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Abstract

In this Diploma Thesis, we study a novel Channel State Information on the Transmitter

side (CSIT) algorithm for the estimation of the CSIT in a multiuser, Frequency Division

Multiplexing (FDD), massive MIMO wireless system. The main characteristic of a mas-

sive MIMO system is the large number of antennas at the Base Station (BS). This fact

puts significant difficulties at the channel estimation process but offers significant benefits

regarding spectral and energy efficiency, reliability, and capacity.

First, we present the concept of Compressive Sensing and the important research results

of J.A. Tropp and A.C. Gilbert, including an algorithm for sparse signal recovery from

random measurements via Orthogonal Matching Pursuit [29]. In their work, Tropp and

Gilbert propose a remarkably simple algorithm for tackling signal estimation when dealing

with sparse channel matrices.

Then, we familiarize ourselves with the Angular Domain representation of signals,

mainly based on the book by D. Tse and P. Viswanath [10].

Last, we present an algorithm for efficient channel estimation in Massive MIMO FDD

systems proposed in a paper by X. Rao and V. K. N. Lau [23]. We also studied the work of

J. C. Shen, J. Zhang, K. C. Chen and K. B. Lataief [26] (see also the work of M. Massod,

L.H. Afify and T.Y. Al-Naffouri [20]). We apply and test the algorithm in various scenarios

of interest, revealing that efficient massive MIMO channel estimation is possible under the

hypothesis of sparsity in the angular domain.
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Chapter 1

Introduction

South Korea became the first country to offer 5G (the fifth generation mobile wireless

standard) on December 1, 2018 [24], and it is fair to say that the mobile industry has

made astounding advances since the first mobile phone call was made in 1973. Mobile

devices have changed our world in ways we could never have predicted. Many countries

intend to implement 5G as soon as possible, which will help drive the Internet of Things

(IoT) and Big Data. Every generation of wireless standard —abbreviated to ‘G’— has

brought dizzying advances in data-carrying capacity and latency reduction, and 5G will be

no exception. 5G is predicted to be at least three times quicker than current 4G standards,

despite the fact that actual 5G standards have yet to be established. It’s helpful to look

back at the unstoppable rise of wireless standards from the first generation (1G) to where

we are now, on the verge of a global 5G rollout, to understand how we got here.

Nippon Telegraph and Telephone (NTT) launched the first generation of mobile net-

works in Tokyo in 1979. By 1984, NTT had rolled out 1G to fill Japan’s gap. In 1983,

1G technology arrived in the United States, and Motorola’s DynaTAC was one of the first

‘mobile’ phones to see widespread use. A few years later, other countries, such as Canada

and the United Kingdom, launched their own 1G networks. However, the 1G was far from

perfect, as it had poor communication quality and only covered a small area. There was no

roaming support between different operators. Since different systems operated at different

frequency ranges, there was no system compatibility. Worse, calls were not encrypted, so

anyone with a radio scanner could listen in.

The GSM standard was utilized in Finland to launch the second generation of mobile

networks, sometimes known as 2G. For the first time, calls could be encrypted, and digital
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voice communications were noticeably clearer, with less static and crackling in the back-

ground. But 2G was about so much more than just telecoms; it lay the foundation for

a cultural revolution. For the first time, people could send text messages (SMS), photo

messages, and multimedia communications (MMS) on their phones. The digital future of

2G has replaced the analog past of 1G. As a result, consumers and businesses alike have

embraced the technology in unprecedented numbers. Operators hastened to invest in new

infrastructure such as mobile cell towers, despite the fact that 2G transfer speeds were

initially only approximately 9.6 kbit/s. Speeds of 40 kbit/s were achievable by the end of

the era, and EDGE (Enhanced Data for Global Evolution) connections offered speeds of

up to 500 kbit/s. Despite relatively slow speeds, 2G revolutionized the business landscape

and forever changed the world.

NTT DoCoMo launched 3G in 2001 with the goal of standardizing the network protocol

used by vendors. Users could access data from anywhere in the world since the ‘data pack-

ets’ that fuel web connectivity were standardized. International roaming services become

a reality for the first time. New services such as video conferencing, video streaming, and

voice over IP have evolved as a result of 3G’s improved data transfer capabilities (4 times

faster than 2G) (such as Skype).

In Stockholm, Sweden, and Oslo, Norway, the Long Term Evolution (LTE) 4G technol-

ogy was initially introduced in 2009. It was then introduced all across the world, allowing

millions of people to enjoy high-quality video streaming. 4G enables gaming, HD videos,

and high-definition video conferencing by providing fast mobile web access (up to 1 gigabit

per second for stationary users). The hitch was that, unlike upgrading from 2G to 3G,

mobile devices for 4G had to be created particularly for it. [24] .

Unlike the previous four generations of cellular technology, which each required a ma-

jor paradigm shift with backward compatibility, 5G will necessitate a paradigm shift that

includes extremely high carrier frequencies with massive bandwidths, extreme base station

and device densities, and unprecedented numbers of antennas. However, unlike the previ-

ous four generations, it will be extensively integrated, combining any new 5G air interface

and spectrum with LTE and WiFi to give global high-rate coverage and a consistent user

experience. To support this, the core network must achieve unprecedented levels of flexi-

bility and intelligence, spectrum regulation must be rethought and enhanced, and energy

and cost efficiencies will become even more important considerations. [22].

Massive MIMO is a crucial technology that researchers have been focusing on. MIMO
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communication was first implemented in WiFi systems about 2006, then in 3G cellular

shortly after, and by the time LTE was developed, MIMO was a standard component,

with two to four antennas per mobile device and up to eight each Base station (BS) sector.

MIMO, in essence, embodies the spatial dimension of communication that emerges when

a variety of antennas are accessible at Base Stations and mobile devices.

Massive MIMO, finds the base station equipped with a large number of antennas, usu-

ally more than 100. This has offered the researchers significant new potential to exploit but

has also introduced quite a few challenges to face. One of them being the large dimensions

of the channel matrices, which make the complexity of channel estimation significantly

larger. This is exactly the problem the authors of [23] are trying to deal with. Proposing

a novel algorithm that can exploit hidden attributes the propagation environment creates,

along with useful theories drawn from the area of Compressive Sensing, successful channel

estimation is achieved with a surprisingly small complexity. This thesis is dedicated at un-

derstanding the theory behind the above concept and successfully recreating the algorithm

and the accompanied figures.
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Chapter 2

Wireless Communications

Nowadays, when discussing about communication, most people think of their personal

smart phones or, in other words, wireless communication. Despite being the most common

type of communication the last decade, wireless communication has been a topic of scientific

research since the 60’s. The reason why this type of communication is the dominating one

is not difficult to comprehend. To begin with, there has been an increasing demand for

wire-free connectivity, mostly due to cellular telephony, with data applications gradually

embracing the same requirement. VLSI technology also had a role in this by allowing

for the implementation of complex signal processing algorithms and coding techniques

in a small-area and in a low-power environment. However, the extraordinary success of

the second generation (2G) digital wireless standards, notably the IS-95 Code Division

Multiple Access, has had a considerable impact on cementing this status quo (CDMA).

Further research done into wireless communications the recent years has illuminated new

paths and approaches to reliable communication with many more-approaches- expected to

come in the near future.

This section has drawn so much scientific attention for several reasons and most no-

tably for the following. Firstly, the phenomenon of fading, which is the time-variation

of the channel strengths due to small-scale effects, like multipath fading, and large-scale

effects, such as path loss via distance attenuation. Furthermore, the medium on which

wireless communications are based is the air, where different users trying to communicate

have to deal with significant interference. This interference can be between transmitters

communicating with a common receiver (e.g. uplink of cellular system), between signals

from a single transmitter to multiple receivers (e.g. downlink of a cellular system), or
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between different transmitter-receiver pairs (e.g. interference between users in different

cells).

So far, when developing a wireless network, the engineer have mostly focused on miti-

gating the two major issues, fading and interference, in order to establish a reliable com-

munication. Despite the fact that there are new ways focusing on boosting the spectral

efficiency of the overall connection, a novel point of view argues that fading offers an

opportunity to be capitalized on rather than a problem to be fixed.

2.1 Wireless Channels

A decisive feature of the wireless channel of mobile communication equipment is its qual-

ity fluctuation dependency on time and frequency. Generally, these fluctuations can be

grouped in two categories.

Large scale fading, because of path loss with increasing distance and shadowing by

huge objects such as buildings and hills This happens when the mobile travels a distance

analogous to the cell size, and it is usually frequency independent.

Small-scale fading, because of constructive and destructive interference between the

transmitter and receiver’s various signal routes. This happens on a spatial scale on the

order of the carrier wavelength and is frequency dependant.

Large-scale fading is more important in topics like cell-site design. Small-scale multi-

path fading is more important in the design of trustworthy and efficient communication

systems.

It is critical to be able to figure out and solve equations of electromagnetic wave prop-

agation in order to analyze wireless communication systems, a process that necessitates

extensive understanding of the propagation environment. This is not a viable option.

The theoretical technique of channel modeling aids us in overcoming this challenge. The

wireless channel can be viewed as a (slowly) time-varying system, allowing us to continue

researching this topic.

2.2 Free space propagation

Let the transmitter Tx and the receiver Rx be placed in distance d from each other in free

space -there are no obstacles between them. The propagation is isotropic, which means
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that the transmitted electromagnetic energy is uniformly distributed on concentric spheres

with the center being the starting point of the transmission [18]. If the transmitting power

is PTx , the power of the signal reaching the receiver is

PRx(d) = PTx

1

4πd2
ARx , (2.1)

with ARx being the effective area of the receiver antenna. This equation follows the law of

conservation of energy.

Figure 2.1: Isotopic transmission in a free space environment

In case the transmission is not isotropic, there is another quantity entering this equation,

and this is the power gain (GTx) of the transmitting antenna in the direction of the receiving

antenna. With this change, the power of the received signal is given by

PRx(d) = PTxGTx

1

4πd2
ARx . (2.2)

At this point, it is important to mention that, when we speak about transmitting power

gain along a specific direction, we have in mind the amount described from the following

equation

GTx =
Power Density at a distance d along this direction

PTx/4πd
2

. (2.3)

In case of isotropic transmission, GTx = 1.

Generally, the above mentioned equations are in fact an approximation since the power

gains depend on the wavelength (λ) and, thus, also from the modulating frequency.
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To summarize this section, it can be demonstrated that when transmitting in open

space, the received signal power is proportional to the square of the distance between

transmitter and receiver. Power gain is also affected by the frequency of the transmitted

signal, but this relation is complicated and also depends on the antenna’s characteristics.

Overall, one could argue that if the distance between the two antennas remains constant,

increasing the frequency of the transmitted signal results in reduced received signal power.

2.3 2-ray Model

Figure 2.2: 2-ray Propagation Model

If we want to include obstacles and barriers to the propagation process of the electromag-

netic waves, that exist in a real life environment, then things get tricky. An ideal model

of propagation is presented in Figure 2.2, where the signal arrives at the receiver from 2

different paths, directly and scattered from the ground. This is called the 2-ray model, and

under these circumstances, the signal loss is much larger than in the free-space scenario.

This time the signal power is decreased proportionally to the fourth power of the distance

d.

