
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
TECHNICAL UNIVERSITY OF CRETE

Thing Descriptions for the
Semantic Web of Things

Aimilios Tzavaras

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Committee
Supervisor: Euripides G.M. Petrakis, Professor
Michail G. Lagoudakis, Associate Professor
Vasileios Samoladas, Associate Professor

Chania, April 2022



Abstract

The Web of Things (WoT) initiative aims at unifying the world of interconnected devices
over the Internet. The Web of Things (WoT) Architecture is a recommendation of W3C
that suggests a model for integrating Things (e.g. devices) in the Web. In addition to W3C,
OpenAPI specification provides a method for documenting RESTful services, so that a
client can comprehend their purpose and use them in applications. This work applies the
OpenAPI service description framework to Web objects (i.e. Things). As a result, OpenAPI
descriptions of Web Things provide complete documentation of the services exposed by
Things and their capabilities. The resulting descriptions can be converted to ontologies in
order to allow a machine to better understand the inherent meaning of Thing
descriptions and interact with them. Then, Thing descriptions exposed on the Web can
be easily discovered, queried by Semantic Web query languages (e.g. SPARQL) and
checked by reasoners (e.g. Pellet). The approach is compared to the WoT Thing
Description (TD) information model of W3C in terms of completeness of each
representation. This work also proposes an implementation of a proxy service for the
Web of Things based on the principles suggested by the WoT Architecture model of
W3C. The implementation is compared against existing WoT implementations selected
from the Web based on the requirements defined by the W3C WoT Architecture.

i



Acknowledgements

This thesis would not have been possible without the help of several people who
contributed in the preparation and completion of this study.

I would really like to express my sincere appreciation to my advisor, Professor
Euripides G. M. Petrakis, for his continuous guidance, advice and support through all the
stages of this thesis. I am extremely grateful for being given the opportunity to work on
this very interesting field of research.

Moreover, I am grateful to Nikolaos Mainas for his great suggestions and the
thoughtful discussions we had together.

I would also like to thank Associate Professor Michail G. Lagoudakis and Associate
Professor Vasileios Samoladas for their constructive comments and participation in the
evaluation committee.

I would also like to thank all the members of the Intelligence Lab - especially
Konstantinos Tsakos and Fotios Bouraimis - for their excellent communication and
generous support.

Most of all, I would like to thank my family and my partner, Inesa, for their enormous
help, understanding and support.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . .. . . . . . . . 2
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 8
2.1 Web of Things (WoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Web of Things (WoT) Architecture . . . . . . . . . . . . . . . . . . . . . 9
2.3 Web Thing Model (W3C submission) . . . . . . . . . . . . . . . . . . .                    15
2.4 Service-Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . 19
2.5 REST-based services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Hypermedia-driven APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 SOA and Cloud Computing . . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 WoT and Cloud Computing . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Semantic Web and Linked Data . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Interface Description Languages . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.1 WSDL and SAWSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9.2 WADL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .                    25
2.9.3 OpenAPI Specification, RAML, API Blueprint, AsyncAPI          25

2.10 Semantic OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11 Ontologies and vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11.1 Semantic Sensor Network Ontology (SSN) . . . . . . .                   33
2.11.2 Thing Description (TD) Ontology . . . . . . . . . . . . . . . . .                    34



2.11.3 Web of Things (WoT) Security Ontology . . . . . . . . . 35
2.11.4 Data Schema Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11.5 Hypermedia Controls Ontology . . . . . . . . . . . . . . . . . . 36
2.11.6 Hydra Core Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11.7 Schema.org vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.11.8 OpenAPI Ontology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Web of Things implementations 45
3.1 Thingweb node-wot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Webofthings.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Web Thing Model service (WTMs) . . . . . . . . . . . . . . . . . 47

3.3.1 Web Thing Proxy . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 WTMs implementation . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Comparing WoT implementations . . . . . . . . . . . . . . . . . . 54
3.5 WTMs Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Integrating WTMs in a SOA Architecture . . . . . . . . . . . . 57

4 OpenAPI Thing Descriptions for the Web of Things 60
4.1 Semantic OpenAPI Thing Descriptions . . . . . . . . . . . . . 61
4.2 OpenAPI Thing Description examples . . . . . . 65

4.2.1 Smart door actuator . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 DHT22 sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 OpenAPI Web Thing template . . . . . . . . . . . . . . . . . . . . . 75
4.4 A mechanism for generating OpenAPI Thing Descriptions                  83
4.5 Ontology translation process . . . . . . . . . . . . . . . . . . . . . .                               87
4.6 Service discovery using the OpenAPI ontology . . . . 89

5 Comparing W3C TDs with OpenAPI Thing Descriptions 91
5.1 W3C Thing Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Comparison of the TD and OpenAPI approaches . . . . 97

5.2.1 Comparison based on JSON descriptions . . . . 97
5.2.1.1 Document specificity . . . . . . . . . . . . . . . . . 98
5.2.1.2 Protocol support . . . . . . . . . . . . . . . . . . . . . 99
5.2.1.3 Security support . . . . . . . . . . . . . . . . . . . . . 100
5.2.1.4 Hypermedia controls support . . . . . . . . 101
5.2.1.5 Events and subscriptions support . . . . 104
5.2.1.6 Data schemas support . . . . . . . . . . . . . . . 107
5.2.1.7 Semantic extensions . . . . . . . . . . . . . . . . . 108
5.2.1.8 General aspects . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1.9 Comparison conclusions . . . . . . . . . . . . . 110

5.2.2 Comparison based on ontologies . . . . . . . . . . . . 111
5.2.2.1 WoT concepts support. . . . . . . . . . . . . . . . 111
5.2.2.2 Security support . . . . . . . . . . . . . . . . . . . . . . 112
5.2.2.3 Hypermedia controls support . . . . . . . . . 113
5.2.2.4 Events and subscriptions support . . . . .                           113
5.2.2.5 Protocol support . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2.6 Data schemas support . . . . . . . . . . . . . . . . 114



5.2.2.7 Comparison conclusions . . . . . . . . . . . . . . 114

6 WoT Architecture implementations 116
6.1 Comparing WoT implementations . . . . . . . . . . . . . . . . . . . 116

7 Conclusions and Future Work 119
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix 123

Bibliography 148



List of Figures

2.1 Thing Description (TD) document structure . . . . . . . . . . . . . . . . . .       14
2.2 RDF data model . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . 23
2.3 Swagger Editor preview . . . . . . . . . . . . .. . . . .. . . . . .. . . . . . . . . . . . . . . 27
2.4 Swagger UI preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 OpenAPI document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 SOSA and SSN ontology modules . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34
2.7 The Hydra Core Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 OpenAPI 3.0 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . 42
2.9 OpenAPI 3.0 Security class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 43
3.1 Web Thing Proxy service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 iSWoT architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . 58
4.1 Actuator class in SOSA ontology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Smart door service endpoints (1)  . . . . . . . . . . . . . . . . . . . . . . . .. .  . . . 68
4.3 Smart door service endpoints (2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 DHT22 sensor service endpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 74
4.5 OpenAPI Web Thing template structure . . . . . . . . . . . . . . . . . . . . . .. 83
4.6 Generating an OpenAPI Thing description  . . . . . . . . . . . . . . . . . . . . 84



List of Tables

2.1 Well-known Operation Types for the Web of Things . . . . . . . 12
2.2 OpenAPI extension properties for semantic annotations . . . 32
3.1 Comparison of WoT reference implementations . . . . . . . . . . .                55
3.2 Performance of WTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Application protocols supported by the OpenAPI approach

and the W3C TD approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             99
5.2 Security schemes supported by the OpenAPI approach

and the W3C TD approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           100
5.3 Comparison results based on the JSON descriptions of the

two approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            110
5.4 Comparison results based on the ontologies of the two

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . 115
6.1 Comparison of reference implementations based on W3C

Architecture requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 117
6.2 Comparison of reference implementations based on the W3C

Architecture operation types    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          118



1
Introduction

Nowadays, devices have become part of people's daily lives in a variety of fields, such as
healthcare, transportation, agriculture, education, environmental purposes, monitoring,
physical exercise and many other application domains. Smart cities, smart buildings and
smart factories are based on Internet of Things (IoT) devices and companies constantly
develop IoT applications. Today, there are more than 20 billion interconnected devices in
the world and the number is still growing rapidly.

The use of Web technologies is now being applied for the development of services
and applications in the IoT field. Application Programming Interfaces (APIs) have now
dominated the Web. Research has led to the conclusion that the interconnection of
devices can be facilitated using existing Web technologies. The Web of Things (WoT)
initiative [1] is an evolved version of the Internet of Things that aims at unifying the world
of interconnected devices over the Internet. The term Thing may refer to any device: a
temperature or proximity sensor, a window actuator, a coffee machine, a smart TV, a
Wi-Fi connected garage door or a smart car. WoT suggests that each Thing should be
published on the Web, thus advertising its identity and properties. As a result, a Thing
can be discovered by Web search engines and reused in different applications.

Cloud Computing [2] allows access to unlimited computing resources that could be
managed effectively. Individuals and organizations can make use of scalable IT
infrastructures at lower costs while processing power can be accessed based on
demand and budget allowance. These advantages make Cloud Computing an ideal
application development environment for the IoT and the WoT.

WoT and cloud computing are complementary technologies. Cloud services can
be built around IoT devices based on the principles of WoT. As the number and diversity
of cloud providers and IoT devices are increasing, the need for standardizing
technologies that publish WoT applications and services to developers is becoming of
crucial importance for their adoption and market success. In this context, Web services
exposed by IoT devices should be properly described and documented, so that any
authorized client (i.e. user or service) can use them.

1



1.1   Background and Motivation

WoT is a relatively new concept. There is no universal application layer protocol to
enable Things and services to communicate. Devices may implement any protocol from
a wide range of application-specific protocols (e.g. Bluetooth, MQTT, ZigBee, LoRa, etc.).
WoT suggests that communication should be protocol-independent. In fact, IoT protocols
should be translated to a common Web protocol (e.g. HTTP) to enable communication; in
this way, implementations do not depend on particular IoT protocols. Existing standards
(such as HTTP and REST APIs) should be adopted to implement the integration of Things
(e.g. devices) within the Web. The fact that Web technologies are now very popular in the
world of programmers facilitates the development of new frameworks and tools for WoT.

The Web of Things (WoT) Architecture recommendation of W3C [3] defines an
abstract architecture and sets the requirements for interacting with Things in the Web
using the REST architectural style [4]. The WoT Thing Description (TD) of W3C is a JSON
template representation of Thing properties (e.g. purpose, data types and operations).
TDs are used to expose Thing metadata on the Web, so that other Things or clients (i.e.
services or users) can interact with them. In fact, TDs are gradually becoming popular;
the effort is supported by a set of developer tools and a list of candidate
implementations1. The WoT Architecture suggests that TDs should be extended with
semantics to enhance their information content and make them
machine-understandable. The resulting representation is JSON-LD [5], which is actually
equivalent to an ontology. The motivation for using ontologies to describe Things is that
they are closer to the way machines analyse and comprehend the content of TDs. It is,
therefore, easier for a machine to discover similarities in TDs and search the Web for
Things with the desirable properties (e.g. using ontology query languages, such as
SPARQL [6]) or, apply semantic inference in order to detect services with inconsistencies
(e.g. using ontology reasoners, such as Pellet [7]). Enabling automatic synthesis of Things
in applications could be possible as well.

Nowadays, thousands of APIs are provided publicly (without any cost). For instance,
17 million developers use the Postman2 API Platform to build, test, debug and monitor
APIs, and thousands of these APIs are available on Postman’s Public API Network.
ProgrammableWeb3, the most well-known Web service directory, has registered more
than 24000 public services. Alongside, research has focused on how to efficiently
describe any aspect of a service (functional or non-functional) over the years [8]. UDDI
(Universal Description Discovery and Integration) [9], WSDL (Web Service Description
Language) [10] were introduced as a first approach towards the syntactic description of
services. SAWSDL [11], OWL-S [12] and other approaches were proposed as an effort to
enrich the existing service descriptions with semantics based on Semantic Web
technologies. However, many of these approaches became obsolete, as new
technologies and architectural styles (REST [4]) emerged. The demand for better service
descriptions and consequently effective discovery led to new research efforts, such as

3 http://www.programmableweb.com/
2 https://www.postman.com/
1 https://www.w3.org/WoT/developers/

2

https://www.postman.com/


WADL (Web Application Description Language) [13], Hydra [14], OpenAPI Specification
(OAS) [15].

The emergence of REST generated new difficulties in the representation of
hypermedia-driven APIs [16]. In fact, hypermedia-driven APIs are consistent with the idea
of the dynamic discovery of resources at runtime (referred to as HATEOAS), which is
actually a constraint of the REST architectural style. According to the HATEOAS principle,
the interaction of clients with REST applications should be driven by hypermedia.
Hypermedia controls are used to guide clients on what resources they can retrieve and
on what operations (i.e. requests) they may perform. In other words, they can provide
clients with the information of available state transitions in an application and show
clients how they can perform these transitions. Applications can drive clients to a desired
outcome, so they are named as hypermedia-driven applications or APIs. For example,
hypermedia controls can be located in the headers of an HTTP request or response or
inside a JSON payload in the form of links. These links can instruct clients on how to
retrieve additional resources and also inform them on how these resources are related to
the original ones (e.g. an additional resource could be documentation for the original
resource).

To increase the adoption of services for WoT by software developers and
enterprises, these must be accompanied by appropriate service descriptions. Services
need to be exposed using API specifications and thus introduce themselves to users or
other services in order to be able to use them. In other words, services should make their
APIs and functionality public and accessible to others. Likewise, the functionality of
devices and thus their exposed services must be properly defined and documented in
detail, in order to be useful to users and services. Developers and cloud providers
usually describe their services in plain text (i.e. code documentation). However, service
definitions should no longer be provided in plain text format, but in a format that is
understandable by both humans and machines. In addition, web services need to be
described in a way that eliminates ambiguities, so that they can be uniquely identified by
users or machines. As long as devices and their services are accurately defined, they can
be discoverable and easy to use when published on the Web. Consequently, the need
for efficient and accurate service description and discovery for Things seems to be a
significant challenge for the WoT research area.

1.2   Problem Definition

The interconnection of Things is commonly supported by sensor-specific protocols (e.g.
Bluetooth, Zigbee, etc.) rather than by HTTP directly. The Web of Things approach by
W3C and other investigators suggests that the interconnection of Things does not
depend on peculiarities of IoT protocols that would require an extra layer of complexity in
an implementation. Ideally, the Web of Things approach requires that Things receive
(each one) an IPv6 address and have a Web server installed. However, this is not always
possible, especially for resource-constrained devices. Although lightweight Web servers4

4 https://www.linux.com/news/which-light-weight-open-source-web-server-right-you/

3



can be embedded in small devices, IoT devices usually feature limited resources and the
solution is not optimal in terms of autonomy and cost. A workaround to this problem is to
deploy a Web proxy on a server (or on a gateway) that keeps the virtual image of each
Thing (e.g. a JSON representation). Web proxy implements a directory (e.g. a database)
with all Things (i.e. instances, their types, descriptions and services supported). Things
become part of the Web and can be accessed via their Web Proxy (i.e. they can be
published, consumed, aggregated, updated and searched for). Web services exposed by
Things can then be discovered by users or other services. Therefore, Thing descriptions
become an important component of any architecture intended for the WoT, so that
devices and their APIs become discoverable. Moreover, the Semantic Web of Things
(SWoT) [21] is the semantic extension of WoT that allows Things to become machine
discoverable on the Web using Semantic Web tools, such as SPARQL.

The focus of this work is: a) on designing and implementing a Web Proxy service for
exposing Things on the Web, and b) on defining Web Things and their functionality, by
providing complete documentation of the services exposed by Things. A Web Thing
Proxy service must be based on the principles of the WoT initiative and more specifically
on the requirements of the relevant W3C specifications (i.e. Web of Things Architecture,
Web Thing Model, etc). The proposed approach for defining the functionality of Things
should be universal (i.e. applicable to any Thing); it should describe all the operations
offered by a Thing regardless of its physical or other characteristics. The detailed
description of these services allows the implementation of efficient and accurate service
discovery mechanisms for Things and their functionality. Provided that devices
themselves can be considered as Web services, they need to be described in a way that
eliminates ambiguities and provides descriptions that are both uniquely defined and
discoverable. This would allow users and machines to know all the service operations
they can perform on a device and how to interact with it. Therefore, a description
language is required that would allow for both syntactic and semantic description of
services exposed by Things. Existing description languages and approaches intended for
describing device functionality are reviewed and their features and characteristics are
analysed in order to determine their suitability for the description of Things and their
services.

OpenAPI (formerly known as Swagger) [15] suggests a description format for REST
APIs. It is a mature framework providing both, human and machine-readable descriptions
of Web services. It can be enriched with text descriptions, so that users can easily
discover and understand the service and interact with it. Given an OpenAPI service
description, a client can easily understand and discover the functionality of a Thing and
how to interact with it with minimum implementation logic. OpenAPI provides the
needed information about service endpoints, service operations, the exchanged
message formats and the conditions which need to be fulfilled before invoking the
service. Finally, OpenAPI is supported by a complete tools palette5 (e.g. it provides tools
for interactive documentation and client SDK generation).

OpenAPI is mainly focused on human-readable service descriptions. An OpenAPI
service description needs to be formally defined and its content be semantically
enriched in order for a machine to understand the meaning of the description. Semantic
OpenAPI [17] has proposed that OpenAPI service descriptions can be semantically

5 https://openapi.tools/

4



annotated by associating OpenAPI entities to entities of an ontology (e.g. domain
ontology). This work utilizes the Semantic OpenAPI approach, so it can be adopted for
the description of devices and their exposed REST APIs. It proposes a particular OpenAPI
Thing template approach for describing any device as a service along with a mechanism
for generating OpenAPI Thing descriptions based on user input given in JSON format. It is
an alternative to the TD of the W3C Web Architecture and offers a more informative and
elaborate mechanism for the description of Things exposing their functionality in the
Web as RESTful services. However, both representations share common features and
serve the same purpose (i.e. discovering Things in WoT) which are reviewed in this work.

The reasons that cause ambiguities in OpenAPI descriptions were analysed in [17].
For example, similar to Thing Description, the same property may appear with different
names within the same OpenAPI document or, its meaning may not be defined at all. [17]
showed that, in order to eliminate ambiguities, each ambiguous property must be
semantically annotated and mapped to a semantic model (e.g. a vocabulary or ontology).
This work suggests that it is plausible to transform semantically enriched OpenAPI
descriptions to ontologies, as this enables application of state-of-the-art querying
languages (e.g. SPARQL) for service discovery and of reasoning tools (e.g. Pellet) for
detecting inconsistencies and inferred relationships in service descriptions. OpenAPI
ontology [17, 18] incorporates features of Hydra [14] for modeling service operations and
SHACL [19] for validating Schema descriptions against the ontology.

1.3   Proposed Solution

This work proposes an implementation of a proxy service for WoT and also proposes the
OpenAPI Specification6 for the description of Things in the WoT. It follows some of the
basic requirements of the WoT Architecture, which is a W3C recommendation, but it
does not adopt TDs for the description of Things and the interaction with them. Although
the Web Thing Model submission of W3C is not a recommendation, it laid the
foundations for our implementation of a Thing description approach and a REST API
implementation for the WoT. This work builds on the REST API (i.e. endpoints, payloads,
etc) proposed in the Web Thing Model submission and adopts the OpenAPI Specification
as the main description language for devices and their exposed services. OpenAPI
specification provides a method for documenting RESTful services so that a user or
another service can comprehend their purpose and reuse them in applications. This work
applies the OpenAPI service description framework to Web objects (i.e. Things) using a
common description template. As a result, OpenAPI descriptions of Web Things provide
complete documentation of the services exposed by Things and of their capabilities. The
resulting descriptions can be converted to an ontology to allow a machine to better
understand the inherent meaning of Thing descriptions and interact with them. Then,
Thing descriptions exposed on the Web can be easily discovered, queried by Semantic
Web query languages (e.g. SPARQL) and checked by reasoners (e.g. Pellet) for

6 https://www.openapis.org/

5



consistency or, for inferencing hidden properties. The approach is compared to the WoT
Thing Description (TD) model of W3C in terms of completeness of the representation.

