
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

FPGA-Based System Design for Applications of de
Bruijn Graphs

Author:
Emmanouil-Eleftherios

Rompogiannakis

Thesis Committee:
Prof. Apostolos Dollas

Assoc. Prof. Sotirios Ioannidis

Dr. Euripides Sotiriades

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

March 4, 2022

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

School of Electrical and Computer Engineering

Abstract
FPGA-Based System Design for Applications of de Bruijn Graphs

by Emmanouil Eleutherios ROMPOGIANNAKIS

The mathematical properties of De Bruijn graph [1] were originally intro-
duced in 1951 by the Dutch mathematicians Tanja van Aardenne-Ehrenfests
and Nicolaas Govert de Bruijn. The De Bruijn graph is a directed graph rep-
resenting overlaps between sequences of symbols; it has several uses in the
field of telecommunications in protocols and networks and in the field of
Bioinformatics, specifically in De novo genome assembly.

The properties of De Bruijn graph and its promising uses in De novo genome
assembly have been presented in several scientific articles [2] [3]. In this the-
sis we have implemented an FPGA-based prototype hardware system for de
Bruijn graph applications in de Novo genome assembly. We used the Rus-
sian genome assembler named SPAdes13.0 [4] as a case study for the use of
de Bruijn Graphs. The SPAdes.13.0 genome assembler is a current-generation
tool, and it is widely used in the field. The SPAdes.13.0 is also used for the
verification of our experimental results. The data sets used in this thesis come
from to European Nucleotide Archive (ENA) [5]. The FPGA Alveo U50[6]
has been used as the target technology for experimental results in this the-
sis. The resulting speedup is modest (up to 1.14x-1.35x) for small data sets
and the system has worse performance than SPAdes for large data sets, the
bottleneck being the resources and the memory subsystem. Different accel-
erator cards with more storage capacity and resources could better exploit
parallelism with more compute units. Thus, this thesis is more of a first-
generation feasibility study, and can form the baseline for future accelerator
architectures.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

School of Electrical and Computer Engineering

Abstract
FPGA-Based System Design for Applications of de Bruijn Graphs

by Emmanouil Eleutherios ROMPOGIANNAKIS

Οι μαθηματικές ιδιότητες του γράφου De Bruijn[1] παρουσιάστηκαν το 1951 α-
πό τους Ολλανδούς μαθηματικούς Tanja van Aardenne-Ehrenfest και Nicolaas
Govert de Bruijn. Ο γράφος De Bruin είναι ένας κατευθυντικός γράφος που
αναπαριστά επικαλύψεις μεταξύ ακολουθιών από σύμβολα. Οι γράφοι De Bruijn
έχουν αρκετές εφαρμογές σε Τηλεπικοινωνίες (πρωτόκολλα και δίκτυα), και σε

Βιοπληροφορική, ειδικά σε De novo genome assembly.

Οι ιδιότητες του γράφου De Bruijn και οι διαφαινόμενες χρήσεις του στο De
novo genome assembly αναπτύσσονται σε αρκετά επιστημονικά άρθρα[2][3].

Στην παρούσα διπλωματική εργασία υλοποιήσαμε ένα πρωτότυπο σύστημα βα-

σισμένο σε αναδιατασσόμενη λογική για εφαρμογές γράφων De Bruijn σε De
Novo genome assembly.Χρησιμοποιήσαμε τον Ρωσικό genome assembler ο-
νόματι SPAdes.13.0[4] επειδή χρησιμοποιεί γράφουςDe Bruijn, ανήκει σε τρέχου-
σας γενιάς τεχνολογία, και είναι πολύ διαδεδομένο στην επιστημονική κοινότη-

τρα. Το ίδιο εργαλείο χρησιμοποιήσαμε για την επαλήθευση των αποτελεσμάτων

μας. Τα αρχεία που χρησιμοποιυνται στην διπλωματική εργασία προέρχονται από

το Ευρωπαικό Νουκλεοτιδικό Αρχείο[5]. Το σύστημα FPGA Alveo U50[6] που
χρησιμοποιείται στα πειράματα της διπλωματικής πετυχαίνει μία μέτρια επιτάχυνση

1.14x-1.35x για τα μικρα αρχεία ενώ για τα μεγάλα αρχεία έχει χειρότερη επίδοση
από το SPAdes.13.0, αλλά μεγαλύτερες FPGA οι οποίες έχουν περισσότερους
πόρους μπορούν να πετύχουν μεγαλύτερο παραλληλισμό με υλοποίηση περισσότε-

ρων μονάδων υπολογισμού. Επομένως η παρούσα διπλωματική εργασία μπορεί να

χρησιμεύσει σαν μία πρώτη αρχιτεκτονική αναφοράς.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
During the implementation of the current thesis I have received a great deal
of support and assistance. All the way from the first appointment in order
to decide the diploma thesis theme until the presentation I had a big support
from colleagues and family members.

First of all, I would like to thank my supervisor, Professor Apostolos Dollas,
whose experience and expertise in researching themes was crucial for the
completion and presentation of my diploma thesis. Also, I would like to
thank him for his patience, his valuable guidance to plan my thesis and his
tips that help me to solve different problems. Further, his insightful feedback
pushed me to sharpen my thinking and brought my work to a higher level.
Also, I gratefully acknowledge the contribution of my committee’s members,
who, including Professor Apostolos Dollas, are Professor Sotirios Ioannidis
and Dr. Evripides Sotiriadis.

In addition, I would like to honor my colleague on my work Dr. Evripides
Sotiriadis who guided me during the whole process of my thesis and gave me
useful tips in order to choose the right direction and successfully complete
my thesis. I appreciate his patient support and all of the opportunities I was
given to further my research. I want to thank Mr Palvo Malakonaki who
helped me to understand the way the tools operate and for his tips. Pavlo, I
am glad to have worked with you and learn from you.

I would like to thank my parents for their psychological assistance to com-
plete my thesis. Last but not least, I could not have completed this disserta-
tion without the support of my brothers, girlfriend, and close friends, who
provided stimulating discussions as well as happy distractions to rest my
mind besides my research.

ix

Contents

Abstract iii

Abstract Περίληψη v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Contributions . 2
1.3 Thesis Outline . 3

2 Theoretical Background 5
2.1 De Bruijn Graph . 5

2.1.1 Multisized De Bruijn Graph 7
2.2 Genome Assembly . 7
2.3 Spades.3.13.0 . 8
2.4 Related work . 8
2.5 Vitis Unified Software Platform 10
2.6 Vitis High Level Synthesis (HLS) 10
2.7 The FPGA Perspective . 11

3 Study and Design 15
3.1 Bulge Removing . 15
3.2 Data Sets Selection . 17

x

3.3 Profiling . 19
3.3.1 KRONOS Server Specs 19
3.3.2 Profiling Results . 20

3.4 Profiling Results Conclusion . 21

4 System Implementation 25
4.1 Software Implementation . 25
4.2 Automatic Hardware Implementation 28

4.2.1 Host Configuration . 29
4.2.2 Kernel Configuration . 29

4.3 Manual Improvements on Automatic Hardware Implementation 31
4.3.1 Kernel Reconfiguration 31

Look-up-table . 31
Priority Queue . 32

4.4 Final Hardware Implementation 33
4.4.1 Host Configuration . 34
4.4.2 Kernel Configuration . 34

POP_CHECK . 35
Add_Neighbours_To_Queue 37

4.5 Host Reconfiguration-Parallelization 40
4.6 Time Latency Issues . 40

5 Results 43
5.1 Quality of Parallelism . 44
5.2 Resources Consumption . 45
5.3 Final Implementation Results 47

5.3.1 Execution Time of FPGA with 5 Compute Units - SPAdes
with 1 Thread without I/O Operation 47

5.3.2 Execution Time of SPAdes with 16 Threads - FPGA with
5 Compute Units without I/O Operation 48

5.4 Further Technology Abilities . 49
5.4.1 Comparison of Specification of Platforms 50

Alveo U50 - Alveo U250 51
Alveo U50 - Alveo U280 53
Alveo U50 - Virtex UltraScale+ HBM VU57P 55

6 Conclusions and Future Work 59
6.1 Conclusions . 59
6.2 Future Work . 60

xi

A Genome Assembly 63
A.1 State of the Art . 63
A.2 Next Generation Assembly Methods 64
A.3 Contigs – Scaffolds . 64
A.4 Overlap Layout Consensus Assembly (OLC) – Overlap Graphs 65
A.5 Overlap Layout Consensus Assembly-String Graphs 66
A.6 Algorithm Comparison . 67

B SPAdes.3.13.0 69
B.1 Forward-Backward Reads Data set 69
B.2 SPAdes.3.13.0 Libraries . 69
B.3 Graph Simplification . 70
B.4 File Formats . 72

References 73

xiii

List of Figures

2.1 Hamiltonian Path. 6
2.2 Eulerian Path. 6
2.3 Alveo U50. 12

3.1 Bulge Removing Algorithm. 16
3.2 Modified Bulge Removing Algorithm. 22

4.1 Abstract Block Diagram. 29
4.2 Pipeline Priority Queue Block Diagram. 32
4.3 Abstract Block Diagram. 34
4.4 Pop Check Stage Diagram. 36
4.5 Pop module Diagram. 37
4.6 Add Neighbours To Queue Stage Diagram. 38
4.7 Push module Diagram. 39

A.1 OLC Overlap Graph. 66

B.1 Simplification Cases. 71

xv

List of Tables

2.1 Alveo U50 Specifications. 12

3.1 Data Sets. 18
3.2 Server KRONOS Specs. 19
3.3 Profiling Results . 20
3.4 Amdahl’s Law Theoretical Speedup 21

4.1 HBMs Allocation. 40

5.1 Execution Time for 1-5 Compute Units - Speedup 44
5.2 Source Consumption for 1 Compute Unit. 45
5.3 Source Consumption for 5 Compute Units. 46
5.4 Utilization of each extra Compute Unit 46
5.5 Execution time of SPAdes with 1 thread versus 5 Compute

Units implementation in FPGA - Speedup 48
5.6 Execution time of SPAdes with 16 threads versus 5 Compute

Units implementation in FPGA- Speedup 49
5.7 Alveo U50-U250 Specifications. 51
5.8 Source Consumption for 40 Compute Units. 52
5.9 Execution time of SPAdes with 16 threads versus 30 Compute

Units implementation in FPGA- Speedup 52
5.10 Alveo U50-U280 Specifications. 53
5.11 Source Consumption for 25 Compute Units. 54
5.12 Execution time of SPAdes with 16 threads versus 25 Compute

Units implementation in FPGA- Speedup 54
5.13 Alveo U50-Virtex UltraScale+ HBM VU57P Specifications. . . 55
5.14 Source Consumption for 10 Compute Units. 56
5.15 Execution time of SPAdes with 16 threads versus 10 Compute

Units implementation in FPGA- Speedup 56

xvii

List of Algorithms

1 Main of Second step of the Bulge Removing Algorithm 27
2 DistanceCounted(vertex,vertex_out) 27
3 AddNeighboursToQueue(distance,vertex,vertex_out) 28

xix

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory
USD United States Dollar

1

Chapter 1

Introduction

De Bruijn graphs [1] were originally introduced in 1951 by the Dutch math-
ematicians Tanja van Aardenne-Ehrenfests and Nicolaas Govert de Bruijn.
The De Bruijn graph is a directed graph representing overlaps between se-
quences of symbols. There are three important uses of de Bruijn graphs, as
follows:

1. De Bruijn graph used in Bioinformatics, specifically in De novo genome
assembly for the representation of sequencing reads into a genome.
There are several genome assemblers which use a de Bruijn graph as
the main structure to store parts of the genome as they read them from
the data sets.

2. Some grid network topologies are de Bruijn Graphs. A grid network
is a computer network consisting of a number of computer systems
connected in a grid topology. A parallel computing cluster or multi-
core processor is often connected in regular interconnection network
such as a de Bruijn graph.

3. Last but not least,the distributed hash table protocol Koorde uses a De
Bruijn graph for routing. The distributed hash table (DHT) is a dis-
tributed system that provides a lookup service similar to a hash table:
key-value pairs are stored in a DHT.In peer-to-peer networks, Koorde
is a distributed hash table, the nodes are the peers and the values are
the messages between the peers. In a d-dimensional de Bruijn graph,
there are 2d nodes, each of which has a unique d-bit ID. The node with
ID i is connected to nodes 2i modulo 2d and 2i+1 modulo 2d. Thanks
to this property, the routing algorithm can route to any destination in d
hops

2 Chapter 1. Introduction

1.1 Motivation

An important motivation for the current thesis is that the simplification of
De Bruijn graph is an computationally intensive algorithm which can be exe-
cuted in parallel and have several important applications such as in genome
assembly. Nowadays, genome assembly is used daily for the detection of
corona virus in PCR tests, so it would be useful to contribute in the accel-
eration of the process.The development of the modern hardware tools moti-
vate us because they have fast data transceivers, large amount of resources,
storage space. In addition, there are tools that produce important informa-
tion about the implementation and visualize the hardware system, so make
it easy for the user to understand and manage the hardware system. Thus,
it is great inspiration to apply them in practice and present the results of the
modern tools. In our case, we have to manage a priority queue which over
time forms a challenging problem for hardware systems, so we wanted to see
how designs with present-day CAD tools would fare in the problem-at-hand.

1.2 Thesis Contributions

In the current thesis we work on a simplification algorithm of de Bruijn
graphs which have great impact in the execution time of genome assembly.
We focus on an algorithm named Bulge Removing algorithm which removes
bulge errors from de Bruijn graph. At the beginning, the algorithm get as
input from the constructed de Bruijn graph information which is used in or-
der to calculate the distance between a starting vertex with its neighbours,
and then their neighbours, until the end of the path. The calculated distances
used in order to form the paths that may have to removed from the graph
in case that satisfy some thresholds. We implemented in hardware the cal-
culation of the distances, with the rest of the steps being implemented in
software.