2.4 Multi-path propagation

The phrase multi-path propagation refers to a condition in which the signal arrives at the

receiver after several reflections, significant scattering, and nearly no line-of-sight. In this
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situation, each path to the communication’s final point has a different attenuation, delay,

and fading type. What also changes is the phase of the different electromagnetic waves

upon arrival at the receiver. The two waves add constructively when the phase difference is

an integer multiple of 2π, and the received signal is strong. When the phase difference is an

odd integer multiple of π, on the other hand, the two waves add destructively, weakening the

received signal. This phenomenon creates a spatial pattern of constructive and destructive

wave interference during communication and specifically, in this case, from a spatial point

of view one can talk about a coherence distance. Although the same pattern occurs when

the modulating frequency takes certain values, putting also the term of coherence bandwidth

in the literature. Of course, when we talk about frequency there is always its counterpart,

the symbol period T . From that point of view, we can talk about delay spread, which has

similar meaning with coherence frequency and distance but from the time perspective.

Figure 2.3: Multi-path Propagation

As it was mentioned before, for a wireless communication to be successful, one should

take into consideration all the details of the surrounding physical environment in order

to calculate the precise propagation equations for this system. Obviously, this is a rather

tricky goal to accomplish, and is far from an ideal solution that could realistically be

used in every-day communication. Luckily, this is where Channel Modeling techniques

come to untie our hands. In an urban environment, with much scattering and reflections

(a multipath propagation environment) the channel coefficients tend to take values quite

similar to a Gaussian distribution with zero mean. This kind of channel is called Rayleigh
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fading, and is defined as

hRayleigh ∼ CN (0, σ2).

2.5 Delay Spread and Coherence Bandwidth

An important parameter of wireless systems is the multipath delay spread Td, defined as

the time difference between the longest and shortest path -taking into consideration only

the paths with significant energy. The following equation presents how delay spread is

defined.

Td := max
i,j

|τi(t)− τj(t)|. (2.4)

To get a better grasp of this, let us think of a cell or a LAN. If one of these two (cell or

LAN) has a linear extend of a few kilometers, it is quite rare for 2 random paths to differ

more than 300 to 600 meters. This distance corresponds to path delays of no more than

2 µs. Growing cellular use decreases the size of the cell, which makes Td to shrink. The

delay spread Td is substantially lower than the coherence time Tc in most wireless channels,

indicating that they are underspread. The frequency coherence of the channel is likewise

determined by the delay spread. Wireless channels alter in frequency and time. The time

coherence of a channel determines how rapidly it changes in time, while the frequency

coherence determines how quickly it changes in frequency.

The true significance of delay spread is the fact that it is a measure of Inter Symbol

Interference (ISI) in wireless channels. What this actually means is that, in case the

duration of the symbol outlasts the delay spread by a certain amount of time, the channel

is considered ISI-free. This time difference typically finds symbol duration to be 10 times

longer than the delay spread. Sifting into the frequency domain, the correspondence of

delay spread is the coherence bandwidth, which is the bandwidth over which the channel’s

frequency response is flat. Obviously, the coherence bandwidth is the inverse of the delay

spread, and this is why these two amounts grow disproportionately. The smaller the delay

spread the larger the coherence bandwidth [18].
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2.6 Flat fading and Frequency selective fading

Similarly to the time domain, channels are characterised as flat fading or frequency selective

fading according to their frequency response. In this case, the key to making this separation

is the coherence bandwidth (Bc).

If Bc is quite bigger than the signal bandwidth, then the symbol transmission is free

of interference and the only things changing are the amplitude and phase of the received

signal. Hence, this fading type is called flat fading. This kind of channels are statistically

described by

hm ∼ CN (0, σ2). (2.5)

On the other hand, when Bc is smaller than the signal’s bandwidth, then the channel

creates ISI and its response is not flat. This type of fading is called frequency selective

fading and every new transmission contains parts of the next or the previous transmitted

symbol. If we assume that there is a finite number of coefficients interfering in the channel,

and that amount is L, then this kind of channel can be modelled as

hm,l ∼ CN (0, σ2
l ), l = 0, ..., L− 1. (2.6)
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Chapter 3

Massive MIMO

As the dawn of fifth-generation (5G) wireless networks becomes brighter by the day, Mas-

sive multiple-input-multiple-output (MIMO) systems dominate the wireless technology

scene with their spectral and energy efficiency. Having available high-dimensional channel

state information (CSI) can lead to significant performance gains, though the overhead

needed to acquire this CSI may turn out to be devastating for the radio resources.

In order to exploit the spatial multiplexing and array gains of this system in full, it is

crucial for the CSI to be retrieved at the base station (BS), a task that turns out to be

extremely challenging [3]. The barriers that come along with very high-dimension MIMO

channels are confronted both at time-division duplexing (TDD) and frequency-division

duplexing (FDD) systems. Specifically, techniques, like CSI acquisition based on feedback

overhead and pilot-aided training, grow similarly to the BS antenna size, in FDD systems.

Moreover, the channel’s coherence period sets some serious restrictions on radio resources

available for CSI acquisition, and this situation is only getting worse in an environment

with high user equipment (UE) mobility.

3.1 Time division duplexing - TDD

Due to these circumstances, research has focused on TDD massive MIMO systems, ex-

ploiting channel reciprocity. The notion of reciprocity is one of the best advantages TDD

architecture has to offer, since the reverse channel is used as an estimate of the forward

one. This way, the need of feedback is eliminated, once the desired CSI can be estimated

by the uplink training together with the reciprocity of the wireless medium [19]. However,
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this estimation is not free of issues that need to be dealt with before this approach becomes

useful.

At TDD systems, training overhead grows proportionally to the number of UEs [26].

Usually, in order to acquire precise CSI, each user has to transmit an orthogonal pilot

sequence to its corresponding BS.

Uplink Trainning

BSi

(a)

BSi+1

BSi+2

UEk

UEk

UEk

hi,i+2,k

hi,i,k

hi,i+1,k

BSi

BSi+1

BSi+2

UEk

UEk

UEk

hi+1,i,k

hi,i,k

hi+2,i,k

Feedback channel

Downlink pilot trainning

(b)

Figure 3.1: Pilot reuse in multiple cells. (a) FDD downlink training. (b) TDD uplink

training.

The availability of orthogonal pilot sequences is restricted by the ratio of the channel

coherence interval to the channel’s delay spread [17], which is usually small due to the

movement of users or the unfavorable physical environment. As the number of UEs be-

comes large, it gets even harder to ensure the orthogonality of the pilot sequences, making

inevitable the reuse of correlated pilot sequences in different cells, in a multi-cell scenario.

Proceeding the communication process with the acquired spoiled data, intercell interfer-

ence occurs immediately and the performance instantly drops. Pilot contamination, as

this phenomenon is known, is a problem that cannot be dealt with simply adding more

antennas at the BS.

Consider a massive MIMO system consisting of L hexagonal cells. Each cell has a BS

equipped with linear arrays of M elements -the size of BS antenna is much larger than the
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number of served UEs [26]. This system serves K users, each one carrying a single-antenna

UE. The M×1 vector hi,j,k represents the channel between BS i and UE k in cell j. During

the uplink training, the received signal at BS i is

YUL
i =

L∑
l=1

SUL
i Hi,l + ZUL

i , (3.1)

where Hi,l = [hi,l,1, ...,hi,l,k, ...,hi,l,K ]
′ consists of the channel vectors from K users in the

lth cell, communicating with the ith BS; SUL
i is a set of τ × 1 pilot sequences {sl,k}Kk=1, and

ZUL
i , is the additive noise matrix. For better understanding of the intercell interference

scenario, let us assume that the same set of orthogonal pilot sequences are reused in each

cell, i.e. SUL
1 = SUL

l = · · · = SUL
L and s′l,k1sl,k2 = 0 for k1 ̸= k2, as shown in Figure 3.1(b).

The estimated channel, using the LS method, is

Ĥi,i =
[
(SUL

i )HSUL
i

]−1
(SUL

i )HYUL
i

= Hi,i +
∑
l ̸=i

Hi,l +
[
(SUL

i )HSUL
i

]−1
(SUL

i )HZUL
i .

(3.2)

When ignoring the noise, the rows of Ĥi,i consist of ĥi,i,k =
∑L

l=1 hi,l,k.

During downlink transmission, the uplink channel estimates ĥi,i,k are used to form the

transmitted signal xi =
∑K

k=1 w
TDD
i,k xi,k, where wTDD

i,k =
∑L

l=1(h
H
i,l,k)

′ are the maximum

ratio transmission (MRT) precoding vectors, which consequently causes interference

Ii,j,m = h′
i,j,mxi

= ||hi,j,m||22xi,m +
∑
k ̸=m
l ̸=j

hH
i,l,khi,j,mxi,k (3.3)

to UE m in cell j. Despite the fact that increasing the number of antennas at the BS

diminishes the second term of (3.3), the first term is here to stay, setting, thus, a limit to

the received signal-to-interference-plus-noise ratio (SINR) at UE m in cell j.

Considerable research has been made to tackle pilot contamination in high-dimensional

TDD CSI acquisition. Current investigation focuses on the impact of this phenomenon

on the received SINR or the sum rate when linear precoders/detectors are applied, with

very little known about the non-linear precoders/detectors scenario. Some other work in [9]

proposes a open-/closed-loop training which utilizes temporal and spatial channel statistics

in order to reduce the amount of downlink training overhead. Also, in [13], optimal design

of precoding matrices aimed at minimizing the squared errors caused by pilot reuse turned

out to be superior over linear precoding.
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3.2 Frequency division duplexing - FDD

On the other hand, real-time data and applications tend to be the new status quo nowa-

days, consequently systems with symmetric traffic using delay-sensitive applications are on

demand. Α TDD system cannot cope with these requirements, making research focus on

investigating the capabilities of FDD massive MIMO systems. In this case, CSI acquisition

on the BS follows a different procedure than the one at TDD.

Specifically, first the BS transmits pilot symbols; each user receives the signal and

estimates the downlink CSI locally. This acquired information is then transmitted back

to the BS via uplink channels [27], so that the benefits of massive MIMO systems can be

fully exploited.

Consider the massive MIMO system described in the previous section with L hexagonal

cells, each with a base station. During downlink trainning, the channel of UE k, in cell i

receives

yDL
i,k = SDL

i hi,i,k︸ ︷︷ ︸
A

+
∑
l ̸=i

SDL
l hl,i,k + zDL

i,k︸ ︷︷ ︸
B

, (3.4)

where SDL
l stands for the N ×M pilot training matrix used in cell l, zDL

i,k is the additive

noise, amount A is the desired CSI and B comes from intercell interference.

Repeatedly using the same training matrix in multiple cells, i.e. SDL
1 = · · · = SDL

L , can

be considered as pilot contamination in FDD systems. This means that BS i will collect

the aggregated channel
∑L

l=1 hl,i,k, instead of the wanted one, hi,i,k, considering a noiseless

environment and an error free feedback channel. Despite that, there is a possibility to

tackle intercell interference, once the composite CSI is utilized to form a precoding vector.

That is, in a maximum ratio transmission (MRT) scenario, where precoding is employed,

the transmitted signal from BS i can be expressed as xi =
∑K

k=1w
FDD
i,k xi,k, where xi,k is

the signal destined for UE k within the cell, and wFDD
i,k =

∑L
l=1(h

H
l,i,k)

′ stands for the MRT

precoding vector. From the UE m’s point of view, during the downlink transmition, the

received iterference in cell j due to BS i is

Ii,j,m = h′
i,j,m xi =

K∑
k=1

L∑
l=1

hH
l,i,khi,j,mxi,k.

