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Abstract

Machine Learning has been used in many applications in recent years and has pro-
duced impressive results. Interestingly, beyond well-known problems of academic,
research or commercial interest, machine learning techniques are finding more and
more their way into the area of arts, in the sense of generative modeling. In this
thesis, we explore how deep neural networks can be used to automatically gener-
ate musical sequences. The goal of this work is to construct models that are able
to learn the basic patterns of an input dataset (corresponding to a specific music
genre) and try to replicate these patterns embedded into new, original samples,
under the assumption that modeling and sampling may be more effective in two-
dimensional image representations. To this end, we utilize well-known machine
learning generative models, namely Variational Autoencoders (VAEs) and Gener-
ative Adversarial Networks (GANs), and propose our own deep network architec-
tures maintaining simplicity and low computational power and time requirements.
The implemented models are trained using datasets of MIDI files, containing tunes
from different music genres, which are first converted to two-dimensional images
during preprocessing. After training at image level, the trained models generate
new images of a similar kind, which are decoded back to MIDI tunes, following a
reverse procedure, and thus to music. MIDI files are ideal for our purposes due
to their discrete nature, which facilitates the conversion to images back and forth.
In the course of this work, we focused on data engineering issues, namely how to
shape and form data in a way that helps our generative models learn easier and
faster. We also offer a comparison of the different models and infer results on their
effectiveness. The produced music tunes seem to resemble basic features of the
original ones, but only in a few cases the outcome was truly interesting in terms
of music theory. The proposed approach could potentially help musicians improve
and explore original tunes based on preferred genres or types of music. Further-
more, our work can be used as a model for other learning tasks, not necessarily
related to music, which may be facilitated, if explored through image representa-
tions, as we proposed. While our results do not generate consumer-grade music
yet, our work represents a first step in the direction of automated music generation
and computational creativity in general.
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Περίληψη

Η Μηχανική Μάθηση έχει χρησιμοποιηθεί σε πολλές εφαρμογές τα τελευταία χρόνια

και έχει δώσει εντυπωσιακά αποτελέσματα. Είναι ενδιαφέρον ότι πέρα από τα γνω-

στά προβλήματα ακαδημαϊκού, ερευνητικού ή εμπορικού ενδιαφέροντος, οι τεχνικές

μηχανικής μάθησης βρίσκουν όλο και περισσότερο τον δρόμο τους στον χώρο των τε-

χνών, με την έννοια της παραγωγικής μοντελοποίησης (generative modeling). Στην
παρούσα διπλωματική εργασία, διερευνούμε πώς τα βαθιά νευρωνικά δίκτυα μπορούν

να χρησιμοποιηθούν για την αυτόματη δημιουργία μουσικών ακολουθιών. Ο στόχος

αυτής της εργασίας είναι η κατασκευή μοντέλων που μπορούν να μάθουν τα βασικά

μοτίβα ενός συνόλου δεδομένων εισόδου (που αντιστοιχεί σε κάποιο είδος μουσι-

κής) και να προσπαθήσουν να αναπαραγάγουν αυτά τα μοτίβα ενσωματωμένα σε νέα,

πρωτότυπα δείγματα, με την υπόθεση ότι η μοντελοποίηση και η δειγματοληψία μπο-

ρεί να είναι πιο αποτελεσματική σε αναπαραστάσεις δισδιάστατων εικόνων. Για το

σκοπό αυτό, χρησιμοποιούμε γνωστά μοντέλα μηχανικής μάθησης, συγκεκριμένα

Variational Autoencoders (VAE) και Generative Adversarial Networks (GAN), και
προτείνουμε τις δικές μας βαθιές αρχιτεκτονικές δικτύων που διατηρούν απλότητα

και χαμηλές απαιτήσεις υπολογιστικής ισχύος και χρόνου. Τα μοντέλα που υλο-

ποιήθηκαν εκπαιδεύονται χρησιμοποιώντας σύνολα δεδομένων αρχείων MIDI, που
περιέχουν μελωδίες από διαφορετικά είδη μουσικής, τα οποία αρχικά μετατρέπονται

σε δισδιάστατες εικόνες κατά την προεπεξεργασία. Μετά την εκπαίδευση σε επίπε-

δο εικόνας, τα εκπαιδευμένα μοντέλα παράγουν νέες εικόνες παρόμοιου είδους, οι

οποίες αποκωδικοποιούνται σε μελωδίες MIDI, ακολουθώντας μια αντίστροφη διαδι-
κασία, και συνεπώς σε μουσική. Τα αρχεία MIDI είναι ιδανικά για τους σκοπούς μας
λόγω της διακριτής φύσης τους, η οποία διευκολύνει τη μετατροπή σε εικόνες εμπρός

και πίσω. Κατά τη διάρκεια αυτής της εργασίας, εστιάσαμε σε ζητήματα επεξεργασίας

δεδομένων, δηλαδή στον τρόπο διαμόρφωσης και στοίχισης δεδομένων, ώστε να βοη-

θά τα μοντέλα παραγωγής να μαθαίνουν ευκολότερα και γρηγορότερα. Προσφέρουμε

επίσης μια σύγκριση των διαφορετικών μοντέλων και εξάγουμε συμπεράσματα σχετι-

κά με την αποτελεσματικότητά τους. Οι μουσικές μελωδίες που παράγονται φαίνεται

να προσομοιάζουν σε βασικά χαρακτηριστικά των αρχικών μελωδιών, αλλά μόνο σε

λίγες περιπτώσεις το αποτέλεσμα ήταν πραγματικά ενδιαφέρον, όσον αφορά τη θεωρία

της μουσικής. Η προτεινόμενη προσέγγιση θα μπορούσε ενδεχομένως να βοηθήσει
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τους μουσικούς να βελτιώσουν και να εξερευνήσουν πρωτότυπες μελωδίες με βάση

τα προτιμώμενα είδη μουσικής. Επιπλέον, η εργασία μας μπορεί να χρησιμοποιηθεί

ως πρότυπο για άλλα προβλήματα μηχανικής μάθησης, που δεν σχετίζονται απαρα-

ίτητα με τη μουσική, τα οποία μπορεί να διευκολυνθούν, εάν διερευνηθούν μέσω

αναπαραστάσεων εικόνων, όπως προτείναμε. Αν και τα αποτελέσματά μας δεν πα-

ράγουν ακόμα μουσική καταναλωτικής ποιότητας, η δουλειά μας αντιπροσωπεύει ένα

πρώτο βήμα προς την κατεύθυνση της αυτοματοποιημένης παραγωγής μουσικής και

της υπολογιστικής δημιουργικότητας γενικότερα.
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Chapter 1

Introduction

Artificial Intelligence (AI) and specifically machine (or deep) learning has been
rising in popularity in the last decades. It is a thriving field whose applications
are dedicated to automate laborious routines, conceive the essence of speech or
images, identify patterns that can contribute to medical analysis and so on. AI is
a buzzword which consists of hundreds subsets and one of them is deep learning.
Even deep learning has no consensual definition, it consists of Machine Learning
(ML) techniques based on artificial neural networks. Those networks are inspired
by the biological human neural system and how they process and weigh informa-
tion is fairly similar. A set of neurons fire up given that information from our
senses as input and the network outputs a feeling, a thought, a memory, or even
possible actions or decisions for a matter. Same goes to the process of artificial
neural networks, which if trained properly, they can be used for classification, ac-
tion selection (Deep Q Agent), data compression (Autoencoders), data generation
(generative models such as GANs, Variational Autoencoders), and much more
(Goodfellow, Bengio, and Courville 2016).

In the case of generative modeling, where this work is based on, the networks are
trained upon processed musical files (MIDI) which are translated to images. As
the models become trained, they are able to produce images that closely resemble
the ones from the input set of data. The goal in such cases is not to produce same
results, but to explore and generate original data.
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Neural networks are ideal for such tasks as they are able to handle massive amounts
of data, while being as efficient as possible with affordable computing power. This
case is also presented in this thesis as we offer models that can run even on common
CPU environments, once they have been trained upon thousands of samples.

1.1 Computer-Based Musical Systems

Researchers have been trying to create a bridge between computers and music as
the first computer systems were created. It has been an active topic for many
decades with different attempts and approaches (Briot, Hadjeres, and Pachet
2017).

The first music generation program was introduced in the early 1960s by Max
Mathews at Bell Labs, a research center run by phone company AT&T. Mathews
was mainly researching telephony-related fields, but worked on music software in
his spare time. He named this program MUSIC and later on he created different
versions indicated by Roman numerals. MUSIC produced its first sound in 1957,
playing a 17 seconds long melody named “The Silver Scale”. The same year, the
first score was composed by a computer named "The Illiac Suite". It was produced
by the ILLIAC I computer at the University of Illinois at Urbana-Champaign
(UIUC) in the United States by Lejaren A. Hiller and Leonard M. Isaacson, both
musicians and scientists. It was the first example of algorithmic composition, by
utilizing stochastic models, such as Markov chains, for generation, as well as rules
to filter generated material according to desired properties.

In 1983, Yamaha DX7 synthesizer was released by Chowning, which was a model of
synthesis based on frequency modulation (FM). The same year the MIDI interface
was launched, which created a link between software and instruments (includ-
ing the DX7 synthesizer). Another case was the development of the Max/MSP
environment, by Puckette at IRCAM, which allowed for real-time synthesis and
interaction.

In the year of 1962, Iannis Xenakis used computers to compose music with a
stochastic approach. He created the ST Program, a stochastic music program,
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written in FORTRAN, which used probability distributions and calculated vari-
ous possibilities designed by the composer in order to generate musical samples.
Another approach was that of Ebcio Glu, which followed the direction of "The
Illiac Suite", and used certain rules and constraints to specify the style of a given
corpus. He created CHORAL, a composition program of a four-part chorale in the
style of Johann Sebastian Bach. In the late 1980s, a system called Experiments
in Musical Intelligence (EMI), developed by David Cope, extended that approach
(Cope 2000). His program learned from a corpus of a composer’s scores and was
able to create its own contraints and rules.

1.2 History of MIDI

The MIDI format played a huge role in the music industry, as it offered a general
compatibility between programs and electronic instruments. This work’s interac-
tion with music is done solely by the use of MIDI files, as they are excellent in
offering discrete information, which is ideal for the deep learning method presented.

MIDI, which is an acronym for Musical Instrument Digital Interface, first saw the
light in the early 1980s. Its main purpose was to synchronize electronic musical
instruments manufactured by different companies, as each company had their own
standards of synchronization, such as CV/gate and Digital Control Bus (DCB).
This lack of synchronization led Ikutaro Kakehashi, founder of Roland to bridge
this gap, as he felt this limitation would delay the growth of electronic music.
Ikutaro went on to propose this idea of creating such a machine of synchroniza-
tion to Oberheim Electronics found by Tom Oberheim developer of Oberheim
Systems, which he thought was difficult to carry and use and wanted a simpler
design. Together with Dave Smith from Sequential Circuits, they discussed a sim-
pler and cheaper alternative with American and Japanese companies (Yamaha,
Korg, Kawai), and initially, only Sequential Circuits and Japanese companies were
interested.

Dave Smith and engineer Chet Wood from Sequential Circuits managed to create
a universal interface for communication between equipment from different com-
panies. Together they proposed the standard in a paper, Universal Synthesizer
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Interface, presented at the Audio Engineering Society show in October 1981. The
standard went under modification by Roland, Yamaha, Korg, Kawai and Sequen-
tial Circuits, and Kakehashi showed preference for the name Universal Musical
Interface (UMI), pronounced you-me, but Dave Smith felt it was banal. Also
Smith liked the word "instrument" instead of "synthesizer" so the proposition
Musical Instrument Digital Interface (MIDI) was accepted and announced in the
October of 1982 issue of Keyboard.

Smith demonstrated his design by connecting a Prophet 600 to a Roland JP-6,
two different manufactured synthesizers, at the 1983 NAMM Show. Those were
the first synthesizers that were released with the MIDI standard (1982), and later
in 1983, Roland TR-909, the first MIDI drum machine, and Roland MSQ-700,
the first MIDI sequencer, were released. The first computer to support MIDI, the
NEC PC-88 and PC-98, was released in 1982.

Later in 1984, at the Summer NAMM Show in Chicago, the MIDI Manufacturers
Association (MMA) was formed. The MIDI 1.0 Detailed Specification was then
published at the 1985 Summer NAMM show by MMA. The standard advanced
in 1991 by adding standarized song files (General MIDI) and adapted to new
connection standards, such as USB and FireWire. In 2016, the MIDI Association
was formed to continue overseeing the standard. The MIDI 2.0 standard was
proposed in January 2019 and was introduced at the 2020 Winter NAMM Show.

