmark the placement strategies.

However, iXen and OnlineBoutique have different Pod resource requirements, as iXen
requires for every service nearly 2% for CPU and nearly 4% for RAM of the allocated space
of each Node. On the other hand, Pod resource requests for the OnlineBoutique application
is predefined and varies from 5%-15% for CPU and 1%-4% for RAM of the allocated space
of one Node. Although the number of microservices is slightly lower for OnlineBoutique,
their CPU requests are much higher than the CPU requests in iXen application. This
difference can vary the service placement of each placement strategy and produce different
results for each application.

Additionally, iXen application requires stressing to produce the application’s graph
and the performance measures, so we examine only the case for the distributed Stressing
applied throughout the application’s services. On the contrary, OnlineBoutique contains a
microservice to produce traffic among the services, by applying random generated requests,
and an additional stressing method with higher workload testing is applied through Apache
JMeter, so we can observe the performance of the application under different types of loads.
This can lead to better decision for the best service placement strategy.

Last but not least, these applications are different in the way they serve the application
requests from user. In iXen application, we can access the various services directly to get
the required information and data, while in OnlineBoutique every request is served through
the frontend service. So, frontend service in OnlineBoutique has great impact to the service
placement strategy and creates high performance measures with other services, while iXen
has a more distributed system of communication among the microservices.

Comparison of the Placement Strategies

To conclude, considering all the factors and the produced results, we can admit that
for small scale applications with small size of services and little affinity edges HFF is in

Diploma Thesis 81

Chapter 4. Experimental Results

overall the better service placement strategy among the other options. BKM strategy
has also a remarkable performance, as it decreases the number of hosts at the completely
essential number, in most cases, and thus reduces the cost of the cluster, however it does
not perform so well for the traffic optimization processes and might not perform the same
for larger applications in scale. Both applications have significant low execution time and
can produce sub-optimal results most times.

BP and KP reduce the total cost of the cluster and, in some cases, lead to traffic opti-
mization, however their results are different from one execution to another and sometimes
their service placement can be non-optimal. As the main goal of this Thesis is to reduce
the overall cluster cost, we would recommend to exchange the random methods in these
partitioning algorithms over the accuracy and stability that can be guaranteed from other
clustering methods and algorithms.

82 Diploma Thesis

Chapter 5

Conclusions and Future Work

In this last chapter we will briefly summarize the content and the results of this Thesis
and propose future work and optimization strategies that can be applied to further improve
the service placement problem and reduce the infrastructure’s cost.

Our goal was to reduce the total running costs of a Kubernetes cluster in a Cloud
environment by solving the SP problem. In order to reduce the overall cost, we had to
reduce the number of VMs used to facilitate the implemented applications and the Egress
Traffic between these VMs. To face the SP problem, we utilized graph-based partitioning
algorithms and heuristic methods. We utilized two benchmark applications, the iXen
and the Google’s OnlineBoutique eShop to implement the proposed service placement
strategies. We configured a Service Mesh, Istio, into these applications so as to monitor
the Pods and Nodes resources and to calculate the performance measures needed to apply
the placement strategies. By comparing the default placement strategy of Kubernetes
Scheduler with the implemented strategies, we have reached to the assumption that run-
time costs, in terms of money paid from users, can be reduced up to 25%-50%. The
proposed strategies managed to reduce the size of the cluster and the Egress Traffic of
VMs significantly by producing a placement solution within seconds for these small-scale
applications.

Addressing the SP problem can be a hard task and the solution can vary according to
the optimized application’s parameters. For this Thesis, it is vital to trade-off the time
needed to construct and apply a placement solution in order to locate an optimal place-
ment solution and, eventually, reduce the cluster’s run-time costs. By attempting to solve
the SP problem from a different aspect, like reducing the response times between the ap-
plications’ microservices, would require a divergent placement strategy from the proposed
ones, like prioritizing the network latency between the communicating microservices. Re-
ducing latency in microservices communication is based mainly on the infrastructure and
is a crucial factor of running applications especially in Fog and Edge Cloud environments.
Size of Kubernetes Nodes, their resource allocation and the Cloud environment can vary
the placement solution of the SP problem. For our case, a Homogeneous Cloud environ-
ment, Node and Pod resources highly affected the outcome of the implemented placement
strategies and their selection was made to fit the Thesis goal requirements.

