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Abstract 

Research has demonstrated that ordinal approaches to the analysis of subjective values, such as 

emotions, lead to more reliable predictive models. Preference learning is the machine learning 

subfield, which deals with datasets including ordinal relations. Preference learning algorithms 

have proven to be powerful in creating efficient computational models from ordinal data. The 

Python Preference Learning Toolbox facilitates ordinal data processing and preference 

learning. The software is open source, available to a wide range of researchers and includes 

popular algorithms and data processing methods. At first, the toolbox is tested with synthetic 

datasets in order to identify possible malfunctions during the stages of data processing and 

modelling. An optimization of the current features, along with the addition of evaluation metrics 

and preference learning techniques are performed in order to augment the functionality of the 

software. A user survey follows, in order to test the usability of the toolbox. The results confirm 

that PyPLT is simple, easy to use, for both novice and experienced researchers. Furthermore, it 

is capable of producing reliable predictive models provided the necessary data processing and 

algorithm parameterization which is offered by the toolbox.    
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1  

Introduction 

1.1 Problem formulation 

The field concerning the study and development of systems capable of processing human 

opinions and emotions is known as Emotional Artificial Intelligence or Affective computing. 

An important task in affective computing is the assignment of labels to human assessments of 

emotions deriving from records of emotional events. The diversity of the brain operations, along 

with the limited ability to express preferences directly in terms of a specific value function, [4] 

complicate the reproduction of human assessments by an application.  

 

In the early stages of affective computing, two ways of conceiving emotions dominated: 

categorical and numerical. The former represented language and emotion theories, while the 

latter reflected dimensional theories. In terms of measurement, research in affective computing 

initially focused in nominal and interval description. In nominal measurement, a sample is 

associated with an emotion class or label [5]. In realistic conditions though, it is not always 

possible to assign a single category to an emotion [6]. Interval description applies to attributes 

of emotion and is useful for change tracking within a record [7]. However, in cases of 

substantial changes, there is a lack of reliability. Also, each individual, values differently the 

change of an emotion over a period of time.   

 



 

Chaviara Antonia- Chrysovalanto 9 

Multiple disciplines, such as philosophy, psychology, neuroscience and artificial intelligence, 

supported through theoretical arguments and empirical evidence the exploration of other 

approaches to emotion, in order to explore the grounds between nominal and interval. Ordinal 

annotation and analysis of emotions, is an approach lying somewhere in between. Processing 

ordinal data as ranks and translating the affect modelling task as a preference learning task 

respects the nature of the data. It also yields more reliable, valid and general predictive models. 

Preference learning algorithms have shown an advantage in creating computational models 

from ordinal data [2]. 

 

Despite the numerous case studies in literature that favour ordinal labels for representing and 

annotating emotion there are still some objections against the use of ordinal labels. A common 

statement is the lack of data analysis tools and statistical methods available for the processing 

of ordinal data. Another concern is whether the intensity of an emotion can be captured through 

relative descriptions, as ranking procedures require at least one reference point. 

 

The existing applications available for data processing are limited and usually focus on a single 

preference learning method. Furthermore, they are often outdated due to the rise of modern 

deep learning algorithms in combination with the limited audience of researchers. Also, most 

applications are addressed to researchers and offer only a command-line interface, making their 

utilization difficult to users without prior experience. Most of them are not designed to handle 

datasets with ordinal relations [2]. 

 

Preference learning toolbox (PLT) was introduced for the first time in 2015, at the Institute of 

Digital Games at the University of Malta. PLT is an open-source tool, available under the GNU 

Lesser General Public License and allows the addition of new algorithms and methods at all 

phases of preference learning. In 2019, a later version was developed using python, while the 

initial release had been in java. The toolbox includes a set of popular data pre-processing, 

feature selection, preference learning methods and model training. PLT is easily accessible by 

everyone without major experience with preference algorithms, as it includes a graphical user 

interface along with detailed and comprehensive documentation [1]. 
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Users have reported some errors while working with PLT. The graphical user interface freezes 

during the loading of big datasets and as a result there is no information on the progress of the 

loading procedure. Also, a memory error appears in cases of preference modeling with large 

datasets. They also noticed unreasonably high accuracies, when evaluating models deriving 

from some preference learning algorithms of the tool.  

 

The current thesis aims to update the toolbox framework by investigating the errors noted by 

the users and extend it with the addition of further evaluation metrics and preference learning 

algorithms.    

 

1.2 Thesis Research Questions 

An important question is whether the conventional preference learning algorithms of the tool 

offer sufficient solutions by performing computations, or we should investigate algorithms of 

other approaches. Another subject is whether it is possible to assess the performance of the 

derived computational models by combining multiple means of evaluation, instead of using 

only the accuracy metric. Accuracy is measured as the difference between the data observations 

and the objective defined reference values or ground truth values. Another important way of 

measuring the performance of the annotator is precision, which estimates the degree of 

repeatability of the data observations [1]. In order to produce more valid models, a specific 

evaluation mean or a combination of metrics could be taken into account, depending on the 

nature of the data and the use of the inferred model.  Isolation and integrity are important factors, 

when processing human data. Can the tool offer the ability to isolate and process multiple 

participant’s data without the risk of mixing them up? These are some of the questions that the 

current thesis investigates and addresses.  

 

1.3 Approach 

The tool was tested with artificially created datasets of various sizes, in order to generate and 

investigate possible existing errors during dataset loading, pre-processing or during the training 
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and evaluation of the inferred model. In addition, it has been updated with a new algorithm: 

Neuroevolution. It is a genetic algorithm, different from the conventional preference learning 

algorithms, which trains multiple models and selects out the best by using evolutionary 

strategies.  The core of the algorithm is based on the initial version of preference learning 

toolbox, which was implemented in java. Also, a few performance metrics have been added in 

order to assess more efficiently the performance of the model during training and testing. 

Another significant feature is the addition of an extra column in the dataset, containing a unique 

number for every group of data, which offers the ability to perform several processing steps in 

parts of the data, without affecting the whole dataset.  

1.4 Contributions 

The objective of the PLT development is to ease and widen the access of ordinal data processing 

through preference learning algorithms. People with different backgrounds, from novice users 

to machine learning researchers and developers, have the ability to experiment with multiple 

ordinal datasets and create accurate predictive models. As it is an open source tool, new features 

and methods may be added by everyone. PLT contributes not only in label processing and 

preference handling, but in the wider section of human computer interaction and emotional 

retrieval. Rank-based emotion retrieval can be performed from image, video, speech or 

physiology based applications for health, educational or entertaining purposes [3]. 

1.5 Summary of Thesis 

In the first chapter, an introduction to the thesis is performed containing the problem 

formulation, research questions, thesis approach and summary.  

The second chapter includes the theoretical background related to the PLT. Important notions 

are described, in the fields of Artificial Intelligence, Machine, Supervised and Preference 

Learning. Also, it contains necessary information about Artificial Neural Networks, 

optimization algorithms and techniques that are relevant to the tool, along with the basis of 

Neuroevolution and genetic algorithms. 

In the third chapter, the current functionality and features of PLT are briefly described and 

portrayed through the graphical user interface. 
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In the following chapters, there is an overview of all the modifications performed in the tool, 

based on identified issues in order to augment its functionality. More specifically, in the fourth 

chapter the reported problems are analysed, along with the actions that were performed in order 

to address them. The fifth chapter presents the additions that updated and extended the tool’s 

framework. 

The sixth chapter contains the results of the usability testing study of the tool. 

To conclude, the seventh and last chapter presents the limitations of PLT along with further 

suggestions for improvement.  
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2  
Related Work 

2.1 Introduction to Artificial Intelligence and Machine 

Learning 

 

2.1.1 Artificial Intelligence   

 

Artificial intelligence enables a machine or computer to learn from past experience, adapt to 

new data and perform tasks similar to human intellectual processes by working intelligently 

and most of all independently. Modern machine capabilities generally classified as AI, are 

designed to complement and enhance human capabilities including voice and handwriting 

recognition, performing medical diagnosis, operating autonomous cars [8]. In order to 

implement these technologies machines are trained to perform specific tasks by processing large 

amounts of data and identifying data forms through algorithms.  

 

With the increase of memory capacity and computer processing speed, many programs have 

reached the levels of human experts in performing certain tasks. On the other hand, programs 

are not entirely capable of matching human flexibility over wider domains demanding common 

awareness. Human brain consists of a combination of many diverse abilities, not a single trait, 

thus research in AI has focused on some components of human intelligence such as learning. 
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Intelligence can be described as the ability to acknowledge and preserve information in order 

to adapt within an environment. “Artificial” is a term used to describe an object or behavior 

produced by human beings rather than by nature [9]. 

 

Term artificial intelligence was introduced in the mid-1950s, at a university campus with its 

primary scope being problem solving and symbolic methods. What followed was computer 

training to mimic functions associated with the human mind, such as problem solving. For the 

next two decades AI thrived, as computers were now able to store information, became faster, 

cheaper, and more accessible. Despite that, computers were incapable of adjusting to AI needs 

in storing enough information and fast processing, resulting in a ten year slow roll in research.  

In the 1980’s an increase of funds reestablished the goals for improving artificial intelligence, 

but soon AI research lost its power of interest. In 1997, a chess playing computer program won 

the reigning world chess champion, a fact that was proved to have been a significant step 

forward in the development of an artificially intelligent decision making program. [8]. 