1.3 Autonomy versus Assistance

When referring to computer-based music generation, or any generative problem,
there are two approaches for tackling such a task.

• Autonomy: developing autonomous music-generating systems aimed at cre-
ating musical patterns from scratch.

• Assistance: programs that aim to assist musicians in further exploring mu-
sical possibilities, by receiving inputs, rules or restrictions by human hand.

The task of automated music generation is quite interesting, as it can offer explo-
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ration about the process of composition. Two recent examples, being the deep-
learning based Amper and Jukedeck systems/companies, target the creation of
original music for commercials and documentary.

On the other hand, assistance computer-based music programs are developed in
order to assist humans in various steps of music creation: composition, arranging,
orchestration, production. In practice, composers rarely create their own music
from scratch, as they reuse or adapt based on their experience, consciously or
unconsciously, while following music principles and rules, such as harmony and
scales theory. The assistance program then suggests or complements the various
musical steps, which the human composer tackles. Such examples of assistance
computer-based music programs are the FlowComposer environment developed at
Sony CSL-Paris and the OpenMusic environment developed at IRCAM.

This work is aimed towards automated music generation, more specifically at small
two-measure (depending on the time signature) musical parts. Most music gen-
erative tasks follow the autonomous approach, although more and more systems
begin to address the option of assistance and human interaction.

1.4 Deep Learning

The generality that deep learning techniques offer is ideal for such generative tasks.
As opposed to handcrafted models, grammar-based, or rule-based music generation
systems, a machine learning-based generation system can be agnostic, as it learns
a model from an arbitrary corpus of music. Furthermore, a certain model can be
used to train upon various and different musical genres and themes. Therefore,
as more large scale musical datasets are made available, a machine learning-based
generation system can detect the musical style from a corpus and generate new
relevant content. Rather than creating a complicated system filled with rules and
grammars, there is the approach of a deep learning model, which is able to process
raw unstructured data, from which it identifies musical distributions and patterns,
as its layers extract higher level representations adapted to the task.
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Chapter 2

Background

The knowledge required to understand this work is split into two sections, (a) basic
music theory and (b) the machine learning technique called neural networks. Basic
principles are only required for both of the fields in order to comfortably read this
work. Specifically,

• little to no music theory knowledge is required, as with the use of MIDI files
the data is discrete, and

• with basic understanding of dense neural networks and training processes,
other layers and concepts are easily absorbed.

2.1 Basic Music Theory

Music theory examines the fundamentals of music and provides principles and
rules, which are a guideline for musicians and allow them to create musical se-
quences. Music theory has been practiced for thousands of years and it branches
to many topics and levels. This section will focus only to the very basics, as it is
deemed enough to understand the following sections (Schmidt-Jones 2013).
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2.1.1 Measure and Bar Lines

Sheet music is mostly read and written in a format of five horizontal parallel lines,
also known as the pentagram, which is then sequenced into measures (Figure 2.1).
Measures exist to organize long pieces of music into smaller units. Professional
musicians read music or perform a piece of music in real-time, as they are able to
read each measure at a time.

Figure 2.1: Measures and pentagram

Measures are split by the use of vertical bar lines. There are different bar line
types that offer musicians easy sight-reading and better overall performance.

Figure 2.2: Bar line types

Bar line types (Figure 2.2):

• Single bar line, a single vertical line that indicates the end of one measure
and the beginning of another.
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• Double bar line, two side-by-side vertical lines, indicating the end of one
section and the beginning of another.

• End bar lines, two vertical lines, one bolder, which indicate the end of the
musical composition.

• Start repeat, two vertical lines, one bolder, with two dots on the right, indi-
cating the following sequence will be repeated.

• End repeat, two vertical lines, one bolder, with two dots on the left, indicat-
ing the musician should return to the last start repeat bar lines and replay
the sequence once.

For obvious reasons there cannot exist start repeat-type bar lines without end
repeat, and the other way around. Furthermore the sequence inside the repeat bar
lines is repeated once, unless indicated otherwise, usually with a number next to
the end repeat bar lines.

2.1.2 Time Signature

A musical time signature is a fraction, which shows the number of beats per
measure (the top number in a time signature, numerator) and the duration of
each beat (the bottom number in the time signature, denominator), as shown in
Figure 2.3. For instance, 3/4 time signature indicates there are three beats per
measure and each beat has the duration of a quarter note.

The three basic types of time signatures (Figure 2.3):

• Simple: The most common simple time signatures are 2/4, 3/4, 4/4, and 2/2.
The 4/4 time signature indicates that there are four beats per measure (nu-
merator) and each beat counts as a fourth note (denominator). Furthermore
for 2/4 and 3/4, there are two and three quarter note beats per measure,
respectively.

• Compound: Common compound time signatures include 9/4, 6/8, and 12/8.
The beat of a piece of music with a compound time signature is broken into
a three-part rhythm. In each of the cases above, quarter or eighth notes are
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(a) Simple 2/4 (b) Simple 3/4 (c) Simple 4/4

(d) Compound 9/4 (e) Compound 6/8 (f) Compound 12/8

(g) Complex 5/4 (h) Complex 11/4 (i) Complex 7/8

Figure 2.3: Different types of Time Signatures.

combined in multiples of three.

• Complex: Complex time signatures are more common in music written after
the nineteenth century. Complex time signatures do not follow typical duple
or triple meters. Examples of complex time signatures include: 5/4, 11/4,
and 7/8.

While there are many types of time signatures, below are the most commonly used
by musicians.

• 2/4, two quarter-note beats per measure.

• 3/4, three quarter-note beats per measure.

• 4/4, four quarter-note beats per measure, also known as common time and
also notated as a "C".

• 2/2, two half-note beats per measure, also known as cut time and notated
as a "C" with a vertical slash through it.

• 6/8, six eighth-note beats per measure.

• 9/8, nine eighth-note beats per measure

• 12/8, twelve eighth-note beats per measure.
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The first note of every bar or measure is called the downbeat. Every measure has
strong (loud) and weak (silent) beats. In a time signature like 4/4, the first beat
of every measure is the strongest beat, and the third beat is also a strong beat.
Beats two and four are weak beats. Regardless, this can vary between different
genres and compositions.

2.1.3 Tempo

Tempo refers to the speed of a section of music. It can be indicated in metronome
markings using beats per minute (BPM) or by using descriptive words (tradition-
ally Italian words describe tempo like, adagio or andante).

Typically the metric of BPM is self-explanatory. As its name suggests, it indicates
the count of beats a minute contains. For example, a musical part with 60 BPM
results in one beat per second, and with 120 BPM it is twice as fast resulting in
two beats per second.

In terms of musical notation, a beat almost always corresponds with the piece’s
time signature. This means that the denominator of the time signature counts as
one beat. For example in 2/4, 3/4, 4/4 a quarter note counts as a beat, in 6/8,
9/8, 12/8 an eighth note counts as a beat and so on.

BPM is the most precise way of tracking real time of musical sequences, both as
a whole duration and as a time offset between notes. It is effective due to its
precision, offering parallel play between instruments without temporal confusion
in environments like bands or orchestras, as well as time consistency in solo play.
If the tempo is not respected, the sound can feel out of place, even in untrained
ears. Typically, professional musicians are able to sustain tempo during their play,
as well as understand the time of a composition before performing it. Usually the
most skilled musicians in tempo are percussion players as their instruments are
specialised in rhythm rather than melody.
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2.1.4 Note Values

Individual notes within a measure last for a specific fraction of the duration of
that measure. They indicate both their pitch depending on where they are set in
the pentagram, and their duration or time offset from the previous played note.

Figure 2.4: Note values

Notes in a part or sheet of music indicate their duration and their offset from the
previous note played inside a measure. In a common 4/4 time signatures the types
of notes are (Figure 2.4):

• Whole note: a note that covers the whole 4-beat measure, an empty circle

• Half note: covers half of a 4-beat measure, an empty circle with a vertical
bar on top right or bottom left

• Quarter note: covers a fourth of a 4-beat measure, filled circle with a vertical
bar on top right or bottom left

• Eighth note: covers an eighth of a 4-beat measure, filled circle with a vertical
bar on top right or bottom left and a tail

• Sixteenth note: covers a sixteenth of a 4-beat measure, filled circle with a
vertical bar on top right or bottom left and a double tail

Some musical parts have smaller subdivisions, such as 32nd, 64th and 128th notes,
but musicians typically set tempos that work around the need for such small
durations and offsets.

In summary, musical parts have principles and rules that allow musicians to trans-
late and read them. In any case this section is not intended to be a lesson about
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music theory. It simply contains some basic principles that are required in order
to assist in the engineering of generative modeling.

2.2 Deep Learning

Machine Learning has been thriving in the last decades and its techniques and
tasks in everyday laborious tasks are showing great results. Their ability to pro-
cess unstructured data and extract higher level representations adapted to the task
suit very well for our music generation purpose. It is a field that branches into
many categories, such as classification and regression algorithms (Linear Regres-
sion, Logistic Regression, Decision Tree, SVM and so on), which are categorised as
supervised or unsupervised learning, agent-based algorithms (Q-learning), neural
networks and the list goes on (Goodfellow, Bengio, and Courville 2016). Our main
focus is a branch called Deep Learning, which utilizes dense, multi-layered neural
networks that are trained upon a certain dataset and are able to identify patterns
in order to deliver a decision, usually to solve a classification task.

The aim of this section is to present the very basic concepts of deep neural net-
works, which will allow a smooth transition to unique and complex techniques
used by the generative models (Piyush Madan 2020).

2.2.1 Deep Learning and the Human Brain

In order to create systems that learn similarly to how a human is able to learn,
the architecture of a deep learning network tends to mimic the human brain and
its process in learning. Deep learning essentially was inspired by neurology, as
similarly to how neurons form the fundamental building blocks of the brain, its
architecture is assembled by layers of neurons, which are computational units
allowing modeling of nonlinear functions.

The main point of a deep learning network is the neuron, which receives a list
of input signals and transforms them into output signals, inspired by the human
neuron, which in a biological manner transmits electrical pulses throughout our
nervous system.
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The neuron’s purpose is to understand data representation by stacking together
many layers, each layer responsible for understanding some pattern of the input.
A layer is a collection of neurons, with the aim of learning to detect a repeat-
ing occurrence of values. Each layer of neurons is responsible for interpreting a
specific pattern within the data. The interconnection of neurons in the human
brain is replicated by the use of layers forming a network, so this computational
architecture is called neural networks (or artificial neural networks).

2.2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) processes input data by the use of a large
number of neurons. Each layer contains neurons that will in turn feed their outputs
to the ones of the next layer, as shown in Figure 2.5.

Figure 2.5: Neuron (Artificial Neural Network)

The processing of input data by each neuron is done by two steps of calculation:

• compute a weighted sum of the inputs and an offset, and

• pass the weighted sum through an activation function to deliver an output.
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Step 1: Compute weighted sum

Z = b+
n∑

i=1

wi · xi (2.1)

• Inputs x1 through xn, are denoted by a vector X of size n. Xi represents the
kth entry in the dataset. Each entry in the dataset contains n dependent
variables.

• Weights w1 through wn, are denoted as a matrix W . They represent how
strong a connection is between a certain input and the neuron, indicating
this part of the input affects little or much the outcome of the neuron.

• A bias term b, which is a constant.

Step 2: Activation Function

o = g(Z) (2.2)

The output of step 1, Z, is passed through an activation function resulting in
the output of neuron o. The function g is a mathematical function that allows
transformation of the outputs to a desired non-linear format, before it is passed to
the next layer. It essentially normalizes the summation result to a desired range,
which helps identifying whether the neuron "fired", meaning whether its output
will affect the next layer.

2.2.3 Shallow Neural Network

The most basic form of a neural network is the shallow neural network, which
essentially consists of three layers: input layer, hidden layer and output layer. The
input layer refers to the data sent by the input set. Hidden is the layer that consists
of neurons each being connected to all of the inputs, dedicated in computations
presented in the previous section. The last layer, the output layer, consists of a
certain number of neurons (depending on the task), that determine the output of
the network, in other words the prediction. A neural network with just one hidden
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layer is called shallow, as shown in Figure 2.6.

