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Abstract 

The sampling process of petroleum fluids is a fundamental step in the development of 

a reservoir, as the subsequent laboratory PVT analysis provides a plethora of 

information regarding the thermodynamic behavior of a fluid. Due to the high cost of 

laboratory experiments, these are usually performed within a specific range of 

conditions (pressure and temperature) imposed by the reservoir itself. For this reason, 

a mathematical tool is required that can computationally predict the values of the 

required properties under a wide range of conditions expected to be encountered during 

the exploitation of the field both in the reservoir and in the wells. The most commonly 

used mathematical tool are the Equations of State (EoSs), the accuracy of which when 

applied to petroleum fluids is limited and can be optimized only if the equations are 

adjusted so that their predictions can adequately match the available measured PVT 

study values.  

In this Master Thesis, the algorithms for simulating the Constant Composition 

Expansion test, the Differential Liberation test and the Separator test, which are 

performed to characterize reservoir fluids, were developed in the Matlab programming 

environment from scratch. It is important to mention that the key elements of the 

simulation of these PVT tests, which are the stability, flash and saturation pressure 

algorithms, were also developed in Matlab. The automated EoS tuning procedure was 

then performed using a global optimization method, the pattern search method, instead 

of a gradient-based method that does not always guarantee to find a global minimum 

and can get stuck at a local minimum. In addition, physical constraints increasing the 

physical soundness of the model’s estimations were imposed. To test how efficient this 

approach is, one synthetic fluid and two real reservoir fluids were employed and the 

superiority of the pattern search method over the conventional gradient-based 

optimization method was confirmed.   
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1.  Introduction 

The introduction chapter serves two main purposes. The first section of this chapter 

aims at highlighting the importance of tuning the Equation of State (EoS) models used 

in compositional reservoir simulation to predict the phase behavior of petroleum 

reservoir fluids, whereas the last section of the chapter presents the main objective and 

structure of this Master Thesis. In essence, this chapter introduces the complex topic of 

EoS tuning so that the following chapters can be better understood. 

1.1 Overview 

Equation of State (EoS) models are fluid models that are used extensively in Petroleum 

Engineering for the reservoir dynamic simulation process. More precisely, EoSs are 

thermodynamic expressions that relate the pressure (P), the volume (V), the temperature 

(T) and the composition (z) of a reservoir fluid system. These mathematical models 

stem from the Ideal Gas Law and make use of compositional and characterization 

laboratory data of reservoir fluids for their development. The calculated molar volume 

(Vm) is used for the determination of more complex thermophysical properties as well 

as for the specification of the thermodynamic equilibrium. 

In the oil and gas industry, cubic Equation of State (cEoS) models, such as the Peng-

Robinson Equation of State (PR EoS) ones, are the most commonly used as they are 

among the most computationally efficient EoSs. However, cEoSs cannot be used as 

predictive models because their relatively simplistic approach of the physical 

phenomena and the uncertainties in the molecular weight and critical properties of the 

heavy fraction of the hydrocarbon mixtures render them as non-predictive models, that 

is they are insufficient to accurately simulate the phase and volumetric behavior of 

reservoir fluids under various conditions. Therefore, tuning of EoS models comprises a 

significant prerequisite for the provision of accurate predictions. Tuning of EoSs is 

basically a procedure during which the parameters of the poorly defined components of 

a hydrocarbon mixture of a cEoS model are adjusted such as that the difference between 

the available experimental data and the predictions generated by the cEoS model is 

minimized. 
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1.2 Objective and structure of the Master Thesis 

The main focus of this Master Thesis is the proposal of a method for guiding the tuning 

procedure of the PR EoS model against a set of laboratory data, which were generated 

in PVT laboratories at specific pressures and temperatures, so as to increase accuracy 

and to enhance the physical soundness of the tuned PR EoS. All routine PVT 

experiments were simulated using the Matlab programming environment and the PR 

EoS tuning was performed using a derivative-free global optimization method, the 

pattern search one. One synthetic and two real petroleum fluids were employed.   

The Master Thesis is developed as follows:  

 Chapter 2 provides a description of the three main PVT experiments designed 

to study and quantify the phase behavior and properties of reservoir fluids. 

 Chapter 3 describes how these PVT studies can be simulated by means of an 

EoS model. 

 Chapter 4 introduces the PR cEoS as well as the requirements this model must 

fulfill in order to be used as a computational tool in petroleum systems. 

 Chapter 5 discusses the tuning methodology used in this Master Thesis.  

 Chapter 6 explains what optimization is and provides details regarding the 

pattern search optimization method. 

 Chapter 7 discusses the results obtained after the tuning process of the sample 

fluids.  

 Chapter 8 presents the conclusions of this Master Thesis and demonstrates the 

success of the developed method. 
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2. PVT Studies 

As already mentioned in Chapter 1, an essential part of tuning an EoS model is carrying 

out PVT experiments at specific pressures and temperatures in the laboratory in order 

to determine the phase behavior and fluid properties of petroleum fluid samples. This 

chapter discusses thoroughly the main three PVT tests studied in this Master Thesis. 

The acquisition of accurate and reliable data regarding the volumetric properties and 

phase equilibrium of the reservoir fluids is essential for the hydrocarbon recovery to be 

optimized. This information is required for the estimation of the reserves, the optimal 

development and production design of the reservoir as well as the determination of the 

quantity and quality of the produced fluids. During hydrocarbon extraction, reservoir 

pressure decreases as reservoir fluids are recovered, whereas the temperature within the 

reservoir remains constant provided that no thermal Enhanced Oil Recovery (EOR) 

technique is applied. Therefore, the pressure of the subsurface reservoir is the primary 

variable that determines the thermodynamic behavior of reservoir fluids, under 

reservoir conditions, during oil and gas production. The volumetric and phase changes 

the reservoir fluid undergoes on its way (Figure 2.1) from the reservoir to the production 

wells and finally to the surface at standard conditions (60 °F, 14.7 psia), can be studied 

in a PVT lab by simulating what takes place within the petroleum reservoir and at 

surface during production. 
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Figure 2.1: The typical route that a petroleum fluid follows from the reservoir to ambient 

conditions (Pedersen & Christensen, 2007). 

The volumetric and phase changes that take place in a reservoir, during its trip through 

the reservoir, well and process plant, can be studied by performing PVT experiments 

on a reservoir fluid sample. The following laboratory measurements and tests are 

routinely conducted to characterize adequately a reservoir fluid during the first stages 

of the development and production of the hydrocarbon field. These tests include:  

 Compositional Analysis 

 Constant Composition Expansion (CCE) 

 Differential Liberation Expansion (DLE) 

 Constant Volume Depletion (CVD) 

 Separator Test (ST) 

 Viscosity Study (VS) 

In this Master Thesis, the following three PVT tests were employed: 

 Constant Composition Expansion (CCE) 

 Differential Liberation Expansion (DLE) 

 Separator Test (ST) 

This section describes thoroughly these three PVT tests. The CVD experiment was 

skipped since no gas condensate mixture was used in this Master Thesis. In addition, 
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the VS is not described because of the fact that the viscosity of a fluid cannot be 

computed using an Equation of State that aims to model the volumetric, not the kinetic, 

behavior of a reservoir fluid. At this point, it should be reminded that the information 

in this chapter was used in the following chapters for the tuning process of the PR EoS, 

which is the topic of this Master Thesis.  

2.1 Constant Composition Expansion (CCE) 

The saturation pressure, which is the pressure at which the second phase of a petroleum 

fluid at some reference temperature (reservoir temperature) first appears in an 

infinitesimal quantity, is determined during the Constant Composition Expansion or 

Constant Mass Expansion test (CCE). The saturation pressure corresponds either to a 

bubble point (Pb) or dew point (Pd) based on the nature of the collected reservoir fluid 

sample. In addition, during the CCE test it is possible to determine the volumetric 

behavior of the two phases of the fluid at pressures below the saturation one. It is worth 

mentioning that during this test no gas or liquid phase is removed from the cell.  

Initially, the hydrocarbon fluid sample (oil or gas) is placed in a visual PVT cell at 

reservoir temperature and at a pressure in excess of the initial reservoir pressure. For an 

oil mixture this means that the experiment commences at a pressure above the bubble 

point and for a gas mixture this means that the experiments starts at a pressure above 

the dew point. The initial volume of the mixture is recorded. The pressure is reduced in 

steps at constant temperature and the change in the total hydrocarbon volume (Vt) is 

measured at each pressure step. The saturation pressure (bubble point or dew point) and 

the corresponding volume are observed, recorded and used as a reference volume (Vsat). 

The volume of the hydrocarbon system, which is a function of the cell pressure, is 

reported as its ratio over the reference volume. 