 

 

 

2.1.2 Machine Learning 

 

Machine learning is a branch of artificial intelligence that enables systems to learn from data 

and improve from past experience, without human intervention [10]. Nowadays, machine 

learning algorithms (ML) are widely used in a variety of applications all around us. From digital 

assistants searching the web and playing music after our vocal commands to medical image 

analysis systems that help a doctor to spot tumors. A model is built based on sample data, often 

described as "training data''. ML algorithms are trained to find patterns and features between 

huge amounts of training data in order to make predictions or decisions of unknown data. They 

self-improve their accuracy and performance through training, by being exposed to more data. 

 

Machine learning consists of four basic steps: 

 



 

Chaviara Antonia- Chrysovalanto 15 

1. Selection and preparation of the training dataset (an object that holds the data and some 

metadata about them): The input data has to be prepared and checked in order to assure 

that it won’t impact the training in case of imbalances. The data is divided into two 

subsets equivalent to the phase it will be processed. For example the evaluation subset 

will be used in the phase of testing while training data is used in the phase of application 

training. Sometimes the algorithm has to identify and extract features and classifications 

on its own. In those cases the data is called unlabeled, otherwise it is described as 

labeled.  

 

2. Selection of the proper algorithm: The type of algorithm depends on the problem to be 

solved in combination with the type and amount of training data. In case of labeled data, 

common types of ML algorithms are Regression algorithms, Decision trees and 

Instance-based algorithms. While in unlabeled data we can use Clustering and 

Association algorithms [11]. Neural Networks lie somewhere in between, as they are 

usually used for labeled data, but can be used in cases of unlabeled data as well, 

depending on the training method and the desired output.  

 

3. Algorithm training to create the model: Algorithm training is a repetitive process. The 

output is compared with the expected results. After that, parameters like weights and 

biases within the algorithm are adjusted in order to produce a more accurate result. The 

variables through the algorithm run until it returns the correct result most of the time.  

The accurate algorithm deriving from the training, is the requested machine learning 

model. 

 

4. Use and improvement of the model: The final step is the exposure of the model in new 

data. For example, a robot vacuum cleaner which is based on a machine learning model 

will ingest data resulting from interaction with new objects in the room [12]. The 

accuracy and effectiveness of the machine learning model are being improved over time, 

depending on how the model is deployed and whether it can learn online. By learning 

online, the model ingests data in a sequential order between timeframes and thus can 

dynamically update its parameters at each step. 
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2.2 Machine Learning Methods 

 

2.2.1 Supervised Machine Learning 

 

Supervised machine learning algorithms can predict future events by applying their knowledge 

from past experience to the new data. Based on a known dataset, the algorithm creates a function 

to perform predictions about the output values. By comparing the output with the intended, the 

algorithm is capable of finding errors and modifying the model accordingly. After sufficient 

training, the system is able to classify data or predict outcomes accurately for an unseen input. 

 

Supervised algorithms are divided in two categories: 

  

● Classification: It can be described as a discrete form of supervised learning where the 

output is a category or class. For example handwritten digit recognition. 

● Regression: In this category, the output of the algorithm consists of one or more 

continuous variables. For instance, the prediction of a kid’s height as a function of its 

age and weight [13]. 

 

Supervised learning is necessary in solving real-world problems, such as detection and 

prevention of fraud in banking, stock market forecasting, medical imaging diagnosis. 

Preference learning toolbox contains supervised methods and thus is a supervised machine 

learning tool.  

 

 

 

 



 

Chaviara Antonia- Chrysovalanto 17 

2.2.2 Unsupervised Machine Learning 

 

In contrast, unsupervised learning algorithms are less accurate and they are used when the input 

data is neither classified nor labeled and there are no corresponding target values. No training 

is provided, which means the algorithm doesn’t train on a known dataset. The task may be to 

group unsorted input according to patterns. The system doesn’t always find the right output, but 

is able to discover hidden structures [14]. 

 

Unsupervised algorithms can be grouped as:  

  

● Clustering: Where the aim is to discover natural groupings in data based on features or 

characteristics.  

● Association: Where we aim to discover the dependency of an item to another. For 

example people that buy product A also tend to buy product B [13]. 

 

 

2.2.3 Reinforcement Learning 

 

Reinforcement learning is often concerned with agents. While they interact with a dynamic 

environment, they learn to make decisions through trial-and-error. Reinforcement machine 

learning methods are based on rewarding and punishing. When the optimal behavior is chosen 

by the agent, a maximum reward is received. A less appropriate decision results in a smaller 

reward. When the agent performs an undesired selection a penalty is received. The worst 

behavior results in the highest penalty. By trial error search and reward, the agent learns the 

best action and maximizes its performance [15]. 
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2.3 Approaches to Supervised Learning 

 

2.3.1 Classification 

 

Classification refers to a predictive modelling problem where the task is to classify the input 

data as one of the predefined labelled classes. A well-known application of classification is the 

categorization of emails as “spam” or “not spam”. 

 

There are many different types of classification algorithms for modeling classification 

predictive modeling problems. The main types of classification algorithms are Binary, Multi-

Class and Multi-Label Classification [16]. A good practice, in order to decide which is more 

suitable in every case, is to use controlled experiments and discover which algorithm results in 

the best performance for a given classification task. There is a variety of metrics in order to 

evaluate the performance of a model based on the predicted class labels, with the most popular 

being the accuracy metric. Ιn later chapters, evaluation metrics will be described in more detail.  

 

 

2.3.2 Regression 

 

Regression is a supervised machine learning algorithm suitable for cases where the output 

variable is a continuous value. The aim is to predict a dependent variable based on independent 

predictors [17]. 

 

In rudimental regression analysis, there is a linear connection between the dependent and an 

independent variable. The aim is to plot a line that best models the given points. The line 

(prediction or model output) is modelled based on the linear equation y^=a + b*x where x is the 

input vector. The aim is to find the best values for a and b, for the model to produce as closest 

predictions as the real values from the examples. The search for parameters a and b turns to a 

minimization problem, where we want to minimize the error between the predicted and the 

actual value. The error is calculated by the difference between the predicted values and the 
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ground truth. Then it is squared and sum over all data points. We divide that value by the total 

number of data points, in order to receive the average squared error [17]. This function is often 

referred as the Mean Squared Error (MSE) function. Now the target is to minimize the MSE 

value by adjusting the values a and b.  

 

In order to reduce the cost function MSE, we train the parameters a and b by using another 

method named Gradient descent. Gradient descent algorithm starts at a point taking steps in the 

nearest downhill direction. Then, by repeatedly updating the parameters a and b of the model, 

the algorithm proceeds in small steps until the cost function is reduced. The number of steps 

we take in order to reach the target (minimum) is the learning rate. This decides on how fast the 

algorithm converges to the minima. With a small learning rate we could take more time in order 

to reach the minima, but get closer to it. On the contrary, with a higher learning rate there is a 

chance of overshooting the minima. The cost function must be a convex function in order to 

have a single global minimum [18]. 

  

Logistic regression is a machine learning technique suitable for classification problems. The 

cost function used in linear regression cannot be applied in logistic regression as it is a non-

convex function with multiple local minimums. The cost function used in logistic regression is 

the sigmoid function or logistic function. The Gradient Descent algorithm is also used in order 

to train parameters a and b of the model. The cost function calculates how well the predictions 

are performed while the Gradient Descent algorithm minimizes the cost function [19]. 

 

Simple networks as logistic regression are unable to solve more complex classification 

problems. As a result we need networks with multiple levels, capable of learning complex 

functions for data classification. Those networks are ANNs.  
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2.3.3 Preference Learning 

 

Preference learning is a subset of machine learning that focuses on developing predictive 

models based on observed preference information. Human preferences are a really important 

part in AI research and applications. While the concept of preference learning has been 

emerging for some time in many fields such as economics, it's a relatively new topic in AI 

research. Preference information appears in various fields of application such as autonomous 

agents, adaptive user interfaces, decision theory, planning, non-monotonic reasoning and 

qualitative decision theory [20]. A famous application is recommender systems. For instance, 

online stores may analyze a customer's purchase record to learn a preference model and then 

recommend similar products to customers. 

 

There are two practical representations of the preference information: Utility functions and 

Preference Relations. If it is possible to observe a mapping from data to numbers, then data 

ranking can be achieved by ranking the numbers. This mapping is called utility function and is 

a regression learning problem. However, a utility function cannot represent more general 

relations, such as a partial order. On the other hand, preference relation is the binary 

representation of preference information. Since preference relation is not transitive, it implies 

that there may be multiple solutions of ranking. A usual strategy is to discover a ranking 

solution that is maximally consistent with the preference relations. [21]. 

 

Studies have demonstrated that rank-based analysis have multiple benefits over ratings. In rank 

based questionnaires, the participant specifies the preferred option among two, under a given 

statement (pairwise preference). Provided more options, the user is requested to choose a 

ranking of some or all the options. In ratings, annotation biases are noticed on subjective 

matters, such as experience and emotion based on different cultural or personal criteria, or 

inconsistencies. On the contrary, ranks offer a clearer comparison between participant’s 

responses and lead to the creation of more efficient models. In addition, ratings can be easily 

transformed to ranks. They are compared to one another and a pairwise preference is created 

for every pair [22]. 
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In order to create computational models that predict those ranks, numerous algorithms are 

currently available in the field of preference learning. From linear statistical models to non-

linear approaches, such as artificial neural networks, support vector machines etc. Preference 

learning algorithms train on a set of items which have preferences toward labels or other items 

and predict the preferences for all items. During the training phase, preference learning 

algorithms have access to examples for which the sought order relation is partially known. 