Figure 2.6: Shallow Neural Network

The direction in which the data is passed once through the network (usually pre-
sented from left to right) is called a forward propagation. After one forward pass
is completed, the output layer compares its results to the actual ground truth la-
bels and adjust the weights in a reverse way based on the differences between the
ground truth and the predicted values. The process of a backward pass through
the neural network is also known as back propagation.

Each layer consists of ni neurons, i indicating the label of each layer, total l layers.
Between two layers there are connections based on the number of neurons each
layer consists of. For example, between layers l1 and l2 there are n1 ·n2 connections
as each neuron of l2 connects with every neuron of l1. Usually this helps determine
the load of the network, as it indicates the number of trainable parameters there are
in the network, by considering all the connections. The weights of each connection
are called trainable parameters, because their value will be changed during back
propagation based on the error of prediction.
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2.2.4 Deep Neural Network

Deep Neural Networks resemble the architecture of a shallow neural network, with
the difference being that they consist of more than one hidden layer (Figure 2.7).
As its name suggests, they have depth based on the number of extra hidden layers.
Each neuron in a hidden layer is connected to all the others of the next layer.
Selecting the number of hidden layers is determined by the nature of the task
and/or the size of dataset.

Figure 2.7: Deep Neural Network

The calculations and processes of forward pass or backward pass for each layer
and neuron remain the same as suggested in the previous sections.

2.2.5 Back Propagation

The Back Propagation algorithm (LeCun et al. 1988) is used to effectively train
a neural network through a method called chain rule. After each forward pass,
the algorithm performs a backward pass, while adjusting the trainable parameters
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(weights and biases). The algorithm is used to effectively train a neural network
through a method called chain rule. In simple terms, after each forward pass
through a network, backpropagation performs a backward pass while adjusting
the model’s parameters (weights and biases).

The basics of the process of back propagation follow these steps:

• The network works to minimize an objective function, for example, the error
incurred across all points in a dataset.

• At the output layer, the network must calculate the total error (difference be-
tween actual and predicted values) for all data points and take its derivative
with respect to the weights at that layer. The derivative of error function
with respect to the weights is called the gradient of that layer.

• The weights for that layer are then updated based on the gradient. This up-
date can be the gradient itself or a fraction of it. This fraction is determined
by a factor known as the learning rate, and it controls how large the steps
that are taken to change the weights are.

This process is then repeated for the previous layer and continues until the first
layer is reached. During this process, values of gradients from previous layers can
be reused, making the gradient computation efficient.

2.2.6 Convolutional Neural Networks

Convolutional layers (Brownlee 2019b) are the basis of creating convolutional neu-
ral networks. A convolution is an application of filters to an input data, resulting
in a feature map, indicating the location of certain features in an input, such as
an image.

Convolutional neural networks learn automatically a large number of filters speci-
fied to identify patterns and features among the training dataset, usually predicting
such features in image data. This feature detection is usually applied in classifica-
tion tasks. CNNs are specialized to work with two-dimensional image data most
of the times, but the input can be one-dimensional and three-dimensional data.
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The convolutional layer performs an operation called a "convolution", that is a
linear operation that involves a multiplication of a set of weights with the input,
like a typical neural layer. The main distinction is that the set of weights, also
called filter or kernel, and the input data are both two-dimensional.

Figure 2.8: Filter application

The operation between the data and the filter is a dot product. Each element of
the filter is multiplied with each element of a filter-size patch of the input image,
then those values are added resulting into a single value (this operation is also
referred to as a "scalar product"). This process repeats for each filter-size patch
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of the input image, resulting in a set of dot products which is the feature map
(Figure 2.8). This means that the filter size must be smaller than the input image,
to allow detection in multiple regions in the image. The filter is applied using this
operation from left to right and top to bottom of the image.

Convolutions have been a common technique used in computer vision. Filters were
designed to be applied to images for feature map extraction. For example, there
are filters that are able to identify vertical or horizontal lines. Those filters are
dragged through the whole input resulting in a feature map indicating the presence
of vertical or horizontal lines. The application of both of those filters result in a
feature map highlighting the edges of the input image.

Utilizing multiple filters offers a greater feature detection in image data. The
use of multiple weighted filters that are able to be altered for desired feature
extraction is what makes CNNs successful. The network will naturally learn what
types of features to detect from the input dataset. Specifically, training under
stochastic gradient descent, the network learns to extract features from the image
that minimize the loss for the task the network is designed to solve, e.g. extract
features that are most useful for distinction between images of cats and dogs.

Convolutional layers are often stacked allowing for a hierarchical decomposition
of the input. The filters that operate directly on the raw pixel values will learn
to extract low-level features, such as lines. The next set of layers are able to
extract features that are combinations of lower-level features, such as ones that
compromise multiple lines to express shapes. This process continues until the
deepest layers are able to identify complex shapes, such as faces, animals etc. This
is the reason that CNNs are desired in solving tasks that often require complex
feature detection.
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Chapter 3

Methods

In this section the steps taken to achieve the goal of this work will be presented.
The whole process is split in two sub-sections, first the preparation and prepro-
cessing of the training data (MIDI files) is presented, and then the architecture of
the training models (neural networks).

The most essential part for this work regarding the preprocessing of musical data,
is tempo, time signatures and note duration. In practice, it will be apparent that
MIDI files contain information about note values and duration in a discrete way.
Regardless, most time attributes are set into high time values, or ticks, and we
aim to reduce that value for the image translation, e.g. a note being played with
a duration of 256 ticks, needs to be reduced in order to have smaller images (less
pixels) with the same information. Furthermore the images that will be created
need to have enough pixels for at least two measures, while at the same time being
able to contain different time signature types, as well as normalizing the time
durations and offsets in a way that information is not lost. It is also apparent that
other concepts of music theory, such as keys, scales and so on are not present due
to the fact that they are not needed. This work is based on training upon musical
parts that already follow music principles and rules. Regardless understanding
more musical aspects could help evaluate the trained generative models, as in a
more complex and better performing environment such concepts could be helpful.
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The training part by itself contains two solutions, using a Variational Autoencoder
(VAE) and a Generative Adversarial Network (GAN), for the purpose of research
and comparison. Both of these models are trained with the same type of training
data.

3.1 Preprocessing of training data

MIDI files are used broadly today in the music industry. If opened with certain
applications, there can be seen sequences of notes in a tabular form. The current
work utilizes a python library, called Mido (Bjørndalen 2013), which offers easy
access to such files and their information, as well as the creation of MIDI files,
which is handy for generation purposes. Aside from Mido, music21 (Cuthbert
2006) is also a great alternative to extract information from MIDI files.

With Mido, by opening a .mid (.midi) file from any directory and assigning it to
a Mido object, this object contains a tracks attribute, that is a list of tracks.
Each track on its own is a list of messages and meta messages. Each message has
a time attribute. Time is set to delta time (in ticks), which will be explained
later in detail.

The following sections determine the type of a MIDI file:

• type 0 (single track): all messages are saved in one track

• type 1 (synchronous): all tracks start at the same time

• type 2 (asynchronous): each track is independent of the others

When creating a new file, the type must be selected by the creator, but can be
changed anytime.

Also, each Mido object contains a playback length item, the total musical se-
quence time in ticks. It should be noted that it’s not possible to access the length

property of a type 2 file, as a ValueError will be raised, because the playback
time of an asynchronous file cannot be computed.
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3.1.1 Messages

As mentioned previously, each track is a list of messages. Those messages hold the
information of the musical sequences. Most common messages are the ones that
press or release notes:

>>> mido.Message('note_on')

<message note_on channel=0 note=0 velocity=64 time=0>

Arguments can be passed like this:

>>> mido.Message('note_on', note=100, velocity=3, time=6.2)

Message('note_on', note=100, velocity=3, time=6.2)

where the message type can be:

• ’note_on’: a note is pressed

• ’note_off’: a note is released

Note refers to all the possible notes as integers in the range of 0 to 127. This
data value d corresponds to a frequency f in Hz by the MIDI Tuning Standard
(MTS), which is a specification of precise musical pitch agreed to by the MIDI
Manufacturers Association in the MIDI protocol. To get the frequency f of any
data value d the following formula is used:

f = 2(d−69)/12 · 440Hz (3.1)

Inversely, the conversion from frequency f to a midi note number d can be done
with this formula:

d = 69 + 12 log2

(
f

440Hz

)
(3.2)

Velocity is the volume at which the note will be played (high value of velocity is
loud, low value is silent).

As far as the time attribute is concerned, it is specified as delta time in ticks.
This essentially means that each message is accompanied by that attribute and
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determines how much time has passed since the previous message. In theory
music there is also the beat, which is essentially a quarter note. In a signature of
a 4/4 song, each measure has 4 beats. Each MIDI file has a value stored, called
ticks_per_beat , which declares how many ticks a beat counts. The last time-
related attribute that a track requires is the BPM (beats per minute) of a song
(usually known in music as tempo, although in MIDI tempo refers to something
else), and it counts how many beats a minute contains. For example a track that
has 4 beats per minute and 3 ticks per beat is presented in Figure 3.1:

Figure 3.1: Example of a track with time attributes

Tempo in MIDI is not given as beats per minute, but rather in microseconds per
beat. The default tempo is 500000 microseconds per beat, which is 120 beats per
minute. There can be used some methods, like bpm2tempo() and tempo2bpm() ,
for conversions to and from beats per minute.

There are many other types of messages that refer to program, control, channel
(used for parallel instruments and note effects), but for simplicity and due to the
fact that the model is trained only on one instrument, the piano, the MIDI files
are filtered and simplified to contain only ’note_on’ and ’note_off’ messages. The
full list of messages is shown in Table 3.1, whereas Table 3.2 provides information
about the various parameters.
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Table 3.1: Supported MIDI Messages

Name Parameters / Arguments / Attributes
note_off channel note velocity
note_on channel note velocity
polytouch channel note value
control_change channel control value
program_change channel program
aftertouch channel value
pitchwheel channel pitch
sysex data
quarter_frame frame_type frame_value
songpos pos
song_select song
tune_request
clock
start
continue
stop
active_sensing
reset

Table 3.2: MIDI Message parameter types

Name Valid Range Default Value
channel 0..15 0
frame_type 0..7 0
frame_value 0..15 0
control 0..127 0
note 0..127 0
program 0..127 0
song 0..127 0
value 0..127 0
velocity 0..127 64
data (0..127, 0..127, ...) () (empty tuple)
pitch -8192..8191 0
pos 0..16383 0
time any integer or float 0
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3.1.2 Meta Messages

Meta Messages in MIDI behave like normal messages and can be created in the
usual way. They store information either related to the song or musician in general,
like copyright information, text, track name, lyrics, or attributes that affect the
track directly, like tempo, time signature.

For the pre-processing of the training data, meta messages were not utilized in
any way. Meta messages were implemented and inserted at the generation of the
musical sequences, purely for presentation reasons.

3.1.3 Music to data

This section presents how the MIDI files were processed into proper training data
for the models. The generative models chosen for this task were VAE (Variational
Autoencoder) and GAN (Generative Adversarial Network). Due to their nature
of utilizing convolutional layers, translating MIDI files to images is a rational
approach. The goal of the pre-processing procedure was to convert MIDI files, or
message sequences, to images.

3.1.3.1 Message filtering

Firstly, as stated before, the messages need to be filtered in order to contain
only message types of note pressing or releasing. This means that each message
that is not type of "note_on" or "note_off" is discarded. Regardless, irrelevant
typed messages are still processed and their time attribute is taken into account,
otherwise the normalized track would not be the same.

The general idea is, each message gets parsed, if its type is neither "note_on" nor
"note_off" its time attribute is saved to a variable and the message is deleted from
the sequence. That variable is utilized and its value is added to the last message
that was saved. This basically means that each message of type "note_on" or
"note_off" is kept as is, and the other types are deleted, but their time values
are added to their previous messages, so the sequences remain the same in terms
of total duration. This filtering allows for an easier mapping of the musical se-
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quence to an image. Also messages that are "note_on" with velocity value 0, or
are "note_off", but there was not a previous "note_on" with the same "note"
value, are also filtered out. Some examples are presented below which indicate the
application of such filtering.

"Filtering of a note_off with no prior note_on"

"Initial sequence:"

note_on channel=0 note=74 velocity=81 time=0

note_off channel=0 note=70 velocity=30 time=512

note_off channel=0 note=74 velocity=0 time=256

...

"Filtered sequence:"

note_on channel=0 note=74 velocity=81 time=0

note_off channel=0 note=74 velocity=0 time=768

...