1.4   Contributions of the Work

The major contributions of this thesis can be summarized as follows:

● It proposes an implementation of a Web Thing Proxy service that exposes Things
on the Web. This is a novel implementation based on the WoT Architecture of
W3C and builds on the REST API proposed by the Web Thing Model of W3C; it
implements all the model’s operations on Things using HTTP. It is compared
against existing implementations from the Web.

● It presents a comprehensive review of existing approaches used for service
description. This review also includes related technologies such as SOA, cloud
and semantic Web technologies. A critical analysis of each technology is
presented in this review, by highlighting the characteristics that restrict the
adoption or limit the usefulness of each approach.

● It proposes that the Semantic OpenAPI Specification of [17] should be used for the
description of Things and of their functionality. It is an extension to the OpenAPI
specification and it eliminates any ambiguities in service descriptions by
semantically enriching them. Therefore, it provides human and machine readable
service definitions.

● It demonstrates how Semantic OpenAPI can be actually applied to describe
Things and their functionality without ambiguities. A specific template description
for Things is proposed based on the idea of mapping Thing properties to OpenAPI
properties.

● It introduces a mechanism for generating OpenAPI Thing Descriptions from user
input. A user that is aware of the device characteristics can provide all the
necessary information for the device and its functionality, including the endpoints,
the HTTP methods, the data schemas (e.g. request body and response body
schemas) required for the service operations, etc. Therefore, all this information
can be included in the OpenAPI definition of the Thing, enriched with semantic
annotations that further describe concepts such as sensor, actuator, temperature,
etc.

● It proposes that OpenAPI Thing descriptions can be transformed to ontologies by
adopting a mechanism provided from previous work. Thus, descriptions can take
advantage of Semantic Web query languages for service discovery and reasoners
for consistency or for inferencing hidden properties. A machine will be allowed to
better understand the inherent meaning of Thing descriptions and interact with
them. Thing descriptions exposed on the Web can be easily discovered by both
users and machines, thus realizing the vision of SWoT. Some indicative SPARQL
query examples on the generated ontologies and their results are also
demonstrated.

6



● It presents a critical comparison between the W3C Thing Description (TD)
approach and the OpenAPI Thing description approach proposed in this work,
based on their capability to fully describe the functionality of a Thing. The two
approaches are compared in terms of completeness of the representation.

1.5   Thesis Outline

Chapter 2 provides a brief introduction to basic concepts and technologies which are
used throughout the thesis. In addition, it summarizes and presents the most common
approaches for the description of Cloud services, including approaches used for
describing Things and their functionality. Chapter 3 presents a Web Proxy
implementation for the WoT and a Web service implementation of the Web Thing
Model’s REST API. This service implementation is compared with existing WoT
implementations in Chapter 3 based on the requirements of the Web Thing Model; W3C
presented this model prior to introducing the WoT Architecture. Chapter 4 proposes a
detailed solution for Thing descriptions. Firstly, it identifies the reasons that led us to the
adoption of the OpenAPI Specification as well as the Semantic OpenAPI Specification. It
demonstrates how our approach can be applied to real-world devices by providing Thing
description examples for specific devices. Then, it introduces the common OpenAPI
Thing template that applies to all Things and their functions, regardless of their
characteristics. Moreover, it describes a mechanism for automatically generating Thing
descriptions based on the input given by a user in JSON format. Chapter 5 reviews the
W3C Thing Description approach and our proposed solution, and compares the two
approaches in detail, taking into consideration the JSON descriptions and the ontologies
provided by every approach. Chapter 6 compares the WoT implementations described in
Chapter 3 based on the requirements of the WoT Architecture of W3C (i.e. a
recommendation), thus reconsidering the results of Chapter 3. Finally, conclusions and
issues for future work are discussed in Chapter 7.

7



2
Background and Related Work

2.1   Web of Things (WoT)

The Web of Things (WoT) concept aims at integrating objects (Things) within the Web so
that they can become part of the Web and communicate with each other (and also with
clients). Devices used in everyday life (such as smartphones, cars, coffee machines,
washing machines, humidity sensors, etc) should communicate with the Web using
existing Web protocols rather than application-specific protocols. For instance, common
Web protocols (e.g. HTTP, HTTPS, Websockets, etc.) can be used for the communication
of Things with applications, while data-interchange formats (JSON, XML, etc.) can be
used for the representation of Things (i.e. of their functionality, identity, purpose and of
data they provide). Even simple technologies like HTML (Hypertext Markup Language)
could be used for the representation of Things in a webpage, for example, to create User
Interfaces (UIs) for Things [20].

The actual functionality that Things offer (i.e. by means of Web services) can be
implemented using the REST architectural style; each Thing may expose a REST API that
implements the operations supported by the Thing. Alongside, WoT may utilize
additional useful technologies for the interaction with Things such as API security
mechanisms (e.g. Basic authentication, API key authentication, OAuth2.0 protocol) for
authentication and authorization, mechanisms for service composition and synthesis of
Things in applications (e.g. Node-RED), etc. To be scalable, WoT implementations can be
deployed in the cloud. WoT leverages Cloud computing which is capable of providing IoT
solutions that may involve thousands to millions of devices.

Things may use any protocol (e.g. ZigBee, Wi-Fi, Bluetooth, 6LoWPAN, 3/4/5G,
NFC) to communicate. HTTP (HyperText Transfer Protocol) is an application layer protocol
that is widely used to support RESTful communication of services in the cloud and over
TCP. Due to its high overhead (i.e. high power consumption, header size and complexity
of handshakes), HTTP is not suitable for the IoT and resource-constrained devices that

8



exchange small amounts of information and are not connected to a sustainable power
source. It implements a request-reply communication where the server responds to the
requests of a client. This is good for communication between services but not for devices
that send information to a server without a prior request. CoAP is a lightweight protocol
over UDP. It is similar to HTTP (e.g. with a similar command set) but for
resource-constrained environments. In the following, we assume that communication in
the Web of Things is realized using an HTTP protocol following the basic assumption of
the Web of Things and W3C.

As long as Things get connected to a network, it is plausible to assume that Things
also connect to a protocol translation service whose role is to convey Thing related data
(i.e. identifier, description and payload) to the application using HTTP and JSON.
Communication of Things and services in WoT relies on common IoT protocols. Things
can become part of the Web and be accessible via a Web Proxy. The operations that
Things may support can be regarded as Web services that can be advertised, discovered
and used by clients (users or services) that search for them on the Web.

The Semantic Web of Things (SWoT) [21] is the semantic extension of WoT that
suggests the design of interoperable IoT services on the Web using Semantic Web
technologies. SWoT allows Things to become machine discoverable on the Web using
Semantic Web tools such as SPARQL. It also enables applications to share content and
services beyond their limits and to develop new applications as a composition of existing
ones. A Semantic WoT architecture [41] (from a previous work) built upon principles of
SOA (Service-Oriented Architecture) design and deployed on the cloud is described in
Section 3.6.

The concept of WoT has received considerable attention from IoT vendors and
from many investigators over the past few years. The WoT Working group7 is an ongoing
effort to create standards-track specifications and test suites. The Thing Description
specification of W3C (recommendation) [22] defines how Things and their functionality
can be represented using JSON Thing Descriptions (TD information model). The results
of the W3C WoT research effort are summarized by the WoT Architecture which suggests
a list of possible operations to be supported by a WoT implementation 8.

2.2   Web of Things (WoT) Architecture

The Web of Things (WoT) Architecture recommendation of W3C proposes an
abstract architecture for W3C WoT. The document includes terminology and use cases
(i.e. different application domains for WoT) and sets the requirements for the interaction
with Things in the Web using RESTful APIs. The recommendation does not bind to any
application and it does not depend on specific communication protocols. In addition, it
does not describe a specific implementation or mechanism, but an abstract architecture
approach for the Web of Things.

8 https://www.w3.org/WoT/IG/wiki/Implementations
7 https://www.w3.org/WoT/wg/

9



The WoT Architecture defines an interaction model that describes the interaction of
a consumer (i.e. client) with Things. Things may offer particular Interaction Affordances
(i.e. metadata showing how a client can interact with Things) such as Web links,
Properties, Actions and Events. Properties are used to define the state that Things expose
(e.g. humidity value). Actions are used to describe the functions that Things may perform
(e.g. a smart window that opens and closes). Events are used to represent the transition
of the Thing’s state (e.g. the state property of a smart window turning to open). Interaction
Affordances can be described using JSON Thing Descriptions (TDs).

The term Events is used in WoT Architecture to represent Thing state transitions.
An Event is defined by the recommendation as “An interaction affordance that describes
an event source, which asynchronously pushes event data to Consumers (e.g. overheating
alerts)”9. In other words, an event source sends event data from the Thing to the
subscribed clients. Events are closely related to subscriptions. The WoT Architecture of
W3C defines operations for subscribing and unsubscribing to events (e.g. overheating of
a device), as highlighted in Table 2.1. That is, clients can only subscribe or unsubscribe to
an event and receive asynchronous notifications (alerts) when the event occurs. There
are no other operations related to events. A subscription is the result of subscribing to a
specific event related to a Thing. A client could subscribe, for example, with a Webhook
callback URI.

The WoT Architecture also proposes the use of hypermedia controls for the
interaction of clients with Things. Two kinds of hypermedia controls are used in the W3C
WoT: Web links10 and Web forms. Web links are referred to as “the well-established control
to navigate the Web”. That is, they provide navigation affordances that allow clients to
discover linked resources. For example, a link may provide a link target attribute and a
link relation type to relate a Thing with another resource that is represented by a
hyperlink. Web forms are referred to as “a more powerful control to enable any kind of
operation”. That is, they allow clients to perform particular operations that may even
change the state of a Thing (e.g. turn on a device) and not just navigate to discover
resources. The recommendation highlights that web links are already used in other IoT
standards and IoT platforms11 such as CoRE Link Format12, OMA LWM2M13, and OCF14,
whereas form is a new concept. Besides W3C WoT, the concept of forms is introduced by
the Constrained RESTful Application Language (CoRAL)15 defined by the IETF.

Links can be followed by both users and machines. A link may include (at least) the
URI of a resource (i.e. target resource) which can be followed to fetch the representation
of a resource. The recommendation highlights that Web links are used in the WoT to
discover Things and also to express relations to other Web documents. Hypermedia
controls such as links are discovered during the interaction of the Web client with a
server. A link comprises: a) a link context, b) a relation type, c) a link target, and d)
optionally target attributes.

15 https://datatracker.ietf.org/doc/html/draft-hartke-t2trg-coral
14 https://openconnectivity.org/developer/specifications/

13http://openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M
_Core-V1_1-20180710-A.pdf

12 https://datatracker.ietf.org/doc/html/rfc6690
11 https://www.w3.org/TR/wot-architecture/#dfn-iot-platform
10 https://httpwg.org/specs/rfc8288.html
9 https://www.w3.org/TR/wot-architecture/#terminology

10

https://datatracker.ietf.org/doc/html/draft-hartke-t2trg-coral
https://openconnectivity.org/developer/specifications/
http://openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf
http://openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf
https://datatracker.ietf.org/doc/html/rfc6690
https://www.w3.org/TR/wot-architecture/#dfn-iot-platform
https://httpwg.org/specs/rfc8288.html
https://www.w3.org/TR/wot-architecture/#terminology


Forms allow Web clients to perform specific operations to manipulate the state of a
Thing. Clients are instructed on how to perform these operations by sending a proper
request to their submission target. The recommendation states that “W3C WoT defines
forms as new hypermedia control”. A form comprises: a) a form context, b) an operation
type, c) a submission target, d) a request method, and e) optionally form fields. In other
words, Web forms in the WoT are used to perform operations on Things.

The recommendation also defines a number of well-known operation types for the
Web of Things. Web forms can specify how these operations can be performed. The
operation types are presented in Table 2.1. The operations are related to Thing properties
(e.g. an operation to read a property or an operation to update a property), to Thing
actions (i.e. an operation to invoke an action) and to events related to Things (e.g. an
operation to subscribe to an event). In relation to Thing properties, a client may also
“observe” a specific property of a Thing. As a result, whenever a Thing property is
updated, a client can be notified of the new value(s) of the property. To stop these
notifications, a client can simply “unobserve” the selected (i.e. observed) property. The
observe and unobserve operations refer to the CoAP protocol16 that allows a client to
register to a resource and thus get notified of its changes over time. More specifically, a
CoAP client (called observer), which is interested in the state of a resource at any given
time, can send a modified CoAP GET request to register to the resource and create an
observation relationship between the client and the server resource. After the
registration, the client can get notifications over a period of time.

16 https://tools.ietf.org/id/draft-ietf-core-observe-01.html

11

https://tools.ietf.org/id/draft-ietf-core-observe-01.html


Operation Type Description

readproperty Identifies the read operation on Property
Affordances to retrieve the

corresponding data.

writeproperty Identifies the write operation on Property
Affordances to update the

corresponding data.

observeproperty Identifies the observe operation on Property
Affordances to be notified with the new data

when the Property was updated.

unobserveproperty Identifies the unobserve operation on Property
Affordances to stop the corresponding

notifications.

invokeaction Identifies the invoke operation on Action
Affordances to perform the corresponding

action.

subscribeevent Identifies the subscribe operation on Event
Affordances to be notified by the Thing when

the event occurs.

unsubscribeevent Identifies the unsubscribe operation on Event
Affordances to stop the corresponding

notifications.

readallproperties Identifies the readallproperties operation on
Things to retrieve the data of all Properties in a

single interaction.

writeallproperties Identifies the writeallproperties operation on
Things to update the data of all writable

Properties in a single interaction.

readmultipleproperties Identifies the readmultipleproperties
operation on Things to retrieve the data of
selected Properties in a single interaction.

writemultipleproperties Identifies the writemultipleproperties
operation on Things to update the data of

selected writable Properties in a single
interaction.

Table 2.1: Well-known Operation Types for the Web of Things

12



W3C TD is a central building block of the WoT Architecture. It is used to define the
functions as well as the interfaces of devices. TD can provide the entry point for
discovering services as well as resources related to a Thing. In other words, TD exposes
Thing metadata on the Web. The WoT Architecture also suggests that TDs are hosted in
a directory service (on a gateway or the cloud) which actually provides a Web interface
for registering and searching for Things. The architectural aspects of a Thing (i.e.
Behavior, Interaction Affordances, Data Schemas, Security Configuration, Protocol
Bindings) are also included in the recommendation. A detailed specification of the Thing
Description is given in the Thing Description recommendation [22].

The Web of Things (WoT) Thing Description document17 is a recommendation of
W3C that describes the model and the representation of Things using TDs. It includes
terminology about TDs and presents the TD information model in detail. The document
describes the TD representation and serialization format and demonstrates how Things
can be represented by Thing Descriptions using examples. TD is a short and abstract
description of a Thing, including its functions and interfaces. The JSON representation of
a TD can be enriched with semantic annotations to become machine-understandable.
TD’s JSON serialization format can be enhanced with a context field (@context) for
converting the JSON format to JSON-LD.

The WoT TD Working Draft includes Class definitions for the vocabularies used in
the TD information model for semantic annotations and defines temporary namespaces
for the vocabularies. The document defines core vocabulary classes that represent basic
concepts such as Thing, interaction affordances, properties, actions, events, etc. It also
defines the vocabulary classes used to describe data schemas, API security mechanisms
and hypermedia controls. Moreover, the document defines the Thing Model, which is the
information model of a Thing. It is used as a general template description for a type of
Things that have common properties; it is not used to describe a particular Thing
instance.

Figure 2.1 illustrates the structure of a TD. It is an abstract description that mainly
describes the Interactions, Data Schemes, Security Configuration and Protocol Binding of
a Web Thing. More specifically, a TD includes the Thing’s name, its unique identifier, its
security requirements, a title, an optional human-readable description, and all the
interactions supported by the Thing.

17 https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

13

https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/


Figure 2.1: Thing Description (TD) document structure

Listing 2.1 is an example TD for a smart door IoT device that contains (a) a @context
attribute which extends the definition with additional vocabulary terms (e.g. using
schema.org), (b) the identifier of the device, (c) an indicative title, (d) the security
configuration of the service (i.e. Basic Authentication in this example), (e) interactions
supported by the smart door; the state property, the lock and unlock actions, the door
open event (i.e. the state property of the door turning to open) and, (f) the forms field that
describes how each interaction (i.e. operation) can be performed; it specifies the protocol
that should be used (i.e. HTTPS) and the operation endpoint. The endpoint to retrieve the
last state value of the smart door is specified in the Properties object (i.e. in the forms
array). The protocols and the endpoints used to execute the lock and the unlock actions
are specified by an Actions object; the protocol, the endpoint and the subprotocol (i.e. the
exact mechanism used for asynchronous notifications) for subscribing to the open event
of the smart door are specified by an Events object.

The W3C Thing Description specification explains that the HTTP GET method in
the Properties object is not stated explicitly, as it “is one of the default assumptions defined
by this document”. Similarly, the HTTP POST method used in the Actions object is omitted,
as it is “a default assumption for invoking Actions”. The WoT Thing Description is also
discussed in Section 5.1 of the present work.

Listing 2.1: Thing Description for a smart door device

{

"@context": "http://www.w3.org/ns/td",

"id": "urn:dev:ops:32473-WoTSmartDoor-1234",

"title": "MySmartDoor",

"securityDefinitions": {

"basic_sc": {"scheme": "basic", "in": "header"}

},

14



"security": "basic_sc",

"properties": {

"state": {

"type": "string",

"forms": [{"href": "https://mysmartdoor.example.com/state"}]

}

},

"actions": {

"lock": {

"forms": [{"href": "https://mysmartdoor.example.com/lock"}]

},

"unlock": {

"forms": [{"href": "https://mysmartdoor.example.com/unlock"}]

}

},

"events":{

"opening":{

"description": "Smart door opens",

"data": {"type": "string"},

"forms": [{

"href": "https://mysmartdoor.example.com/open",

"subprotocol": "longpoll"

}]

}

}

}

2.3   Web Thing Model (W3C submission)

Prior to presenting the WoT Architecture recommendation, W3C had introduced
the Web Thing Model [23]. Although not a standard, the Web Thing Model was more
concrete than the WoT Architecture and specified the requirements that software or
hardware vendors (who create products for the Web of Things) should meet. It was an
early attempt to define a Thing description format for the Web of Things. The Web Thing
Model defined (a) the information model for Thing descriptions based on JSON and, (b) a
set of operations (i.e. services) together with their corresponding RESTful interface for
accessing Things on the Web. Things become JSON objects representing their identity
(i.e. a URI), properties, functionality (e.g. actions that Things may execute) and state
information. They expose a RESTful interface on the Web in order to facilitate their
interaction with other Things and services over the Web. Things are published on the
Web (i.e. expose their identity, properties and functionality) so that they can be accessed
by other services and be used in Web applications. However, the Web Thing Model was
not based on Thing Descriptions (TDs) as defined by the WoT Architecture.

15



More specifically, the Web Thing Model describes the requirements, a set of
operations and a specific REST API that should be followed by WoT implementations.
The model initially defines some basic requirements (e.g. “A Web Thing MUST at least be
an HTTP/1.1 server”) and proposes conformance rules and terminology. It also defines an
information model for Things (i.e. the structure of JSON payloads for every operation of a
Thing) and proposes a RESTful API based on specific resources related to Things (e.g.
Properties Resource, Actions Resource) and particular operations offered by Things. The
suggested operations support interaction (i.e. create, retrieve, update, delete operations)
with the resources related to Things. The specification suggests that semantic extensions
should be adopted so that detailed vocabularies (e.g. schema.org) further describe
Things and their features; it also describes how these extensions should be
implemented. More specifically, semantic extensions should be realized by referencing a
JSON-LD context in the HTTP Link Header using the
http://www.w3.org/ns/json-ld#context link relation, as defined in the JSON-LD
specification.

