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Abstract

Noncoherent (blind) sequence detection offers significant performance gains in comparison with

conventional single-symbol noncoherent detection when the communication channel is quasi-

static, at the cost of increased (usually exponential in the sequence length) complexity. In 2015,

optimal blind frequency-shift keying (FSK) sequence detection in single-input single-output

(SISO) systems was proven to be polynomially solvable and quasilinear-complexity optimal

detectors were developed. In this thesis, we examine the complexity of optimal blind FSK

sequence detection in 1x2 single-input multiple-output (SIMO) systems, i.e., systems with one

transmit and two receive antennas. We focus on the case of 3-FSK modulation, prove that

optimal blind FSK sequence detection is polynomially solvable for these cases, and present an

efficient detection algorithm that has worst-time complexity O(N3) where N is the sequence

length. Finally, we offer a few insights on generalizing these results for higher-order FSK

modulation and larger number of receive antennas.
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Chapter 1

Introduction

FSK (frequency-shift keying) is a type of orthogonal modulation which, like other types of

orthogonal modulations, is typically preferred in relatively low-rate communication systems that

operate in the power-limited regime. Specifically, FSK is primarily used, or considered for future

use, in underwater communications [1, 2, 3, 4, 5, 6, 7], acoustic short-range communications [8,

9], power-line communications [10, 11], backscatter sensor networks and RFID [12, 13, 14, 15,

16], low-power wireless sensor networks [17], and cooperative communications [18, 19, 20, 21,

22, 23]. In order to avoid the need for channel estimation, which induces added complexity at

the receiver end and rate loss due to the necessary use of a pilot sequence, systems that utilize

orthogonal modulation usually operate in the noncoherent mode, i.e., the receiver performs

noncoherent (or blind) detection without any channel knowledge [8, 10, 13, 18, 19, 20, 21, 23,

24, 25, 26, 27]. This is partly due to the simplicity of the single-symbol noncoherent detector

which, for orthogonal modulation (e.g., FSK), is a simple energy detector [8, 18, 19, 20, 21,

25, 26, 27, 28].

Moreover, it has been shown in [29, 30] that noncoherent sequence detection can offer signif-

icant performance gains in comparison with conventional single-symbol noncoherent detection,

as due to channel-induced memory, the optimal noncoherent detector requires processing of the
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entire received sequence to make a decision on the entire data sequence, i.e., it is a sequence

detector and no longer a single-symbol one. It was firstly demonstrated in [31, 32, 33, 34], in the

context of M-ary PSK (MPSK), that the ML noncoherent sequence detection minimizes the se-

quence error probability, offering significant error rate performance gains over the conventional

symbol-by-symbol noncoherent detection and attaining nearly-coherent detection performance

for sufficiently long sequences.

Specifically for FSK modulation, noncoherent sequence detection has been considered in

[10, 14, 23, 24, 35, 36], however optimal sequence detection can reach exponential (in the

sequence length) complexity when implemented through an exhaustive search among all possible

transmitted data sequences, as it was shown in [23, 35, 36]. Howbeit, by utilising principles

that have been used for polynomial-complexity optimization in [37, 38, 39, 40], it was shown

for the first time in [71], that GLRT-optimal noncoherent sequence detection of orthogonally

modulated signals in flat fading is achievable with log-linear (in the sequence length) complexity.

In wireless communications, MIMO (Multiple-input Multiple-output) is a method for mul-

tiplying the capacity of a radio link using multiple transmission and receiving antennas to

exploit multipath propagation. It specifically refers to a practical technique for sending and

receiving more than one data signal simultaneously over the same radio channel by exploiting

multipath propagation. Although this ‘multipath‘ phenomena may be interesting, it is the use

of orthogonal frequency division multiplexing to encode the channels that’s responsible for the

increase in data capacity. MIMO technology has been standardized for wireless LANs, 3G

mobile phone networks, and 4G mobile phone networks and is currently in widespread com-

mercial use. MIMO can be used in different format, depending on the number of the antennas

used in the receiver and/or transmitter. This work addresses the use of SIMO (Single-input

Mutiple-output), a specialised format of MIMO, where the transmitter has a single antenna

and the receiver has multiple antennas. This is also known as receive diversity and it is often
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used to enable a receiver system that receives signals from a number of independent sources

to combat the effects of fading. It has been used for many years with short wave listening /

receiving stations to combat the effects of ionospheric fading and interference.

In this work, we present an efficient algorithm that performs optimal noncoherent sequence

detection of orthogonally modulated signals (presented in the context of FSK) in a SIMO

Rayleigh fading channel. This work addresses the specialized case where the receiver utilises

D = 2 antennas and M = 3 different symbol frequencies are transmitted (3FSK), but the

algorithm can be generalized for any D > 2 and M > 3.

The rest of this work is organized as follows. In Chapter 2 the signal model is presented

and the optimal FSK detector is determined firstly for symbol detection, building up to FSK

sequence detection and FSK sequence detection in SIMO Rayleigh Fading channels. In Chapter

3 we introduce the concept of Spherical Coordinates and the efficient algorithm is presented

and analysed, including both theoritical and algorithmic developments, as well as complexity

analysis. Finally in Chapter 4, insights towards a M > 3 and D > 2 implementation are

presented.
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Chapter 2

Problem Statement

2.1 Signal Model & Optimal FSK Symbol Detection

M -ary FSK (MFSK) utilizes M sub-carrier frequencies to modulate the information sym-

bol x ∈ M ≜ {1, 2, . . . ,M}. This means that we send through our transmitter the signal

s̃x(t) =

√
P

T
cos 2π(Fc + Fx)t = ℜ{sx(t)ej2πFct} (2.1)

where

sx(t) =

√
P

T
ej2πFxt, 0 ≤ t < T, x ∈ M , (2.2)

and, after passing through the channel and L different paths, we have at our receiver

r̃(t) =
L∑
l=1

als̃x(t− τl) + ñ(t) =
L∑
l=1

alℜ{sx(t− τl)e
j2πFc(t−τl)}+ ℜ{n(t)ej2πFct} (2.3)

where

ñ(t) = ℜ{n(t)ej2πFct} . (2.4)

Considering τl ≪ Ts for l = 1, . . . , L , then s(t− τl) → s(t) and we can write

r̃(t) =
L∑
l=1

ℜ{alej2πFcte−j2πFcτlsx(t)}+ ℜ{n(t)ej2πFct} = ℜ
{
ej2πFct

(
sx(t)

L∑
l=1

ale
−j2πFcτl + n(t)

)}

= ℜ
{
ej2πFct

(
hsx(t) + n(t)

)}
5



⇒ r̃(t) = ℜ
{
ej2πFctr(t)

}
(2.5)

where

r(t) = hsx(t) + n(t) (2.6)

and

h =
L∑
l=1

ale
−j2πFcτl . (2.7)

The optimal receiver correlates the received signal r(t) in (2.6) with all M signaling wave-

forms s1(t), s2(t), . . . , sM(t) to produce the M samples

rm =
1√
P

∫ T

0

r(t)s∗m(t) dt m ∈ M . (2.8)

If the orthogonality condition is satisfied, i.e., |Fm − Fm′| = k 1
2T
, for some k ∈ N, ∀m,m′ ∈ M

with m ̸= m′, then

rm =


√
Ph+ nm, m = x,

nm, m ̸= x,

(2.9)

where n1, n2, . . . , nM ∼ CN (0, σ2
n). Consequently, for a single-symbol duration, the received

vector becomes [ r1
...

rM

]
︸ ︷︷ ︸

r

=
√
Phex +

[ n1

...
nM

]
︸ ︷︷ ︸

n

(2.10)

where n ∼ CN (0, σ2
nIM) and ex is the x -th column of the M × M identinty matrix IM that

corresponds to the corellating frequency Fx and the corresponding symbol x ∈ M. For notation

simplicity, we also define the set

IM ≜ {e1, e2, . . . , eM} (2.11)

that consists of the M columns of IM .