"Filtering of a note_on with velocity=0"

"Initial sequence:"

note_on channel=0 note=74 velocity=81 time=0

note_on channel=0 note=80 velocity=0 time=512

note_off channel=0 note=74 velocity=0 time=256

...

"Filtered sequence:"

note_on channel=0 note=74 velocity=81 time=0

note_off channel=0 note=74 velocity=0 time=768

...

"Filtering anything besides note_on, note_off message types"

"Initial sequence:"

note_on channel=0 note=74 velocity=81 time=0

control_change channel=0 control=6 value=0 time=128

control_change channel=0 control=101 value=0 time=128

set_tempo tempo=800000 time=128

set_tempo tempo=850000 time=128
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note_off channel=0 note=74 velocity=0 time=256

...

"Filtered sequence:"

note_on channel=0 note=74 velocity=81 time=0

note_off channel=0 note=74 velocity=0 time=768

...

3.1.3.2 Time normalization

Besides message filtering, while parsing through messages, their time attribute is
reduced. This is essential due to the fact that each time tick will be treated as
a pixel when converted to an image. Most MIDI files contain different ticks per
beat values (which is how many ticks a beat counts, Figure 3.1), and those values
are high (for example: ticks_per_beat=1024) which would produce high scale
resolution images. It is impossible to find perfect MIDI files for this task, with
small value of ticks per beat, due to the multiple range of applications or programs
dedicated to creating digital music, plus the various musicians and creators who
use them. Each new time attribute is calculated given the file’s ticks per beat and
its value is set to 12 (the reason is given in the next section), in order to attain
uniformity among the tracks.

new_time = round

(
current_time ∗ 12
ticks_per_beat

)
(3.3)

3.1.3.3 Message sequences to Images

Images prove essential for generational purposes using VAEs and GANs. The
converted images have width and height set to 96 by 96 respectively. Each image’s
x axis refers to time and y axis refers to every possible piano pitch or note.

The ticks per beat is set to 12 for each track, so 96
12

= 8 quarter notes are contained
in each image. In a 4/4 time signature (which is the most common case) this
counts as two measures. The ticks per beat attribute is set to 12 to cover for most
time signatures and speed of note presses. If the ticks per beat is set to 1, and
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a track contains eighth or sixteenth notes, then information is lost and the track
gets corrupted. Speed exceeding sixteenth notes is rather rare so a ticks per beat
set to 4 is acceptable, but some songs contain triplet notes (3 notes counted in
a quarter) so 4 · 3 = 12 is the safest choice. This value essentially covers cases
where information is not lost, if the track contains sixteenth triples. Regardless,
files can still be found with unexpectedly low message time values (grace notes)
and by rounding, information can also be lost.

The conversion process is done by creating an image of a whole song at first. An
empty list, or image, is initialized with dimensions 96 height and song_duration
width with values set to 0 (black pixels). Also a dictionary is used to hold the ac-
tive notes and each note is deleted from this dictionary when a note_off message
with the same pitch value is presented. Each message is parsed and if its type
is note_on, it is added to the dictionary, plus its time value is saved to a mes-
sage_time variable. For each item in the dictionary (active notes), pixels are set
to 255 (white) depending on the message_time variable. After each note from the
dictionary is assigned to the list (white pixel), if the message was type note_off,
the note gets deleted from the dictionary, meaning it will not change the respective
pixel to white in the next iteration, but it will remain black.

For example, say that the note dictionary contains the active notes: 45, 50, 55.
Current message type is note_on, note=70 and time=12 and current time value
is 120 (which is the pointer that points to the current x value of the image). The
image is filled like this:

• image[96-45][120 to 120+12] from 0.0 to 255.0

• image[96-50][120 to 120+12] from 0.0 to 255.0

• image[96-55][120 to 120+12] from 0.0 to 255.0

• current_time=120+12

• note_dict=45, 50, 55, 70

The values of note 70 are not yet set to white, but in the next iteration, the pixels
will be swapped, as it is present in the note dictionary.
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A second example presents the process with a type note_off 50 message (current
time=120, time=12 of message and same note dictionary):

• image[96-45][120 to 120+12] from 0.0 to 255.0

• image[96-50][120 to 120+12] from 0.0 to 255.0

• image[96-55][120 to 120+12] from 0.0 to 255.0

• current_time=120+12

• note_dict=45, 55

Pixels for note 50 are changed, but the same note is discarded from the dictionary,
and in the next iterations its pixels will remain black.

In the resulting image after conversion, as shown in Figure 3.2, the rows determine
the note value (y axis) and columns refer to a specific time tick (x axis). It is
noted that the image’s row value (pitch/note) is 96−pitch purely for presentation
purposes, otherwise it would be inverted, but the results would be the same.

It is also noted that some files contain more than one tracks, which partition the
whole song (low and high notes or left and right hand), meaning the file type is
synchronous (datasets do not contain asynchronous files), so the images created
for each track are then concatenated into one. After a whole song is converted to
an image, it is then segmented into a series of smaller images with width value
equal to 96, so each file produces track_duration/96 images.
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Figure 3.2: Example of MIDI to image encoding compared to the same MIDI
opened by an external application
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3.2 Training Models

In this section the two approaches for solving the music generation task are pre-
sented. Two models were used, as stated previously, a Variational Autoencoder
(VAE) and a Generative Adversarial Network (GAN). Both models have powerful
generative applications with different pros and cons. They are similar in their
structure, as each one consists of two sub-networks, one dedicated to generating
images and another assisting the generator network. Also they take advantage of
convolutional layers which convert images to a more compact dense representation.
After the training process is completed, the sub-network that translates data to
images is used by passing random or specific input and it outputs images that are
then converted to MIDI files. In the next sub-sections each approach, as well as
the architectures used with their respective neural layers, are explained.

3.2.1 Variational Autoencoder (approach and architecture)

Variational Autoencoders are very well suited to generate random data that kind
of resemble the initial dataset, but they work better at altering and exploring data
at a specific non-random direction (Shafkat 2018).

3.2.1.1 Standard Autoencoder

An Autoencoder consists of two connected networks, the encoder and the decoder.
An encoder receives an input which is then translated to a small dense represen-
tation, which in turn is used by the decoder to convert it back to its original input
(Figure 3.3).

The encoder is similar to Convolutional Neural Networks (CNNs). CNNs reduce
a tensor of height-width-channel to a dense representation, for example a rank
1 tensor of size 1000. Then this representation is ready to get passed to the
classifier. The only difference of an encoder is that it produces a representation
of a much smaller size, the encoding, enough to get passed to the rest of the
network and attain a desired output. Usually, the encoder is trained with the rest
of the network’s parts, optimized by back propagation, to attain encodings desired
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for a certain task. In summary, the general idea is making the encoder generate
encodings used for reconstructing the initial input.

Figure 3.3: The Standard Autoencoder

The entire autoencoder network is trained as a whole and the loss function is either
mean-squared error or cross-entropy between the output and the input, known as
the reconstruction loss, which penalizes the network for creating outputs different
from the input.

As the encoding (which is the output of the hidden layer of the encoder) is much
smaller than the input, the encoder inevitably will discard information. The en-
coder learns to choose or preserve as much of the relevant information as possible
in the limited encoding, and intelligently discards irrelevant parts. The decoder
receives the encoding and is trained to properly reconstruct it into a full image.
Together, the encoder and the decoder form an autoencoder.

3.2.1.2 Weakness of standard Autoencoders

Standard autoencoders learn to generate dense representations and then recon-
struct their inputs fairly well. Nevertheless, asides from a few applications like
denoising autoencoders, their usage is fairly limited.

Their main issue, for generation, is the latent space that they convert their inputs
to and where the encoded vectors lie, may not be continuous and can contain gaps.

For example a visualized 2D latent space (Figure 3.4) of a trained network to the
MNIST dataset reveals certain distinct clusters of each class (Shafkat 2018). This
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Figure 3.4: MNIST Latent space optimizing only on reconstruction loss

is fair, as distinct encodings for each image type or class makes it far easier for
the decoder to decode them. This is fine for replication of the same images, yet it
is not desired for generation purposes. The goal is to randomly sample from the
latent space, or generate variations on an input image, from a continuous latent
space.

If the space has discontinuities (eg. gaps between clusters), and the decoder sam-
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ples encodings from those gaps, it will simply generate an unrealistic output, be-
cause it has no idea how to deal with that region of the latent space. This happens
because during training, it never saw encoded vectors coming from that region of
the latent space.

3.2.1.3 Variational Autoencoders

Variational Autoencoders (VAEs) have one fundamentally unique property that
distinguish them from standard autoencoders, and it is this property that makes
them so useful for generative modeling: they are designed to produce latent spaces
that are continuous, which allow for easy random sampling and interpolation.

This is achieved by outputting two vectors of size n instead of one: a vector
of means, µ, and another vector of standard deviations, σ. They represent the
parameters of a vector of random variables of length n, with the i-th element of
µ and σ being the mean and standard deviation of the i-th random variable, Xi,
from which the sampled encoding is obtained, which in turn is passed onward to
the decoder.

This stochastic generation means, that even for the same input, while the mean
and standard deviations remain the same, the actual encoding will somewhat vary
on every single pass simply due to sampling.

Intuitively, the mean dictates the center of the position of an encoding, while the
standard deviation controls the area of how much a sample can deviate from the
mean or center. As encodings are generated randomly by the distribution, given
the two vectors, the decoder learns that all nearby points close to the center refer
to a certain class, and not just a single one in the latent space. This very property
offers the desired exploration aspect, as samples will vary, while still being part of
the distribution, and in turn fill the discontinuous gaps. The latent space at which
the decoder is trained upon is denser with no discontinuities or gaps.

As long as the network offers encodings whose latent space is denser, it ideally
provides the possibility of interpolation between classes, which the standard au-
toencoders are usually unable to do. However, since there are no limits on what
values vectors µ and σ can take on, the encoder can learn to generate very differ-
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ent µ for different classes, clustering them apart, and minimize σ, making sure the
encodings themselves do not vary much for the same sample (less uncertainty for
the decoder). This allows the decoder to efficiently reconstruct the training data.
In this thesis however, interpolation between classes is irrelevant, as our approach
utilizes a single class.

What is ideally desired are encodings, that are as close as possible to each other
while maintaining distinction, allowing smooth interpolation, and enabling the
construction of new samples.

This can be enforced by utilizing the Kullback–Leibler divergence in the loss func-
tion. The KL divergence between two probability distributions simply measures
how much they diverge from each other, therefore by minimizing the KL diver-
gence, the probability distribution parameters (µ and σ) are optimized to closely
resemble that of the given distribution.

n∑
i=1

σ2
i + µ2

i − log(σ2
i )− 1 (3.4)

The KL loss (for VAEs) is computed by the sum of all the KL divergences between
Xi ∼ N (µi, σ

2
i ) in X and the standard normal distribution. This is minimized,

when µi = 0, σi = 1.

Intuitively, this forces the encoder to distribute all encodings from different classes
to the center of the latent space. The encoder is also penalized, if it tries to cluster
apart the encodings.

Using purely KL loss, a latent space is attained (Figure 3.5) whose encodings
appear densely randomly near the center regardless of similarities among nearby
encodings (Shafkat 2018). Then, the decoder is unable to distinguish anything
meaningful.
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Figure 3.5: MNIST Latent space optimizing only on KL divergence loss
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Optimizing the decoder as well (reconstruction loss along with KL divergence),
results in the generation of a latent space (Figure 3.6), which maintains the sim-
ilarity of nearby encodings on the local scale via clustering, and it is fairly dense
packed near the latent space origin (Shafkat 2018).

Figure 3.6: MNIST Latent space optimizing on both reconstruction and KL di-
vergence loss

Intuitively, the result of optimizing both reconstruction and KL loss, is that the
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decoder can successfully decode encoded vectors from a certain distribution, as
well as interpolate and mix features due to the lack of gaps in the latent space.

3.2.1.4 VAE architecture

In this section, the VAE architecture used for generation of images that contain
musical sequenses is presented and explained. The layers of both networks (encoder
and decoder) are also given in detail. This machine learning task is written in
Python, which provides exceptional libraries and wrappers, like Tensorflow and
Keras.

Encoder Model Architecture

Figure 3.7: Encoder Architecutre

The encoder architecture is presented in Figure 3.7. This particular model receives
an input image and translates it to a dense representation. The image data it
receives is 96 by 96 by 1 pixel dimensions (height-width-channels), and the latent
dimensions are 2, that represent the mean and the standard deviation of the latent
distribution.