In the current thesis we study in detail a state of the art software named
SPAdes.13.0[4] which uses de Bruijn graphs. It is created in the Center for Al-
gorithmic Biotechnology[7] which is a part of the Russian Institute of Trans-
lational Biomedicine SPbU.At the beginning, I designed our architecture ac-
cording to the suggestions of the tools in order to make an initial design
in a short time, implement it in the hardware system, and optimize it sub-
sequently. In the beginning, the hardware implementation had a very low
performance, so we decided to make changes in the architecture in order to

1.3. Thesis Outline 3

optimize it. Due to the pandemic it was not possible to have in-person help
on the tools, and so I had to learn the tools largely on my own, and then
to make significant changes in the implementation to improve performance.
Even so, we managed to implement a functional, fully operational system in
the FPGA, which produces correct results. We use SPAdes.13.0 as verification
platform in order to verify the correctness of FPGA results. Alveo U50 [6] ac-
celerator card used for the experimental results of the current thesis. The
hardware implementation achieved 1.14x-1.35x speedup over SPAdes.13.0
for the smallest data sets but it has worse performance for the largest data
sets vs. SPAdes.13.0. We managed to implement only 5 compute units due to
lack of storage space of Alveo U50, so we looked into other accelerator cards
with more storage space in order to compare their results against SPAdes.13.0
results. In conclusion, the tools ease the user in hardware design and im-
plementation but it can not design an optimal system - the designer has to
change the design in order to improve performance. The main contribution
of this thesis is a baseline architecture for the problem-at-hand, which can be
further improved and parallelized on larger platforms in subsequent gener-
ations of system design.

1.3 Thesis Outline

This thesis follows the outline, presented below:

• Chapter 2 - Theoretical Background: it describes the necessary theoret-
ical background that we need to know about de Bruijn Graphs, genome
assembly and the genome assembler that we use.

• Chapter 3 - Study and Design: it has the profiling results and Related
Works to this thesis, as well as the main algorithm of Bulge removing
and the approach of this thesis.

• Chapter 4 - FPGA Implementation: it describes the hardware tools and
the FPGA that we use in the current thesis. Furthermore, it presents the
data path configurations which we implement in the FPGA, and block
diagrams for each configuration.

• Chapter 5 - Results: it presents the results of the implemented system
and compares these results with the execution time of SPAdes. Further-
more we make performance projection on other platforms in order to
estimate performance on high-end systems.

4 Chapter 1. Introduction

• Chapter 6 - Conclusions and Future Work: this chapter presents con-
clusions about the final results and the projection on other platforms.
Also, we suggest changes that will improve the final implementation.

5

Chapter 2

Theoretical Background

The second chapter of thesis is about to understand the theoretical back-
ground that will be used in the thesis. The first part of the chapter describes
the process of the De Bruijn Graph, explain the usage of this process in
Genome Assembly . Also, referred information about SPAdes.13.0 and re-
lated articles that were studied in order to inspire us. Further, presented the
tools that we use in thesis which are Vitis Unified Software Platform and Vi-
tis High-Level Synthesis (HLS). In addition, referred specifications of ALVEO
U50 accelerator card that used for the experimental results.

2.1 De Bruijn Graph

De Bruijn graph [1] was originally introduced in 1951 by the Dutch mathe-
maticians Tanja van Aardenne-Ehrenfests and Nicolaas Govert de Bruijn, the
De Bruijn Graph construction begins with the definition of the the value of
the k which determine the number of consecutive bases in one read of the
assembler and each node represents a k-mer. There will be a directed arc
between two nodes if there is an overlap with k–1 bases and continuously
emerge in one read. A read with the length of r can be divided into r–k+1
overlapping k-mers. The de Bruijn graph is classified into two types, Hamil-
tonian and Eulerian approach, according to the method of expressing the
nodes and edges.

In Hamiltonian [8] [9] [10] approach, the k-mers are the nodes, whereas
they are the edges in the Eulerian approach. The Hamiltonian graph ap-
proach the node is the sequence and the edge is the overlap. In Hamiltonian
graph approach, the sequences are assembled by finding Hamiltonian paths
that traverse all nodes, each of which is visited only once. This scenario is
known as the NP-complete problem when the number of nodes is not trivial.

6 Chapter 2. Theoretical Background

Normally, the computational complexity of finding the Hamiltonian paths is
O(2nm),where m is the total number of nodes, and n is the number of branch-
ing nodes . The Hamiltonian approach is widely used in de novo assembler
such as SOAPdenovo[11], Velvet[12].

In Eulerian [8] [9] [10] graph approach, the sequences are assembled by find-
ing Eulerian paths that traverse all edges, each of which is visited only once
without simplification in polynomial time O(2n). The Eulerian approach is
widely used in de novo assembler such as SPAdes[13] and ALLPATHS[14].
The Eulerian de Bruijn graph based assemblers generally perform better in
the assembly of a large genome than the Hamiltonian graph based assem-
blers.

For example if the read of the assembler is ATGGCGTGCAATG then we
will have the form that seems in Figure 2.1 for the Hamiltonian graph and
Figure 2.2 for the Eulerian graph. Starting from the arc with the weight 1 and
keep going to arc with weight 2-3-4 etc. In the end we will take back the right
form of the read (ATG→ ATGG→ ATGGC→ ATGGCG→ ATGGCGT→
ATGGCGTG→ ATGGCGTC→ ATGGCGTCA→ ATGGCGTCAA→ ATG-
GCGTCAAT→ ATGGCGTCAATG).

FIGURE 2.1:
Hamiltonian

Path.
Reference: How to apply de
Bruijn graphs to genome as-
sembly

FIGURE 2.2:
Eulerian

Path.
Reference: How to apply de
Bruijn graphs to genome as-
sembly

https://pubmed.ncbi.nlm.nih.gov/22068540/
https://pubmed.ncbi.nlm.nih.gov/22068540/
https://pubmed.ncbi.nlm.nih.gov/22068540/
https://pubmed.ncbi.nlm.nih.gov/22068540/
https://pubmed.ncbi.nlm.nih.gov/22068540/
https://pubmed.ncbi.nlm.nih.gov/22068540/

2.2. Genome Assembly 7

2.1.1 Multisized De Bruijn Graph

Assembly methods based on de Bruijn graphs begin,somewhat counter-intuitively,
by replacing each read with the set of all-overlapping sequences of a shorter,fixed
length . The length is often denoted by k, and the sequences k-mers. The
value of k is important for constructing de Bruijn graph because:

• A large value of k will remove some short repetitive regions while re-
ducing the number of nodes in de Bruijn graph, but will give rise to
more unconnected sub-graphs which means that the number of gap re-
gions increases.

• A small value of k will reduce some gap regions while increases the
connectivity of de Bruijn graph, but will add more nodes and increase
short repetitive regions.

Therefore, the value of k can not be too large or too small but we should
determine the value of the k so have the best results.

2.2 Genome Assembly

Genome assembly [15] constitutes a process in Computational Molecular Bi-
ology in which a tool reads parallel many small length nucleotide sequences
and putting them into correct order and aim to construct the right completed
genome. The above process is split in two categories which are Reference
Guide Genome Assembly[16] and the De Novo Genome Assembly [17].

In Reference Guide Genome Assembly[16] there is a reference genome, this
means that the tool try to assemble a gene by reading sequences from a file
and order them as the reference genome.

On the other hand in De Novo Genome Assembly [17] there isn’t a reference
genome and the tool every time after the parallel reading of the nucleotide
sequences try to order the reads via overlaps and in the end the target is to
produce a completed and correct genome without gaps. De Novo Genome
Assembly is a very interesting section of Genome Assembly and at the same
time very difficult because of the no reference genome to struct. Genome As-
semblers are the tools which construct from the many small size nucleotide
sequences into a complete genome.

We refer more information about genome assembly in appendix A

8 Chapter 2. Theoretical Background

2.3 Spades.3.13.0

Spades.3.13.0 [4] is the software that used in the dissertation for genome as-
sembly of the genome. It is a next generation genome assembler that created
at the Center for Algorithmic Biotechnology[7] in Russia, the source code
of SPAdes.3.13.0 is in C++ program language.Also, have some modules in
Python. It works with Illumina or Ion Torrent reads and is capable of provid-
ing hybrid assemblies using PacBio, Oxford Nanopore reads with Illumina
or Ion Torrent reads . Furthermore, it supports single-end, mate-pair and
paired-end reads, it designed for small size genomes such as fungal,bacterial
not for big size genomes such as mammalian.

Illumina, Ion Torrent, PacBio,Oxford Nanopore are research companies which
do research in Next Generation Sequencing Technology and create tools which
used to produce fastq.gz format files for Genome Assembly.

For single end, paired-end and mate-pair reads at first break up the DNA
into fragments of 200-500bps. The term single end read used when the read
starts from the one end of the fragment. The term paired end read used when
we have 2 reads, the first read starts from the one end of the fragment and
the second read starts from the other end of the fragment. The two reads
that arise is a paired end read. The third type of reads are the mate-pair
reads which is exactly the same as the paired-end reads but the difference
is that the size of the fragments in mate-pair are larger than the paired-end.
The usage of short insert and long insert fragment, the advantages and the
disadvantages of each different read will explained in next.

We refer more information related to SPAdes.13.0 in appendix B

2.4 Related work

De bruijn graphs is an important part of De novo genome assembly,there are
plenty scientific articles about de Bruijn graphs and ways to succeed speedup
on execution time of de Novo genome assembly. Also, in the most of the
articles use FPGA in order to succeed speedup . We present some of them at
next:

Rayan Chikhi and Guillaume Rizk [18] propose a new encoding of the de
Bruijn graph, which occupies an order of magnitude less space than current
representations.The encoding is based on a Bloom filter, with an additional
structure which mark nodes have already been visited in order to remove

2.4. Related work 9

critical false positives. They implement a new memory-efficient method for
de novo assembly named Minia which compared against ABySS[19] and
SOAPdenovo [11] about magnitude space. In conclusion,they execute a hu-
man genome data set, Minia allocates 59 time less space than ABySS and 25
times less space than SOAPdenovo and all of them produce correct contigs.

Carl Poirier, Benoit Gosselin and Paul Fortier [3] presented an FPGA imple-
mentation of a DNA assembly algorithm, called Ray[20] which use de Bruijn
graphs, initially developed to run on parallel CPUs.In article referred the
modifications that done in the five steps of Ray algorithm in order to opti-
mize and implement each step in FPGA. They compare the execution time
of CPU Intel Core i7-4770 against Intel FPGA Altera OpenCL SDK and the
power consumption of each platform.In conclusion,upon running the new
program on some datasets, it becomes clear that FPGAs are a very capable
platform that can fare better than the traditional approach, both on raw per-
formance and energy consumption.

At Nanyang Technological University, in Singapore Haixiang Shi, Bertil
Schmidt, Weiguo Liu, Wolfgang Müller Wittig [21] present a scalable paral-
lel algorithm for correcting sequencing errors in high-throughput short-read
data so that error-free reads can be available before DNA fragment assem-
bly, which is of high importance to many graph-based short-read assembly
tools.The algorithm is based on spectral alignment and uses the Compute
Unified Device Architecture (CUDA) programming model .They present that
by using a CUDA-enabled mass-produced GPU, their results are in speedups
of 12-84 times for the parallelized error correction, and speedups of 3-63
times for both sequential pre-processing and parallelized error correction
compared to the publicly available Euler-SR program.

Anand Ramachandran and his team [22] develop the first FPGA-based error
correction accelerator for Illumina reads called FADE.FADE uses BLESS [23]
as base algorithm, which is one of the most accurate DNA error-correction
tools. The main data structure used in BLESS is a Bloom filter [24]. BLESS
counts the occurrence of all k-mers by writing them into multiple files which
consumes a large amount of time around 40% of total time. They implement
hash functions for the process of k-mer counting in FADE which is a signifi-
cant change in the algorithm because they do not need to wright in files any
more. After the significant change of k-mer counting FADE is 28.3x-43x faster
than BLESS.

10 Chapter 2. Theoretical Background

At University of Hong Kong, Varma [2] chose to accelerate a pre processing
algorithm on the FPGA to reduce the short read data for the CPU assembly
algorithm.The simplified data sets used in the execution of Velvet genome
assembler which use de Bruijn graphs. They reported a 13x speedup over
the software. Furthermore, they conclude that the speedup depends from
the quality of the input dataset. They also proposed an improved FPGA
implementation exploiting the hard embedded blocks such as BRAMs and
DSPs.

2.5 Vitis Unified Software Platform

It is the platform where we implement our host and kernel code in OpenCL
and C program language respectively,also we debug,compile and run our
implementation in this platform.For FPGA-based acceleration, the Vitis Uni-
fied Software Platform [25] lets us build a software application using an API,
such as the OpenCL API, to run hardware kernels on accelerator cards, like
the Xilinx Alveo Data Center acceleration cards that we use in this thesis
. The Vitis core development kit also supports running the software appli-
cation on an embedded processor platform running Linux,such as on Zynq
UltraScale+ MPSoC devices. For the embedded processor platform, the Vi-
tis core development kit execution model also uses the OpenCL API and the
Linux-based Xilinx Runtime (XRT) to schedule the Hardware kernels and
control data movement.

The Vitis core development kit tools support the Alveo U50, U200, U250, and
U280 Data Center accelerator cards, as well as the zcu102_base, zcu104_base,
zc702_base, and zc706_base embedded processor platforms. In addition to
these off-the-shelf platforms, custom platforms are supported too.In our case
we use Alveo U50 Data Center accelerator card in this dissertation.

2.6 Vitis High Level Synthesis (HLS)

Xilinx Vitis High-Level Synthesis (HLS) [26], is a tool included in the Xilinx
Vitis Design Suite, allowing for a higher level of abstraction design of HDL
systems. Vitis HLS synthesizes C/C++, SystemC and OpenCL functions into
IP blocks, generating their VHDL and Verilog HDL designs that can then be
implemented into hardware systems using Vitis and its Block Design tool.

2.7. The FPGA Perspective 11

HLS accepts non-hardware-optimized code, and its goal is to optimize them.
So, provides a set of directives that can be used to optimize the code. Direc-
tives are optional and do not affect the behavior of the code. Further,they are
not specialized into certain programming language while they generalized
for all acceptable ones. Their correct usage can improve the performance
of the implementation while the wrong usage of directive can worsen the
performance of the code . Furthermore, constraints, like clock period, clock
uncertainty, and FPGA target, are added to the HLS synthesized IP blocks
to direct directives to resources and ensure the desired behavior and perfor-
mance.