Figure 2.2 depicts schematically the CCE experiment as described above.  
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Figure 2.2: Schematic description of a constant composition expansion test for an oil sample 

(Pedersen & Christensen, 2007). 

The properties that are determined during the CCE test at each pressure step are the 

relative volume (Vr) and the isothermal compressibility (c). 

 Relative volume (Vr) 

It is the ratio of the total fluid volume to the saturation volume and equals to one at Psat.   

 Vr =
V

Vsat
      (2.1) 

 Isothermal compressibility (co) (it is only reported for pressures above the 

saturation pressure where the fluid is monophasic)  

co = −
1

Vr
[
∂Vr

∂P
]
T
  (2.2) 

Figure 2.3 depicts a typical plot of relative volume versus pressure, which results from 

the Constant Composition Expansion test, in which the bubble saturation pressure can 

be detected due to the slope discontinuity that can be observed.  
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Figure 2.3: Relative volume versus pressure for determination of saturation pressure from 

CCE data (Σταματάκη & Αυλωνίτης, 2004). 

2.2 Differential Liberation Expansion (DLE) 

The main purpose of the Differential Liberation Expansion or Differential Vaporization 

test (DLE) is the description of the separation-process taking place within the petroleum 

reservoir and the laboratory simulation of the flowing behavior of hydrocarbon systems 

at conditions above the critical gas saturation. This PVT experiment is usually carried 

out for black and volatile oils.  

As depicted in Figure 2.4, the oil sample is equilibrated in a PVT cell at its bubble point 

pressure and at temperature equal to the reservoir one. The pressure inside the cell is 

reduced stepwise by increasing its volume, which results in the formation of a gas phase 

since the cell pressure is less than the bubble point pressure. The gas is equilibrated 

with the liquid in the cell by agitation. Once equilibrium has been established between 

the gas and fluid phase and once the values of pressure and volume have been recorded, 

the gas is completely displaced from the cell at constant pressure by slowly reducing 

the volume of the cell, which causes the overall composition of the oil sample to change. 

Usually, the DLE test continues until the pressure becomes equal to the ambient 

pressure before cooling off the cell to 15°C (or standard). 
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Figure 2.4: Schematic illustration of the Differential Liberation Expansion test (Pedersen & 

Christensen, 2007). 

The properties that are determined by the DLE test are the following: 

 Bo (Oil Formation Volume Factor) 

It is the volume in barrels (rb) (Vo rc) of the oil at each pressure step to the volume of 

oil at the final stage of the process (Vo sc), which is known as the residual oil:   

Βο = 
Vo rc

Vo sc
 (
rb

stb
)  (2.3) 

 Rs (Solution Gas-Oil Ratio, GOR) 

It is the volume of the cumulative gas (Vg sc) (measured at sc) to the volume of the 

residual oil:    

 Rs = 
Vg sc

Vo sc
 (
scf

stb
)    (2.4) 

 Specific Gravity of Oil (Sg,oil) 

It is determined as the density of oil at each pressure step to the density of water at        

60 oF.  

Sg,oil = 
ρoil rc

ρwater (60°F)
    (2.5) 
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 Compressibility factor (Z) 

The compressibility factor is a liberated gas phase property and can be determined by 

the gas equation. 

PV = nZRT →  Z =
PV

nRT
    (2.6) 

 Specific Gravity of Gas (Sg,gas) 

It is determined as the density of gas liberated at each pressure step to the density of air 

at 60 oF. 

Sg,gas = 
ρgas sc

ρair(60°F)
     (2.7) 

2.3 Separator Test (ST) 

The two PVT experiments mentioned so far are only related to the PVT behavior of 

petroleum fluids under reservoir conditions.  

The separator experiments are carried out either for oil or gas mixtures. The primary 

purpose of these experiments is the determination of the number of the required 

separation stages at surface as well as of the conditions (pressure and temperature) at 

which the separators should operate in order for the production to be optimized. For an 

oil reservoir, the optimization of the production is achieved when the gas production 

decreases and the oil production is maximized (obtain a minimum GOR value). 

Generally, two or three separators are employed, and the final separation in the last 

separator (tank) takes place at ambient pressure and temperature conditions.  

A three-stage separator test is sketched in Figure 2.5.  

 

Figure 2.5: Schematic representation of a three-stage separator experiment (Pedersen & 

Christensen, 2007). 
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The primary results from a separator experiment performed on a gas condensate 

mixture or an oil system are the following: 

 Separator GOR (Gas-Oil Ratio) 

It is the volume of gas from actual separator stage at standard conditions divided by the 

volume of the oil from the last stage (at atmospheric conditions). 

GOR =  
Vg sc

Vo sc
 (
scf

stb
)  (2.8) 

 API gravity of tank oil 

API =
141.5

Sg,oil
− 131.5  (2.9) 

 Separator Bo (Oil Formation Volume Factor) 

It is the volume of oil at actual separator stage to the volume of oil from last stage 

(atmospheric conditions). 

Βο = 
Vo rb

Vo sc
 (
rb

stb
)  (2.10) 

In general, this test’s results are used to adjust DLE data against the surface separator 

train.  
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3. Simulation of PVT Studies 

The PVT experiments mentioned in Chapter 2 study and quantify the phase behavior 

and properties of reservoir fluids at specific temperatures and pressures. For this reason, 

the simulation of these PVT studies is required to predict the values of the required 

properties under a wide range of conditions expected to be encountered during the 

exploitation of the field both in the reservoir and in the wells. The mathematical tools 

used to simulate these PVT studies are the EoSs. As mentioned in the introductory 

chapter, the tuning of an EoS model is necessary in order accurate estimations of 

thermodynamic properties and derivatives of thermodynamic properties with 

temperature, pressure, composition or other variables to be obtained. The tuning of an 

EoS model can be achieved by simulating the PVT studies using an EoS model, a 

stability algorithm, a flash algorithm and a saturation pressure algorithm. Then, the 

laboratory data are compared against the predictions of the EoS model; and then by 

tuning any uncertain parameters the minimization of their difference is achieved. In the 

current chapter, the stability and flash algorithm are described in detail. Figure 3.1 

depicts the hierarchy of the tuning logic of an EoS. This chapter basically presents the 

stability algorithm, flash algorithm and the saturation pressure algorithm and how these 

algorithms are combined with an EoS model in order to simulate the CCE, DLE and 

ST experiments. 

Properties of 
Components

EoS

Algorithms

Simulation Tuning Laboratory Data

Difference

 

Figure 3.1: Tuning process of Equations of State. 
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3.1 Stability Analysis 

The determination of phase stability, i.e., whether or not a given phase will split into 

multiple phases at certain pressure and temperature conditions, is a key step in vapor-

liquid equilibrium (VLE) calculations and thus in the simulation of PVT studies. A 

phase is a chemically homogeneous, physically distinct and mechanically separable 

part of a system. The number of phases of a fluid mixture, at certain conditions, can be 

determined through stability analysis.     

If the pressure is above the bubble point pressure, then the fluid exists in liquid state. 

However, when the pressure is above the upper dew point pressure or below the lower 

dew point pressure, the fluid exists in gas state. As might be expected, the fluid is a 

monophasic gas at any temperature above the cricondentherm and at any pressure. 

Since it is very costly to determine the saturation pressure and cricondentherm, 

Michelsen’s approach is computationally preferable.  

In 1982, Michelsen made use of numerical methods for deciding whether a phase is 

thermodynamically stable or not. In general, a thermodynamic system at a constant 

pressure and temperature has the tendency to minimize its Gibbs energy in order to 

reach the equilibrium state. Assuming that a homogeneous mixture (system) consisting 

of Ni moles exists, Michelsen suggested forming a second phase inside any given 

mixture to verify whether such a system is stable or not. The difference of Gibbs free 

energy between the split and the initial system is given by: 

ΔG = GΙΙ − GΙ       (3.1) 

where, 

GII
 : Gibbs free energy of the system with an infinitesimal quantity of a second phase 

GI
 : initial system’s Gibbs free energy 

Michelsen proved that when the ΔG of the split and initial system is negative for at least 

one combination of infinitesimally small ni moles, then there is at least one specific 

composition which when forming a second phase, the reduction of the total Gibbs free 

energy of the thermodynamic system takes place. Therefore, the thermodynamic system 

is eventually divided into two or more phases when arriving at thermodynamic 

equilibrium. 
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3.1.1 Michelsen’s graphical solution of the stability test 

Michelsen investigated phase stability analysis of multicomponent mixtures by means 

of the Gibbs Tangent Plane Distance (TPD) criterion. For a given temperature and 

pressure, the necessary and sufficient condition for a phase of composition z to be stable 

is that the Gibbs free energy surface of the mixture is not intercepted by the tangent 

hyper plane at any composition x. To fulfill this condition, the Gibbs tangent plane 

distance function, TPD(x), must be nonnegative for any trial composition x. Therefore, 

it is possible to examine whether a phase is stable by minimizing the TPD(x) function, 

subject to mass balance constraints. If the tangent plane distance function at the global 

minimum point has a value greater than or equal to zero, then the analyzed phase is 

thermodynamically stable because the TPD(x) function is also nonnegative for all 

compositions x in the permissible region. If the TPD(x) function is negative at its global 

minimum point, then the tangent plane lies above the Gibbs free energy surface, and 

hence the examined phase is unstable and will be split into new phases. Figure 3.2 

describes schematically Michelsen’s graphical solution of the stability test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Michelsen’s graphical solution of the stability test. (Whitson, 2000). 
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3.1.2 Michelsen’s algorithm 

The algorithm Michelsen devised to attach numerically phase stability is described 

below: 

1) Calculate the mixture fugacity f using overall composition z. 