All the neural layers of the encoder are presented below:

• Conv2D: a regular convolution layer that executes a convolution through
every pixel of the image, the number of filters is equal to the number of
output channels (input has 32, rest of the layers have 64 filters), kernel size
is 3× 3 which is the window of the convolution, and the strides refer to the
reduction of the output image (e.g. default of strides (1, 1) output image of

49



same size, stride tuple set to (2, 2) outputs image of half height and width).
Output of the convolutions are 96× 96× 1→ 96× 96× 32→ 48× 48× 64

followed by two more convolutions of the same size (48× 48× 64)

• relu: refers to the activation function of the layers, allows positives to pass
through and filters out negatives to 0.

• Flatten: matrix conversion to a vector, in this case flattening the image of
shape 48x48x64 to a vector of 48 · 48 · 64 = 147456 items or network nodes.
This is usually done as a preparation for the dense layer.

• Dense: a fully connected layer that has input times output connections, each
connection has a weight and bias, that are multiplied and added to the input
respectfully.

• Lambda: this layer exists so that arbitrary expressions can be used as a
network layer, in this case the computed expression contains µ and σ (mean
and sigma) from the previous layers.

Specifically this last sub-network executes convolutions, before feeding data through
dense layers. It provides two outputs, mean µ and standard deviation σ of encoded
inputs. We use these to sample random variables in the latent space to which inputs
are mapped. Then we define a sampling function to sample from this distribution.
The sample is "reparameterized" based on the process defined by Gunderson and
Huang into the shape of µ+ σ · eps where epsilon is the sample from the distribu-
tion. This is done to allow for accurate gradient descent estimation. The Lambda
layer contains this exact expression added for gradient descent calculations using
µ and σ.

The rectified linear unit (ReLU) (3.5) (Figure 3.8) is used as the main activation
function. Activation functions, such as ReLU, are used to address the vanishing
gradient problem in deep convolutional neural networks and promote sparse acti-
vations (e.g. lots of zero values). It is responsible for transforming the summed
weighted input from the node into the activation of the node or output for that
input. It essentially serves as filtering. If the input is positive, it is passed as is,
and if not, the output is 0.
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Figure 3.8: ReLU

ReLU function:

f(y) =

{
0 if y < 0

y if y ≥ 0
(3.5)

Decoder Model Architecture

The decoder architecture is presented in Figure 3.9. This model translates the
output of the encoder, which is a sampled latent vector, to an image of shape
96× 96× 1.

• Dense: a fully connected layer, contains input times output connections,
each connection has a weight and bias which are multiplied and added to the
input respectfully. This is the input layer of the decoder network.

• Reshape: reshapes the input to an output with desired dimensions (error
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Figure 3.9: Decoder Architecutre

will be raised, if the total number of items between input and output are not
equal). In this case the input from the dense layer is 147456 nodes (or items)
and the reshaped output is a 48 by 48 by 64 matrix, which 48·48·64 = 147456.

• Conv2DTranspose: a transpose convolution or deconvolution layer, used for
upsampling the input determined by the strides of the convolution, which in
this case strides are set to a (2, 2) tuple which essentially doubles the x and
y axes of the input (width and height).

• relu: an activation function, which simply allows positives to pass through
and filters out negatives to 0.

• sigmoid: an activation function, also known as logistic function, which is
essentially a smooth step function around 0.5.

The decoder is the component that will be used after training for generating im-
ages. The main goal is to essentially train the combined model (encoder plus
decoder) in order to achieve a decoder that can sample data from the target dis-
tribution, so the image generation is as close to the desired results as possible.

The sigmoid function (3.6) (Figure 3.10) (Han and Moraga 1995), or logistic func-
tion, is applied to the output of the decoder network. This function adds non-
linearity in machine learning modeling, by mapping real values between 0 and 1.
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It is usually added to networks that perform binary classification tasks, and in this
case each pixel is mapped between 0 and 1, which determines whether each pixel
(or note) will be "played" (in musical terms) or not.

f(y) =
1

1 + e−y
(3.6)

Figure 3.10: Sigmoid function

The combined model

The two models, the encoder and decoder, are then combined with the help of
a custom layer class, which is essential, if we want to define custom loss. The
complete VAE is trained using two loss functions, reconstruction loss and KL
divergence.

Reconstruction loss refers to the binary cross-entropy loss between the input image
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(from the initial dataset) and the decoded image (provided by the decoder). Binary
cross-entropy compares each of the predicted probabilities, in this case for each
pixel, to the actual output, which can be either 0 or 1 (black or white pixel, note
off or note on). It then calculates a score that penalizes the probabilities, based
on the distance from the expected value (how close or far).

The loss-function of binary cross-entropy:

Hp(q) = −
1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.7)

Kullback-Leibler (KL) divergence is used to attain sampled encodings that are
as close as possible to each other, while maintaining distinction, allowing smooth
interpolation, and enabling the construction of new samples. The KL loss is com-
puted as shown in (3.4) and then is added to the reconstruction loss.

Compilations and Optimizers

Compilations and optimizers of neural network models often refer to the adjust-
ment of trainable parameters, the weights. They are essential processes that often
determine the stability of the network and offer a smooth learning curve.

The combined model, encoder along with decoder, are compiled with the custom
loss, reconstruction and KL loss. The optimizer of choice is Adam.

Adam is the optimization algorithm used instead of a classic stochastic gradient
descent for weight updating. Its name is derived from adaptive moment estimation.
Classic stochastic gradient descent has a single term named alpha (learning rate)
for updating all the weights and remains unchanged during the training process.
Adam utilizes a learning rate as well, which is separately adapted for each network
weight as learning unfolds. Adam is produced by combining the advantages of two
other extensions of stochastic gradient descent, specifically:

• Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter
learning rate that best performs on problems with sparse gradients (e.g. NLP
and computer vision).
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• Root Mean Square Propagation (RMSPror) that also maintains per-
parameter learning rates that are adapted based on the average of recent
magnitudes of the gradients for the weight (e.g. how quickly it is changing),
meaning the algorithm does well on online and non-stationary problems (e.g.
noisy).

Adam utilizes the advantages of both AdaGrad and RMSProp. Instead of adapting
the parameter learning rates based on the average first moment (the mean) as in
RMSProp, Adam also makes use of the average of the second moments of the gra-
dients (the uncentered variance). Specifically, it calculates an explonential moving
average of the gradient and the squared gradient, and parameters beta1 and beta2
control the decay rates of these moving averages. Adam is preferred among other
optimizers in similar tasks, because it is effective. Empirical results demonstrate
the superiority of Adam in terms of training cost among other optimizers, as shown
in Figure 3.11 (Kingma and Ba 2015).

Adam configuration parameters with their respective empirical good default ex-
amples:

• alpha. This is known as learning rate or step size. The proportion that
weights are updated (e.g. empirical good default value is 0.001). Larger
values result in faster initial learning before the rate is updated and smaller
values in slow learning.

• beta1. The exponential decay rate for the first-moment estimates (e.g. 0.9).

• beta2. The exponential decay rate for the second-moment estimates (e.g.
0.999). This value should be set close to 1.0 on problems with sparse gradient
(e.g. NLP and computer vision).

• epsilon. A very small number to prevent any division by zero in the imple-
mentation (e.g. 10E-8).
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Figure 3.11: Adam compared to other optimizers

3.2.2 Deep Convolutional GANs (approach and architec-

ture)

Generative Adversarial Networks (GANs) are broadly used for generative purposes.
Generative modeling is an unsupervised learning task in machine learning that
involves automatically identifying and learning the similarities or patterns in input
data, in such a way that the model can be used to generate or output new examples
that plausibly could have been drawn from the original dataset (Brownlee 2019a).
They are desired and sought after due to their interesting design of one of their
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sub-networks, the generator.

The generator is very interesting due to its nature that translates random noise into
desired data. This is accomplished via the second sub-network, the discriminator,
which receives the generator’s output and decides whether this data is true or
false. Due to parallel training, those two networks compete, in order to improve
themselves. The generator’s purpose is to fool the discriminator and the latter is
trained to distinguish real from fake images, that originate from the dataset or the
generator. This results in an adversarial zero-sum game, and the ideal situation in
theory would be the discriminator to be fooled about half the time, meaning that
the generator attains plausible examples. In practice, the expected accuracy of a
discriminator from a well-trained GAN hovers around 80%, and this is explained
in detail in the Results and Discussion sections.

3.2.2.1 Discriminative vs. Generative Modeling

Usually, in supervised learning, models are constructed for predictive purposes, to
classify an example of input variables to a specific class. This predictive modeling
task is called classification. It is also known as discriminative modeling. From the
training data, the goal is to attain a discriminant function f(x) that maps each
x onto a class label, therefore combining the inference and decision stages into a
single learning problem. In summary such a model’s goal is to discriminate or
classify sets of input variables across classes. The factor of choice or decision, as
to what class a given example belongs to, is presented.

On the other hand, unsupervised models that identify the patterns of input vari-
ables are able to be used for generative purposes based on the input distribution.
Those models are referred to as generative models.

For example, a single input variable may have a known data distribution, such
as a Gaussian distribution, or bell shape. A generative model may be able to
identify patterns and summarize this distribution, as well as generate new data
points that could have been part of the initial dataset. The ideal scenario would be
a generative model that produces data that is indistinguishable from real samples.
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3.2.2.2 Standard GANs

The GAN model architecture consists of two sub-models, a generator model capa-
ble of producing new examples and a discriminator model for identifying whether
input data originates from the domain (is real), or is fabricated by the genera-
tor model (is fake). GANs are based on a game theoretic scenario in which the
generator competes against an adversary.

3.2.2.3 Generator Model

The generator model receives as input a fixed-length random vector and generates
a sample in the domain (Figure 3.12).

The vector is produced randomly by a Gaussian distribution and is used to seed
the generative process. After the training process, points in this multidimensional
vector space correlate with points in the problem domain, forming a dense repre-
sentation of the data distribution.

This vector space is also known as latent space, because it contains latent variables.
Those latent or hidden variables are important in neural network modeling, they
are understood by the specific model, but are not directly observable by humans.
Furthermore, latent variables are often referred to as a projection or compression
of a data distribution. In this specific case of GANs, the generator model learns
to apply meaning to points in a chosen latent space, such as when new points are
drawn from it, to be provided to the generator model as input and to be used
to generate new and different output examples. When the process of training is
deemed complete, the generator is saved and used to generate new samples, hence
the point of this work.
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Figure 3.12: The Generator Model
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3.2.2.4 Discriminator Model

The discriminator model receives as input an example from the dataset (real) or
a generated sample (fake) and predicts a binary class label of real or fake (Figure
3.13). The real examples are drawn from the original dataset and the fake ones
are fabricated by the generator model. The discriminator is a typical classification
model, which in this case classifies images to be true or fake, meaning they originate
from the initial dataset or they are produced by the generator. After the training
of the GAN is completed, the discriminator is discarded, as the model of interest
is the generator purely for generative purposes. Regardless, it could still be used
for other tasks as some of the feature extraction layers can be used in transfer
learning applications.

Figure 3.13: The Discriminator Model

3.2.2.5 GAN - A two player competition

As mentioned in a previous section, generative modeling is an unsupervised learn-
ing problem, but the training of the generative model in GANs is framed as a
supervised learning problem.

The two models, generator and discriminator, are trained together (Figure 3.14).
The generator generates samples trying to imitate the dataset, and these, along
with the real examples, are received by the discriminator and classified as real or
fake.
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Then the discriminator is updated to become better at discriminating real and fake
samples in the next round, and the generator is updated based on how well the
generated samples imitated the ones from the dataset and fooled the discriminator.

Figure 3.14: The Generative Adversarial Network Architecture

GANs and Convolutional Neural Networks

In most applications GANs utilize the use of convolutional neural networks or
CNNs. Both the discriminator and generator consist of such layers. CNNs are
very useful in computer vision tasks, as they are able to compress an image of 3
dimensions (width, height and channels, eg. 64× 64× 3) to a vector. This vector
is a dense representation of the input that extracts its main features. They are
used by the generator to translate the latent space to an image sample, and for
the discriminator to identify the validity of the image, whether it is real (from the
dataset) or fake (produced by the generator).

Modeling image data refers to that exact process of creating a latent space, the
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input of the generator, that provides a dense or compressed representation of the
set of images from the dataset used to train the model. The generator learns from
training to receive random latent points from a distribution and generate new
images.