In addition Vitis High-Level Synthesis (HLS) produce as output useful infor-
mation about the proportion of resources that utilized in the FPGA by the im-
plementation such as LUTs,Block RAM,DSPs,Registers. Also, provides infor-
mation about the loops of the configuration such as whether the loops can be-
come pipeline, interval of the pipeline loop and any other optimizations that
made in the configuration.In the best case the interval of a pipeline loop is 1.
In case that interval is greater than 1 the tool give as output information about
the reasons of interval greater than 1 in order to make appropriate changes
to the implementation to succeed interval 1 for each loop.Furthermore, the
tool refers the latency in clock cycles of the whole implementation and the
latency of each module. The above information presented in a table after the
finish of synthesis of the implementation.

2.7 The FPGA Perspective

The FPGA that we use is Alveo U50 [6] of Xilinx. The specific FPGA is avail-
able in the Microprocessor Hardware Lab and it is connected with the Vi-
tis tool of the server. The Xilinx Alveo U50 Data Center accelerator cards
provide optimized acceleration for workloads in financial computing, ma-
chine learning, computational storage, and data search and analytics. Built
on Xilinx UltraScale+ architecture and packaged up in an efficient 75-watt,
small form factor, and armed with 100 Gbps networking I/O, PCIe Gen4,
and HBM, Alveo U50 is designed for deployment in any server.

Alveo accelerator cards are adaptable to changing acceleration requirements
and algorithm standards, capable of accelerating any workload without chang-
ing hardware, and reduce overall cost of ownership.It follows in Figure 2.3
the view of the FPGA.

12 Chapter 2. Theoretical Background

FIGURE 2.3: Alveo U50.

Reference: Xilinx Alveo U50 Data Center Accelerator Card

Also, in the Table 2.1 presented the specs of the Alveo U50 FPGA

Board Specifications Alveo U50 Accelerator Card

Look-up Tables(LUTs) 872K

Registers) 1,743K

DSP Slices 5,952

HBM Memory Capacity 8GB

HBM Total Bandwidth) 316 GB/s

Internal S-RAM Capacity 28 MB

Internal S-RAM Total
Bandwidth

24 TB/s

Clock Precision IEEE 1588

Vitis Platform
Gen3x16 XDMA, Gen3x4

XDMA3

Maximum Total Power 75W

TABLE 2.1: Alveo U50 Specifications.

In the current Chapter referred several related articles that succeed accel-
eration in error correction of de Bruijn graphs with the use of older FPGA
models. Thus, we want to try accelerate an error correction algorithm with
the use of modern technology. In Chapter 3 described the error correction

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html

2.7. The FPGA Perspective 13

algorithm which studied, the selected data sets and the profiling results of
the specific algorithm.

15

Chapter 3

Study and Design

The meaning of the term Study is that we learn about an issue and try to
understand it so afterwards be able to Design the solution of the issue. At
the beginning, SPAdes.13.0 was selected as a reference software for this the-
sis which is a Russian genome assembler that use de Bruijn graph as main
structure for genome assembly. SPAdes.13.0 is a popular tool in the field of
Bioinformatics for genome assembly and used in several scientific articles be-
cause of its high accuracy in output results. Code of SPAdes.13.0 organised in
many different folders which contains files in C++ language, so it was com-
plicated to analyze the whole tool, understand correctly the way that works
and find the proper algorithm for us. At last, we succeed to detect the proper
algorithm and start profiling the algorithm manually with a library of C++
named <chrono>. We use the profiling results as guide for the design of our
architecture.At the end of chapter we describe the modification that we did
in the algorithm to make it easier for us to implement it in the FPGA and may
improve its execution time.

3.1 Bulge Removing

In the first Stage, SPAdes read the data sets, cut the reads into k-mers and
store them in a De Bruijn Graph. When the process of Graph Construction
ends then follows the procedure of Graph Simplification, so SPAdes simplify
the produced De Bruijn Graph. Over four Graph Simplification procedures
Bulge Removing[4] is the one that consume the most of the time , around
90% of graph simplification and 30% of SPAdes Algorithm. Bulge Removing
is a graph simplification process that SPAdes execute when from the same
hub starts two or more paths and these two or more paths ends in the same

16 Chapter 3. Study and Design

hub as it seems in Figure B.1 A. Bulge removing separated into four steps
which represented in Figure 3.1

FIGURE 3.1: Bulge Removing Algorithm.

Some details about each step of the algorithm are necessary for the complete
understanding of them and of the whole algorithm. So:

1. Fill_Hub_Buffer constitutes the first step of the algorithm in Figure 3.1,
in this step 10.000 different hubs stored in a buffer in order to check if
any of them is the start of a bulge error. This step executed until all the
hubs are checked.

2. Calculate_Distance is the second stage of the algorithm in Figure 3.1, in
this stage detected the neighbours of the starting hub and the distance
between the starting hub and each neighbour. Also, after the detection
of the neighbours of the starting hub, the algorithm detects the neigh-
bours of the neighbours and their distance between them. So, in this
step get known all the possible paths that starts from the starting hub
and it is very useful for the next step.

3. In the begging of the third stage Bulge_Check used the Dijkstra Algo-
rithm for searching the graph and find the paths from the ending hub

3.2. Data Sets Selection 17

to the starting hub. The Dijkstra Algorithm is a greedy algorithm, so
it uses the results of the previous step to determine the path that will
create in order to reach from the ending hub to the starting hub. After
the creation of the path follows the checking of an alternative path and
in the end if the path fulfills the criteria to be a bulge error. The criteria
for a path to be a bulge error are two:

(a) The length of the path must be less than 150 vertices("small")

(b) The difference between path that created from the Dijkstra Algo-
rithm and the alternative path should be less or equal 3("similar")

Nevertheless, the criteria can be changed if it is needed for any occa-
sion.

4. Last but not least, the Bulge_Delete stage executed only for the paths
that are bulges, in case that the path creates a bulge error then deleted
from the graph. Also before the operation of deletion of the path from
the graph the edges and the vertices projected to the alternative path
because they may contain useful information about the genome assem-
bly so we shouldn’t discard them. The projected edges and vertices
may need in the second stage of the SPAdes but after the end of the
second stage the projected edges and vertices deleted once for all.

The above steps repeated until all the starting hubs that have two or more
outcoming edges checked for bulge error. As a result SPAdes do many times
the same steps since it checks only 10.000 different hubs every time.

3.2 Data Sets Selection

The data sets that executed in SPAdes downloaded from the European Nu-
cleotide Archive (ENA)[5] which is the European platform for the manage-
ment,sharing,integration, archiving and dissemination of sequence data of
European Molecular Biology Laboratory (EMBL) [5] .ENA is developed and
operated under the support of the European Molecular Biology Laboratory
(EMBL) and through grants from external bodies that include the European
Commission, the British Biotechnology and Biological Sciences Research Coun-
cil (BBSRC) and the Wellcome Trust (WT).The European Nucleotide Archive
(ENA) captures and presents information relating to experimental workflows
that are based around nucleotide sequencing. ENA have an open online
database that contains variety of eukaryotic de novo sequence data sets. Data

18 Chapter 3. Study and Design

arrive at ENA from a variety of sources. These include submissions of raw
data, assembled sequences and annotation from small-scale sequencing ef-
forts, data provision from the major European sequencing centres and rou-
tine and comprehensive exchange with their partners in the International
Nucleotide Sequence Database Collaboration (INSDC).

We decide to work on human data sets which have high complexity and they
contain more errors than prokaryotic datasets.Thus, our graph simplification
algorithm will have more errors to remove from the graph. We select five
human data sets with different data size so we can have clear results about
the execution time that need each one. In the Table 3.1 presented all the data
sets that we use for the profiling and the experiments.

Data Set Name
Data set

Size(MB)
Total Reads

Total Base
Pairs(Mbps)

DRR015506-1 5 28.230 2
DRR015506-2 5 28.230 2

DRR015482-1 9 50.256 5
DRR015482-2 9 50.256 5

DRR015499-1 17 93.964 9
DRR015499-2 17 93.964 9

DRR015480-1 24 130.473 13
DRR015480-2 24 130.473 13

DRR015512-1 36 173.462 17
DRR015512-2 36 173.462 17

TABLE 3.1: Data Sets.

The value of Total Reads and Total Base Pairs computed from a script in C
language that I create, the name of the script is Read-lines.c and explained
in the following subsection.Also, as we can see in the table 3.1 we have pairs
of data sets, the suffix ’1’ means that the data set have forward reads and the
suffix ’2’ means that the data set have backward reads. We need pair of data
sets because use the Pair end library of the SPAdes.3.13.0 so it is necessary to
use pair of data sets. Furthermore, we have variety of Data Size because we
need to test different cases.

We create a script in C language which compute the Total Reads and the
Total Base Pairs of every data set. At the beginning, the program count the

3.3. Profiling 19

total number of the lines of data set and take advantage of the format that
have all the fastq files. We know that a cluster have 4 lines and in these 4
lines there is one sequence read. So

TotalReads =
TotalLines

4

and
TotalBasePairs =

TotalReads · ReadLength
106

.

3.3 Profiling

Profiling is a critical process for the thesis because define the part of the code
that consume the most of the time in a project. Also, the results of the profil-
ing can be used to calculate the percentage of execution time over total time
of the algorithm and with the Amdahl ’s Law about the parallelization we
can determine the upper limit of the speedup that can get the specific code
in parallel in the FPGA. The name of the server that used for the profiling
is kronos.mhl.tuc.gr (KRONOS) which belongs to MHL sector of Techni-
cal University of Crete, in the following subsection presenting the specs of
the computer in KRONOS server. Furthermore, we did manual profiling in
SPAdes for the Bulge Removing Algorithm to calculate the execution time
of the algorithm and the amount of time that consume each process of the al-
gorithm in percentage over the total time . We use the C++ library <chrono>
for manual profiling.

3.3.1 KRONOS Server Specs

As it referred above the specific subsection describe the specs of the server
KRONOS computer. The specs presented in the table 3.2:

CPU GPU RAM(GB)
Hard Dive
Size(TB)

Intel Xeon
E5-2630 V4 @2.2

GHz

Matrox
Electronics
System Ltd

G200eR2

258 7.3

TABLE 3.2: Server KRONOS Specs.

20 Chapter 3. Study and Design

For the genome assembly the assembler use big amount of RAM because
it stores all of the useful information such as the assembly graph in RAM,
for big data sets SPAdes need over 150 GB RAM. Also, server have plenty
of physical memory for the genomes that output the SPAdes. Generally the
Xeon processors are designed for servers, they have more cores, but at lower
processing speed so they can execute many tasks but with higher processing
time than i5 cores ,i7 cores.

3.3.2 Profiling Results

Generally, SPAdes used in our thesis as a verification platform in order to be
sure that our profiling results are correct. The Bulge Removing Algorithm
is part of the assembler,so we do the profiling measurements in real time in
assembler. For the measurements we use the C++ library <chrono> as we do
manual profiling. Firstly, we measure the Total Time that Bulge Removing
Algorithm needs in total and afterward,we measure the Process Time that
needs each of the four steps individually as it seems in Figure 3.1. The Data
sets that referred in Table 3.2 used to run SPAdes and get the Profiling Results
that presented in Table 3.3. Also, we change the source code of the SPAdes to
run in one thread for the necessities of our measurements.In Table referred
The Process Time of Second step of the Bulge Removing Algorithm because
in second step consumed the majority of the total execution time. We placed
the data sets in ascending order of the Total Time.

Data Set Total Time(s) Process Time(s) Percentage(%)

DRR015506 27.03 24.6 91.2
DRR015482 51.5 46.4 90.6
DRR015499 107.1 96.4 89.7
DRR015480 149.8 130.8 87.3
DRR015512 338 305.6 90.4

TABLE 3.3: Profiling Results

The profiling results in our case give us that the second step of the Bulge
Removing Algorithm is the one that consume the most of the time,in per-
centage range 80%-90%. So we use the results of the Table 3.3 in the follow-
ing sections of Chapter 3 as a guide in order to study the specific part of the
code correctly and design it. Also, the percentage of time that the Process

3.4. Profiling Results Conclusion 21

Time takes over Total Time is significant, so we use the Amdahl’s Law to
determine the upper limit of speedup in our implementation.

We use the Amdahl’s law formula in order to determine the upper speedup
limit in case we use multiple compute units in an ideal system.We take ad-
vantage of the profiling results for the calculation of the theoretical speedup.
The Amdahl’s law function presented at next:

Slatency(s) =
1

1− p

• Slatency(s) : is the theoretical speedup of the execution of the whole task.

• p : is the proportion of a system or program that can be made parallel.

In our case the proportion of program that can be made parallel is in range
[0.8-0.9]. In Table 3.4 we present the upper limit of theoretical speedup for
each data set.

Data Set
Data Set
size(MB)

Proportion of
Process Time(s)

Upper Limit
Speedup

DRR015506 5 0.912 11.36x
DRR015482 9 0.906 10.63x
DRR015499 17 0.897 9.7x
DRR015480 24 0.873 7.87
DRR015512 36 0.904 10.41

TABLE 3.4: Amdahl’s Law Theoretical Speedup

As we expect for each data set Amdahl’s Law formula gives different results
because they consume different proportion of execution time of the program.
Furthermore, the range of theoretical speedup is in range [7.87x-11.36x], also
in Chapter 5 we describe in details the final results from our implementation
in FPGA.

3.4 Profiling Results Conclusion

Initially, the profiling result become our guide about the thesis. So, since the
Second Step(Calculate_Distance) of the Bulge Removing Algorithm con-
sume the 90% of the Total Time we start to study the second stage and try
to make improvements on it.As we shown in Figure 3.1 the Bulge Algo-
rithm executed step by step and uses one starting hub every time. Therefore,

22 Chapter 3. Study and Design

it checks one by one the starting hubs if they are bulges.The first thing we
change from the original Algorithm is to isolate the Second Step of the Al-
gorithm and calculate the necessary distances for all the starting hubs. This
change will give us the opportunity to handle the step that delay the Algo-
rithm separately from the other steps, implement it in the FPGA as a single
process and do the procedure for all the starting hub once. Thus, we make
a new diagram to be more understandable the new struct of the Algorithm
which seems in Figure 3.2.

FIGURE 3.2: Modified Bulge Removing Algorithm.

