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128, s = 25, ŝ = 32 and ‖e‖2 = 1. . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Normalized mean square error versus number of measurements with M =
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Abstract

One of the technologies that makes 5G different from previous generations of wireless
communications systems is Massive MIMO. When we refer to Massive MIMO, we mean
that there are many antennas (of the order of hundreds) at the Base Station.

Major benefits of Massive MIMO systems are the increased energy efficiency, through
directional beamforming, and the increased channel capacity. In order to attain these
advantages, it is crucial to have channel knowledge at the transmitter, which, in this
case, requires large training overhead, due to the large number of channel coefficients.

In this Diploma thesis, we exploit the channel sparsity in the angle domain and
study Massive MIMO channel estimation methods with low training overhead. First, we
present an approach where channel estimation is done by the minimization of a weighted
`1 norm, with weights equal to 0 and 1, using prior knowledge about the positions of the
nonzero elements in the angular domain. Next, we propose an alternative, where we use
different weights. We simulate these methods and we test their behavior in many case
studies.
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Chapter 1

Introduction

1.1 Motivation

Massive MIMO is a technology which offers significant benefits in 5G, for example,
improved energy and spectral efficiency. It turns out that channel knowledge at the
Base Station is very important for achieving these benefits [1], [2]. High dimensionality
of the channel vectors, owing to the large number of transmit antennas, is a challenge
because it leads to large training overhead. However, Massive MIMO channels are sparse
in the angular domain [2]. In this thesis, we present and evaluate a 0-1 weighted `1
minimization method which exploits prior knowledge [3]. We extend this approach by
introducing various weighted `1 minimizations.

1.2 Thesis Outline

This thesis is organised as follows. In Chapter 2, we present simple models of physical
wireless channels. We describe MIMO fading channels and we introduce the Angular
Domain Representation of MIMO channels. Further, we present Massive MIMO and the
sparsity of MIMO channels in the Angular Domain.

Chapter 3 is a description of the problem which we encounter in this thesis. We
provide definitions about the weighted `1 minimization method using partial support
information and we introduce our proposed extension of this method.

In Chapter 4, we present numerical results concerning the performance of the meth-
ods which we referred to.

Chapter 5 presents the conclusions of this thesis and possible future work.
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Chapter 2

Wireless Channel Models

2.1 Physical modeling of the MIMO channel

In this section, we study uniform linear antenna arrays (ULAs). Moreover, we assume
far field and plane wave propagation.

2.1.1 Line-of-Sight SIMO channel

Let us consider a Single Input Multiple Output (SIMO) channel. In this case, there is
one transmit antenna and nr receive antennas (Figure 2.1) with only direct line-of-sight
paths between the transmit and the receive antennas [4].

The channel between the transmitter and the ith receive antenna has continuous-time
impulse response hi(τ) that is given by:

hi(τ) = aδ(τ − di/c), i = 1, . . . , nr, (2.1)

where a is the attenuation of the path (assuming same a for all antennas), di is the
distance between the transmit antenna and ith receive antenna and c is the speed of
light.

Considering di/c � 1/W , where W is the transmission bandwidth, the single-tap
model can be used. So, the baseband channel gain is given by:

hi = a exp

(
−j2πfcdi

c

)
= a exp

(
−j2πdi

λc

)
, (2.2)

where fc is the carrier frequency and λc is the carrier wavelength.
The channel model is given by:

y = hx+ w, (2.3)

where y is the received signal vector, h = [h1 . . . hnr ]T is the vector of channel gains, x is
the transmitted symbol and w ∼ CN (0, N0Inr) is the noise. The vector h is also called
the spatial signature [4], [5].
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2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

Figure 2.1: Line-of-sight channel with single transmit antenna and multiple receive an-
tennas. The signals from the transmit antenna arrive almost in parallel at the receiving
antennas.

The distance between the transmitter and the receiver is much larger than the size
of the antenna array. Hence, the paths from the transmit antenna to each of the receive
antennas are, to a first-order, parallel and

di ≈ d+ (i− 1)∆rλc cosφ, i = 1, . . . , nr, (2.4)

where d is the distance between the antenna of transmitter and the first receive antenna,
∆r is the receive antenna separation, normalized to the unit of the carrier wavelength,
λc is the carrier wavelength and φ is the angle of incidence of the line of sight onto the
receive antenna array.