As the number of BS antennas rapidly increases, channel vectors become asymptotically

orthogonal. When this occurs, the products hH
l,i,khi,j,m approach zero, and so does the in-
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terference Ii,j,m. In other words, intercell interference caused by pilot contamination dimin-

ishes asymptotically when increasing the number of BS antennas. Thus, in the asymptotic

scenario, intercell interference vanishes together with the need to create distinct training

matrices. This is why pilot contamination of FDD systems is an issue rarely mentioned in

the existing literature.

Some implementations of the above process use least squares (LS) [5] or minimum mean

square error (MMSE) [31] in order to estimate the downlink CSI at the user side. How-

ever, the increasing number of antennas at the BS makes these two approaches somewhat

inefficient, since the numbered pilot symbols necessary for CSI acquisition grow propor-

tionally. Consequently, the complexity of the estimation problems to be solved becomes

analogous to the ensemble of BS antennas (i.e. O(M) ). Since massive MIMO systems is

the theme of this discussion, one could easily comprehend the prohibitively large overhead

created not only for the pilot training (downlink), but also for the CSI feedback (uplink).

To make matters worse, in such large channel dimensions, channel’s coherent time and

bandwidth set an extra limitation to the number of independent pilot symbols available

for CSI acquisition [17]. Figure 3.2 helps illustrate this.

Frame Duration < Coherence time

Pilot
Training

CSI
Feedback

Data
Transmission

Figure 3.2: Frame structure with pilot training to obtain CSIT in massive MIMO FDD

system.

It is now becoming clear that, as the number of BS antennas grow, FDD estimation of

CSI does not stand up to the expectations, due to very large training overhead and limited

number of available pilot symbols, forcing research to look for a new, more promising

direction for high-dimensional CSIT estimation.

3.3 Compressive Sensing - CS

A game changing observation was made, at various experiments in massive MIMO system

tests, which helps to tackle the above mentioned obstacles. The observation was the
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following, as M increases, the user channel matrices tend to be sparse, due to limited local

scattering on the BS side -a signal is considered “sparse” when most of its coefficients are

zero. Also, m-sparse signal is one that has m non-zero entries regardless its dimension.

Under these circumstances, estimating the entire channel matrix, which is accompanied

by long pilot training symbols becomes a naive solution. Instead, exploiting the newly

discovered hidden sparsity caused by the physical environment is a much more promising

approach to this task.

At this point, compressive sensing (CS) enters the telecommunications world with in-

teresting potential. Compressive sensing is a relatively new concept which made its first

appearance a few years ago, and ever since gained much attention, especially at the applied

mathematics and signal processing fields. Imaging, radar, speech recognition and data ac-

quisition are a few of the areas where CS is applied. In communications, many scientific

papers utilize its potential to estimate sparse channels. To clarify things, most channels in

wireless massive MIMO systems are characterized by sparse multipath. This means that

there are much fewer distinct arrivals than there are channel taps. What CS promises

to do is to estimate the channel signal with much less training overhead (pilot symbols)

or at higher accuracy with a specific number of training symbols. A CS-based low-rank

approximation strategy has been presented to improve channel estimation performance for

TDD systems [21], as well as a CS-based channel estimation method that tries to leverage

the per-link sparse multipath channels [1]. The later finds applications in TDD, FDD as

well as spatial domains, and also achieves a substantial reduction to training overhead

compared to the conventional LS approach. Specifically, by exploiting spatial sparsity in a

massive MIMO system, only O(s logM) training overhead is needed to estimate the CSI.
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Chapter 4

Orthogonal Matching Pursuit

4.1 The concept

Sparse approximation techniques have been in the spotlight of very active research since

the 90s and have done nothing but evolve ever since. Their overwhelming benefit has been

the compression of high-dimensional data with wavelets. However, approximating a signal

or an image with a sparse linear expansion from a possibly overcomplete dictionary of basis

functions (called atoms) has turned out to be an extremely useful tool to solve many other

signal processing problems; blind source separation, feature extraction and classification,

denoising, and detection, are only some of them.

When it comes to sparse signals, Joel A. Tropp and Anna C. Gilbert proposed a very

interesting greedy algorithm at their paper [29], which deals with the channel recovery prob-

lem with outstanding simplicity and effectiveness. Orthogonal Matching Pursuit (OMP)

can reliably recover a sparse signal, given some random linear measurements of that signal.

The proposition goes as follows: Let s be a m-sparse, d-dimensional signal (m-sparse

translates as m non-zero components in a vector signal). Given a sequence of vector

measurements {x1, ...,xN} ∈ Rd, one could create N linear measurements of the signal as

follows

⟨s,x1⟩, ⟨s,x2⟩, ..., ⟨s,xN⟩,

where ⟨·, ·⟩ is the inner product. However, concerns were raised over two issues. The first

one being how many measurements were enough to reconstruct the signal and the second

one what algorithm could succeed in reconstructing the signal given these measurements.
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Both of these questions are answered by the OMP algorithm and the experimental results

which follow.

4.2 Signal Recovery from Random Measurements via

Orthogonal Matching Pursuit

As we mentioned above, let s be and m-sparse signal and {x1, ...,xN} be a family of N

measurement vectors, where xi ∈ Rd. In order to collect N measurements of the signal,

we form a matrix Φ of size N × d and fill its N rows with the xi vectors. At this point,

we calculate the quantity u = Φs, creating thus an N -dimensional data vector u . Since

the original signal s is m-sparse, the data vector u is a linear combination of m columns

of Φ. So, signal recovery turns out to be the much simpler problem of identifying the m

columns of Φ participating in the measurement vector u.

THE ALGORITHM:

INPUT:

• A N × d measurement matrix Φ

• A N -dimensional data vector u

• The sparsity level m of the original signal

OUTPUT:

• An estimate ŝ ∈ Rd of the original signal

• An index set Λm with the positions of the non-zero entries

• An N -dimensional approximation am of the data vector u

• An N -dimensional residual rm = u− am
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Algorithm 1: OMP for signal recovery

Initialization:

Residual r0 = u

Index set Λ0 = ∅
Φ0 = ∅
Iteration counter t = 1

while t < m do
(1) Find the index λt such that:

λt = argmax
j=1,...,d

| ⟨rt−1, ϕj⟩ | .

In the case of a double max, break the tie deterministically.

(2) Update the index set Λt = Λt−1 ∪ {λt} and the matrix of chosen atoms

Φt = [Φt−1 ϕλt ].

(3) Solve a least-squares problem to obtain a new signal estimate:

xt = argmin
x

∥Φtx− u∥2.

(4) Calculate the new approximation of the data and the new residual:

at = Φtxt, rt = u− at.

end

(5) The estimate ŝ of the original signal has non-zero entries at the indexes listed

in Λm. The value of the entry with index λj has a value that equals the jth

component of xt
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As one can deduce, the idea is to pick columns in a greedy fashion. With each iteration,

the column of matrix Φ which has the strongest correlation with the remaining part of u

is selected, then its contribution is subtracted from u and the iteration continues using the

new residual. The goal is to identify the correct set of columns after m iterations. What

makes this task easier is the fact that the residual rt is always orthogonal to the columns

of Φt, and therefore the algorithm always selects a new column at every iteration.

As for the complexity of the above procedure, step 2 is the dominating step with a total

cost of O(mNd). In order to face this problem, the authors proposed to deal with the least-

squares problem by maintaining a QR factorization of Φt achieving, thus, a complexity of

O(tN). Often, the measurement matrix is unstructured and dense, therefore, the modified

Gram-Schmidt (MGS) algorithm was used, with alternative approaches to the issue already

existing like the paper [6] published in 1996. In the case of a structured measurement

matrix, more efficient implementations are proposed, like [15].

Despite the fact that algorithms dealing with unstructured and dense measurement

matrices already exist, the authors focused their work in the case where d is much larger

than m or N, so there would be a substantial difference at the complexity cost from the

rest of the research. As for the construction of the measurement matrix Φ, the two distri-

butions that can be used are (a) Gaussian and (b) Bernoulli, both of them normalized for

mathematical convenience.

4.3 Experiments

Let us now take a look at the experimental results and see for ourselves the power of the

algorithm.

The main task is to find a pattern to correctly recover a signal with high probability. For

this to succeed, we need to determine the number of measurements N that are necessary.

To begin with, we create an m-sparse signal by selecting m non-zero components (out of d)

and give them the value 1. Just like it was described before, a N × d measurement matrix

Φ is created, with entries drawn from a Gaussian distribution. By multiplying this matrix

with the sparse signal s the data vector u is acquired (u = Φs) and the OMP algorithm can

now begin. For each combination of the 3 variables, m,N and d the procedure is repeated

1000 times and at the end the percentage of the correctly recovered signals is calculated.

For the first experiment, the dimension d was set to 256. The curves show the per-
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centage of correctly recovered signals as a function of the number of measurements N . As

anticipated, there is a linear relationship between the sparsity number m and the number

of measurements N , meaning that the bigger m gets the more measurements are needed

to recover the signal.

Figure 4.1: The percentages of 1000 input signals correctly recovered as a function of the

number N of measurements for different sparsity levels m in dimension d=256.

A different point of view of the same data is drawn in Figure 4.2, where, for various

number of measurements N , one can see the value of m for which a 100% recovery of

signal is achieved. This representation might also be very useful from an application point

of reference. Suppose there are limited resources available for a system/application; Figure

4.2 shows the expected performance when there is only enough space for, let us say, N

=100 measurements with dimension d=256. Alternatively, under the same features, one

can hope for a 90% recovery of the signal with 16 non-zero entries and 50% with 20 entries.
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Figure 4.2: The percentages of 1000 input signals correctly recovered as a function of the

sparsity level m for different number N of measurements in dimension d=256.

To follow the above concept, it is interesting to find out the number of measurements

needed to achieve a certain success rate. The following table displays the relationship

between N and m necessary to recover a sparse signal which belongs in Rd, when d = 256,

1024, with 95% probability. It also presents the value N/(m ln d) which helps visualize a

pattern of values that N should take in order to have the specific recovery ratio. When

d = 256, N ≈ 1.67m ln 256, and when d = 1024 N ≈ 1.62m ln 1024. On the other hand,

theoretical results were much more pessimistic on the above mentioned value of N .

d = 256 d = 1024

m N N/(m ln d) m N N/(m ln d)

4 43 1.94 5 60 1.73

8 74 1.67 10 112 1.61

12 108 1.62 15 159 1.52

16 142 1.6

20 174 1.56

At this point, it should be noted that the above 2 experiments were repeated using

the entries with equal probability from the Bernoulli distribution in order to create the
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measurements. The results were pretty much identical and for the sake of brevity only the

first figure is included in this document with different distribution this time.

Figure 4.3: The percentage of 1000 input signals correctly recovered as a function of the

number N of Bernoulli measurements for different sparsity levels m in dimension d = 256.
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Chapter 5

Spatial modeling of MIMO channels

In this section, we focus on how the spatial multiplexing capability of MIMO channels

depends on the physical environment. This study has a big range, from specifics on the

condition and rank of the channel matrix, to the layout of the antennas at the transmitter

and the receiver respectively (i.e. rectangular antenna array). We will be focusing on

specific examples of idealized models and get a first taste on physical modeling so that

later we shall look into a natural approach to statistical modeling of MIMO channels. To

be concrete, we restrict ourselves to uniform linear arrays where the antennas are evenly

spaced on a straight line.

5.1 Line-of-sight channels

The simplest wireless channel is the line-of-sight channel, where there are no reflectors

or scatterers or any physical obstacles between an antenna pair. In this kind of wireless

communication we can distinguish two types of channel models, MISO (Multiple Input-

Single Output) and SIMO (Single Input-Multiple Output). It is important to point out

that in order to proceed with the modeling of wireless channels, the distance between the

transmit and receive antennas must be much greater than the size of the antenna arrays.