An important comment must be made for the optimization strategies that are provided
from the Kubernetes Scheduler. The Kubernetes Scheduler can locate a sub-optimal or

Diploma Thesis 83

Chapter 5. Conclusions and Future Work

even an optimal solution by defining the Pod and Node Affinities and Anti-Affinities. How-
ever, defining the microservices affinities would require a prior knowledge of the application
and their weights on the microservices communication edges of the application’s graph. For
our experimental process we did not contain the optimization methods of the Kubernetes
Scheduler to test the efficiency of the placement strategies to locate an optimized place-
ment solution in a completely unknown application or in an application, where we do not
know the application’s graph weights. This also applies in large scale applications, where
the assigning process of Node and Pod Affinities and Anti-Affinities is considered a hard
task.

Having achieved the monetary cost optimization goal in a Kubernetes cluster using
microservice-based placement strategies, we propose further improvements that can be
examined and applied in a Kubernetes cluster to test its performance on different environ-
ments and applications.

First and foremost, we suggest the examination of various clustering algorithms that are
not relied on random methods to increase the efficacy of the cost optimization strategies.
A comparison between the random partitioning algorithms and the clustering algorithms
for graph based applications should be made to verify the significance of the time execution
parameter of these random tactics.

Secondly, as we implement our cluster infrastructure in a Homogeneous environment,
we utilize VMs with the same resource requirements in the desired size of CPU and RAM.
However, in real-life applications, there might not always be the same volumes in VMs
in size and in resource allocation. We propose an implementation of these strategies in
Heterogeneous environment, so as to validate the consistency of the results in terms of cost
reduction. In conjunction with an Heterogeneous environment, we propose the execution of
these placement strategies in a Multi-Cloud environment, where Egress traffic is a crucial
factor and can significantly modify the cost of the Kubernetes cluster according to the fees
of each Cloud provider.

Taking into consideration the size of each application used in this Thesis, we suggest
to test the performance also in more realistic benchmarks with large number of services or
large number of replicas for each Pod. By increasing the scale of the application utilized
in the Kubernetes cluster, we can better observe the behavior of the placement algorithms
and their performance under heavy load in a much more dense application graph.

Furthermore, we suggest to utilize and process the affinity hubs that are created among
the microservices, when a specific request is occurred. In this Thesis, we utilized affinity
tuples between microservices with a communication edge and we did not take into consid-
eration the complete traces of the requests. By implementing service placement strategies
that use the affinity hubs, we strongly believe that the placement’s performance will in-
crease and the clustering algorithms will further produce more accurate partitions. Istio’s
tracing service, like Jaeger and Zipkin, can be configured into the Kubernetes cluster to
monitor the tracing of a request among the application’s microservices.

To achieve the cost optimization in an application on a Cloud infrastructure, we must
execute the placement strategies and apply the produced placement result in the exist-
ing Kubernetes cluster. There is no automatic way to apply the changes in the service

84 Diploma Thesis

placement and update the cluster status, so as to optimize the traffic and resource allo-
cation. We propose the implementation of a dynamic Kubernetes placement strategy so
as to update automatically the Kubernetes Nodes through the cluster YAML files and the
Kubernetes API and re-arrange efficiently the Pods in the existing cluster.

Finally, during the experimentation part of this Thesis, we examined and attempted
to optimize the latencies between services with a communication edge. We expected that
a relocation of two services in the same host machine with high affinity metric rate will
reduce the latency between these two services. However, in the real-time experiments, we
discovered that not only the latency is not reduced, but in most cases it would increase
significantly. A service placement strategy taking into consideration both factors of la-
tency and service affinities or only only the latency factor should be implemented to test
the performance of the proposed placement strategies, especially in Fog and Edge Cloud
environments.