 

Despite the variety of available methods in the field of preference learning, there is a lack of 

tools for processing ordinal labels. Pyplt addresses this problem by offering access to a number 

of ordinal data processing methods and popular preference learning algorithms. 

 

 

2.4  Artificial Neural Networks 

Artificial Neural Networks draw inspiration from humans, more specifically from the natural 

neural network of their nervous system. The creator of the first neurocomputer, Dr. Robert 

Hecht-Nielsen, describes a neural network as "...a computing system composed of a number of 

simple, highly interconnected processing elements, which process information by their dynamic 

state response to external inputs” [23]. 

 

ANNs are comprised of numerous nodes. These nodes take input data, perform simple 

operations and pass the result to other neurons. The result is called activation or node value. 

Links connect these neurons, using an integer called weight, which controls the signal between 

them. ANNs learn by altering these weight values.  

 

There are two types of Artificial Neural Networks: 
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• Feedforward: The ANN has fixed inputs and outputs. The information flows in a single 

direction: from the input to the output nodes, passing through the hidden nodes. These networks 

only consider the current input, thus they do not have any memory about what happened in the 

past.  As a result, they have trouble predicting what comes next in a sequence. They are used in 

image recognition and classification. 

 

• Feedback or Recurrent: Here, feedback loops are allowed. A unit sends and receives 

information to/from other units. These networks retain information about the input previously 

received by allowing information to persist, like a short-term memory.  This sequential memory 

is preserved in the network’s hidden state vector and represents the context based on the prior 

inputs and outputs. Unlike a feed-forward network, the same input may produce different 

outputs depending on the preceding inputs.  They are applied to a wide variety of problems 

where text, audio, video, and time series data is present. For example in speech recognition, 

analysis of DNA sequences, image captioning, and more [24]. 

 

ANNs are widely used in multiple areas such as electronics, economy, industry, medicine. Their 

learning ability makes them very flexible. Their multi-layered structure and architecture offers 

fast processing, accurate application of the model to unseen data and adaptability according to 

the changing environment. A real estate agent uses ANNs to predict market prices, while a 

doctor classifies whether a tumor is malignant or not. From real estate appraisal (economy) to 

cancer cell analysis (medicine), they are applied in a variety of fields and contribute to a 

significant range of applications. 

 

 

2.4.1 Activation Functions 

 

ANNs are comprised of multiple layers: The input layer, where the information (features) from 

the environment passes to the hidden layer. The hidden layer where several computations are 

performed and the result is transferred to the output layer. And finally the output layer which 

exposes the learnt information to the environment. In order to choose the appropriate neurons 

that need to be activated or deactivated to manipulate the input/output of the network, activation 
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functions are used. More complicated, high dimensional and non-linear calculations are 

performed with the help of activation functions [25]. 

 

There is a variety of activation functions such as Linear, ReLu, Sigmoid, Softmax, Tanh. We 

will discuss further about ReLu and Sigmoid which are relevant to the tool. 

 

 

 Sigmoid 

 

The sigmoid function is a nonlinear function with the formula σ(z) = 
1

(1+𝑒−𝑧)
, 0 < 𝜎(𝑧) < 1 

and the derivative function is formula σ΄(z) = 
𝑒−𝑧

(𝑒−𝑧+1)2
 . As the range of the sigmoid function is 

between 0 and 1 it is really useful in binary classification problems in the output layer. However, 

when z value is too large, the derivative tends to 0, so the gradient is vanished and the learning 

procedure is slowed down. The graph has the shape of an ‘S’, as shown in figure 3. 

 

 

 ReLU 

 

The Rectified Linear Unit function offers better performance and generalization compared to 

the sigmoid. It is a function containing the properties of linear models and as a result enables 

the optimization of models with gradient-descent methods.  For each input where all the values 

are less than zero, they are set to zero. Thus, the ReLU is represented as: 𝑓(𝑥) = max(0, 𝑥) =

{
0, 𝑥𝑖 < 0
𝑥𝑖, 𝑥𝑖 ≥ 0

.  The gradient problem observed in the sigmoid function is eliminated. 

Furthermore, a boost in the overall computation speed is observed, as it does not compute 

exponentials and divisions.  

Despite the advantages compared to the sigmoid function, the ReLu function has a significant 

drawback. If too many activations get below zero, then most of the neurons will simply output 

zero and as a result prohibit learning. In order to solve this problem, LeakyRelu is used. 
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Figure 1: Sigmoid vs ReLU activation function 

 

 

 

2.4.2 Optimization algorithms 

 

Optimization algorithms are methods used to change the attributes of a neural network in order 

to minimize the losses, such as weights and learning rate [26]. There are several optimization 

methods: Gradient Descent algorithm, Stochastic Gradient Descent, Momentum, Adam 

Optimization algorithm. The most relevant to our tool are further discussed below. 

 

 

 Gradient Descent  

 

Gradient Descent algorithm is an optimization method which was briefly described in linear 

regression. The algorithm explores the way of modifying the weights, for the loss function to 

reach a minimum. The weights are altered depending on the losses, which transfer through the 

layers. Gradient descent is easily implemented and comprehensible. On the other hand, in cases 

of large datasets, it might take a lot of time and memory to calculate gradient on the whole 

dataset and change weights to reach the minimum. Another problem of Gradient Descent is that 
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if the loss function is non-convex there are multiple local minimums and the algorithm may be 

trapped at a local minima. 

 

The main update formula for Gradient Descent is the following: 

𝑤 = 𝑤 − 𝜂 ∗
𝑑(𝐿(𝑤))

𝑑𝑤
 

Where: 

 w: weight vector 

 η: learning rate  

 L(w): loss function 

We minimize the loss function by computing its derivative and the learning rate helps us to set 

the step size. As we approach the global minimum the loss function gets minimum and we have 

reached the target in the best possible set of steps. 

 

  

 Momentum Based Gradient Descent 

 

As previously described, the current gradient descent is used to update the previous weight 

values. In Momentum based gradient descent we can calculate momentum based on previous 

gradients in order to update the weights with a combination of the previous and the current 

gradient.  

 

The update formula for Momentum Based Gradient Descent is the following: 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ∗
𝑑(𝐿(𝑤𝑡))

𝑑𝑤𝑡
+ 𝛾 ∗ ∑ (𝜂 ∗

𝑑(𝐿(𝑤𝑡𝑖𝑚𝑒))

𝑑𝑤𝑡𝑖𝑚𝑒
)

𝑡

𝑡𝑖𝑚𝑒=1

 

Where: 

   

 time: all the past epochs 

 γ: hyper parameter to control the history usually equal to 0.9 
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Compared to the simple Gradient Descent algorithm, in the momentum case, there is a faster 

convergence to the minima, as information about the previous steps is preserved. Also, the 

oscillations are reduced as well as the high variance of parameters. On the other hand, there is 

still a chance of transcending the global minimum in cases of big parameter changes. 

 

 

 

 RMS (Root Mean Square) 

 

RMS algorithm is similar to the Momentum, with the main difference being a small change in 

the adaptation of parameter h (learning rate) in every step, by dividing it by an exponentially 

decaying average of squared gradients [26].  

 

The update formula for RMS algorithm is: 

 

𝑤𝑡+1 = 𝑤𝑡 −
𝑑(𝜂)

𝑑𝐸[𝑔2]𝑡
∗
𝑑(𝐿(𝑤𝑡))

𝑑𝑤𝑡
  Where 𝐸[𝑔2]𝑡 = (1 − 𝛾)𝑔2 + 𝛾 ∗ 𝐸[𝑔2]𝑡−1 and g= 

𝑑(𝐿(𝑤𝑡))

𝑑𝑤𝑡
   

 

 

RMS algorithm is better at detecting the global minimum than Momentum. 

 

 Adam Optimization  

 

Adam or Adaptive Moment Estimation is a combination of RMS and Momentum.  

 

The update formula for Adam algorithm is: 

 

𝑤 = 𝑤 − 𝜂 ∗
𝑉𝑑𝑤

√𝑆𝑑𝑤
 Where 𝑆𝑑𝑤 = 

𝑆𝑑𝑤

(1−𝛾1
𝑡)
 and 

𝑉𝑑𝑤

(1−𝛾2
𝑡)
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The hyper parameters γ1, γ2 are defined as in RMS and Momentum respectively: 

 

 𝑆𝑑𝑤 = 𝐸[𝑔2]𝑡 = (1 − 𝛾1)𝑔
2 + 𝛾1 ∗ 𝐸[𝑔

2]𝑡−1 And 

 

𝑉𝑑𝑤 = 𝛾2 ∗ ∑ (𝜂 ∗
𝑑(𝐿(𝑤𝑡𝑖𝑚𝑒))

𝑑𝑤𝑡𝑖𝑚𝑒
)

𝑡

𝑡𝑖𝑚𝑒=1

 

 

In conclusion, Adam optimizer is the fastest and converges rapidly to the minimum. Also it 

rectifies the problems of vanishing learning rate and high variance. The drawback of the method 

is that it is computationally costly.  

 

 

2.4.3 Error Functions  

 

As previously mentioned, optimization algorithms are useful in altering the attributes of a neural 

network, aiming at the minimization of the losses. Error functions help us identify the 

losses/errors, which are the difference between the predicted and the ground truth values. The 

error functions used in pyPLT, are Mean Square, Rank Margin and Binary Cross Entropy. 

 

 Mean Square Error 

 

Mean Square Error function was previously described in linear regression where we wanted to 

minimize the error between the predicted and the actual value. The Mean Square Error function 

calculates the sum of the square of the difference between the predicted and ground truth values, 

divided by the number of all data points.  