5.2 Line-of-Sight SIMO channel

The antenna separation in a line-of-sight SIMO channel is ∆rλc, where λc is the carrier

wavelength and ∆r is the normalized receive antenna separation, normalized to the carrier
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wavelength’s unit.

Between the transmit antenna and the ith receive antenna, the continuous-time impulse

response hi(τ) is given by:

hi(τ) = α δ(τ − di/c), i = 1, ..., nr,

which is easy to understand if we think that α is the attenuation of the path for which

we speak and di/c expresses the time delay of this path. The letter c stands for the speed

of light. Assuming di/c ≪ 1/W , where W is the transmission bandwidth, the baseband

channel gain is given by:

hi = α exp

(
−j2πfcdi

c

)
= α exp

(
−j2πdi

λc

)
,

where fc is the carrier frequency. The SIMO channel can be written as

y = hx+w,

where x is the transmitted symbol, w ∼ CN (0, N0I) is the noise and y is the received vec-

tor. From a spatial point of view, we usually name the channel gain vector h = [h1, ..., hnr ]
T

signal direction or the spatial signature induced on the receive antenna array by the trans-

mitted signal.

On the system model we are currently studying, the arrays at the transmitter and the

receiver are spaced at a distance far larger than their size. So, its safe to assume that the

paths from the transmit antenna to each receive antennas are, to a first order, parallel, so

di ≈ d+ (i− 1)∆rλc cosϕ, i = 1, ..., nr,

where d is the distance from the transmit antenna to the first receive antenna and ϕ is the

angle of incidence of the line of sight onto the receive antenna array.
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(a)

∆rλc

ϕ
d

(i − 1)∆rλc cosϕ

Tx antenna

Rx antenna i

(b)

d

ϕ
∆rλc

Rx antenna

Tx antenna i

(i − 1)∆rλc cosϕ

Figure 5.1: Line-of-sight channel with single transmit antenna and multiple receive anten-

nas. The signals from the transmitting antenna arrive almost in parallel at the receiving

antennas. (b). Line-of-sight channel with multiple transmit antennas and single receive

antenna.

The quantity (i − 1)∆rλc cosϕ is the displacement of receive antenna i from receive

antenna 1 in the direction of the line of sight. The quantity

Ω ≡ cosϕ

is often called the directional cosine with respect to the receive antenna array. The spatial

signature h = [h1, ..., hnr ]
T is therefore given by

h = α exp

(
−j2πd

c

)


1

exp(−j2π∆rΩ)

exp(−j2π2∆rΩ)
...

exp(−j2π(nr − 1)∆rΩ)


. (5.1)
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i.e., the signals received at consecutive antennas differ in phase by 2π∆rΩ due to the

relative delay. For notational convenience, we define

er(Ω) :=
1

√
nr



1

exp(−j2π∆rΩ)

exp(−j2π2∆rΩ)
...

exp(−j2π(nr − 1)∆rΩ)


, (5.2)

as the unit spatial signature in the directional cosine Ω.

The optimal receiver simply projects the noisy received signal onto the signal direction,

i.e., maximal ratio combining or receive beamforming. It adjusts for the different delays so

that the received signals at the antennas can be combined constructively, yielding a nr-fold

power gain. The SIMO channel thus provides a power gain but no degree-of-freedom gain.

5.3 Line-of-Sight MISO channel

It is easy to realise that the MISO line-of-sight model with proper spacing of the antennas

at the transmitter array can actually yield to same results as the SIMOmodel we considered

above. Specifically, when the transmit antennas are separated by ∆tλc and there is a line

of sight with angle of departure of ϕ (directional cosine Ω ≡ cosϕ), the MISO channel is

given by

y = h∗x+ w

where

h = α exp

(
−j2πd

λc

)


1

exp(−j2π∆tΩ)

exp(−j2π2∆tΩ)
...

exp(−j2π(nt − 1)∆tΩ)


. (5.3)

The optimal transmission (transmit beamforming) is performed along the direction

et(Ω) of h, where
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et(Ω) :=
1

√
nt



1

exp(−j2π∆tΩ)

exp(−j2π2∆tΩ)
...

exp(−j2π(nt − 1)∆tΩ)


, (5.4)

is the unit spatial signature in the transmit direction of Ω. The phase of the signal from

each of the transmit antennas is adjusted so that they add constructively at the receiver,

yielding a nt-fold power gain. Again, there is no degree-of-freedom gain.

5.4 Antenna arrays with only a line-of-sight path

Now we’ll look at a MIMO channel with just direct line-of-sight routes between the anten-

nas. Uniform linear arrays are used in both the transmitter and the receiver. ∆t and ∆r

are the normalized transmit and receive antenna separations, respectively. Between the

kth transmit antenna and the ith receive antenna, the channel gain is

hik = α exp(−j2πdik/λc), (5.5)

where a is the attenuation along the line-of-sight path and dik is the distance between the

antennas (assumed to be the same for all antenna pairs). Assuming that the antenna array

sizes are significantly lower than the distance between the transmitter and receiver:

dik = d+ (i− 1)∆rλc cosϕr − (k − 1)∆tλc cosϕt, (5.6)

where d is the distance between the first transmit and the first receive antenna, and ϕt, ϕr

are the angles of incidence of the line-of-sight path on the transmit and receive antenna

arrays, respectively. Defining Ωt ≡ cosϕt and Ωr ≡ cosϕr and substituting (5.6) into (5.5),

we get

hik = α exp

(
−j2πd

λc

)
· exp(j2π(k − 1)∆tΩt) · exp(−j2π(i− 1)∆rΩr) (5.7)

and we can write the channel matrix as

H = α
√
nrnt exp

(
−j2πd

λc

)
er(Ωr)et(Ωt)

∗, (5.8)
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where er(·) and et(·) have been defined previously. Thus, H is a rank-one matrix with a

unique non-zero singular value λ1 = α
√
ntnr.

Despite the fact that we are discussing a MIMO system, all transmitted signals are

projected onto a single-dimensional space (one non-zero eigenmode), implying that there

is only one spatial degree of freedom available. All transmit antenna spatial signatures (i.e.

the columns of H) are received in the same direction er(·), preserving the spatial degree

of freedom at 1.

The factor ntnr determines the MIMO channel’s power gain. If nt = 1, the power gain

is equal to the number of receive antennas, and the power gain is produced at the receiver

using maximum ratio combining (receive beamforming). The power gain is equal to the

number of transmit antennas and is produced via transmit beamforming in the case of nr

= 1. We profit from both transmit and receive beamforming in the general situation, since

the transmitted signals are constructively added in phase at each receive antenna, and the

signals at each receive antenna are further constructively combined. [10].

In summary, in an line-of-sight only environment, a MIMO channel provides a power

gain but no degree-of-freedom gain.

Geographically separated antennas

5.5 Geographically separated transmit antennas

Let us now investigate how to achieve degree-of-freedom gain. We focus on the transmitting

side, putting the 2 antennas far apart, with the distance being equal to the distance between

transmitter-receiver.
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ϕr1

ϕr2

Tx antenna 2

Tx antenna 1

Rx antenna
array

Figure 5.2: Two geographically separated transmit antennas with line-of-sight paths to the

receiver antenna array.

Each path at the above figure has its own attenuation, α1, α2, and ϕr1 , ϕr2 are the angles

of incidence, respectively. Under the assumption that the delay spread of the signals from

the receiver is much smaller that 1/W , we can write the spatial signature (channel vector)

that transmit antenna k impinges on the receive array as

hk = αk

√
nr exp

(
−j2πd1k

λc

)
er(Ωrk), k = 1, 2, (5.9)

where d1k is the distance between transmit antenna k and receive antenna 1, Ωrk ≡ cosϕrk

and er(·) is defined in (5.2). The channel matrix H = [h1h2] has linearly independent

columns under the condition

Ωr := Ωr2 − Ωr1 ̸= 0 mod
1

∆r

, (5.10)

where Ωri are each channel vector’s directional cosines. In this case, we achieve two degrees

of freedom, since the matrixH has two non-zero singular values λ2
1 and λ2

2. The transmitted

signal can now be received from two different directions that can successfully be resolved at

the receiver array. Following that thought, we will proceed with studying the resolvability

of signals in the angular domain.

Before that, it is important to note that Ωr1,Ωr2, being directional cosines, have a

range of [−1, 1] and therefore, cannot differ by more that 2. This simplifies the condition

in (5.10) to Ωr1 ̸= Ωr2, whenever the antenna spacing is ∆r ≤ 1/2.

5.6 Resolvability in the angular domain

As we saw before, if Ωr ̸= 0 mod 1/∆r, then the channel matrix H has full column rank.

However, this is not enough to efficiently yield two or more spatial degrees of freedom. It
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is important that the matrix H is well conditioned, which means the angular separation of

signals must be up to a specific point.

Specifically, the less aligned the spatial signatures are, the smaller the condition number

of H and vice versa. The angle θ between the two spatial signatures is:

| cos θ| := |er(Ωr1)
∗er(Ωr2)|. (5.11)

Since the second part of the above equation depends only on Ωr := Ωr2 − Ωr1, we define:

fr(Ωr2 − Ωr1) := er(Ωr1)
∗er(Ωr2). (5.12)

By direct computation,

fr(Ωr) =
1

nr

exp(jπ∆rΩr(nr − 1))
sin(πLrΩr)

sin(πLrΩr/nr),
(5.13)

where Lr := nr∆r is the normalized length of the receive antenna array. So,

| cos θ| =
∣∣∣∣ sin(πLrΩr)

nr sin(πLrΩr/nr)

∣∣∣∣ . (5.14)

It is safe to say that the condition of the matrix H depends directly on the above parameter

(5.14). Considering a1 = a2 = a, for simplicity, the squared singular values of H are:

λ2
1 = α2nr(1 + | cos θ|), λ2

2 = α2nr(1− | cos θ|) (5.15)

and the condition number is

λ1

λ2

=

√
1 + | cos θ|
1− | cos θ|

. (5.16)

The matrix is ill-conditioned whenever | cos θ| ≈ 1 and well conditioned otherwise. In

Figure 5.4, we plot this quantity | cos θ| = |fr(Ωr)| as a function of Ωr for a fixed array size

and different values of nr.
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Figure 5.4: The function |f(Ωr)| plotted as a function of Ωr for fixed Lr = 8 and different

number of receiving antennas nr.

As we can see, the function fr(·) has the following properties:

• fr(Ωr) is periodic with period nr/Lr = 1/∆r.

• fr(Ωr) peaks at Ωr = 0. f(0) = 1.

• fr(Ωr) = 0 at Ωr = k/Lr, for k = 1, ..., nr − 1.

fr(·) has a periodicity that is derived from the periodicity of er(·). It has a 2/Lr main lobe

that is focused on integer multiples of 1/∆r. The peaks of the other lobes are substantially
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lower. If the signatures are near to being aligned and the channel matrix is badly condi-

tioned, this indicates the signatures are close to being aligned and the channel matrix is

ill conditioned whenever ∣∣∣∣Ωr −
m

∆r

∣∣∣∣ ≪ 1

Lr

(5.17)

for some m ∈ Z. Now, if the antenna separation is ∆r ≤ 1
2
and since Ωr ranges in [−2, 2],

(5.17) leads to

|Ωr| ≪
1

Lr

. (5.18)

One may think, that increasing the number of antennas for a fixed antenna length Lr will

increase the above qualitative results. However, that is not the case. In fact, when nr → ∞
and ∆r → 0,

fr(Ωr) → ejπLrΩr(LrΩr), (5.19)

and the dependency of fr(·) on nr does not exist.