We will consider two cases for any M ∈ N≥2, where h is either known or a random variable

that follows the complex normal distribution with h ∼ CN (0, σ2
h). In both cases, if x is given,

r is also complex normal distributed. Hence, the optimal receiver becomes

max
x∈M

f(r|x) = max
x∈M

1

πk|C|
e−(r−µ)HC−1(r−µ) (2.12)
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where f(r|x) stands for the pertinent PDF of r given x, µ is the mean vector of r given x, and

C is the covariance matrix of r given x. We study the two cases seperately.

1. h is known:

Since h is known,

µ = E[r|x] = E[
√
Phex|x] + E[n|x] =

√
Phex (2.13)

and

C = E[(r− µ)(r− µ)H |x] = E[nnH |x] ⇒ C = σ2
nIM , (2.14)

C−1 =
1

σ2
n

IM . (2.15)

As it is shown in Appendix A, the optimal decision is determined by

argmax
x∈M

f(r|x) = argmax
x∈M

ℜ{h∗r[x]} . (2.16)

2. h is unknown and h ∼ CN (0, σ2
h):

Since h ∼ N (0, σ2
h),

µ = E[r|x] = E[
√
Phex + n|x] =

√
PE[h|x]ex + E[n|x] = 0 (2.17)

and it is shown in Appendix B that

|C| = σ2M
n + Pσ2

hσ
M
n (2.18)

and

C−1 =
1

σ2
n

(
IM − Pσ2

h

σ2
n + Pσ2

h

exe
H
x

)
. (2.19)

It is also shown in Appendix B that the optimal decision is determined by

argmax
x∈M

f(r|x) = argmax
x∈M

|r[x]| . (2.20)
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2.2 Optimal FSK Sequence Detection

Considering the sequence x ≜ (x1, x2, . . . , xN) of N ∈ N≥2 sent symbols, we have at our

receiver [ r1
...
rN

]
︸ ︷︷ ︸

y

=
√
Ph

[
ex1
...

exN

]
︸ ︷︷ ︸

s

+w =
√
Phs+w (2.21)

where w ∼ CN (0, σ2
wIMN) and y, s, and w are MN × 1 vectors.

Equivalently with the single symbol case we want to maximize f(y|s) over s ∈ IN
M for both

coherent and noncoherent detection, i.e.,

max
s∈INM

f(y|s) = max
s∈INM

1

πk|C|
e−(y−µ)HC−1(y−µ) (2.22)

where µ is the mean vector of y given s and C is the covariance matrix of y given s. We again

study the two cases seperately.

1. h is known:

As in the single symbol case, given the transmitted symbol sequence s, the expected value

of y is

µ = E[y|s] =
√
Phs (2.23)

and its covariance matrix is

C = E[(y − µ)(y − µ)H |s] = E[wwH ] = σ2
wIMN . (2.24)

The inverse of the latter is

C−1 =
1

σ2
w

IMN . (2.25)

As we can see in Appendix C, in this case the optimal desicion is determined by

argmax
s∈INM

f(y|s) = argmax
s∈INM

ℜ{h∗sTy} ≡ argmax
x∈MN

N∑
n=1

ℜ{h∗yn[xn]} . (2.26)

2. h is unknown and h ∼ CN (0, σ2
h):
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Since h ∼ CN (0, σ2
h),

µ = E[y|s] = E[
√
Phs+w|s] =

√
PE[h|s]s+ E[w|s] = 0 (2.27)

and it is shown in Appendix D that

C = P ssHσ2
h + σ2

wIMN (2.28)

and

C−1 =
1

σ2
w

(
IMN − Pσ2

h

σ2
w + σ2

hNP
ssH

)
. (2.29)

It is also shown in Appendix D that the optimal decision is determined by

argmax
s∈INM

f(y|s) = argmax
s∈INM

|sTy| ≡ argmax
x∈MN

∣∣∣∣∣
N∑

n=1

yn[xn]

∣∣∣∣∣ . (2.30)

In [71], this problem was proven to be polynomically solvable and an optimal algorithm

of complexity O(N logN) was provided.

2.3 Optimal FSK Sequence Detection in SIMO Rayleigh

Fading

We consider the case of 1 transmit antenna and D receive antennas. The received data

are stored in the MN ×D matrix

YMN×D =


h1s(1) . . . hDs(1)

...
. . .

...

h1s(N) . . . hDs(N)

+


n1(1) . . . nD(1)

...
. . .

...

n1(N) . . . nD(N)

 = shT +N (2.31)

where M,N,D ∈ N≥2, s(n) ∈ IM , nd(n) ∼ CN (0, σ2IM), hd ∼ CN (0, σ2
h),

hD×1 =

[
h1 h2 . . . hD

]T
∼ CN (0, σ2

hID), and sMN×1 =

[
s(1) s(2) . . . s(N)

]T
.

Let z = vec(Y). Then,

z = vec(Y) = vec(shT ) + vec(N) = h⊗ s+w (2.32)
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where wMND×1 = vec(N), w ∼ CN (0, σ2IMND) .

Also,

f(Y|s) = f(vec(Y)|s) = f(z|s) = 1

πMND|C|
e−(z−µ)HC−1(z−µ) (2.33)

where µ is the mean vector of z given s and C is the covariance matrix of of z given s. Again,

we study the two cases for h separately.

1. h is known:

Given the transmitted symbol sequence s, the expected value of vector z is determined

by

µ = E[z|s] = E[h⊗ s+w|s] = h⊗ s (2.34)

and its covariance matrix by

C = E[(z− µ)(z− µ)H |s] = E[wwH |s] = σ2IMND . (2.35)

We can see that the determinant |C| is the product of the diagonal units of C and is

independent of s. By maximizing and substituting in (2.33), we can see in Appendix E

that the optimal decision is determined by

argmax
s∈INM

f(Y|s) = argmax
s∈INM

ℜ{sHYh∗} ≡ argmax
x∈MN

N∑
n=1

ℜ{Yn,:[xn]h
∗} . (2.36)

2. h is unknown and h ∼ CN (0, σ2
hID):

Since h ∼ CN (0, σ2
hID),

µ = E[z|s] = E[h⊗ s+w|s] = E[h⊗ s|s] + E[w|s] = E[h]⊗ s+ E[w] = 0 (2.37)

and it is shown in Appendix F that

|C| = (2Nσ2
h + σ2)MND (2.38)

and

C−1 =
1

σ2

[
IMND − 1

(σ2 + 2Nσ2
h)
QQH

]
(2.39)
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where Q = σhID ⊗ s .

We can see that the determinant |C| is independent of s. By maximizing and substituting

in (2.33), we can see in Appendix G that the optimal decision is determined by

argmax
s∈INM

f(Y|s) = argmax
s∈INM

∥sHY∥ . (2.40)
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Chapter 3

An Efficient Algorithm for 3-FSK and 2

Receive Antennas

In this chapter, we consider the case of 3-FSK modulation and 2 receive antennas and

develop efficient algorithms for optimal noncoherent sequence detection when h is unknown

and h ∼ CN (0, σ2
hID). By setting M = 3 and D = 2, (2.40) becomes

max
s∈IN3

f(Y|s) = max
s∈IN3

∥sHY∥ = max
s∈IN3

∥YHs∥ . (3.1)

3.1 Theoretic Developments

3.1.1 Spherical Coordinates ϕ

Without loss of generality, we assume that each row of Y in (3.1) has at least one nonzero

element, i.e., Yn,: ̸= 0, n = 1, 2, . . . , N . Otherwise, the value of the variable sn related with the

all-zero row of Y would have no effect on the maximization procedure and could be ignored,

reducing the dimension of our problem by 1.