CNNs are also applied to this learning task, as convolutions and transpose con-
volutions are essential. The discriminator model utilizes convolutions to break
down an image input to a compressed representation and classify whether it’s real
or fake, and the generator model uses transpose convolutions or deconvolutions
which is the opposite direction of a convolution, transformation of a supposed
compressed representation (random points from a distribution) to an image, that
still maintains connectivity and patterns as a regular convolution.

3.2.2.6 GAN Architecture for Music Generation

In this section, the architecture used for generation of images that contain musical
sequenses is presented and explained. The layers of both networks (generator and
discriminator) are also given in detail. This machine learning task is written in
Python, which provides exceptional libraries and wrappers, like Tensorflow and
Keras.

Generator Model Architecture

Figure 3.15: The Generator Architecture

The generator architecture is presented in Figure 3.15. The model receives an
input of latent points with dimension 1 by 100. This noisy information is then
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passed through a fully connected or dense layer, that has 24 ·24 ·32 = 18432 nodes.
This exact number of nodes is essential, as the desired output of the model will
be 96× 96× 1 dimensions. Then, a number of upsamples take place, as the use of
deconvolutional layers take place for the transformation of the output of the dense
layer to an image.

All the neural layers of the Generator are presented below:

• Dense: a fully connected layer, which contains input times output connec-
tions, and each connection has a weight and bias, that is multiplied and
added to the input respectfully. This is used to convert the latent vector
(noisy input) to an item that is then ready to be upsampled to an image
with desired dimensions.

• Reshape: simply reshapes the input to an output with desired dimensions
(error will be raised, if the total number of items between input and output
are not equal). For example, in this case the output of the dense layer is
18432 nodes, which is then reshaped to an output of 24 × 24 × 32 (width-
height-channels), that is 24 · 24 · 32 = 18432.

• Conv2DTranspose: a transpose convolution or deconvolution layer, used for
upsampling the input determined by the strides of the convolution, which
in this case strides are set to a (2, 2) tuple, which essentialy doubles the x
and y axis of the input. Also the kernel window size is 4 × 4 at which the
convolution is calculated. Filters sizes vary.

• LeakyReLU: serves as the main activation function, a leaky rectified linear
unit

• Conv2D: a regular convolution layer that shifts through every pixel and ex-
ecutes a convolution, height and width are unchanged as strides default to
(1, 1), and serves are the output of the generator model

• tanh: activation function of the final Conv2D layer

The output of the reshaped dense layer is passed through two upsampling lay-
ers (Conv2DTranspose). While training, generator models with smaller number
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of dense nodes and more upsampling layers produced images with all the pixels
valued 0 (black images), which makes sense, since the more dense nodes, the more
information the model is able to save and imitate the dataset. Nevertheless the
training process becomes slower, as the total trainable parameters increase, as well
as the load is heavier for the machine used for training.

(a) ReLU (b) LeakyReLU

Figure 3.16: Rectified Linear Units (Basic and Leaky)

The rectified linear unit (ReLU) (3.5) (Figure 3.8) is used as the main activation
function. Basic ReLU is used in VAE iteration referenced in the previous section,
whilst the GAN utilizes LeakyReLU. LeakyReLU (Figure 3.8) (Xu et al. 2015)
serves the same purpose as basic ReLU, but instead of converting every negative
value to 0, it allows some negative values based on the slope variable that is set by
the user, hence the name "leaky". While in the generator, regular ReLU performed
just as well as LeakyReLU, in the discriminator the deviation of the results was
greater, so the leaky rectified linear unit was kept as default for both of the models
with a slope value of a = 0.2 (example shown in Figure 3.16).

LeakyReLU function:

f(y) =

{
a ∗ y if y < 0

y if y ≥ 0
(3.8)

The deconvolutions in the generator model were preferred compared to other up-
sampling layers (Upsampling2D). Strided convolutions allow the generator to learn
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its own spatial upsampling. In this case, the generator upsamples the reshaped
dense representation twice, resulting in the desired dimensions of the images,
paired with LeakyReLU. Also the filters were set to 64, which were enough to
sustain features, and the kernel size to (4, 4) (which is the convolution window).
Furthermore, the input upsamples from 24× 24× 32 to 48× 48× 64 and then to
96× 96× 64 to attain the desired height and width. The last layer, or the output
layer of the model, is a regular convolution that converts the filters or channels
to 1 (since the model is trained upon and generates images in grayscale) with a
training function of tanh (output is normalized to a range of [−1, 1]), a kernel
window (7, 7) and with no strides, since the dimensions of the image match the
desired result. Most GANs utilize a regular convolution layer, instead of a fully
connected dense layer, and by practice this output layer massively improved the
results. Other parameters that refer to bias and kernel constraints or initial values
were left to default.

It is noted that the generator model is compiled with an optimizer, when combined
with the discriminator model.

Discriminator Model Architecture

Figure 3.17: The Discriminator Architecture

The architecture of the discriminator, as shown in Figure 3.17, resembles a typical
binary classification model using CNNs. As stated before, the process is to feed
the discriminator with images of shape 96×96×1, either sampled from the dataset
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or generated by the generator model, and determine whether they are real or fake.

The neural layers used by the discriminator model are presented below:

• Conv2D: regular convolution layer, with 64 filters, kernel window size is 3×3

at which the convolution is calculated, and the strides are set to (2, 2) as they
determine the size of the output image (strides of size 2 reduce the image in
half) eg. output of the convolutions are 96× 96× 1→ 48× 48× 64 and then
48× 48× 64→ 24× 24× 64.

• LeakyReLU: activation function that lets all positive values to pass through
and allows some negatives (regular ReLU filters all negative values to 0)
based on the value of the slope set to alpha=0.2.

• Dropout: randomly sets input values to 0 based on the frequency or rate set
by the user, in this case, rate is 0.4 which means 4 out of 10 neurons will
be terminated randomly. This helps with the overfitting problem of neural
network classification and it is noted that dropout only takes place during
training. Also inputs not set to 0 are scaled up by 1/(1 - rate), so that the
sum over all inputs is unchanged.

• Flatten: converts a matrix to a vector, in this case flattening the image of
shape 24× 24× 64 to a vector of 24 · 24 · 64 = 36864 items. This is usually
done for preparation to the dense output layer.

• Dense: a fully connected layer that has input times output connections,
in this case 36864 · 1 = 36864 connections, each one weighted and biased
calculating the outcome, which is a binary classification. The activation
function used is sigmoid, which is the most common and best performing
choice for binary classification tasks.

The general idea of the discriminator is to catch the generator and identify fake
images against real ones from the dataset. This model uses two downsampling con-
volutional layers, each with the same number of filters, strides and kernel windows,
to break down its input, and a dense layer as the output for classification.

The activation function used, sigmoid, also called the logistic function, for binary
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classification problems is like a step function around 0.5, but smoother, allowing
values between 0 and 1 to pass through. Sigmoid is also presented in the VAE
iteration (3.6) (Figure 3.10).

Compilation and Optimizers

Compilations and optimizers of neural network models often refer to the adjust-
ment of trainable parameters, the weights. They are essential processes that often
determine the stability of the network and offer a smooth learning curve.

While the compilation of the generator takes place after the two models are com-
bined, the discriminator is compiled separately. More specifically the discriminator
is compiled with binary cross-entropy as its loss, its performance is observed by
the accuracy metric and utilizes an Adam optimizer.

Binary cross-entropy compares each of the predicted probabilities to actual class
output, which can be either 0 or 1. It then calculates the score that penalizes
the probabilities based on the distance from the expected value. That means how
close or far are from the actual value.

The loss-function of binary cross-entropy:

Hp(q) = −
1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.9)

Where y is the label (1 for real images and 0 for fake images) and p(y) the predicted
probability of the input being real for all N samples. This means that for each
real image originating from the dataset (y = 1) it adds log(p(y)) to the loss, which
is the log probability of it being real, and conversely it adds log(1− p(y)) for each
fake image generated by the generator (y = 0), which is the log probability of it
being fake.

The metric of accuracy is fairly straightforward, as it provides a percentage of how
many times the discriminator was correct at its prediction. In GANs, usually this
metric fluctuates in the beginning and ideally converges around 80%, at which
point the discriminator is fooled by the generator, indicating a desirable generator
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model. More details for accuracy are presented in the Results and Discussion
sections.

Adam is the optimization algorithm used instead of a classic stochastic gradient
descent for weight updating. Adam is explained in detail in the VAE iteration
referenced in the previous section.
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Chapter 4

Results

In this section, we present the outcome of the generative modeling we propose,
presented in the Methods section. Both the VAE and GAN were trained on three
different datasets.

• Classical MIDI Collection: 295 tracks converted to 16400 images, all of the
classical genre, with great variance on composition (based on different com-
posers from different eras and cultures).

• Undertale video game soundtrack: 110 tracks converted to 3207 images,
video game music, fair variance between tracks.

• Pokemon Mystery Dungeon (PMD) Blue/Red Rescue Team video game
soundtrack: 11 tracks converted to 298 images, ambient music with little
variance between tracks.

By the term variance between tracks we refer to the difference between melodies
and sounds. For example in the Pokemon soundtrack, the tracks have all fairly
similar ambient rhythm, in the Undertale dataset some tracks are similar to the
ambient type, but there is also presence of faster rock type tracks, and in the
Classical dataset the difference is greater, due to different styles of composers
included. Furthermore, it should be interesting to determine whether that factor
affects network performance.
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Training two models on three different datasets (six different iterations) is believed
to be enough in order to infer accurate results, plus we get the option of comparing
the models with themselves.

In an ideal situation, we would want each model to generate images (that are
converted back to MIDI tracks), which closely resemble the ones from the datasets
with the addition of exploration and originality. In practice, this is not the case
as the results are not melodic enough or consumer grade. This work focuses on
extracting information as efficiently as possible (due to the limited training time
and resources) and obtaining a model that generates images as close to the desired
result as possible. This distinction is important though, as good quality images,
with little noise, does not necessarily mean that their conversion to music is going
to be melodic.

Furthermore, this section is split between two parts, each for every model presented
in the Methods section. Both models, VAE and GAN, will be analyzed based on
metrics, losses, and on some statistical analysis that can help explain the nature
of the models or pose questions that will be addressed in the Discussion section.

In general, metrics, such as loss, can sometimes be misleading. In a generative
task the loss between epochs is expected to behave in certain ways, nevertheless
such a task is subjective and the results cannot be based solely on that factor.

The statistical analysis presented simply measures the probability of each note in
each initial dataset. Then, the same analysis is applied to a set of generated images
from the models and are then compared. The idea is if the behavior matches, the
respective model will have a tendency to generate results close to the desired ones.

In conclusion, good results in such a task are subjective, and good sound or
melodies may vary between even humans. In practice, the outcome of this ex-
ploratory work does not generate consumer-quality music, although there are some
notable results.
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4.1 Variational Autoencoder training results

First, the training process of the VAE will be presented, shown by examples of some
epochs along with their respective latent space representation (which is crucial
for generating results close to the dataset), followed by a loss plot. At last, we
present some generated examples, along with a statistical analysis of note frequency
between the images of the dataset and the generated ones. This whole process is
replicated for all three datasets.

It can be expected that the Undertale dataset will perform better, as it is rather
simplistic musically, compared to the Classical dataset, and it contains more sam-
ples compared to the PMD dataset.

4.1.1 Training the VAE model

The VAE model proved to be heavier computation-wise, due to the high number of
trainable parameters (around 5 million), compared to the GAN (around 2 million).
Regardless, the training time is fairly low, as it reaches convergence after few
epochs, based on the dataset provided.

For each epoch the model trains upon batches, meaning that it executes back
propagation, considering a number of inputs, a batch, rather than updating the
variables after each input is fed through. This number is set to 32, as in typical
training situations it is set to 32, 64, or 128. In addition, the model reserves a
portion of the dataset for validation at the end of each training epoch and the
validation loss is saved for plotting. For practical reasons, the dedicated script
also saves the complete model, as well as the decoder model, offering the ability
to retrain or generate samples.

The training history of VAE for each dataset is presented in Figure 4.1 with some
generated examples. Those samples are the result of utilizing the decoder model,
feeding it with random values in range of −4 to 4. As it was stated in Methods, the
VAE modeling builds a latent space during training, which indicates the position
of the clusters of each class in space. In this case, the class is one, so we observe
a single cluster, as well as the random variables are two, so the space will be a
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(a) First epoch (PMD) (b) Epoch 40 (PMD) (c) Last epoch 100 (PMD)

(d) First epoch (Undertale) (e) Epoch 15 (Undertale) (f) Last epoch 100 (Under-
tale)

(g) First epoch (Classic) (h) Epoch 10 (Classic) (i) Last epoch 100 (Classic)

Figure 4.1: Generated samples for VAE during training

two-dimensional plot. The range of the random variables is set in range of −4 to
4, as we expect the cluster to be a circle positioned around (0, 0) with a radius of
4.