10



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

So, the baseband channel gain is given by:

hi = a exp

(
−j2πdi

λc

)
(2.5)

≈ a exp

(
−j2πd+ j2π(i− 1)∆rλc cosφ

λc

)
(2.6)

= a exp

(
−j2πd

λc

)
· exp

(
−j2π(i− 1)∆rλc cosφ

λc

)
(2.7)

= a exp

(
−j2πd

λc

)
· exp (−j2π(i− 1)∆r cosφ) , i = 1, . . . , nr. (2.8)

If Ω := cosφ, then the spatial signature h is given by:

h = a exp

(
−j2πd

λc

)
1

exp (−j2π∆rΩ)
...

exp (−j2π(nr − 1)∆rΩ)

 . (2.9)

The unit spatial signature in the directional cosine Ω is defined as:

er(Ω) :=
1
√
nr


1

exp (−j2π∆rΩ)
...

exp (−j2π(nr − 1)∆rΩ)

 . (2.10)

2.1.2 Line-of-Sight MISO channel

The Multiple Input Single Output (MISO) channel is similar to the SIMO channel, but
there are nt transmit antennas and one receive antenna (Figure 2.2). The channel model
is given by:

y = h∗x + w, (2.11)

where y is the received signal, h∗ is the conjugate-transpose of the vector of channel
gains h, x is the transmitted symbol in vector form and w ∼ CN (0, N0) is the noise [4],
[5].

The vector of channel gains h is given by:

h = a exp

(
j2πd

λc

)
1

exp (−j2π∆tΩ)
...

exp (−j2π(nt − 1)∆tΩ)

 , (2.12)

where Ω := cosφ (φ is angle of departure).
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2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

Figure 2.2: Line-of-sight channel with multiple transmit antennas and single receive
antenna.

If the distance between the transmitter and the receiver is much larger than the size
of the antenna array then the paths from the transmit antennas to the receive antenna
are, to a first-order, parallel and

di ≈ d− (i− 1)∆tλc cosφ, i = 1, . . . , nt, (2.13)

where d is the distance between the first transmit antenna and the receive antenna, ∆t

is the normalized transmit antenna separation, normalized to the unit of the carrier
wavelength λc.

The channel gain is

h∗i = a exp

(
−j2πdi

λc

)
(2.14)

≈ a exp

(
−j2πd− j2π(i− 1)∆tλc cosφ

λc

)
(2.15)

= a exp

(
−j2πd

λc

)
· exp

(
j2π(i− 1)∆tλc cosφ

λc

)
(2.16)

= a exp

(
−j2πd

λc

)
· exp (j2π(i− 1)∆t cosφ) , i = 1, . . . , nt. (2.17)
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2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

The unit spatial signature in the transmit direction of Ω is defined as:

et(Ω) :=
1
√
nt


1

exp (−j2π∆tΩ)
...

exp (−j2π(nt − 1)∆tΩ)

 . (2.18)

2.1.3 Antenna arrays with only a line-of-sight (MIMO channel)

Suppose that there are nt transmit antennas and nr receive antennas constituting two
linear arrays. The channel model is

y = Hx + w, (2.19)

where y is the received vector, H ∈ Cnt×nr is the channel matrix, x is the transmitted
symbol and w ∼ CN (0, N0Inr) is the noise [4], [5].

The channel gain between the kth transmit antenna and the ith receive antenna is

hik = a exp

(
−j2πdik

λc

)
, (2.20)

where a is the attenuation of the path (assuming same a for all antennas pairs) and dik
is the distance between the kth transmit antenna and the ith receive antenna.

The distance between the transmitter and the receiver is much larger than size of the
antenna arrays and therefore the paths from the transmit antenna to each of the receive
antennas are, to a first-order, parallel and

dik ≈ d+ (i− 1)∆rλc cosφr − (k − 1)∆tλc cosφt, (2.21)

where d is the distance between the first antenna of transmitter and the first receive
antenna, ∆r is the normalized receive antenna separation, ∆t is the normalized transmit
antenna separation, φr and φt are the angles of incidence of the line of sight path on the
receive and transmit antenna arrays, respectively and λc is the carrier wavelength.

Let us define Ωt := cosφt and Ωr := cosφr. Then,

hik = a exp

(
−j2πd

λc

)
· exp (−j2π(i− 1)∆rΩr) · exp (j2π(k − 1)∆tΩt) , (2.22)

and

H = a
√
ntnr exp

(
−j2πd

λc

)
er(Ωr)e

∗
t(Ωt). (2.23)

All receive spatial signatures are in the same direction as er(Ωr) (columns of H) so there
is one spatial degree of freedom available [4].
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2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

Figure 2.3: Two geographically separated transmit antennas each with line-of-sight to a
receive antenna array.

2.1.4 Geographically separated transmit antennas

Without loss of generality, suppose only two transmit antennas, each one with line-of-
sight to the receive antenna array. The antenna seperation is considered much larger
than the distance between the transmitter and the receiver.