A Thing is identified by its resources, namely, a Web Thing Resource, a Model
Resource, a Properties Resource, an Actions Resource (as long as the Thing supports
actions), a Things Resource and a Subscriptions Resource. The Web Thing Resource is
“the root resource of the Web Thing Model”. It is used to provide a short and abstract
description of a Web Thing in JSON format. This description can be updated by the
client. The Model Resource defines the values of Things properties as well as the values
of actions that can be performed on Things. The model description can also be updated
by the client. The Properties Resource defines the properties of a Thing in general (e.g.
pressure, temperature) and describes measurements related to a specific Thing property
(e.g. temperature values provided by a temperature sensor) or the internal state of a
Thing (e.g. the state of a smart door). The Actions Resource is used to define all the
allowed actions on a Thing and describe the action executions of a Thing, such as
execution commands (e.g. a command sent by a client to a window actuator to open).
The specification introduces the Subscriptions Resource suggesting that clients (i.e. users
or services) can subscribe to the properties and/or actions of Things, to be notified of
new values or values changes they are interested in. For instance, users and services can
subscribe to the humidity property of a specific humidity sensor and get notified of any
changes of this information (i.e. new humidity value). Additionally, the Web Thing Model
utilizes the Things Resource for the description of specific operations on Things such as
registration of new Things to an application (i.e. by sending the JSON representation of
the Thing) or retrieval of a list of registered (e.g. to a proxy) Things. Notice that the Things
Resource is different from the Web Thing Resource.

Based on the Web Thing Model, the data exchange format for Web Thing
resources is based on JSON. The exact formatting depends on the particular services of
the proxy service (e.g. NGSI18). The Web Thing Model introduces a list of operations which
(in part or in full) can be offered by a Thing. Concerning the Web Thing Resource, the
model allows an operation to retrieve or update the description of a Thing in JSON.
Similarly, for the Thing Model (or for Properties Resource), the Web Thing model allows
operations to retrieve or update the properties or actions (their values or state
information respectively) on a Thing. Concerning the Actions Resource, the model allows

18 https://www.fiware.org/2016/06/08/fiware-ngsi-version-2-release-candidate/

16



an operation to retrieve the actions that a Thing may perform and, in addition, an
operation for sending a command to a Thing to execute an action and operations to
retrieve past action executions. In relation to Things Resource, the model may allow an
operation that registers a Thing or an operation that retrieves all registered Things.
Finally, in relation to Subscriptions Resource, the model allows an operation that creates
a new subscription to a Web Thing resource or, an operation that retrieves or updates the
information of an existing subscription. In the following, the set of operations suggested
by the Web Thing Model are presented, grouped by resource:

A. Web Thing Resource

1) Retrieve a Web Thing: Retrieves an abstract JSON description of a Thing. It is
realized by issuing an HTTP GET request to the root URL of a Thing. The root URL
of a Thing is its IP address and default port that follows the IP (e.g.
http://34.122.93.207:5001/MySmartDoor in the case of a smart door device).

2) Update a Web Thing: Updates the JSON description of a Thing. It requires sending
an HTTP PUT request to the root URL of a Thing, containing a JSON object in the
request body.

B. Model Resource

3) Retrieve the model of a Thing: Retrieves the model description of a Thing by
issuing an HTTP GET request to the /model endpoint of the root URL of a Thing.

4) Update the model of a Thing: Updates the model of a Thing (i.e. updates
attributes of the Thing model description). It is realized by issuing an HTTP PUT
request to the /model endpoint of the root URL of a Thing. The new attribute
values can be included in the request body.

C. Properties Resource

5) Retrieve a list of properties: Retrieves a list of the Thing’s properties. It requires
sending an HTTP GET request to the /properties endpoint of the root URL of a
Thing.

6) Retrieve the value of a property: Retrieves the current value of a property. It is
realized by issuing an HTTP GET request to the /properties endpoint of the root
URL of a Thing followed by the specific Thing property name as a path parameter
(e.g. rootURL/properties/state for the state of a smart window or
rootURL/properties/temperature for a temperature sensor).

7) Update a specific property: Updates the current value of a property. It is realized
by issuing an HTTP PUT request to the /properties endpoint of the root URL of a
Thing followed by the name of the property. The new property value (or values) is
included in the request body.

17



8) Update multiple properties at once: Updates the values of multiple properties. It is
realized by sending an HTTP PUT request to the /properties path of the root URL
of a Thing followed by a path name. This operation manages to update the values
of multiple properties of a specific Thing (e.g. the temperature and the humidity of
DHT22 sensor) using a single HTTP request. An array of values is included in the
request body.

D. Actions Resource

9) Retrieve a list of actions: Retrieves a list of the Thing’s actions. It is realized by
sending an HTTP GET request to the /actions endpoint of the root URL of a Thing.
It is meant to return an array of descriptions for the actions that the Thing may
perform (e.g. open and close for a smart window device).

10) Retrieve recent executions of a specific action: Retrieves all recent executions of a
specific action of the Thing. It is realized by sending an HTTP GET request to the
/actions endpoint of the root URL of a Thing followed by the specific action name
as a path parameter. For example, a GET rootURL/actions/{actionName} (e.g.
rootURL/actions/open) will return an array of the recent executions of a specific
action on a device (e.g. opening the smart window), including information about
the status of the action execution and a timestamp.

11) Execute an action: Executes a specific action by sending a command to a Thing. It
is realized by issuing an HTTP POST request to the /actions endpoint of the root
URL of a Thing followed by an action name in a path parameter (e.g. POST
rootURL/actions/on to turn on a smart air conditioner).

12) Retrieve the status of an action: Retrieves the status of a specific action execution
using its identifier as a path parameter. It requires sending an HTTP GET request
to the /actions endpoint of the root URL of a Thing followed by the name of the
action and the execution identifier as a path parameter (e.g. GET
rootURL/actions/open/142).

E. Things Resource

13) Retrieve a list of Web Things: Retrieves a list of Things proxied by a Web Thing (i.e.
they are registered to the proxy). It is realized by sending an HTTP GET request to
the /things endpoint of the root URL of a Thing.

14) Add a Web Thing to a gateway: Registers a new Thing (i.e. device) in a specific
infrastructure (i.e. and in a proxy). It requires sending an HTTP POST request to the
/things endpoint of the root URL of a Thing. The request body must contain the
JSON Thing description of the new device.

18



F. Subscriptions Resource

15) Create a subscription: Creates a new subscription, so that a client may subscribe
to a specific resource of a Thing. That is, a user or service may subscribe to
specific Thing properties or actions. According to the Web Thing Model,
subscriptions are ideally supported using custom callbacks (i.e. Webhooks) which
are naturally supported by the Websocket protocol.

16) Retrieve a list of subscriptions: Retrieves a list of subscriptions made to a specific
resource of a Thing. It requires sending an HTTP GET request to the
/subscriptions endpoint of the root URL of a Thing.

17) Retrieve information about a specific subscription: Retrieves a specific
subscription made to a resource of a Thing using its subscription identifier
(Subscription-ID). It requires sending an HTTP GET request on the /subscriptions
endpoint of the root URL of a Thing followed by the subscription identifier as a
path parameter (e.g. GET rootURL/subscriptions/5a72eb4d883af1b95ac9f710).

18) Delete a subscription: Deletes a specific subscription made to a resource of a
Thing using its subscription identifier. It issues an HTTP DELETE request to the
/subscriptions endpoint of the root URL of a Thing followed by the subscription
identifier as a path parameter.

2.4   Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is an architecture style that intends to enhance the
efficiency, agility, and productivity of an enterprise by designing, developing, deploying
and managing systems, based on service orientation [24]. Service orientation is a design
paradigm that suggests that all functional components of a system are viewed as
services that communicate with each other through well defined interfaces by message
passing. A service is essentially a well-defined, self-contained and independent (i.e. of
other services) function. That is, a service does not need to be aware of the technical
details of another service to interact with it. This is achieved through the implementation
of a strictly defined interface that can perform the necessary actions to enable the
transmission of data between services, thus facilitating communication. The invoker of a
service actually needs to be aware of its interface only and not its implementation. SOA,
as an architectural style, does not impose a specific technology for the communication
of services. With the emergence of machine communication protocols such as HTTP and
representation formats such as XML, RDF and JSON, SOA is becoming the most common
approach for building distributed systems (i.e. communicating systems in general) in
terms of communicating services.

19



2.5   REST-based services

Web services technology was initially built on existing standards such as Extensible
Markup Language (XML) [25], Simple Object Access Protocol (SOAP) [26], Web Services
Description Language (WSDL) [10] and Universal Description Discovery and Integration
(UDDI) [9]. XML [25] was selected, due to its popularity at the time, as the main data
format for machine to machine communication. Fielding suggested a different flavor of
Web Services, introducing REpresentational State Transfer (REST) architectural style [4] in
2000. REST defines a set of architectural principles, based on which Web services are
designed to focus on a system’s resources, including how resource states are addressed
and transferred over HTTP by a wide range of clients written in different languages. The
primary abstraction of information in REST is a resource. A resource is anything important
enough to be referenced as a thing in itself, such as a document or image, a collection of
other resources, a non-virtual object (e.g. a cat). Resources can either be static (i.e. like a
book) or dynamic, like a news report (i.e. it always changes, but still it is a resource). REST
uses a resource identifier (URI) to identify the particular resource involved in an
interaction between components. REST has gained massive adoption, including Cloud
Services, compared to other approaches (e.g. SOAP, WSDL). REST-based services are
actually simpler to express, faster to process and make efficient use of bandwidth, as
they don’t require additional parsing for messages and are much less verbose than
SOAP-based services. In contrast to SOAP-based services, REST-based services are
designed to be stateless and also enable caching that improves performance and
scalability. Moreover, REST-based services may support multiple data formats (e.g. XML
and JSON), whereas SOAP-based services are only limited to the use of XML.
Nevertheless, the term REST has been misused as most Web services that claim to be
RESTful (i.e. REST APIs) are actually not. Although in most cases services are based on
the REST architecture, they often violate the hypermedia constraint (HATEOAS). It is
worth mentioning that Fielding himself highlighted this fact in a blog post19 and explained
that a service is considered RESTFul only if all REST principles are met. The term
Hypermedia API [27] has emerged to describe services that are implemented
incorporating the hypermedia constraint.

2.6   Hypermedia-driven APIs

In contrast to first and second generation Web APIs, which are not truly RESTful,
Hypermedia-driven APIs (i.e. third generation services) [16] manage to support
hypermedia because of the serialization formats they rely on, such as JSON-LD. Hence,
hypermedia-driven APIs are actually RESTful APIs. First generation SOAP-based Web

19 https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

20

https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven


Services do not use hypermedia at all. Second generation services use hypermedia but
most of these services do not actually manage to support them, because they depend
on formats that do not have built-in support for hyperlinks. Third generation Web APIs
leverage Linked Data [28] technologies to become hypermedia-driven and thus truly
RESTful services; consequently, they have all the benefits of RESTful services, such as
scalability, maintainability, and evolvability. To be more specific, detailed vocabularies
(e.g. Hydra core vocabulary [14]) are used along with JSON-LD, to enable the creation of
hypermedia-driven APIs.

2.7  Cloud Computing

Cloud Computing allows the allocation of computing resources (e.g. servers,
applications, etc) using the Internet. Many users (i.e. individuals and organizations) can
have access to the same service or infrastructure at the same time, using the ability of
Cloud computing to allow the consumption of their resources on a large scale. In fact,
resources in Cloud computing are available on-demand. Therefore, users are allowed to
use them based on their needs and be charged exclusively for that use. In addition, the
scalability of a Cloud infrastructure makes it easier to serve the demands of the
ever-increasing amount of users and applications.

2.7.1   SOA and Cloud Computing

SOA (Section 2.5) and Cloud Computing (Section 2.8) are technologies that can exist
separately, since neither depends on the other. However, an integrated architecture with
these two solutions can offer many advantages in terms of cost, speed of development,
management, and ease of maintenance. Cloud computing provides computational
resources, such as software and hardware, for the delivery and deployment of scalable
applications and services. However, it doesn’t impose any particular method for the
efficient use and management of the services that it offers. SOA intends to fill this gap by
providing guidelines, principles, and techniques for the development of applications and
services, and strictly defines the architecture of service-oriented systems. Cloud services
are typically API or service-driven, and thus service-oriented. Therefore, Cloud providers
organize their services in directories or service registries to enable discovery of services
that best fit the needs of customers as well as reuse and better management of services.

2.7.2   WoT and Cloud Computing

WoT (Section 2.1) and Cloud Computing (Section 2.8) are also separate technologies but
they can be complementary as well. Cloud services can expose the functionality of IoT

21



devices, while following the requirements of WoT. For example, a client can
communicate and interact with a Thing through the cloud using HTTP. Therefore, WoT
benefits from Cloud computing and its features (e.g. scalability), and exposes Things on a
large scale, based on the effective and efficient management of resources. Although IoT
solutions may incorporate thousands to millions of devices, cloud allows users to take
advantage of scalable IT infrastructures (at lower costs) to expose Things or interact with
them as consumers. In other words, WoT utilizes existing Web technologies to allow
interaction with any IoT device; Cloud computing facilitates and improves this interaction.
For instance, consumers can purchase Web services that expose real-world devices (e.g.
temperature sensors, smart home actuators, etc) and can rapidly be scaled up or down,
depending on their user requirements.

2.8   Semantic Web and Linked Data

Semantic Web

The Semantic Web represents an extension of the existing Web. It offers tools that allow
information to be offered not only in the form of natural language documents, but also as
machine-readable data. Thus, machine to machine communication is enabled in addition
to human to machine communication that is supported by the current Web. In Semantic
Web, query languages can be leveraged so that vocabularies and data can be accessed.

The foundation of the Semantic Web is built by the Resource Description
Framework (RDF) standard [29], which is a family of specifications developed by W3C. It
was originally designed as a metadata model, but it is now used as a general method for
conceptual description or for modeling the information of Web resources. In order to
achieve the above objectives, RDF adopts a variety of syntax notations and data
serialization formats. The RDF standard is also used in knowledge management
applications. Resources can be anything, including documents, people, physical objects
(e.g. a table), and abstract concepts. A resource is identified by an International Resource
Identifier (IRI). IRIs are global identifiers, so that an IRI can be re-used to identify the same
thing. An RDF statement expresses a relationship between two resources, in the form of
a triple (Figure 2.2). The Subject and the Object represent the two resources being
related, the predicate represents the nature of their relationship. Multiple triples build a
graph, and multiple graphs build a dataset.

22



Figure 2.2: RDF data model

RDF Schema (RDFS) [30] provides a data-modeling vocabulary for RDF data. It
offers mechanisms for describing classes, class hierarchies, data types, or properties
similar to object-oriented programming languages. Unlike RDFS, the Web Ontology
Language (OWL) [31] is a family of knowledge representation languages that offer
increased expressiveness for describing classes and properties. Among others, OWL
allows the definition of relations between classes (e.g. disjointness), equality, restrictions
over properties (e.g. cardinality restrictions) and partial order and equivalence relations
between properties (e.g. transitive, symmetric properties).

Finally, the Semantic Web offers the ability to query RDF data. SPARQL [6], a
recursive acronym for SPARQL Protocol and RDF Query Language, is the W3C
recommendation not only for querying and manipulating RDF data but also a protocol to
invoke such queries over HTTP and a number of result formats (XML, JSON, CSV).

Linked Data

Data on the Web needs to be structured, machine-readable and also connected with
other data. Sir Tim Berners-Lee20 introduced the term Linked Data [28] in 2006. He
described how RDF data should be published on the Web and fulfilled part of the
Semantic Web vision. In fact, Linked Data benefits from RDF and from standard Web
technologies (e.g. HTTP and URIs) and allows the creation of relations between
structured data from different sources. It relates data with URIs so they can be accessed
and queried. According to [32], Linked Data refers to data published on the Web in such a
way that it is machine-readable, its meaning is explicitly defined, it links to other external
data sets, and it can in turn be linked to from external data sets. Berners-Lee also
introduced a set of principles21 for successfully creating and publishing Linked Data.

Although Semantic Web uses ontologies (i.e. sets of RDF triples) to define data and
create relations between them, it is not capable of making data machine-readable

21 https://www.w3.org/DesignIssues/LinkedData.html
20 https://www.w3.org/People/Berners-Lee/

23

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/People/Berners-Lee/


without using Linked Data. Ontologies provide definitions for various concepts, but data
on the Web need to be linked (i.e. associated) to ontology and vocabulary terms. Linked
Data manages to map data with semantic models and thus define their meaning.
Therefore, data becomes machine-readable and machine-discoverable; machines can
search for desired properties using Semantic Web tools (e.g. query languages such as
SPARQL). Moreover, data can be represented using JSON-LD, which is in fact JSON
format enriched with Linked Data. Therefore, data can be very simply represented using
JSON (i.e. probably the most common representation format for REST APIs) and
associated to semantic models using Linked Data.

2.9   Interface Description Languages

Service descriptions (or contracts) are a fundamental part of SOA. They define and
expose the purpose and functionality of services, so that users or services are able to
discover and use them. Moreover, they should describe all the necessary information of a
service such as operations, service endpoints, request and response bodies (i.e.
schemas), etc. They also set the conditions that have to be satisfied before the services
can be executed (e.g. API authentication rules).

Cloud environments provide text documentation for services, so consumers have
to browse and read service instructions in plain text format, and then determine if the
services actually meet their needs. However, text descriptions are mostly
human-readable; machines cannot understand and interpret their meaning. Services in
cloud environments should be formally defined in such a way that is understandable by
both humans and machines.

In the following, we will discuss the most remarkable approaches that suggest
interface description languages for Cloud services intending to define Web services;
SOAP-based and RESTful services in particular, since they are the most popular types of
Web services today. In this work, we highlight service definition approaches that have
been used in order to describe RESTful Web services.

2.9.1   WSDL and SAWSDL

The Web Service Description Language (WSDL) [10] is a service description language
based on XML notation. It is used in order to describe the functionality of Web services
and show how service requests can be issued by a client. WSDL actually forms the basis
for the original Web Services technology platform (Section 2.6). The current version of
the WSDL specification is 2.0; it is a W3C recommendation. However, version 1.1 [33] is still
used. The structure of a WSDL document is available on the Web22. WSDL 2.0 introduced
some changes in document structure. WSDL 1.1 described SOAP-based services. WSDL
2.0 introduced a protocol binding for HTTP in order to support the description of RESTful

22 https://en.wikipedia.org/wiki/Web_Services_Description_Language

24

https://en.wikipedia.org/wiki/Web_Services_Description_Language


services. However, WSDL describes services at a syntactic level. W3C introduced the
Semantic Annotations for WSDL and XML Schema (SAWSDL) [12] in a technical
recommendation in 2007. SAWSDL extends WSDL using a mechanism that maps service
interfaces and message schemas with semantics. Thus, semantics can be added to
various parts of a WSDL document (e.g.inputs, outputs, interfaces and operations). More
specifically, SAWSDL suggests three extensibility attributes to WSDL and XML Schema
elements, so that semantics to semantic models (i.e. vocabularies or ontologies) can be
added in a service description.

SAWSDL is criticized for its weaknesses and the fact that it provides only the
syntactic information of a service and not any formal semantics [34]. Regarding WSDL,
although it is capable of describing both SOAP-based and REST-based services, it is not
widely adopted by developers. It is preferred mainly for the description of traditional
SOAP-based services. In addition, most tools are offered only for WSDL 1.1; this leads to
poor adoption of WSDL 2.0 by developers.

2.9.2  WADL

The Web Application Description Language (WADL) [13] is an interface description
language based on XML. It is an alternative to WSDL and it is used to describe
HTTP-based Web APIs. WADL is not restricted to XML payloads (i.e. it can also handle
JSON and other formats). In fact, WADL is intended to describe RESTful services (Section
2.6). It models the resources provided by the service and also the relationships between
them.

WADL has received a lot of criticism for the fact that it is very similar to WSDL and
only provides limited support for the description of service resources; it actually offers
only syntactic description of the service. It has not managed to attract significant
adoption among developers despite the efforts for standardization. An important
drawback of WADL is the lack of a mechanism for the semantic annotation of service
descriptions.