2) Estimate initial equilibrium ratios ki using Wilson’s correlation:                      

 ki = 
exp[ 5.37 (1+ωl)(1−Τri

−1)]

Pri
.  

3) It is assumed that initially the feed exists in liquid state and the composition of the 

bubble that will potentially decrease system’s Gibbs energy is sought. 

Calculate:          Υi = kizi 

4) Get the sum of the mole numbers:     SV = ΣΥi 

5) Normalize the second-phase mole numbers to get mole fractions yi =
Sv
Yi
⁄    and 

calculate the second-phase fugacity fi
y
 using the EoS model. 

6) Calculate the corrections for ki values:  Ri =
1

Sv
⋅
fi
(z)

f
i
(y) 

7) Check if convergence is achieved:  ∑(Ri − 1)
2 < ε 

8) If convergence has not been attained, update the ki values and return to step number 

3: ki
(n+1) = ki

(n)Ri
(n)

  

9) A trivial solution is obtained if:   ∑(ln ki)
2 < δ 

In the case in which the feed exists in gaseous phase, a liquid-like second phase is 

created. The previous steps are followed by replacing equations in steps 3, 4, 5 and 6 

by equations (3.2), (3.3), (3.4) and (3.5) respectively.    

Xi = zi/ki  (3.2) 

SL = ΣXi (3.3) 

xi =
SL
Xi
⁄  (3.4) 

Ri = SL ⋅
fi
(z)

f
i
(y) (3.5) 
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Provided that the convergence of a solution yielding equilibrium phase compositions 

or a trivial solution is achieved, the interpretation of the results of this method is based 

on Table 3.1: 

Table 3.1: Michelsen’s algorithm results. 

Vapor phase test Liquid phase test Result 

Trivial solution Trivial solution Stable 

SV≤1 Trivial solution Stable 

Trivial solution SL≤1 Stable 

SV≤1 SL≤1 Stable 

SV>1 Trivial solution Unstable 

Trivial solution SL>1 Unstable 

SV>1 SL>1 Unstable 

SV>1 SL≤1 Unstable 

SV≤1 SL>1 Unstable 

 

3.2 Flash Calculations 

Before performing a flash calculation, the number of phases of the fluid mixture, which 

is being studied, must be known. This is the reason why a stability analysis, according 

to the algorithm Michelsen proposed, precedes. Once established that the feed will split 

into two or more phases, the flash calculation can be performed.  

Flash calculations using EoSs are of major importance and an integral part of the 

calculations conducted in Petroleum Engineering. In principle, flash calculations are 

straightforward, they involve combining the VLE equations with the component mass 

balances and they are performed when the amount (moles) of the liquid and gas phase, 

coexisting in a reservoir, is required.    

More specifically, if the composition z of a hydrocarbon system is known, flash 

calculations at certain temperature and pressure conditions (Figure 3.3) will be run in 

order for the moles of the gas phase molar fraction (β), the liquid phase molar fraction 
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(1-β), as well as the composition of the equilibrating liquid x and gas phase y to be 

determined.   

 

Figure 3.3: Schematic depiction of a flash cell (Pedersen, 1989). 

3.2.1 Mathematical approach of flash problem 

In order to solve a flash problem, two constraints must apply. These are the 

conservation of the mass and the equality of fugacities.  

According to the mass balance, which essentially states that if the initial supply of z, 

which consists of N moles, is divided into the gaseous phase (yi) and the liquid phase 

(xi), then the sum of the moles of the gas phase nv and liquid phase nL will be equal to 

N. 

ziN = yinv + xinL  (3.6) 

According to the second constraint, i.e. the equality of fugacities, the Gibbs free energy 

of the final two-phase system must be minimum. Gibbs energy is expressed 

mathematically by the following expression: 

G = (1 − β)∑ xi ln fi
(x)

n

i=1
+ βΣyi ln fi

(y)
  (3.7) 

If the total free energy of the Gibbs system is at its minimum, then the fugacity of each 

component in the gaseous phase will be equal to the escape tendency of each component 

in the liquid phase: fi
L = fi

V 

If the equality of fugacities of each component in the gas and in the liquid phase is 

further developed then the vapor-liquid equilibrium ratio is determined: 

fi
L = fi

V  →  φi
(y)
yip − φi

(x)xip = 0 →  ki = 
yi

xi
 =  

φi
(x)

φ
i
(y)  (3.8) 

Finally, it must be ensured that the composition of each equilibrium phase sums up to 

unity. 
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∑ (xi − yi)
n
i=1 = 0  (3.9) 

According to what mentioned, the flash problem is based on the solution of a system of 

2N + 1 equations, namely equations (3.8) and (3.9), in 2N + 1 unknowns, i.e. yi, xi and 

β. 

3.2.2 Solving the system of 2N+1 equations and 2N+1 unknowns 

The solution of the system described in subsection 3.2.1 is quite complicated as the 

system consists of 2N + 1 nonlinear equations and 2N + 1 unknowns. However, if the 

ki equilibrium ratios are introduced, then the system will automatically be converted to 

a system of N + 1 equations and N + 1 unknowns. Indeed, by introducing: 

ki =
yi

xi
   (3.10) 

the liquid phase composition is obtained by: 

xi =
zi

1+β(ki−1)
  (3.11) 

From equations (3.10) and (3.11), equation (3.12) arises: 

yi =
zi ki

1+β(ki−1)
= kixi  (3.12) 

Substituting equations (3.11) and (3.12) into (3.9) gives the well-known Rachford-Rice 

equation which must be solved with respect to the β molar fraction, using the Newton-

Raphson method. The liquid and gaseous phase compositions given in equations (3.11) 

and (3.12) are then determined and its equilibrium coefficients (3.10) are obtained. The 

process is repeated until the new ki equilibrium ratio values converge and no longer 

change significantly. 

3.3 Determination of saturation pressure 

The bisection method, also known as the method of halving the interval, was used to 

find the saturation pressure. The first step in determining the saturation pressure was 

finding a random pressure over a closed interval at which the mixture sample is 

unstable. This pressure represented the lower bound (Plb) of the search for the saturation 

pressure on the upper curve of the phase envelope. The upper bound (Pub) of the closed 

interval represented the upper bound of the search. At this pressure (upper bound of the 

search), the mixture was stable.  
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The bisection method was given the initial interval [Plb, Pub] that brackets the saturation 

pressure. At each iteration, the numerical method cut the interval into two halves and it 

was checked which half interval contained the saturation pressure using the stability 

algorithm. The search by halving the interval while keeping enclosed the saturation 

pressure continued until the search interval was satisfactory small |Pub − Plb|  < tol. 

In any case, an exact solution was not found, rather a numerical solution that is 

acceptably close to the true solution. 

3.4 Simulation of PVT Experiments 

The simulation of the CCE test utilizing an EoS model consists of a series of 

combinations of stability analyses and calculations. As far as the DLE test and the ST 

are concerned, the simulation of these tests does not require a stability analysis as on 

the one hand they consist of a series of flashes at pressures below the saturation pressure 

point and on the other hand at each pressure step the composition of the feed is equal 

to the composition of the liquid phase at the previous step.   