We will now introduce the 3 × 1 auxiliary-angle vector ϕ ∈ Φ ≜ (−π
2
, π
2
]2 × (−π, π] and
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define the unit-norm 4× 1 real vector

c̃(ϕ) =



sinϕ1

cosϕ1 sinϕ2

cosϕ1 cosϕ2 sinϕ3

cosϕ1 cosϕ2 cosϕ3


(3.2)

and the unit-norm 2× 1 complex vector

c(ϕ) = c̃2:2:4(ϕ) + jc̃1:2:3(ϕ) =

 cosϕ1 sinϕ2 + j sinϕ1

cosϕ1 cosϕ2 cosϕ3 + j cosϕ1 cosϕ2 sinϕ3

 . (3.3)

From Cauchy-Schwarz Inequality, we observe that, for any a ∈ C2,

ℜ{aHc(ϕ)} ≤ ∥aHc(ϕ)∥ ≤ ∥a∥ ∥c(ϕ)∥︸ ︷︷ ︸
=1

= ∥a∥ . (3.4)

Equality is achieved in both inequalities, iff ϕ consists of the spherical coordinates of vector a,

i.e., iff c(ϕ) = a
∥a∥ , since ℜ{aH a

∥a∥} = ∥a∥. Using the above, our original problem is rewritten

as

max
s∈IN3

∥YHs∥ = max
s∈IN3

max
ϕ∈Φ

ℜ{sHYc(ϕ)} = max
ϕ∈Φ

N∑
n=1

max
sn∈I3

ℜ{sHn Yn,:c(ϕ)} . (3.5)

For fixed ϕ, we have N single-symbol maximizations in which, for M ≜ {1, 2, 3}, every symbol

is decided as

ŝn = argmax
sn∈I3

ℜ{sHn Yn,:c(ϕ)} ⇔ x̂n = argmax
xn∈M

ℜ{Yn,:[xn]c(ϕ)} (3.6)

where

Yn,:[xn] = snYn,: (3.7)

and

Yn,: =


Yn,1[1] Yn,2[1]

Yn,1[2] Yn,2[2]

Yn,1[3] Yn,2[3]

 . (3.8)
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Finally, as it can be shown in Appendix H, the decision for xn will change from k to l (or

vice versa), with k, l ∈ M and k ̸= l when

y{k,l}n c̃(ϕ) = 0 (3.9)

where

y{k,l}n =



ℑ{Yn,1[l]−Yn,1[k]}

ℜ{Yn,1[k]−Yn,1[l]}

ℑ{Yn,2[l]−Yn,2[k]}

ℜ{Yn,2[k]−Yn,2[l]}



T

. (3.10)

3.1.2 Surfaces H(y
{k,l}
n )

According to (3.9), we can derive
(
M
2

)
N different decision rules that combined separate

Φ into distinct regions, each of which is uniquely associated with a different MFSK sequence.

More specifically, as seen in (3.8), the decision for every symbol n depends only on the M

consecutive rows of Y that correspond to this symbol, i.e., Yn,: . These rows determine the(
M
2

)
surfaces H(y

{k,l}
n ), for n = 1, 2, . . . , N and k, l ∈ M, k ̸= l, that is 2-manifolds in 3-

dimensional space, with each surface originating from two different rows of Y. Specifically,

every surfaces originates from the
(
(n− 1)M + k

)
-th and

(
(n− 1)M + l

)
-th rows of Y and is

determined by the function

ϕ1 = tan−1
(
y
{k,l}
n (2) sinϕ2 − y

{k,l}
n (3) cosϕ2 sinϕ3 + y

{k,l}
n (4) cosϕ2 cosϕ3

y
{k,l}
n (1)

)
. (3.11)

This can be visualized in Figure 3.1, where we can see all the surfaces originating from Y1,:,

i.e., from the first M = 3 rows of Y. Moreover, by solving (3.6) and visualising our data in

Figure 3.2, we can see that no surface partitions our space into distinct regions continuously for

every ϕ, but instead regions associated with each candidate symbol are created. This implies

the existence of ‘active‘ and ‘inactive‘ parts for each surfaces and that the combination of the

14



‘active‘ parts of all surfaces for a specific symbol n determines the decision boundaries for that

symbol.

Figure 3.1: Surfaces for M = 3.

3.1.3 Lines & Nodes

A better and more useful visualization (of the same hypersurfaces) for the needs of this

work is depicted in Figures 3.3-3.4 by setting ϕ3 at a fixed arbitrary value, in this case ϕ3 = −π,

and by plotting the now 1-manifolds in 2-dimensional space. In these figures we can see all

surfaces originating from a specific symbol n, accompanied by the decision boundaries for that

symbol, i.e., the ‘active‘ parts of the surfaces originating from that symbol. This visualization

will be preferred for the rest of this work and the surfaces depicted will be referred simply as

lines.

In Figure 3.3 we can see the three lines originating from Y1,:, i.e., the line y
{1,2}
1 that
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Figure 3.2: Regions created for M = 3.

originates from Y1,:[1] and Y1,:[2], the line y
{1,3}
1 that originates from Y1,:[1] and Y1,:[3], and

the line y
{2,3}
1 that originates from Y1,:[2] and Y1,:[3]. As we can see, these lines intersect at A,

with A constituting a vertex that ‘leads‘ three cells, each of which is uniquely associated with

a different candidate symbol. In particular, the cell between lines y
{1,2}
1 , y

{1,3}
1 corresponds to

a decision of x̂n = 1, the cell between y
{1,2}
1 , y

{2,3}
1 corresponds to x̂n = 2, and the cell between

y
{1,3}
1 , y

{2,3}
1 corresponds to x̂n = 3.

These triple intersection points will be referred for the rest of this work as nodes and

it is worth noticing that a node is formed by three lines that share in pairs of two, exactly

one origination row from Y. For example in the presented instance, lines y
{1,2}
1 , y

{1,3}
1 have

a common origin in Y1,:[1], lines y
{1,2}
1 , y

{2,3}
1 in Y1,:[2] and lines y

{1,3}
1 , y

{2,3}
1 in Y1,:[3]. So

equivalently with lines that originate from two rows of Y, every node will originate from three

rows of Y, i.e., the rows that the lines forming them originate from. In our example this means
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that node A originates from Y1,:[1], Y1,:[2], and Y1,:[3] and it can also be written as A(1, 2, 3).

This is a basic property of every node and in cases with M > 3 will greatly affect the structure

of our configuration.

We also have to mention that, even though all three lines seem to start or end at the

intersection point A, they are in fact continuous for ϕ2 ∈ (−π
2
, π
2
] and we only see their ‘active‘

and ‘inactive‘ parts. The ‘inactive‘ parts don’t participate in the partition of Φ and are ignored.

Finally, these lines will continue to intersect for any ϕ̂3 ∈ (−π, π], with the intersection

points forming a common axis in Φ. This common axis, along with the ‘active‘ parts of y
{1,2}
1 ,

y
{1,3}
1 , and y

{2,3}
1 in Φ, constitute the decision boundaries between the distinct partitioned

regions of Φ.

-1.5 -1 -0.5 0 0.5 1 1.5

2

-1.5

-1

-0.5

0

0.5

1

1.5

1

All surfaces for 
3
 = -3.1416

 A

y
1
{1,2}

y
1
{1,3}

y
1
{2,3}

Figure 3.3: All surfaces for ϕ3 = −π.
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3.1.4 Sequences & Intersection Types

In the previous section we analyzed how our space is partitioned for N = 1 symbol and

M = 3. We will now introduce more symbols and explore how our space is partitioned for a

sequence of symbols. For N symbols and since the decision boundaries for each symbol are

determined by three lines, we will now have 3N lines in total. All lines, if we also take into

consideration their ‘inactive‘ parts, start at ϕ2 = −π
2
and end at ϕ2 =

π
2
.

Moreover, as we can see in Appendix I, for fixed ϕ3, k, l ∈ M and ϕ2 = −π
2
, we get that

tanϕ1 =
ℜ{Yn,1[k]−Yn,1[l]}
ℑ{Yn,1[l]−Yn,1[k]}

(3.12)

and for ϕ2 =
π
2
that

tanϕ′1 = −ℜ{Yn,1[k]−Yn,1[l]}
ℑ{Yn,1[l]−Yn,1[k]}

. (3.13)

We can see that the points that the lines cross the ϕ1 axis for ϕ2 = −π
2
and ϕ2 = π

2
are
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antisymmetric. This implies that, by contruction, all lines will eventually intersect between

them for some ϕ̂3. These intersection points can be divided into three types.

1st Type

Firsty, we have the case where three lines originating from the same symbol intersect

creating nodes, as described in detail in the previous section.