Diploma Thesis 85

Appendices

Diploma Thesis 87

A

Cluster Data Collection

In this chapter, we will present how the data are collected from the Metric tools and
agents in order to be processed by the placement strategies. After the initialization of
the Kubernetes cluster, the implementation of each application into the cluster and the
configuration of Istio, the Node and Pod data must be collected in order to be processed
and produce the placement solutions. Istio enables the collection of the vital data and the
visualization of them so as to be better comprehended and utilized. The source code of
application is implemented in PyCharm and Jupyter Notebook with Python programming
language. All placement and clustering algorithms, as well as the module for collecting
the required Node and Pod data, are implemented in Python Classes to achieve better
organization of source code, high extensibility on class methods and enable the inheritance,
which is an attribute of Object-Oriented Programming. Each of these Classes can be
executed independently by every Python program given the required inputs to the suitable
format and the required libraries. In the next sections, the way of collecting and visualizing
the cluster data from the Istio services will be presented.

A.1 Prometheus Data

The main source of the data collection is from Prometheus service, which applies
PromQL queries to collect the cluster data and communicates with other Istio services to
provide them with these data. Prometheus provides essential information about the cluster
status, the Node and Pod resource requirements and the collected data from the config-
ured metric tools and agents, like the Node Exporters. Prometheus executes the PromQL
queries and receives the respective results in JSON format through the Prometheus API,
which can be also displayed visually in Prometheus UI in a table or in a graph repre-
sentation. To assemble all the important information, verify the proper configuration of
the cluster and better comprehend the collected data, we executed PromQL queries in
the Prometheus UI, as depicted in Image A.1, which displays an example of an executed
PromQL query about the requested CPU of the Kubernetes cluster’s Nodes.

For accessing the Prometheus UI, we had to convert the Service type of Prometheus
into NodePort enabling a TCP communication port in the range of 30000 and 32767 in the
Cloud provider. To request data (GET method) from the Prometheus API, a valid url of

Diploma Thesis 89

A. Cluster Data Collection

Image A.1: PromQL query in Prometheus UI

the API in the configured network port and a valid query must be given as input. In the
next tables, we will present the queries executed to collect the Prometheus data. In Table
A.1 and in Table A.2 the queries for collecting the Node and Pod resources respectively are
displayed. Each executed request returns a JSON text file as a result, which is processed
to store only the essential information about the Node and Pod resource, like the size of
CPU and RAM allocation.

Table A.1. Node PromQL Queries

Description Query

Node Requested CPU sum(kube_pod_container_resource_requests_cpu_cores)
by (node)

Node Requested RAM sum(kube_pod_container_resource_requests_memory_bytes)
by (node)

Node CPU Allocation kube_node_status_allocatable{resource=’cpu’}

Node RAM Allocation kube_node_status_allocatable{resource=’memory’}

After extracting the essential data from the PromQL queries, we store them in Python
dictionaries and process them to calculate the performance measures and finally to be
processed from each proposed placement strategy to produce a placement solution.

90 Diploma Thesis

A.2 Kiali Graph

Table A.2. Pod PromQL Queries

Description Query

Pod Requested CPU sum(kube_pod_container_resource_requests_cpu_cores)
by (pod)

Pod Requested RAM sum(kube_pod_container_resource_requests_memory_bytes)
by (pod)

Pod size of Requested Messages istio_request_bytes_sum{response_code = ’200’,
in Bytes connection_security_policy = ’mutual_tls’,

source_app != ’unknown’, destination_app != ’unknown’}

Pod size of Responded Messages istio_response_bytes_sum{response_code = ’200’,
in Bytes connection_security_policy = ’mutual_tls’,

source_app != ’unknown’, destination_app != ’unknown’}

Pod size of Requested Messages istio_request_bytes_count{response_code = ’200’,
connection_security_policy = ’mutual_tls’,

source_app != ’unknown’, destination_app != ’unknown’}

Pod size of Responded Messages istio_response_bytes_count{response_code = ’200’,
connection_security_policy = ’mutual_tls’,

source_app != ’unknown’, destination_app != ’unknown’}

A.2 Kiali Graph

Kiali service communicates internally with Prometheus to acquire all the collected
data stored in it and produce the application graph for each application. The Kiali graph
displays the application workloads and services, the protocol of communication, the traffic
rates between the application’s microservices and their affinities and finally the health
status of each respective component. In Table A.3, we present the associated the symbology
of the Kiali graph.