It is observed that initially, epoch 0, the model generates images with random
noise for each dataset. Afterwards, it is able to identify some patterns of the
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initial datasets. For PMD, the model at epoch 40, is observed to have a tendency
to generate musical samples, although noise is still present. Same principle can
be seen in the Undertale dataset at epoch 15, as well as the Classical dataset at
epoch 10. At last the training is stopped at epoch 100 for all three datasets for
comparison.

(a) Latent space (PMD) (b) Latent space (Undertale) (c) Latent space (Classic)

Figure 4.2: VAE Latent space for each dataset

Figure 4.2 presents the said latent spaces for each respective epoch of the generated
results.

(a) Loss History (PMD) (b) Loss History (Under-
tale)

(c) Loss History (Classic)

Figure 4.3: VAE Loss history for each dataset

Figure 4.3 presents the losses in a graph based on each epoch. The loss with color
red corresponds to the average loss of the samples the model is trained upon, and
the loss with color blue, to the validation loss, which is calculated based on a small
portion of the dataset (20%), which is calculated at the end of each epoch.
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Finally, it is obvious that the number of epochs required to generate images that
resemble samples from the initial pool vary for each dataset, due to the fact that
each dataset contains a different number of input samples. It is expected that less
samples will execute less back propagation calculations for each epoch, resulting in
requiring a greater number of epochs. In this case, all three iterations are trained
for 100 epochs for comparison reasons, presented in the Discussion section.

4.1.2 VAE evaluation

Evaluating a generative task is not easy, as the results are highly subjective. There
is the choice of evaluation based on musical theory, but the approach of this work
is to be as simplistic as possible.

Due to the nature of music, it is not possible to describe in words a musical part,
or whether it sounds melodic, although some samples are presented in Figure 4.4.
These images have been processed to only contain black or white pixels, in order
to convert them to MIDI, meaning the actual result is noisier.

In Figures 4.5, 4.6, 4.7, we present a statistical analysis on note frequency between
tracks from the dataset and generated tracks. Each iteration generates 1000 sam-
ples and calculates a frequency for each note presented. Then we present a second
figure referencing the difference between original and generated frequencies for
each note for presentation purposes. This analysis aims to indicate the behavior of
each iteration, whether the model is able to generate samples that replicate each
original dataset. This feature will be further analyzed in the Discussion section.
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(a) VAE PMD track 11
(encodings: 2.2, 2.0)

(b) VAE PMD track 28
(encodings: 2.6, 2.9)

(c) VAE Undertale track 11
(encodings: 3.3, −3.6)

(d) VAE Undertale track
41 (encodings: −2.0, 1.7)

(e) VAE Classic track 209
(encodings: −3.3, 3.3)

(f) VAE Classic track 212
(encodings: −2.8, 3.5)

Figure 4.4: Notable samples generated by the VAE
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(a) Note Frequency (PMD)

(b) Frequency Difference (PMD)

Figure 4.5: Note frequency bar graphs (for the PMD dataset) between real and
(1000) generated samples by the VAE
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(a) Note Frequency (Undertale)

(b) Frequency Difference (Undertale)

Figure 4.6: Note frequency bar graphs (for the Undertale dataset) between real
and (1000) generated samples by the VAE
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(a) Note Frequency (Classic)

(b) Frequency Difference (Classic)

Figure 4.7: Note frequency bar graphs (for the Classic dataset) between real and
(1000) generated samples by the VAE
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4.2 GAN training results

In this subsection, the GAN modeling results are presented, replicating the VAE
format. Firstly, training examples are shown along with loss plots. Afterwards,
the generated examples are analysed with the same statistical process, as used for
the VAE model. Each subsection evaluates the model based on all three datasets.

4.2.1 Training the GAN model

The GAN model, as it was built in the Methods section, consists of around 2
million number of trainable parameters (Generator and Discriminator combined).
Also the number of epochs required to reach a desired stage was higher for all
three datasets compared to the VAE.

Just like the VAE iteration, the GAN model is trained upon batches, splitting the
dataset into groups of 64, executing back propagation after each batch, rather than
updating the trainable parameters after every input sample is passed through, thus
reducing the training process, while still maintaining effectiveness. Compared to
the VAE, the GAN does not utilize the validation method, since loss is observed
based on the two sub-models (generator, discriminator) rather than based on the
complete model. For practical reasons, the script that is responsible for training
also saves the model as a checkpoint, along with the generator, offering the ability
to retrain or generate samples outside of the training process.

Figure 4.8, presents the training history of the GAN based on some generated
samples. Those samples are the result of utilizing the generator model, feeding it
with random noise input vector of 100 values ranging from −1 to +1. Compared
to the VAE, there is no latent space representation or clustering of the random
input that can be visualised.

It is observed that initially, epoch 0, the model generates images that cannot be
decoded to sound, as they appear either gray (PMD), or black (Undertale). The
Classic dataset appears to output only some gray spots that are still unable to be
converted to sound. Afterwards, for PMD, at epoch 40, and for Undertale, epoch
3, the models are observed to generate some non-black spots, although conversion
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(a) First epoch (PMD) (b) Epoch 40 (PMD) (c) Last epoch 100 (PMD)

(d) First epoch (Undertale) (e) Epoch 3 (Undertale) (f) Last epoch 100 (Under-
tale)

(g) First epoch (Classic) (h) Epoch 50 (Classic) (i) Last epoch 80 (Classic)

Figure 4.8: Generated samples for GAN during training.

to music is still impossible. At last, the training is stopped at epoch 100 for
PMD, epoch 100 for Undertale, and epoch 80 for the Classic dataset, as the first
two iterations seem unable to generate consistent images compared to the Classic
iteration, which is closer to what an ideal result would be.

Figure 4.9, presents the losses in a graph based on each epoch. The loss with color
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(a) Loss History (PMD) (b) Loss History (Under-
tale)

(c) Loss History (Classic)

Figure 4.9: GAN loss history for each dataset

blue corresponds to the average generator loss for all the batches in each epoch,
and the loss with color red, to the average discriminator loss. The loss values of
generator and discriminator are expected to behave in an opposite manner, mean-
ing that if the generator is performing well, low loss value, then the discriminator
is fooled, thus outputting high loss value. More details and analysis on GAN
performance based on losses are presented in the Discussion section.

(a) Discriminator Accuracy
(PMD)

(b) Discriminator Accuracy
(Undertale)

(c) Discriminator Accuracy
(Classic)

Figure 4.10: Discriminator Accuracy history for each dataset

In Figure 4.10 the accuracy of the discriminator is presented. This accuracy value
refers to the ability of the discriminator to successfully identify whether its input
is real (given by the dataset) or fake (generated by the generator).

Finally, just like in the VAE analysis, some iterations output results faster than
others, in terms of epochs, due to the fact that each dataset contains different
number of samples. More input samples lead to more calculations, but more
training time for each epoch. The PMD and Undertale iterations are stopped at
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epoch 100, as they are deemed unable to generate desired results, and the Classic
iteration is stopped at epoch 80, as the model generates close to ideal results.
More details are presented in the Discussion section about model performance and
behavior.

4.2.2 GAN evaluation

In this subsection the GAN model is evaluated the same way as the VAE model.
Generated samples are presented along with the probability of each note for every
dataset. Once again a generative task is one of the hardest deep learning prob-
lems, as there is no clear way to determine whether the results are desired or not
(subjectivity), whereas in classic deep learning tasks the performance is usually
dictated by metrics.

(a) GAN PMD track 28 (b) GAN Undertale track
16

(c) GAN Classic track 210

Figure 4.11: Samples generated by the GAN

The generated samples produced by the GAN are shown in Figure 4.11. Just like
the VAE results, the GAN samples are normalized to output images with black or
white pixels for the MIDI conversion, although, compared to the VAE, the GAN
samples appear cleaner, with little noise, especially in the Classic dataset’s case.

In Figures 4.12, 4.13, 4.14, we present a statistical analysis on note frequency
between tracks from the dataset and generated tracks, just like the VAE, along
with difference graphs. Each iteration again generates 1000 samples and calculates
a frequency for each note presented. This feature will be further analyzed in the
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(a) Note Frequency (PMD)

(b) Frequency Difference (PMD)

Figure 4.12: Note frequency bar graphs (for the PMD dataset) between real and
(1000) generated samples by the GAN

Discussion section.
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(a) Note Frequency (Undertale)

(b) Frequency Difference (Undertale)

Figure 4.13: Note frequency bar graphs (for the Undertale dataset) between real
and (1000) generated samples by the GAN
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(a) Note Frequency (Classic)

(b) Frequency Difference (Classic)

Figure 4.14: Note frequency bar graphs (for the Classic dataset) between real
and (1000) generated samples by the GAN
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Chapter 5

Discussion

This chapter’s role is to comment, discuss and observe upon the results given by
the training of the VAE and GAN models presented previously. The main goal is
to identify patterns among observations, give reason to possible errors, as well as
present possible solutions.

In general, based on Figures 4.1 and 4.8, the models behave differently for each
dataset. The GAN in general generates cleaner images with little noise compared
to the VAE. Although, in PMD there is little note selection, in Undertale the notes
appear choppy and non-continuous, and in Classic the tracks seem complex and
somewhat random (Figure 4.8). In VAE’s case, noise is more present, PMD and
Undertale iterations output some fair results, and Classic iteration is the noisiest
and seems to not produce clear note sequences (Figure 4.1). It should be noted
that those results in said figures are the raw unprocessed outputs of the networks,
but for listening purposes then get filtered to end up either with a white or a black
pixel (not grayscale).

5.1 Note probability graphs

Both models, VAE and GAN, are able to be trained upon all three datasets and
generate desired images that resemble piano tablatures. The VAE iteration gen-
erates more noisy images, the Classic’s case being the most noisy, and the GAN
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outputs cleaner images. The main goal of this work, which is the extraction of
images representing music and generating new ones based on that behavior, is
achieved.

This offers the ability to then comment on those results and evaluate them based
on melody and musical potential. Based on the probability graphs in the Results
section (Figures 4.5, 4.6, 4.7, 4.12, 4.13, 4.14), we observe that the notes selected
from the generated samples resemble the ones from the datasets, with some offsets
as seen in the difference of probability graphs. Those offsets can be present due to
various reasons:

• The models are unable to replicate the datasets’ images, meaning a big value
of difference is considered a non-ideal result.

• The models are defined in a way to achieve exploration or generate samples
that are original compared to the inputs, meaning some value of difference
is considered an ideal result.

In order to distinguish whether the models lack the ability to replicate the datasets
or offer exploration and originality we observe the graphs considering spatial dif-
ference. We infer that big value of difference can be acceptable in spaces that
appear frequently, but not in spaces where note probability from the datasets is
small. For example, in both Figures 4.5 and 4.6, differences are presented in a
continuous way, yet in the first case, PMD, the average difference is greater than
the Undertale dataset, which makes the latter case’s differences acceptable.

In VAE’s case the total notes selected for all three datasets seem to resemble the
notes selected from the dataset, although the differences vary for each dataset.
The Classic iteration seems to generate lower notes more frequently than higher
ones, compared to the dataset which favors high notes, so the difference is rather
great (Figure 4.7). The PMD iteration presents some great variances between
some notes, indicating that the model does not replicate the dataset (Figure 4.7).
At last, in the Undertale iteration the frequency difference is smaller, even in notes
that the variance is the greatest e.g. around 6% (Figure 4.6). In summary, the
VAE generates images that contain a total number of notes close to the number
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of the datasets, nevertheless the frequency differences vary for each dataset. The
Undertale iteration seems to be performing better than the other two datasets in
this case.

The GAN model’s total note selection varies from the VAE iteration. Training
upon the Undertale dataset, the GAN generates images that contain less than
20 different notes in total. The differences appear small, although that is the
result of the model not selecting enough different notes (Figure 4.13). The PMD
iteration outputs more total notes, but still not as many as the dataset, and the
frequency differences are great (Figure 4.12). At last, in the Classic iteration the
GAN generates notes close to the total number of different notes in the dataset,
as well as the average frequency differences seem low, around 4% (Figure 4.14). In
summary, the PMD and Undertale iterations do not resemble the input dataset,
as they select fewer total different notes, and the Classic iteration is what an ideal
result should look like, selecting a great number of notes (close to equal to the
dataset) and having small frequency differences.