2.9.3 OpenAPI Specification, RAML, API
Blueprint, AsyncAPI

The REST architecture style has gained massive adoption over the years. As a result,
several interface description languages have been proposed and they aim at providing
efficient and accurate descriptions for RESTful services. OpenAPI Specification, RAML,
and API Blueprint are the most commonly used approaches for describing RESTful
services. They follow an approach similar to WADL (Section 2.9.2), meaning that
everything is bound to the URLs for accessing resources; this contradicts REST's
hypermedia constraint that calls for the dynamic discovery of resources at runtime

25



(HATEOAS). However, their adoption is mainly due to the large tooling support they offer
covering the whole API lifecycle from design to sharing. Moreover, a new,
protocol-agnostic service description approach, AsyncAPI, aims at describing
event-driven architectures.

OpenAPI Specification

The OpenAPI Specification (OAS) [15], formerly known as Swagger, is probably the most
heavily adopted approach for the description of RESTful services (Section 2.6). OpenAPI
suggests a description format for REST APIs. It is an open-source, language-agnostic
specification, through which a consumer can understand and use a service with
minimum implementation logic. Service descriptions are offered in either JSON or
YAML23 format, which can be produced and served statically, or be generated
dynamically from the application. This allows the design and implementation of APIs to
follow either a top-down (i.e. the service description is initially created and then the
service is implemented) or bottom-up approach (i.e. the service description is generated
from the service implementation). A comprehensive analysis of the specification is
presented in Chapter 3.

OpenAPI is a simple, yet complete and powerful framework, supported by a large
set of tools for designing, building and documenting RESTful services. The Swagger
Editor24 is an open-source Web-based editor for designing, defining and documenting
RESTful services (Figure 2.3). It provides instant visualization and interaction with the API
while still defining it. The Swagger Codegen25 is an open-source code generator to build
server code and client SDKs directly from an OpenAPI service description in almost any
programming language and framework (PHP, Java, NodeJS). Swagger UI26 is an
open-source HTML5-based user interface to visually render documentation for an
OpenAPI service description (Figure 2.4).

26

25 https://github.com/swagger-api/swagger-codegen
24 https://github.com/swagger-api/swagger-editor
23 https://yaml.org/

26

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-editor
https://yaml.org/


Figure 2.3: Swagger Editor preview

Figure 2.4: Swagger UI preview

OpenAPI is a widely adopted industry standard. It is endorsed by Linux
Foundation and supported by large software vendors like Google, Microsoft, IBM, Oracle
and many others. OpenAPI format is based on JSON (or YAML) and comprises a large set
of properties for composing service descriptions. OpenAPI 3.0 is the first major update of
the specification released in 2017. Version 3.1 (as of February 2021) provides full JSON
Schema support (i.e. all keywords of JSON Schema vocabulary can be used in OpenAPI
3.1) while being fully compatible with version 3.0. OpenAPI can be enriched with text
descriptions so that users can easily discover and understand the service and interact
with it.

27



RAML

The RESTful API Modeling Language (RAML) [35] is a simple yet powerful language for
describing ”practically”-RESTful APIs. It is based on YAML format and it is capable of
supporting RESTful services (Section 2.6). However, it can also define services that don’t
strictly follow the principles of REST (e.g. SOAP-based services). Contrary to OpenAPI
Specification, RAML is only a top-down specification, meaning that the API is firstly
designed and then the rest of the system is implemented. RAML is also supported by a
number of native and third-party tools that facilitate the management of the whole API
lifecycle from design to sharing. API Designer27 is a web-based API development tool
that allows API providers to design their API quickly, efficiently, and consistently and also
share the design. It consists of a RAML editor side-by-side with an embedded RAML
console (API Console). The API Console28 provides live interactive documentation that
lets users try out an API in real time. Unlike OpenAPI Specification, client code generation
from RAML API documents is mainly provided by third-party commercial tools.

API Blueprint

The API Blueprint [36] suggests a different approach compared to OpenAPI Specification
and RAML. It is a documentation-oriented description language based on a set of
semantic assumptions laid on top of the Markdown syntax [37]. Unlike OpenAPI
Specification and RAML, API Blueprint doesn’t impose a specific style for the description
of a service. A service provider is free to describe the functionality of his service in any
way he prefers. For example, a service may be described by only providing examples for
the various request and response messages without including any data type definitions
(XML Schema, JSON Schema) that specify the structure of request and response
messages. Due to the nature of the API Blueprint specification, there is limited tool
support. The most common tool around API Blueprint is the Apiary platform29. It provides
a collaborative design editor, interactive documentation, and other tools to improve user
experience and interaction with a described Web API. The main drawback of API
Blueprint is that it lacks tools for code generation.

AsyncAPI

Event-driven architectures are powerful and they can provide distributed,
loosely-coupled and also fault-tolerant services that cannot be described by the existing
service description approaches. AsyncAPI specification30 is a relatively new, open-source
approach that intends to solve the gap in the description of event-driven services. As

30 https://www.asyncapi.com/docs/specifications/v2.0.0
29 http://apiary.io/
28 https://github.com/mulesoft/api-console
27 https://www.mulesoft.com/platform/api/anypoint-designer

28

https://www.asyncapi.com/docs/specifications/v2.0.0
http://apiary.io
https://github.com/mulesoft/api-console
https://www.mulesoft.com/platform/api/anypoint-designer


highlighted by its authors31, AsyncAPI started as an adaptation of the OpenAPI
Specification. As a result, they intended to make it as compatible as possible to help
users that may use both frameworks. Although OpenAPI 3 enables the definition of
service callbacks, it does not actually address several asynchronous communication use
cases. For example, using asynchronous communication, if a device is currently
unavailable (i.e. inaccessible), data can be stored and sent when the device becomes
accessible again. Therefore, AsyncAPI is essentially an alternative approach to OpenAPI
and RAML, but, to the best of our knowledge, it has not received considerable attention
compared to OpenAPI. Likewise OpenAPI, AsyncAPI utilizes JSON and YAML format for
the description of services. It is also an agnostic-protocol framework; there are AsyncAPI
protocol bindings for common protocols such as MQTT, CoAP, Apache Kafka and
Websockets. OpenAPI depends on REST and HTTP. This is a major advantage of the
Async approach. In fact, AsyncAPI is entirely based on message-centric API interaction,
which is actually found in IoT and other platforms alike. Therefore, AsyncAPI allows the
description of various devices that use IoT data protocols (e.g. MQTT) and of their
functionality. Moreover, AsyncAPI provides documentation tools and also code
generation tools.

2.10   Semantic OpenAPI

WSDL and WADL could not be satisfying for the description of Cloud services.
Despite being a W3C recommendation, WSDL has not been adopted widely by
developers; they considered it complex and with not enough tooling support. Moreover,
WSDL is preferred for the description of SOAP-based services, thus not leveraging the
interoperability of the REST architectural style. WADL, on the other hand, was meant to
enable the description of RESTful services. However, the approach was not adopted
widely by developers either.

In this context, the OpenAPI framework, which is an industry standard, could be a
very interesting and powerful solution for the description of RESTful services. However,
Semantic OpenAPI [17] analysed the reasons that cause ambiguities in OpenAPI service
descriptions, taking into consideration version 3.0 of the specification. For example, the
same OpenAPI property may appear with different names within the same service
document or, its meaning may not be defined at all in service definition. The authors
suggest that OpenAPI properties should be semantically enriched, “by associating
OpenAPI entities to entities of a domain ontology”. In other words, they showed that, in
order to eliminate ambiguities, each ambiguous property must be semantically
annotated and mapped to a semantic model (e.g. a semantic vocabulary or an ontology).

Semantic OpenAPI introduces some extra properties (i.e. extension properties) to
annotate existing OpenAPI properties. Therefore, the meaning of OpenAPI entities (e.g. an
operation or a schema) can be defined and thus not be vague. In addition, [17] suggests
that it is plausible to transform semantically annotated OpenAPI descriptions to
ontologies. This allows the application of query languages (e.g. SPARQL) for service

31 https://www.asyncapi.com/docs/getting-started/coming-from-openapi

29

https://www.asyncapi.com/docs/getting-started/coming-from-openapi


discovery, and reasoning tools for detecting inconsistencies in service descriptions. The
ontology proposed in [17, 18] incorporates features of Hydra to model service operations
along with models not foreseen in Hydra (e.g. security features, header, constraints).
Classes along with constraints on class properties are described using SHACL [19], which
describes OpenAPI objects and validates Schema descriptions against the ontology.

Figure 2.5 illustrates the structure of an OpenAPI service document. It comprises
many parts (objects). Each object specifies a list of properties that can be objects as well.
Objects and properties defined under the Components unit of an OpenAPI document
can be reused by other objects or they can be linked to each other (e.g. using keyword
$ref). However, these links are not always explicitly expressed. For example, there can be
properties with the same name, but with no reference to one another or an external
model. The Info object provides non-functional information such as the names of the
service and the service provider, license information and terms of the service. The Server
object provides information about where the API servers are located. Servers can be
defined for different operations (locally declared servers override global servers). The
service description contains an Info object with some non-functional information for the
service, an External Documentation object and Tag objects, which are used to group
operations by resources or any other qualifier. For instance, in our work, a Web Thing tag,
a Properties tag, an Actions tag and a Subscriptions tag are used to group properties by
type or resource.

The description includes a Paths object that holds all the available service paths
(i.e. endpoints) and their operations, which may also specify Parameter objects. The Paths
object provides information about expressing HTTP requests to the service and about
the responses of the service. It describes the supported HTTP methods (e.g. GET, PUT,
POST, etc.) and defines the relative paths of the service endpoints (which are appended
to a server URL to construct the full URLs of the operations). The Responses object
describes the responses of an operation, its message content and the HTTP headers that
a response may contain. The Parameters object describes parameters that operations
use (i.e. path, query, header and cookie parameters). The Components object lists
reusable objects. That includes (among others) definitions of schemas, responses,
headers, parameters and security schemes. The Security object lists the security
schemes of the service. The specification supports HTTP authentication, API keys,
OAuth2 common flows or grants (i.e. ways of retrieving an access token) and OpenID
Connect.

30



Figure 2.5: OpenAPI document structure

The Schemas object describes the request and response messages based on
JSON Schema32. A Schema object can be a primitive (string, integer), an array or a model
or an XML data type and may also have properties of its own accord (i.e. externalDocs).
New data types can be defined as a composition or specialization of existing ones using
properties allOf, oneOf, anyOf and not. Schema properties do not have semantic
meaning and, consequently, their meaning can be vague. In addition, there can be
Schema properties with different names that share the same meaning. A human might
easily resolve ambiguities either by the element names or by the description that may be
provided but a machine cannot. The problem is solved by associating each Schema
object with a semantic model [17]. OpenAPI properties are semantically annotated and
associated with entities of a semantic model using the x-refersTo extension property. The
x-kindOf extension property defines a specialization between an OpenAPI property and a
semantic model (e.g. a class). The x-mapsTo extension property denotes that a Schema
property is semantically equivalent to another property in the same document.
Additional extension properties are defined to clarify the meaning of the members in a
collection of objects (x-collectionOn), for grouping Schema objects by type
(x-onResource) and clarifying the meaning of operations (x-operationType). Table 2.2
illustrates all the extension properties for semantic annotations proposed in Semantic
OpenAPI.

32 https://json-schema.org/

31

https://json-schema.org/


Property Applies to Meaning to

x-refersTo Schema Object The concept (in a semantic
model) that describes an

OpenAPI element.

x-kindOf Schema Object A specialization between an
OpenAPI and a concept in a

semantic model.

x-mapsTo Schema Object An OpenAPI element which is
semantically similar with

another OpenAPI element.

x-CollectionOn Schema Object A model describes a
collection over a specific

property.

x-onResource Tag Object The specific Tag object refers
to a resource described by a

Schema object.

x-operationType Operation Object Clarifies the type of operation.

Table 2.2: OpenAPI extension properties for semantic annotations

2.11   Ontologies and vocabularies

Service description languages normally offer only syntactic descriptions of service APIs.
However, such descriptions are insufficient to enable the automation of tasks such as
service discovery and composition. Earlier as well as more recent research suggests
describing services also semantically in order to solve this problem. In the following, we
will discuss the most remarkable approaches that suggest ontologies and vocabularies
intending to define Web services as well as WoT concepts and, more specifically,
interactions of clients with Things. We will focus on ontology approaches that intend to
describe terms related to WoT.

32



2.11.1 Semantic Sensor Network Ontology
(SSN)

The Semantic Sensor Network Ontology (SSN)33 is defined as “an ontology for describing
sensors and their observations, the involved procedures, the studied features of interest, the
samples used to do so, and the observed properties, as well as actuators”. The term
“actuator” refers to any device component that is able to cause any actuation (i.e. motion).
The term “feature of interest” refers to the thing that is examined (e.g. measured,
calculated, sampled, etc) in a specific use case (e.g. the tree is the feature of interest
when measuring the height of a tree). SSN comprises a lightweight ontology called SOSA
(Sensor, Observation, Sample, and Actuator) [38] with basic classes (e.g. Observation,
Sensor) and properties (e.g. observes). W3C actually refers to SOSA as a “lightweight but
self-contained” core ontology of SSN. The two ontologies together are capable of
describing different types of use cases and applications. For instance, they may be used
to describe WoT concepts, industrial infrastructures or even satellite imagery. The main
advantage of SSN ontology over SOSA is that it has added expressiveness to SOSA and
thus it can describe a larger number of concepts more precisely. As far as WoT is
concerned, SSN and SOSA can be proved very useful for the description of Things (e.g.
sensors and actuators) and their related concepts (e.g. sensor measurements), thus
enabling the discovery of Things and of their functionality.

Figure 2.6 illustrates a conceptual view of the SSN and the SOSA ontology that
originates from the SSN ontology specification34. It presents the basic modules of the two
ontologies and shows that SOSA ontology can act as a lightweight core for SSN, as
highlighted in the specification.

34 https://www.w3.org/TR/vocab-ssn/#intro
33 https://www.w3.org/TR/vocab-ssn/

33

https://www.w3.org/TR/vocab-ssn/#intro
https://www.w3.org/TR/vocab-ssn/


Figure 2.6: SOSA and SSN ontology modules

2.11.2  Thing Description (TD) Ontology

Thing Description (TD) Ontology35 (W3C draft) is an ontology used to axiomatize the TD
information model. According to its specification, the TD ontology is an alternative to the
JSON representation format of TDs, but it can also be used to describe information
related to Things (e.g. information in TDs) and also to provide alignments with other
ontologies related to WoT (e.g. SOSA ontology). The ontology defines an
ActionAffordance class, an EventAffordance class, an InteractionAffordance class, an
OperationType class (i.e. it lists well-known operation types which are necessary in order
to implement the WoT interaction model), a PropertyAffordance class and a Thing class. It
also includes a number of object properties, datatype properties and named individuals.
Moreover, the ontology imports another ontology named Hypermedia Controls
Ontology36 (Section 2.11.5) which is used to describe links and forms (i.e. referred to as
hypermedia controls) used on the Web. The ontology describes Things and their
interaction affordances such as properties, actions and events. For instance, a JSON-LD

36 https://www.w3.org/2019/wot/hypermedia
35 https://www.w3.org/2019/wot/td

34

https://www.w3.org/2019/wot/hypermedia
https://www.w3.org/2019/wot/td


TD document can benefit from the ontology by using the context attribute (i.e. @context).
This attribute actually extends the definition of the Thing with additional ontology or
vocabulary terms. For that purpose, the TD of a particular device needs to include the IRI
namespace of the TD ontology (i.e. https://www.w3.org/2019/wot/td), as also illustrated in
Listing 2.1. The document also presents alignments of the ontology with other
WoT-related vocabularies (i.e. SOSA, schema.org) and some usage examples of the
ontology. For instance, it demonstrates how a specific TD instance sample (i.e. JSON-LD
format) could be represented by the TD ontology in the form of RDF triples37. The Actions
object (i.e. field actions) of the TD, for example, can be represented by the
hasActionAffordance object property of the TD ontology (i.e. using the IRI
https://www.w3.org/2019/wot/td#hasActionAffordance).

Figure 138 in the WoT Thing Description specification illustrates a UML diagram that
represents the TD core vocabulary of the TD Information Model (i.e. TD ontology). The
figure is automatically generated from the ontology definition, as highlighted in the
specification.

2.11.3  Web of Things (WoT) Security Ontology

Web of Things (WoT) Security Ontology is a W3C Working Draft and it is intended to
define API security mechanisms. For instance, it includes a SecurityScheme class that
defines security schemes in general, an APIKeySecurityScheme class for API key
authentication, a BasicSecurityScheme class for Basic Authentication and an
OAuth2SecurityScheme class for OAuth2.0 protocol, among others. The ontology also
includes a number of object properties and datatype properties. In addition, the
document presents a usage example of the ontology. Therefore, this ontology is capable
of describing the API security mechanisms (i.e. used for Things and their operations)
included in Thing Descriptions proposed by W3C. The JSON-LD Context Usage section39

of the Thing Description W3C Draft indicates that the “basic” JSON key of TDs is mapped
to the IRI that represents the BasicSecurityScheme class of the WoT Security ontology (i.e.
https://www.w3.org/2019/wot/security#BasicSecurityScheme) in a specific JSON-LD file
(among other mappings). This file is provided as a resource in the namespace identified
by the IRI https://www.w3.org/ns/td. Consequently, the term “basic” can be used directly
in TDs (i.e. instead of the mapped IRI) in order to declare how clients can perform a
specific operation (i.e. using Basic Authentication). Based on the Thing Description draft
specification, “all vocabulary terms referenced in TD Information Model are serialized as
(compact) JSON strings in a TD document”.

Figure 340 in the WoT Thing Description specification illustrates a UML diagram that
represents the WoT Security vocabulary of the TD Information Model (i.e. WoT Security
ontology). The figure is automatically generated from the ontology definition, as
highlighted in the specification.

40 https://www.w3.org/TR/wot-thing-description11/#overview
39 https://www.w3.org/TR/wot-thing-description11/#json-ld-ctx-usage
38 https://www.w3.org/TR/wot-thing-description11/#overview
37 https://www.w3.org/2019/wot/td#thing-description-json-ld-1-1-instance-to-rdf-dataset

35

https://www.w3.org/2019/wot/td
https://www.w3.org/2019/wot/td#hasActionAffordance
https://www.w3.org/2019/wot/hypermedia
https://www.w3.org/ns/td
https://www.w3.org/TR/wot-thing-description11/#overview
https://www.w3.org/TR/wot-thing-description11/#json-ld-ctx-usage
https://www.w3.org/TR/wot-thing-description11/#overview
https://www.w3.org/2019/wot/td#thing-description-json-ld-1-1-instance-to-rdf-dataset


2.11.4  Data Schema Vocabulary

Data Schema Vocabulary (or JSON Schema in RDF) is a W3C Working Draft41 that
presents an RDF vocabulary for JSON schema definitions. It actually builds on the main
terms defined by JSON schema42 (i.e. a vocabulary for the annotation and also the
validation of JSON documents) to represent schema definitions in RDF format. It provides
namespace IRIs for JSON schema keywords and simple axioms. According to the
vocabulary specification, various examples43 have been introduced to show how the
vocabulary can be used (e.g. for the annotation of schemas with JSON-LD metadata or
for embedding schema annotations inside RDF graphs).

More specifically, the vocabulary includes an ArraySchema, a BooleanSchema, a
DataSchema, an IntegerSchema, a NullSchema, a NumberSchema, an ObjectSchema and
a StringSchema class. For example, the ArraySchema class defines the metadata
describing data of type array and the NumberSchema class defines the metadata
describing data of type number. This is indicated by the value “array” or the value
“number” assigned to the type attribute in DataSchema instances in TDs. The vocabulary
also includes a number of object properties (e.g. allOf, anyOf) and datatype properties
(e.g. contentEncoding, contentMediaType) for the description of data schemas. Therefore,
this vocabulary is meant to describe the data schemas that represent Things and their
interactions (e.g. properties, actions, events).