 

The MSE formula is the following: 
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MSE L(y, y^) = ∑
(𝑦^𝑖−𝑦𝑖)

2

𝑛

𝑛

𝑖=1
  

  

 

 Binary Cross Entropy  

 

Cross-entropy is the most used loss function to use for binary classification problems, where 

the target values are {0, 1}. Binary cross-entropy determines the average difference between 

the actual and predicted probability distributions for predicting class 1.  

 

The Binary Cross Entropy formula is the following: 

 

 

BCE L(y, y^) = - ∑
𝑦𝑖∗log𝑦^𝑖+(1−𝑦𝑖)∗log(1−𝑦^𝑖)

𝑛

𝑛

𝑖=1
  

 

 

 

The activation function used with Binary Cross Entropy is the Sigmoid function, as the 

logarithms exist only if 𝑦^𝑖 is between 0 and 1. 

 

In PLT the binary_crossentropy () function from the Keras package is used in order to calculate 

the cross-entropy loss. 
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 Rank Margin 

 

In Mean Square Error and Binary Cross Entropy functions we calculate the error depending on 

the differences between the predicted and actual values. In Rank Margin or Hinge loss as it is 

often called, the objective is to calculate relative distances between inputs. We only need a 

similarity score between our data points. For example, in a face recognition we can train a 

network to choose whether two images belong to the same person or not. Rank Margin is really 

useful in SVM algorithms, which will be further described later. 

 

Rank Margin Function formula: for a given pair of data samples where x1 is preferred over x2: 

 

 

Rank Margin L(y, y^) = {
0,𝑦^

1
> 1 − 𝑦^2

1 − (𝑦^
1
− 𝑦^

2
) ,𝑒𝑙𝑠𝑒

 

 

 

 

2.5 Neuroevolution 

 

Neuroevolution is the evolution of neural networks with the use of genetic algorithms [27]. 

It is more general, in comparison with other learning methods for neural networks, as it enables 

learning with random network structures. Neuroevolution is a machine learning technique, 

inspired from the evolution of biological nervous systems in nature. Mostly used in solving 

reinforcement learning tasks such as game playing, vehicle control, and robotics. Similar to 

natural selection in nature, which is driven only by feedback from reproductive success, 

neuroevolution is guided by some measure of overall performance [28]. 
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For instance, in strategic games, it is not always possible to know the best actions at each step, 

but evolution is capable of observing the performance of a series of actions e.g. resulting in a 

win or loss. Neuroevolution makes it possible to optimize networks without direct information 

about what exactly they should be doing, as opposed to the most artificial neural network 

learning algorithms that operate through supervised learning and are based on labeled input-

outputs. 

 

In contrast to most neural learning methods, neuroevolution can optimize the structure of the 

network, not only the weights of the connections. Furthermore, it can explore ways of altering 

the network during computation or evaluation and result in learning from experience. 

 

 

 

2.5.1 Evolutionary algorithms - Genetic algorithms  

 

Evolutionary algorithms, are an optimization method to solving complex problems that cannot 

be easily solved in polynomial time. A genetic algorithm, which is the most popular type of 

Evolutionary Algorithms, is a heuristic search method for solving optimization problems 

inspired by the theory of natural evolution. Given a population, the best individuals are selected 

in order to create offspring for the next generation. The better fitness the parents have, the best 

chances their offspring has at surviving [29]. 

 

The procedure starts with a population, meaning a set of individuals with a known size. Each 

of the individuals is a solution to the problem and is characterized by its genes. Those 

characteristics (genes) form a chromosome. Two pairs of individuals are chosen based on their 

fitness scores, calculated by a fitness function, in order to provide new descendants.  
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Figure 2: Population, Chromosomes and Genes 

 

For each pair of individuals that are chosen for reproduction, a crossover point is selected within 

the genes. The parent’s genes are exchanged among themselves until the selected point. The 

individuals with the least fitness die in each creation of a new generation and are replaced by 

the new descendants. 

 

 

Figure 3: Crossover - Exchanging genes among parents 
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If the process continues, there is a change of premature convergence. In order to avoid this fact, 

mutation is performed. By using a low random probability, a few of the descendant’s genes are 

exchanged in order to maintain the population’s diversity. When there are no significantly 

different offspring from the previous generation, the process terminates. A set of solutions to 

our problem has been found. 

 

 

 

Figure 4: Mutation 

 

Genetic algorithms have many advantages over traditional optimization algorithms. First of all, 

their ability of dealing with complex problems, irrelevant to the type of the fitness function 

(nonlinear, discontinuous etc). In addition, as different individuals can be processed 

simultaneously, genetic algorithms are ideal for parallel implementation. On the other hand, 

they have a drawback. It is important to explore and select the optimal parameters (eg 

population size, rate of mutation and crossover) in order to create efficient computational 

models. Despite this, genetic algorithms are still between the most common optimization 

methods.  

 

 

2.5.2 NEAT algorithm  

 

NEAT is the shortcut for NeuroEvolution of Augmenting Topologies. It is a genetic algorithm 

for the generation of evolving artificial neural networks [29]. Neuroevolution is inspired by 

natural evolution, thus it heavily mirrors biology. In biology, a genotype is the genetic 



 

Chaviara Antonia- Chrysovalanto 33 

representation of a creature and the phenotype is its actual, physical representation. In order to 

represent the individuals of the population genetically in our algorithm a form of encoding is 

required which can be direct or indirect. 

 

Direct encoding includes an obvious connection between genotype and phenotype. For an 

individual representing a neural network, each gene is linked to a connection of the network. 

On the other hand, in indirect encoding there are rules or parameters for creating an individual. 

Thus, it is harder to create and can result in biases [30]. 

 

NEAT algorithm uses a direct encoding methodology. This includes two node gene lists, along 

with their connections. Between the input and output nodes which are not evolved, multiple 

hidden nodes can be added. Connection nodes specify the direction of the connection, it’s 

weight and activation, along with an innovation number. 

 

 

 Mutation 

 

During mutation, NEAT can either mutate existing connections or can add new structure to a 

network. For every new connection between a start and an end node, a random weight is 

assigned. A new node must be placed between two nodes that are already connected. For every 

new node, the previous connection gets disabled and the previous start node is linked to the 

new node with the weight of the old connection. The link of the new node with the previous 

end node is assigned a weight of 1. 

 

 

 Crossover 

 

Randomly crossing the genomes of two neural networks, could result in badly muted or non-

functional networks. Genomes could be of different sizes, thus non obviously compatible. In 

biology, homology is responsible of solving this issue. Homology is the alignment of 
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chromosomes based on matching genes for a specific characteristic. As a result, crossover has 

fewer chances of error, than if chromosomes were randomly mixed. In order to reduce the 

chances of creating non-functional individuals, NEAT marks new evolutions with a historical 

number. Every time a new connection or node is added, a historical marking is assigned, 

allowing easy alignment when two individuals are to be breed. 

 

 

 Speciation 

 

The process of mutation is involved prior to optimization of weights, thus can result in lower 

performing individuals. In order to allow structures to optimize prior to their entirely 

elimination from the population, a technique called speciation is performed. This technique 

divides the population into groups based on the similarity of topology with the aid of historical 

markings. As a result, individuals compete only with others of the same species and the 

structure is optimized without the fear of elimination before it is fully explored. Furthermore, 

through explicit fitness sharing, individuals share their performance across the species and they 

evolve to even better species. In pyplt though, a simpler form of Neuroevolution algorithm has 

been applied and will be further discussed in the last chapters.  
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3  
pyPLT 

3.1 Python Preference Learning Toolbox pyPLT 

 

Preference Learning Toolbox offers two modes of operation for beginners and advanced users.  

 

 

Figure 5: PLT welcome screen 
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In both modes, the user performs the experiment setup in five steps: loading the dataset, data 

pre-processing, feature selection, preference learning and running the experiment. 

In beginner mode, once the dataset is correctly loaded, there are a few parameters to tune. The 

preprocessing step consists of specifying whether and how many features are to be 

automatically extracted from the data set, choosing whether or not to apply feature selection, 

choosing a preference learning algorithm, and finally running the experiment. 

 

In advanced mode the user is offered a more detailed setup. In preprocessing there is a 

normalization feature and in the remaining steps the setup may be tuned through a set of options 

or parameters.  

 

 

3.1.1 Dataset Loading 

 

The dataset may be loaded in single format for problems where a total order of objects exists, 

or in dual format where a partial order of objects is known. All the remaining steps are available 

only after the successful loading of the dataset. 

 

 

Figure 6: Dataset Loading Beginner Vs Advanced mode 
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In the single file format, a comma-separated-value file must be uploaded containing the objects 

with their individual ratings. Each row contains the numeric feature values of an object 

separated by comma and the last column contains the relation.  

 

A useful dataset for preference learning experiments is the Sushi dataset. It includes the findings 

of a series of surveys released by Toshihiro Kamishima, in which 5000 participants responded 

regarding their preferences about various kinds of sushi.  