In the modified Bulge Algorithm we take all the starting hubs that we need
to process and pass them as input to the second step. After the end of the
second step the results used in the third step to determine if the path is bulge
and in the last step the algorithm delete the paths that are bulges. Thus, we
d not change the substance of the Algorithm but we modified the way that
processing the data.

3.4. Profiling Results Conclusion 23

In Chapter 4 we describe the second step of the Bulge Removing Algorithm
and give details about our thoughts to improve the code and implement it
into the FPGA.

25

Chapter 4

System Implementation

In Chapter 4 we describe in details the steps that followed in order to reach
in the final hardware implementation. Firstly, the original code of the sec-
ond step of Bulge Removing algorithm of SPAdes.13.0 modified in order to
build it in software implementation of Vitis. Vitis automatically create the
hardware implementation in FPGA at next but the results was poor so we
decide to make manual improvements in the current hardware implemen-
tation. The manual improvements did not offer remarkable results, so we
implement a new configuration which is a tree like implementation and con-
stitutes the final configuration. At last, added 4 more compute units in the
final implementation in order to speedup its execution time.We use the tool
of Xilinx Vitis Unified Software Platform for the FPGA implementation. Also,
in Chapter 4 we refer the time latency issues that referred by Vivado HLS log
files.

4.1 Software Implementation

The main goal of the algorithm is to calculate the distance between the start-
ing hub and the neighbours until we find the ending hub, in order to achieve
that we need to calculate the distance between all of the hubs between the
starting and the ending hub.In the begging, the algorithm starts with a start-
ing hub which stored in a Priority Queue, the priorities that checked before
the insertion in the queue are the four that follows:

1. The length of the h-path is the first criterion.

2. The second is the ID number of the current vertex

3. The ID number of the previous vertex

4. The number of the edges between the current and the previous vertex.

26 Chapter 4. System Implementation

For each starting vertex the priorities are stored in a Struct and pass the struct
every time we want to check them before insert it in the Queue.The struct
contains four integers values ,thus for every node we need 128 bits. At next,
the vertex popped from the Queue and check if we have processed the same
vertex before, also check some other thresholds about the length of the h-
path . If the vertex pass through all the statements we save it in an output
vector and process the vertex to find its neighbours,the neighbours stored in
the priority queue in order of the values of their priorities. After the first iter-
ation that we process the starting hub then the steps of the algorithm are the
same as before.The difference is that we pop the vertex with the highest pri-
ority from the Priority Queue, processing the hub with the highest priority
to find its neighbours and stored them in the priority queue too. Thus, for the
vertex with the highest priority we find its neighbours and the distance from
them, keep going the process until the Priority Queue is empty.The maxi-
mum number of neighbours that a hub can have are 4 and the minimum is 0.
Also,in our design the maximum number of elements that can stored in the
Priority Queue are 7000.

We do the procedure that we describe above for all of the starting hubs sep-
arately. Therefore, every starting hub do not depends from the other starting
hubs or their results. This notice guarantee us that we can make in parallel
the processing of every starting hub . We quote pseudo code that describes
the procedure of the distance calculation.

4.1. Software Implementation 27

Algorithm 1 Main of Second step of the Bulge Removing Algorithm
1: start_counter ← 0
2: while start_counter < starting_hubs.size() do
3: queue[7000]← starting_hubs . insert a starting hub in the rear
4: vertex_out← 0
5: distance_out← 0
6: while queue.size() 6= 0 do
7: next← queue.top() . pop the top element
8: vertex ← next.vertex
9: distance← next.distance

10: if DistanceCounted(vertex, vertex_out) == 0 then
11: continue
12: vertex_out.push_back(vertex, vertex_out) . store output data
13: distance_out.push_back(distance)
14: if CheckProcessVertex(distance) == 1 then
15: continue
16: AddNeighboursToQueue(distance, vertex, vertex_out) . push

neighbours in priority queue
17: start_counter ++

As we can see in line 3 of the Algorithm 1 initialized a queue with 7000 ele-
ments, we push elements from the rear of the Queue and pop them from the
front. Also we initialize the output vectors before starting processing a new
starting hub. The priority queue in software works as a binary tree as it is
the most efficient way to implement it. We need O(logN) time for pushing
elements and the same time complexity for popping elements,so the overall
time complexity of the algorithm is O(logN). The binary tree have logN levels
where n are the elements of that are stored in the structure. The space com-
plexity of the binary tree is O(n) because we store N elements in the structure.

Follows the pseudo code of the function that called in line 10 of the Algorithm
1.

Algorithm 2 DistanceCounted(vertex,vertex_out)
1: counter ← 0
2: i← 0
3: while counter < vertex_out.size() do
4: if vertex_out[i] == vertex then
5: return 1
6: i ++
7: counter ++

The Algorithm 2 is a simple serial search in the output vector to check if the
current vertex have processed in the past. In the case of match the function

28 Chapter 4. System Implementation

return 1.

In Algorithm 3 referred the pseudo code of the function AddNeighboursTo-
Queue. It is the function with the highest impact in the whole algorithm.

Algorithm 3 AddNeighboursToQueue(distance,vertex,vertex_out)

1: while hasNeighbour do
2: if DistanceCounted(neighbour_vertex, vertex_out) == 0 then
3: new_dist← curr_dist + neighbour_dist
4: if new_dist < 3000 then
5: push(new_dist, neighbour_vertex, vertex, neighbour_edge)

In the line 1 of the Algorithm 3 we check if there is another neighbour for the
current vertex. In the line 2 check the neighbour vertex if we have process
it before and afterwards we push it in the priority queue. The neighbours of
each vertex are stored in the a structure.

From the study of the code we understand that the processing with the high-
est impact in the execution time is the pushing and the popping of elements
in the priority queue. Also the serial searching in the output vector in the
Algorithm 2 is a part of the algorithm that we can improve.

4.2 Automatic Hardware Implementation

The software implementation that referred above can become hardware im-
plementation without any effort because Vitis assumes the conversation of
the implementation.In the current section presented the hardware implemen-
tation which produced automatic by Vitis.In hardware implementation of the
algorithm we have two types of configuration which are the host and the ker-
nel configuration. We describe in following subsections the host and the ker-
nel configurations for the first implementation in the FPGA. Also,we present
in Figure 4.1 the Abstract Block Diagram of our implementation.

4.2. Automatic Hardware Implementation 29

FIGURE 4.1: Abstract Block Diagram.

4.2.1 Host Configuration

The host code prepare the data for the kernel, the data pass in the host as
arguments . The main goal of the host is to create the connection between the
FPGA and the CPU of the server, also, in the host we read from files the nec-
essary input data for the processing and store them into vectors. The vectors
with the input data pass as arguments in the kernel and stored into the HBMs
of FPGA. The files created during the execution of the SPAdes, so we have all
the data that we need to run the algorithm in the FPGA. Further,during the
execution of the SPAdes we keep in a file the output results that we should
get from the execution of the algorithm in the FPGA. In the end we compare
one by one the output results of SPAdes with the output results of the FPGA
with a script in C language to be sure that we have correct results. In the Ab-
stract Block Diagram in Figure 4.1 the FPGA BANK MEMORY is the HBMs
where we store the input data.

4.2.2 Kernel Configuration

The Abstract Block Diagram of Figure 4.1 constitutes an overview of the
kernel, as we can see the kernel separated in 2 stages: POP_CHECK and
ADD_NEIGHBOURS_TO_QUEUE.The stages are placed in the block dia-
gram in order of execution,also we have the main control which determines

30 Chapter 4. System Implementation

the values of the signals for the synchronization of the system.The value of
the register in the middle of the block diagram constitutes the pointer in the
rear of the priority queue and we use the pointer to be aware about the avail-
able capacity of the priority queue. In each element of the priority queue
stored 4 integers values that constitutes the identity of each vertex, so we
need 128 bits for each vertex.

Initially,pushed the identity values of the starting hub in the priority queue,
the rear pointer increased by one and the main control enable the first stage.
The identity values of the starting hub popped from the queue and become
a comparison between the identity values and thresholds in POP_CHECK
stage. If the checks are valid then the vertex and the length of its path stored
in the HBM, also the main control interupted in order to enable the second
stage. In the second stage we are searching for the neighbours of the popped
vertex, each neighbour pushed in the priority queue. After the end of the
second stage the main control enable the first stage again and searching the
element of the priority queue with the highest priority and popping it. At
next the main control enables the second stage and searching for the neigh-
bours of the popped element. The first and the second stage iterated until
the priority queue is empty. Then pushed a new starting hub in the priority
queue and the process starts again. Every time we push data in the priority
queue increase the rear pointer by 1, on the other hand when we pop data
from the priority queue then decrease the rear pointer by 1, so we are aware
about the available capacity of the queue.

In conclusion, the results of automatic hardware implementation was poor
in order to code optimization and execution time.There are two important
reasons which are responsible about the poor results and referred at next:

1. Algorithm search the output matrix in serial in order to check if the
current vertex have processed. This algorithm called two times,so it
slows down the execution of the whole algorithm.

2. Also,numerous accesses in priority queue is an important issue that in-
crease the execution time of algorithm.

Thus, we decide to change manually the code of kernel in order to succeed
better performance in the current implementation. We focus in the improve-
ment of Algorithm and in the way that pushed and popped data from the
priority queue.

4.3. Manual Improvements on Automatic Hardware Implementation 31

4.3 Manual Improvements on Automatic Hardware

Implementation

We relied in the first implementation and we tried to do improvements in the
implementation to success speedup. Mainly, we focus on the improvement
of the kernel configuration.

4.3.1 Kernel Reconfiguration

An imperative change that we do is a Look-up-table that we create in order
to find if a vertex have processed before. Until now for this task we search
the output data in serial to determine whether a vertex is processed or not.
Furthermore, we decide that we should change the process of pushing and
popping data from the priority queue. The main goal was to make it fully
pipeline, so we to make the pop and push process executed in one clock
cycle each. In the following subsection referred details about the way that
data pushing and popping from the priority queue, changes that we tried to
do and a block diagram for the priority queue. Also, referred the reasons
that this implementation is not suitable for our case. Despite the fact that
we discard the first implementation the Look-up-table is an insertion in our
code which we do not change until the final implementation.

Look-up-table

Firstly, we have some thoughts about the way that we would make the Dis-
tanceCounted module executed in one clock cycle. We decide to totally
remove the specific module from the implementation and replace it with a
Look-up-table. The Look-up-table created in the host code during the read-
ing of the input files, every vertex have a unique id number that separates it
from the other vertexes. Thus, we search for the maximum id number and
we make an array in which the index is the key and the value of the key is
the state of the vertex. In case the value is 0 the vertex has not processed
but in case the value is 1 means that the vertex has processed. In begin the
Look-up-table initialized in 0, we change the value of the key in 1 for each
vertex that stored in output data, thus we be aware for the vertexes that we
have processed.

32 Chapter 4. System Implementation

Finally, the implementation of Look-up-table is a very important manual
change because it needs just one clock cycle to check if the current vertex
have processed and replace a function that needs several execution time.

Priority Queue

The priority queue is an issue that occupied us for long time, so that we im-
plement it proper to success speedup. We wanted to make the priority queue
fully pipeline, the look-up-table that we implement in the previous step is
useful for the priority queue because the push and the pop depend on it. The
push process after the removal of the DistanceCounted module executed in
one clock cycle. However,in the POP_CHECK stage traversed all the ele-
ments of the priority queue one by one because we search for the element
with the highest priority. To overcome this problem we tried to fully parti-
tion the priority queue and transform it into registers. In Figure 4.2 presented
the block diagram of the priority queue that we try to implement, as it seems
we have the main priority queue and an alternative queue, the two queues
are partitioned in registers. Also, the dec module determines the path that
will follow the data, we need the second queue to store the data that have
lower priority than the corresponding in the first queue and in the next clock
cycle compare it with the next element of the first priority queue. Thus, we
push data in parallel in one clock cycle. Also, in case data should pushed be-
tween two registers which have already data then the registers that are from
the rear side shifted by one register to make a hole for the new data. For the
pop process the data come out from the front register and the rest data of the
first priority queue shifted to the front register to cover the gap that made.

FIGURE 4.2: Pipeline Priority Queue Block Diagram.

In conclusion Vitis do not have the capability to build the above configuration
for two reasons.

4.4. Final Hardware Implementation 33

1. Firstly ,we need a priority queue with 7000 elements to be fully par-
titioned which is impossible for the tool. The upper limit of Vitis for
fully partitioning is vectors with 1024 elements, so we get a warning
message from the tool that the implementation can not build.

2. The second reason is that we have 4 id values for each vertex. That
means we do 4 compares to decide which vertex have higher priority.
Thus, the flowchart of the implementation have high complexity and
the tool can not build it

In the next section analyzed the second configuration that we make and is
the final configuration.

4.4 Final Hardware Implementation

The second hardware implementation is completely different from the pre-
vious configuration. The previous implementation could not build on the
FPGA, the problem was that the Vitis have not the ability to fully partition-
ing the priority queue of 7000 elements. Also, each element has 4 values, so
the flowchart is too complicated and the tool can not make the implementa-
tion pipeline. Thus, we concluded that the main issue is to implement the
priority queue with better way, we make changes in push and pop process
of the priority queue. In Figure 4.3 presented the Abstract Block Diagram of
the kernel, in the following subsections we describe in details the host and
kernel configuration.

34 Chapter 4. System Implementation

FIGURE 4.3: Abstract Block Diagram.

4.4.1 Host Configuration

The host code of the current configuration is the same as the first configura-
tion. In subsection 4.2.1 described in details the operation of the host code.
The host code remains the same because the input data needs the same pro-
cessing to pass as arguments in the FPGA. The kernel code is completely
different for the pop and push process, in the next subsection described in
details the kernel.

4.4.2 Kernel Configuration

In the current configuration as it seems in Figure 4.3 the block diagram is
the same concerning the stages but it has changed in order to pushed and
popped data from the priority queue as in a binary tree. Also, from the first
implementation we keep the Look-up-table for the check of the processed
vertexes but we change radically the push and pop process.