3.4.1 Simulation of the Constant Composition Expansion test 

For each pressure Pi, which may be above or below the saturation point pressure, at 

which the CCE test is conducted: 

Step 1: A stability test takes place. If the fluid exists in one phase, then the molar volume 

occupied by NF = 1 mol of the hydrocarbon system is calculated using the EoS: 

Vm,tot(Pi) =  
NFZRTres

Pi
   (3.13) 

Step 2: If a two-phase equilibrium is established, then a flash calculation of the feed 

composition, z, is performed at current pressure and temperature step of CCE. As a 

result, the values of xi, yi, β, Zl, Zv, are obtained. The volumes of the liquid and gas 

phase can be estimated using the following expressions: 

Vl(Pi) =  
NF(1−β)(Pi)Z

l(Pi)RTres

Pi
   (3.14) 

Vv(Pi) =  
NFβ(Pi)Z

v(Pi)RTres

Pi
   (3.15) 

Vtot(Pi) =  Vl(Pi) + Vv(Pi)   (3.16) 

Step 3: The saturation pressure point (Psat) using an independent algorithm as well as 

the volume at the saturation point Vsat are computed.  
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After completing the aforementioned calculations, the determination of the following 

properties takes place: 

1) Calculate the relative volume from the following expression: 

Vr(Pi) =
Vtot(Pi)

Vsat
    (3.17) 

  

2) Calculate the isothermal compressibility at each pressure step above the saturation 

point pressure by numerically differentiating the relative volume: 

c(Pi) ≈ −
1

Vtot(Pi)+Vtot(Pi+1)

2

Vtot(Pi)−Vtot(Pi+1)

Pi−Pi+1
   (3.18) 

The flow diagram of the simulation of the CCE test using an EoS is given in Figure 3.4. 



32 

 

NF=1 i=1; P=Pinit

 Pi

Stability 
Analysis

One phase Two phases

Solve EoS
Vm=f(zi,Pi,Tres)

Vtot=NFVm

Flash and 
compute xi, 

yi, β

Solve EoS

Vl
m=f(xi,Pi,Tres)
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Figure 3.4: Flow diagram of the simulation of the Constant Composition Expansion test. 
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3.4.2 Simulation of the Differential Liberation Expansion test 

Step 1: Starting with the saturation point pressure, Psat, and reservoir temperature, Tres, 

calculate the volume occupied by NF = 1 mole of the hydrocarbon system with an 

overall composition of z:  

Vsat = 
NFZsatRTres

Psat
   (3.19) 

Step 2: Reduce the pressure to a predetermined value of P at which the equilibrium 

ratios are calculated and used to perform flash calculations. The actual number of moles 

of the liquid phase (1-β), with a composition of xi, and the actual number of moles of 

the gas phase (β), with a composition of yi are determined. The molar volumes of each 

phase are computed as follows: 

Vl(Pi) =  
(1)(1−β)ZlRTres

Pi
   (3.20) 

Vv(Pi) =  
(1)βZvRTres

Pi
   (3.21) 

The volume of the liberated solution gas as measured at standard conditions is 

determined from the following expression: 

 

GP = 379.4β, in ft3/lb mol                                                         (3.22) 

The total cumulative gas produced at any depletion pressure, P, is the cumulative gas 

liberated from the crude oil sample during the pressure reduction process (sum of all 

the liberated gas from previous pressures and current pressure) as calculated from the 

expression: 

GP,cumulative = ∑ GP
P
Psat

  (3.23) 

Step 3: All the equilibrium gas at each pressure step Pi, is removed and the total 

composition of the subsequent step equals to xi, which is the composition of the liquid 

phase in the next step. 

zi(Pi+1) =  xi(Pi)   (3.24) 

NF(Pi+1) = NF(Pi) (1 − β)(Pi)   (3.25) 

Step 4: Using the new overall composition and total moles, steps 2 through 3 are 

repeated. When the depletion pressure reaches the atmospheric pressure, the 
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temperature changes to 60°F and the residual-oil volume (Vresidual) is calculated. The 

total volume of the gas evolved from the oil and produced is the sum of all-liberated 

gases including that at atmospheric pressure (GTotal).  

Step 5: The calculated volumes of the oil and removed gas then are divided by the 

residual- oil volume to calculate the relative-oil volumes (Bo) and the solution Rs at all 

selected pressure levels from: 

Bo(Pi) =  
Vl(Pi)

Vresidual
   (3.26) 

Rs(Pi) =
GTotal− GP,cumulative

Vresidual
  (3.27) 
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The flow diagram of the simulation of the DLE test using an EoS is presented in Figure 

3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flow diagram of the simulation of the Differential Liberation Expansion test. 
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3.4.3 Simulation of the Separator Test 

The ST simulation is similar to the DLE test simulation. Practically, the ST is a variation 

of the DLE experiment where the pressure from the saturation point pressure is 

gradually reduced to 14.7 psia, while the temperature is reduced from the reservoir 

temperature to 60°F. 

The flow diagram of the simulation of the ST using an EoS is presented in Figure 3.6. 
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Vg=NF(Pi)βVg
m
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Vl=NF(Pi)(1-β)Vl
m
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Vg
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Vg=γ(1-β)Vg
m
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Vl
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m
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P
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Figure 3.6: Flow diagram of the simulation of the Separator Test. 
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4. Cubic Equations of State 

As mentioned in Chapter 1 of this Master Thesis, Equations of State (EoSs) are 

mathematical expressions that relate pressure (P), volume (V), temperature (T) and 

composition (z) of a reservoir fluid system. These equations are called Equations of 

State because they describe the state of a fluid at specific conditions of pressure and 

temperature. 

Without any doubt, the development of the Equations of State can be deemed as quite 

impressive. The first EoS that has ever been developed is the Ideal Gas Law. This was 

developed by combining Boyle’s, Charle’s and Gay-Lussac’s law. However, van der 

Waals was the one that made the real breakthrough in the field of EoSs by introducing 

the first cubic Equation of State (van der Waals cubic Equation of State, vdW cEoS) 

for the description of the thermodynamic behavior of a single-component fluid.  

The Soave–Redlich–Kwong (SRK) and Peng-Robinson (PR) Equations of State are the 

cubic EoSs that are widely used in the modern oil and gas industry. These equations are 

used extensively for oil and gas reservoir modeling with a compositional simulator as 

long as they have been tuned against experimental data that have been generated in the 

PVT laboratory at specific pressures and temperatures.   

The current chapter presents the Peng- Robinson cubic Equation of State as well as the 

requirements that the PR cEoS must fulfill in order to be used as a computational tool 

in the simulation of the PVT studies. 

 4.1 Peng-Robinson cubic Equation of State (PR EoS) 

In 1976, Peng and Robinson introduced a variation of the van der Waals cubic Equation 

of State that improved the liquid density prediction. In terms of the molar volume (Vm), 

Peng and Robinson proposed the following two-constant cubic EoS: 

  P =
RT

Vm−b
−

α𝛼(Τ)

Vm(Vm+b)+b(Vm−b)
   (4.1) 

where, 

𝛼(Τ) = [1 + m(1 − √Tr)]
2
  (4.2) 

m = {0.37464 + 1.54226ω − 0.2699ω
2                      ω ≤ 0.49

0.3796 + 1.485ω − 0.1644ω2 + 0.01667ω3   ω > 0.49
  (4.3) 
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αc = 0.45724
R2Tc

2

Pc
   (4.4) 

bc = 0.07780
RTc

Pc
  (4.5) 

In cubic form, PR cEoS is represented as: 

Vm
3 − (b +

RT

P
) Vm

2 + (3b2 + 2b
RT

P
− 

α

P
)V − (b3 + b2

RT

P
− b

α

P
) = 0  (4.6) 

or equivalently in a dimensionless form as: 

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3)  = 0  (4.7) 

where, 

A =
α𝛼(𝛵)P

(RT)2
  (4.8) 

Β =  
bP

RT
  (4.9) 

4.2 Critical properties and acentric factor 

The calculations performed using the cubic Equations of State for the estimation of the 

molar volume of the pure component at specific pressure and temperature conditions 

require, as depicted in figure 4.1, the determination of the properties of the critical 

temperature (Tc), the critical pressure (Pc) and the acentric factor (ω), for each 

component of the mixture. The critical properties and the acentric factor are used in 

order for the parameters α, b and m of the Peng-Robinson cubic Equation of State to be 

computed. Katz table provides the critical properties of pure and of pseudo- components 

in a mixture.  
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Figure 4.1: Estimation path of the molar volume of pure components. 

The critical properties of the heavy fraction must be determined from correlations. 