The spatial signature of the kth transmit antenna is

hk = ak
√
nr exp

(
−j2πd1k

λc

)
er(Ωrk), k = 1, 2 , (2.24)

where ak is the attenuation along the line-of-sight path of the kth transmitter antenna,
d1k is the distance between the kth antenna of transmitter and the first receive antenna,
er(·) is the unit spatial signature in the directional cosine and Ωrk := cosφrk (φrk is the
angle of incidence) [4]. The channel matrix is given by

H = [h1 h2]. (2.25)

14



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

The spatial signature er(Ω) is a periodic function of Ω with period 1/∆r. So, the columns
of H are linearly independent and not alligned when

Ωr := Ωr2 − Ωr1 6= 0 mod
1

∆r
. (2.26)

Therefore, we have two degrees of freedom and the spatial signatures of the transmit
antennas are resolved. On the other hand, the conditioning of H shows how much
alligned are the spatial signatures. The angle θ between the two spatial signatures is
given by

|cos θ| = |e∗r(Ωr1)er(Ωr2)| . (2.27)

The e∗r(Ωr1)er(Ωr2) depends on the difference Ωr := Ωr2 − Ωr1. So, we define

fr(Ωr) := e∗r(Ωr1)er(Ωr2). (2.28)

Hence,

fr(Ωr) =
1

nr
exp (−jπ(nr − 1)∆rΩr)

sin(πLrΩr)

sin(πLrΩr/nr)
, (2.29)

where Lr := nr∆r is the normalized length of the receive antenna array. The proof is
given in Appendix A.

The fr(Ωr) is periodic with period nr/Lr = 1/∆r. It has a peak at Ωr = 0, fr(0) = 1
and fr(Ωr) = 0 at k/Lr, k = 1, . . . , nr − 1. The main lobe has width 2/Lr, centered
around integer multiples of 1/∆r.

So, the channel matrix is ill-conditioned (spatial signatures are closer aligned) when∣∣∣∣Ωr −
k

∆r

∣∣∣∣� 1

Lr
, k ∈ Z. (2.30)

Since Ωr ∈ [−2, 2],

|Ωr| �
1

Lr
,∆r ≤ 1/2. (2.31)

The parameter 1/Lr may be considered as measure of resolvability in the angular domain.
If |Ωr| � 1/Lr, then the two transmitted signals can not be resolved by the receive
antenna array and there is actually only one degree of freedom. Increasing the number
of receive antennas nr for fixed length Lr of the array, it does not affect the angular
resolvability of the receive antenna array which is limited by the 1/Lr.

The receive beamforming pattern of the vector er(cosφ0) associated with the vector
er(cosφ) is the polar plot

(φ, fr(|cosφ− cosφ0|), (2.32)
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2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

where φ0 is the angle of incidence of a specific path. Optimal detection is achieved by the
projection of the receive signal onto the receive beamforming vector er(cosφ0). Signals
from any different direction φ are attenuated by a factor of

|e∗r(cosφ0)er(cosφ)| = fr(|cosφ− cosφ0|). (2.33)

The beamforming pattern has main lobes around φ0 and around any angle φ for which

cosφ = cosφ0 mod
1

∆r
, (2.34)

and the main lobe has width 2/Lr (beam width). It occurs that larger Lr gives narrower
beam and higher angular resolution (Figures 2.4 and 2.5) [4].

Figure 2.4: Beamforming patterns for different antenna array lengths. (Left) Lr = 4 and
(right) Lr = 8. Antenna separation is fixed at half the carrier wavelength. The larger
the length of the array, the narrower the beam ([4]).

16



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

Figure 2.5: Receive beamforming patterns aimed at 90◦, with antenna array length
Lr = 2 and different numbers of receive antennas nr. Note that the beamforming
pattern is always symmetrical about the 0◦− 180◦ axis, so lobes always appear in pairs.
For nr = 4, 6, 32, the antenna separation ∆r ≤ 1/2, and there is a single main lobe
around 90◦ (together with its mirror image). For nr = 2, ∆r = 1 > 1/2 and there is an
additional pair of main lobes ([4]).

17



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

2.1.5 Geographically separated receive antennas

Figure 2.6: Two geographically separated receive antennas each with line of sight from
a transmit antenna array.

Suppose the same scenario of geographically separated antennas but on the receiver
side.

The channel matrix is

H = [h1 h2]
∗ (2.35)

where

hi = ai
√
nt exp

(
j2πdi1
λc

)
et(Ωti), i = 1, 2 , (2.36)

where ai is the attenuation along the line-of-sight path of the ith receiver antenna, di1
is the distance between the ith antenna of the receiver and the first transmit antenna,
et(·) is the unit spatial signature in the directional cosine and Ωi := cosφti (φti is the
angle of incidence) [4].

18



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

If it holds that

Ωt := Ωt2 − Ωt1 6= 0 mod
1

∆t
, (2.37)

then the channel matrix H has two rows that are linearly independent and we could
have spatial multiplexing with two degrees of freedom. H is well-conditioned when the
angular separation Ωt of the two receive antennas is of the same order or larger than
1/Lt, where Lt := nt∆t is the normalized length of the transmit antenna array.

The transmit beamforming pattern is similar to the receive beamforming pattern.
This represents the transmit power in other directions when the transmitter focuses its
signal along a desired direction.

2.1.6 Line-of-Sight MIMO channel with one reflected path

Figure 2.7: MIMO channel with a direct path and a reflected path.

Next, we consider a line-of-sight MIMO channel with one reflected path. In this case,
there are antenna arrays at both the transmitter and the receiver side. Except from the
line-of-sight path, there is also a path reflected off a wall.