Table A.3. Kiali Graph Symbology

Symbol/Color Explanation

Grey Rectangle Kubernetes Workload (Pod) for a Microservice

Grey Triangle Kubernetes Service for a Microservice

Green Edge HTTP/gRPC Communication

Blue Edge TCP Communication

Purple Arrow Symbol Module applying HTTP requests

Upon each edge, the traffic rates of the communication between two services is depicted
and it corresponds to the mean value of network communication for the selected time
range of the graph. The traffic rates, which are displayed upon each edge, are used to
calculate the RPS performance measure. Image A.2 displays the produced Kiali graph
for the OnlineBoutique eShop application for a given time range. The produced image is
associated with a unique timestamp of capturing the graph.

In Image A.3, the Kiali graph of the iXen application is displayed.

Diploma Thesis 91

A. Cluster Data Collection

Image A.2: Kiali Graph for OnlineBoutique eShop application

Image A.3: Kiali Graph for iXen application

We access the Kiali API and request each application’s graph in a JSON file for a
duration of 30 minutes. Kiali’s Service is also converted to NodePort Service type and
connected to an available port in GCP to access the API and collect the graphs. The API
GET command requires the URL of the Kiali API, the headers, if exist, and the type of
Data (duration, namespace, graphType) that we require to collect. We process the JSON
file to collect the traffic rates from each communication edge and we store them in Python
dictionaries so as to be utilized from the placement strategies.

92 Diploma Thesis

A.3 Grafana Visualization

A.3 Grafana Visualization

Another service that gathers data from Prometheus is Grafana. Grafana is a visual-
ization service for PromQL queries and users can insert the desired PromQL queries and
produce visually the application graphs about resource utilization for different timestamps.
Users on Grafana can create their own visualization monitor system or import some prede-
fined templates available on the Grafana website. In this Thesis, template with ID 11074
will be imported, which is a template to fetch the data from Node Exporters that are in-
stalled and initialized on each Node of the cluster. Image A.4 displays the acquired Node
data of the Cluster for the last 15 minutes until the time of screen capture for all the availed
Nodes in the Kubernetes cluster of the OnlineBoutique eShop application. Grafana’s Ser-
vice is also configured properly in GCP to access the Grafana UI from a specific network
port.

Image A.4: Grafana Node Data

Image A.5 displays the Node resources graphs about CPU, RAM, Storage and other
cluster’s I/O operations.

By importing this template on the Grafana UI, we can easily acquire the PromQL
queries for each visualized graph depicted on the above images, store them and use these
queries into the source code of the Thesis executable program to collect the Node data
about CPU and RAM usage, allocated and available space, which will be processed by the
placement strategies. Another benefit of the Nodes’ visualization is that we can monitor
the behavior and health of the application’s Nodes under a Stress testing.

Diploma Thesis 93

A. Cluster Data Collection

Image A.5: Grafana Resource Graphs and I/O Operations

94 Diploma Thesis

Bibliography

[1] Microservices. https://microservices.io. Date inspected: 13-09-2021.

[2] Kubernetes Components. https://kubernetes.io/docs/concepts/overview/

components/. Date inspected: 27-08-2021.

[3] Kubernetes Scheduling Process. https://kubernetes.io/docs/concepts/

scheduling-eviction/scheduling-framework/. Date inspected: 16-11-2021.

[4] Istio Service Mesh. https://istio.io/latest/docs/. Date inspected: 12-08-2021.

[5] Kiali. https://kiali.io/documentation/latest/features/#_overview. Date in-
spected: 12-08-2021.

[6] Google OnlineBoutique eShop Application. https://github.com/

GoogleCloudPlatform/microservices-demo. Date inspected: 10-08-2021.

[7] Ameni Hedhli, HaithemMezni. A Survey of Service Placement in Cloud Environments.
Journal of Grid Computing, 2021.