2nd Type

Secondly, the case where two lines originating from different symbols intersect. Every

intersection of this type will be referred for the rest of this work as cross, with each cross

partitioning our space into four distinct candidate sequences. We can see a visualization in

Figure 3.5, where the decision boundaries for N = 2 symbols are presented. The lines y
{1,2}
1

and y
{1,2}
2 are intersecting, forming the cross X

{1,2},{1,2}
12 , which partitions our space into four

regions and ‘leads‘ four cells, each associated with a different candidate sequence. Specifically,

since y
{1,2}
1 originates from Y1,:[1] and Y1,:[2], and y

{1,2}
2 from Y2,:[1] and Y2,:[2], the four

regions will correspond to the candidate sequences ŝ = 11, ŝ = 12, ŝ = 21 and ŝ = 22.

Equivalently with the lines, crosses will also be ‘active‘ or ‘inactive‘, depending on whether

they are formed by the ‘active‘ or the ‘inactive‘ parts of the lines constituting them. We can

easily deduct that in order for a cross to change its status it will have to ‘meet‘ a node for some

ϕ3 and that the only nodes available for a cross to ‘meet‘ are those with whom they share one

line. ‘Active‘ crosses and nodes ‘lead‘ cells and now partition Φ into distinct regions, each of

which is uniquely associated with a different MFSK sequence.

Returning to Figure 3.5, the only nodes that the cross X
{1,2},{1,2}
12 can ‘meet‘ are A1(1, 2, 3)

and B2(1, 2, 3). We can see this happening in Figure 3.6, where cross X
{1,2},{1,2}
12 ‘meets‘ with

node A1(1, 2, 3), i.e., all lines that are participating in forming X
{1,2},{1,2}
12 and A1(1, 2, 3) are

intersecting between them for some ϕ3 ∈ [−π, π). This also equivalent to A1(1, 2, 3) ‘meeting‘
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Figure 3.5: Decision boundaries for ϕ3 = −π.

y
{1,2}
2 , through y

{1,2}
1 .

In Figure 3.7, the same case is presented for some ϕ̂3 > ϕ3, where a new cell has now been

created, i.e., a new possible candidate ‘appears‘. The cross X
{1,2},{1,2}
12 has turned ‘inactive‘ and

no longer ‘leads‘ any cell, but it’s worth noticing here that even though X
{1,2},{1,2}
12 no longer

‘leads‘ any cells, these cells are still ‘active‘ and that new crosses are ‘appearing‘, i.e., are turning

‘active‘. These two new crosses, along with the node that participated in the intersection, will

now ‘lead‘ the previous cells, as well as the newly created cell. The new ‘active ‘ crosses are

formed by the remaining lines of the participating node, i.e., y
{1,3}
1 and y

{2,3}
1 , intersecting with

the line originating from the second symbol, i.e., y
{1,2}
2 .

In our example, crosses Y
{2,3},{1,2}
12 and Z

{1,3},{1,2}
12 turn ‘active‘ and now each ‘lead‘ four

cells out which they share exactly two, while one of these cells is actually the newly created cell.

In order to identify these two cells and their associated candidates sequences, we firstly have
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to identify the lines forming the participating node for the first symbol and then we have to

search for the ones that form ‘active‘ crosses with the line originating from the second symbol.

The common origination row these lines share will correspond to the correct candidate symbol.

If a cell had closed instead, in order to identify this cell we just need to find the lines of the

participating node that now form ‘inactive‘ crosses with the line originating from the second

symbol. The common origination row these lines share will again correspond to the correct

candidate symbol. In our case a new cell is created, while y
{1,3}
1 and y

{2,3}
1 are the lines that

now form ‘active‘ crosses with y
{1,2}
2 and since they both originate from Y1,:[3], the correct

candidate symbol is x̂1 = 3. Hence, the two associated candidates are ŝ = 31 and ŝ = 32.

While we can easily identify the correct one visually, distinguishing between the two can-

didates will be a source of ambiguity in our algorithm. We can resolve this ambiguity, either

by evaluating the metric of the second symbol at the spherical coordinates determined by the
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Figure 3.7: Decision boundaries for ϕ3 = −2.9135.

intersection of all lines originating for the first symbol, i.e., the spherical coordinates of node

A1(1, 2, 3) in our example, or simply by evaluating both candidates against our metric, trading

off this way reductancy for simplicity. In our case, the newly created cell is actually associated

with the candidate sequence ŝ = 32.

If Y
{2,3},{1,2}
12 and Z

{1,3},{1,2}
12 were initially ‘active‘ instead, due to the structure of our

configuration they would ‘meet‘ with A1(1, 2, 3) at the same ϕ3 and they would both turn

‘inactive‘, while X
{1,2},{1,2}
12 would turn ‘active‘. This would also be equivalent to the ‘inactive‘

cross X
{1,2},{1,2}
12 ‘meeting‘ with A1(1, 2, 3) for that ϕ3, as in fact all lines originating from the

first symbol will intersect with y
{1,2}
2 for that ϕ3. In this scenario the cell associated with the

candidate sequence ŝ = 32 would close.

When N > 2, in order for us to identify the remaining candidate symbols of the sequence

that is ‘appearing‘ (or ‘disappearing‘) due to the meeting of a node with a cross, we just need to
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find the spherical coordinates of the intersection point and by using (3.6) calculate the winning

candidate for every other symbol, besides the two participating in this intersection. We can

also generalize that every time a cross ‘meets‘ with a node, if the cross is initially ‘active‘ it

changes to ‘inactive‘ and a new cell is created. Otherwise, if the cross was initially ‘inactive‘ it

changes to ’active’ and the cell closes.

3rd Type

Finally, we have to mention another type of intersections that may occur while we traverse

ϕ3, that is when three lines originating from different symbols intersect, i.e., three crosses ’meet’.

By contruction, every cross can only ’meet’ a neighbouring cross, i.e., a cross with whom they

share exactly one line and no other cross or node can be found between them. When these

intersections occur, one cell associated with a candidate sequences closes, while another one

(its complementary) opens. We can identify these cells and associated candidate sequences

by firstly identifying the aforementioned intersections points and the lines that participate in

them.

In Figures 3.8-3.10 we can see an example of this type of intersections, where the crosses

X
{1,3},{1,3}
12 , Y

{1,3},{2,3}
13 and Z

{1,3},{2,3}
23 intersect for some ϕ3. The lines that participate are y

{1,3}
1 ,

y
{1,3}
2 and y

{2,3}
3 . As we can see, after the intersection one cell is replaced by a new one and since

these cells are complementary, it suffices for us to identify only one cell. In order to do that, we

first need to notice that these cells take the form of ‘triangles‘, with the every cross playing the

part of a corner. We can also notice that, by construction, one of the cells will always be ‘under‘

the decision boundaries originating from two of our symbols and ‘over‘ the decision boundary

originating from the remaining symbol, while the other one will always be ‘over‘ the decision

boundaries originating from two of our symbols and ‘under‘ the decision boundary originating

from the remaining symbol. We can identify this remaining symbol, by setting ϕ2 = −π/2 or
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Figure 3.8: Decision boundaries for ϕ3 = −1.6141.

ϕ2 = π/2, i.e., find the points that every line crosses the ϕ1-axis. Then the line that we are

searching for is the one that is inbetween the other two lines, i.e., the second in sorted by ϕ1

order, as this line will always be either ‘above‘, or ‘under‘ the cross formed by the other two

lines for any ϕ3 ∈ [−π, π). We will call this line the base line of our ‘triangle‘. If one line

is ‘inactive‘ for ϕ2 = −π/2, then we consider instead the point that the ‘inactive‘ part crosses

the ϕ1-axis, which is antisymmetric to the point that the ‘active‘ part crosses the ϕ1-axis for

ϕ2 = π/2. Equivalently, if one line is ‘inactive‘ for ϕ2 = π/2, then we consider instead the

antisymmetric point that the ‘inactive‘ part crosses the ϕ1-axis for ϕ2 = −π/2.

We can now identify both candidates, as every candidate sequence will be either ‘over‘ the

base line and ‘under‘ the remaining two lines, or ‘under‘ the base line and ‘over‘ the remaining

two. In our example, as we mentioned the participating lines are y
{1,3}
1 , y

{1,3}
2 and y

{2,3}
3 . We

can set ϕ2 = π/2 and check the order in which the lines cross the ϕ1-axis, considering also
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Figure 3.9: Decision boundaries for ϕ3 = −1.5261.

the ‘inactive‘ part of y
{2,3}
3 . The base line is the line originating from the second symbol, i.e.,

y
{1,3}
2 , which means that the candidates that correspond to the two complementary cells in our

partition will be either ŝ = 313 ‘over‘ the base line, or ŝ = 132 ‘under‘ the base line.