19



2.1. PHYSICAL MODELING OF THE MIMO CHANNEL

Applying the superposition principle, the channel matrix is

H = a1
√
ntnr exp

(
−j2πd1

λc

)
er(Ωr1)e

∗
t(Ωt1)

+ a2
√
ntnr exp

(
−j2πd2

λc

)
er(Ωr2)e

∗
t(Ωt2) (2.38)

where ai is the attenuation of the ith path, di is the distance between the first antenna
of transmitter and the first receive antenna along path i and φri and φti are the angles
of incidence of the path i on the receive and transmit antenna arrays, respectively
(Ωri := cosφri,Ωti := cosφti) [4].

The matrix H is rank 2 if

Ωr2 6= Ωr1 mod
1

∆r
(2.39)

and

Ωt2 6= Ωt1 mod
1

∆t
. (2.40)

H is well-conditioned when the angular separation |Ωt| of the two paths at the transmit
array is of the same order or larger than 1/Lt and the angular separation |Ωr| at the
receive array is of the same order or larger than 1/Lr, where

Ωt = cosφt2 − cosφt1, Lt := nt∆t (2.41)

and

Ωr = cosφr2 − cosφr1, Lr := nr∆r. (2.42)

Let us define

H′′ = [a1
√
ntnr exp

(
−j2πd1

λc

)
er(Ωr1) a2

√
ntnr exp

(
−j2πd2

λc

)
er(Ωr2)], (2.43)

H′ =

[
e∗t(Ωt1)
e∗t(Ωt2)

]
. (2.44)

Then, channel H is the product of geographically separated transmit antennas channel
H′ and geographically separated receive antennas channel H′′

H = H′′H′. (2.45)

If the parameter ΩrLr � 1 or the parameter ΩtLt � 1 specifically, one of two channels
H′ and H′′ is ill-conditioned, then the overall channel matrix is also ill-conditioned. The
MIMO channel with a direct path and a reflected path can be interpreted as a con-
catenation of the nt by 2 geographically separated receive antennas channel and the 2
by nr geographically separated transmit antennas channel. Particularly, there are two
virtual “relays” one at the point A and one at the point B, which are geographically sep-
arated and make it possible to have two degrees of freedom, although both the transmit
antennas and the receive antennas are close together (Figures 2.7 and 2.8 ) [4].

20



2.2. MODELING OF MIMO FADING CHANNELS

Figure 2.8: Channel is viewed as a concatenation of two channels H′ and H′′ with
intermediate (virtual) relays A and B.

2.2 Modeling of MIMO Fading Channels

2.2.1 Basic Approach

Physical models of the MIMO channel in terms of individual multipaths do not offer a
level of abstraction from design perspective. So, one approach is to abstract the physical
model into a higher-level model in terms of spatially resolvable paths [4].

The transmit and receive antenna array lengths, Lt and Lr, define the degree of
resolvability in the angular domain. In particular, paths whose transmit directional
cosines differ by less than 1/Lt and receive directional cosines differ by less than 1/Lr

are not resolvable. Hence, the angular domain is divided at fixed angular spacings
of 1/Lt at the transmitter and at fixed angular spacings of 1/Lr at the receiver, and
represent the channel in terms of these new input and output coordinates. The (k, l)th

channel gain in these angular coordinates is the aggregation of all paths whose transmit
directional cosine is within an angular window of width 1/Lt around l/Lt and whose
receive directional cosine is within an angular window of width 1/Lr around k/Lr.
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2.2. MODELING OF MIMO FADING CHANNELS

Figure 2.9: An illustration of the MIMO channel in the angular domain and the re-
solvable bins. There are a transmitter with 4 antennas (Lt = 2) and a receiver with 4
antennas (Lr = 2). Moreover, the receiver is inside a building. Also, there are a line-
of-sight path (path A) and a reflected path (path B). Due to the limited resolvability
of the antenna arrays, the physical paths are partitioned into resolvable bins of angular
widths 1/Lr by 1/Lt.
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2.2.2 MIMO Multipath Channel

Consider the narrowband MIMO channel [4]

y = Hx + w. (2.46)

If we have an arbitrary number of physical paths between the transmitter and the re-
ceiver, then the channel matrix H is given by

H =
∑
i

abier(Ωri)e
∗
t(Ωti), (2.47)

where

abi = ai
√
ntnr exp

(
−j2πd

(i)

λc

)
. (2.48)

Path i has an attenuation of ai, d
(i) is the distance between transmit antenna 1 and

receive antenna 1 along path i and φri and φti are the angles of incidence of the path i
on the receive and transmit antenna arrays, respectively (Ωri := cosφri, Ωti := cosφti).

2.2.3 Angular Domain Representation of Signals

The received signal has the unit spatial signature er(Ω) in the directional cosine Ω.
Consider,

fr(Ω) := e∗r(0)er(Ω) =
1

nr
exp (−jπ(nr − 1)∆rΩ)

sin(πLrΩ)

sin(πLrΩ/nr)
. (2.49)

Also, for k = 1, . . . , nr − 1, we have

fr(0) = 1, fr

(
k

Lr

)
= 0, fr

(
−k
Lr

)
= fr

(
nr − k
Lr

)
. (2.50)

So, the fixed nr vectors

Sr =

{
er(0), er

(
1

Lr

)
, . . . , er

(
nr − 1

Lr

)}
(2.51)

form an orthonormal basis for the received signal space Cnr . This basis provides the
representation of the received signals in the angular domain.