Our first concern is the different implementation of the priority queue,so we
decided to implement it as a binary tree. In the binary tree the data pushed
in the first empty leaf, then compared the new data with the data of the par-
ent node. In case, the data of parent node have lower priority then the new
data swapped with the parent data, so the new data stored in the parent
node and the data of the parent node stored in the leaf node. This process

4.4. Final Hardware Implementation 35

continues until the new data compared with data that have higher priority.
The binary tree have the data with the higher priority in the root node, so it
pops data from the root node. Afterwards, in the root node stored the data
from the right most leaf, then start to compare the new data of the root node
with the data of the left neighbour and the right neighbour, in case root node
have lower priority of their neighbour then it swapped with the neighbour
with the higher priority. This process continues until the new data compared
with neighbours that have lower priority. With this way the priority queue
remains ordered. The rear pointer remains in the implementation, give us
the first available leaf of the priority queue to push data, it increases by 1
in case of pushing data and decreased by 1 in case of popping data from the
priority queue.We select to reconfigure the priority queue into binary tree be-
cause it needs log(N) levels to store N data, so the complexity of pushing and
popping data reduced to O(log(N)) in contrast the first implementation have
O(N) complexity. In the following subsections explained the inner process of
each stage.

POP_CHECK

The POP_CHECK is the first stage of the process,the inner content of the
stage presented in Figure 4.4. The main goal of the stage is to pop the root
node from the priority queue and sort the priority queue again. The popped
data send to the HBM for storing in case that pass through all of the checks.
The Figure 4.4 present details about the data path and the modules that are
in the stage.

36 Chapter 4. System Implementation

FIGURE 4.4: Pop Check Stage Diagram.

Firstly, we check if the priority queue is empty, the priority is empty when
the rear pointer is equal to 0. When we make sure that the priority queue is
not empty then enabled the POP module which is responsible to pop the root
node from the priority queue and sorting the priority queue.POP_DATA are
64 bits because from each element of the priority queue stored 2 unsigned
integer in the HBM. The HEAPIFY_DATA are 384 bits because we need to
compare 3 elements to decide whether they need to swap, the elements that
compared are the parent node, the left and the right child nodes. After the
end of POP module checked if they have processed again or if the length of
the vertex is greater than a threshold in CheckProcessVertex. In case the
checks are valid then the output data pushed in the HBMs, more details
about the POP module referred at next. In addition, we present in Figure
4.5 the inner of the POP module.

4.4. Final Hardware Implementation 37

FIGURE 4.5: Pop module Diagram.

The POP module is responsible to sort the priority queue, it has a control
module which synchronize the process. In the beginning, the POP_DATA
stored in a register until the priority queue is sorted. The POP_DATA are the
data of the root node. For the sorting of the priority queue we transfer the
data of the right most full element in the front element of the priority queue,
then we start the comparison. Firstly,we compare the new data of the root
node with the right and the left child nodes, in case the data of the root have
lower priority than the children then they swapped with the data of the child
with the highest priority between them. This process continues until the data
that started from the root node compared with children that both have lower
priority.In HEAPIFIED_DATA contained the data that will swapped in the
priority queue, so we need 256 bits to transfer the data.The control module
let the OUTPUT_DATA to pass as output when the priority queue is sorted.

Add_Neighbours_To_Queue

The last stage of the process is the Add_Neighbours_To_Queue in which we
search for the neighbours of the vertex with the highest priority. The identity
values for the neighbours are saved in the HBM, thus we load them and
check them. The PUSH module is responsible for the push of the new data
and the ordering of the priority queue. The control of the stage synchronize

38 Chapter 4. System Implementation

the process, at next we explain the inner process of the Add_Neighbours_To
_Queue stage. Also, in Figure 4.6 presented the block diagram of the current
module.

FIGURE 4.6: Add Neighbours To Queue Stage Diagram.

Initially, in the current stage we check if the neighbour have processed before
again, we do not want to process the same vertex twice so we reject it in case
of match. The Look-up-table is responsible to keep information about the
vertexes that have processed, so we check the corresponding value of the
Look-up-table for the vertex that we want to process. Furthermore, adding
the current distance with the distance of the neighbour and check the result
do not be greater than a threshold. At next if all the checks are valid the
control module enables the PUSH module which is responsible for pushing
the new data in the priority queue and ordering them. Also we should iterate
the process for all the neighbours, the maximum number of neighbours are
four, the control synchronize the iterations. In the end of the process the rear
pointer increased by 1 as we pushing data in the priority queue. In Figure 4.7
presented the inner content of the PUSH module.

4.4. Final Hardware Implementation 39

FIGURE 4.7: Push module Diagram.

At start we check the value of the rear pointer, in case the value is greater
equal to 7000 then we can not push more data in the priority queue, it is over-
flowed.In other case, the PUSH_DATA pushed in the first empty leaf node of
the priority queue.The HEAPIFY_DATA that compared are the last inserted
data in the leaf node with the parent of the leaf node. If the new inserted data
have higher priority then swapped with the parent element data, this contin-
ues until the new inserted data compared with a parent node with higher
priority.Thus, the control module synchronize the process, it determines the
data that will send to the priority queue from the multiplexer.

In conclusion,in the current implementation the priority queue operate like
a binary heap,so time complexity of implementation reduced in O(logN) in
contrast the previous implementation have O(N) time complexity. We relied
in the current implementation in order to implement more compute units to
achieve speedup.

40 Chapter 4. System Implementation

4.5 Host Reconfiguration-Parallelization

Firstly, we have to decide the number of compute units that we are available
to implement in our system. In total there are 32 HBMs in our FPGA each one
has 256MB storage space, so the FPGA have 8GB storage space in total. In
the next table presented information about the way that separated the HBMs
in the implementation.

HBMs for 1
Compute Unit

HBMs for 5
Compute Unit

Total HBMs

6 30 32

TABLE 4.1: HBMs Allocation.

Each compute unit allocates 6 HBMs, so we can implement 5 compute units.
. The differences in the new host code in relationship with the previous host
code are that in the new host code created and connected 5 compute units
with the CPU.We modified the reading of the data sets in order to succeed a
balanced parallelism, the input data separated into 5 vectors, each one pass
as argument in one compute unit. For the correct separation of the input data
we wright in the files the value -1 after the last data that a starting hub needs
to execute,so -1 is a flag to understand when ends the necessary data that
needs each starting hub to processed.

4.6 Time Latency Issues

It is useful to have knowledge about the latency in clock cycles in our imple-
mentation and for each module separately because we help us to understand
in which module we should focus in order to optimize it and get better per-
formance. After the end of hardware implementation Vitis HLS and Vivado
IDE produce one log files each which contain information about the latency
of configuration in clock cycles and the frequency of clock of kernel. Also, the
log file of Vivado IDE [26] present information about space utilization of the
implementation in the FPGA but we will refer to them in details in Chapter 5.
There are three meanings that we have to explain in order to understand the
results of the log files for the time latency, these meanings referred at next:

• Latency: The number of clock cycles required for a complete run of a
function or loop.

4.6. Time Latency Issues 41

• Iteration Latency: The number of clock cycles required for running a
single iteration of a function or loop.

• Iteration/Initiation Interval (II): The number of clock cycles required
before a module can accept new input or a loop can initiate a new iter-
ation.

• Pipelined: Tag that mentions if a module or loop is implemented using
a pipelined architecture.

After the end of the hardware implementation we open the log files in order
to see the values for the above meanings in our implementation. At first, the
maximum value of clock frequency for the accelerator is 300 MHz, for our
implementation the clock frequency initialized in 265 MHz. The system have
losses in clock frequency because we do not work in ideal conditions, also
there are modules in the implementation which needs bigger clock period
than the default.

As we refer in the above section the implementation separated in 3 stages,
each stage depends from the latency of the next stage because they executed
in serial.So, we present the latency of the stages in backward order.

• ADD_NEIGHBOURS_TO_QUEUE is the second stage in order, the
loop of the stage executed maximum 4 times with 1332 iteration latency,
so the second stage has 5328 latency in total. PUSH module needs 1041
clock cycles to execute over 1332 of the total stage. Thus, the PUSH
module consumes around 80% of the total clock cycles of second stage.

• POP_CHECK is the first stage of the implementation, it is not possi-
ble to define the total number of iterations of the loop because we do
not know the number of neighbours that will popped from the priority
queue. However, the tool can define the iteration latency of the loop
which is 5547 clock cycles, as we can see the second stage consumes
5328 clock cycles over 5547 clock cycles of the second stage which is
around 96% of the total cycles.The POP module consume small amount
of clock cycles,just 78 clock cycles.

The total latency of our system depends from the number of starting hubs
that passed as input in the FPGA because we need 5548 clock cycles in order
to process each starting hub.

The modules PUSH and POP referred as pipeline modules from the tool but
in fact they are not. The iteration latency of PUSH module loop is equal to 76

42 Chapter 4. System Implementation

and the interval of the loop is 74, so the loop accept new data after 74 clock
cycles and the loop ends after 76 cycles. On the other hand the POP module
have iteration latency 6 and interval 6, so the loop start to process new data
after the end of the previous loop.Thus we understand that anyone of the
stages have pipeline module.

In Chapter 5 referred the results from our implementation, the amount of re-
sources that each implementation consumes, the reasons for the implement
of 5 compute units .Also, we search for other platforms which will have bet-
ter results from the Alveo U50 Platform, we refer the specifications of each
platform and compare the platforms between them.

43

Chapter 5

Results

Chapter 5 is useful for the understanding of quality of our implementation
because referred the execution time results of our final implementation. For
the first implementation we do not have any execution time results because
the tool could not build it,so we refer the results for our final configuration.
In the current Chapter we compare the results of the final implementation
with one compute unit with the results of the final configuration with five
compute units, also we describe the quality of our parallelization.Further, we
compare the execution time of SPAdes with the corresponding execution time
of the final implementation with 5 compute units.Also ,referred the FPGA
resources that consumed by the implementations. We notice that the FPGA
with 5 compute units needs similar execution time as the SPAdes to execute
the same dataset.We can not implement more compute units to succeed better
performance because of the lack of storage space in the FPGA. For this reason
we search for other FPGAs which will have better performance, so we make
a projection in other FPGAs compared to ALVEO U50 specifications.

We decide to include in our projection three platforms which belongs to Xil-
inx because they are compatible with Vitis, so in future do not need to change
the code of the implementation. ALVEO U250[27],ALVEO U280[28] and Vir-
tex UltraScale+ HBMVU57P[29] are the platforms that we select to compare
with our platform. ALVEO U250 and ALVEO U280 accelerator cards in-
cluded in the same family with ALVEO U50 but they are improved models
than our model platform, Virtex is a different family from Alveo. The speci-
fications of each platform referred in following section.

44 Chapter 5. Results

5.1 Quality of Parallelism

We are obliged to check the quality of our parallelism, so in Table 5.1 shown
the comparison between the serial and the parallel implementation. Execu-
tion time is time needed by FPGA to execute the implemented algorithm for
all the starting hubs.In addition, we use the library <chrono> of C++ for the
calculation of the execution time, we add the necessary code in host in order
to calculate the execution time of FPGA.

Data sets
Size of Data

set(MB)

Execution
Time of 1
Compute
Unit(sec)

Execution
Time of 5
Compute
Units(sec)

Speedup

DRR015506 5 67.2 15.1 4.45x

DRR015482 9 112.6 25.3 4.46x

DRR015499 17 257.8 55.2 4.43x

DRR015480 24 330.5 74.6 4.43x

DRR015512 36 779.7 176.4 4.42x

TABLE 5.1: Execution Time for 1-5 Compute Units - Speedup

From the above Table we notice that we succeed a parallelization of the order
4.4x-4.45x which we expect it for different reasons.

1. Initially, in the input files we have add the flag -1 at the end of the
necessary data for each starting hub, so it is easy to separate them.

2. Each starting hub does not need the same amount of process, so we
can not separate the data in order of starting hubs. We have in an in-
put file the neighbours of each starting hub,so we count the number of
neighbours in total, then divide the total number of neighbour by five.
Thus, we create a threshold which used in order to separate the data
in balance and share the amount of process equally in the five compute
units.

The upper limit of speedup that we expect is 5x in an ideal system but in
real world we do not work on ideal systems, so the speedup of 4.4-4.45x
constitutes a significant quality of parallelism. At next section, presented the
allocation of FPGA available resources from the configurations.

5.2. Resources Consumption 45

5.2 Resources Consumption

In the current section we present the resources that consumed by our config-
uration for 1 and for 5 compute units from the FPGA, the information about
the resource consumption given from the Vivado log file. Vivado log file
produces from Vivado IDE after the building of our configuration in FPGA.
Table 5.2 contains the resources that utilized by the configuration with 1 com-
pute unit from the available resources of FPGA. Table 5.2 is useful because
we can understand the needs of our implementation in numbers.

Board
Specifications

Used Available Utilization(%)

LUTs 122.595 870.016 14.09

Registers 179.772 1.740.032 10.33

DSP Slices 118 5940 1.99

Block Ram 232 1344 17.3

HBM Memory
Capacity

1.5GB 8GB 18.75

Total Power 17.6W 75W 23.4

TABLE 5.2: Source Consumption for 1 Compute Unit.

Generally, most of the implementations suffers from lack of LUTs, Block
Ram, Storage Space and in Routing of the implementation. In our case the
LUTs and the Block Ram needs 14.1% and 17.3% of the available resources
respectively, so we have the ease to implement more compute units without
concern about the lack of those resources. The Routing of the configuration
is an unstable factor,we can not predict when the available cables of the plat-
form will end . Also, the Storage space is utilized around 19% for 1 compute
unit, thus we understand that we can implement maximum 4 more compute
units, in total 5 compute units. At next we present the resources consumption
for 5 compute units. The FPGA works on 23.4% concerning the Total Power.

The Table 5.3 have exactly the same structure with the Table 5.2 and it presents
the resources that the configuration consume from the platform for 5 com-
pute units.

46 Chapter 5. Results

Board
Specifications

Used Available Utilization(%)

LUTs 222.210 870.016 25.54

Registers 352.061 1.740.032 20.23

DSP Slices 574 5940 9.66

Block Ram 410 1344 30.54

HBM Memory
Capacity

7.7GB 8GB 96.25

Total Power 41.2 W 75W 55

TABLE 5.3: Source Consumption for 5 Compute Units.