If Ωr ≪ 1
Lr
, the signals from two different transmit antennas cannot be successfully

resolved at the receive antenna array, consequently acquiring only one spatial degree of

freedom. Packing more and more antennas in a given amount of space does not increase

the angular resolvability of the receive antenna array. So, according to what has been

argued above, one may say that the parameter 1
Lr

is a measure of resolvability in the

angular domain.

5.7 Pictorial Representation of Angular Domain Re-

solvability

Let us try to see how an antenna array’s angular resolvability is represented. We use the

receive beamforming pattern to do this. That is, if the signal comes from a single direction

ϕ0, the best receiver will project the signal onto the vector er(cosϕ0), which is known as the

(receiving) beamforming vector. A signal coming from any other direction is attenuated

by a factor of ϕ.

|er(cosϕ0)
∗er(cosϕ)| = |fr(cosϕ− cosϕ0)|. (5.20)

The beamforming pattern associated with the vector er(cosϕ) is the polar plot

(ϕ, |fr(cosϕ− cosϕ0)|) (5.21)
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Figure 5.6: Receive beamforming patterns aimed at 90◦, with antenna array length Lr = 2

and different numbers of receive antennas nr. Note that the beamforming pattern is always

symmetrical about the 0◦ — 180◦ axis, so lobes always appear in pairs. For nr = 4, 6, 32,

the antenna separation ∆r ≤ 1/2, and there is a single main lobe around 90◦ (together

with its mirror image). For nr = 2, ∆r = 1 > 1/2 and there is an additional pair of main

lobes.
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Figure 5.7: Beamforming patterns for different antenna array lengths. (Left) Lr = 4 and

(Right) Lr=8. Antenna separation is fixed at half the carrier wavelength. The larger the

length of the array, the narrower the beam.

Two important notes yielded from the above figures about the beamforming pattern

are as follow:

• It has main lobes around ϕ0 and any angle ϕ for which

cosϕ = cosϕ0 mod
1

∆r

, (5.22)

which follows the periodicity of fr(·). If the antenna separation is ∆r < 1/2, there is

only one main lobe at ϕ and if ∆r > 1/2, there can be several main lobes. At both

these situations, there also exist a mirror image at −ϕ (Figure 5.6).

• The main lobe has a beam width (directional cosine width) of 2/Lr. The larger the

array length Lr, the narrower the beam and the higher the angular resolution (Figure

5.7).

In a wireless channel, the antenna array size Lr and bandwidth W are clearly analo-

gous. The parameter 1/W evaluates the time domain resolvability of signals: multipaths

arriving at time separations smaller than 1/W cannot be resolved by the receiver. The

parameter 1/Lr assesses the resolvability of angular domain signals: signals arriving at

an angle less than 1/Lr cannot be resolved by the receiver. Adding additional antenna

components cannot raise angular-domain resolvability beyond 1/Lr, just as oversampling

cannot increase time-domain resolvability beyond 1/W . This comparison will be used in
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the statistical modeling of MIMO fading channels and will be explored in further detail in

the next section.

5.8 Geographically separated receive antennas

Similarly to the case of the transmit separated antennas, we can achieve spatial diversity

by separating the receive antennas and having an antenna array at the transmitter. See

Figure 5.8.

ϕr2

ϕr1

Tx antenna array Rx antenna 1

Rx antenna 2

Figure 5.8: Two geographically separated receive antennas each with line of sight from a

transmit antenna array.

In this case, the channel matrix is

H =

[
h∗
1

h∗
2

]
, (5.23)

where

hi = αi exp

(
−j2πdi1

λc

)
er(Ωti), (5.24)

and, just like before, Ωti is the directional cosine of the signal from transmit antenna array

to the receive antenna i and di1 is the distance between the first transmit antenna and the

ith receive. In order for H to have two linearly independent rows, the angle separation of

the transmit directional cosines must be

Ωt := Ωt2 − Ωt1 ̸= 0 mod
1

∆t

. (5.25)
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As for the channel’s matrix condition, only when the angular separation of the two receive

antennas Ωt is of the order or larger than 1/Lt, where Lt := nt∆t, can we successfully

utilize the two degrees of freedom since the matrix is well conditioned.

Some transmitters, in order to measure the amount of energy dissipated in directions

other than the one transmitting, use the transmit beamforming pattern. Analogous to the

receive beamforming technique, the beam has width of 2/Lt, and the longer the antenna

array, the sharper the transmitter can focus the energy along the desired direction and the

better it can spatially multiplex information to multiple receive antennas.

5.9 Line-of-sight plus one reflected path

Let us now study whether we can achieve the same result as before (spatial diversity)

working with antenna arrays instead of putting two single antennas at the transmitter

or the receiver, far apart from each other. We consider the scenario where we have a

line-of-sight and a reflected path from transmitter to receiver array just like Figure 5.9.

Rx antenna 1

path 1

B

ϕt2

ϕt1 ϕr2

{
ϕr1

A

path 2

}
Rx antenna
array

Tx antenna 1

Tx antenna
array

Figure 5.9: A MIMO channel with a direct path and a reflected path.

Name the direct path, path 1, and the reflected one, path 2. Path i has an attenuation

of ai, an angle of ϕti (Ωti := cosϕti) and ϕri (Ωri := cosϕri) with the transmit and the

receive antenna array respectively. Using the principle of superposition, we can write the

channel matrix H as:

H = ab1er(Ωr1)et(Ωt1)
∗ + ab2er(Ωr2)et(Ωt2)

∗ (5.26)

where, for i = 1, 2,

abi := ai
√
ntnr exp

(
−j2πd(i)

λc

)
, (5.27)
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and d(i) is the distance between the first transmit and first receive antenna along the path

i. In order for H to have rank 2, it must hold true that

Ωt1 ̸= Ωt2 mod
1

∆t

, (5.28)

and

Ωr1 ̸= Ωr2 mod
1

∆r

. (5.29)

As for the the condition number of matrix H, we need the angle separation between the

signals, not only at the transmitter but also at the receiver, to fulfill the criteria mentioned

in previous sections. Specifically, angular separation |Ωt|, of the transmitter needs to be of

the same order or larger than 1/Lt, with the same going for the receiver about the amounts

|Ωr| and 1/Lr, where

Ωt = cosϕt2 − cosϕt1, Lt := nt∆t (5.30)

and

Ωr = cosϕr2 − cosϕr1, Lr := nr∆r. (5.31)

Let us now consider an approach which will make clear how the multipath effect can help

significantly in the rank and condition number of channel matrix H. Suppose we rewrite

H as H′′H′, where

H′′ =
[
ab1er(Ωr1), ab2er(Ωr2)

]
, H′ =

[
e∗t (Ωt1)

e∗t (Ωt2)

]
. (5.32)

H′ is a 2 by nt matrix and H′′ is a nr by 2. Suppose we have a scenario where there are

two imaginary receivers at point A and B just like in Figure 5.10.

H’

B

H”

A

Tx antenna
array

{ }
array

Rx antenna

Figure 5.10: Channel is viewed as a concatenation of two channels H′ and H′′ with inter-

mediate (virtual) relays A and B.

Point A is the point where the first signal is reflected on the wall and point B is located

along the line-of-sight path. It is safe to assume that the two matrices above have rank 2,
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since points A and B are geographically far apart. As for their condition number, matrix

H′ depends on LtΩt and matrix H′′ on LrΩr. If both matrices are well-conditioned, then

the overall channel matrix H is well-conditioned as well.

As someone could easily derive, the MIMO channel with two multipaths is actually

a concatenation of the nt by 2 channel in Figure 5.9 and the 2 by nr channel in Figure

5.10. Despite the position of the antenna arrays, a multipath environment provides virtual

“relays” which are geographically far apart, which leads to multiple degrees of spatial

diversity, making spatial multiplexing possible. In this context, multipath fading provides

an advantage that can be exploited.

Last but not least, it is crucial to point out that, in this example, we had a significant an-

gular separation both at the receiver and the transmitter, which led to the well-conditioning

of matrix H. This is not the case though, at every environment. In a case where the re-

flector is close to the receiver, and the transmitter-receiver distance is considerably large,

the angular separation of the transmitter Ωt is small. Respectively, in the case where the

reflector is close to the transmitter and far from the receiver, Ωr is small. Figure 6.1 helps

us visualize these scenarios.

(a)

(b)

very small
angular seperation

large angular
seperation

Tx antenna array

Rx antenna
array

Tx antenna
array

Rx antenna
array

Figure 5.11: (a) The reflectors and scatterers are in a ring around the receiver; the angular

separation of the transmitter is small. (b) The reflectors and scatterers are in a ring around

the transmitter; the receiver angular separation is small.

At both the above cases, the channel matrix H is not very well-conditioned. What

these all mean, in real life applications is that if the base station is located high, on top of
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a tower with hardly any scatterers around it, and, in contrast, a mobile user has plenty of

reflectors at his area, then in order for the BS to exploit the spatial multiplexing effect, its

size has to be many wavelengths long.
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Chapter 6

Modeling of MIMO Fading Channels

In the previous section, we dealt with deterministic channels. Based on the insights we

obtained, we can move towards statistical MIMO models and get a better understanding

of spatial multiplexing.

6.1 Basic Approach

It was made clear that, sometimes, despite the rank of H being 2, spatial multiplexing

was not possible if the matrix is ill-conditioned. To deal with this, we looked into the

angular separation between two spatial signatures Ωi (with i = r, t for the receiver and the

transmitter, respectively) and compared it to the angular resolvability of the transmitter

and receiver array, 1/Lt and 1/Lr. If Ωt was greater or equal to 1/Lt, we had a successful

angular resolvability at the transmitter array, with the same applying for the receiver array

if Ωr ≥ 1/Lr.

A this point, we come up with an insightful idea. Individual paths between the antenna

arrays can be multiple, but, yet, not all of them are resolvable. Therefore, in order to design

and analyse a communication system, it might be more productive to approach statistical

modeling of physical MIMO channels based only on spatially resolvable paths rather than

individual paths.

This method is not, in fact, novel. The statistical modeling of frequency selective fading

channels is based on the gains of the discrete-time sampled channel taps rather than the

gains of the individual physical routes. In this case, each tap may be viewed as a (time-

)resolvable path made up of a collection of physical pathways. These physical paths can
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be neatly or coarsely divided into resolvable pathways based on the system’s bandwidth.

Communication is influenced by the behavior of these (resolvable) pathways.

Our objective from the start was to transfer this reasoning from the time-resolution of

a bandlimited system to the finite angular-resolution of an array-size-limited system. The

transmit and receive antenna array lengths, Lt and Lr, determine the degree of angular

resolvability: pathways with transmit directional cosines that vary by less than 1/Lt and

receive directional cosines that differ by less than 1/Lr are not resolvable by the arrays.

This implies that we need ”sample” the angular domain at fixed angular spacings of 1/Lt

at the transmitter and 1/Lr at the receiver, and describe the channel using these new input

and output coordinates. In these angular coordinates, the (k, l)th channel gain is basically

the sum of all pathways whose transmit directional cosine is within an angular window of

width 1/Lt around l/Lt and whose receive directional cosine is within an angular window

of width 1/Lr around k/Lr. We shall now develop our strategies specifically for uniform

linear arrays (ULA).
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Figure 6.1: A representation of the MIMO channel in the angular domain. Due to the

limited resolvability of the antenna arrays, the physical paths are partitioned into resolvable

bins of angular widths 1/Lr by 1/Lt. Here are the 4 receive antennas (Lr =2) and 6 transmit

antennas (Lt = 3).