From the beamforming patterns of the angular basis vectors, we notice that each
basis vector has at least one pair of main lobes of width 2/Lr and small side lobes. The
different basis vectors er(k/Lr)’s have different main lobes. So, the received signal along
any physical direction will have most of its energy along one particular er(k/Lr) vector
and very little along all the others. Therefore, this orthonormal basis provides a simple
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2.2. MODELING OF MIMO FADING CHANNELS

but approximate decomposition of the total received signal into the multipaths received
along the different physical directions with a resolution of 1/Lr.

Similarly, for the transmitted signal, we have that the fixed nt vectors

St =

{
et(0), et

(
1

Lt

)
, . . . , et

(
nt − 1

Lt

)}
(2.52)

form an orthonormal basis for the transmitted signal space Cnt . This basis provides the
representation of the transmitted signals in the angular domain [4].

Examples of Angular Bases

There are three cases (Figure 2.10) [4]:

1. Antennas are critically spaced at half the wavelength (∆r = 1/2). Each of the basis
vectors er(k/Lr) has a single pair of main lobes around the angles ± cos−1(k/Lr).

2. Antennas are sparsely spaced (∆r > 1/2). In this case, some of the basis vectors
have more than one pair of main lobes.

3. Antennas are densely spaced (∆r < 1/2). Some of the basis vectors have no main
lobes.

There is a one-to-one correspondence between the angular windows and the angular
basis vectors, in the critically-spaced antennas.

Angular Domain Transformation as DFT

Let Ut be the nt × nt unitary matrix the columns of which are the basis vectors in
St. If x and xa are the nt-dimensional vector of transmitted signals from the antenna
array and its angular domain representation respectively, then

x = Utx
a, xa = U∗tx. (2.53)

The (k, l)th entry of Ut is

1
√
nt

exp

(
−j2πkl

nt

)
k, l = 0, . . . , nt − 1. (2.54)

So, the angular domain representation xa is the Inverse Discrete Fourier Transform of x
[4].
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Figure 2.10: Receive beamforming patterns of the angular basis vectors. Independent of
the antenna spacing, the beamforming patterns all have the same beam widths for the
main lobe, but the number of main lobes depends on the spacing. (a) Critically-spaced
case (b) Sparsely-spaced case (c) Densely-spaced case([4]).
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Figure 2.11: The bin Rk is the set of all paths that arrive roughly in the direction of the
main lobes of the beamforming pattern of er(k/L). Here Lr = 2 and nr = 4 ([4]).

2.2.4 Angular Domain Representation of MIMO Channels

We recall that Ut is the nt×nt unitary matrix the columns of which are the basis vectors
in St and Ur is the nr×nr unitary matrix the columns of which are the basis vectors in
Sr (DFT matrices). The angular domain representation of the transmitted and received
signals is given by

xa = U∗tx, (2.55)

ya = U∗ry. (2.56)

So, the equivalent representation of the channel in the angular domain is

ya =U∗rHUtx
a + U∗rw (2.57)

ya =Haxa + wa, (2.58)

where

Ha := U∗rHUt (2.59)

and

wa := U∗rw ∼ CN (0, N0Inr). (2.60)

The (k, l)th entry of the channel matrix Ha is

hakl = e∗r(k/Lr)Het(l/Lt) (2.61)

=
∑
i

abi [e
∗
r(k/Lr)er(Ωri)] · [e∗t(Ωti)et(l/Lt)]. (2.62)
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Let Rk be the set of physical paths whose receive directional cosine is within a
window of width 1/Lr around k/Lr (Figure 2.11) and Tl be the set of physical paths
whose transmit directional cosine is within a window of width 1/Lt around l/Lt. The
element hakl is the aggretation of the gains abi of the physical paths in Tl∩Rk, in particular,
is the channel gain of angular bin (k, l). Last, the physical paths that belong to Tl ∩Rk

are unresolvable in the angular domain [4].

2.2.5 Statistical Modeling in the Angular Domain

The basis for the statistical modeling of the MIMO fading channel is the approximation
that the physical paths are partitioned into angularly resolvable bins and aggregated
to form resolvable paths whose gains are hakl[m]. Assuming that the gains abi [m] of
the physical paths are independent, we can model the resolvable path gains hakl[m] as
independent. Moreover, the angles {φri[m]}m and {φti[m]}m typically evolve at a much
slower time-scale than the gains {abi [m]}m. Therefore, within the time-scale of interest, it
is reasonable to assume that paths do not move from one angular bin to another, and the
processes {hakl[m]}m can be modelled as independent across k and l. In an angular bin
(k, l), where there are many physical paths, applying the Central Limit Theorem, gain
hakl[m] is modeled as complex circular symmetric Gaussian process and if the angular
bin contains no paths, the entries hakl[m] can be considered as 0. For a channel with
limited angular spread at the receive or the transmit side, many entries of Ha[m] may
be zero (Figures 2.12 and 2.13 ) [4].