Finally, we can combine the set of all candidates created by the intersection types described

in this chapter, with the set of candidate sequences that their associated cells ‘touch‘ the ϕ1-

axis, therefore never ‘disappear‘. This way we can have the complete set of candidate sequences

whose associated cells ‘appear‘ in Φ.

3.2 Algorithmic Developments

As we explained in the previous section, in order to get the complete set of candidate

sequences, it suffices to identify the spherical coordinates of the points where new cells ‘appear‘

(or ‘disappear‘), find the associated candidate sequences and combine them with the set of
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Figure 3.10: Decision boundaries for ϕ3 = −1.4566.

candidates associated with the cells that are always open. New cells can ‘appear‘ (or ‘disappear‘)

either when a node ’meets’ with cross, which is also equivalent to a node ’meeting‘ with a line

originating from a different symbol, or when three lines originating from different symbols

intersect, which is also equivalent to three neighbouring ’active’ crosses meeting.

The first case is more predictable as by construction every node will eventually ‘meet‘, for

some ϕ3, every other line that originates from another symbol. This means that for any input,

we can always identify 3N(N − 1) ‘meeting‘ points where a cell will ‘appear‘ (or ‘disappear‘).

As every cell (besides the ones touching the ϕ11-axis) will eventually close, we are interested

only in the closing cases when identifying a candidate sequence. Also when a node ‘meets‘ a

line, it is the only way for the participating crosses to change their activity status. We will

identify, sort by ϕ3, and save the spherical coordidates of these points to a 3 × (3N2 − 3N)

matrix, in order to visit them serially.
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In the second case the number of intersections cannot be predicted, but for an intersection

to be valid the participating crosses will have to be ‘active‘. Firstly we have to identify and

store all the ‘active‘ crosses for ϕ3 = −π in a 3N × 3N matrix , where every row and column

are associated with a different line. Since all these crosses won’t change their status as long

as a node doesn’t ‘meet‘ a line, only these crosses can participate in the creation of new cells.

Moreover, a cross can only ‘meet‘ another cross with whom it shares a line, i.e., they are stored

in the same row or column of the aforementioned matrix. Also, a cross can only ‘meet‘ a

‘neighbouring‘ cross, i.e., no other cross can be found between them. We can easily find the

order of the crosses by sorting them by phi2. We can then try all cross combinations that

satisfy the aforementioned criteria, check if their ‘meeting‘ point is valid, i.e., the ‘active‘ parts

of the participating lines intersect for that ϕ and in that case save the spherical coordinates ϕ

of that triple intersection point. This way we can find all initial possible ‘triangles.‘

These triple intersections may also happen before the next node-line ‘meeting‘point and

since we are using the node-line ‘meeting‘ points as our fixed ‘checkpoints‘’, we may skip this

way cells that are associated with ‘triangles‘ that ‘appear‘ and ‘disappear‘ before the next

node-line ‘meeting‘ point. For this reason, we will also need to visit these intersections points

first and identify again all possible ‘triangles‘ for each participating cross, as described in the

previous paragraph.

Then, when a node finally ‘meets‘ a line and our ‘active‘ nodes change, we update our

matrix and repeat the previous process using only the new ‘active‘ crosses, which as explained

in the previous section will be either one (if a cell ‘disappears‘) or two (if a cell ‘appears‘). We

may identify our candidate sequences only if a cell is ‘disappearing‘, but we need to keep in

mind that the activity status of the crosses is still changing.

In both previous cases, every time a new candidate sequence is produced we calculate

its metric, compare it with the maximum metric we have found until then and save it if the
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new metric is greater than the maximum. That way we avoid storing all possible candidates,

thus saving memory. After we have traversed all ϕ3, all that is left is to evaluate also our

trivial candidates, i.e., the ones associated with the cells that never close. As mentioned before,

these are the cells that ‘touch‘ the ϕ1-axis and we can easily identify the associated candidate

sequences, by arbitrarily choosing a point on the ϕ1 axis between every two consecutive lines

(originating from different symbols). This produces 3N possible candidates, which we then

evaluate against our maximum metric.
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Algorithm 1 The Proposed Algorithm for M = 3
1: Find the spherical coordinates of all the points that a node ‘meets‘ with a line, sort them by ϕ3 in ascending order and store

them in the 3× 3N(N − 1) matrix srt hits.

2: Find all ‘active‘ crosses for ϕ3 = −π and store them in the 3N × 3N matrix ngb.

3: Find all initial ‘triangles‘, sort them by ϕ3 in ascending order and store them in triangles.

4: i← 1;

5: end flag ← false;

6: while i ≤ 1 : 3N(N − 1) do

7: if ( there is no valid ‘triangle‘ before srt hits(i) ) & ( end flag = false ) then

8: cur ← srt hits(i);

9: if cur corresponds to a cell closing then

10: Identify associated candidate sequences and evaluate them against our metric.

11: end if

12: Update ngb with the new ‘active‘ and ‘inactive‘ crosses.

13: for every new ‘active‘ cross do

14: Find all new valid ‘triangles‘, store them to triangles and sort triangles by ϕ3 in ascending order.

15: end for

16: if i = 3N(N − 1) then

17: end flag ← true;

18: else

19: i++;

20: end if

21: else

22: if !isEmpty(triangles) then

23: cur ← triangles(1 );

24: Identify associated candidate sequences and evaluate them against our metric.

25: Remove current ‘triangle‘ from triangles.

26: Find all new valid ‘triangles‘, store them to triangles and sort triangles by ϕ3 in ascending order.

27: else if ( isEmpty(triangles) ) & ( end flag = true ) then

28: i++;

29: end if

30: end if

31: end while

32: Find all trivial candidates and evaluate them against our max metric.

33: Return the candidate sequence associated with the final winner metric.
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3.3 Complexity Analysis

Spatial Complexity

As explained in the previous section, it is necessary to keep track of all the spherical

coordinates that a node will ’meet’ a line. This would require a 3 × (3N2 − 3N) matrix for

a spatial complexity of O(N2). We also need to keep track of the ’active’ crosses by using a

3N×3N matrix, again for a spatial complexity of O(N2). These are the most memory-requiring

parts of the algorithm, as we avoid saving all possible candidate sequences. All other vectors

and matrices that our implementation uses, will require a spatial complexity of at most O(N).

Our total spatial complexity will then be in the order of O(N2).

Time Complexity

Finding the spherical coordinates of a point will require constant time. This means that in

order to find all ‘meeting‘ points, 3N(N − 1) iterations will be necessary, for a time com-

plexity of O(N2). We will then need to sort these points, with the time required been

O(log 3N(N − 1)) = O(logN). Finding all ‘active‘ crosses will require finding
(
3N
2

)
combi-

nations of lines and evaluating their validity. Validity check will require constant time, so the

time the whole procedure requires will be O(N2). Next step is to visit all 3N(N − 1) ‘meeting‘

points. In every iteration we need to identify and evaluate the associated candidate sequence,

which can be done in constant time. Updating crs matrix also can be done in constant time,

as at most four of its cells will be affected in every iteration. The crosses correspoding to

these cells are the only ones that we need to check for their ‘meeting‘ points and as explained

in the previous section they can only ‘meet‘ with crosses on the same row or column of crs.

As every row and column can have 3N elements, we will need to visit at most 4 · 3N cells in

every iteration, for a total time complexity of O(12N3N(N − 1)) = O(N3). We finally need
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to identify our trivial candidates, which as we mentioned already will be 3N . Visiting all of

them then will require O(N). Our implementation does present some ‘hidden‘ costs due to the

operations required, but none of them will be greater than O(N3). Therefore our algorithm is

dominated by that cost and our overall time complexity will be O(N3).
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Chapter 4

Insights Towards An Efficient M-FSK

Algorithm for 2 Receive Antennas

Figure 4.1: Surfaces for M = 4, n = 1.
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Figure 4.2: Surfaces for M = 4, n = 2.