About the Storage Space the configuration have allocate the 96.25% of the
available HBMs,so we reach the upper limit for our implementation. Each
compute unit needs 6 HBMs to store input data of each compute unit, the
HBMs not connected between them and in total the platform have 32 avail-
able HBMs, thus we allocate 30 HBMs over 32 HBMs in total. We should
emphasize that the HBMs do not fill completely with data for all of the data
sets.However, The largest data set of Table 3.1 fills 3 of 6 HBMs completely
with data and the rest of HBMs around 80%,so we understand that we can
not run larger data sets with this implementation in specific FPGA.

In Table 5.4 presented the percentage of resources utilization for each extra
compute units. The percentage that consume each extra compute units re-
sulting from the difference between percentage utilization of 5 compute units
with percentage utilization of 1 compute unit divided by 4.

Board
Specifications

Utilization of 1
Compute
Unit(%)

Utilization of 5
Compute
Units(%)

Utilization of
extra Compute

Unit
LUTs 14.1 25.5 2.85

Registers 10.33 20.23 2

DSP Slices 1.99 9.66 2

Block Ram 17.3 30.5 3.3

HBM Memory
Capacity

18.75 96.25 18.75

TABLE 5.4: Utilization of each extra Compute Unit

5.3. Final Implementation Results 47

From Table 5.2 and Table 5.3 we conclude that the main issue for our results
is the lack of Storage space.Also, the FPGA have available plenty of LUTs,
Registers, DSP slices and Block Ram. The FPGA works on 55% concern-
ing the Total Power for 5 compute units ,so we notice that the total power
doubled in order to 1 compute unit.

5.3 Final Implementation Results

In the current section we make two major comparisons for our thesis. The
first comparison concerns the execution time of our impementation with 5
compute units versus the execution time of SPAdes with 1 thread in use. In
the second comparison we compare the execution time of our configuration
again against the execution time of SPAdes but this time with 16 threads in
use. We calculate as execution time of SPAdes the time that SPAdes needs to
execute the part of Bulge Removing algortihm which we implement in the
FPGA. We have separate the comparisons in two subsections in order to be
undrestood the difference between them.

5.3.1 Execution Time of FPGA with 5 Compute Units - SPAdes

with 1 Thread without I/O Operation

We decide to present the execution time of SPAdes for 1 thread because we
wanted to include every calculation that we made in our thesis. For the cal-
culation of execution time in SPAdes we use the library of C++ <chrono>, we
place the necessary code in SPAdes for the specific calculation.

48 Chapter 5. Results

Data sets
Size of Data

set(MB)

Execution
Time of 5
Compute
Unit(sec)

Execution
Time of

SPAdes with
1

Thread(sec)

Speedup

DRR015506 5 15.1 24.6 1.63x

DRR015482 9 25.3 41.2 1.63x

DRR015499 17 58.2 96.4 1.66x

DRR015480 24 74.6 130.8 1.75x

DRR015512 36 176.4 305.6 1.74x

TABLE 5.5: Execution time of SPAdes with 1 thread versus 5
Compute Units implementation in FPGA - Speedup

As it seems in the Table above FPGA succeeds speedup in range 1.63x-1.75x
over the non-optimized SPAdes. Furthermore, we notice that as the data sets
get larger in size then the speedup increased. Also, the results would be
better in case we implement our configuration in a FPGA with more storage
space because we will implement more compute units. At next subsection
shown the results for fully optimized SPAdes against the FPGA results.

5.3.2 Execution Time of SPAdes with 16 Threads - FPGA with

5 Compute Units without I/O Operation

We run SPAdes with fully optimized options, it uses 16 threads to run the
algorithm where we implement in FPGA. We use the library of C++ named
<chrono> as in profiling in order to calculate the execution time of Bulge
Removing Algorithm in SPAdes with 16 threads.

5.4. Further Technology Abilities 49

Data sets
Size of Data

set(MB)

Execution
Time of 5
Compute
Unit(sec)

Execution
Time of

SPAdes with
16

Threads(sec)

Speedup

DRR015506 5 15.1 20.4 1.35x

DRR015482 9 25.3 28.8 1.14x

DRR015499 17 43.6 55.8 0.79x

DRR015480 24 74.6 64.3 0.86x

DRR015512 36 176.4 135.8 0.77x

TABLE 5.6: Execution time of SPAdes with 16 threads versus 5
Compute Units implementation in FPGA- Speedup

From Table 5.6 we notice that our implementation succeed a small speedup
in the first and second data set in execution time 1.35x and 1.14x respectively.
Also, we notice that in larger data sets our implementation have lower per-
formance than software implementation.We expect it because ALVEO U50
does not have the necessary amount of storage space for the creation of more
compute units, so we can not succeed better performance. Further, we can
not exploit completely the possibilities of the tool, for example we can not
make the priority queue fully pipeline. Priority queue is the main issue of
our implementation because we have many accesses in it and specific the
process of pushing data in it.

5.4 Further Technology Abilities

The main issue in our configuration is the lack of storage space because our
implementation utilize completely the available storage space.We focus on
Xilinx platforms specific in ALVEO family accelerator cards and Virtex family
accelerator cards because they have the appropriate specifications for our
necessities. We search in other companies too but at the end we choose to
refer only Xilinx platforms in my thesis. For the correct comparison between
the platforms we need to calculate the throughput of our implementation,
the function for the calculation of theoretical throughput referred at next:

Throughput = Input_data · Fmax

50 Chapter 5. Results

In our case Fmax=262 MHz and from Figure 4.1 we calculate that Input_data=320
bits =40 bytes,so

Throughput = 40bytes · 262MHz = 11GB/s

However, the real throughput of our system calculated by the next formula:

Throughput = Total_input_data/Total_kernel_latency

We calculate the practical throughput of our system for the largest available
data set at next:

Throughput = 7.5GB/176.4sec = 42.5MB/s

We notice that the theoretical throughput is much bigger than the practical
throughput because the priority queue reads data from HBM at slow pace.

5.4.1 Comparison of Specification of Platforms

In the current subsection we gather information about the new platforms that
we will compare with ours. We found 3 remarkable accelerator cards, so we
gather their specifications in three different Tables against the specifications
of Alveo U50.

5.4. Further Technology Abilities 51

Alveo U50 - Alveo U250

Board
Specifications

Alveo U50
Accelerator Card

Alveo U250
Accelerator Card

LUTs 872K 1.728K

Registers 1.743K 3.456K

DSP Slices 5.952 12.288

Block Ram 1.755 2.016

HBM Memory
Capacity

8GB -

HBM Total
Bandwidth

316 GB/s -

DDR Memory
capacity

- 64GB

DDR Total
Bandwidth

- 77GB/s

PCIe
Gen3x 16, 2 x

Gen4x 8, CCIX
Gen3 x16

Maximum Total
Power

75W 225W

TABLE 5.7: Alveo U50-U250 Specifications.

The main difference between them is the storage space. On the one hand,
Alveo U50 have 8 GB storage space, on the other hand Alveo U250 have 64
GB storage space. Thus, with 8 times more storage space we can implement
40 compute units and run larger data sets than Alveo U50. Also, we notice
that DDR Total bandwidth of Alveo U250 is 77 GB/s which is enough to
cover the needs of our implementation.

At next follows a Table that contains resources consumption for 40 compute
units.

52 Chapter 5. Results

Board
Specifications

Used Available Utilization(%)

LUTs 1.093.815 1.728.000 63.3

Registers 1.859.581 3.456.000 53.8

DSP Slices 4.564 12.288 37.14

Block Ram 1.950 2.016 96.7

TABLE 5.8: Source Consumption for 40 Compute Units.

The resources of Alveo U250 are enough for the implementation of 40 com-
pute units since none of the limits exceeded.

Also, in the next Table presented the execution time of accelerator card against
the execution time of implemented algorithm in SPAdes and the speedup
that succeed.

Data sets
Size of Data

set(MB)

Execution
Time of 40
Compute
Unit(sec)

Execution
Time of

SPAdes with
16

Threads(sec)

Speedup

DRR015506 5 2 20.4 10.2x

DRR015482 9 2.8 28.8 10.3x

DRR015499 17 6.5 43.6 6.7x

DRR015480 24 8.3 64.3 7.74x

DRR015512 36 19.7 135.8 6.88x

TABLE 5.9: Execution time of SPAdes with 16 threads versus 30
Compute Units implementation in FPGA- Speedup

For the calculation of speedup we divide execution time of FPGA with 1
thread over 39.5 because of the losses of non ideal systems. Alveo U250 ac-
celerator card succeed speedup in range [6.7x-10.3x] for all of the data sets
and it seems to be suitable for our needs. An unpredictable factor is whether
FPGA have the capability to route the total amount of compute units. Also,
we notice that have less speedup as the data set size get larger.

5.4. Further Technology Abilities 53

Alveo U50 - Alveo U280

Board
Specifications

Alveo U50
Accelerator Card

Alveo U280
Accelerator Card

LUTs 872K 1.079K

Registers 1.743K 2.607K

DSP Slices 5.952 9.024

Block Ram 1.755 2.016

HBM Memory
Capacity

8GB 8GB

HBM Total
Bandwidth

316 GB/s 460 GB/s

DDR Memory
capacity

- 32GB

DDR Total
Bandwidth

- 38GB/s

PCIe
Gen3x 16, 2 x

Gen4x 8, CCIX
Gen4x8 with CCIX

Maximum Total
Power

75W 225W

TABLE 5.10: Alveo U50-U280 Specifications.

Alveo U280 have the same storage space in HBMs like Alveo U50, it has
higher throughput than Alveo U50 because use improved model of HBMs
but both cover our needs,so we can implement 5 compute units in HBMs
too. In addition, Alveo U280 have extra 32 GB in DDR Memory which is 4
times more than 8 GB,so we can implement 20 more compute units in Alveo
U280 , 25 compute units in total.The bandwidth of DDR memory does not
consists problem.

In Table 5.11 presented resource consumption of 25 compute units.

54 Chapter 5. Results

Board
Specifications

Used Available Utilization(%)

LUTs 720.270 1.079.000 66.75

Registers 1.213.501 2.607.000 46.54

DSP Slices 2.854 9.024 31.62

Block Ram 1.290 2.016 64

TABLE 5.11: Source Consumption for 25 Compute Units.

As it seems from the above Table the current accelerator have the necessary
amount of available resources in order to implement 25 compute units.

In addition, compared the performance of FPGA against SPAdes and succeed
speedup in the last column.

Data sets
Size of Data

set(MB)

Execution
Time of 25
Compute
Unit(sec)

Execution
Time of

SPAdes with
16

Threads(sec)

Speedup

DRR015506 5 2.75 20.4 7.41x

DRR015482 9 4.6 28.8 6.26x

DRR015499 17 10.54 43.6 4.13x

DRR015480 24 13.51 64.3 4.76x

DRR015512 36 31.9 135.8 4.24x

TABLE 5.12: Execution time of SPAdes with 16 threads versus
25 Compute Units implementation in FPGA- Speedup

We work as in Alveo U50 for the calculation of theoretical speedup.Alveo
U280 accelerator card can improve significant the performance of our im-
plementation too.However the succeeded speedup is in range [4.24x-7.41x]
which is less than the succeeded speed up of Alveo U250. Also, it is unpre-
dictable if the FPGA have the necessary cables to route the compute units.

5.4. Further Technology Abilities 55

Alveo U50 - Virtex UltraScale+ HBM VU57P

Board
Specifications

Alveo U50
Accelerator Card

Virtex UltraScale+
HBM VU57P

Accelerator Card
LUTs 872K 1.304K

Registers 1.743K 2.607K

DSP Slices 5.952 9.024

Block Rams 1.755 2.016

HBM Memory
Capacity

8GB 16GB

HBM Total
Bandwidth

316 GB/s 316 GB/s

DDR Memory
capacity

- -

DDR Total
Bandwidth

- -

PCIe
Gen3x 16, 2x Gen4x

8, CCIX
Gen3x 16, Gen4x8,

CCIX

Maximum Total
Power

75W 75W

TABLE 5.13: Alveo U50-Virtex UltraScale+ HBM VU57P Speci-
fications.

Last but not least, we found an accelerator card which do not belongs to
Alveo family but in Virtex family and it is suitable for our needs. Both accel-
erator cards have the same bandwidth but the main difference between them
is the storage space because Virtex Ultrascale+ have 16 GB storage space in
HBMs and Alveo U50 have 8GB. Hence, the new accelerator card have the
possibility to support 10 compute units.

In the next Table checked the amount of resources that consumed by the
hardware implementation in FPGA.

56 Chapter 5. Results

Board
Specifications

Used Available Utilization(%)

LUTs 346.725 1.304.000 26.58

Registers 567.421 2.607.000 21.76

DSP Slices 1.144 9.024 12.67

Block Ram 630 2.016 31.25

TABLE 5.14: Source Consumption for 10 Compute Units.

The available resources are enough for the implementation of 10 compute
units.

Further, we present in the next Table the execution time of the current FPGA
against SPAdes and the succeed speedup.

Data sets
Size of Data

set(MB)

Execution
Time of 10
Compute
Unit(sec)

Execution
Time of

SPAdes with
16

Threads(sec)

Speedup

DRR015506 5 7.11 20.4 2.87x

DRR015482 9 11.91 28.8 2.42x

DRR015499 17 27.3 43.6 1.6x

DRR015480 24 34.98 64.3 1.84x

DRR015512 36 82.5 135.6 1.65x

TABLE 5.15: Execution time of SPAdes with 16 threads versus
10 Compute Units implementation in FPGA- Speedup

The current FPGA double speedup than Alveo U50 which is expected be-
cause implemented double amount of compute units. The range of speedup
is [1.65x-2.87x] which is the worst in order of the other two accelerator cards.

In conclusion, Alveo U250 accelerator card have the best performance among
the compared accelerator cards because have the most storage space, so it
has the capability to support the implementation of 40 compute units. It
succeeds speedup around 6.7x-10.3x for the specific data sets, also we notice
that as the size of data set increased the speedup decreased.Further, all of
the compared accelerator cards have theoretically better performance than

5.4. Further Technology Abilities 57

Alveo U50 because they have more storage space in order to implement more
compute units. In addition, the data set of 36 MB produce data that allocates
almost 8 GB, so Alveo U50 accelerator card have reach its upper limit in
storage space. Alveo U250 have 8 times more storage space than Alveo U50,
so it will be possible to execute data sets 8 time larger than 36 MB.