2.3 Sparsity structures in Massive MIMO channel

2.3.1 Massive MIMO

Massive MIMO scales up conventional MIMO by having antenna arrays with a few hun-
dred antennas simultaneously serving many tens of terminals in the same time-frequency
resource [1]. Some benefits of Massive MIMO are that it offers improved energy and
spectral efficiency. Also, it can achieve higher capacity for cellular systems. In order to
exploit these benefits, good channel knowledge is required at both the uplink and the
downlink. Acquiring high-dimensional channel side information (CSI) is a challenging
problem in massive MIMO. In frequency-division duplexing (FDD) mode, training over-
head is proportional to the dimension of Base Station (BS) antenna. In time-division
duplexing (TDD) massive MIMO systems, channel reciprocity could be exploited but
the training overhead is proportional to the number of active user equipments (UEs)
which, if it increases, it could cause pilot contamination by the reuse of the same uplink
pilots [2],[3].
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Figure 2.12: Some examples of Ha. (a) Small angular spread at the transmitter. (b)
Small angular spread at the receiver. (c) Small angular spreads at both the transmitter
and the receiver. (d) Full angular spreads at both the transmitter and the receiver ([4]).
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Figure 2.13: Some examples of Ha. (a) Two clusters of scatterers, with all paths going
through a single bounce. (b) Paths scattered via multiple bounces ([4]).
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2.3.2 Sparsity structures

In [4], it is stated that if the channel has limited angular spread at the transmitter or
the receiver, then the channel matrix Ha has many zeros. In experimental studies ([7],
[8]), it has been observed that Massive MIMO channels are highly correlated at the
transmitter side, however, the receive correlation is lower. This happens because there
is rich local scattering at the receiver. BS is usually elevated higher than local scatterers
and far away from UE, therefore, it occurs limited angular spread. Also, the channel
matrix via angular domain representation is sparse [9].
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Chapter 3

Problem statement

We consider a massive MIMO system operating in FDD mode. There is one BS and K
single-antenna UEs. The BS has an ULA with M antenna elements. Let us assume that
M is much larger than the number of served UEs and channels between BS and UEs are
flat block-fading. During the downlink training, the received signal vector at an UE is

y = Ah + w, (3.1)

where A ∈ CN×M is the training matrix, h ∈ CM×1 is the channel vector and w ∈ CN×1

is the additive noise [5].
In FDD mode, the amount of training overhead is proportional to the dimension of

BS antenna array. The required training overhead N for conventional least squares (LS)
and minimum mean square error (MMSE) estimators scales linearly with the number of
BS antennas [2], [5]. It is obvious that CSI acquition at BS is a challenging task because,
as M increases for massive MIMO, the training overhead becomes prohibitively large.

On the other hand, there are sparsity-inspired approaches that they provide overhead
reduction based on the sparsity of the channel representation in the angular domain ha

[3], [6].
In this section, we present the weighted `1 minimization method using partial support

information and our proposal, which achieve low-overhead training [3].

3.1 Partial Support Information

Partial support information is the estimated support T̂ of the channel ha (Figure 3.1),
occuring from the resolvable paths of the limited angles of departure (AoDs). T̂ is the
set which includes the indices of the elements of the ha that are predicted to be non
zero and card(T̂ ) = ŝ. The estimated support could be found by the estimation of the
AoDs or knowing the mean AoD and the Angular Spread deviation. The accuracy of
the estimation is given by the parameter a with a ∈ [0, 1]. For instance, if a = 0.8 and
ŝ = 20 then

card(T ∩ T̂ ) = baŝc = 16.
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Figure 3.1: Illustration of partial support information (T = {3, 4, 5, 7}, T̂ = {3, 4, 5, 8}
and card(T ∩ T̂ ) = baŝc = 3

4 · 4 = 3 ).

3.2 Weighted `1 minimization using Partial Support Information

Given a vector of channel measurements

y = AUha + e (3.2)

the channel recovery problem is formulated as follows [3]:

min
ĥa∈CM

∥∥∥ĥa
∥∥∥
1,w

subject to
∥∥∥AUĥa − y

∥∥∥
2
≤ ε, (3.3)

with wi =

{
1, wi /∈ T̂ ,
0, wi ∈ T̂ ,

where A ∈ CN×M is a known Gaussian random matrix of independent complex normal
entries with distribution CN (0, 1/N), e is the noise (‖e‖2 ≤ ε) and

∥∥∥ĥa
∥∥∥
1,w

=

i=M∑
i=1

wi|ĥai |.

In this formulation, the entries that are expected to be zero are weighed more heavily
than others in the objective function. T̂ is the partial support information of ha, where
T̂ ⊆ {1, . . . ,M} and card(T̂ ) = ŝ. We assume that T̂ is available at the UE.