2.11.5  Hypermedia Controls Ontology

Hypermedia Controls Ontology is also a W3C Working Draft44. It is defined as “an ontology
for Web links and forms, the main hypermedia controls in use on the Web”. Regarding
forms, the document states that they are request templates which can be exposed by
servers to clients, so that clients fill them in with client-specific information and send
them back to servers. Moreover, according to the specification, “forms are similar in spirit
to operation descriptions as defined by the Open API Specification [openapis]45 or by the
Hydra RDF vocabulary [hydra]46”. Thus, Web forms proposed by W3C are similar but not
the same with the operation descriptions of the OpenAPI Specification. The ontology
includes an ExpectedResponse class that defines the primary response of a service
request, an AdditionalExpectedResponse class that defines the additional response of a
service request, a Form class for Web forms and a Link class for Web links. The ontology
also includes a number of object properties (e.g. the hasTarget object property which

46 https://www.w3.org/2019/wot/hypermedia#bib-hydra
45 https://www.w3.org/2019/wot/hypermedia#bib-openapis
44 https://www.w3.org/2019/wot/hypermedia
43 https://www.w3.org/2019/wot/json-schema#usage-examples
42 https://json-schema.org/specification.html
41 https://www.w3.org/2019/wot/json-schema

36

https://www.w3.org/2019/wot/hypermedia#bib-hydra
https://www.w3.org/2019/wot/hypermedia#bib-openapis
https://www.w3.org/2019/wot/hypermedia
https://www.w3.org/2019/wot/json-schema#usage-examples
https://json-schema.org/specification.html
https://www.w3.org/2019/wot/json-schema


refers to the URI, protocol and method used to perform an operation) and datatype
properties (e.g. forSubProtocol that refers to the exact mechanism of a protocol used to
receive asynchronous event notifications from a Thing).

More specifically, the ontology describes the concepts of Web links and Web
forms defined in the WoT Architecture. In addition, the specification presents some
alignments of the ontology with the Hydra RDF vocabulary47. According to the
specification, there is alignment between links in the Hypermedia Controls Ontology
(htcl:Link) and links in Hydra (hydra:Link), which is a vocabulary intended to describe
hypermedia-driven Web APIs (Section 2.11.5). In addition, the specification indicates that
there is alignment between forms in the Hypermedia Controls Ontology (htcl:Form) and
operations in Hydra (hydra:Operation). However, the specification of the ontology notes
that there is “a close match” between the corresponding classes (i.e. Hypermedia
Controls Ontology Link class with Hydra Link class, Hypermedia Controls Ontology Form
class with Hydra Operation class) and that they are not equivalent. Hydra classes are
described in Section 2.11.5 and they are illustrated in Figure 2.7. It highlights that the
alignments should not be “understood as formal semantic equivalences but rather as hints
to Hydra users”.

Therefore, this ontology is capable of describing the hypermedia controls
included in the TD documents of W3C. Properties of TDs can be mapped to terms (e.g.
object properties) of the Hypermedia Controls ontology using the ontology’s namespace
IRI (i.e https://www.w3.org/2019/wot/hypermedia), as noted in the W3C TD specification48.
The JSON-LD Context Usage section49 of the Thing Description Draft specification
indicates that the “href” JSON key of TDs, for example, is mapped to
https://www.w3.org/2019/wot/hypermedia#hasTarget (i.e. the hasTarget object property
of the ontology) in a specific JSON-LD file. The file is provided as a resource in the
namespace identified by the IRI https://www.w3.org/ns/td. Consequently, the “href” can
be used directly in TDs (i.e. instead of the mapped IRI) in order to declare how clients can
perform a specific operation.

Furthermore, the ontology specification presents some usage examples of the
ontology. For instance, it demonstrates a JSON-LD context that could be used in a TD to
describe hypermedia controls50 using the ontology. This example includes terms that
may map TD properties to terms of the ontology, such as object properties (e.g.
hasRelationType51) and data properties (e.g. forSubProtocol52). The forSubProtocol data
property, for example, can describe the exact mechanism that should be used for a given
protocol (i.e. when there are multiple mechanism options) to succeed a particular
interaction with a Thing (e.g. long polling subprotocol to subscribe to the overheating
event of a temperature sensor using the HTTP protocol).

Figure 453 in the WoT Thing Description specification illustrates a UML diagram that
represents the Hypermedia controls vocabulary of the TD Information Model (i.e.

53 https://www.w3.org/TR/wot-thing-description11/#overview
52 https://www.w3.org/2019/wot/hypermedia#forSubProtocol
51 https://www.w3.org/2019/wot/hypermedia#hasRelationType
50 https://www.w3.org/2019/wot/hypermedia#example-json-ld-context-for-hypermedia-controls
49 https://www.w3.org/TR/wot-thing-description11/#json-ld-ctx-usage
48 https://www.w3.org/TR/wot-thing-description11/#namespaces
47 https://www.w3.org/2019/wot/hypermedia#alignments

37

https://www.w3.org/2019/wot/hypermedia
https://www.w3.org/2019/wot/hypermedia
https://www.w3.org/ns/td
https://www.w3.org/TR/wot-thing-description11/#overview
https://www.w3.org/2019/wot/hypermedia#forSubProtocol
https://www.w3.org/2019/wot/hypermedia#hasRelationType
https://www.w3.org/2019/wot/hypermedia#example-json-ld-context-for-hypermedia-controls
https://www.w3.org/TR/wot-thing-description11/#json-ld-ctx-usage
https://www.w3.org/TR/wot-thing-description11/#namespaces
https://www.w3.org/2019/wot/hypermedia#alignments


Hypermedia Controls Ontology). The figure is automatically generated from the ontology
definition, as highlighted in the specification.

2.11.6  Hydra Core Vocabulary

JSON-LD provides a generic serialization format and also a shared vocabulary -
understood by both the server exposing the API and the client consuming it. Hydra
provides a minimal vocabulary for the description of hypermedia-driven Web APIs. This
vocabulary defines a number of concepts (e.g. hypermedia controls) in RDF Schema that
allow machines to understand how to interact with a Web API. The main essence of
Hydra is to provide servers with a vocabulary that will allow the advertisement of valid
state transitions to clients. That is, response messages from the server should contain
enough information that a client can use in order to discover all the available resources
and actions that are actually needed, so as to construct new HTTP requests to achieve a
specific goal. Therefore, Hydra allows the creation of smarter clients.

Figure 2.7 illustrates a conceptual view of the Hydra Core Vocabulary. The primary
class of the vocabulary is ApiDocumentation. According to the specification, it allows the
server to define the main entry point (EntryPoint) and document all the operations
(Operation) as well as the entities (Class) and their properties (Property) it supports.

The Resource class informs the client that a resource is dereferenceable. This
means that, as long as an IRI is accessed, the representation of a resource can be
retrieved. Finally, according to the specification of Hydra, the Link class defines properties
that represent dereferenceable links.

There are cases that the interaction with a service requires links that cannot be
created by a server. For example, in order to query a service, a link may contain
parameters that must be filled by a client at runtime. In Hydra, such cases are described
by the IriTemplate class. An IriTemplate consists of a template that describes an IRI
template54 and a number of mappings. An IriTemplateMapping maps a variable in the IRI
template to a property. Listing 2.2 demonstrates an example of an IriTemplate
description, where the variable ”lastname” maps to the property ”givenName” from
Schema.org vocabulary. With this information, a client

54 https://tools.ietf.org/html/rfc6570

38



Figure 2.7: The Hydra Core Vocabulary

may understand the meaning of variables and generate a complete IRI.

Listing 2.2: Description of an IriTemplate in Hydra

{

"@context" : "http://www.w3.org/ns/hydra/context.jsonld",

"@type" : "IriTemplate",

"template" : "http://api.example.com/users{?lastname}",

"mapping" : [

{

"@type" : "IriTemplateMapping",

"variable" : "lastname",

"property" : "schema.org/givenName",

"required" : true

}

]

}

39



The Operation class represents the information that is necessary so that a client
may send valid HTTP requests to the server. The method property is used to specify the
HTTP method, while the expects and returns properties define the expected data in
request and response messages. In addition, the statusCode property specifies a
StatusCodeDescription that provides a developer with information regarding what to
expect when invoking an operation.

The Class class is an interesting feature of the Hydra vocabulary. It extends a class
definition by providing the supportedProperties that belong to the class. This is important
as in RDF there is not any mechanism informing which properties belong to a class and
also enabling properties from other vocabularies to be reused directly. A
SupportedProperty defines the property that is used and specifies whether it is required,
readonly or writeonly.

In a Hydra-driven Web API, the service description may be discovered
automatically by a client if the API provider marks its responses with an HTTP Link
Header to direct a client to the corresponding API document. This allows the dynamic
discovery of API descriptions at runtime. Moreover, due to the use of RDF’s unique
identifiers, parts of the API descriptions can be shared and reused improving
interoperability of services.

To enable the creation of hypermedia-driven Web APIs, the Hydra core
vocabulary is used along with JSON-LD, which manages to make data self-descriptive.
JSON-LD [5] is a lightweight format used to represent Linked Data in JSON. The design of
JSON-LD allows existing JSON to be interpreted as Linked Data with minimal changes.
Furthermore, JSON-LD is 100% compatible with JSON. As a result, existing JSON parsers
and libraries can be reused. In fact, JSON-LD provides hypermedia controls (i.e. links to
other resources) and Hydra can describe them. Therefore, the combination of Hydra and
JSON-LD enables the runtime discovery of resources. This allows the implementation of
completely generic clients (e.g. API consoles or client libraries)55.

Hydra is currently endorsed by W3C and a community group is working to extend
Hydra and provide tools and guidelines for designing and creating Hydra-driven Web
APIs. Therefore, Hydra is a promising effort that could contribute to the evolution of
RESTful APIs. Nevertheless, it is under development and there is not an official W3C
recommendation (yet). This is a discouraging factor for considering Hydra the most
suitable approach for the description of Cloud services. We should note, however, that
Hydra can be very useful for modeling service operations; once a recommended
specification comes out, we expect Hydra to be much more popular.

2.11.7  Schema.org Vocabulary

Schema.org is a semantic, shared vocabulary for structured data on the Web; in fact, it is
a collection of vocabularies. It includes a number of concepts such as person,
organization, product, place, action, movie and book. It can be used with different

55 http://www.hydra-cg.com/#tooling

40



encodings such as JSON-LD, microdata56 and RDFa57. Schema.org is founded by Google,
Microsoft, Yahoo and Yandex. It launched in 2011 and it is constantly updated since then.
Schema.org can be referred to using semantic annotations (e.g. JSON-LD @context in a
TD or x-properties in Semantic OpenAPI) and define concepts for an application domain.
For instance, the Web Thing Model specification [23] includes an indicative example that
shows the usage of the schema.org detailed vocabulary (see Section 2.4).

2.11.8  OpenAPI Ontology

The OpenAPI Ontology (or OpenAPI 3.0 ontology) [17, 18, 39], which is illustrated in Figure
2.8, captures all information of an OpenAPI description of [18]. Hydra core vocabulary is at
the heart of the ontology. More specifically, the OpenAPI ontology utilizes Hydra in order
to model service operations, and also SHACL [19] in order to describe OpenAPI objects.
Therefore, the OpenAPI ontology supports the efficient representation and dynamic
discovery of hypermedia-driven APIs on the Web. A specific algorithm, which is used to
map service descriptions to the OpenAPI ontology, is available as a Web Application58 for
testing. In fact, the idea of using ontologies is not new and existing ontologies fit well the
needs of remote procedure call technologies such as SOAP [45]. However, the
emergence of REST, generated new difficulties in the representation of
hypermedia-driven APIs (such as REST) that call for the dynamic discovery of resources
at run-time (referred to as HATEOAS). This feature is not supported by known service
ontologies (such as OWL-S [12] for SOAP services). In the following, we will discuss the
OpenAPI ontology briefly, as it is presented in detail in [39].

58 http://www.intelligence.tuc.gr/semantic-open-api/
57 https://rdfa.info/
56 https://en.wikipedia.org/wiki/Microdata_(HTML)

41

http://www.intelligence.tuc.gr/semantic-open-api/
https://rdfa.info/
https://en.wikipedia.org/wiki/Microdata_(HTML)


Figure 2.8: OpenAPI 3.0 ontology

The Document class of the ontology provides general information about the
service (i.e. in the Info class) and specifies the service paths, the entities and the security
schemes it supports. The Path class represents (relative) service paths (in pathName
property). The Operation class provides information for issuing HTTP requests. Request
bodies are represented by the Body class, while responses are declared in the Response
class specifying the status code and the data returned. The entire range of HTTP
responses is represented. The MediaType class describes the representation format (the
most common being JSON and XML) of a request or response body data. The Operation
class refers to a security scheme in the SecurityRequirement class.

Figure 2.9 illustrates the security schemes supported by OpenAPI. The Security
class includes security schemes as sub-classes. The OAuth2 class has different flows
(grants) as sub-classes. If the security scheme is of type OAuth2 or OpenID Connect, then
scope names are defined as properties.

42



Figure 2.9: OpenAPI 3.0 security class

Schema objects are expressed as classes, object properties and data properties
using SHACL, which is an RDF vocabulary that can be used in order to define classes
along with constraints on their properties. It provides built-in types of constraints (e.g.
cardinality: minCount, maxCount) and is expressed by the Shape class. That is, a Schema
object is mapped to the Shape class of the ontology, which is distinguished into the
NodeShape class and the PropertyShape class. The NodeShape class defines the
properties of a class and specifies whether a class may contain additional properties
(additionalProperties) of a specific type. Additionally, it represents operations related to a
class (supportedOperation), which come from x-onResource extension property. Class
PropertyShape represents the properties of a class, their data type and restrictions (e.g. a
maximum value for a numeric property) and indicates whether the supported property is
required or read-only. Table 2 in [39] shows how Schema object properties are mapped
to properties of the SHACL vocabulary. Moreover, [39] demonstrates how the Person
model (Listing 1.1 in [39]) is represented in the OpenAPI ontology. The model contains
references to the www.schema.org vocabulary using the x-refersTo extension property.

The OpenAPI ontology also represents collections through the Collection class by
specifying the members (member) of a collection. For example, Listing 1.6 in [39]
demonstrates the PersonCollection of Listing 1.3 representation in the OpenAPI ontology.
A PersonCollection class is defined in the OpenAPI ontology as a subclass of the
Collection class. This example is further described in [39].

OpenAPI parameters are represented as separate classes for every parameter
type in the OpenAPI ontology. The Header class contains all the definitions of header
parameters that are used in HTTP requests and responses. The Cookie class defines the
cookies that are sent through HTTP requests and responses. In addition, the Parameter
class defines all parameters that are attached to the operation's URL. The class is further
organized in the PathParameter and the Query classes that refer to the corresponding
path and query parameters of the specification.

43



A request or response body (defined using the content property) is used to send
and receive data via the REST API respectively (a response also includes a response
code, e.g. 200, 400, etc.). Media type is a representation format of request or response
body data in different formats - the most common are JSON, XML, text and images. They
are typically defined in the Paths object; however, reusable bodies can also be defined in
the Components object. Each media type includes a Schema property, defining the data
type of the message body. Request and response bodies are represented as properties
of the Operation class. In particular, request and response bodies are defined as classes
and their media type is also defined in this way. The Encoding class defines keywords
denoting serialization rules for media types with primitive properties (e.g. contentType for
nested arrays or JSON).

44



3
Web of Things

implementations

The Web Thing Model submission of W3C is not a recommendation; the WoT
Architecture specification is. The Web Thing Model is an earlier work of W3C, but it laid
the foundations for our implementation of a REST API that allows the interaction of
clients with Things and our implementation of a Thing description approach for the WoT
(i.e. an alternative approach to the TD of W3C).

In this section, we introduce and discuss Web Thing Model service (WTMs), our
implementation of the Web Thing Model according to the requirements of the model.
Existing Web of Things implementations are also reviewed and compared with WTMs
considering the requirements of the Web Thing Model. The three candidate WoT
implementations (namely, Thingweb.node-wot, Webofthings.js and WTMs) are compared
based on their capacity to support the entire set of operations of the Web Thing Model
specification. In fact, Thingweb.node-wot is the only implementation that adopts TDs and
is fully compatible with the W3C TD information model proposed in the WoT Architecture.
Webofthings.js and WTMs were based on the Web Thing Model REST API; although they
follow the basic requirements of the WoT Architecture, they are more compliant with the
OpenAPI Thing template approach described in Chapter 4. Moreover, in Chapter 6, we
review and compare the implementations again based on the WoT Architecture of W3C
which is a recommendation.

The comparison and the discussion followed, revealed that WTMs is the only
implementation that fully complies with the Web Thing Model specification. It is realized
as a RESTful Web service that communicates (i.e. with other services or clients) over
HTTP in the cloud (and the Web) and implements the requirements, and all operations
suggested by the Web Thing Model.

The performance of WTMs is evaluated in a smart city scenario [40]. The results of
this evaluation reveal that WTMs is capable of responding in real-time under stress (i.e.
with thousands of requests out of which many are executed in parallel). Finally, to convey
Thing specific functionality and information (i.e. Thing identifier, descriptions and

45



payloads) from the Web to an IoT application, WTMs is implemented as a proxy service
of iSWoT [41], a prototype IoT Service Oriented Architecture (SOA) deployed on Google
Cloud Platform (GCP). Cloud is the ideal environment for IoT applications deployment
due to reasons related to its affordability (no up-front investment, low operation costs),
scalability, easy maintenance and accessibility. Therefore, we show how WTMs can be
integrated within a Service Oriented Architecture (SOA) for the IoT to support full-fledged
WoT functionality.

3.1 Thingweb node-wot

Thingweb node-wot59 is an implementation of the WoT Scripting API60 on Node.js61 and
enables the implementation of Thing operations using a JavaScript API similar to the
Web browser APIs. Thingweb is based on the W3C Architecture and it is fully compatible
with the W3C TD information model, as it adopts TDs to represent Things and thus allow
clients to interact with them. In other words, it provides an API Interface that allows
scripts to interact with Things using Web protocols such as HTTP, HTTPS, CoAP, MQTT,
Websockets. Not all WoT operations are supported by all protocols. Thingweb supports
most of the operation types of the WoT Architecture listed in Table 2.1. These are
discussed in Section 3.4, where the implementation is compared with WTMs.

The Thingweb node-wot repository in Github includes short code
documentation62 of the operations (i.e. not detailed API documentation) which are now
supported in Thingweb. The repository also lists the protocol bindings that are currently
supported by the implementation. Not all of these protocols are fully supported. At the
time of writing, Thingweb provides only server-side support for the Websocket protocol
and only client-side support for some industrial protocols (e.g. OPC-UA). In addition,
Thingweb supports protocol binding for Cloud Firestore63 (i.e. hosted in Google Cloud),
which is a popular, flexible and also scalable NoSQL database (i.e. it stores documents)
provided by Google. It is a database intended for mobile and web applications. Firestore
is capable of subscribing to written data; the Thingweb Firestore Binding utilizes this
feature to enable communication between Things and clients. As noted in the
documentation of Thingweb, this binding offers a storage location (i.e. a Firestore
DocumentReference64) in Firestore for data related to the properties, actions and events
of a Thing. After data is written to a Firestore Reference, the communication of a Thing
with Clients that subscribe to the Thing’s data is enabled. Therefore, the exposed Thing
Descriptions are stored in Firestore.

The list of protocol bindings currently supported by Thingweb is the following:

● HTTP

64 https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference
63 https://firebase.google.com/docs/firestore
62 https://github.com/eclipse/thingweb.node-wot/blob/master/API.md
61 https://nodejs.org/en/
60 https://www.w3.org/TR/wot-scripting-api/
59 https://github.com/eclipse/thingweb.node-wot

46

https://firebase.google.com/docs/reference/js/v8/firebase.firestore.DocumentReference
https://firebase.google.com/docs/firestore
https://github.com/eclipse/thingweb.node-wot/blob/master/API.md
https://nodejs.org/en/
https://github.com/eclipse/thingweb.node-wot


● HTTPS
● CoAP
● CoAPS
● MQTT
● Firestore
● Websocket (server-side only)
● OPC-UA (client-side only)
● NETCONF (client-side only)
● Modbus (client-side only)
● M-Bus (client-side)

Finally, according to Thingweb documentation in Github, more protocols can be
simply added by implementing particular programming interfaces (i.e. specified in the
documentation) for each of these protocols.