59

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Finally, De Bruijn graphs allocates big amount of storage space,so we need
more storage space in order to execute larger data sets and implement more
compute units.Also, due to lack of storage space we are able to execute small
data sets of human genomes. Further, results of Alveo U50 accelerator card
present an insignificant speedup for the small size data sets and worse per-
formance than SPAdes.13.0 in larger data sets .We conclude that there are
several reasons that make our configuration slower than SPAdes.13.0.These
reasons are presented at next:

1. The priority queue have 7000 elements, so the tool can not partition
the priority queue into shift registers in order to make it pipeline. The
upper limit of tool in array partitioning is 1024 elements.

2. Also,each element of priority queue includes 4 unsigned integer, so we
need to make 4 comparison in order to determine which data have
higher priority. The specific factor complicates our configuration and
the tool can not partition even array of 1024 elements.

3. The lack of storage space is a factor that limits the capabilities of our
configuration because we can not implement more than 5 compute units.

In addition, we conclude that the process of pushing neighbours in prior-
ity queue consumes the vast majority of clock cycles because there are data
dependencies between them and they can not pushed in parallel.In conclu-
sion,fully optimized SPAdes.13.0 do not have much better execution time
than our configuration because the data sets have small size, so SPAdes.13.0
can not exploit all of its capabilities. We believe that in much larger data sets

60 Chapter 6. Conclusions and Future Work

SPAdes.13.0 will have far better performance than our configuration in Alveo
U50 accelerator card.

Furthermore, we succeed to find three accelerator cards of Xilinx which have
more LUTs, Registers,Block Rams and DSPs than Alveo U50.At next we present
advantages and disadvantages of each accelerator cards against the others

• Alveo U250 dominates against the other accelerator cards in resources
and in total storage space and is capable to implement 40 compute units
in order to succeed the maximum possible speedup .It has a drawback
which is the low bandwidth of DDR Memory against HBMs but it is
not affects our implementation.

• Alveo U280 is an accelerator card with more resources than Alveo U50
and more storage space from it. Also, it has both HBM and DDR Mem-
ory, so we can exploit them in order to implement 25 compute units and
succeed a significant speedup.

• At last Virtex UltraScale+ have more resources from Alveo U50 and
double storage space. It is clearly that Virtex UltraScale+ can be used in
order to implement double compute units and double the performance
of the implementation.

Also,we conclude that the modern hardware design tools such as Vitis Uni-
fied and Vivado HLS eases the hardware designers because offers visualiza-
tion of the hardware design and suggestions about the improvement of the
hardware design. However, the hardware designers are responsible for the
proper changes in the inner code in order to improve the hardware imple-
mentation.

6.2 Future Work

Our implementation have room for improvements because it allocates almost
14% of the total resources of FPGA and for each extra compute units it allo-
cates 3% more resources.At next we refer some thoughts about future work
in my configuration in order to optimize it.

• Firstly, we shown in Chapter 5 that there are accelerator cards which
have better specifications than Alveo U50 mainly more storage space.
Hence, in case we have available one of these FPGAs or some other in
future we can implement our configuration in it for better performance.

6.2. Future Work 61

• Further, in article [30] Aggelos Ioannou and Manolis Katevenis pre-
senting a different implementation of priority queue in order to con-
vert it into fully-pipeline binary heap.They convert the pushing process
of data in priority queue, they push them from root of priority queue
,so there are not dependencies in pushing data.Also, they create many
mini heaps that connected in order to not implement a general priority
queue but many small priority queues. In future is possible to convert
our implementation like this.

• Xilinx provides a feature named PCIe Peer-to-Peer (P2P) [31] commu-
nication is a PCIe feature which enables two PCIe devices to directly
transfer data between each other without using host RAM as a tempo-
rary storage. The latest version of Alveo PCIe platforms support P2P
feature via PCIe Resizeable BAR Capability.Data can be directly trans-
ferred between the DDR/HBM of one Alveo PCIe device and DDR/HBM
of a second Alveo PCIe device,A thirdparty peer device like NVMe can
directly read/write data from/to DDR/HBM of Alveo PCIe device In
Chapter 5 presented accelerator cards that have compatible PCIe be-
tween them, so we can connect them by the specific feature.

• Also, we can design a new implementation in order to exploit the through-
put of the HBM. We notice that the realistic throughput of HBM is 42
MB/s because of the priority queue. A suggestion for better exploita-
tion of throughput is to implement the priority queue in the main mem-
ory of FPGA.

63

Appendix A

Genome Assembly

A.1 State of the Art

The necessity of the process of Genome Assembly created in 1953 when James
Watson and Francis Crick discover the structure of DNA. Until now there are
three different generations of technology for Genome Assembly.

The first generation of technology [32] created by Frederick Sanger in 1977
and it was the main technology for Genome Assembly for a long time. Unfor-
tunately, the fact that the Sanger’s method wasn’t capable to produce results
in reasonable amount of time for big genomes make the necessity for a new
genome sequence method. For this reason the created the second and third
generation of technology which are in the category of Next Generation Se-
quence(NGS) and the priority of this category is to treat the long genomes.

The year 2005 was crucial because companies such Illumina with Solexa se-
quencing , Roche with 454 sequencing , Applied Biosystem with Solid se-
quencing start developing the second generation technology [17] [32] . The
sequencing methods that companies create break-up the genome into frag-
ments and create files with small reads (30-400 base pairs) but with different
way each method. In the 2nd generation technology the genome assemblers
reads parallel many small length sequences from a file which have produced
from a sequencer, the assembler process them and compose them until read
all the given genome. With this way it is faster to read the long genome and
produce a very good result after the composition of the small sequences than
the Sanger’s method . The problem with the 2nd generation technology is
that needs too many computation resources to do the parallel read of the
small sequences and the main problem is that with the small length reads is
very difficult to locate repetives in the genome so it makes gaps in the final
result.

64 Appendix A. Genome Assembly

In year 2011 two companies Oxford Nanopore Technologies and Pacific Bio-
sciences start to evolve methods sequence the DNA into reads with length
>5000 base pairs named long reads and start the era of third generation
technology[17][32] in sequencing which is an extension of the 2nd generation
, the main goal of the 3rd generation is to solve the problem of repetives. This
can be achieved because the reads of the longer sequences (>5000 base pairs)
than the previous generation(30-400 base pairs) have the ability to locate eas-
ier and faster the repetives that there are in the genome. Furthermore the
specific generation needs smaller amount of computational resources than
the previous generation. The disadvantage of the 3rd generation technol-
ogy is the reads that produced from the sequencing method have large read
error rate about 10-15% beside the read error rate of the second generation
technology is 0.5% and it is the next problem that need to be solved.

A.2 Next Generation Assembly Methods

In the next generation sequencing one of the most important problems is to
determine the genome assembler that will use to do the genome assembly.
The genome assembler is a software tool that receive as input a file which
consists of sequences from a genome and try to detect overlaps between the
sequences as a result to construct contigs and then scaffolds. The sequences
that read every time the genome assembler from the file stored with a spe-
cific method in a data structure so be possible to process them and create the
contigs, nowadays the dominant data structure for the storage of the reads
are the graphs. Actually, almost all of the current genome assemblers store
them into graphs. There are three common genome assembly methods , the
first one is De Bruijn Graph Assembly based on De Bruijn Graphs, the sec-
ond one is Overlap Layout Consensus Assembly based on Overlap Graphs
and the third one is Overlap Layout Consensus Assembly based on String
Graphs. The aim of the Genome Assembler is to give as a result Contigs
and then Scaffolds.

A.3 Contigs – Scaffolds

A Contig[33] from the word "contiguous" is a series of overlapping DNA
sequences used to make a physical map that reconstructs the original DNA
sequence of a chromosome or a region of a chromosome. A contig can also
refer to one of the DNA sequences used in making such a map.

A.4. Overlap Layout Consensus Assembly (OLC) – Overlap Graphs 65

A Scaffold[34] is a portion of the genome sequence, composed from contigs
and gaps. Gaps occur where reads from the two sequenced ends of at least
one fragment overlap with other reads in two different contigs. Since the
lengths of the fragments are roughly known, the number of bases between
contigs can be estimated. The goal of whole genome assembly is to represent
each DNA sequence in one scaffold but it is not always possible and depend-
ing on how completely the genome can be reconstructed, or assembled, from
the available reads.

Contigs are formed by merging k-mers appearing adjacently in reads halt-
ing at k-mers from repeat boundaries. This has the cost of requiring highly
accurate reads, and it initially discards some of the ability for reads to resolve
repeats longer than k bases. It has the benefit of not requiring the storage of
pairwise overlaps and having a graph structure representative of the repeat
structure of the genome. For these reasons,de Bruijn graph is widely used in
sequence assembly tools.

A.4 Overlap Layout Consensus Assembly (OLC) –

Overlap Graphs

The Overlap Layout Consensus [17][35] is an assembly algorithm that de-
veloped by Staden in 1980, the algorithm have three steps which described
in the following paragraphs.

First step is to detect overlaps(O) between the reads and the second step is
to layout(L) the reads and the overlaps on a overlap graph which is directed
graph. The vertexes of the Overlap Graph are the reads from the file and the
edges define the length of overlapping. For successful overlapping need to
compare the suffix of source with the prefix of sink and have match of at least
3 characters. Also the overlap graphs can contain cycles which create because
the DNA string of bacterial and mitochondrial is circular but the most com-
mon reason is because of the repetitive DNA across the reads.The Figure A.1
presents an example of cycle overlap graph and the way of construction:

66 Appendix A. Genome Assembly

FIGURE A.1: OLC Overlap Graph.

Reference: Computational and Systems Biology Lecture of David Gifford in
Biology Department of MIT”

As we can see in the graph is cycle, in the nodes there are the reads and on
the edges the length of overlapping.

After the detect and the construct of the graph from the overlaps the third
step of the algorithm is to compose the contigs that formed by iteratively
merging overlapping reads until a read determined to be at the boundary
of a repeat so it is unresolved repeat and stop the compose of the contig.
Repeats which are shorter than the minimally expected read overlap are often
resolved, implying that genome resolution increases with read length. Also,
OLC algorithm search for Hamiltonian paths and some genome assemblers
with OLC algorithm assembly are AMOS, Arachne and Celera .

A.5 Overlap Layout Consensus Assembly-String

Graphs

String Graph presented in the paper of EG. Ehrlich, S. Even, and Robert
Tarjan in 1976, the title of the paper is "Intersection graphs of curves in the
plane". The Overlap Layout Consensus Assembly (OLC) [17][35] as said
developed by Staden in 1980 and the algorithm remains the same as said in
the previous paragraph, detect overlaps(O) between the reads and layout(L)
the reads and the overlaps on a overlap graph which is directed graph. The
vertexes of the Overlap Graph are the reads from the file and the edges define
the length of overlapping. For successful overlapping need to compare the
suffix of source with the prefix of sink and have match of at least 3 characters.
Also the overlap graphs can contain cycles which create because the DNA
string of bacterial and mitochondrial is circular but the most common reason
is because of the repetitive DNA across the reads.

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf

A.6. Algorithm Comparison 67

The difference between the OLC based on Overlap Graph and the OLC
based on String graph is that after the construction of the overlap graph the
graph simplified. After the simplifications from the Overlap Graph derived
the String Graph. Firstly, removed duplicate reads from the graph (distinct
elements of reads set with the same or reverse complemented sequence) and
contained reads (elements in reads set that are a substring of some element in
reads set or their reverse complements), removing edges that skip one or two
node.After the end of simplification arise the String Graph with some non-
branching stretches which are the contigs but there are branching stretches
that are unresolvable repeats. Also check the subgraphs for repeats and se-
quencing errors and determine which subgraph is not a contig. Furthermore
the algorithm use Hamiltonian approach to compose contigs from graph,
Genome Assemblers that use OLC based on String graphs are SGA, FAL-
CON, Canu.

A.6 Algorithm Comparison

The three algorithms that described above are very useful for Genome As-
sembly and used almost in all Genome Assemblers to represent their reads
and store them. All of the algorithms have advantages and disadvantages
and there is not any best algorithm but we can choose the better algorithm
for our task.

Between OLC algorithms the String Graph need more time to construct be-
cause of the simplifications but need less memory because remove unneces-
sary information , also in the String Graph is easier to compose the contigs
because of the simplification. The repeat detection is easier in String Graph
but is equally difficult to solve them.

One of the advantages of OLC algorithms against De Bruijn Graphs
(DBG) Algorithm is that use less memory because DBG decompose every
read into r-k+1 nodes(r read length, k consecutive one read length from as-
sembler) but the OLC need one node for each read. On the other hand the
DBG need less time by far to compose the contigs than the OLC because the
OLC use Hamiltonian approach which have larger time complexity than the
DBG which use Eulerian approach. An other advantage for OLC is more
suitable from DBG in long reads and in general in large genomes because of
the k value the DBG need too much memory to store large genomes. Also
the long reads have big read error rate which can controlled easier from the

68 Appendix A. Genome Assembly

OLC. The DBG are very good in short reads and in short genomes because
have the ability to change the value of k and get better results.

69

Appendix B

SPAdes.3.13.0

B.1 Forward-Backward Reads Data set

The data sets split in two categories in the matter of the form of reads. These
two categories are Forward Reads Data set and Backward Reads Data set,
the Backward Reads Data set also named as Reverse Reads Data set.

The Forward Reads are the reads that start from the start point of the DNA
to the endpoint (left to right).

The Reverse Reads are the opposite reads from the Forward Reads they start
from the endpoint of the DNA to the start point of the DNA (right to left).

For that reason there are data sets with the same name but ends with ‘1’ or
‘2’ , the data sets that ends with ‘1’ have forward reads and the data sets that
ends with‘2’ have backward reads. The single-read library need only the the
Forward Reads Data set but the paired-end library and mate-pair library
need both of the data sets Forward and Backward Reads Data set.

B.2 SPAdes.3.13.0 Libraries

The SPAdes.3.13.0 [13] use generally three different libraries for genome as-
sembly. These three libraries are:

1) Single-end Library

2) Paired-end Library

3) Mate Paired Library

At Single-end Library the assembler need a single end data set as an in-
put.The assembler use the data set to construct the graph and finally get the

70 Appendix B. SPAdes.3.13.0

contigs from the graph. The advantage of the Single-end Library is that fin-
ish the process faster than the other two libraries but the result is not as good
as the other two libraries result.