 

 

Figure 7: Single file format dataset with ratings 

 

In dual file format, two csv files must be uploaded: a file containing the objects and a file 

containing the pairwise preferences for a number of objects in the dataset (ranks file). Each row 

of the ranks file contains a pair of object IDs, the first being that of the preferred object in the 

pair and the second being that of the non-preferred object in the pair. If the object file does not 

contain object IDs, the row number is used as ID. 
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Figure 8: Dual file format objects with ranks 

 

3.1.2 Dataset Pre-processing 

 

In the single file format the user is given the option to control how the pairwise preferences 

(ranks) are derived from the ratings-based data through the minimum distance margin and 

memory parameters. The minimum distance margin is the minimum required difference 

between the ratings of a given pair of objects for the object pair to be considered a valid 

preference. During the creation of pairwise ranks, the memory parameter indicates how many 

nearby items should be compared with a given object. 
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Figure 9: Processing a single file 

 

 

PLT offers a small preview of the object features within a loaded dataset as shown in figure 3. 

The user selects several parameters such as the symbol used to separate entries, whether the 

dataset contains specific IDs, or feature names. In advanced mode the user can specify particular 

features to be used from the dataset as shown in figure 10. 
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Figure 10: Pre-processing | Advanced User 

 

 Feature Extraction  

 

If the dataset does not include features, the tool offers an automatic feature extraction in order 

to extract features from the data using an auto encoder. The auto encoder consists of multiple 

layers: an encoder, the code layer and a decoder. The encoder compresses the input data and 

the decoder decompresses them in order to create an accurate reconstruction of the input. The 

auto encoder is optimized using the Adam Optimizer and its performance is determined via the 

Mean Squared Error function.  

 

 

Figure 11: Feature Extraction | Beginner 
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In advanced mode the user can specify the parameters of the backpropagation algorithm which 

trains the auto encoder.  

 

  

Figure 12: Feature Extraction | Advanced  
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Apart from feature extraction, in advanced mode the dataset preprocessing offers feature 

normalization and dataset shuffling prior to running the experiment. 

 

 

 Feature Normalization  

 

By default, all features in the dataset are normalized using the Min-Max method which 

transforms the values of the given features to fit the range of 0 to 1. In advanced mode Z-score 

method can also be used, which transforms the values in order to have an average value of the 

feature equal to 0 and its standard deviation equal to 1. Feature normalization prior to model 

fitting is important, because variables that are measured at different scales do not contribute 

equally to the model fitting and might end up creating a bias. 

 

 

Figure 13: Feature Normalization | Advanced User 
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 Feature Selection  

 

Feature Selection is the process of selecting out the most significant features from our dataset. 

In Machine Learning, removing the less relevant to the predictive model features is considered 

a good practice. In advanced mode the user can manually deactivate any irrelevant features. 

However, manually identifying these features is not always possible or optimal. For example, 

when the dataset contains a huge amount of features, the user has to spend a lot of time and 

effort in order to choose the correct features. PLT offers an automatic feature selection 

algorithm in such cases: the Sequential Forward Selection method. 

 

 

 Sequential Forward Selection  

 

In Sequential Forward Selection the procedure begins with an empty feature set and the feature 

that is added in every step results in the maximization of set performance over all the remaining 

features. When an added feature yields equal or lower performance to the performance obtained 

without it, the selection part is over. The performance of each subset of features is computed as 

the prediction accuracy of a model trained with those features as an input. Also, the trained 

model is tested using Holdout validation in order to ensure that it performs well on new data. 

 

 

Figure 14: Feature Selection | Beginner 

 

In advanced mode the user can choose which preference learning algorithm implemented in the 

tool will be used to create the model for sequential forward selection. In addition, the user can 

choose whether to train the model using the complete dataset and assessing the performance as 
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the percentage of correctly classified training pairs or can test the generality of the results by 

using Holdout Validation or K-Fold Cross Validation. 

 

 

Figure 15: Feature Selection | Advanced 

 

 

 Holdout Validation 

 

A part of the dataset is used to train the model while the rest of the dataset is used to validate 

performance of the model. The split ratio is 70:30. 

 

 

 K-Fold Cross Validation  

 

In k-fold cross-validation, the data is divided into k folds. k-1 folds are used for the model 

training and the last fold is for testing. This method ensures that each fold of the dataset has the 
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opportunity to be used in the test set 1 time and used to train the model k-1 times. Once the 

process is completed, it returns the percentage of correctly classified pairs not used for training. 

 

 

3.1.3 Preference Learning Algorithms 

 

PyPLT offers three options of preference learning algorithms for both user modes: RankSVM, 

Backpropagation and RankNET. 

 

 

Figure 16: Preference Learning Algorithms | Beginner 

 

 

 RankSVM 

 

The RankSVM algorithm is a rank-based variation of the traditional Support Vector Machine 

algorithm. SVM maps the data instances onto geometric points in a high-dimensional space 

according to their features via a pre-defined kernel function. The kernel transforms a low-

dimensional input space into a higher dimensional. Then, the algorithm attempts to split the 

instances according to their annotated category via a hyperplane. The hyperplane divides a set 

of objects that have different class memberships. The goal is the optimal segregation of the 

given dataset. Unseen data instances may be mapped to the space according to their features 

and a category is produced (output) based on which sub-space they correspond to [1]. 
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Figure 17: RankSVM Parameter Selection in advanced mode 

 

 

 Backpropagation 

 

The principle of the backpropagation approach is to model a given function by altering internal 

weightings of input signals to produce an expected output signal. Training is performed with a 

supervised learning method. An input is forward propagated in order to calculate an output and 

the error is back- propagated in order to train the network. 

  

Backpropagation is a gradient-descent algorithm that iteratively optimizes an error function by 

adjusting the weights of an artificial neural network model. The error function used is the Rank 

Margin function and the total error is averaged over the complete set of pairs in the training 

dataset. If the error is below a given threshold, training stops before reaching the specified 

number of epochs and the current weight values are returned as the final model. In the beginner 

mode, the network topology contains one hidden layer of 5 neurons and uses the ReLu 
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activation function for each neuron in that layer, while the output neuron uses the Logistic 

Sigmoid activation function. In advanced mode, the user specifies the desired parameters [1]. 

 

 

Figure 18: Backpropagation Parameter Selection in advanced mode 
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 RankNET 

 

RankNET algorithm is a variant of the Backpropagation algorithm that handles ordered pairs 

of data using a probabilistic cost function. The error function used is the binary cross-entropy 

function and the total error is averaged over the complete set of pairs in the training dataset as 

in the previous algorithm.  

 

 

Figure 19: RankNET Parameter Selection in advanced mode 
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3.1.4 Experiment Reporting and Model Storage 

 

Once the experiment is set up and the execution begins, a progress report appears (Figure 20). 

When the whole process is completed, a summary screen follows displaying the configuration 

of each step and the training/validation accuracies of the final model (Figure 21). The user can 

save the experiment report as well as the final model to file. 

 

 

Figure 20: Execution Progress Window 
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Figure 21: Experiment Report 
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4  
Fixing a broken pyPLT 

4.1.1 Graphical Users Interface problem  

 

When the dataset contains a large amount of data, the graphical users interface freezes and stops 

being responsive. As a result, the user is not aware of the progress and whether the loading 

process is aborted or slowed down. The problem appears because the GUI is running on the 

same thread as the main logic.  

 

A thread is a separate flow of execution. Threading is the ability to have different, individual 

units of a process (running program) running concurrently. Each process has at least one thread: 

the main thread (or the process itself). Multiple threads work together to achieve a common 

goal. The resources and memory available to the main thread, are also shared among the other 

threads within the same process.  

 

An important advantage of multi-threading is the speed up of the execution, provided that the 

program has multiple CPUs. Also, other tasks can be performed simultaneously with the I/O 

operations. For example in a program where a thread involves an algorithm and another thread 

the input reading. The algorithm doesn’t have to wait for the input to be fully read and 

respectively the input reading doesn’t wait for the algorithm to complete its calculations.    
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However, for python cases, there is a limitation stating that only a thread can be run at a time 

due to Global Interpreter Lock. Even in cases of processors with multiple cores, the global 

interpreter allows only one thread to be executed at a time. That happens in order to prevent 

overwriting of data in memory in case multiple threads might try to acquire the memory. 

However, in Python 3, each thread is given a defined amount of time to execute, such as 5 

milliseconds. If the thread doesn’t release the lock after 5ms, it will be forced to release it, in 

order to prevent starvation of CPU time. Also, CPU-bound jobs are prioritized compared to I/O 

operations. 

 

 

 

 

Figure 22: Freezing window while loading large dataset 

 

In order to solve the freezing problem, a thread was created which calls a function that loads 

the data. The new function is _thread_load_data and the function update_data that originally 

loaded the data, now creates the thread and passes the parameters to the new function (Figure 

23). 
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Figure 23: Threading implementation 

 

 However, the problem seems to remain. A wait window was added, so the user knows that the 

system is working while waiting for a large dataset to be fully loaded (Figure 24). 

 

 

 

 

Figure 24: Wait window 
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The wait window creation is shown in figure 25:  

 

 

 

Figure 25: Wait window class 

 

When the LoadingParamsWindow (Figure 19) is created for the first time it gets hidden and the 

wait window is created (Figures 24, 25). Join function waits until the thread execution is 

completed before it proceeds, as the data must be loaded before proceeding. Once the data is 

fully loaded, wait window gets destroyed (Figure 23) and the main window appears again.   

 

 

4.1.2 Memory error 

 

The tool was tested with artificially created datasets of various sizes, in order to generate the 

memory error (Figure 26). 
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Figure 26: Memory error 

 

Three large files were created: 

 

a. Dataset with 10.000 rows: 

 

The file is 324KB and the program runs without errors, using a significant part of memory. 

After an hour it was not completed so the execution was stopped manually. 

 

 

Figure 27: Experiment with 10k dataset 
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b. Dataset with 50.000 rows: 

 

The program could run for a few seconds without error, but the operating system had slowed 

down significantly and was practically frozen. After a few seconds the memory error appeared 

and the execution was aborted. A large use of memory was noticed. 