3.2 Webofthings.js

Webofthings.js65 is a lightweight and extensible implementation of WoT operations in
Node.js for HTTP and Websockets protocols. Similar to WTMs, it is a typical
implementation of the WoT operations suggested in the original WoT resource [1].
Therefore, it is based on the Web Thing Model submission; it is fully compatible with the
Web Thing Model proposed representation of Things and thus the OpenAPI Thing
template approach. It is not compatible with the W3C TD information model, as it does
not adopt W3C TDs for the representation and the interaction with Things. According to
the creators of Webofthings.js, it is a “server and gateway reference implementation of
the W3C Web Thing Model, written in Node.js and tailored for embedded systems”. They
intend to provide an implementation that allows Thing to interact together and also with
a Web application. However, according to the description of Webofthings.js in Github, it is
just a way to experiment with WoT and the basis of the Building the Web of Things book
[1]. It provides a WoT server that can run on any platform that supports Node.js and
especially on several embedded devices. For example, it can be deployed on a
Raspberry Pi and provide Web access to devices such as sensors and actuators.

3.3 Web Thing Model service (WTMs)

In the following, we describe a Web Thing Proxy that allows the interaction of clients (i.e.
users or services) with Things on the Web and proposes a particular Web service (i.e. a
REST API) that implements particular operations. Web Thing Model service (WTMs) was
based on the Web Thing Model submission of W3C. Therefore, it does not adopt the WoT
Thing Description (TD) format proposed by W3C which is, according to the WoT

65 https://github.com/webofthings/webofthings.js/

47

https://github.com/webofthings/webofthings.js/


Architecture, “the central building block of W3C WoT”. However, the Web Thing Proxy is
compatible with the WoT Architecture, as it follows its common principles such as
flexibility (i.e. it supports a wide variety of physical device configurations), scalability (i.e.
for IoT solutions with thousands to millions of devices) and also interoperability (i.e across
device and cloud manufacturers). Moreover, WTMs enables the interaction of clients with
Things using a RESTful API, which is one of the basic requirements of the WoT
Architecture. The compliance of WTMs with the WoT Architecture is further discussed in
Chapter 6.

3.3.1   Web Thing Proxy

In Section 2.1, we highlighted that the interconnection of Things to an application is
commonly supported by device-specific protocols rather than by HTTP directly. Thus, we
assume that Things connect to a protocol translation service whose role is to convey
Thing-related data to the application using HTTP and JSON. This service runs on a
gateway but it can be deployed within a proxy in the cloud (or server) equally well. IDAS
backend IoT management66 is a reference implementation of this service. It is the only
service that is affected by the property of Things (e.g. a sensor) to use a specific protocol.
Following IDAS, Things register to a Publication and Subscription service [42] to make
their information available to users or other services based on subscriptions. Each time a
Thing registers to Web Thing Proxy, a new entity is created in the Publication and
Subscription service. Each time new data about a Thing becomes available, its
corresponding component in the Publication and Subscription service is updated and a
notification is sent to all subscribed entities (i.e. users or services). It works in conjunction
with any Publication and Subscription service such as ORION Context Broker67, Scorpio68

or RabbitMQ69. The database of the service (i.e. a MongoDB) is used to store all data
about Things (i.e. descriptions, properties, measurements, actions, action executions and
subscriptions to Things). These data can be retrieved, updated or deleted by the Web
Thing Model service. Notice that, Context Broker holds only the most recent information.
History (past) data is forwarded to a history database (not part of Web Thing proxy). Fig.
3.1 illustrates the most essential parts (i.e. services) of the Web Thing proxy and its API
interface.

69 https://www.rabbitmq.com/
68 https://github.com/ScorpioBroker/ScorpioBroker
67 https://fiware-orion.readthedocs.io/en/master/
66 https://fimac.m-iti.org/5a.php

48

https://www.rabbitmq.com/
https://github.com/ScorpioBroker/ScorpioBroker
https://fiware-orion.readthedocs.io/en/master/
https://fimac.m-iti.org/5a.php


Figure 3.1: Web Thing Proxy service

According to the Web Thing Model specification, a Thing is identified by its
resources, namely, a Web Thing Resource, a Model Resource, a Properties Resource, an
Actions Resource (as long as the Thing supports actions), a Things Resource and a
Subscriptions Resource. The Web Thing Resource is the root resource of the Web Thing
model and it is used to provide a short and abstract description of a Web Thing. The
Model Resource is meant to describe the values of Things properties as well as the
actions that can be performed on Things. The Thing model is a more detailed description
and it may also include helpful links (e.g. a link to a documentation file). The Properties
Resource defines the properties of a Thing in general (e.g. pressure, humidity) and
describes measurements related to a Thing property. (e.g. temperature values provided
by a temperature sensor) or the internal state of a Thing (e.g. the state of a smart door).
The Actions Resource defines the allowed actions on a Thing, such as execution
commands (e.g. a command sent by a client to a window actuator to open). The Things
Resource is different from the Web Thing resource and it is used to describe specific
operations on Things such as the registration of new Things to an application. Finally, the
Subscriptions Resource is used to describe subscriptions to Web Things (especially to
their actions and properties). For example, users and services can subscribe to the
humidity property of a specific sensor and get notified of any changes of this information
(i.e. new humidity value).

JSON is the data exchange format for Web Things, as already highlighted in this
work. The exact formatting, however, depends on the particular services of the proxy
service (e.g. NGSI in the case of IDAS). The Web Thing Model introduces a list of
operations that (in part or in full) can be offered by a Thing. Concerning Web Thing
Resource, the model may allow an operation that retrieves or updates the description of
a Thing in JSON. Similarly, for Thing Model (or for Properties Resource), the Web Thing
model may allow operations that retrieve or update the properties or actions (their values
or state information respectively) on a Thing. Concerning Actions Resource, the model
may allow an operation that retrieves the actions that a Thing may perform and, in
addition, an operation for sending a command to a Thing to execute an action and

49



operations to retrieve past action executions. Concerning Things Resource, the model
may allow an operation that registers a Thing or an operation that retrieves all registered
Things. Finally, in relation to Subscriptions Resource, the model may allow an operation
that creates a new subscription to a Web Thing resource or, an operation that retrieves or
updates the information of an existing subscription.

3.3.2   WTMs implementation

Web Thing Model service (WTMs) is an autonomous RESTful service in Python Flask and
implements some of the WoT Architecture operations on Things using HTTP. It does not
adopt W3C TDs for the representation and the interaction with Things. In fact, WTMs is a
Web service designed to support Thing operations and uses the same JSON payloads,
API endpoints and response codes as described in the W3C Web Thing Model
submission of W3C. Specifically, WTMs supports all operations for retrieving and
updating Thing descriptions and their properties, as well as all Thing model operations. It
implements functions that send a command to a Thing (i.e. an actuator) to execute or
retrieve actions and action executions, as well as functions that create, retrieve and
delete subscriptions on Web Thing resources. In the following discussion, a hypothetical
Smart Door (i.e. an actuator device) is used in most examples. It provides information on
its state (i.e. open, closed or locked) and can receive an action command to open, close,
lock or unlock. The DHT22 sensor70 is also mentioned in some examples. In the following,
WTMs operations are grouped by resource. The majority of these operations (i.e. 14 out
of 18) are used in the OpenAPI Thing template proposed in Section 3, so they have
already been described to some extent.

A. Web Thing Resource

The first operation retrieves a Thing and is realized by issuing an HTTP GET request to
the root URL of a Thing. The root URL of a Thing is its IP address and default port that
follows the IP (e.g. http://34.122.93.207:5001/MySmartDoor in the case of the smart door).
To retrieve the TD, an HTTP GET request is sent to the Context Broker service, where the
TD is stored. The JSON representation of the Thing contains its identifier (e.g.
MySmartDoor) and possibly a characteristic name, a description, the date when the
Thing entity was created and any other information given by the Thing owner. A Thing
can be registered by its owner, who is responsible for setting the Thing description. A 200
OK response code is also returned as long as the operation is successful, similar to any
other retrieval operation of the model. The function of updating a Thing description
requires sending an HTTP PUT request to the root URL of a Thing, containing a JSON
object in the request body. This object may contain new values for any of the Thing’s
attributes (except the identifier which cannot be updated). The operation is realized by
sending an HTTP PATCH request to the Context Broker to update the existing Thing

70 https://www.adafruit.com/product/385

50

https://www.adafruit.com/product/385


description by changing its attributes. A 204 NO CONTENT response code is returned if
the operation is successful.

B. Model Resource

The first operation intends to retrieve the model of a Thing by issuing an HTTP GET
request to the /model endpoint of the root URL of a Thing. The request is forwarded to
Context Broker service where the description of the Thing model is stored (i.e. using
/v2/entities/MySmartDoor?type=Model instead of retrieving the entity that stores the TD
by using /v2/entities/MySmartDoor?type=Thing). The JSON representation returned
contains the identifier of the Thing along with any attribute which describes the model of
the Thing (i.e. its properties, actions, etc.). Compared to TD, it is a more detailed
description of the Thing.

The second operation intends to update the model of a Thing (i.e. update
attributes of the Thing model description), by issuing an HTTP PUT request to the
/model endpoint of the root URL of a Thing. The new attribute values are included in the
request body (except the identifier attribute that cannot be updated). The operation is
realized by forwarding an HTTP PATCH request to the Context Broker service. A 204 NO
CONTENT response is returned if the operation is successful.

C. Properties Resource

The first operation intends to retrieve a list of properties. It is realized by issuing a GET
request to the /properties endpoint of the root URL of a Thing. For example, to retrieve
the properties of the smart door, an HTTP GET request is sent to the properties endpoint
of the root URL of the smart door. A JSON array describing the Thing properties is
returned. The array contains a JSON object for each specific property of the Thing. This
object includes a short description of the property (e.g. identifier, name and any other
attribute set by the Thing owner) and the current (i.e. last) measurement value of the
Thing (e.g. last humidity value of DHT22) or the internal state of the Thing (e.g. the state of
the door). So this operation returns a conceptual description as well as the last measured
or state value for each property of the Thing. In the case of a smart door, only information
about the state property of the Thing will be returned; in the case of DHT22, both
temperature and humidity information will be included in the response JSON array.

The second operation on Properties Resource intends to retrieve the current
value of a property. It requires sending an HTTP GET request to the /properties endpoint
of the root URL of a Thing followed by the specific Thing property name as a path
parameter (e.g. rootURL/properties/state for the smart door actuator or
rootURL/properties/temperature for the DHT22 sensor). The Context Broker service
allows storing only the most recent measurement values of a sensor in the case of
DHT22 or, the last observed state of the smart door. The implementation can be modified
to return the most recent (e.g. the 10 latest) values. Past measurements can be also
stored in a history database (as shown in Figure 3.1).

An update operation on the Properties Resource (e.g. update a specific property)
requires sending an HTTP PUT request to the /properties endpoint of the root URL of a
Thing followed by the name of the property. The new property value(s) and the new

51



timestamp are included in the request body. For example, an HTTP PUT request is used
to update the state property of the smart door (e.g. by changing its value to open). This is
a property update operation that is different from an action (e.g. open the door) and not
an action execution command to open the door. In response, WTMs forwards an HTTP
PUT request to the Context Broker service to update the existing property values and the
property timestamp. A 204 NO CONTENT response and a header containing the property
URL path are returned if the operation is successful.

The last operation on Properties Resource, updates multiple properties at once,
by sending an HTTP PUT request to the /properties path of the root URL of a Thing
followed by a path name. This operation is used to update the values of multiple
properties of a specific Thing (e.g. the temperature and the humidity of DHT22) using a
single HTTP request. The request body contains a JSON array with the new value and
the new timestamp of each property. In turn, WTMs issues an HTTP POST request to the
Context Broker service to update the existing property values. The service utilizes the
batch update operation of the Context Broker, which allows to create or update several
entities with a single request. A 204 NO CONTENT response and a header containing the
/properties endpoint of the root URL of the Thing are returned provided that the
operation is successful.

D. Actions Resource

The first operation retrieves a list of actions by issuing an HTTP GET request to the
/actions endpoint of the root URL of a Thing. This operation is meant to return an array of
descriptions for the actions that the Thing may perform (e.g. open, close, lock, unlock for
the smart door). In turn, the WTMs issues an HTTP GET request to the Context Broker to
retrieve the entity that holds this information in the form of a JSON array (i.e. containing
an identifier and a name for each possible action). This information can be set by the
Thing owner.

The second operation intends to retrieve all recent executions of a specific action
and issues an HTTP GET request to the /actions endpoint of the root URL of a Thing
followed by the specific action name as a path parameter. For example, a GET
rootURL/actions/{actionName} (e.g. rootURL/actions/lock) will return an array of the
recent executions of a specific action on the smart door (e.g. locking the smart door
device), including information about the status of the action execution and a timestamp.
This information can be retrieved by issuing an HTTP GET request to the Context Broker
service. A JSON array is returned containing a separate object for each action execution.
A time delay value might have been sent in the request body of specific action
execution, to schedule the execution of the action at a later time. The value attribute can
be omitted in commands for opening, closing, locking and unlocking the smart door.

The next operation is meant to execute an action. An HTTP POST request is sent
to the /actions endpoint of the root URL of a Thing followed by an action name in a path
parameter (e.g. POST rootURL/actions/lock to lock the smart door). WTMs generates a
unique identifier for each execution of an action which is stored in the Context Broker and
can be used to retrieve the action. In fact, a random integer number is generated and its
value is used to identify the action. The last operation retrieves the status of an action
using its identifier as a path parameter. An HTTP GET request is sent to the /actions

52



endpoint of the root URL of a Thing followed by the name of the action and the
execution identifier as a path parameter (e.g. GET rootURL/actions/lock/156). The
operation is forwarded to the Context Broker where the specific action execution is
stored.

E. Things Resource

The first operation retrieves the list of Things registered to the proxy. It requires sending
an HTTP GET request to the /things endpoint of the root URL of a Thing. WTMs forwards
an HTTP GET request to the Context Broker service to retrieve all the entities of type
Thing (i.e. GET v2/entities?type=Thing). A JSON array with the description of Things
registered to the proxy is returned.

The second operation registers a new device in a specific infrastructure (and the
proxy). The operation requires sending an HTTP POST request to the /things endpoint of
the root URL of a Thing. The request body must contain the TD of the new Thing.
Following this request, WTMs issues an HTTP POST request with the new TD to the
Context Broker. A 204 NO CONTENT response and a header containing the root URL of
the Thing are returned as long as the operation is successful.

F. Subscriptions Resource

These are operations for handling subscriptions to Things. The first operation
creates a new subscription, so a user or service may subscribe to a specific Web Thing
resource. A client (i.e. user or service) may subscribe to specific Thing properties or
actions. According to the Web Thing model, subscriptions are ideally supported using
custom callbacks (i.e. Webhooks) which are naturally supported by Websocket protocol.
In WTMs in particular, subscriptions are also realized via Webhooks and specifically using
HTTP and the subscription mechanism of Context Broker service. An HTTP POST request
is required to create a new subscription. More specifically, WTMs issues an HTTP POST
request to Context Broker (i.e. to its /v2/subscriptions endpoint) to store the new
subscription. The subscription request body is set by the subscriber (client or service). A
response header containing the subscription identifier is returned as long as the
operation is successful. In addition, an HTTP PATCH request is also sent to the database
of Context Broker to store the new subscription identifier as a separate entity. A 200 OK
response is then returned as long as the whole operation is successful. In the following,
as a result of successful subscription operation, the subscribed user or service gets
notified (i.e. receiving asynchronous notifications) on changes of Thing’s state information
(e.g. new temperature value). The subscription identifier is a 24-digit hexadecimal
number, generated by the subscription mechanism of the Context Broker service.

The second operation retrieves a list of subscriptions made to a specific Thing or
Web Thing resource. The operation issues an HTTP GET request to the /subscriptions
endpoint of the root URL of a Thing. WTMs in particular, issues an HTTP GET request to
the Context Broker service where the subscriptions are stored. A JSON array containing
all these subscriptions is returned. According to the Web Thing model, all stored
subscriptions are retrieved (not only the ones made to a specific Web Thing resource).
However, WTMs enables retrieval (in a JSON array) of the subscriptions that refer to a

53



specific resource (i.e. Thing). For example, to retrieve the subscriptions made to a
registered smart door, an HTTP GET request is issued (i.e. GET
http://34.122.93.207:5001/subscriptions).

The next operation is meant to retrieve a particular subscription (i.e. to a resource
of a Thing) using its subscription identifier as a path parameter. The operation requires
sending an HTTP GET request on the /subscriptions endpoint of the root URL of a Thing
followed by the subscription identifier as a path parameter (e.g. GET
rootURL/subscriptions/5a82be4d093af1b95ac0f730). Following this, WTMs forwards the
request to Context Broker service (i.e. to /v2/subscriptions/5a82be4d093af1b95ac0f730
service endpoint) where the specific subscription is stored. A JSON representation of the
subscription is returned in the response.

The last operation deletes a subscription using its subscription identifier. The
operation issues an HTTP DELETE request to the /subscriptions endpoint of the root URL
of a Thing followed by the subscription identifier as a path parameter. WTMs in particular,
issues an HTTP DELETE request to the Context Broker service where the specific
subscription is stored (i.e. DELETE /v2/subscriptions/identifier). The subscription is
removed and a 200 OK response header is returned.

3.4 Comparing WoT implementations

Thingweb node-wot and Webofthings.js are representative open-source
implementations that are compared with WTMs, in terms of completeness: to what
extent an implementation supports all operations foreseen by Web Thing Model
specification (rather than those suggested by WoT). There is a lot of ambiguity as to what
operations and protocols should be supported in WoT and, existing implementations
differ significantly in both operations and protocols supported. The relevant comparison
would open a broader discussion about the equivalence of operations in different
contexts. As noted in Sections 3.1, 3.2 and 3.3, Thingweb adopts TDs and is compatible
with the W3C TD information model, while Webofthings.js and WTMs are based on the
Web Thing Model REST API so they are more compatible with the OpenAPI Thing
template approach. That is, the latter two implementations do not use W3C TDs at all
and they follow the REST API (i.e. endpoints, operations, payloads, etc) proposed in the
Web Thing Model.

Similar to the Thingweb node-wot, some functions of Web Thing Model have not
been implemented in Webofthings.js. For instance, the operation for updating a Thing
description and the operation for updating multiple Thing properties at the same time
using a single HTTP PUT request are not supported. As mentioned in Section 3.3.2, users
or services should be able to subscribe to Web Thing resources (e.g. properties, actions)
and get notified of any new values or value changes. Webofthings.js supports the
creation of subscriptions using the Websocket protocol. However, the rest of the
subscription operations have not been implemented (i.e. would need a context broker to
implement such operations on subscriptions). Similar to Thingweb.node-wot, operations
on subscriptions (e.g. the retrieval of a list of subscriptions or of information about a
specific subscription and the deletion of a subscription) are not supported. In contrast to

54



both frameworks, WTMs aims to fully implement the Web Thing Model and attempts to
realize the functionality of all services as described in the model. Table 3.1 summarizes
the results of this comparison.

Operation
Web Thing Model

service
(WTMs)

Thingweb node-wot Webofthings.js

Retrieve a Web Thing √ √ √

Update a Web Thing √

Retrieve the model
of a Thing

√ √

Update the model of a
Thing

√

Retrieve a list of properties √ √ √

Retrieve the value of a
property

√ √ √

Update a specific property √ √ √

Update multiple
properties at once

√ √

Retrieve a list of actions √ √ √

Retrieve recent executions
of an action √ √

Execute an action √ √ √

Retrieve the status of an
action

√ √ √

Retrieve a list of Web
Things

√ √

Add a Web Thing to a
gateway

√ √

Create a subscription √ √ √

Retrieve a list of
subscriptions

√

Retrieve information of a
subscription

√

Delete a subscription √

Table 3.1: Comparison of WoT reference implementations

55



Compared to existing implementations, WTMs is complete (i.e. it implements all
Web Thing Model model operations) while being more flexible in certain cases; it allows
WoT operations to address certain Thing properties rather than handling the Thing
Descriptions as a unit (i.e. as Thingweb does).