6.2 MIMO Multipath Channel

Let us consider the narrowband MIMO channel:

y = Hx+w. (6.1)

At the two points of communication we place uniform linear arrays (ULA) with normalized

lengths Lt, Lr and nt, nr number of antennas, respectively, for the transmitter and the

receiver. We use for normalization the wavelength of the passband transmitted signal λc;

∆t and ∆r denote the normalized spacings of the ULA’s antennas with ∆t = Lt/nt and

∆r = Lr/nr regarding the transmitter and the receiver. For simplicity, let the channel H

be fixed. Τime-variation is easy to be dealt later on.
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We consider the a scenario where we have an arbitrary number of physical paths between

the transmitter and the receiver. As we mentioned before, ai is the attenuation of the ith

path, which makes an angle ϕti (Ωti := cosϕti) and angle ϕri (Ωri := cosϕri) with the

transmitter and the receiver array respectively. Then, H is given by:

H =
∑
i

abier(Ωri)et(Ωti)
∗, (6.2)

where, as it was mentioned earlier,

abi := ai
√
ntnr exp

(
−i2πd(i)

λc

)
, (6.3)

er(Ω) :=
1

√
nr



1

exp(−j2π∆rΩ)

exp(−j2π2∆rΩ)
...

exp(−j2π(nr − 1)∆rΩ)


(6.4)

et(Ω) :=
1

√
nt



1

exp(−j2π∆tΩ)

exp(−j2π2∆tΩ)
...

exp(−j2π(nt − 1)∆rΩ)


(6.5)

Vectors er(Ω) and et(Ω) denote the transmitted and received unit spatial signatures along

the direction Ω, and d(i) is the distance between first transmit and first receive antenna of

path i.

6.3 Angular Domain Representation of Signals

When a signal arrives onto the receiver array with a directional cosine Ω it is along the

unit spatial signature er(Ω), given by (6.4). It is important to remember that

fr(Ω) := er(0)
∗ er(Ω) =

1

nr

exp(jπ∆rΩ(nr − 1))
sin(πLrΩ)

sin(πLrΩ/nr)
. (6.6)

Specifically (see Figure 5.4),

fr

(
k

Lr

)
= 0 and fr

(
−k

Lr

)
= fr

(
nr − k

Lr

)
, k = 1, 2, ..., nr − 1. (6.7)
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Consequently, the nr original vectors

Sr :=

{
er(0), er

(
1

Lr

)
, ..., er

(
nr − 1

Lr

)}
(6.8)

form an orthogonal basis for the received signal space Cnr . This basis help us represent the

received signals in the angular domain. Similarly, from the transmitter perspective, the nt

original vectors are:

St :=

{
et(0), et

(
1

Lt

)
, ..., et

(
nt − 1

Lt

)}
. (6.9)

Let us recall Figs 5.6 and 5.7, where we exploited the beamforming pattern of er(Ω). From

what we saw, it is conceivable that a received signal along any physical direction has almost

all of its energy along one er(k/Lr) vector/angle/direction. Since different er(k/Lr)s have

different main lobes, it is fairly reasonable to argue that the orthonormal basis formed by

the vectors in St and Sr provide a simple (but approximate) decomposition of the received

signal into multipaths received along the different physical directions, with a maximum

resolution of 1/Lt or 1/Lr respectively.

6.4 Angular Domain Representation of MIMO Chan-

nels

Let Ut be the unitary matrix nt × nt, the columns of which are the basis vectors in St,

with the same standing for Ur and Sr. Using Ut and U∗
t , the following transformation is

defined

x = Utx
a, xa = U∗

tx, (6.10)

with x being the original nt-dimensional signal transmitted from the antenna array and xa

its angular domain representation. In this case, the (k, l)th element of Ut is

1
√
nt

exp

(
−j2πkl

nt

)
k, l = 0, ..., nr − 1. (6.11)

Hence, xa is nothing more than the Inverse Discrete Fourier Transform of x. It is important,

however, to note that it is due to the uniform linear arrays that the specific transformation

is only a DFT.

Similar to vector-signal transformation, we can transform the MIMO channel to the

angular domain. Ut and Ur are the nt × nt and nr × nr unitary matrices which will help
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us achieve the following representation:

ya = U∗
rHUtx

a +U∗
rw = Haxa +wa, (6.12)

where

Ha := U∗
rHUt (6.13)

is the angular domain transformation of the channel matrix and

wa := U∗
rw ∼ CN(0, N0Inr). (6.14)
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Chapter 7

Joint Channel Estimation

Let us now enter the channel estimation sector. So far, the most common technique for

estimating the channel is the Least-Squares method, which works quite well for relatively

simple channel models and propagation scenarios. However, this is not the case here. As

we discussed in previous chapters, massive MIMO systems consist of multiple antennas

both at the BS and the receiver, making thus, the communication model quite complex.

Furthermore, this kind of system is mostly used for wireless communication in an urban

environment. This adds several challenges to the signal propagation process, but also

offers opportunities to exploit. The channel matrices become quite large and phenomena

like multipath propagation make the channel estimation complexity grow significantly. For

this reason, researchers had to find new, more efficient ways of estimating the channel.

7.1 Joint Orthogonal Matching Pursuit

Following this concept, we focus on a very specific scenario, upon which this thesis is

based. This new proposition for CSIT estimation and feedback takes advantage of the

common local scatterers surrounding the users, thus, achieving a substantial reduction of

CSIT estimation and feedback overhead, since it is able to exploit the hidden joint channel

sparsity among different users.

First, we need to introduce a joint sparsity model able to comply with the channel

matrix features in a multi-user massive MIMO FDD system. Based on this model, a

communication procedure is established so that users can obtain the compressed channel

observations and transmit them right back to the BS. At this point, CSIT is reconstructed
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using a joint recovery algorithm which is based on these compressed measurements [23].

7.2 The system

Let us think of a flat block-fading, multi-user massive MIMO system that operates in

FDD mode. This system consists of one BS with M antennas and K users. Each user

carries a mobile equipment with N antennas. The transmission starts when the BS uses

one downlink pilot channel to broadcast a sequence of T training symbols with its M

antennas as Figure 7.1 illustrates. At the jth time slot, the transmitted signal from the

BS is xj ∈ CM×1, j = 1, ..., T . The user i, receives a vector signal at the same time slot

yij ∈ CN×1 that can be expressed as

yij = Hixj + nij, j = 1, ..., T. (7.1)

The quantity Hi ∈ CN×M is the channel matrix of user i; nij ∈ CN×1 is the complex

Gaussian noise with zero mean and unit variance.

Of course, we can address the same system from a matrix point of view. Let X =

[x1, ...,xT ] ∈ CM×T denote the concatenated pilot symbols and Yi = [y1, ...,yT ] ∈ CN×T

the received signal. Last, let Ni = [ni1, ...,niT ] ∈ CN×T are the concatenated noise vectors.

Then, (7.1) can be written as

Yi = HiX+Ni, (7.2)

where tr(XXH) = PT is the sum transmit SNR in the T trainning time slots and P is the

transmit SNR per time slot at the BS.

At this point, it is important to mention that, in order to fully exploit the array gains

and spatial degrees of freedom of a massive MIMO system, it is crucial for the CSIT to be

available at the BS. For this to happen, in an FDD system, a two-step procedure needs to

be followed. First, each user needs to perform the CSI estimation of Hi locally, and then,

feed the estimate Ĥi back to the BS. Each user uses a Least-Squares based estimation

technique ([5], [25]), getting thus the LS channel estimate

Ĥi = YiX
†. (7.3)

The quantity X† = XH(XXH)−1 is the Moore-Penrose pseudoinverse and Yi stands for

the noisy pilot symbols received at the user side. Now, it is time for the estimated CSI
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to be fed back to BS. However, this LS technique requires T ≥ M , which translates to

a prohibited large training overhead for the estimation and feedback of CSIT, especially

when we talk about massive MIMO multi-user systems where M is large. Therefore, it

is easy to comprehend that the LS approach is not suitable for this kind of systems and

there is need for a more efficient approach to the CSIT estimation challenge, one that can

exploit the hidden channel sparsity of the channel matrices in the network.

7.3 Joint Sparsity Channel Model

At this point, we are going to deal with signal propagation from a spatial point of reference

and use the angular domain representation we presented in a previous section.

To begin with, we assume that we will always deal with uniform linear arrays (ULA) at

the base station and the users. This way, the virtual angular representation of the channel

matrix of users is given by

Hi = ARH
w
i A

H
T , (7.4)

with AR ∈ CN×N and AT ∈ CM×M being the unitary matrices for the angular domain

transformation for the ith user and the BS side, respectively. Hw
i ∈ CN×M is the angular

domain channel matrix. When its (k, l) entry is non-zero, this means that there is a spatial

path from the lth transmit direction to the kth receive direction for user i. It is widely

accepted that, in a multi-user massive MIMO system, angular domain channel matrices

are sparse due to limited local scattering at the BS side.

Let us now take a closer look at the channel’s matrix composition. Let the jth row of

Hw
i be hij. A much used concept is the one of the vector-signal’s support. The support

-supp(h)- denotes the positions of the non-zero entries of a vector or a matrix, i.e. supp(h)

= {i : h(i) ̸= 0}. After a extended research on massive MIMO channel matrices form,

several observations have been made regarding their support.

Specifically, one of these observations (Observation I), addresses the sparsity support

within an individual channel matrix. From [16], [14] one can see that the channels in a

massive MIMO system are usually correlated at the BS side but not at the user’s side. Using

the spatial point of view, we can justify this phenomenon thinking of the rich scattering

surrounding a user, that makes the sparsity support take various forms. In contrast, a

BS is usually placed somewhere high with little to no scattering objects around. Hence,
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there are only a few active transmit directions reaching it. This is the reason why the row

vectors in Hw
i tend to have the same sparsity support

supp(hi1) = supp(hi2) = · · · = supp(hiN).

Another important observation (Observation II) was made regarding the interchannel

correlation or, in other words, a partially shared support between different channel matri-

ces. It is widely accepted [14] that users who are physically close to each other, i.e. two

cellphone users at a city center, usually have correlated channel matrices. This happens

because these users share some common local scatterers and consequently their channel

matrices {Hw
i } at the BS side usually share a partially common support. In mathematical

terms, there exists a non-zero index set Ωc of the common support, such that Ωc ⊆ Ωi, ∀i.
Of course, in the case where users have a single antenna (N = 1), the channel matrix

becomes a vector hw
i , so there is no point discussing about joint sparsity.

Channel Model

Based on what was mentioned above, we assume that the channel matrices {Hw
i } we are

going to deal with have certain properties.

First, there is the Individual sparsity due to local scattering at the BS. Let hi,j be the

jth row of Hw
i ; then, every row-vector of this matrix has the same sparsity structure. In

other words, there exists an index set Ωi, 0 < |Ωi| ≪ M,∀i, such that

supp(hi1) = supp(hi2) = ... = supp(hiN) ≜ Ωi. (7.5)

Another property is the Distributed joint sparsity due to common scattering at the BS.