 

 

 

Figure 28: Experiment with 50k dataset 

 

c.     Dataset with 1.000.000 rows:  The error appears immediately and the execution is aborted. 

  

When the amount of memory consumed by all running processes exceeds the amount of RAM 

available, the operating system places pages from one or more virtual address spaces to the hard 

disk. These "paged out" pages are stored in one or more files (Pagefile.sys files) in the root of 

a partition on Windows computers. Each disk partition can have one such file. The page file's 

location and size are set in System Properties. 
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From the previous we understand that the page file is the virtual memory on the hard disk. Our 

personal computer has 8GB of RAM, which seems insufficient, so free space in the virtual 

memory is allocated. There is a need for continuous data transfer from disk to memory and vice 

versa and as a result the system almost stops to respond. 

The reason seems to be the need to reserve space N2 (e.g. for a table of similarities or distances 

between each pair of points). For instance: 

For N = 50000, the table has 2,500,000,000 elements. The float type is usually 8 bytes, so the 

above table needs 20GB of memory. For big data, different types of algorithms or computers 

with large capabilities are required, e.g. cloud clusters. So, depending on the user's computer 

memory, there is a limit. 

 

To resolve the memory error in our toolbox, we use the ability of keras to update an existing 

model using the train_on_batch function. So, if we see that the data is greater than a certain 

limit, e.g. 5000 samples, we break them into "packages" of 5000, we train the model in the first 

package and then for each other package we use train_on_batch. A similar logic was already 

used in the Backpropagation algorithm, so it was added to Ranknet.  

 

 

Figure 29: RankNET batch implementation 
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The tool was tested with a 10k sample file and RankNET algorithm. The execution was 

successfully completed after 3.5 hours without a memory error. 

 

 

4.1.3 RankNet problem (sorting) 

 

In RankNet, training pairs of data points are sorted into preferred and non-preferred subsets. 

During the test, the points are also sorted into two lists prefs_x and nons_x, so the following 

issue occurs.  As the network is trained to predict the preferred set, this sorting results in a naive 

algorithm achieving unreasonably high accuracies. The algorithm achieves great accuracy, 

simply always predicting "1". In order to solve any problems, we take the two lists and 

randomly (with a probability of 50%) we exchange the corresponding points, so that in the end 

the two lists have points from each category. In the test function of ranknet.py the following 

code is added, so that the two test_data lists are "mixed". 

 

Figure 30: Shuffle dataset RankNET 
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The y_label list has the actual categories: it contains 1 if the first point is preferred, otherwise 

we set 0 if the second point is preferred. This list will be compared with the prediction to 

evaluate the performance of the algorithm. 

 

 

Figure 31: Training and test accuracy before exchange 

 

After exchanging the points in order to have mixed points from each category, the test accuracy 

scores achieved are more reasonable.  

 

 

Figure 32: Training and test accuracy after exchange 

 

 

4.1.4 Query ID  

 

In the current implementation, if we want to perform several preprocessing in our data, for 

example normalization, the whole dataset will be affected. In order to be able to transform a 

part of our data separately, a query id column has been added. The user is asked whether the 

data has a Query ID in the second column of the csv input file (Figure 31).  
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Figure 33: Query ID 

 

The previous was implemented as following (Figure 32). In params.py file, the variable 

self._has_query_id was added, with initial value False. 

 

 

 

Figure 34: Query ID implementation 

 

Then, in the experiment.py file, in the _load_data function the following lines were added to 

the code (Figure 33), which rename the second column to QueryID if the user has previously 

selected Yes in the corresponding query. Note that the first column is always the ID, which 

either comes from the data or if the file has no IDs, is automatically created by _load_data. 
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Figure 35:  Rename query ID column in load_data function 

 

The queryID column is then used to normalize and split the data into train and test subsets. For 

normalization (_normalize function in experiment.py file), this is applied per query ID, for 

example as follows (Figure 34): 

 

Figure 36: Feature normalization with query ids 
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To split the data into train-test, for the K-fold method, we take the variable _k which indicates 

the number of folds from the KFoldCrossValidation class and we use the GroupKFold function 

provided in the scikit-learn package which performs the desired function (Figure 35): 

 

Figure 37: KFoldCrossValidation with query ids 

In the case of HoldOut, we take the variable _test_proportion declared by the user and use the 

train_test_split function of the scikit-learn package. Specifically, we apply it to the unique query 

ids, so that the whole id is either in the train or in the test subset. Based on the unique ids, we 

distribute each line of data in the corresponding subset:  

 

 

Figure 38: HoldOut Validation with query ids 
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The above was implemented both for the separation during the feature selection as well as 

during the creation of the machine learning models. 

 

As mentioned before, prior to the addition of the query ID column in the dataset, the user could 

not perform a pre-processing on a proportion of data with some common characteristic. For 

example, for a dataset containing data from multiple participants, it wasn’t possible to 

normalize the values of a feature per participant. Below is a preview of the fully loaded dataset 

(Figure 39) and the options for pre-processing (Figure 40). The user can choose whether to 

perform min_max or z_score normalization only per feature. 

 

Figure 39: Preview of the fully loaded dataset 



 

Chaviara Antonia- Chrysovalanto 64 

 

 

Let’s perform min_max normalization for feature 1 (Figure 40): 

  

 

Figure 40: Pre-processing settings 

 

As we can see below (Figure 41) all the values of feature 1 are normalized regardless of the 

participant: 
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Figure 41: Feature 1 normalization 

 

By adding a query_id column in the dataset (Figure 42), which contains a unique number for 

every participant’s data the user can perform normalization per query_id which means per 

participant (Figures 43 and 44).  

 

 

Figure 42: Dataset including a query_id column 
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For example if we select min_max normalization for feature 1 (Figure 43), we observe that it 

is performed per query_id and not for all the values of the feature (Figure 44).  

 

 

Figure 43: Min_max normalization for feature 1 per query_id 

 

 

More specifically, let’s observe the procedure of min_max normalization for the feature 1, for 

every participant. As mentioned before, the Min-Max method transforms the values of the given 
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feature to fit the range of 0 to 1. For the participant with the query_id equal to 3, the values of 

0.8 and 0.4 were normalized to 1 and 0 respectively (Figure 44). 

 

For the participant with the query_id equal to 1, the values of 0.8, 1.1 and 0.4 were transformed 

to 0.57 , 1 and 0 respectively. As we can notice, the procedure is performed per query_id without 

considering the values of the others. 

  

Figure 44: Normalization of feature 1 per query_id  
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5  
Augmenting the functionality of pyPLT 

5.1   Estimator’s performance metrics 

 

Cross-validation is a way to evaluate the performance of an estimator. A model must be capable 

of making useful predictions on yet-unseen data, not just repeating the labels of the samples it 

has already seen. Thus, we split our dataset in two parts, in order to train and evaluate our 

classification predictive model.  

 

A very useful tool for predictive modeling is a Python package called scikit-learn. Scikit-learn 

comes with a number of built-in functions for assessing model performance. For all the 

algorithms, in the function calc_train_accuracy and test, apart from the metric accuracy which 

was the only performance measure in pyplt, we added the calculation of the metric precision, 

recall and F1 score, based on the according functions from the package. 

 

We load a dataset with actual labels and the prediction probabilities for the model. So the 

function inputs are two 1xdimensional arrays: 

 

y_label: which contains the ground truth (correct) target values and 

y_pred: which contains the target values returned by the classifier 
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The (default) return value is a floating type score depending on the metric. 

 

Typically, a threshold is established to determine whether prediction probabilities are 

designated as predicted positive or negative. Let's say the cutoff point is 0.5. In its most basic 

form, we can divide our samples into four groups based on a real label and a predicted: False 

Positive, True Negative, True Positive, False Negative. For example a value of 1 for which the 

model predicts 1 is a True Positive.   

 

 Actual Probability Predicted 

True Positive 1 0.68 1 

False Positive 0 0.52 1 

True Negative 0 0.23 0 

False Negative 1 0.48 0 

Figure 45: Categories of predicted labels 

 

Below is another form of display for representing the four categories: 

 

 

Figure 46: Display of predicted label categories 
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This display is really useful for understanding the calculation of the below measures: Accuracy, 

Precision, Recall, F1 score which are further described below. 

 

5.1.1 Accuracy score 

 

The function computes subset accuracy in multilabel classification: the set of labels predicted 

for a sample (y_pred) must exactly match the corresponding set of labels in y_label. The return 

value is the fraction of correctly classified samples which is an outcome of the below: 

 

Figure 47: Accuracy score formula 

 

where: 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

The best accuracy score is 1 equal to 100%, where every prediction is correct. Though, we 

cannot consider accuracy as the absolute metric. If the model tries to forecast something that 

only happens once in a hundred times, the accuracy is 99 percent, implying that the event never 
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occurred. So we need an additional performance metric in order to capture all the events we 

care about, known as recall or sensitivity. 

 

 

5.1.2 Recall 

 

The classifier's recall refers to its capacity to locate all positive samples. The return value is the 

fraction of correctly classified positive samples which is an outcome of the below: 

 

 

 

An easy way to increase the recall score is to lower the threshold for positive predicted. This 

tactic results in an increase of the number of false positives, so another performance metric 

appears in order to solve this.  