Sutton reported that the Kessler-Lee equations provide the lowest error in comparison 

with other methods. Given specific gravity (SG) and boiling point (Tb) of the heavy 

fraction, physical properties are estimated as follows:  

 Critical Temperature 

Tc = 1.8 [189.8 + 450.6SG + (0.4244 + 0.1174SG)k +
(0.1441−1.0069SG)105)

k
] (4.10) 

where, 

k =  Tb/1.8  (4.11) 

 Critical Pressure 

Pc = 14.5038exp {5.689 −
0.0566

SG
− (0.43639 +

4.1216

SG
+
0.21343

SG2
)

k

103
+ (0.47579 +

1.182

SG
+
0.15302

SG2
)
k2

106
− (2.4505 +

9.9099

SG2
)

k3

1010
} (4.12) 
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 Acentric factor 

ω

=

{
 
 

 
 −7.904 + 0.1352Κ − 0.007465K2 + 8.359Tbr +

(1.408 − 0.01063K)

Tbr
, Tbr > 0.8

− ln (
Pc

14.696) − 5.92714 +
6.09648
Tbr

+ 1.28862 ln(Tbr) − 0.169347Tbr
6

15.2518 −
15.6875
Tbr

− 13.4721 ln(Tbr) + 0.43577Tbr
6

, Tbr ≤ 0.8

 

 (4.13) 

where, 

Tbr =
Tb

Tc
 (4.14) 

K =
T
b

1
3⁄

SG
 (4.15) 

4.3 Mixing rules and binary interaction coefficients 

The Peng-Robinson cubic Equation of State requires the use of mixing rules for the 

description of the thermodynamic behavior of mixtures. 

The attraction parameter [αα(Τ)]m and the repulsion parameter bm in the Peng-Robinson 

Equation of State are determined for a given mixture by: 

[αα(Τ)]m = ∑ ∑ zizj
c
j=1

c
i=1 (1 − kij)√αi αjαi αj    (4.16)  

 bm = ∑ zibi
c
i=1     (4.17) 

where, 

z: the composition of the mixture 

c: number of pure components and   

In the expression (4.16), kij is called binary interaction coefficient (BIP), where kii = 0 

and kij = kji. BIPs vary depending on the Equation of State, the type of components and 

the possibly on the prevailing conditions.  

4.4 Volume shift 

Liquid volume predictions have never been accurate with two-parameter cubic EoSs 

such as the Peng-Robinson one. A comparison between the predicted liquid molar 

volume and the experimental data of pure compounds generally shows a systematic 

deviation. This volume translation or volume shift parameter technique can compensate 
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the weakness in molar liquid volumetric predictions by two-constant EoS. Jhaveri and 

Youngren (1988) firstly applied the volume shift technique to the PR EoS. Volume shift 

is applied to the calculated molar volume by EoS in the following form: 

Vcorr
L = VL − ∑(xi ∙ ci)  (4.18) 

where, 

Vcorr
L  : the corrected molar volume 

VL : the molar volume by EoS 

xi : the mole fraction of component i 

ci: the volume shift parameter for component i 

4.5 Lumping and delumping method 

A proper description of the heavy hydrocarbon fractions cannot be accomplished by 

simply using the correlations mentioned in subchapter 4.2 to estimate the physical 

properties of the heavy fraction. In order to get accurate estimations using an EoS, it is 

necessary a lumping and delumping method to be used to estimate the properties or 

behavior of liquid and/or vapor hydrocarbon phases from data relative to a reference 

set of hydrocarbon mixtures in a series of thermodynamic states in a medium.  

First, the heavy fraction is split into an arbitrary number of discrete pseudocomponents. 

In this Master Thesis, the molar distributions were described by the continuous gamma 

distribution model. More specifically, this model is based on the three-parameter 

gamma probability density function: 

p(M) =  
(M−η)α−1exp [−

M−η

β
]

βαΓ(α)
  (4.19) 

where: 

β = (Μn+ − η)/α  (4.20) 

α: the parameter that controls the shape of the distribution 

η: the lowest molecular weight in the distribution 

M: the molecular weight that is defined as the variable for molar distribution described 

by parameters η, α and β. 
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With extended Gas Chromatography data available on most samples in a field or basin, 

the field-wide gamma model generally has a common shape (α), lower MW bounds 

(MLi), where η = MLn , and sample-specific average MWs (Mn+). 

The pseudocomponents should be later lumped into a smaller number of 

pseudocomponents. In the subsequent stage, the Lee-Kessler correlations are used to 

estimate the critical properties and the acentric factor of the lumped pseudocomponents. 

It should be mentioned that the lumping and delumping scheme described above was 

performed by the operator and is not a part of this Master Thesis’ developed tuning 

algorithm. 
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5. Tuning Methodology 

Τhe tuning of an EoS model follows after the characterization of the heavy fraction. 

More specifically, the tuning of an EoS is the process of adjusting its tunable parameters 

in order to achieve a satisfactory match between the laboratory fluid PVT data and the 

data resulting from the Equation of State used. In order for an EoS to be properly 

adjusted to a multicomponent system, it is essential to take into consideration its 

intrinsic limitations as well as to perform a proper characterization of the components 

of the hydrocarbon mixtures, due to the inaccuracy of the critical components of the 

heavy fraction and the lumped components. In addition, it is essential to determine the 

binary interaction coefficients (BIPs), kij, that account for the possible interactions in 

each couple of components of a multicomponent system and are used in the calculation 

of the parameter of attraction. Following the above procedure, a number of parameters 

of the EoS can be adjusted (tuning of EoS parameters), i.e. find suitable parameter 

values that lead to the optimization of the match between the available experimental 

data and the EoS predicted thermodynamic behavior of a multicomponent hydrocarbon 

mixture. This process is complicated while at the same time requires careful inspection 

of the physical interpretation of the values assigned to each tuned parameter. Simply 

put, it is of significant importance to pay particular attention to the physical soundness 

of the values attributed to the regression parameters apart from attempting to minimize 

the global error. Some of the physical constraints implemented for the tuning of the PR 

EoS in this Master Thesis impose the hierarchy of the components’ properties, the 

computed curvature of the phase envelopes and the distribution of the partial derivatives 

of the volumetric properties with respect to the fluids’ composition. 

Laboratory data obtained from experimental pressure-volume-temperature (PVT) 

studies are used to adjust the EoS models. The most common used data are: 

 Saturation point pressure: the bubble point pressure (Pb) for oils or the dew point 

pressure (Pd) for gas condensates. 

 Data resulting from conducting the Constant Composition Expansion (CCE) 

experiment. 

 Data resulting from conducting the Differential Liberation Expansion (DLE) 

experiment. 

 Data resulting from conducting the Separator Test (ST). 
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In a cubic Equation of State model there are several parameters that can be adjusted. 

The most common parameters selected are referred below: 

 The critical properties Tc, Pc of the non-well defined components. 

 The acentric factor ω of the non-well defined components. 

 The binary interaction coefficients, kij. When there are significant differences in the 

size and type of mixture molecules, especially in methane-containing mixtures, the 

binary interaction coefficients are of great importance. They are also necessary in 

the presence of non-hydrocarbons in a mixture, such as CO2, H2S, N2, etc. Usually, 

these coefficients are derived directly from experimental equilibrium data of binary 

systems. However, they are not available for any kind of mixture that may be of 

interest. The usual factors that are usually considered are: 

o The binary interaction coefficients kij between CH4 and the heavy fraction 

(fraction Cn+). 

o The binary interaction coefficients kij between CH4 and non-hydrocarbon 

components, such as N2, CO2 and H2S, when their content in petroleum fluid 

is significant. 

o The binary interaction coefficients kij between the heavy fraction and non-

hydrocarbon components, such as N2, CO2 and H2S, when their content in 

the petroleum fluid is significant. 
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6. Optimization 

The EoS tuning procedure against a set of laboratory data is basically an optimization 

problem during which the minimization of the global error is attempted by adjusting 

the values of selected regression parameters. This chapter serves as an introduction to 

the pattern search method and presents the tuning of an EoS model as an engineering 

optimization problem. 

6.1 What is optimization? 

Optimization can be defined as the act of obtaining the best result under given 

circumstances. In practice, engineers need to take many technological decisions at 

several stages. The ultimate goal of all such decisions is either to minimize the effort 

and cost required or to maximize the desired benefit. Since the effort required or the 

benefit desired in any practical situation can be expressed as a function of certain 

decision variables, optimization can be described as the process of finding those 

variables’ values that result to the maximum or minimum value of a function. If a point 

x∗ (Figure 6.1) corresponds to the value that minimizes function f(x), the same point 

also corresponds to the value that maximizes the negative of the function, −f (x). Thus 

without loss of generality, optimization can be taken to mean minimization since the 

maximum of a function can be found by seeking the minimum of its negative.    

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Minimum of f(x) is same as maximum of –f(x). 
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The mathematical function that is to be optimized is known as the objective function, 

usually containing several variables. An objective function can be a function of a single 

variable for some practical problems; however, a single variable function may not be 

challenging from an optimization point of view. Optimization problems may involve 

more than one objective function and are known as multi-objective optimization 

problems. Depending on the nature of the problem, the variables in the model may be 

real or integer (pure integer or binary integer) or a mix of both. The optimization 

problem could be either constrained or unconstrained.  