[8] Farah Ait Salaht, Frédéric Desprez, Adrien Lebre. An overview of service placement
problem in Fog and Edge Computing. ACM Computing Surveys, Association for Com-
puting Machinery, 2020.

[9] Kuo Chan Huang, Bo Jun Shen. Service deployment strategies for efficient execution of
composite SaaS applications on cloud platform. ELSEVIER, The Journal of Systems
and Software, 2015.

[10] Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, H. An-
thony Chan. Multi-objective scheduling of micro-services for optimal service function
chains. ResearchGate, 2017.

[11] Vajiheh Farhadi, Fidan Mehmeti, Ting He, Tom La Porta, Hana Khamfroush,
Shiqiang Wang, Kevin S Chan, Konstantinos Poularakis. Service Placement and Re-
quest Scheduling for Data-Intensive Applications in Edge Clouds. IEEE/ACM Trans-
actions on Networking, 2020.

[12] Hemant Kumar Apat, Bibhudatta Sahoo, Prasenjit Maiti. Service Placement in Fog
Computing Environmen. 2018 International Conference on Information Technology
(ICIT), 2018.

Diploma Thesis 95

https://microservices.io
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://istio.io/latest/docs/
https://kiali.io/documentation/latest/features/#_overview
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

BIBLIOGRAPHY

[13] Samodha Pallewatta, Vassilis Kostakos, Rajkumar Buyya. Microservices-based IoT
Application Placement within Heterogeneous and Resource Constrained Fog Comput-
ing Environments. IEEE/ACM 12th International Conference on Utility and Cloud
Computing (UCC ’19), December 2–5, 2019, Auckland, New Zealand. ACM, New
York, NY, USA, 2019.

[14] Wang Z., Liu H., Han L., Huang L., Wang K. Research and Implementation of
Scheduling Strategy in Kubernetes for Computer Science Laboratory in Universities.
MDPI, Journal Information, 2021.

[15] Adalberto R. Sampaio Jr., Julia Rubin, Ivan Beschastnikh, Nelson S. Rosa. Improv-
ing microservice-based applications with runtime placement adaptation. Journal of
Internet Services and Applications, 2019.

[16] Yang Hu, Ceesde Laat, Zhiming Zhao. Optimizing Service Placement for Microservice
Architecture in Clouds. MDPI, 2019.

[17] Bin Packing Problem. https://en.wikipedia.org/wiki/Bin_packing_problem.
Date inspected: 28-08-2021.

[18] Kumaraswamy S., Mydhili K. Nair. Bin packing algorithms for virtual machine place-
ment in cloud computing: a review. ResearchGate, 2019.

[19] Minimum K-Cut. https://en.wikipedia.org/wiki/Minimum_k-cut. Date in-
spected: 28-08-2021.

[20] Karger’s Algorithm. https://en.wikipedia.org/wiki/Karger%27s_algorithm.
Date inspected: 28-08-2021.

[21] Service Affinity. https://www.ibm.com/docs/tr/pcfs/1.1?topic=services-

service-affinity. Date inspected: 13-09-2021.

[22] Shreya Banerjee, Ankit Choudhary, Somnath Pal. Empirical Evaluation of K-Means,
Bisecting K- Means, Fuzzy C-Means and Genetic K-Means Clustering Algorithms.
ResearchGate, 2015.

[23] Jian Di, Xinyue Gou. Bisecting K-means Algorithm Based on K-valued Self-
determining and Clustering Center Optimization. Journal of Computers, 2017.

[24] Kubernetes Introduction. https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/. Date inspected: 27-08-2021.

[25] Kubernetes Scheduler. https://kubernetes.io/docs/concepts/scheduling-

eviction/kube-scheduler/. Date inspected: 17-08-2021.

[26] Pod and Node Affinities/Anti-Affinities. https://kubernetes.io/docs/concepts/

scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-

affinity. Date inspected: 16-11-2021.