 

 

5.1.3 Precision 

 

Precision refers to the classifier's ability to avoid classifying a negative sample as positive. As 

demonstrated below, the return value is the fraction of predicted positive events that really 

Figure 48: Recall score formula 
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happen to be positive: In binary classification the precision of the positive class is calculated, 

while in multiclass the weighted average of each class is measured. 

 

 

 

Comparing two models, if the first is better at both recall and precision we are more confident 

to choose it. However, if the first model scores better at recall and the second is better at 

precision it gets complicated. In order to ease our decision we use another metric called F1 

score. 

 

 

5.1.4 F1 score 

 

F1 score is also known as balanced F-score or F-measure. This metric combines the precision, 

recall measures and it can be described as a weighted average of them. In the multi-class and 

multi-label case, it is the average of the F1 score of each class with weighting depending on the 

average parameter. 

 

The following formula is used to determine the f1 score: 

F1 = 2 * (precision * recall) / (precision + recall) 

 

Figure 49: Precision score formula 
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We observe that each performance metric has its own set of advantages and drawbacks. A 

variety of metrics exist which can be used to help us decide which is the most appropriate for 

our specific case. Furthermore, it is possible to observe all of the available measures in order to 

choose the best model. 

 

In figures 50 and 51 we can see an example of the calculated performance metrics for two 

models of ranknet algorithm: 

 

 

 

Figure 50: Performance metrics model1 
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5.1.5 Kendall’s tau to a reconstructed ground truth score 

 

Kendall’s tau is a measure of the correspondence between two rankings. The scipy.stats 

kendalltau function has been utilized, which includes the implementation of two variants of 

Kendall’s tau (default Tau-b and Stuart’s Tau-c). They mainly differ in how they are normalized 

within the range -1 to 1. 

 

● Tau-c: preferable for the analysis of data based on non-square (i.e. rectangular) 

contingency tables 

● Tau-b: appropriate if both variables’ scales have the same number of possible values 

before ranking 

● Tau-a: does not account for ties in any way. In the absence of ties, tau-b and tau-c both 

descend to tau-a. 

 

As ties, we describe certain objects that we are incapable of distinguishing a clear preference 

between them, thus we consider them as tying and regard them as equal.  

 

Figure 51: Performance metrics model2 
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The function takes two arguments, x, y, which are vectors of size N and show the ranking of 

the N elements. It returns a correlation float which is the tau statistic and a pvalue float which 

is the value for a test whose null hypothesis is an absence of association. The result is a factor 

between -1 and 1, depending on the level of association. 1 implies 100% negative association, 

while 0 indicates no relationship and a value of +1 shows full agreement. 

 

The following is the definition of Kendall's tau as used in scipy.stats: 

 

tau_b = (P - Q) / sqrt((P + Q + T) * (P + Q + U)) 

 

tau_c = 2 (P - Q) / (n**2 * (m - 1) / m) 

 

where  

 

P,Q: number of concordant/discordant pairs,  

T,U: number of ties only in x/y. If a tie occurs for the same pair in both x and y, it is excluded 

from both T and U. 

n: total number of samples 

m is the number of distinct values in x or y, whichever is smaller. 

 

In train, test functions we have the actual rankings as a list of point pairs showing that the former 

is preferred to the latter. We also have the result as a logical variable, if the first point is 

preferred to the second. Based on these, we define the following function (Figure 52) 
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Figure 52: Kendall_tau implementation 

 

In fact, we create two score variables, one for the actual ranking and one for the prediction, 

which show for each point how many times it is preferred over the other points. Kendall 

function returns the tau statistic, which is calculated by kendalltau function. All the evaluation 

metrics are presented on a scale of 100% (Figures 50, 51). 

 

5.2 NeuroEvolution Algorithm 

 

The main idea is that instead of applying an algorithm for neural network training, that is, for 

calculating parameters such as backpropagation, a genetic algorithm will be used. As a fitness 

function to be minimized, we define the error of the model during the prediction. 

 

At first we create a population of neural networks with the same topology, with the only 

difference being the random weights of the hidden levels. Then, we apply the operators of the 

genetic algorithm (selection, crossover, mutation) and create new generations of neural 

networks. The algorithm terminates when we have an error of 0, or when the maximum number 
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of generations is reached or when the objective function for a number of generations is not 

improved (defined by the user). In order to apply the operators, we combine all the parameters 

(weights and biases) into one vector. After the operators are applied and possibly changes are 

made, we assign the values from the vector to the corresponding parameters of the network. 

 

The genetic algorithm's basic framework is illustrated in Figure 53. At first, a generation of 

neural networks is created. Then, in an iteration loop, we evaluate the candidates in the 

population and select the best individuals for reproduction with the tournament method (we 

compare each individual with two random and select the best) (Figure 56). 

 

 

 

Figure 53: Generation creation & population evaluation 
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Figure 54: Creation of the next generation 

 

For every two people as parents we create two children, who are copies of them. With an r_cross 

probability we will have a parent crossover (ie we will take half the vector from one and half 

from the other, where the intersection point is chosen randomly). Also, with a probability of 

r_mut, a weight can mutate, ie be replaced by a random number. Children are the new 

population for the next generation (Figure 54). If there is no improvement for a number of 

generations, the iteration is stopped. 

 

The objective function calculates the error rate of a model of the population (Figure 55).  

A prediction is performed for every pair of objects and is transformed to a binary value using a 

threshold of 0,5 . The error rate is equal to (1-accuracy score), thus a model with a smaller error 

is better.   
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Figure 55: Objective function 

 

In tournament selection, an individual from the population is randomly selected along with two 

others. The one with the best score (smaller error rate) is returned (Figure 56).  

 

 

Figure 56: Tournament selection 

 

 

In crossover, two children are created. The weights of their parents are assigned to vectors using 

weights2vec auxiliary function. A random value is selected and compared to the r_cross. If the 

random value is smaller than the probability set by the user, then we select a random crossover 

point. The crossover point cannot be at the end of the vector. The first child contains the vector 

values of the first half of parent1 (until the crossover point) and the values of the second half of 

the parent2 (after the crossover point). The other child vice versa. If the initial selected value is 
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larger than the r_cross probability, the children are same as their parents. Finally the weights of 

the new children are transformed from the vector using vec2weights auxiliary function and are 

returned (Figure 57). 

 

 

Figure 57: Crossover operator 

 

In mutation, for all the weights of the model, a random value is selected and compared to the 

r_mut. If the random value is smaller than the probability set by the user, then the weight is 

mutated i.e. changed to a random value. The weights are returned to the model (Figure 58). 
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Figure 58: Mutation operator 

 

As shown above, because the genetic algorithm requires the data to be in a vector, we have to 

place all the weights and biases in a vector and vice versa, set the weights and biases from the 

vector. This is performed with the following auxiliary functions (Figure 59). Weights[0] 

includes the weights and weights[1] includes the biases.  

 

 

 

Figure 59: Auxiliary functions 
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Finally, the neural network creation function (Figure 60) is similar to the case of 

backpropagation: we take the two inputs (preferred and non-preferred data), pass them through 

one or more hidden layers (it is the user's choice) and then calculate their difference and provide 

the output. 

 

 

 

Figure 60: Creation of Network 
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Modifications have been performed in several files of pyplt package in order to adjust the 

neuroevolution algorithm to the gui in both beginners and advanced mode. Advanced users 

have the ability to set the desired values of the parameters of the algorithm (Figure 61), while 

beginners can perform an experiment with the default values (Figure 62).   

 

 

Figure 61: Advanced user's menu Neuroevolution algorithm 
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Figure 62: Beginner’s menu Neuroevolution algorithm 

 

Due to the large number of neural networks that are created in each generation, for which we 

need to evaluate their performance, the algorithm is quite slow. Further improvements will be 

discussed in the last chapters. Regarding the performance of NEAT, as it contains randomness 

multiple experiments have been performed. A few of the models that were produced from 

NEAT are included in the Appendix section, along with the inferred models from 

Backpropagation, RankNET and RankSVM. The same dataset was used for all the experiments.  
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6  
Usability testing of pyPLT 

6.1   Method of testing 

 

A usability testing survey has been conducted in order to summarize the experience of the 

participants while using the Preference Learning Toolbox. Several users have participated to 

the survey, from multiple backgrounds. The data was collected from ten participants in total 

(4 females and 6 males) aged between 24 and 36. 

 

The participants received a list of four tasks along with a small questionnaire and an executable 

file of the PyPLT.  The first task involved the loading of a simple dataset via beginner mode in 

order to familiarize with the tool. The users loaded three datasets of five, ten and fifty thousand 

registries and wrote down their observations about the process. In the second task, they loaded 

a dataset of 100 registries and performed an experiment via beginner mode using RankNET 

algorithm. They saved the experiment report as well as the derived model. Also, they kept a 

screenshot of the evaluation metrics of the model during training and testing. 

 

The following tasks were a bit more advanced. In the third task, the participants had to load a 

dataset containing an extra column with query id values. A selection of the proper pre-

processing option was important in order to load the dataset properly, without missing columns. 

They wrote down the minimum & maximum values per query id and feature. Then, they 

performed min-max normalization per query-id to the first feature.  They ran the experiment 
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using RankNet preference learning algorithm and wrote down the normalized values of the 

selected feature. Task four was the most demanding, as the users had to perform an experiment 

with Neuroevolution algorithm, by adjusting its parameters and selecting the Holdout 

Evaluation method.  

 

After completing the assigned tasks, the participants filled a brief usability questionnaire. PLT 

questionnaire contained a few questions answered on a five-point scale (e.g., strongly agree, 

agree, neutral, disagree, and strongly disagree) along with some open ended questions.  