This means that different channel matrices Hw
i share a common sparsity support Ωc. This

index set Ωc can be expressed as
K⋂
i=1

Ωi = Ωc. (7.6)

It is important to mention that the entries of (Hw
i )Ωi

follow an i.i.d. complex Gaussian

distribution with zero mean and unit variance. The notation (Hw
i )Ωi

is frequently used

and refers to the sub matrix formed by collecting the column vectors of Hw
i whose indices

belong to Ωi. Figure 7.1 helps us understand the sparsity concept just described.
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Figure 7.1: Due to the restricted and shared local scattering impact on the BS side, the

joint channel sparsity structure is shown. The support for the common scatterers shared

by all users is Omegac, but the support for the individual scatterers for the ith user is

Omegai.

Massive MIMO channel sparsity support can be parameterized by P = {Ωc, {Ωi : ∀i}},
where, as mentioned before, Ωc and Ωi denote the common and individual sparsity support,

respectively. Some special cases occur when Ωc = Ωi, ∀i. In this case, one can understand

that all the users share the same local scatterers at the BS side. Furthermore, if Ωc = ∅,
then are no common scatterers shared among the users. At this point, we can make

an assumption and argue that there is a statistical bound on the channel sparsity levels

(|Ωc|, |Ωi|). Specifically, let Λ be an event such that

Λ : |Ωc| ≥ sc, |Ωi| ≤ si,∀i. (7.7)

The likelihood of this event is Pr(Λ) > 1 − ϵ for a small ϵ; S = {sc, {si : ∀i}} refers to
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the statistical sparsity bound. This way we ensure that, at each user’s channel matrix,

there will be at least sc and at most si common and individual sparsity indices, respec-

tively, but both of them will be much less than the number of transmit antennas of the

BS (sc, si ≪ M). However, neither the BS nor the MS have prior knowledge of these

sparsity bounds. In practice, information about S can be obtained when the features of

the propagation environment are already known to the system. For example, in [2], offline

channel propagation measurements at the BS are used to obtain the desired sparsity bound

knowledge, and [7] utilizes a long term stochastic learning and estimation technique for the

same purpose. As one can see, S depends on the large scale properties of the scattering

environment and changes slowly. However, in order to proceed with the development of the

CSIT estimation procedure, we consider that the statistical sparsity bound S is available

to the BS.

7.4 Distributed Compressive CSIT Estimation and Feed-

back

It now becomes clear that, in order to avoid the prohibitively large pilot training and

feedback overhead in a massive MIMO system, this joint sparsity structure described above

must be sed. For this to be feasible, the CSIT estimation needs to be done at the BS side.

This leaves the users with a simple purpose, to distributively observe the compressed

measurements {Yi} and feed them back to the BS, where {Hi} is recovered jointly. Let us

now take a look at an algorithm trying to estimate the CSIT utilizing the above technique,

and a figure depicting its functionality.

Algorithm for Distributed Compressive CSIT Estimation and Feedback

• Step 1 (Pilot Training): The BS sends the compressive trainning symbols X ∈
CM×T , with T ≪ M.

• Step 2 (Compressive Measurements and Feedback): The ith mobile user observes the

compressed measurements Yi from the pilot symbols given in (7.2) and feeds back

to the BS side.

• Step 3 (Joint CSIT Recovery at BS): The BS recovers the CSIT {He
i , ...,H

e
K} jointly

based on the compressed feedback {Y1, ...,YK}.
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Figure 7.2: To allK users, the BS broadcasts a compressive training pilotX ∈ CM×T (recall

that T ≪ M). The compressive measurement Yi is obtained locally by each user and fed

back to the BS. The BS jointly recovers the CSIT {He
i , ...,H

e
K} based on the obtained

compressive measurements {Y1, ...,YK}.

The letter T refers to the pilot training and feedback overhead in the above algorithm.

Although our attention is focused elsewhere, and specifically at step 3. That is because

this is where the hidden joint sparsity model can be exploited and drastically reduce the

training overhead T needed to estimate the CSIT in a massive MIMO multi-user system.

This problem can be formulated as follows:

Joint CSIT Recovery at BS :

min
{Hi,∀i}

K∑
i=1

||Yi −HiX||2F (7.8)

s.t. {Hw
i : ∀i} satisfy the joint sparsity

model as described in (7.5) and (7.6).

This problem, under the specific constraint, turns out to be extremely challenging. The

design and implementation of an algorithm able to tackle the above problem is of utmost

importance.

7.5 Joint CSIT Recovery Algorithm Design

In order to deliver a low complexity greedy algorithm capable of solving the problem in

(7.8), the channel equation in (7.2) needs to be modified to meet the CS model standards.
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Denote the following variables:

Ȳi =

√
M

PT
YH

i AR ∈ CT×N , X̄ =

√
M

PT
XHAT ∈ CT×M , (7.9)

H̄i = (Hw
i )

H ∈ CM×N , N̄i =

√
M

PT
NH

i AR ∈ CT×N . (7.10)

Substituting the variables into (7.2):

Ȳi = X̄H̄i + N̄i ∀i, (7.11)

where X̄ is the measurement matrix with tr(X̄
H
X̄) = M and H̄i is the sparse channel

matrix. Also:

||Ȳi − X̄H̄i||2F =
M

PT
||Yi −HiX||2F , ∀i, (7.12)

thus, solving the problem in (7.8), turns out to be equal to finding {H̄i : ∀i} that minimizes

(
∑K

i=1 ||Ȳi − X̄H̄i||2F ) while satisfying the sparsity constraint mentioned in (7.8). We

develop an algorithm to solve problem (7.8) based on this analogous relationship and

equation (7.11).
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Algorithm 2 (Joint-OMP to solve Problem 7.8)

Input: {Yi : ∀i}, X, S = {sc, {si : ∀i}}, η1, η2 (η1 < 1, η2 > 1).

Output: Estimated {He
i} for {Hi : ∀i}.

• Step 1 (Initialization): Compute Ȳi ∀i, Χ̄ from {Yi : ∀i} and X, as in (7.9).

• Step 2 (Common Support Identification): Initialize Ri = Ȳi ∀i, Ωe
c = ∅ and then

repeat the following procedures sc times.

−A (Support Estimation): Estimate the remaining index by

Ω′
i = argmax|Ω|=si−|Ωe

c| ||(X̄Ω)
HRi||F , ∀i.

−B (Support Pruning): Prune support Ω′
i to be Ω′

i ={
j : j ∈ Ω′

i, ||(X̄(j)HRi||2F ≥ η1N
}
, ∀i.

−C (Support Update): Update the estimated common support as

Ωe
c = Ωe

c

⋃{
argmaxj

∑K
i=1 I{j∈Ω′

i}

}
.

−D (Residual Update): Ri = (I − PΩe
c
)Ȳi, where PΩc is a projection matrix given

by

PΩe
c
=

(
X̄Ωe

c

) (
X̄Ωe

c

)†
. (7.13)

• Step 3 (Individual Support Identification): Set Ωe
i = Ωe

c, ∀i and estimate the indi-

vidual support Ωe
i for each user i individually. Specifically, for the ith user, stop if

||Ri||2F ≤ η2NM
P

or the following procedures have been repeated (si − sc) times.

−A (Support Update): Update the estimated individual support as

Ωe
i = Ωe

i

⋃
{argmax

j
||X̄(j)HRi||F}.

−Β (Residual Update): Ri = (I−PΩe
i
)Ȳi.

• Step 4 (Channel Estimation by LS): The estimated channel for user i is He
i =

AR(H̄
e
i )

HAH
T where H̄

e
i is given by (H̄

e
i )

Ωe
i = (X̄Ωe

i
)†Ȳi, (H̄

e
i )

[M ]\Ωe
i = 0,∀i.

The above mentioned η1, η2 (η1 < 1, η2 > 1) are threshold parameters. The main goal

is to identify the common (Ωc) and individual (Ωi) sparsity support, which is what step 2
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and step 3, respectively, aim to do. As soon as this is done, step 4 utilizes the estimated

Ωe
i and recovers the channel matrices through LS. Figure 7.3 helps us visualize the above

procedure.

Figure 7.3: Algorithm’s 2 main processing flow.

As someone can understand, identifying the common and individual sparsity support

is the key factor for this technique. Towards this aim, certain strategies can be adopted;

specifically:

• Strategy to exploit the sparsity support within an individual channel ma-

trix

From what was previously mentioned, H̄i, the estimation target in (7.11), can be

simultaneously zero and non-zero on a single row of size N . Just like similar re-

search [30], a row vector of H̄i is being identified as an atomic unit based on the

aggregate matching effects between the residual Ri and the measurement matrix X̄.

For instance, the support index is selected based on the sum of the N matched

terms corresponding to the N columns of the residual matrix Ri; for example,√∑N
l=1 ||X̄(j)HRi(l)||2 = ||X̄(j)HRi||F , as in Step 2.A and Step 3.A.

• Strategy to exploit the partially shared support between different Channel

Matrices.

The different channel matrices {H̄i} for each user share a partial common support,
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just like it is visualized in Figure 7.1. This means that the index set Ωc is most

likely to be estimated as part of the sparsity support by most users. For example, if

a certain index is identified by most, or all of the K users, then it is very likely to

be part of the common support set Ωc. Conversely, in case an index belongs to the

common sparsity support set Ωc, it is going to be estimated as a sparsity support

index by most of the users in the system. According to this thought, Step 2.B of the

algorithm has been designed with the purpose of selecting the index that appears the

most times in the estimated index set Ω′
i ∀i, as the next entry of the Ωc.

Assume that si = s, ∀i, for simplicity. The overall complexity of the Algorithm is

O(KsMNT ), which is the same order as recovering each H̄i individually using the

conventional 2-norm SOMP ([30],[8]). Furthermore, compared with some conven-

tional CS recovery algorithms (e.g. [29]) or sparse channel estimation [2] in which

knowledge of instantaneous sparsity level is needed, the proposed J-OMP requires

only the statistical channel sparsity information S, which can be estimated using

slow-timescale stohastic learning [7].

7.6 Design of Pilot training Matrix

Restricted Isometry Property

The restricted isometry property (RIP) is commonly used in classical CS work. Its role is

to evaluate the adequacy of the measurement matrix utilized in a performance analysis of

a CS recovery algorithm.

Definition : A Matrix X̄ ∈ CT×M satisfies the RIP of order k with the restricted

isometry constant (RIC) δk, if 0 ≤ δk ≤ 1 and δk is the smallest number such that

(1− δk)||h||2 ≤ ||X̄h||2 ≤ (1 + δk)||h||2

holds for all h ∈ CM×1 where ||h||0 ≤ k.

Let us jump onto the design of the training matrix itself. As it was mentioned above,

the RIP is widely used in CS literature to characterize the quality of a measurement matrix.

The recovery can be efficient and robust once the measurement matrix satisfies a proper

RIC δs requirement. Research has shown that a matrix with entries drawn from a sub-
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Gaussian distribution satisfies the RIP with overwhelming probability [8], thus it is a very

popular matrix generation distribution among CS works.

According to this, and based on the signal model in (7.2), the pilot matrix X ∈ CM×T

can be created as X = ATXα, where Xα ∈ CM×T is i.i.d. drawn from
{
−
√

P
M
,
√

P
M

}
,

with equal probability.

Experimental Results

The authors X. Rao and VKN. Lau of [23], compared their algorithm’s performance to

other similar CS recovery algorithms at their experimental figures. Although, that is not

the case for this thesis, since the goal was to study, understand and reproduce their work

to the best of our abilities.