It is important to elucidate that optimization solvers have their disadvantages, the most 

important of which is getting stuck at a local minimum, which is an issue that concerns 

non-convex problems (the majority of engineering problems are non-convex). 

Therefore, there is no single method for efficiently tackling all optimization problems. 

As a result, a number of optimization methods have been developed. In this Master 

Thesis, the pattern search method was selected for tuning the PR EoS model because it 

guarantees convergence to global minimum.  

6.2 Pattern search method 

Pattern search (also known as direct search, derivative-free search, or black-box search) 

is a family of numerical optimization methods that does not require a gradient. As a 

result, it can be used on functions that are not continuous or differentiable.  

Pattern search methods follow the general form of most optimization methods in that 

they are provided by the user with an initial guess of the solution xo and an initial choice 

of a step length parameter Δο > 0. Pattern search methods are characterized by a series 

of exploratory moves that investigate the performance of the objective function. This 

performance is evaluated at a pattern of points, all lying on a rational lattice around the 

current solution estimate. The exploratory moves consist on a systematic strategy of 

visiting the points in the lattice, in the instant neighborhood of the current iterate. If an 

exploratory move leads to a decrease in the value of f it is called a success (Figure 6.2); 

otherwise it is called a failure (Figure 6.3).  

The pattern search algorithm keeps track of the direction of travel as the process moves 

from point to point. The first step is providing a initial point, xo, at which the pattern 

search method begins. In Figure 6.2, the coordinates of the initial point xo are (2.1,1.7). 

At this point, the value of the objective function is 4.6347. At the first iteration, the 
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mesh size is 1 and the pattern search algorithm proceeds by conducting exploratory 

moves in all directions (East, North, West and South). In the subsequent stage, the 

algorithm polls the mesh points by computing their objective function values until it 

finds one whose value is smaller than 4.6347. In this case, the first such point it finds 

is (1.1, 1.7). At this point, the value of the objective function is 4.5146, so the poll at 

iteration 1 is successful. The algorithm sets the next point in the sequence equal to x1 = 

(1.1, 1.7) and repeats the aforementioned procedure by multiplying the current mesh 

size by 2. If the poll is unsuccessful in a subsequent iteration, i.e. Figure 6.3, the 

function value at this iteration remains unchanged from the previous iteration. By 

default, the pattern search doubles the mesh size after each successful poll and halves 

it after each unsuccessful poll. Increasing the mesh size allows the algorithm to avoid 

local minima. The algorithm stops when the mesh size is less than the tolerance value.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Example of successful poll (www.mathworks.com). 

[1 0] [-1 0] 

[0 1] 

[0 -1] 
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Figure 6.3: Example of unsuccessful poll (www.mathworks.com). 

6.3 Development of the objective function and pattern search 

implementation for EoS tuning 

An integral part of the tuning of an EoS model consists of defining the objective 

function. In this Master Thesis, the objective function was defined as the sum of the 

sums of squares of weighted errors between the measured lab PVT data per PVT 

experiment (i.e. CCE, DLE and ST experiments) and corresponding EoS estimations. 

The weights, which are associated with each PVT data item or group of PVT data, is a 

user-assigned weighting factor and is used to assign a degree of importance to each data 

point. Then, the pattern search method was implemented in order to minimize the 

aforementioned nonlinear objective function by adjusting a set of tunable parameters 

selected by the user. The bounds of the optimization problem were imposed by the box 

constraints of the developed software. At this point, it is of critical importance to 

highlight that the available tunable parameters of the developed algorithm are the 

critical pressure, critical temperature, molecular weight, volume shift parameter and the 

binary interaction coefficients of the components of the petroleum mixture being 

studied.  
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7. Results 

7.1 Four-component synthetic mixture  

The optimizer’s efficiency was first evaluated using a simple four-component synthetic 

mixture, the composition of which is depicted in Table 7.1. The four-component 

synthetic mixture optimization problem is constrained, which simply means that the 

choice variables are allowed to get only in predefined range.  

Table 7.1: Composition of the four-component synthetic mixture. 

Component Composition (%) 

C1 30 

n - C5 15 

C10 30 

C20 25 

 

Firstly, the CCE and DLE experiments were simulated by the WinProp simulator using 

the four-component synthetic mixture. Next, the same experiments were simulated 

using the CCE and DLE simulators developed in Matlab. When comparing the 

estimations of WinProp and Matlab simulator, it was confirmed that the two simulators 

produce the same results if and only if the component properties share exactly the same 

values. Subsequently, six different tuning scenarios were developed, in each one of 

which initial values, different from the real ones, implemented in WinProp ones, were 

assigned to selected component parameters. In each case, the efficiency of the optimizer 

to drive the parameter values, as close as possible to the real ones after the tuning 

process was tested. The weight factors used during optimization were set equal to unity 

for all properties, except for the weight factor corresponding to compressibility, which 

was set equal to zero. This strategy was simply followed because of the fact that the 

way isothermal oil compressibility above the bubble point is computed in the WinProp 

simulator is slightly different than the one used in the Matlab CCE simulator, thus 

resulting to an error of approximately 0.5%, even when all the component properties 

are assigned a standard error, WinProp derived methods.  
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7.1.1 First Case Scenario – Synthetic mixture 

In the first case scenario, the critical pressure of the fourth component of the synthetic 

mixture was chosen to be the tunable parameter. A random number generator between 

1.2 and 1.6 MPa provided the initial guess for the optimization algorithm. The real 

value of the critical pressure of the fourth component is equal to 1.455 MPa as derived 

from WinProp software. Table 7.2 shows the optimized value obtained by the 

optimizer, which was developed in Matlab, after the tuning process and it can be seen 

that it is very close to the real one.   

Table 7.2: Optimized value of Pc (MPa) in the first case scenario. 

Type Number Exact 

Value  

min max Optimized 

Value 

Pc 4 1.455 1.200 1.600 1.455 

 

Figure 7.1 confirms that the point at which the objective function exhibits a global 

minimum, the smallest overall value of the objective function, is about 1.45×106 Pa; in 

other words, when the Pc of the fourth component equals to the nominal one. 

 

Figure 7.1: Total Error vs Pc of 4th component – Synthetic mixture. 
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7.1.2 Second Case Scenario – Synthetic mixture 

In the second case scenario, the binary interaction coefficient of C1 and C20 of the 

synthetic mixture was chosen to be the tunable parameter. A random number generator 

between -0.05 and 0.2 provided the starting point for the optimization algorithm. At 

this point, it should be highlighted that the exact value of the binary interaction 

coefficient of CH4 and C20 was set equal to zero. Table 7.3 depicts the optimized value 

obtained by the optimizer after the tuning process and it can be observed that it is very 

close to zero.   

Table 7.3: Optimized value of BIC in the second case scenario. 

Type  Components Exact 

Value 

min max Optimized 

Value 

kij C1 and C20 0.00 -0.05 0.20 0.0015 

 

Figure 7.2 confirms that the global minimum of the objective function is attained when 

the binary interaction coefficient of C1 and C20 of the synthetic mixture is set to zero. 

The BIC is allowed to be as low as -0.2 for visualization purposes.   

 

Figure 7.2: Total Error vs kij of CH4 and C20 – Synthetic mixture. 
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An interesting point worth mentioning is the fact that the graph of the objective function 

(Figure 7.2), is not symmetrical about the Total Error axis. This is to be expected as the 

effect on the total error will not be the same if the value of the kij is increased or if the 

value of the kij is decreased by the same quantity.    

7.1.3 Third Case Scenario – Synthetic mixture 

In the third case scenario, the critical temperatures of the third and fourth component 

of the synthetic mixture were selected to be the tunable parameters. A random number 

generator provided initial guesses for the optimization algorithm. The real values of the 

critical temperature of the third and fourth component are 622.1 and 782.9 K 

respectively.  Table 7.4 depicts the optimized values obtained after the tuning process 

and it can be observed that the optimized values match the real ones.   

Table 7.4: Optimized value of the Tc of third and fourth component in the third case scenario. 

Type  Number Exact 

Value 

min max Optimized 

Value 

Tc 3 622.10 450.00 700.00 622.02 
 

4 782.90 520.00 900.00 783.14 

 

The objective function contour plots in Figure 7.3 are useful for visualizing the 

functional space of the 2D optimization problem of the third tuning scenario. The red 

circle point represents the exact values of the critical temperatures of the third and 

fourth component, whereas the two black lines represent the major and minor axis of 

the ellipse. It can be seen that the red circle point is placed inside of the dark-blue 

contour error and it is the center of the ellipse. In other words, it is the global minimum 

of the objective function, which is a strictly convex function. Another important 

observation is the fact that the objective function is not sensitive along the major axis 

direction, which renders the minor axis direction a more preferable direction for the 

optimizer to move along. However, since the optimizer used in this Master Thesis is 

not a gradient-based optimizer, we cannot expect that the optimizer will be able to 

distinguish the difference in the sensitivity of the objective function along the two axes 

and eventually move parallel to the minor axis if needed, to arrive to the red point.  