3.5 WTMs Performance

WTMs is deployed using Docker in a medium flavor (2 vCPUs, 4,096Gb RAM and 20Gb
SSD disk drive capacity) Virtual Machine (VM) in the Google Cloud Platform (GCP).
Individual services (i.e. all WoT Model services, Orion Context Broker service and a
MongoDB) are deployed within a Docker Engine as containers. Experimental results are
taken using simulated (but realistic) data obtained from software simulating the
operation of physical devices at a home and in a city environment. This allowed shifting
the emphasis of the work from device-specific functionality (e.g. IoT transmission
protocols and vendor-specific device functionality) to the actual performance of WTMs.
To generate a large data set, the software produces pseudo-random measurements in
the same value range and form as a real sensor.

WTMs is tested in a smart city scenario with 1,000 actuator Things that provide
observations of two properties (e.g. temperature and pressure). Each Thing is capable of
executing actions and receiving subscriptions. Context Broker service stores 7,000 data
entities in total comprising information about Things and hypothetical users. More
specifically, the MongoDB of the Context Broker services comprises 1,000 Web Thing
descriptions, 1,000 Thing model descriptions, 2,000 Thing properties (1,000 for each of
the two observable properties), 1,000 possible Thing actions, 1,000 Web Thing action
executions and 1,000 subscriptions to Thing resources.

Apache Benchmark (AB)71 is used to stress WTMs with 1,000 simultaneous
requests (for each operation) for varying values of concurrency representing operations
executing in parallel. Table 3.2 summarizes the performance (i.e. response time) of the
most representative WoT service requests for three values of concurrency. All
measurements of time are averages of over 1,000 requests. In all cases, the performance
of WoT requests improves with the simultaneous execution of requests (i.e. the Apache
HTTP server switches to multitasking) reaching their lowest values for concurrency=100.
Even with concurrency=200, the average execution time per request is close to real-time
in most cases. All requests are forwarded to the MongoDB service of Context Broker
service (in fact MongoDB is part of the service). The request that updates multiple
properties (two properties in our case) is slower than a simple read (i.e. GET) request.

71 https://httpd.apache.org/docs/2.4/programs/ab.html

56

https://httpd.apache.org/docs/2.4/programs/ab.html


Service request
Response
Time (ms),

c=1

Response
Time (ms),

c=100

Response
Time (ms),

c=200

Retrieve a list of properties 41.84 10.59 10.77

Update the model of a
Thing

44.70 13.53 13.65

Update a specific property 47.88 16.73 17.10

Update multiple
properties at once

59.62 28.43 28.75

Retrieve a list of Web
Things

53.37 20.47 20.81

Retrieve a list of actions 43.07 8.74 8.84

Retrieve recent executions
of an action 41.37 9.46 9.59

Retrieve a list of
subscriptions

51.00 18.73 29.47

Execute an action 45.54 16.47 17.85

Table 3.2: Performance of WTMs

3.6 Integrating WTMs in a SOA architecture

iSWoT [41] is an example architecture that incorporates WTMs proxy service. Building
upon principles of SOA design, iSWoT is implemented as a composition of RESTful
microservices communicating over HTTP in the cloud. iSWoT is a Semantic WoT
architecture integrating the following desirable characteristics: (a) it is highly configurable
and modular and supports generation of fully customizable applications by reusing
services and devices; (b) leveraging flow-based programming combined with SWRL (i.e.
a rule-based language for ontologies in OWL), new applications can be generated with
the aid of user-friendly interfaces; (c) all services are reusable, implement fundamental
functionality and offer a public interface allowing secure connections with other services
(even third party ones); (d) it is also interoperable and expandable (i.e. services can be
added or removed) while being secure by design: all services are protected by an
OAuth2.0 mechanism. Access to services is granted only to authorized users (or
authorized services) based on user roles and access policies.

57



Figure 3.2: iSWoT architecture

Figure 3.2 illustrates iSWoT’s architecture. Besides WoT proxy, the following
groups of services are identified:

a) Publication and Subscription: Things registered to WoT Proxy can publish
information to this service. It receives measurements from devices registered to IDAS
service and makes this information available to other services and users based on
subscriptions. Each time a new sensor registers to WoT Proxy, a new entity is created in
the service (and also to the ontology). Each time a Thing value (e.g. sensor measurement)
becomes available, this component is updated and a notification is sent to entities
subscribed to the Thing. The service holds the most recent values from all registered
sensors in a MongoDB database. History (past) measurements are forwarded to the
History database.

b) History database: Collects data flows from Publication and Subscription service.
The time series created from the history of data is stored in a MongoDB as (a) raw
(unprocessed) values as received from devices and, (b) aggregated (processed) values.
More specifically, maximum, minimum and average values over predefined time intervals
(e.g. every hour, day, week etc.) are stored. This service is implemented using Cygnus72.
The History database is implemented using MongoDB. STH-Comet73 implements a query
interface for MongoDB.

c) Ontology: It is the knowledge base component of iSWoT that handles IoT
general-purpose and application-specific knowledge. The term Thing stands either for
physical entities (e.g. Web devices) or for virtual entities (i.e. definitions of Thing

73 https://fiware-sth-comet.readthedocs.io/en/latest/index.html
72 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus

58

https://fiware-sth-comet.readthedocs.io/en/latest/index.html


categories). Physical entities are related (i.e. are instances) of virtual entities in SOSA
ontology [38]. iSWoT supports seven sensor types (i.e. atmospheric pressure,
temperature, humidity, luminosity, precipitation, human presence at home and wind
speed). All are defined as subclasses of SOSA class Sensor.

d) Application Mashup: This service facilitates the development of new
applications by re-using information residing in the History database and the ontology.
The service is realized with the aid of Node-Red74, an open-source flow-based
programming tool for the IoT. Applications created are stored as a JSON entity in
Application storage (i.e. a MongoDB database).

e) Application logic: Application logic orchestrates, controls and executes services
running in the cloud. When a request is received (from a user or service), it is dispatched
to the appropriate service. User requests are issued on the Web interface. First, a user
logs in to iSWoT with a login name and password. The user is assigned a role (by the
cloud administrator) and receives a token encoding his or her access rights (i.e. the
authorization to access iSWoT services). This is the responsibility of the User identification
and authorization service. Each time application logic dispatches the request to another
service, the token is attached to the header of the request. It is the responsibility of the
security mechanism to approve (or reject) the request. In iSWoT, all public services are
protected by a security mechanism. iSWoT users can access the system using a Web
interface. Application owners can issue requests for available devices and subscribe to
selected devices; customers can issue queries to select applications available for
subscriptions.

f) Security: Implements access control services based on user roles and access
policies. Initially, users register to iSWoT to receive a login name, a password and a role
(i.e. customer, application owner, or infrastructure owner) encoding user’s access rights.
This is the responsibility of the cloud administrator. Once a user is logged-in, she/he is
assigned an OAuth2 token encoding her or his identity. The token remains active during a
session. A session is initialized at login and remains active during a time interval which is
also specified in advance. User respective access rights are described by means of
XACML75 (i.e. a vendor-neutral declarative access control policy language based on XML).
Keyrock identity manager76 is an implementation of this service. For each user, an XACML
file is stored in Authorization Policy Decision Point (PDP)77 service; user profile information
is stored in the User database.

Services offering a public interface are protected by a security mechanism (i.e.
they do not expose their interface to the Web without protection). This security
mechanism is realized by means of the Policy Enforcement Proxy (PEP)78 service. Each
public service is protected by a separate PEP service. It is the responsibility of this service
to approve or reject a request to the protected service. Each user request is forwarded to
Application logic which dispatches the request to the appropriate service.

78 https://fiware-pep-proxy.readthedocs.io/en/latest/
77 https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2/
76 https://keyrock.docs.apiary.io/#reference
75 https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
74 https://nodered.org/

59

https://fiware-pep-proxy.readthedocs.io/en/latest/
https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2
https://keyrock.docs.apiary.io/#reference
https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
https://nodered.org/


4
OpenAPI Thing Descriptions

for the Web of Things

In Chapter 2, we reviewed the most common and noteworthy approaches used for the
syntactic and semantic description of Web services. The W3C effort on the Web of
Things aims at giving solutions for the description of Things and the interaction with
them. Most cloud providers and developers, however, do not usually adopt these
approaches to describe the functionality of Things. Although some providers or potential
users may use some of these approaches (e.g. the W3C TD approach), services exposed
by devices are not described using a commonly approved and adopted approach. The
documentation of devices and their services is usually based on plain-text descriptions
which may be proprietary (i.e. not open-source) and not consistent with the
documentation of other providers and manufacturers.

In the following sections, we present our approach that builds upon the OpenAPI
and specifically the Semantic OpenAPI Specification for the effective and efficient
description of Things exposed as Cloud services. Although the Web Thing Model of W3C
is not a recommendation, it proposes a simple REST API that allows a client (i.e. user or
service) to easily interact with Things. Our approach builds on this REST API to introduce
a common OpenAPI template of specific resources and operations (i.e. a specialization of
OpenAPI) that applies to all Things, regardless of their features. Although this work does
not adopt the TDs of W3C to allow the interaction with Things, it follows the common
principles79 of the WoT Architecture recommendation. For example, our approach
enables the interaction of clients with Things on the web architecture using a RESTful
API and it can allow the mutual interworking of different eco-systems using web
technology. It provides a Thing description approach that shows clients how to use
Things (e.g. read information about them, invoke actions on them, subscribe to them)
with minimum implementation logic, using a number of specific, well-defined operations.
In addition, our work is compliant with the principles of flexibility, compatibility, scalability
and interoperability in the WoT.

79 https://www.w3.org/TR/wot-architecture/#sec-requirements-principles

60

https://www.w3.org/TR/wot-architecture/#sec-requirements-principles


We discuss the reasons that led us to the adoption of the OpenAPI Specification as
well as the adoption of semantically enriched OpenAPI definitions. Moreover, we
illustrate how these descriptions can be used to define a generic OpenAPI Thing
description template and how this template can be instantiated to the description of
specific Things. We propose a mechanism for automatically generating OpenAPI Thing
descriptions (i.e. JSON or YAML files) based on specific input provided by a user. We
advocate that service descriptions be transformed into ontologies using the mechanism
provided in [39] to take advantage of Semantic Web tools (e.g reasoners and query
languages) for service discovery. Finally, we demonstrate how service discovery can be
realized by providing specific SPARQL query examples on the ontology (i.e. generated
from an OpenAPI Thing description) and their results.

4.1    Semantic OpenAPI Thing Descriptions

Aiming to choose a description language suitable for Things and their operations, we had
to examine many aspects that would affect our decision. Considering devices as Web
services, we should choose an approach that would properly describe them in detail.
More specifically, since most Cloud services are provided as Web services based on the
REST architectural model, we needed a description language for RESTful services.
Besides, we should decide on an approach that fits well with HTTP. Devices do not use
HTTP but different, energy-efficient protocols such as CoAP, MQTT, etc. Therefore, we
aim to describe the functionality offered by Things as long as they get connected to the
cloud or to a gateway, as this is the basic assumption of the Web of Things. HTTP is a
common Web protocol that enables communication on the Web, allowing us to avoid IoT
protocols - their complexity and peculiarities. We should also consider that we need a
simple description language based on JSON that could be easily adopted by users with
different background knowledge. Last but not least, the description language should be
accompanied by useful tools that facilitate the interaction of users with a service.

In this context, we adopt the OpenAPI Specification as the description language for
Things, as well as the semantic annotations proposed by the Semantic OpenAPI
Specification [17]. OpenAPI is particularly well-suited for the description of RESTful
services and as such, Things are handled as REST. This might be a disadvantage when
Things have properties which are not supported by REST (e.g. security properties such as
security levels in BLE protocol, encryption for the Zigbee protocol, etc.). OpenAPI is a
simple but mature framework providing both human and machine-readable service
descriptions, which are detailed and can be understood and discovered by humans and
machines. Besides being the current industry’s standard for the description of REST
services, the selection of OpenAPI was based primarily on the popularity of the
specification. The capabilities and tools it offers for facilitating user interaction with a
service (Section 2.9.3) were also taken into consideration. OpenAPI’s active community is
constantly working to improve its tooling support as well as the specification itself. In
addition, the OpenAPI Initiative is powered by large companies such as Google,
Microsoft, IBM, Oracle and many others, attempting to standardize a description
mechanism for RESTful services. By adopting the Semantic OpenAPI Specification

61



approach, OpenAPI properties can be semantically annotated, so that their meaning is
not vague. This solution enables service discovery by users and machines. Therefore, we
consider that semantically enriched OpenAPI service descriptions are suitable for
defining Things and the operations they support.

In Section 2.10 we described the objects provided by the OpenAPI Specification
for the description of services. We advocate that general-purpose OpenAPI objects and
properties for REST services can be specialized for Web Things. The services that Things
may expose can then be described as RESTful Web services, by taking advantage of all
the capabilities of the OpenAPI specification (version 3.0).

More specifically, the Info object can be used to provide non-functional
information for a Thing and its exposed Web service. The ExternalDocumentation object
provides additional metadata for the device API. The Server object can define the
location of the API servers used for a specific device. The Paths object can be used to
define all the available service paths for the Thing as well as their operations. The
Components object should hold reusable objects for the whole service document.
Moreover, the Security Requirements object can list the security schemes (i.e. defined
under the Components object) used to protect the API of a device. All security schemes
can be used to protect the service exposed by a Thing. The security schemes supported
by the OpenAPI specification have already been highlighted in Section 2.10. The
Schemas object describes the request and response payloads based on JSON Schema.
Therefore, the Schemas object should be used to define the request and response
payloads used in Thing’s API operations. Examples are used to define reusable example
values (e.g. for schema attributes). Parameters are used to specify all operation
parameters. Finally, links in OpenAPI are “somewhat similar to hypermedia”80 and they can
support link functionality for Things, and callbacks are asynchronous requests, so they
can support subscription functionality for Things.

The semantic extensions proposed by Semantic OpenAPI (i.e. discussed in
Section 2.10) can be used to describe Things and their functions without ambiguities.
That is, OpenAPI external properties (i.e. x-properties), which have been presented in
Table 2.1, can be adopted to semantically annotate the OpenAPI descriptions of Things.
Therefore, if the meaning of Thing properties is ambiguous, they can be mapped to
equivalent properties in semantic models (i.e. vocabularies or ontologies). More
specifically, each Schema object can be associated with a semantic model using the
x-refersTo extension property. The x-kindOf extension property may be used to define a
specialization between an OpenAPI property of a Thing and a semantic model (e.g. a
class). The x-mapsTo extension property may also be used to denote that a Schema
property in a Thing’s service document is semantically equivalent with another property
in the same document. In addition, extension properties can be used in an OpenAPI
Thing description to clarify the meaning of the members in a collection of objects
(x-collectionOn), for grouping Schema objects by type (x-onResource), and also for
clarifying the meaning of the Thing’s operations (x-operationType).

In general, detailed vocabularies (e.g. www.schema.org) can be referred to using
x-properties and thus define Things for an application domain. The semantic meaning of
the service is captured by the OpenAPI ontology [17, 18]. Moreover, we assume that a
Thing may also support subscriptions. A subscription is the result of subscribing to a

80 https://swagger.io/docs/specification/links/

62

https://swagger.io/docs/specification/links/


specific resource of a Thing (e.g. a particular property or action) to get notified of changes
of the Thing’s state information (e.g. new temperature value). The subscriptions are stored
in a storage structure so that they can be retrieved by a subscription identifier (TD
supports subscriptions to events that might not be stored).

Listing 4.1 shows how x-refersTo is used to semantically associate the Actuator
type of the smart door to the SOSA ontology [38]. The URI
http://www.w3.org/ns/sosa/Actuator is used for that purpose. The x-kindOf extension
property is used to semantically annotate the Thing properties (i.e. id, name) with
concepts in www.schema.org vocabulary.

Listing 4.1: Webthing Schema in OpenAPI Thing Description for a smart door device

Webthing:

required:

- id

- name

- type

type: object

x-refersTo: 'http://www.w3.org/ns/sosa/Actuator'

properties:

id:

type: string

default: SmartDoor

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: IoTSmartDoor

x-kindOf: 'http://schema.org/name'

description:

type: string

example: 'A Smart Door is an electronic door which can be sent

commands to be locked or unlocked remotely. It can also report on its current

state (OPEN, CLOSED or LOCKED).'

x-refersTo: 'http://schema.org/description'

createdAt:

type: string

format: date-time

updatedAt:

type: string

format: date-time

tags:

type: array

items:

type: string

example: smart door

xml:

63

http://www.w3.org/ns/sosa/Actuator


name: Webthing

Figure 4.1 illustrates the description of the Actuator class provided in the SOSA
ontology specification81, which is identified by the respective URI. This URI is used to
semantically annotate and map the Actuator type of the smart door to the SOSA
ontology, thus specifying its meaning.

Figure 4.1: Actuator class in SOSA ontology

Listing 4.2 describes a delete operation on a subscription using its subscription
identifier. A human may refer to the description of the operation to understand its
intended purpose, but a machine needs additional information which is provided by the
x-operationType extension property. The value of the property is a URL pointing to the
concept (i.e. in a semantic model) that semantically describes the operation type. The
Action type of the www.schema.org vocabulary provides a detailed hierarchy of Action
sub-types that can be used by the property.

Listing 4.2: Semantic annotation of a smart door’s delete operation

'/subscriptions/{subscriptionID}':

delete:

tags:

- Subscriptions

summary: Delete a subscription

description: In response to an HTTP DELETE request on the destination

URL of a subscriptions an Extended Web Thing must either reject  the request

with an appropriate status code or remove (unsubscribe) the subscription and

return a 200 OK status code.

81 https://www.w3.org/TR/vocab-ssn/#SOSAActuator

64

https://www.w3.org/TR/vocab-ssn/#SOSAActuator


operationId: deleteSubscription

x-operationType: 'https://schema.org/DeleteAction'

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

schema:

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

'404':

description: Not found

4.2  OpenAPI Thing Description examples

In the following, we will present two real-world device examples (i.e. a DHT22 sensor and
a smart door actuator) which are described using OpenAPI Thing descriptions. In Section
4.3, we will introduce the general OpenAPI Web Thing template that applies to all
devices.

4.2.1   Smart door actuator

The smart door actuator device exposes information about its current state (i.e. open,
closed, locked), includes a lock-unlock actuator, and provides the possible resources for
this (i.e. Thing, Properties, Actions and Subscriptions resources). The OpenAPI document
of the device describes all subscription operations: the operation for subscribing to a
smart door resource, the subscription retrieval operations and the subscription delete
operation.

The smart door description is enriched with semantic annotations using extension
properties. That is, it includes x-properties to annotate OpenAPI properties and map them
to semantic models such as the SOSA ontology or the www.schema.org vocabulary. For
instance, Listing 4.1 describes how x-refersTo is used to semantically associate the
Actuator type of the smart door to the SOSA ontology. The x-operationType property in
Listing 4.2 states that the type of the HTTP DELETE operation is clarified by
https://schema.org/DeleteAction. The x-kindOf extension property is used in most cases

65

http://www.schema.org
https://schema.org/CreateAction


to semantically annotate the schemas and the schema properties in the Components
object of the document.

Regarding OpenAPI objects, the OpenAPI Thing description of the smart door
contains:

● An Info field (i.e. information for the device API).
● An External Documentation field.
● A Servers field (i.e. where the Thing’s API servers are located).
● A Tags field that adds metadata to the tags used (i.e. by the Operation objects) to

represent the Thing’s resources. These Tag objects are described in Listing 4.3.
Each Tag object represents a resource of the Thing.

● A Paths field that describes the relative paths for the service endpoints exposed
for the smart door. The Paths object also includes other objects such as Operation
objects, Response objects, Parameter objects, etc. The operation of retrieving the
abstract description of the Thing is described in Listing 4.9. The operation of
creating a subscription (i.e. subscribing) to a resource of the smart door is
presented in Listing 4.12, while the operation of deleting a subscription is
presented in Listing 4.2. Listing 4.10 and Listing 4.11 also illustrate operations
included in the description of the smart door.