At Paired-end Library the assembler need 2 data sets, one with Forward
Reads and one with Backward Reads. Again the assembler construct the
graph but this time use two data sets and it is easier to detect repetitive re-
gions and complete gaps in the contigs. So the Paired-end Library have bet-
ter results than the Single-end Library .

The third library that use the assembler is the Mate Paired Library which
need 2 data sets too. One with Forward Reads and one data set with Back-
ward Reads but for this library the length of each sequence read is longer
than the sequence read length of the Paired-end Library data sets. The pro-
cess remains the same as the previous libraries but the difference between the
length affects in the result. The length of the sequence reads of the Paired-
end data sets make the assembler to produce contigs with less gaps. On the
other hand the length of the Mate-Paired data sets make the assembler to
locate easier repetitive regions.

For the purpose of the thesis I use the Paired-end Library for genome assem-
bly.

B.3 Graph Simplification

Graph simplification [4] is a very important part of the SPAdes because it
is the final step before the assembler produce the contigs. Also , consume
much time from the process almost 35% of the total time. A term that often
used is h-path. The terminology for the term h-path is: a vertex v in a graph
G is called a hub if indegree(v) 6= 1 or outdegree(v) 6= 1 . A directed path in
G is called a hub-path if it is starting and ending vertices are hubs and it is
intermediate vertices are not hubs. The criteria for the assembler to detect an
error are the topology,the length and the coverage of the path. SPAdes split
the graph simplification into 4 processes,the processes are tip removal,bulge
corremoval, chimeric h-path removal and isolated h-paths removal. Some
details about them in next:

B.3. Graph Simplification 71

FIGURE B.1: Simplification Cases.

SPAdes: A New Genome Assembly Algorithm and Its Applications to
Single-Cell Sequencing

•Bulge Corremoval

Miscalled bases and indels in the middle of a read typically lead to bulges.
Bulges also arise from small variations between repeats in the genome. The
assembler detect the bulges and remove them, a bulge as it seems in Figure
B.1 A is the path P which does not contain hubs within it, though Q does, so
the P path is a bulge and removed from the graph.

•Tip Removal

Errors near the ends of reads may lead to tips, short, stray h-paths, with one
end having total degree 1, Figure B.1 B present a tip. The h-path P starts
or ends at a vertex of total degree 1 (re-presented as solid), and there is an
alternative h-path Q so the P h-path is a tip and removed from the graph.

•Chimeric h-path Removal

Chimeric reads may lead to erroneous connections in the graph, called chimeric
h-paths . Chimeric h-paths may also arise from identical errors near the start
of one read and near the end of another. In Figure B.1 C there are 2 alterna-
tive h-paths Q1 and Q2 both for the entrance and the exit to P so P h-path is
a chimeric h-path and removed from the graph.

•Isolated h-path

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519/

72 Appendix B. SPAdes.3.13.0

Input data often contains low quality reads that don’t map to the genome
and which may result in short, low coverage, isolated h-paths. In Figure
B.1 D, P starts with a vertex of out-degree one and ends with a vertex of in-
degree one and has no alternative h-path so P removed from the graph as an
isolated h-path.

B.4 File Formats

• FastA Format

FastA format is a text-based format for representing nucleotide sequences
, in which base pairs are represented using single-letter codes. A sequence
in FastA format begins with a single-line description, followed by lines of
sequence data. The description line is distinguished from the sequence data
by a greater-than (">") symbol in the first column. The output files of the
SPAdes that have the scaffolds and the contigs are in FastA format.

•FastQ Format

The SPAdes need data sets which are in fastq.gz format to run and sequence
the genome. In general the FastQ file is a text file which contains clusters that
produced from Illumina , Ion Torrent, PacBio, Oxford Nanopore sequencing
tools and they consist of 4 lines:

1. A sequence identifier(label) with information about the sequencing run
and the cluster.

2. The sequence (the base calls: A, C, T, G and N).

3. A separator, which is simply a plus (+) sign.

4. The base call quality scores. These are Phred +33 encoded, using ASCII
characters to represent the numerical quality scores.

The ASCII character ‘!’ is the worst quality score and the base call is incorrect
for sure as the Probability Error is 1. The P-error is reducing as the ASCII
code increasing.

73

References

[1] Tanja van Aardenne-Ehrenfests, Nicolaas Govert de Bruijn. “Circuits
and trees in oriented linear graphs”. In: Simon Stevin 28 (May 1951),
pp. 203–217.

[2] Sharat Chandra Varma, Paul Kolin, Madan Balakrishnan, Dominique
Lavenier. “FAssem : FPGA based Acceleration of De Novo Genome As-
sembly”. In: 21st Annual International IEEE Symposium on FCCM (Apr.
2013), pp. 1–5.

[3] Carl Poirier, Benoit Gosselin, Paul Fortier. “DNA Assembly with De
Bruijn Graphs Using an FPGA Platform”. In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics (May 2018), pp. 1003–1009.

[4] Alexey Gurevich, Alexander Kulikov, Sergey Nikolenko, Son Kim Pham.
“SPAdes: A New Genome Assembly Algorithm and Its Applications to
Single-Cell Sequencing”. In: Journal of computational biology: a journal of
computational molecular cell biology (Apr. 2012), pp. 1–24.

[5] “European Nucleotide Archive (ENA)”. In: (). URL: https://www.ebi.
ac.uk/ena/browser/home.

[6] “Alveo U50 datasheet”. In: (). URL: https://www.xilinx.com/products/
boards-and-kits/alveo/u50.html#overview.

[7] “Center for Algorithmic Biotechnology”. In: (). URL: https://cab.
spbu.ru/.

[8] Phillip Compeau. “How to apply de Bruijn graphs to genome assem-
bly”. In: Nature Biotechnology (Nov. 2011), pp. 987–991.

[9] “Open Notes of Ben Langmead for de Bruijn Graphs”. In: Langmead
Lab of Johns Hopkins University (). URL: https://www.cs.jhu.edu/
~langmea/resources/lecture_notes/assembly_dbg.pdf.

[10] Ashish Kumar. “De-Bruijn Sequence and Application in Graph the-
ory”. In: International Journals of Sciences and High Technologies (June
2016), pp. 4–17.

[11] “SOAPdenovo assembler manual”. In: (). URL: https://www.animalgenome.
org/bioinfo/resources/manuals/SOAP.html.

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#overview
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#overview
https://cab.spbu.ru/
https://cab.spbu.ru/
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_dbg.pdf
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_dbg.pdf
https://www.animalgenome.org/bioinfo/resources/manuals/SOAP.html
https://www.animalgenome.org/bioinfo/resources/manuals/SOAP.html

74 References

[12] “Velvet assembler manual”. In: (). URL: https://www.ebi.ac.uk/
~zerbino/velvet/.

[13] “SPAdes assembler manual”. In: (). URL: https://cab.spbu.ru/files/
release3.13.0/manual.html.

[14] “ALLPATHS assembler manual”. In: (). URL: https://software.broadinstitute.
org/allpaths-lg/blog/.

[15] Betsy Foxman. “Molecular Tools and Infectious Disease Epidemiology”.
In: Chapter 5 A Primer of Molecular Biology 5.10.2 Gene Assembly (Jan.
2011).

[16] Wenyu Zhang, Jiajia Chen, Yang Yang, Yifei Tang, Jing Shang, Bairong
Shen. “A Practical Comparison of De Novo Genome Assembly Soft-
ware Tools for Next-Generation Sequencing Technologies”. In: Article
in PLoS ONE 6 (Mar. 2011).

[17] Xingyu Liao, Min Li, You Zou, Fang Xiang Wu, Yi Pan, Jianxin Wang.
“Current challenges and solutions of de novo assembly”. In: Quantita-
tive Biology, Higher Education Press and Springer-Verlag GmbH Germany,
part of Springer Nature (June 2019), pp. 90–109.

[18] Rayan Chikhi, Guillaume Rizk. “Space-efficient and exact de Bruijn
graph representation based on a Bloom filter”. In: Algorithms for Molec-
ular Biology (Sept. 2013), 1–12.

[19] “ABySS genome assembler”. In: (). URL: https : / / www . bcgsc . ca /
resources/software/abyss.

[20] Sébastien Boisvert, François Laviolette, Jacques Corbeil. “Ray: Simul-
taneous assembly of reads from a mix of high-throughput sequencing
technologies”. In: Computational Biology (July 2010), 1519–1533.

[21] Haixiang Shi, Bertil Schmidt, Weiguo Liu, Wolfgang Müller-Wittig. “A
Parallel Algorithm for Error Correction in High-Throughput Short-Read
Data on CUDA-Enabled Graphics Hardware”. In: Journal of Computa-
tional Biology 17.4 (June 2010), pp. 603–615.

[22] Anand Ramachandran, Yun Heo, Wen-mei Hwu, Jian Ma, Deming Chen.
“FPGA Accelerated DNA Error Correction”. In: Design, Automation and
Test in Europe Conference and Exhibition (Aug. 2015), pp. 1371–1376.

[23] Yun Heo, Xiao-Long Wu, Deming Chen, Jian Ma, Wen-Mei Hwu. “BLESS:
Bloom filter-based error correction solution for high-throughput se-
quencing reads”. In: Oxford University Press (OUP): Bioinformatics, (May
2014), pp. 1354–1362.

[24] Burton Bloom. “Space/time trade-offs in hash coding with allowable
errors”. In: Community ACM (July 1970), pp. 422–426.

https://www.ebi.ac.uk/~zerbino/velvet/
https://www.ebi.ac.uk/~zerbino/velvet/
https://cab.spbu.ru/files/release3.13.0/manual.html
https://cab.spbu.ru/files/release3.13.0/manual.html
https://software.broadinstitute.org/allpaths-lg/blog/
https://software.broadinstitute.org/allpaths-lg/blog/
https://www.bcgsc.ca/resources/software/abyss
https://www.bcgsc.ca/resources/software/abyss

References 75

[25] “Vitis Unified Software Platform”. In: (). URL: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2019_2/ug1400-

vitis-embedded.pdf.
[26] “Vitis HLS -Vivado IDE user guide”. In: (). URL: https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2018_3/ug902-

vivado-high-level-synthesis.pdf.
[27] “Alveo U250 datasheet”. In: (). URL: https://www.xilinx.com/support/

documentation/data_sheets/ds962-u200-u250.pdf.
[28] “Alveo U280 datasheet”. In: (). URL: https://www.xilinx.com/support/

documentation/data_sheets/ds963-u280.pdf.
[29] “Virtex UltraScale+ HBM datasheet”. In: (). URL: https://www.xilinx.

com / support / documentation / data _ sheets / ds890 - ultrascale -

overview.pdf.
[30] Aggelos Ioannou, Manolis Katevenis. “Pipelined Heap (Priority Queue)

Management for Advanced Scheduling in High-Speed Networks”. In:
IEEE/ACM Transactions on Networking (ToN) (July 2007), pp. 1–6.

[31] “PCIe Peer-to-Peer (P2P)”. In: (). URL: https://xilinx.github.io/
XRT/master/html/p2p.html.

[32] Mehdi Kchouk, Jean François Gibrat, Mourad Elloumi. “Generations of
Sequencing Technologies: From First to Next Generation”. In: Biology
and Medicine (Aligarh) 9 (Mar. 2017), pp. 1–8.

[33] “Term of Contig”. In: National Human Genome Research Institute (). URL:
https://www.genome.gov/genetics-glossary/Contig.

[34] “Term of Scaffold”. In: Joint Genome Institute (). URL: https://mycocosm.
jgi.doe.gov/help/scaffolds.jsf.

[35] “Computational and Systems Biology Lecture of David Gifford”. In:
Biology Department of MIT (). URL: https://ocw.mit.edu/courses/
biology / 7 - 91j - foundations - of - computational - and - systems -

biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://xilinx.github.io/XRT/master/html/p2p.html
https://xilinx.github.io/XRT/master/html/p2p.html
https://www.genome.gov/genetics-glossary/Contig
https://mycocosm.jgi.doe.gov/help/scaffolds.jsf
https://mycocosm.jgi.doe.gov/help/scaffolds.jsf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf

	Abstract
	Abstractenglishgreek Περίληψη
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Thesis Contributions
	Thesis Outline

	Theoretical Background
	De Bruijn Graph
	Multisized De Bruijn Graph

	Genome Assembly
	Spades.3.13.0
	Related work
	Vitis Unified Software Platform
	Vitis High Level Synthesis (HLS)
	The FPGA Perspective

	Study and Design
	Bulge Removing
	Data Sets Selection
	Profiling
	KRONOS Server Specs
	Profiling Results

	Profiling Results Conclusion

	System Implementation
	Software Implementation
	Automatic Hardware Implementation
	Host Configuration
	Kernel Configuration

	Manual Improvements on Automatic Hardware Implementation
	Kernel Reconfiguration
	Look-up-table
	Priority Queue

	Final Hardware Implementation
	Host Configuration
	Kernel Configuration
	POP_CHECK
	Add_Neighbours_To_Queue

	Host Reconfiguration-Parallelization
	Time Latency Issues

	Results
	Quality of Parallelism
	Resources Consumption
	Final Implementation Results
	Execution Time of FPGA with 5 Compute Units - SPAdes with 1 Thread without I/O Operation
	Execution Time of SPAdes with 16 Threads - FPGA with 5 Compute Units without I/O Operation

	Further Technology Abilities
	Comparison of Specification of Platforms
	Alveo U50 - Alveo U250
	Alveo U50 - Alveo U280
	Alveo U50 - Virtex UltraScale+ HBM VU57P

	Conclusions and Future Work
	Conclusions
	Future Work

	Genome Assembly
	State of the Art
	Next Generation Assembly Methods
	Contigs – Scaffolds
	Overlap Layout Consensus Assembly (OLC) – Overlap Graphs
	Overlap Layout Consensus Assembly-String Graphs
	Algorithm Comparison

	SPAdes.3.13.0
	Forward-Backward Reads Data set
	SPAdes.3.13.0 Libraries
	Graph Simplification
	File Formats

	References