3.3 Weighted `1 minimization method with different weights

We extend the approach of [3], by selecting weights that are not the conventional zeros
and ones. Also, we examine the performance of the proposed method with respect to
the accuracy of prior information that is described by the parameter a.
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Hence, channel recovery problem becomes:

min
ĥa∈CM

∥∥∥ĥa
∥∥∥
1,w

subject to
∥∥∥AUĥa − y

∥∥∥
2
≤ ε, (3.4)

with wi =

{
wa, wi /∈ T̂ ,
wb, wi ∈ T̂ .

This formulation is distinct by the fact that the elements of ĥa which we believe that are
zero are penalized more than those that belong to the estimated support by the choice
of wa and wb, respectively. Here, 0.5 ≤ wa ≤ 1 and 0 ≤ wb ≤ 0.5 . We study three
settings for (wb, wa), specifically, (0.2, 0.8), (0.4, 0.9) and (0.5, 1).
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Chapter 4

Numerical results

In this section, we conduct experiments in order to estimate the performance of the
proposed weighted `1 minimization method utilizing partial support information. The
non zero elements of channel vector ĥa are i.i.d. complex normal with distribution
CN (0, 1). Also, we assume that the additive noise vector e has elements which are
i.i.d complex normal random variables. In order to generate the experimental data,
we perform 200 Monte Carlo simulations for each figure. We used CVX to solve the
minimization problems [10].

4.1 Quality of the estimated CSI versus the training overhead

In Figures 4.1−4.4, we examine how the accuracy of the partial support information,
which is described by the parameter a, affects the quality of CSI estimation. As a perfor-

mance metric, we use the normalized mean square error (NMSE) which is E
[
‖ĥa−ha‖2

2

‖ha‖22

]
,

where ha is the channel vector and ĥa is the estimated channel. The noise e is complex
standard Gaussian random vector, but we normalize its `2 norm. Also, we compare
three empirical NMSE curves, having different values of a, with simple `1 minimization
without any prior information and Genie-aided LS as a baseline. In Genie-aided LS, we
assume that UE has accurate knowledge of channel support and the channel is estimated
by LS utilizing that information.

It is obvious that, as the number of measurements becomes larger, the NMSE de-
creases. We noticed that if the parameter a increases, then NMSE becomes lower. So,
higher quality of the partial support information provides better channel recovery. On
the other hand, poor accuracy of prior information (i.e. Fig. 4.1 and 4.2 a = 0.6) gives
worse NMSE than not using any information about the channel support.
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Figure 4.1: Normalized mean square error versus number of measurements with
M = 100, s = 20, ŝ = 25 and ‖e‖2 = 1.
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Figure 4.2: Normalized mean square error versus number of measurements with
M = 128, s = 25, ŝ = 32 and ‖e‖2 = 1.

In Figure 4.5, we compare the curves which occur by having different values of
the cardinality ŝ of the estimated support. High accuracy defined by the parameter a
provides better performance than without any prior knowledge utilization and, in that
occasion, partial support information should be exploited. Moreover, in these conditions,
if ŝ is high enough, then performance is similar with Genie-aided LS.

In Figure 4.6, if the quality of prior knowledge is poor, it would not offer any advan-
tage against standard `1 minimization method. Hence, we should use accurate estimation
of the channel support in order to achieve better performance.
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Figure 4.3: Normalized mean square error versus number of measurements with
M = 128, s = 8, ŝ = 10 and ‖e‖2 = 1.
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Figure 4.4: Normalized mean square error versus number of measurements with
M = 100, s = 36, ŝ = 40 and ‖e‖2 = 1.
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Figure 4.5: NMSE versus number of measurements with M = 100, s = 20, a = 0.8 and
‖e‖2 = 1.
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Figure 4.6: NMSE versus number of measurements with M = 100, s = 20, a = 0.6 and
‖e‖2 = 1.
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4.2. COMPARISON OF SIMPLE WEIGHTED `1 MINIMIZATION METHOD TO
METHODS WITH DIFFERENT WEIGHTS
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Figure 4.7: NMSE versus number of measurements with M = 100, s = 20, ŝ = 25, a = 0.6
and ‖e‖2 = 1.

4.2 Comparison of simple weighted `1 minimization method to
methods with different weights

In Figures 4.7−4.13, we compare the weighted `1 minimization with similar methods
which do not have the standard weights zero and one (0/1). In particular, we propose
three different methods with weights for the zero entries of ĥa 0.8, 0.9, and 1, and for
the non zero entries 0.2, 0.4, 0.5, respectively. In the same figures, there are standard `1
minimization without any prior information and Genie-aided LS.