Without further ado, in our case, we consider a narrow band (flat fading) multi-user

massive MIMO FDD system consisting of one BS and K users. The equipment used at the

BS side utilizes M antennas whereas each user has N antennas on their equipment. The

average transmit SNR at the BS is P and the statistical information on the channel sparsity

level is denoted as S = {sc, {si = s ∀i}}. We assume a rich local scattering environment;

the number of individual and common spatial paths from the BS broadside(corresponding

to the channel sparsity levels |Ωi|, |Ωc|) are randomly generated as |Ωi| ∼ U(s − 2, s) and

|Ωc| ∼ U(sc, sc + 2) respectively (with |Ωc| ≥ sc and |Ωi| ≤ s), where U(α, b) stands for

the discrete uniform distribution on the integers {α, α + 1, ...b}. The spatial paths from

the BS to the UE have equal path loss and the angles of departure are randomly and

uniformly distributed over [0, 2π]. The threshold parameters η1, η2 in our algorithm are

set to η1 = 0.2, η2 = 2.

At this point we need something to help us graph the performance of our algorithm,

and thus we use the Normalized Mean Squared Error (NMSE) calculated as follows:

E
(
||Hi −He

i ||2F
||Hi||2F

)
(7.14)

where ||Hi||2F is the Frobenius norm of the original channel matrix Hi, squared. Accord-

ingly, the amount ||He
i ||2F stands for the Frobenius norm of the estimated channel matrix

He
i squared. The purpose of the paper upon this thesis is based, was to compare the per-

formance of the suggested algorithm to similar CS works of the time and present the better

results that were achieved. This is why, at the original experimental figures, the perfor-
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mance of the J-OMP algorithm is sketched among other algorithms such as Conventional

LS, OMP, 2-norm SOMP, M-BP, SD-OMP and Genie-aided LS.

However, the goal of this thesis is to comprehend, at the best possible level, the con-

cepts this paper addresses, become familiar with the relatively new approach on the signal

propagation-spatial point of reference/angular domain- comprehend how massive MIMO

systems work and reproduce the J-OMP algrithm to the best of our abilities. This is why

at the following figures, there will be 2 plots side by side. The right one will be the paper’s

results, where the J-OMP performance is among other algorithms’ performances, whereas

at the left figure will be the result of our reproduction of the original algorithm so we can

review the similarity between them.
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1.CSIT Estimation Quality Versus Overhead T

The normalized mean squared error (NMSE) of the estimated CSI is compared to

the training and feedback overhead T in Figure 7.4, when the number of BS antennas is

M = 160, number of MS antennas is N = 2, number of users is K = 40, common sparsity

parameter sc = 9, individual sparsity parameter s = 17, and transmit SNR P = 28

Figure 7.4: NMSE of CSIT versus the training overhead T with parameters M=160, N=2,

K=40, sc=9, s=17 and transmit SNR P=28dB.

According to this graph, the CSIT estimate quality improves as T grows, and the J-

OMP method outperforms the other algorithms significantly. This is because the proposed

J-OMP takes use of the hidden joint sparsity among the user channel matrices to improve

CSIT recovery. Specifically, the performance gains of the 2-norm SOMP ([11], [30]) and

M-BP ([12], [28]) schemes over OMP demonstrate the benefits of exploiting the individual

joint sparsity among the user channel matrices (Observation I), and the performance gain

of J-OMP over the 2-norm SOMP and M-BP demonstrate the benefits of exploiting the

distributed joint sparsity among the user channel matrices (Observation ΙΙ). Furthermore,

when T increases, the suggested J-OMP, 2-norm SOMP, M-BP, SD-OMP, and OMP all

approach the genie-added LS method. This is due to the fact that the channel support

recovery probability of these schemes all go to 1 as T grows. This finding also emphasizes

the significance of having a better likelihood of support recovery in the CSIT reconstruction.

As for our work, the similarity between the original and the reproduced algorithm’s

performance is obvious. Corroborating, thus, the superiority of J-OMP over the rest, CS

algorithms.
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2.CSIT Estimation Quality Versus SNR P

In Figure 7.5, we compare the NMSE of the estimated CSIT versus SNR P , under T = 45,

M = 160, N = 2, K = 40, sc = 9 and s = 17.

Figure 7.5: NMSE of CSIT versus the SNR P with parameters T=45, M=160, N=2,

K=40, sc=9, and s=17.

We observe that the proposed J-OMP algorithm has a substantial performance gain

over the baselines and relatively larger performance gain is achieved in higher SNR regions.

In this occasion, our work slightly differs from the original algorithm, since the per-

formance is much better from the begging, with relatively low SNR values. As the SNR

increases, the original J-OMP presents significant improvement of the CSIT recovery qual-

ity, whereas, our improvement is more smooth. At the end, both implementations achieve

the same recovery quality, around 10−3.
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3. CSIT Estimation Quality Versus Common Sparsity Support sc

In Figure 7.6, we compare the NMSE of the estimated CSIT versus the common sparsity

support sc, under T = 45, M = 160, N = 2, K = 40, s = 17, and P = 28dB.

Figure 7.6: NMSE of CSIT versus the common sparsity sc under T=45, M=160, N=2,

K=40, s=17 and transmit SNR P=28dB.

Over here, one can observe that the CSIT estimation quality of the proposed J-OMP

algorithm increases as the sc parameter becomes larger. This is because this novel algorithm

is able to exploit the common sparsity shared between the K users, and this common

support is more likely to be estimated by this new algorithm. Thus, as the common

support increases (larger sc), better CSIT estimation is achieved.

As for our implementation, when the users share an increasing common support, the

quality of the estimation gets better, similarly to the original implementation.
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4. CSIT Estimation Quality Versus Individual Sparsity Support s

In Figure 7.7, we compare the NMSE of the estimated CSIT versus the individual sparsity

support s, under T = 45, M = 160, N = 2, K = 40, sc = 9, and P = 28dB.

Figure 7.7: NMSE of CSIT versus the individual sparsity s under T=45, M=160, N=2,

K=40, sc=9 and transmit SNR P=28dB.

We observe that the increase in the individual sparsity parameter s has a negative

impact on the quality of the CSIT recovery. This is because as the sparsity level gets bigger,

larger number of measurements are needed for a successful channel recovery, according to

the classical CS theory [4]. Hence, given a specific value of overhead T , the CSIT estimation

quality drops as the channel sparsity increases; a fact that is confirmed by the results of

our implementation in the left figure.

5. CSIT Estimation Quality Versus MS Antennas N

In Figure 7.8, we compare the NMSE of the estimated CSIT versus MS antennas N , under

T = 45, M = 160, K = 40, sc = 9, s = 17 and P = 28dB.
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Figure 7.8: NMSE of CSIT versus the user’s antennas N under T=45, M=160, K=40,

s=17, sc=9 and transmit SNR P=28dB.

In this case, adding more antennas at the UE practically increases the rows of the

channel matrix. This way, the proposed J-OMP algorithm is able to exploit the individual

joint sparsity among the N row vectors of each channel matrix. Larger N means better

CSIT estimation quality, exactly what our implementation results show.

6. CSIT Estimation Quality Versus BS Antennas M

In Figure (7.9), the NMSE of the estimated CSIT is sketched versus the number of BS

antennas M , under T = 45, N=2, K=40, s=17, sc=9 and P=28dB.

Figure 7.9: NMSE of CSIT versus the MS antennas M under T=45, N=2, K=40, s=17,

sc=9 and transmit SNR P=28dB.
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In this case, the proposed J-OMP algorithm achieves better performance than the rest.

Although, the estimation quality of the CSIT decreases as M increases. This happens

because, larger M leads to larger channel matrix. Consequently, more CS measurements

are needed to estimate the CSIT according to classical CS theory [4]. In other words,

giving a specific value to the CSIT measurements overhead T and increasing the number

of BS antennas M has a significant impact on the CSIT estimation quality.
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7. CSIT Estimation Quality Versus Number of MS users K

In Figure 7.10 , the NMSE of the estimated CSIT is sketched versus the number of users

K, under T = 45, N=2, K=40, s=17, sc=9 and P=28dB.

Figure 7.10: NMSE of CSIT versus the number of users K under T=45, M=160, N=2,

s=17, sc=9 and transmit SNR P=28dB.

We observe that the novel J-OMP algorithm shows a significant increase in CSIT es-

timation quality as the number of users grow. Thus J-OMP exploits the distributed joint

sparsity among the users’ channel matrices, in order to jointly identify the common spar-

sity support. Hence, larger number of users (K) leads to better recovery of the common

support and, thus, a better CSIT estimation quality.
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Chapter 8

Conclusion

Massive multiple-input-multiple-output (MIMO) is thought by many to be the one technol-

ogy describing the 5th generation of communication networks. That is only natural since

it significantly improves both spectral and energy efficiency. However, this new technology

does not come without challenges. The large number of antennas used, mostly on the

BS, makes the complexity of computations prohibitively large. This phenomenon strongly

impacts the communication since it is devastating for the radio resources and also for the

real-time response of applications.

At this point, we realized that the usual ways of approaching and studying a com-

munication system (time and frequency domain) cannot provide a viable solution to our

problem. Maybe looking into signal propagation from a spatial point of view help us.

This is when the Angular Domain representation of the signal comes to untie our hands.

Studying the direction from which the signal arrived but also how the scatterers affect the

communication by their place in the environment and their number, gave us new insights

into how to deal with the problem of fast and reliable communication. In order to transi-

tion from time/frequency to angular domain, we use a transformation method which, under

specific conditions (specific spacing of antennas on an array), turns out to be a simple IFT

(Inverse Fourier transform).

Having switched to angular domain, we observe that the channel matrix is sparse due

to limited scattering on the BS side. Thus, calculations with very big dimension channel

matrices have a little meaning. However, Compressive Sensing, a relatively new concept,

tackles this exact problem by greedily picking the non-zeros entries of the channel matrix

and using them to recover the CSI correctly. Following this track, X.Rao and V.K.N. Lau
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desingned a novel algorithm for CSIT estimation in massive MIMO FDD systems. After

carefully studying the propagation environment and the composition of channel matri-

ces, they observed a pattern on the sparsity structures of the matrices. Combining this

phenomenon with what Compressive Sensing theory offers, they achieved an outstanding

performance of channel estimation with relatively small complexity. The experimental

results, which we reproduced in this thesis, show the amazing performance of the Joint

OMP algorithm compare with similar work trying to tackle the same problem and proves

its superiority.

Overall, 5G wireless systems are the future of communication. Partially implemented

by some countries, and with coverage limited to single cities, or certain blocks of a city.

Its extraordinary capabilities, regarding speed and volume of data transferred, are proven

in theory and there is yet to see its full potential in practise.

75



Bibliography

[1] Waheed U Bajwa et al. “Compressed channel sensing: A new approach to estimating

sparse multipath channels”. In: Proceedings of the IEEE 98.6 (2010), pp. 1058–1076.

[2] Yann Barbotin et al. “Estimation of sparse MIMO channels with common support”.

In: IEEE Transactions on Communications 60.12 (2012), pp. 3705–3716.

[3] Giulio Bartoli et al. “Beamforming for small cell deployment in LTE-advanced and

beyond”. In: IEEE Wireless Communications 21.2 (2014), pp. 50–56.

[4] Christian R Berger et al. “Application of compressive sensing to sparse channel esti-

mation”. In: IEEE Communications Magazine 48.11 (2010), pp. 164–174.

[5] Mehrzad Biguesh and Alex B Gershman. “Training-based MIMO channel estimation:

a study of estimator tradeoffs and optimal training signals”. In: IEEE transactions

on signal processing 54.3 (2006), pp. 884–893.

[6] Åke Björck. Numerical methods for least squares problems. SIAM, 1996.
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