4.1 The M = 4 Case

We will examine the M = 4 case building on what was observed for M = 3. As explained,

one node will partition our space into three distinct regions associated with a candidate symbol.

We can expect that in order to add one extra partition to our space, we will need to add

another node to our configuration. This can only happen if the two nodes share exactly one

line. Moreover, as every node is the intersection of three lines, joining the two nodes through

a shared line will force the remaining lines to intersect between them, thus creating new nodes

that may, or may not ’lead’ a cell associated with a candidate symbol, depending on whether

the intersecting lines are ‘active‘. Also, if every line originates from two rows of Y and every

node originates from three rows of Y, then since the two joining nodes share one line, they must

share exactly two origination rows of Y and in each node this leaves room for only one more

possible origination row, for a total of four different rows of Y, i.e., four distinct candidate
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Figure 4.3: Regions created for M = 4, n = 1.

symbols. Finally, it’s worth noticing that a M = 4 partition can also be intepreted as two

distinct M = 3 cases, joined together. We also present in Figures 4.1-4.4 a M = 4 case, for

two different symbols, where we can see all surfaces for every symbol n and the regions created

when solving (3.6).

We can confirm the aforementioned claims firstly by inspecting Figure 4.6, where we can see

the node B(1,3,4) partitioning our space into three distinct regions associated with candidates

x̂n = 1, x̂n = 3 and x̂n = 4 and the node C(2,3,4) partitioning our space into three distinct

regions associated with candidates x̂n = 2, x̂n = 3 and x̂n = 4. In this case B(1,3,4) is joining

C(2,3,4) through y
{3,4}
1 , with both nodes still ‘leading‘ three regions each. In Figure 4.5 we can

also see the ‘inactive‘ nodes D(1,2,3) and E(1,2,4), that we can also imagine as being created

by joining B(1,3,4) and C(2,3,4), thus forcing y
{1,2}
1 , y

{1,3}
1 , y

{2,3}
1 and y

{1,2}
1 , y

{1,4}
1 , y

{2,4}
1 to

intersect.

34



-3

-2

-1

1

03

1

1

2

2

0

1

3

0

-1
-1 1

1.5

2

2.5

3

3.5

4

Figure 4.4: Regions created for M = 4, n = 2.

In Figures 4.7-4.8 we can see another case for M = 4, where only F(1,2,3) ‘leads‘ a cell

and partitions our space into three distinct regions associated with candidates x̂n = 1, x̂n = 2

and x̂n = 3, while nodes G(1,2,4), H(1,3,4) and I(2,3,4) remain ‘inactive‘. This is worth

mentioning, as it becomes apparent that it is not necessary for our space to be partitioned in

exactly M = 4 distinct regions for every ϕ ∈ Φ.

Finally, we can see that a configuration of 6 lines and 4 nodes in total is required, which

agrees with the number of lines and nodes that we would theoretically expect to need, as we

would have available M = 4 rows of Y to either create lines by using them in pairs, i.e
(
4
2

)
= 6

lines, or to create nodes by using them in triplets, i.e.,
(
4
3

)
= 4 nodes.

We also present in Figures 4.9-4.12 the same surfaces and decision boundaries for ϕ′3 =

ϕ3 + π, where it’s worth noticing that the surfaces are antisymmetric, but the same doesn’t

apply for the decision boundaries. This implies again that for M > 3 the ‘active‘ parts will

35



-1.5 -1 -0.5 0 0.5 1 1.5

2

-1.5

-1

-0.5

0

0.5

1

1.5

1

All surfaces for 
3
 = -3.1416

y
1
{1,2}

y
1
{1,3}

y
1
{1,4}

y
1
{2,3}

y
1
{2,4}

y
1
{3,4}

B 

C 

D 

 E

Figure 4.5: All surfaces for ϕ3 = −π.

change for some ϕ, changing this way also the decision boundaries.

By traversing ϕ3, all lines will eventually intersect (or equivalently all nodes will ‘meet‘

between them) for some ϕ̂3 and at that point ‘active‘ and ‘inactive‘ nodes will change their

statuses. In Figures 4.9-4.10 the nodes B(1,3,4) and C(2,3,4) are now ‘inactive‘, when nodes

D(1,2,3) and E(1,2,4) are the current ‘active‘ nodes that ‘lead‘ cells and partition our space in

our distinct regions. This means that there is a ϕ̂3 that all nodes ‘meet‘, or that all six lines

intersect. Also, equivalently with before, we can imagine this partition as nodes D(1,2,3) and

E(1,2,4) joining together through y
{1,2}
1 , thus creating also the ‘inactive‘ nodes B(1,3,4) and

C(2,3,4). In Figures 4.11-4.12 we can see that our space is now partioned in four regions and

that the three nodes G(1,2,4), H(1,3,4) and I(2,3,4) are now ‘active‘, while node F(1,2,3) is

‘inactive‘. Again, all lines intersected for some ϕ̂3 and at that point the status of the nodes

changed. We can also imagine this configuration as nodes H(1,3,4) and I(2,3,4) joining together

36



-1.5 -1 -0.5 0 0.5 1 1.5

2

-1.5

-1

-0.5

0

0.5

1

1.5

1

Desicion boundaries for 
3
 = -3.1416

B 

C 4 3

1

2

Figure 4.6: Decision boundaries for ϕ3 = −π.

through y
{3,4}
2 , thus creating the ‘active‘ node G(1,2,4) and the ‘inactive‘ node F(1,2,3).

The configurations that were presented in this section cover all possible configurations that

may appear when partitioning our space for M = 4, due to the way that each individual node

is built, as when two nodes join through a shared lined, the ways that the remaining lines are

forced to intersect is fixed by construction.

4.2 The M ∈ N≥2 Case

Based on the M = 4 case, we can generalize our observations for any M ∈ N≥2. In any

case our decision boundaries will always be derived from the ‘active‘ lines and nodes. As we

explained, every time our space needs to be partitioned in one extra region, one more node

needs to be joined through a shared line. For example, by building on the M = 4 case we

can create a partition of five regions by joining one more node. When joining these two nodes
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Figure 4.7: All surfaces for ϕ3 = −π.

we can ignore the remaining nodes and treat our case as explained before for M = 4. This

way we can take advantage of the fixed number of possible configurations that may appear for

M = {3, 4} and use this property to build configurations for any M ∈ N≥2, i.e., treat every

M > 4 case as many M = {3, 4} cases joint together.

Equivalently with the M = 4 case, the nodes that ‘lead‘ a cell will only change when the

six lines forming the cell, intersect for some ϕ̂3 or equivalently when the four nodes that ‘lead‘

the cell ‘meet‘, iff at least one of the nodes involved is ‘active‘ at that time. In total there can

be 2
(
M
4

)
such intersections (as each one will happen twice), with only half of them leading to a

change of the nodes that ‘lead‘ a cell. We can generalize also that for any M it is not necessary

for our space to be partitioned in exactly M distinct regions for every ϕ ∈ Φ. The total number

of lines needed can always be found by
(
M
2

)
and the total number of nodes involved by

(
M
3

)
.

A visual representation of a partition of space for M = 5 is presented in Figures 4.13-4.16,
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where we can also confirm the validity of the aforementioned claims. In Figures 4.13-4.14 we

can see the two active nodes M(1,3,4) and J(1,2,3), out of a total of
(
5
3

)
= 10 nodes created

by
(
5
2

)
= 10 lines that partition our space into four distinct regions. This is also equivalent to

joining two M = 3 cases through y{1,3}. InFigures 4.15-4.16 we present the same example for

ϕ′3 = ϕ3 + π and we can see that the ‘active‘ nodes have now changed to L(1,2,5), R(2,4,5),

O(1,4,5) and P(2,3,4) and partition our space into five distinct regions. This is now also

equivalent to joining one M = 3 case with one M = 4 case, i.e., joining P(2,3,4) and R(2,4,5)

through y{2,4}.