The conclusion derived from the third case scenario is that if during the optimization 

one component becomes heavier (Tc is increased) and the other component lighter       
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(Tc is decreased), the effect on the objective function will not be as great as it would be 

in the case that both components would become either heavier or lighter. 

Figure 7.3: Contour plot of the 2D optimization problem of the third case scenario. 

7.1.4 Fourth Case Scenario – Synthetic mixture 

In the fourth case scenario, the acentric factors (ω) of the third and fourth component 

of the synthetic mixture were chosen to be the tunable parameters. A random number 

generator provided the starting points for the optimization algorithm. The real values 

of the omega of the third and fourth component are 0.443774 and 0.816053 

respectively.  Table 7.5 shows the optimized values obtained after the tuning process 

and it can be observed that they are very close to the real ones.   

Table 7.5: Optimized value of ω of third and fourth component in the second case scenario. 

Type Number Exact 

Value  

min max Optimized 

Value 

Omega 3 0.444 0.355 0.532 0.443 
 

4 0.816 0.653 0.979 0.816 

 

The red circle point in Figure 7.4 represents the exact values of the acentric factors of 

the third and fourth component, whereas the two black lines represent the major and 
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minor axes of the ellipse. It can be seen that the red circle point is placed inside the 

dark-blue contour and it is the center of the ellipse that is the minimum of the objective 

function. The interpretation of the fourth case scenario is similar to the interpretation of 

the third one. Therefore, the conclusion that can be derived from the fourth scenario is 

similar to that of the third one. 

 

Figure 7.4: Contour plot of the 2D optimization problem of the fourth case scenario. 

7.1.5 Fifth Case Scenario – Synthetic mixture 

In the fifth case scenario, the critical temperatures of the second, third and fourth 

component of the synthetic mixture were chosen to be the tunable parameters. A 

random number generator provided the starting points for the optimization algorithm. 

The exact values of the critical temperature of the second, third and fourth component 

are 469.6 K, 622.1 and 782.9 K respectively. Table 7.6 shows the optimized values 

obtained after the tuning process and it can be observed that they match the real ones. 
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Table 7.6: Optimized value of critical temperature of the second, third and fourth component 

in the fifth case scenario. 

Type  Number Exact 

Value 

min max Optimized 

Value 

Tc 2 469.60 375.68 563.52 469.52 
 

3 622.10 450.00 700.00 622.23 
 

4 782.90 520.00 900.00 782.97 

7.1.6 Sixth Case Scenario – Synthetic mixture 

In the fifth case scenario, the critical pressure, critical temperature and acentric factor 

of the fourth component of the synthetic mixture were chosen to be the tunable 

parameters. A random number generator provided the starting points for the 

optimization algorithm. The real values of the critical pressure, the critical temperature 

and the acentric factor of the fourth component are 1.4550 MPa, 782.9 K and 0.816053 

respectively. Table 7.7 shows the optimized values obtained after tuning and it can be 

observed that they are very close to the real ones. 

Table 7.7: Optimized value of the critical pressure, the critical temperature and the acentric 

factor of the fourth component in the sixth case scenario. 

Type  Number Exact 

Value  

min max Optimized 

Value 

Pc 4 1.455 1.000 1.600 1.430 

Tc 4 782.90 600.00 939.00 769.89 

Omega 4 0.816 0.600 0.900 0.871 

 

At this point, it is worth mentioning that a human is not able to comprehend the four 

dimension space, a fact that renders visualization in the 4D space not possible. One way 

to visualize the multivariable function of the sixth case scenario is by assuming that the 

value of one of the three independent variables, for instance the acentric factor’s value, 

is constant at a certain value. Then it is possible to create a contour plot where the two 

independent variables are the critical pressure and the critical temperature of the fourth 

component, the dependent variable is the objective variable and the acentric factor has 

a constant value, i.e. 0.7. However, the global minimum observed will not be the real 

global minimum of the objective function but rather the minimum of the objective 

function given that the acentric factor of the fourth component is equal to 0.7 (cross 

section contour plot). 
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7.2 Real reservoir fluid 1  

As soon as it was established that the optimizer developed in Matlab is efficient for the 

simple four-component synthetic mixture, the optimizer was tested on a real reservoir 

fluid. This fluid is difficult to be tuned as it is very volatile, which means that the 

pressure path in the reservoir is closer to the critical conditions. Table 7.8 depicts the 

composition of the real reservoir fluid before the split and lump of the hydrocarbon plus 

fraction. 

Table 7.8: Composition of the real reservoir fluid 1 before split and lump. 

Component Composition (%) 

N2 0.1 

CO2 0.7 

C1 53.3 

C2 6.7 

C3 4.8 

i - C4 0.7 

n - C4 2.2 

i - C5 0.8 

n - C5 1.9 

C6 3.3 

C7 4.5 

C8 4.6 

C9 3.4 

C10 2.2 

C11 1.7 

C12+ 9.1 

 

The CCE and DLE experiments were simulated using the CCE and DLE simulators 

developed in Matlab and the estimations were compared with the corresponding 

laboratory data. In order for the objective function to be minimized, seven different case 

scenarios were developed, in each one of which different parameters were selected as 

the tunable ones. The weight factors used during optimization were set equal to unity 

for all properties, except for the weight factor corresponding to compressibility, which 

was set equal to zero. The results received are depicted in Table 7.9. During the tuning 

process, it was confirmed in each case scenario developed for the real reservoir fluid 

the optimizer conducted global optimization. It is worth mentioning that the objective 

function is not convex but has multiple local minima and that the WinProp values are 

not displayed as they are not the optimal ones. 
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Table 7.9: Results received after the tuning process before splitting and lumping of the C12+. 

First    

Type  Number Optimized  error 

Tc C11 729.00 0.15 

 C12+ 849.00  

Second    

Type  Number Optimized  error 

Tc C10 632.28  

 C11 729.47 0.14 

 C12+ 846.69  

Third    

Type  Number Optimized  error 

Omega C11 0.700 0.18 

 C12+ 1.020  

Fourth    

Type  Number Optimized  error 

Pc C12+ 1.075 0.22 

Fifth    

Type  Number Optimized  error 

Pc C10 2.445  

 C11 1.751 0.20 

 C12+ 1.098  

Sixth    

Type  Number Optimized  error 

Pc C12+ 1.121  
Tc C12+ 930.44 0.14 

Omega C12+ 0.73  

Seventh    

Type  Number Optimized  error 

Pc C11 2.446  
Tc C11 729.00  

Omega C11 0.699  
Pc C12+ 1.121 0.13 

Tc C12+ 917.05  
Omega C12+ 0.726  
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As can be seen in Table 7.9, the “lowest” error is obtained in the seventh case scenario, 

which is a superset of the first, third, fourth and sixth case scenario. This confirms the 

globality of the pattern search method as the optimization algorithm is not trapped in a 

local minimum and takes advantage of the fact that more parameters are selected to be 

tuned. An interpretation of the results of the case scenarios that are subsets of the 

seventh case scenario follows.  

Table 7.10 depicts the results of the tuning in the first case scenario. As can be seen in 

Table 7.10, the density of the oil at the bubble point before and after the tuning process 

has not changed significantly. This is to be expected as the volume shift of all 

components is set equal to zero before tuning and is not adjusted during the tuning 

process. As far as the saturation pressure is concerned, the value assigned to it after the 

optimization cannot be deemed as adequate. The optimizer is not that efficient in 

matching the estimated saturation pressure with the laboratory one due to the weight 

factor of the saturation pressure being set equal to unity. Finally, the value assigned to 

Bo at the bubble point is satisfactory even though Bo is a function of density. This can 

be explained by the cancellation of errors that takes place. 

Table 7.10: First case scenario. 

Before Tuning After Tuning Lab 

Psat@Pb (MPa) 31.81 Psat@Pb (MPa) 29.87 26.77 

Bo@Pb 2.180 Bo@Pb 2.040 1.970 

ρ@Pb (g/cm3) 567.00 ρ@Pb (g/cm3) 566.00 586.00 

 

Table 7.11 depicts the results of the tuning in the third case scenario. In the third case 

scenario, the error after the optimization is 0.176 (Table 7.9) and it is greater than the 

corresponding one in the first case scenario, which is equal to 0.1457. This is to be 

expected because the effect that the acentric factor has on the total error is significantly 

less than the effect of the Pc and Tc on the total error of the objective function.  