We noticed that different weights methods outperform the standard weighted `1
minimization when the quality of the estimated prior information is not high (i.e. Fig.
4.7 and 4.10 a = 0.6). Also, the method with weights 0.4/0.9 is slightly better than the
two other methods. Lastly, if we have a very good accuracy (i.e. Fig. 4.9 and 4.13)
then it is preferred to use the standard weighted `1 minimization because it has not any
significant drawback against the others.
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4.2. COMPARISON OF SIMPLE WEIGHTED `1 MINIMIZATION METHOD TO
METHODS WITH DIFFERENT WEIGHTS
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Figure 4.8: NMSE versus number of measurements with M = 100, s = 20, ŝ = 25, a = 0.7
and ‖e‖2 = 1.
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Figure 4.9: NMSE versus number of measurements with M = 100, s = 20, ŝ = 25, a = 0.8
and ‖e‖2 = 1.
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METHODS WITH DIFFERENT WEIGHTS
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Figure 4.10: NMSE versus number of measurements with M = 100, s = 37, ŝ = 40,
a = 0.6 and ‖e‖2 = 1.
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Figure 4.11: NMSE versus number of measurements with M = 100, s = 37, ŝ = 40,
a = 0.75 and ‖e‖2 = 1.
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Figure 4.12: NMSE versus number of measurements with M = 100, s = 37, ŝ = 40,
a = 0.85 and ‖e‖2 = 1.
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Figure 4.13: NMSE versus number of measurements with M = 100, s = 37, ŝ = 40,
a = 0.9 and ‖e‖2 = 1.
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4.3. PHASE TRANSITIONS
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Figure 4.14: Phase Transition with M = 100, ŝ = 10, a = 0.8 and ‖e‖2 = 0.

4.3 Phase Transitions

In Figures 4.14 and 4.15, we estimate the probability of success of the weighted `1 mini-
mization method given the sparsity s of channel vector and the number of measurements
N .

In Figure 4.14, we examine a noise free case with number of antennas at the BS
M = 100, ŝ = 10, and accuracy of prior knownledge a = 0.8. We have success if∥∥∥ĥa − ha

∥∥∥
2
≤ 10−4.

Figure 4.15 shows the Phase Transitions when there is additive noise. We set M =
128, ŝ = 10 and a = 0.8. Noise e is random but with fixed norm ‖e‖2 = 10−3. Robust

recovery is achieved when
∥∥∥ĥa − ha

∥∥∥
2
≤ 0.2.

The brightness of each pixel (N, s) determines the empirical probability of success
(i.e. black for 0% and white for 100%). For each pixel, we conduct 100 Monte Carlo
experiments. Also, we plot the 10%, 60% and 90% curves of success probability, occuring
from the data. Phase Transitions specify how the length of training symbols is changing
to reach a certain percentage of success probability. In both cases, we observe that
channel recovery could be achieved with low training overhead. Also, the width of the
required measurements from failure to success (0%-100%), for a fixed s, is small.
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4.3. PHASE TRANSITIONS
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Figure 4.15: Phase Transition with M = 128, ŝ = 10, a = 0.8 and ‖e‖2 = 10−3.
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Chapter 5

Conclusions & Future work

5.1 Conclusions

In this thesis, we study how to achieve reduction of the training overhead, exploiting the
sparsity of Massive MIMO channels. Weighted `1 minimization using partial support
information is suggested if the accuracy of prior information is high. In case of low accu-
racy, weighted `1 minimization exploiting partial support information does not offer any
benefit. Our proposal, the weighted `1 minimization with different weights, would have
better performance than the standard method with no perfect quality of prior knowl-
edge. However, if the accuracy is high enough, then simple weighted `1 minimization
should be preferred. Finally, Phase Transitions provide information about the number
of measurements is needed to achieve channel recovery given the sparsity level s.

5.2 Future work

As future work, we could provide strict bounds about the required number of training
symbols to achieve a certain quality of channel estimation by the proposed methods.
Moreover, we could optimize the selection of the weights based on the accuracy of support
estimate.
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Appendix A

Proof of Equation (2.29)

e∗r(Ωr1)er(Ωr2) =
1

nr

nr−1∑
k=0

(exp (−j2πk∆rΩr1))
∗ · exp (−j2πk∆rΩr2) (A.1)

=
1

nr

nr−1∑
k=0

exp (j2πk∆rΩr1) · exp (−j2πk∆rΩr2) (A.2)

=
1

nr

nr−1∑
k=0

exp (−j2πk∆r(Ωr2 − Ωr1)) (A.3)

=
1

nr

nr−1∑
k=0

exp (−j2πk∆rΩr) (A.4)

=
1

nr

1− exp (−j2πnr∆rΩr)

1− exp (−j2π∆rΩr)
(A.5)

=
1

nr

exp (−jπnr∆rΩr)

exp (−jπ∆rΩr)
· exp (jπnr∆rΩr)− exp (−jπnr∆rΩr)

exp (jπ∆rΩr)− exp (−jπ∆rΩr)
(A.6)

=
1

nr
exp (−jπ(nr − 1)∆rΩr) ·

j2 sin (πnr∆rΩr)

j2 sin (π∆rΩr)
(A.7)

=
1

nr
exp (−jπ(nr − 1)∆rΩr) ·

sin (πLrΩr)

sin (πLrΩr/nr)
. (A.8)
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