4.3 Algorithmic Insights

The algorithm presented in the previous chapter ca be generalized for any M ∈ N≥2 as the

only thing that changes for M > 3 is the addition of more nodes per symbol. In an equivalent
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way with the M = 3 case, we will have again to search for the spherical coordinates of the

‘meeting‘ points between nodes and lines originating from different symbols, or for the valid

intersections of three lines originating from different symbols. What needs to be considered

though, is that for M > 3 we can have ‘active‘ and ‘inactive‘ nodes. This means that the

aforementioned ‘meeting‘ points will also have to be evaluated for their validity, i.e., only an

‘active‘ node ‘meeting‘ a line will produce a new candidate. This would require from us to also

keep track of the spherical coordinates of the points that the status of a node changes, i.e.,

when six lines originating from the same symbol intersect, as explained in the previous chapter.

4.4 Further Development Opportunities for D > 2

As explained, our proposed algorithm is only developed for D = 2, since otherwise it

would be impossible to visualize our developments. Nevertheless, it can be fully generalized
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for any D > 2 by replacing the auxiliary-angle and unit-norm vectors introduced in (3.1.1).

Any possible future developments would have to start by introducing instead the (2D− 1)× 1

auxiliary-angle vector ϕ ∈ (−π
2
, π
2
]2D−2 × (−π, π] ≜ Φ and then by defining the unit-norm

2D × 1 real vector

c̃(ϕ) =



sinϕ1

cosϕ1 sinϕ2

cosϕ1 cosϕ2 sinϕ3

...

[
∏2D−2

i=1 cosϕi] sinϕ2D−1

[
∏2D−2

i=1 cosϕi] cosϕ2D−1



(4.1)
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Figure 4.11: All surfaces for ϕ3 = 0.

and the unit-norm D × 1 complex vector

c(ϕ) = c̃2:2:2D(ϕ) + jc̃1:2:2D−1(ϕ) =



cosϕ1 sinϕ2 + j sinϕ1

cosϕ1 cosϕ2 cosϕ3 sinϕ4 + j cosϕ1 cosϕ2 sinϕ3

...

[
∏2D−2

i=1 cosϕi] cosϕ2D−1 + j[
∏2D−2

i=1 cosϕi] sinϕ2D−1


.

(4.2)

In this generalized case, the surfaces introduced in (3.1.2) would be replaced by hypersur-

faces instead, that is (2D−2)-manifolds in (2D−1)-dimensional space, with each hypersurface

originating from two different rows of Yn,:.
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Appendix

Appendix A

Since C = σ2
nIM , the determinant |C| is the product of the diagonal units of C and is

independent of x, which means that we can omit it from our maximization, having from (2.12)

that

argmax
x∈M

f(r|x) = argmin
x∈M

(r− µ)HC−1(r− µ) . (4.3)

Since µ =
√
Phex and C−1 = 1

σ2
n
IM , (4.3) becomes

argmax
x∈M

f(r|x) = argmin
x∈M

1

σ2
n

(r−
√
Phex)

HIM(r−
√
Phex)

= argmin
x∈M

rHr−
√
Ph∗eTx r−

√
PhrHex + P |h|2eTxex

= argmin
x∈M

∥r∥2 −
√
Ph∗rx −

√
Phr∗x + P |h|2

= argmax
x∈M

√
Ph∗rx +

√
Phr∗x = argmax

x∈M
2
√
Pℜ{h∗rx} = argmax

x∈M
ℜ{h∗rx} .

(4.4)

Appendix B

The covariance matrix is

C = E
[
rrH |x

]
= E

[
(
√
Phex + n)(

√
Phex + n)

H
|x
]

= E
[
Phh∗exe

T
x +

√
Phexn

H +
√
Ph∗neTx + nnH

]
= Pσ2

hexe
T
x + σ2

nIM .

(4.5)
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From Matrix Determinant Lemma, we know that |A+ uuT | = (1 + uTA−1u)|A|. Hence,

|C| = |σ2
nIM + (

√
Pσhex)(

√
Pσhex)

T
| =

(
1 +

√
Pσhe

T
x

1

σ2
n

IM
√
Pσhex

)
|σ2

nIM | =
(
1 + P

σ2
h

σ2
n

)
σ2M
n

.

We can see that the determinant |C| is independent of x and it can be omitted during the

maximization of f(r|x), allowing us to use again (4.3) in maximizing our PDF.

Also, from Sherman-Morrison Formula, we know that (A + uuH) = A−1 − A−1uuHA−1

1+uHA−1u
.

Hence,

C−1 =
1

σ2
n

IM−
1
σ2
n
IMPσ2

hexe
H
x

1
σ2
n
IM

1 +
√
PσheHx

1
σ2
n
IM

√
Pσhex

=
1

σ2
n

IM−
P

σ2
h

σ4
n
exe

H
x

1 + P
σ2
h

σ2
n
eHx ex

=
1

σ2
n

IM− Pσ2
h

σ2
n + Pσ2

h

1

σ2
n

exe
H
x

⇒ C−1 =
1

σ2
n

(
IM − Pσ2

h

σ2
n + Pσ2

h

exe
H
x

)
. (4.6)

Then, from (4.3) we have that

argmax
x∈M

f(r|x) = argmin
x∈M

rHC−1r = argmin
x∈M

1

σ2
n

(
rHr− Pσ2

h

σ2
n + Pσ2

h

rHexe
H
x r

)
= argmin

x∈M
−rHex(r

Hex)
H = argmax

x∈M
r∗xrx = argmax

x∈M
|rx|2 = argmax

x∈M
|rx| .

(4.7)

Appendix C

Since C = σ2
wIMN , the determinant |C| is the product of the diagonal units of C and is

independent of s, which means that we can omit it from our maximization, having from (2.22)

that

argmax
s∈INM

f(y|s) = argmin
s∈INM

(y − µ)HC−1(y − µ) . (4.8)
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Since µ =
√
Phs and C−1 = 1

σ2
w
IMN , (4.8) becomes

argmax
s∈INM

f(y|s) = argmin
s∈INM

1

σ2
w

(y −
√
Phs)

H
IMN(y −

√
Phs)

= argmin
s∈INM

yHy −
√
PhyHs−

√
Ph∗sTy + P |h|2sT s

= argmin
s∈INM

∥y∥2 −
√
P
[
(h∗sTy)

H
+ (h∗sTy)

]
+NP |h|2 = argmax

s∈INM

2ℜ{h∗sTy}

= argmax
s∈INM

ℜ
{
h∗

N∑
n=1

sT(n−1)M+1:nM,1y(n−1)M+1:nM,1

}
≡ argmax

x∈MN

N∑
n=1

ℜ{h∗yn[xn]} .

(4.9)

Appendix D

The covariance matrix is

C = E[yyH |s] = E[(
√
Phs+w)(

√
Phs+w)H |s]

= E[Phh∗ssH +
√
PhswH +w

√
Ph∗sH +wwH ] = Pσ2

hss
H + σ2

wIMN .

(4.10)

Then, equivalently with the single symbol case, we have that

C−1 =
1

σ2
w

IMN −
1
σ2
w
IMNPσ2

hss
H 1

σ2
w
IMN

1 +
√
PσhsH

1
σ2
w
IMN

√
Pσhs

=
1

σ2
w

IMN −
σ2
h

σ4
w
P ssH

1 +
σ2
h

σ2
w
NP

=
1

σ2
w

(
IMN − Pσ2

h

σ2
w + σ2

hNP
ssH

)
.