 

6.2  Analysis 

 

The first questions were helpful in order to summarize the users’ background. The majority of 

them answered "Neutral" "Agree" and "Strongly Agree" to the question whether they are 

familiar with computer science. The next question was "I am familiar with Machine Learning". 

Users who answered "Strongly disagree", "Disagree" or "Neutral" could be considered novice 

and those who answered  "Agree" or "Strongly Agree" could be considered experienced, as they 

are familiar with machine learning concepts. Regarding the use of preference learning 

algorithms most of them answered "Strongly disagree" and "Disagree", thus we cannot select 

between relevant and irrelevant participants to preference learning. Furthermore, only one of 

our participants had previous experience with PyPLT and thus we cannot divide our participants 

between experienced and novices. The background of the users is displayed in figure 63. 
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Figure 63: Users background 

 

As mentioned previously, most of the participants consider themselves familiar with computer 

science. Regarding the open ended question about their field of studies, six of them study in 

fields concerning computer science, such as computer engineering, informatics, game research 

and affective computing. Three of the users are closely related to computer science, in the field 

of engineering, such as electronic, environmental and civil engineering. One of them is studying 

applied mathematics. Figure 64 shows the field of studies of the participants. 

 

 

Figure 64: Field of studies 
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Figure 65: Users experience chart 

 

 

Figure 65 shows the percentage of positive, negative and neutral responses to the questions 

related to the participants experience after using PyPLT. The vast majority of responses are 

positive as the highest percentages are achieved from answers “Agree” and “Strongly Agree”. 

Specifically, eight users responded that they were satisfied with how easy it is to use PyPLT 

and six agreed that PyPLT has all the capabilities they expect it to have. In addition, all of them 

were generally satisfied with the toolbox.  
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Figure 66: Task completion chart 

 

 

Figure 66 shows the percentage of responses to the questions related to the task completion. 

Seven users agreed that the information in PyPLT was helpful to complete the tasks and that 

they were able to complete them quickly. Five of them answered that they needn’t study a lot 

prior to using the toolbox, along with two participants staying neutral. At the question “I was 

able to complete all the given tasks” there are six neutral answers which is explained with the 

open-ended question “Is there a task you couldn’t complete?  Please specify”. Most of the 

participants found difficulty in locating the normalized values during task 3. Only two of them 

managed to locate the normalized values. Furthermore, when comparing the users’ screenshots, 

it was noticed that a participant had performed normalization to query_id instead of feature 1. 
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6.3   Efficiency and Users feedback  

 

In the first task, participants loaded the datasets of five, ten and fifty thousand registries. This 

facilitates the use of large datasets, as they can be loaded and used efficiently for processing 

with PyPLT. None of the users commented on the dataset loading, as they didn’t face any 

problem. Overall, the users were satisfied of PyPLT and made interesting comments regarding 

the addition of functionalities to the toolbox and the improvement of its features.  

 

The most common response to the open-ended question “What did you most like about PyPLT” 

was the Graphical User Interface. Nine out of ten users answered that the GUI was very 

informative and guided them through the experiment. Also, a participant commented positively 

on the speed of the process, as he noticed that there is no delay between the steps in advanced 

mode. Regarding the question “What did you least like about PyPLT”, half of the users 

answered the normalized values, as they didn’t show up in the final report. One of them stated 

that the query_id should not appear among the features in the normalization step, as it can be 

confusing for the user and there is no need of normalizing the query_id values.  

 

Furthermore, in the question “Which feature of the PyPLT would you improve” most of the 

improvements concerned task 3 and feature normalization. Some of the participants suggested 

the display of the normalized values in a separate window right after the process in order to 

reassure that it has been performed correctly. Others commented that the values could show up 

in the final report, in order to be able to save them along with the report. A participant suggested 

that the query_ id values should be hidden as an option among the features for normalization in 

the optimization step. Regarding the graphical interface a user proposed another design, in order 

to view all the functionality without having to maximize the window. Also, another suggestion 

was in advanced mode, when completing the experiment, by closing the last window all the 

previous windows should close and return to the first screen. Regarding the evaluation metrics, 

a user noticed that Kendall's tau doesn't correspond to any ratio and should be written as a 

fraction instead of a percentage. 
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Finally, interesting thoughts appeared regarding the question “Which functionality would you 

add to pyPLT”.  Many users noticed that the experiment report and the produced model can 

only be saved in comma separated value files. They proposed a nicer display of the report, as it 

could be more comprehensible if the file could be saved in pdf or as an image. Furthermore, 

they suggested a graphical representation of the model. A user observed that when saving a 

report or a model, the default title of the file contains numbering and suggested more 

appropriate default names such as the simplest form report and model (Figure 67). At last, a 

participant proposed the clustering for the automatic recognition of categories within the 

sample.  

 

  

 

Figure 67: Default name when saving a report/model 
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7  
Discussion & Conclusions 

7.1 Limitations of PyPLT 

 

PyPLT offers a variety of preprocessing options, feature selection and popular algorithms for 

each stage of the modeling process. In order to produce accurate and efficient models, a 

combination of proper dataset processing, selection and careful parameterization of the 

preference algorithm is necessary. The procedure of choosing the appropriate dataset 

processing and algorithm is important and depends on the dataset and the aim of the experiment. 

Lack of dataset preparation or the selection of an unsuitable method can lead to the construction 

of models with reduced accuracy. 

 

The input of the toolbox is a single format file for problems where a total order of objects exists, 

or a dual format where a partial order of objects is known. In both cases, the files must be of 

comma-separated-values, containing only numeric values. In addition, the output of PyPLT, 

which is an experiment report and the derived model is also in csv format. This fact limits the 

capabilities of the tool, as it restrains the use of image or video as a dataset and thus the save of 

the final output.  
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Another possible limitation could be the constraint of time during Neuroevolution algorithm. 

Due to the nature of the preference learning algorithm, it is not possible to predict the duration 

of the execution. As a large number of neural networks are created in each generation, for which 

we need to evaluate their performance, the algorithm is quite slow. A model could be derived 

from the first generations if the minimum error is reached, or the exploration may continue for 

dozens of generations, if the algorithm continues finding better descendants. 

 

7.2 Future Work 

 

 PyPLT is an open source software, designed to facilitate further development and 

improvement. Thus any researcher or user can add or improve the functionality of the toolbox. 

During the pre-processing stage, additional methods could be added regarding feature selection 

as well as more feedback on each step. As for the modelling stage, more preference learning or 

deep learning algorithms could be added. By improving the tool’s ability to prepare the dataset 

and augmenting the range of available algorithms, the construction of more accurate models is 

reassured.  

 

Along with the addition of new algorithms, methods and other options, an interesting addition 

would be to handle 2D data such as images and videos as input. This would require 

enhancements to the deep learning capabilities of PyPLT by integrating convolutional layers 

with ANN models. Furthermore, relating to the output of the toolbox, the derived model could 

be exported in a graphical representation as an image along with the experiment’s report. 

 

Future work on PyPLT could include extending the tool to allow saved (pre-trained) models to 

be loaded into the toolbox to predict new instances and continue training. The feedback of pre-

trained models, along with their exposure to new data would result to even more accurate and 

effective models.  

Based on the analysis of the user study, future development should include improvement 

regarding the display of feature normalization during pre-processing. In addition, the methods 

of saving the experiment report or the model should be further enriched as marked by the users.  
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7.3 Summary of Contributions - Conclusions 

 

PyPLT is an accessible software to researchers of affective computing and human computer 

interaction at large. Through its graphical user interface, users without prior experience can set 

up and run an experiment quickly. Furthermore, developers have the ability to modify or 

improve the toolbox. Given the importance of ordinal labelling and the lack of tools for handling 

ordinal datasets, PyPLT is an important addition as it is designed specifically for ordinal data 

modelling. 

 

The current thesis updated and extended the toolbox framework by investigating the errors 

noted by the users. Large datasets can be processed, a variety of evaluation metrics is offered 

along with a new preference learning algorithm. PyPLT has taken one step forward in ordinal 

data processing and the production of more reliable and valid predictive models. Depending on 

the nature of the data and the use of the inferred model, researchers have the ability to select 

the proper preprocessing and modelling. Also, the ground for isolating groups of data has been 

prepared, as the toolbox receives and processes parts of data, without affecting the whole 

dataset. 

 

The usability testing confirmed the ease of use of PyPLT. Most of the participants were overall 

satisfied of the graphical user interface and the toolbox, as they managed to complete quickly 

most of the assigned tasks. 
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Appendix 

 

In the following tables there is an overview of the evaluation metrics during testing of the 

computational models created using pyplt. The Sonancia Audio Clipdataset [31] was used in 

the experiment with the algorithms Backpropagation, RankNET, RankSVM and NEAT. 

 

 Backpropagation RankNET RankSVM 

Accuracy 51.68% 82.7% 49.5% 

Precision 100% 50.26% 42.70% 

Recall 51.68% 87.8% 84.04% 

F1 score 68.14% 63.94% 56.63% 

Kendall Tau 33.60% 75.7% 74.63% 

Figure 68: Performance of models derived from Backpropagation, RankNET, RankSVM 

 

 NEAT 1st model NEAT 2st model NEAT 3st model 

Accuracy 52% 55.8% 81.57% 

Precision 40.32% 38.09% 100% 

Recall 84.26% 86.74% 81.57% 

F1 score 54.54% 52.94% 89.85% 

Kendall Tau 76.24% 78.44% 66.54% 

Figure 69: Performance of models derived from NEAT algorithm 

 