Regardless, there are two problems that are presented with the case of spatial
frequency differences: firstly, in practice the result of altering a note to another,
which is close spatially can be completely different musically in a non-ideal way,
and, secondly, this analysis observes solely the selection of notes without consid-
ering the temporal attribute in the nature of music. For example, if we alter a
melodic piano track temporally, keeping the same notes, but changing the order of
the notes or the time offsets between them, the resulted track will sound completely
different and in most cases random. Furthermore, we infer that this analysis is not
sufficient enough to evaluate model performance, but it offers some insights about
note selection and exploration.

5.2 Metric plots

Models in Deep Learning tasks are usually evaluated based on metrics, such as loss
or accuracy. In a classic task, such as classification, loss is a way to determine when
to stop training as well as observe the training history. Typically, in generative
tasks, such as the one of the current work, metric evaluation is more complicated,

88



due to the nature of subjectivity of the results. Regardless, even generative models
are expected to behave in a certain way considering metric plots.

5.2.1 VAE metric plots

The training of the VAE model is evaluated based on metrics, such as the validation
loss, which is the loss computed based on a certain portion of the dataset reserved
for prediction at the end of each epoch. The average training loss is also included
for more insight. This loss is computed based on reconstruction loss and KL
divergence, as stated in the Methods section (3.7), (3.4). For the three datasets
(Figure 4.3) the VAE converges to around 0.1 on validation loss. The average
training loss seems to be lower than the validation loss and in the cases of PMD
and Undertale is not yet converged. In general, lower training loss compared to
validation loss is an indication of overfitness, meaning the model is able to perform
well on the training set, but struggles to replicate the same performance on data
it has not yet processed. Ideally the difference of those two values should be
close to 0, as well as the values themselves should be as low as possible. While
there is a difference present, the values remain fairly low (close to 0.1). The PMD
iteration starts with high losses at the first epoch and converge after a couple of
iterations, also the variance between training loss and validation loss is greater
due to the fact that the model overfits. Both of those reasons are the result of
few input samples on the initial dataset (PMD). The greater number of samples
a dataset contains, the more training it receives after one epoch, in comparison.
The Undertale dataset contains more items, so the initial losses are smaller and
the model does not overfit at the same rate. The same can be seen in the Classic
dataset containing more items than both the other two datasets. In summary, the
loss behavior of the VAE on all three datasets is what should be expected and can
be considered as ideal results. With the loss histories, we could select models from
earlier epochs for generation purposes, in hindsight.
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5.2.2 GAN metric plots

In GAN’s case, the model evaluation based on loss is completely different compared
to traditional models, due to the fact that we observe two losses of two competing
sub-models, the generator and the discriminator (Figure 4.9). Also, we get more
information on the discriminator’s decision-making based on the accuracy history
(Figure 4.10).

Based on the Figure 4.9, we observe in the first two cases (PMD and Undertale)
the discriminator outperforms the generator as the epochs increase, and, in the
case of the Classic dataset, that is also present up to some point, around epoch
50, when the loss difference decreases.

The training of a GAN model is difficult for the fact that the two sub-models are
trained at the same time in a zero sum game. This means that improvements to one
model come at the expense of the other. GANs have plenty of problems that require
solution during training, such as Mode Collapse, which is the result of the generator
producing one or a small subset of different outcomes, and the Convergence Failure,
which is the struggle of the whole model to reach loss convergence. The latter
becomes present in this work’s case, as in the first two datasets the model is
unable to converge to a point of equilibrium.

In an ideal scenario, a stable GAN will have a discriminator loss around 0.5 and
a generator loss around 1.0. Also the accuracy of the discriminator on both real
and generated (fake) samples should be around 70% and 80% (Brownlee 2019c).
It should be noted that initially, in the early epochs, the loss variance is expected
to be great, as the behavior of the sub-models are expected to start off erratic and
move around a lot before convergence.

In Classic’s case, the GAN is able to escape from the great loss variance, at around
epoch 50 (Figure 4.9), and the losses hover around 1.0 for the discriminator and
2.0 for the generator. This stage of convergence is close to the ideal outcome, so
the case of convergence failure is not as present. Also, the discriminator accuracy
in Figure 4.10 for the Classic dataset seems to behave close to the ideal scenario,
as the discriminator seems to struggle to succeed in distinguishing fake and real
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samples 100% of the time.

In the other two cases (PMD and Undertale), the models suffer from convergence
failure, loss difference is high, as it can be seen in Figure 4.9, and discriminator
accuracy is high, especially in fake samples in Figure 4.10. This is the cause of
the generator outputting completely random images, making it fairly easy for the
discriminator to distinguish fakes from reals.

In all cases the generator at some point generates full black images. In Classic’s
case from epoch 5 to 50 (Figure 5.1), it generates only black images and then is
able to recover and generate samples that replicate the initial dataset. Convergence
failure is present due to the fact that the discriminator easily identifies the fake
ones from the generator by being completely black images, not resembling at all
the initial dataset.

(a) GAN Classic epoch 5 (b) GAN Classic epoch 30 (c) GAN Classic epoch 50

Figure 5.1: GAN generating fully black images up to epoch 50

There are ways to combat this type of failure in GANs, as it is a fairly common issue
in training competing models. One solution would be to add noise to the discrim-
inator input (Martin Arjovsky 2017). Another would be to penalize discriminator
weights (Roth et al. 2017). Both of those solutions force the discriminator to fail
more frequently, giving the generator a chance to recover.

5.3 Listening to the results

Due to the nature of music, it is not possible to describe music in words, or in
this case dictate whether the generated images decode to melodic parts, without
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considering music rules or principles (which can complicate this work). By decod-
ing the generated images to MIDI files, we are able to listen to our results. Due
to the complexity of input values to the generator sub-models (Decoder on VAE,
Generator on GAN), it is not feasible to listen to every possible track that can be
generated. The decoder receives two inputs with random values in a specific range
(dictated by the space representation of clustering), and the generator receives a
vector of 100 random values between −1.0 and 1.0.

By listening to many tracks generated based on all three datasets for each model,
we infer that the models struggle to produce consumer-grade music. A future goal
of the work would be to automate music production for certain situations, such as
music for television or radio advertisements, but at this stage this is not feasible.

Nevertheless, we identified some notable images that we decoded to music in MIDI
format that were interesting.

The best results were produced by the VAE, trained on the Undertale dataset.
Although the VAE produces noisy images, after normalization, some tracks have
a pleasant groove. Track 11 of the Undertale dataset, as shown in Figure 5.2,
presents a close to ideal result, and when listened to, we understand the model has a
tendency to create a sample with jazzy feeling, which is similar to the input dataset.
By utilizing this track’s encodings we can play around and produce samples that
sound similar but are different. The other two datasets (PMD, Classic) produced
fair results, although the sound is not as pleasant.

The GAN model generates cleaner images than the VAE. That being said, the
sound those samples produce are not pleasant to listen to, as they do not resemble
musical sequences.

We look for good overall results, rather than nitpicking some instances. In this
case, we dictate the models are not ready for consumer-grade music generation.
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Figure 5.2: VAE Track 11 (Undertale) sheet

5.4 Model comparison

Training two different models on three different datasets (6 iterations total) we
get the option of comparing each combination for the same task we initially set to
solve.

VAE pros and cons:

+ early loss convergence, less training time required

+ generated some notable samples on Undertale dataset

+ can manipulate inputs with encodings

- generates noisy images

- overall cannot produce consumer-grade music

GAN pros and cons:

+ sharper images

+ good performance on Classic dataset

- hard to train (convergence failure, many hours)
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- output is harder to manipulate, based on input dimension (random vector
of 100 items)

- overall cannot produce consumer-grade music
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Chapter 6

Conclusions

The main goal of this work was to produce a model that could somewhat replicate
images encoded from MIDI files, that could then be decoded to music.

In summary, we present the steps taken:

• A script converts MIDI files to 96 by 96 images, one axis for the note values
and the other for the time ticks.

• The models, GAN and VAE, are trained upon the image data sets, saving
model objects, loss values and space representation (for the VAE) at the end
of each epoch. Training stops at a stage when desired samples are generated.

• Another script imports the generator sub-models (generator for GAN, de-
coder for VAE), generates and saves image samples for evaluation. Those
images are also converted to music format and saved for listening.

• At last, an evaluation script is ran to create loss plots of training history, and
bar graphs that indicate note probability of generated and input samples for
comparison.

By extensive research and multiple iterations of deep learning models, we man-
aged to create two solutions that were able to generate musical samples in a very
efficient way regarding time and memory. Those models were trained upon three,
different in length (number of samples) and genre, datasets each. Some iterations
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outperformed others, but all successfully achieved what was initially desired.

The GAN model trained upon the Classic dataset escaped from convergence fail-
ure and based on loss plots and frequency difference bar graphs its training was
successful and close to ideal, yet the decoding of images back to MIDI files was
not that ideal. The VAE model in the Undertale case produced some samples
that were notable musically, yet the samples produced were not as clean as the
in the GAN’s case. Both models were somewhat successful, although ideally we
would want a model that is able to be trained upon different types of datasets and
generate similar results.

The reason this work was undertaken was due to the fact that music has a huge
role in human lives. With our exploratory proposal we are able to create a bridge
between computer science, and more specifically deep learning, with music. Deep
learning being a growing field of research in a very fast rate, could be a very
useful tool for musicians and composers, eventually offering real-time generated
and original music that the consumer has never listened to.

This work is a starting point, a simplistic solution for music generation, that other
researchers may continue upon and perfect what was initiated. Furthermore, our
results were not that bad, as there are very few instances of tracks that could be
enjoyed and listened to, nevertheless, we prefer this work to be evaluated based
on its efficiency and effectiveness of model training.
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Chapter 7

Future Work

The nature of this work is mostly technical, aside from the engineering of the data
pre-processing. That being said, there are actions that can be taken to further
improve training and results.

Some solutions are presented that could result in more desired generated samples.
Most complex deep learning tasks usually require a lot of training. Such is the
case for the GAN, being a cost-intensive model to train (many parallel calculations,
many epochs), which could output better results, if trained more. Specifically, it
is observed to output fully black images after a certain epoch (for each dataset),
with high generator loss and low discriminator loss, but with further training it
could stabilize and outperform past epochs, such as the case of the Classic training,
where the model is able to escape from convergence failure.

Also, there is much engineering that could be done concerning the deep learning
layers, meaning the addition of certain layers, the number of repetition of some
layer sequences (number of Conv2Ds along with activations), and the tuning of
hyperparameters or other attributes (such as batch number, filters, kernel sizes
etc.) could prove more efficient. This process is typically a matter of trial and
error.

In addition, the pre-processing of the datasets could be altered. One idea is to
utilize three channels instead of one, meaning colored images instead of gray-scaled.
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This extends the time ticks of each image by three times the initial range, or it
could be utilized to indicate the power at which each note is being pressed, offering
an extra layer of possible melodic results.

This work relied on training datasets that consist of piano tracks. Given that such a
basic iteration of music generation worked in a desired way, there could be multiple
instrument training, for parallel music composition, or inputs from multiple genres.
This is feasible as VAE modeling can be represented in space, and clustering could
be classified, meaning we could potentially train upon multiple instruments or
genres (classes) at the same time and generating samples based on the values at
which each class clusters. Another option would be to utilize Conditional GAN
models as they offer the option to implement conditions, as their name suggests,
based on musical principles allowing for more control in training.

While researching, we initially tried out a note prediction approach, utilizing Re-
current Neural Networks (RNNs) and Long-Short term Memory (LSTM) models,
where the model would be given an input of a track and would predict the next
action that should be taken, or note that should be played, acting as a classifica-
tion task. The problem we came across was that the number of combinations of
parallel notes, also known as chords, of a dataset is high, resulting in thousands
of nodes at the final layer of classification. With better handling and engineering,
this solution could be just as good, or even better than a typical generative task,
offering composers the ability of assistance in completing musical parts.

Finally, it is the nature of deep learning to require heavy computing and machines
equipped with complex graphical units, as well as memory. That being said, we
recommend retraining the current models, with higher in cost values of hyperpa-
rameters and attributes, such as filters of each layer. With faster rate of learning,
the models could be trained for more epochs, offering greater insight about each
model’s behavior and results.
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