(4.11)

Hence, from (4.8) we have that

argmax
s∈INM

f(y|s) = argmin
s∈INM

yHC−1y = argmin
s∈INM

1

σ2
w

(
yHy − Pσ2

h

σ2
w + σ2

hNP
yHssHy

)

= argmax
s∈INM

(yHs)(yHs)H = argmax
s∈INM

|yHs|2 ≡ argmax
x∈MN

∣∣∣∣∣
N∑

n=1

yn[xn]

∣∣∣∣∣ .
(4.12)
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Appendix E

max
s∈INM

f(Y|s) ≡ min
s∈INM

(z− µ)HC−1(z− µ) ≡ min
s∈INM

zHz− zHµ− µHz+ µHµ

= min
s∈INM

∥z∥2 − zH(h⊗ s)− (h⊗ s)Hz+ (h⊗ s)H(h⊗ s)

≡ max
s∈INM

zH(h⊗ s) + (h⊗ s)Hz+ hHh⊗ sHs

≡ max
s∈INM

(
(h⊗ s)Hz

)H
+ (h⊗ s)Hz = max

s∈INM
2ℜ{(h⊗ s)Hz}

≡ max
s∈INM

ℜ{(hH ⊗ sH)vec(Y)} = max
s∈INM

ℜ{vec(sHYh∗)}

≡ max
sn∈IM

N∑
n=1

ℜ{sTnYn,:h
∗} ≡ max

x∈MN

N∑
n=1

ℜ{Yn,:[xn]h
∗}

⇒ argmax
s∈INM

f(Y|s) = argmax
s∈INM

ℜ{sHYh∗} ≡ argmax
x∈MN

N∑
n=1

ℜ{Yn,:[xn]h
∗} (4.13)

Appendix F

The covariance matrix C can be determined as such

C = E[(z− µ)(z− µ)H |s] = E[zzH |s] = E[(h⊗ s+w)(h⊗ s+w)H |s]

= E[(h⊗ s)(h⊗ s)H + (h⊗ s)wH +w(h⊗ s)H +wwH |s] = E[hhH ⊗ ssH |s] + σ2IMND

= σ2
hID ⊗ ssH + σ2IMND = σ2

hI
2
D ⊗ ssH + σ2IMND = (σhID ⊗ s)(σhID ⊗ s)H + σ2IMND

⇒ C = QQH +A, where Q = σhID ⊗ s and A = σ2IMND. (4.14)

Using Woodbury’s Identity we have that

C−1 = (QQH +A)−1 = (A+QIDQ
H)−1 = A−1 −A−1Q(ID +QHA−1Q)−1QHA−1

=
1

σ2
IMND − 1

σ2
IMNDQ(ID +QH 1

σ2
IMNDQ)−1QH 1

σ2
IMND

⇒ C−1 =
1

σ2

[
IMND − 1

σ2
Q(ID +

1

σ2
QHQ)−1QH

]
. (4.15)
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Also

sHs =

[
s(1)H . . . s(N)H

]

s(1)

...

s(N)

 = s(1)Hs(1) + · · ·+ s(N)Hs(N) = N (4.16)

and

QHQ = (σhI⊗ sH)(σhI⊗ s) = σ2
hID ⊗ sHs = 2Nσ2

hID. (4.17)

Then, from (4.15) and (4.17) we have that

C−1 =
1

σ2

[
IMND − 1

σ2
Q(ID +

1

σ2
2Nσ2

hID)
−1QH

]
=

1

σ2

[
IMND − 1

σ2
Q
[
(1 +

1

σ2
2Nσ2

h)ID
]−1

QH
]

=
1

σ2

[
IMND − 1

σ2

1

(1 + 1
σ22Nσ2

h)
QIDQ

H
]

⇒ C−1 =
1

σ2

[
IMND − 1

(σ2 + 2Nσ2
h)
QQH

]
. (4.18)

For the determinant |C| we have that

|C| = |QQH +A| = |QQH + σ2IMND| = σ2MND
∣∣∣ 1
σ2

QQH + IMND

∣∣∣
= σ2MND

∣∣∣ 1
σ2

QHQ+ IMND

∣∣∣ = σ2MND
∣∣∣2Nσ2

h

σ2
IMND + IMND

∣∣∣
= σ2MND

∣∣∣(2Nσ2
h

σ2
+ 1

)
IMND

∣∣∣ = σ2MND
(2Nσ2

h

σ2
+ 1

)MND

|IMND|

⇒ |C| = (2Nσ2
h + σ2)MND. (4.19)

Appendix G

max
s∈INM

f(Y|s) ≡ max
s∈INM

−zHC−1z ≡ min
s∈INM

−zHQQHz ≡ max
s∈INM

(QHz)H(QHz) = max
s∈INM

∥QHz∥2

≡ max
s∈INM

∥(σhID ⊗ sH)z∥ = max
s∈INM

∥(σhID ⊗ sH)vec(Y)∥

= max
s∈INM

∥vec(sHYσhID)∥ ≡ max
s∈INM

∥vec(sHY)∥ ≡ max
s∈INM

∥sHY∥

≡ max
sn∈IM

N∑
n=1

∥sTnYn,:∥ ≡ max
x∈MN

N∑
n=1

|Yn,:[xn]|

⇒ argmax
s∈INM

f(Y|s) = argmax
s∈INM

∥sHY∥ (4.20)
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Appendix H

The decision for xn will change from k to l (or vice versa), with k, l ∈ M and k ̸= l when

ℜ{Yn,:[k]c(ϕ)} = ℜ{Yn,:[l]c(ϕ)} ⇔ ℜ{(Yn,:[k]−Yn,:[l])c(ϕ)} = 0

⇔ ℜ

{
(Yn,:[k]−Yn,:[l])

 cosϕ1 sinϕ2 + j sinϕ1

cosϕ1 cosϕ2 cosϕ3 + j cosϕ1 cosϕ2 sinϕ3


}

= 0

⇔ ℜ{(Yn,1[k]−Yn,1[l])︸ ︷︷ ︸
c1

(cosϕ1 sinϕ2 + j sinϕ1)}+

+ ℜ{(Yn,2[k]−Yn,2[l])︸ ︷︷ ︸
c2

cosϕ1 cosϕ2 cosϕ3 + j cosϕ1 cosϕ2 sinϕ3} = 0

⇔ ℜ{c1 cosϕ1 sinϕ2 + jc1 sinϕ1 + c2 cosϕ1 cosϕ2 cosϕ3 + jc2 cosϕ1 cosϕ2 sinϕ3} = 0

⇔ ℜ{c1} cosϕ1 sinϕ2 −ℑ{c1} sinϕ1 + ℜ{c2} cosϕ1 cosϕ2 cosϕ3 −ℑ{c2} cosϕ1 cosϕ2 sinϕ3 = 0

⇔
[
−ℑ{c1} ℜ{c1} −ℑ{c2} ℜ{c2}

]


sinϕ1

cosϕ1 sinϕ2

cosϕ1 cosϕ2 sinϕ3

cosϕ1 cosϕ2 cosϕ3


= 0

⇔ y{k,l}n c̃(ϕ) = 0

where

y{k,l}n =



ℑ{Yn,1[l]−Yn,1[k]}

ℜ{Yn,1[k]−Yn,1[l]}

ℑ{Yn,2[l]−Yn,2[k]}

ℜ{Yn,2[k]−Yn,2[l]}


.
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Appendix I

For fixed ϕ3, k, l ∈ M and ϕ2 = −π
2
, we get from (3.9) that

y{k,l}c̃(ϕ) = 0 ⇔



ℑ{Yn,1[l]−Yn,1[k]}

ℜ{Yn,1[k]−Yn,1[l]}

ℑ{Yn,2[l]−Yn,2[k]}

ℜ{Yn,2[k]−Yn,2[l]}



T 

sinϕ1

cosϕ1 sin−π
2

cosϕ1 cos−π
2
sinϕ3

cosϕ1 cos−π
2
cosϕ3


= 0

⇔ ℑ{Yn,1[l]−Yn,1[k]} sinϕ1 −ℜ{Yn,1[k]−Yn,1[l]} cosϕ1 = 0

⇔ tanϕ1 =
ℜ{Yn,1[k]−Yn,1[l]}
ℑ{Yn,1[l]−Yn,1[k]}

(4.21)

and for ϕ2 =
π
2
that

y{k,l}c̃(ϕ′) = 0 ⇔



ℑ{Yn,1[l]−Yn,1[k]}

ℜ{Yn,1[k]−Yn,1[l]}

ℑ{Yn,2[l]−Yn,2[k]}

ℜ{Yn,2[k]−Yn,2[l]}



T 

sinϕ′1

cosϕ′1 sin
π
2

cosϕ′1 cos
π
2
sinϕ3

cosϕ′1 cos
π
2
cosϕ3


= 0

⇔ ℑ{Yn,1[l]−Yn,1[k]} sinϕ′1 + ℜ{Yn,1[k]−Yn,1[l]} cosϕ′1 = 0

⇔ tanϕ′1 = −ℜ{Yn,1[k]−Yn,1[l]}
ℑ{Yn,1[l]−Yn,1[k]}

. (4.22)
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