96 Diploma Thesis

https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Minimum_k-cut
https://en.wikipedia.org/wiki/Karger%27s_algorithm
https://www.ibm.com/docs/tr/pcfs/1.1?topic=services-service-affinity
https://www.ibm.com/docs/tr/pcfs/1.1?topic=services-service-affinity
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

BIBLIOGRAPHY

[27] Service Mesh explanation. https://www.redhat.com/en/topics/microservices/

what-is-a-service-mesh. Date inspected: 08-11-2021.

[28] Prometheus. https://prometheus.io/docs/introduction/overview/. Date in-
spected: 13-08-2021.

[29] Grafana. https://grafana.com/grafana/. Date inspected: 13-08-2021.

[30] Apache JMeter. https://jmeter.apache.org. Date inspected: 23-09-2021.

[31] Request per Second (RPS). https://en.wikipedia.org/wiki/Queries_per_second.
Date inspected: 10-11-2021.

[32] Graph Construction in Python. https://www.geeksforgeeks.org/generate-graph-
using-dictionary-python. Date inspected: 20-09-2021.

[33] Xenofon Koundourakis and Euripides G.M. Petrakis. iXen: context-driven service
oriented architecture for the internet of things in the cloud. Science Direct, 2020.

[34] Koundourakis Xenofon. Design and Implementation of service oriented architecture
for deploying IoT applications in the cloud. Διπλωματική εργασία, Electronics and
Computer Engineering, Technical University of Crete, 2019.

[35] gRPC Protocol. https://grpc.io/docs/what-is-grpc/introduction/. Date in-
spected: 10-08-2021.

[36] GCP Pricing. https://cloud.google.com/compute/all-pricing. Date inspected:
01-10-2021.

Diploma Thesis 97

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://prometheus.io/docs/introduction/overview/
https://grafana.com/grafana/
https://jmeter.apache.org
https://en.wikipedia.org/wiki/Queries_per_second
https://www.geeksforgeeks.org/generate-graph-using-dictionary-python
https://www.geeksforgeeks.org/generate-graph-using-dictionary-python
https://grpc.io/docs/what-is-grpc/introduction/
https://cloud.google.com/compute/all-pricing

List of Abbreviations

SP Service Placement
VM Virtual Machine
OS Operating System
GCP Google Cloud Platform
GKE Google Kubernetes Engine
TLS Transport Layer Security
TCP Transmission Control Protocol
HTTP HyperText Transfer Protocol
API Application Programming Interface
IaaS Infrastructure as a Service
PaaS Platform as a Service
UI User Interface
CPU Central Processing Unit
RAM Random Access Memory
URL Uniform Resource Locator
JSON JavaScript Object Notation
DAG Directed Acyclic Graph
RPS Requests per Second
WBA Weighted Bidirectional Affinity
BP Binary Partition
KP K-Partition
BKM Bisecting K-Means
HP Heuristic Packing
SOA Service Oriented Architecture

Diploma Thesis 99

	Abstract
	Περίληψη
	Acknowledgements
	Preface
	Introduction
	Problem Definition
	Scope of Thesis
	Chapters Structure

	Background and Related Work
	Related Work on Service Placement
	Related Work on Graph Partitioning
	Theoretical Background of Algorithms
	Service Affinities
	Related Algorithms

	Infrastructure and Tools
	Microservices
	Kubernetes
	Service Mesh and Istio
	Metric Tools and Agents
	Benchmark Stressing Tool

	System Design and Benchmarks
	System Architecture
	Microservices Performance Metrics
	Requests per Second (RPS)
	Weighted Bidirectional Affinity (WBA)

	Benchmark Algorithms
	Clustering Algorithms
	Adaptive Placement Algorithms

	Benchmark Applications
	iXen
	Google's OnlineBoutique eShop

	Experimental Results
	Service Placement Strategies
	Infrastructure
	Application Stress Testing
	iXen Stressing
	OnlineBoutique Stressing

	Cost Function
	Results
	K-value Selection for BKM Algorithm
	Execution Time of each Placement Strategy
	Number of Hosts
	Egress Traffic
	Total Monetary Cost of Cluster

	Discussion

	Conclusions and Future Work
	Appendices
	Cluster Data Collection
	Prometheus Data
	Kiali Graph
	Grafana Visualization

	Bibliography
	List of Abbreviations