Table 7.11: Third case scenario. 

Before Tuning After Tuning Lab 

Psat@Pb (MPa) 24.75 Psat@Pb (MPa) 29.83 26.77 

Bo@Pb 2.130 Bo@Pb 2.070 1.967 

ρ@Pb (g/cm3) 551.00 ρ@Pb (g/cm3) 572.00 586.00 
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Table 7.12 depicts the results of the tuning in the fourth case scenario. As can be seen 

in Τable 7.12, the value of the saturation pressure after the tuning process is close to the 

laboratory one even though the weight factor of the saturation pressure is one. This is 

because of the fact that Pc has a strong effect on the saturation pressure.   

Table 7.12: Fourth case scenario. 

Before Tuning After Tuning Lab 

Psat@Pb (MPa) 40.49 Psat@Pb (MPa) 27.64 26.77 

Bo@Pb 2.260 Bo@Pb 2.090 1.967 

ρ@Pb (g/cm3) 667.00 ρ@Pb (g/cm3) 561.00 586.00 

 

Table 7.13 depicts the results of the tuning in the sixth case scenario. As can be seen in 

Table 7.13, the global optimizer improved significantly the density of the oil and the 

Bo value at the bubble point. 

Table 7.13: Sixth case scenario. 

Before Tuning After Tuning Lab 

Psat@Pb (MPa) 24.506 Psat@Pb (MPa) 29.036 26.770 

Bo@Pb 2.540 Bo@Pb 2.020 1.967 

ρ@Pb (g/cm3) 628.00 ρ@Pb (g/cm3) 553.00 586.00 
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7.3 Real reservoir fluid 2 

In the last part of this study, the optimizer was tested on the real reservoir fluid 2 after 

the splitting and lumping of the heavy fraction was applied. The composition of the real 

reservoir fluid 2 after the split and lump of the C7+ is depicted in Table 7.14. This fluid 

was selected due to its high concentration in H2S. 

Table 7.14: Composition of the real reservoir fluid 2 after split and lump. 

Component Composition (%) 

N2 0.34 

CO2 3.40 

H2S 40.75 

C1 6.56 

C2 2.60 

C3 4.34 

i - C4 1.11 

n - C4 2.57 

i - C5 1.85 

n - C5 1.70 

C6 3.40 

F1 
14.04 

F2 
13.74 

F3 
3.60 

 

The CCE and DLE experiments as well as the separator test were simulated using the 

CCE, DLE and ST simulators developed in Matlab and the estimations were compared 

with the corresponding laboratory data. In order for the objective function to be 

minimized, the critical pressure, the critical temperature, the acentric factor and the 

volume shift of F1 and F2 were selected to be tuned. In addition, the binary interaction 

coefficients of C1 and F1, C1 and F2, H2S and F1, and H2S and F2 were also selected as 

tunable parameters.  
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After the Matlab optimization process was completed, the estimations of the PR EoS 

were plotted against pressure. At the same plot, the estimations of the PR EoS after the 

tuning process which was performed in CMG’s WinProp (gradient-based optimizer) 

were also plotted against pressure in an attempt to investigate which optimizer is more 

efficient.     

In the next part of this section, the results, obtained after the tuning process of the PR 

EoS parameters and the simulation of the laboratory tests for the real reservoir fluid, 

are presented.  

Saturation pressure 

As can be seen in Table 7.15, both PR EoS models, the one tuned by the Matlab 

optimizer and the EoS model whose parameters were optimized by the CMG optimizer, 

are efficient in matching the laboratory saturation pressure. 

Table 7.15: Saturation pressure after the optimization process. 

 Lab Matlab CMG 

Saturation Pressure 

(psia) 1,189.7 1,189.7 1,189.7 

 

 

Constant composition expansion (CCE) 

In the case of the constant composition expansion test, the physical properties to be 

evaluated are the relative oil volume (Vr) and the isothermal compressibility within the 

range of pressures above the bubble point pressure. 

Relative volume 

As can been seen in Figure 7.5, after the tuning process of the PR EoS in Matlab and 

WinProp, the estimations are very close to the laboratory ones. 
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Figure 7.5: Relative Volume vs Pressure. 

Isothermal compressibility  

The isothermal compressibility estimations are considered acceptable as the PR EoS 

models after the adjustment of the tunable parameters using the Matlab. In any case, it 

is emphasized that the compressibility of this fluid exhibits very low value, despite the 

volatility of the fluid, which means that small differences between the PR EoS’s 

estimations and the laboratory data, can result in large relative deviations, which 

however do not affect significantly the accuracy of the EoS model. 
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Figure 7.6: Isothermal Compressibility vs Pressure. 

 

Differential liberation expansion (DLE) 

In the case of the Differential Liberation Expansion test, the properties that are 

evaluated in the diphasic region are the following: 

 Oil formation volume factor (Bo) 

 Solution gas oil ratio (Rs) 

 Oil density (do) 

 Compressibility factor (Z) 

 Specific gravity of gas (gas sg) 

Oil formation volume factor (Bo) 

Figure 7.7 shows that the estimations of the PR EoS models within the biphasic region 

after the tuning process with Matlab and WinProp optimizers are satisfactory.  
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Figure 7.7: Bo vs Pressure.  
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Solution Gas Oil Ration (Rs) 

Figure 7.8 shows that the two PR EoS models, the one that was tuned by the Matlab 

optimizer and the one tuned by the WinProp optimizer, both describe Rs in the diphasic 

region very accurately. However, the Matlab EoS model can be deemed as slightly more 

efficient. 

 

Figure 7.8: Rs vs Pressure. 
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Oil density 

Figure 7.9 shows that the PR EoS model tuned by the Matlab describes oil density in 

the diphasic region very accurately. This is to be expected as the volume shifts of F1 

and F2 were tuned. It is worth noticing that the Matlab EoS model can be deemed as 

more efficient than the WinProp one. 

 

Figure 7.9: Oil density vs Pressure. 
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Compressibility factor (Z) 

Figure 7.10 shows that the two PR EoS models, the one that was tuned by the Matlab 

optimizer and the one tuned by the WinProp optimizer, both describe the Z factor in the 

biphasic region very accurately. It is worth noticing that, at atmospheric pressure 

(101,352 Pa), a big deviation between the lab data and the EoS models’ estimations can 

be observed as the latter provides a value of 0.97 as opposed to the naturally occurring 

Z = 1. 

 

Figure 7.10: Z factor vs Pressure. 
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Specific gravity of gas (Sg) 

Figure 7.11 shows that the two PR EoS models, the one that was tuned by the Matlab 

optimizer and the one tuned by the WinProp optimizer, both describe the specific 

gravity of gas in the biphasic region very accurately. It is worth noticing that, in the 

atmospheric pressure (101,352 Pa), a big deviation between the lab data and the EoS 

models’ estimations can be observed, thus implying a strong mismatch of the released 

gas composition. 

 

Figure 7.11: Sg vs Pressure. 
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Separator test 

In the case of the Separator test, the properties that are evaluated are the: 

 Gas Oil Ratio (GOR) 

 API 

As can be seen in Table 7.16, the EoS model tuned using the Matlab optimizer yields 

significantly better results compared to the commercial software. It is worth mentioning 

that it took the operator a huge amount of time to come up with these results using 

CMG’s WinProp. 

Table 7.16: Separator Test Results. 

  Lab Data Matlab WinProp 

GOR (scf/stb) 649 673.02 809.71 

API 28.75 30.15 34.02 
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8. Conclusions 

It is well known that one of the main drawbacks of the gradient-based optimization 

methods is that global optimality cannot be easily guaranteed. The tuning procedure of 

an Equation of State model is significantly complex since it requires the minimization 

of a highly nonlinear and non-convex objective function. It is apparent that optimizing 

such a function can be quite challenging. This is the reason why the pattern search 

method, which is a global optimization method that can be used on functions that are 

not differentiable and has a wider viewing angle as far as the global minimum is 

concerned, was selected. The globality of the employed method was confirmed by the 

fact that the pattern search method improves the value of the multivariate objective 

function when more parameters were selected to be tuned.   

Regarding the accuracy and physical soundness of the estimations of the tuned Equation 

of State model, these were guaranteed as the developed tuning algorithm is flexible and 

allows physical constraints concerning the nature of the components to be imposed 

rather than solely box constraints as it happens in the case of the WinProp software. 

Finally yet importantly, it was found that assigning appropriate values to the weighting 

factors of the properties is one of the most important prerequisites of the tuning 

procedure. At this point, it is important to mention that it is not possible to match all 

laboratory observations with equal accuracy.  

To conclude, this optimization method proves to be competitive in terms of its 

performance and ability to track global solutions while providing simultaneously 

physically sounded estimations. 
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