● A Components field (object) that specifies the schemas (i.e. Schema objects) used
to describe request bodies, response bodies, etc. For instance, Listing 4.1
describes the schema of the abstract payload used to represent the device. The
Schema object for the action execution payloads of the smart door is described in
Listing 4.4.

Listing 4.3: Tag objects in the smart door OpenAPI description

tags:

- name: Web Thing

x-onResource: '''#/components/schemas/Webthing'''

description: Operations on a Web Thing

externalDocs:

description: Find out more

url: 'https://www.w3.org/Submission/wot-model/#web-thing-resource'

- name: Properties

description: Operations on Thing properties

externalDocs:

description: Find out more about Thing properties

url: 'https://www.w3.org/Submission/wot-model/#properties-resource'

- name: Actions

description: Operations on Thing Actions

externalDocs:

description: Find out more about Thing Actions

url: 'https://www.w3.org/Submission/wot-model/#actions-resource'

- name: Subscriptions

x-onResource: '''#/components/schemas/SubscriptionObject'''

description: Operations on subscriptions

66



externalDocs:

description: Find out more about subscriptions

url: 'https://www.w3.org/Submission/wot-model/#things-resource'

The description contains schemas describing the response payloads returned by
the operations on the Properties and the Actions resources, and all the payloads of the
Subscription operations. The schemas for the subscription operations are predefined in
the template. Additional schemas (i.e. request and response payloads) can be defined by
the user in the JSON input; in fact, the user is allowed to include in the input (and thus
define) the most schemas of the description. The schemas are appended in Thing’s
description as Schema objects; these objects are included in the components field that
holds various reusable schemas. For example, the user may define the general schema
that describes the smart door (i.e. returned in the first operation) or the Schema that
exposes the value of the smart door’s property (i.e. the current state of the device) or the
Schema that describes an action execution command of the client; to lock or unlock the
smart door.

Listing 4.4 describes the schema used for the action executions of the smart door
(i.e. lock, unlock). The schema includes an id property (string) to identify the action
execution using a unique identifier (i.e. number), a status property (string) to declare the
status of the particular action execution and a timestamp property (string, date-time
format) for the action execution. The schema is semantically annotated with a URI that
maps the schema with the Actuation class82 of the SOSA ontology to declare that the
particular schema represents an actuation.

Listing 4.4: Schema object for the action execution payloads of the smart door
ActionExecution:

required:

- id

- status

- timestamp

x-kindOf: 'http://www.w3.org/ns/sosa/Actuation'

type: object

properties:

id:

type: string

example: '223'

status:

type: string

example: completed

timestamp:

type: string

format: date-time

xml:

name: ActionExecution

82 https://www.w3.org/TR/vocab-ssn/#SOSAActuation

67

https://www.w3.org/TR/vocab-ssn/#SOSAActuation


Figures 4.2 and 4.3 demonstrate the endpoints and the descriptions for the smart
door actuator OpenAPI description, as depicted in Swagger UI. In contrast to the DHT22
sensor example (i.e. presented next), which only supports properties and subscriptions,
the smart door example supports both properties and actions, as well as subscriptions.
Therefore, it includes all the possible operations provided by the OpenAPI Thing
template.

Figure 4.2: Smart door service endpoints (1)

Figure 4.3: Smart door service endpoints (2)

The whole OpenAPI Thing description of the smart door (in YAML format) is listed
in the Appendix. It is a very indicative example of our approach, as it contains all the
possible operations proposed in the OpenAPI Thing template (i.e. all the operations
related to properties and actions, and also subscriptions).

68



4.2.2  DHT22 sensor

The second real-world device example proposed in this work is a DHT22 sensor that
measures temperature and humidity. This device exposes information about temperature
and humidity properties, their measurement values and provides the possible resources
for this (i.e. Thing, Properties and Subscriptions resources). The OpenAPI document of the
sensor describes all subscription operations: the operation for subscribing to a DHT22
sensor resource, the subscription retrieval operations and the subscription delete
operation.

Similar to the OpenAPI smart door description, the OpenAPI Thing description of
the DHT22 sensor contains:

● An Info field.
● An External Documentation field.
● A Servers field.
● A Tag field that adds metadata to the tags used in the description.
● A Paths field that describes the relative paths for the service endpoints exposed

for the DHT22 sensor. The Paths object also includes other objects such as
Operation objects, Response objects, Parameter objects, etc. Listing 4.9 describes
the operation of retrieving the sensor’s abstract description. Listing 4.10 illustrates
the operation of retrieving all the properties of the sensor (i.e. temperature and
humidity). The operation of creating a subscription (i.e. subscribing) to a resource
of the DHT22 sensor is presented in Listing 4.12, while the operation of deleting a
subscription is presented in Listing 4.2.

● A Components field (object) that specifies the schemas (i.e. Schema objects) used
to describe request bodies, response bodies, etc. Similarly to the smart door
example, Listing 4.5 describes the general Web Thing schema that represents the
device.

The DHT22 sensor description includes semantic annotations as well. In fact,
several semantic annotations have been used in the DHT22 sensor description to
describe specific concepts or characteristics of the device. For example, they define
concepts such as observation, temperature property and humidity property and device
characteristics such as sensor sensitivity, sensor accuracy, sensor precision and sensor
frequency. OpenAPI objects and properties of the description (e.g. schemas) are mapped
to classes (i.e. OWL classes) of the SOSA or the SSN ontology. Indicative examples of
such semantic annotations are described in Listings 4.5 and 4.6.

Listing 4.5 is the Webthing schema (i.e. it describes the payload returned in the
response of the first operation) that provides an abstract description of the DHT22 sensor,
similar to the schema for the smart door in Listing 4.1. It is semantically enriched using
the x-refersTo and the x-kindOf extension property. For instance, the x-refersTo annotation
is used to map the Webthing schema with the Sensor class of the SOSA ontology (i.e.
http://www.w3.org/ns/sosa/Sensor). Any device owner is free to define the schema that
best fits the described device and add the semantic annotations that best describe the
schema and its properties.

69

http://www.w3.org/ns/sosa/Sensor


Listing 4.5: Webthing Schema in the OpenAPI Thing Description of a DHT22 sensor
Webthing:

required:

- id

- name

type: object

x-refersTo: 'http://www.w3.org/ns/sosa/Sensor'

properties:

id:

type: string

default: DHT22

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: DHT22/AM2302

x-kindOf: 'http://schema.org/name'

description:

type: string

example: 'The DHT-22, also named as AM2302, is a digital-output

relative humidity and temperature sensor. It uses a capacitive humidity

sensor and a thermistor to measure the surrounding air, and spits out a

digital signal on the data pin.'

x-refersTo: 'http://schema.org/description'

createdAt:

type: string

format: date-time

updatedAt:

type: string

format: date-time

tags:

type: array

items:

type: string

example: temperature sensor

xml:

name: Webthing

Listing 4.6 is the schema used to represent a specific temperature measurement
of the DHT22 sensor. The schema includes a temp property (i.e. represents the
temperature measurement value, e.g. 25) and a timestamp property (i.e. represents the
measurement timestamp). The x-kindOf property is used to map the schema with the
Observation class of the SOSA ontology (i.e. http://www.w3.org/ns/sosa/Observation). The
x-kindOf property is also used to map the temp property of the schema with the

70

http://www.w3.org/ns/sosa/Sensor


hasSimpleResult OWL datatype property83 of the SOSA ontology (i.e. represents the
simple value of an observation or an actuation). In addition, the same extension property
is used to map the timestamp property of the schema with the resultTime OWL datatype
property84 of the SOSA ontology. This datatype property represents the instant of time
when an observation or actuation or sampling activity was completed. The humidity
measurement schema is described similarly to the temperature measurement schema.

Listing 4.6: Schema object for the temperature measurement payload of the DHT22
sensor

TempMeasurement:

type: object

x-kindOf: 'http://www.w3.org/ns/sosa/Observation'

properties:

temp:

type: integer

example: 25

x-kindOf: 'http://www.w3.org/ns/sosa/hasSimpleResult'

timestamp:

type: string

format: date-time

x-kindOf: 'http://www.w3.org/ns/sosa/resultTime'

Listing 4.7 describes the schema for the response payload of the operation that
retrieves all properties of the DHT22 sensor. The device supports two properties, so the
response JSON array that includes both properties (i.e. temperature and humidity) is
implemented using polymorphism (i.e. using the property anyOf). The OpenAPI
specification supports the combination of model definitions using the properties allOf,
oneOf and anyOf of JSON Schema. The corresponding schema for the smart door
properties includes only the schema of the state property in the array (i.e. the anyOf
property is used as well), as the device supports only this property.

Listing 4.7: Schema object for the properties response payload of the DHT22 sensor
PropertiesResponse:

anyOf:

- $ref: '#/components/schemas/TempProperty'

- $ref: '#/components/schemas/HumProperty'

xml:

name: PropertiesResponse

The schema of the temperature property referenced in Listing 4.7 is described in
Listing 4.8. The schema describes the temperature property of the sensor and thus some
basic characteristics of the sensor, by including information in the form of schema

84 https://www.w3.org/TR/vocab-ssn/#SOSAresultTime
83 https://www.w3.org/TR/vocab-ssn/#SOSAhasSimpleResult

71

https://www.w3.org/TR/vocab-ssn/#SOSAresultTime
https://www.w3.org/TR/vocab-ssn/#SOSAhasSimpleResult


properties. The schema includes an id and a name of the property, recent measurement
values (i.e. using the schema of Listing 4.6), the range of temperature value (i.e.
measurement unit, minimum and maximum value), the sensor accuracy, the sensor
sensitivity, the sensor precision and the sensor frequency. The schema is semantically
annotated and mapped to the SystemCapability class of the SSN ontology using the
x-kindOf extension property to describe the temperature property concept. In addition,
the schema properties, as well as their properties, are mapped to SSN classes or to
concepts of the schema.org vocabulary (i.e. using the x-kindOf or the x-refersTo property).
Taking advantage of the SSN ontology, we are able to directly map several concepts of
the DHT22 sensor (e.g. sensor precision, sensitivity and accuracy) to ontology classes that
specify their exact meaning.

Listing 4.8: Schema object for the temperature property payload of the DHT22 sensor
TempProperty:

type: object

required:

- id

- values

x-kindOf: 'http://www.w3.org/ns/ssn/systems/SystemCapability'

properties:

id:

type: string

default: DHT22_temperature

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: Temperature

x-kindOf: 'http://schema.org/name'

values:

$ref: '#/components/schemas/TempMeasurement'

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: -40

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

72



format: float

default: 80

x-refersTo: 'https://schema.org/value'

sensorAccuracy:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Accuracy'

properties:

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: -0.5

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 0.5

x-refersTo: 'https://schema.org/value'

sensorSensitivity:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Sensitivity'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

value:

type: number

format: float

default: 0.1

x-refersTo: 'https://schema.org/value'

sensorPrecision:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Precision'

properties:

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

73



properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: 0.2

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 0.2

x-refersTo: 'https://schema.org/value'

sensorFrequency:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Frequency'

properties:

unit:

type: string

default: sec

x-refersTo: 'https://schema.org/unitText'

period:

type: integer

format: int32

default: 2

x-refersTo: 'https://schema.org/value'

xml:

name: TempProperty

The whole OpenAPI Thing description of the DHT22 sensor (in YAML format) is
listed in the Appendix. Figure 4.4 demonstrates all the service endpoints of the DHT22
sensor OpenAPI description proposed in this work.

74



Figure 4.4: DHT22 sensor service endpoints

4.3 OpenAPI Web Thing template

The OpenAPI Web Thing template employs a JSON (or YAML) description format which
is common to all Things. It is a valid OpenAPI document that can be handled by all
known OpenAPI tools (e.g. Swagger editor, code generator etc.). All Things expose
properties (e.g. the humidity of a sensor or the state of an actuator) and, depending on
their type, they may also support actions (e.g. a smart window that opens and closes). If
supported by an implementation, a Thing can also support subscriptions to specific
events. Subscriptions can describe any number of HTTP requests that may arrive in
response to an earlier HTTP request. For example, clients (i.e. users or services) can
subscribe to events using a publish/subscribe pattern implemented using the
WebSocket protocol, to get notified on changes of Things state information (e.g. new
temperature value).

The building blocks of the OpenAPI Thing template are its resources. Each
resource of a Thing supports operations. The Thing resource provides an operation for
retrieving the abstract description of a device (e.g. device characteristics) in JSON format.
The Properties resource supports operations for each property and, the Actions resource
supports operations for each action that a Thing can perform. In relation to the
Subscriptions resource, the OpenAPI Web Thing template provides particular operations
that refer to subscriptions. For example, there is an operation for subscribing to specific
events (e.g. the change of a property value or the execution of a specific action).

Thing resources and their supported operations in the OpenAPI Web Thing
template are described below.

a) Thing resource: It is an abstract description of a Web Thing. The operation
retrieves the description of the Thing by issuing an HTTP GET request to the root URL of
the Thing, meaning its IP address and the default port that follows the IP (e.g.
http://34.122.93.207:5001/MySmartDoor). The operation (i.e. GET, PUT, POST, etc.) and its

75



corresponding path are specified in the Paths object of the OpenAPI description. The
Schema object used to describe a Thing payload (i.e. returned in the response body) is
included in the Components object. The Thing contains an identifier named as id (string),
an indicative name (string), a description of the device (string), the date it was created or
updated or registered to an application (date-time string) and tags for all devices. This
operation, which is standard for all Things, is illustrated in Listing 4.9. As noted above, the
Paths object represents the particular endpoint and operation. A tag is used to define the
resource related to the operation (i.e. Web Thing). A Response object, including a
reference (i.e. $ref) to a Schema object (i.e. Webthing), is used for the description of the
response message. The Schema object essentially defines the abstract payload that
briefly describes a device. Indicative examples of the Webthing schema have been
provided in Listings 4.1 and 4.5.

Listing 4.9: Thing Resource operation example

paths:

/:

get:

tags:

- Web Thing

summary: Retrieve Web Thing

description: 'In response to an HTTP GET request on the root URL of a

Thing, an Extended Web Thing must return an object that holds its

representation.'

operationId: retrieveWebThing

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/Webthing'

'404':

description: Not found

b) Properties resource: It defines the properties of a Thing (e.g. temperature,
humidity) and describes measurements of properties (e.g. temperature and humidity
values for DHT22 sensor) or, the internal state of a Thing (e.g. the current state of the
smart door). This resource applies to all devices.

The first operation retrieves a list of properties. It is realized by issuing an HTTP
GET request to the /properties endpoint of the root URL of the device. The endpoint (i.e.
/properties) and operation (i.e. GET, PUT, POST, etc.) are specified in the Paths object. A
JSON array describing the Thing properties is returned in response to this operation. The
array contains a JSON object for each property of the Thing. This object includes a short
description of the property (e.g. identifier, name and any other attribute set by the Thing
owner) and the current (i.e. last) measurement value of the Thing (e.g. last humidity value

76



of DHT22) or, the internal state of the Thing (e.g. the state of a smart door). This operation
also returns the description of each property. In the case of a sensor that observes more
than one property (e.g. pressure, temperature), information about properties is included
in a response array. This operation, which is standard for all Things, is described in Listing
4.10. The Schema object that describes a property of the device is defined in the
Components object. If the Thing accepts one or more from a list of alternative properties
(like the DHT22 sensor), the response JSON array is implemented using polymorphism
(i.e. using the property anyOf) like in example of Listing 4.7. OpenAPI supports the
combination of model definitions, as already highlighted. Similar to the example in Listing
4.9, a tag is used to define the resource related to the operation (i.e. Properties).

The second operation on Properties Resource retrieves the current value (or the
most recent values) of a property. It requires sending an HTTP GET request to the
/properties endpoint of the root URL of the Thing followed by the specific Thing property
name as a path parameter (e.g. rootURL/properties/state for a smart door). In case there
is more than one state value, an array of JSON objects is returned in the response body.
The particular endpoint (i.e. /properties/state) and operation are also specified in the
Paths object of the service description. The Schema object that describes the payload
(i.e. temperature or humidity) is defined in the Components object.

Listing 4.10: Properties Resource operation example

/properties:

get:

tags:

- Properties

summary: Retrieve a list of properties

description: 'In response to an HTTP GET request on the destination URL

of a properties link, an Extended Web Thing must return an array of Property

that the initial resource contains.'

operationId: retrieveWebThingProperties

responses:

'200':

description: OK

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/PropertiesResponse'

'400':

description: Invalid ID supplied

'404':

description: Not found

c) Actions resource: It defines the allowed actions on a Thing, such as execution
commands (e.g. a command sent by a client to a window actuator to open). In all cases

77



below, the Schema object that describes the execution information of a specific action is
returned in the response body and it is defined in the Components object.

The first operation retrieves a list of actions by issuing an HTTP GET request to the
/actions endpoint of the root URL of the Thing. This operation returns an array of
descriptions for the actions that the Thing may perform (e.g. locking and unlocking for a
smart door). The response is in the form of a JSON array which contains an identifier and
a name for each possible action. The particular endpoint (i.e. /actions) and operation are
specified in the Paths object. An action identifier and an action name are properties of the
corresponding Schema object.

The second operation retrieves all recent executions of a specific action and
issues an HTTP GET request to the /actions endpoint of the root URL of the Thing
followed by the specific action name as a path parameter. For example, a GET
rootURL/actions/{actionName} (e.g. GET rootURL/actions/lock) returns a JSON array of
the recent executions of an action including information about the status of the action
execution and a timestamp. A time delay value might have been sent in the request body
to schedule the execution of the action at a later time. This operation is described in
Listing 4.11. The operation is standard for all Things that support Actions. However, the
schema used to describe the action execution (i.e. named as ActionExecution) is not
standard, so a different schema can be defined for each Thing. That is, a device owner
can choose the schema that best describes the actions performed by the device (e.g. a
time delay of the action). Similar to the previous examples, a tag is used to define the
resource related to the operation (i.e. Actions).

The next operation executes an action. An HTTP POST request is sent to the
/actions endpoint of the root URL of the Thing followed by an action name as a path
parameter (e.g. POST rootURL/actions/lock to lock a smart door). The service may
generate a unique identifier for each execution of an action which can be stored in a
database and then be used to retrieve the action. That is, a unique integer number can
be generated and its value can be used to identify the action. The operation is specified
in the /actions/{actionName} path (e.g. /actions/lock) in the Paths object of the OpenAPI
description.

The last operation retrieves the status of an action using its execution identifier (i.e.
executionId): an HTTP GET request is sent to the /actions endpoint of the root URL of a
Thing followed by the name of the action and the execution identifier as a path
parameter (e.g. GET rootURL/actions/lock/156). The endpoint for the particular action
(i.e. /actions/lock/{executionId}) and the respective operations are specified in the Paths
object of the service description. The execution information is the same as those used in
the second operation.

Listing 4.11: Actions Resource operation example

/actions/unlock:

get:

tags:

- Actions

summary: Retrieve recent executions of the unlock action

78



description: 'In response to an HTTP GET request on an Action URL, an

Extended Web Thing must return an array that lists the recent executions of a

specific Action.'

operationId: retrieveRecentExecutionsOfUnlockAction

responses:

'200':

description: successful operation

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/ActionExecution'

'404':

description: Not found

d) Subscriptions resource: It describes subscriptions to Web Things (e.g. to their
actions and properties). For example, users and services can subscribe to the humidity
property of a specific sensor to get notified of changes in humidity.

The first operation creates a new subscription (i.e. a user or service may subscribe
to a specific Web Thing resource). Subscriptions are ideally supported using custom
callbacks (i.e. Webhooks) which are naturally supported by the Websocket protocol. An
HTTP POST request is required to create and store a new subscription. The particular
endpoint (i.e. /subscriptions) and operation are specified in the Paths object. This
operation is described in Listing 4.12. Although the subscription information is defined in
the request body by the subscriber (i.e. client or service), the Schema object that
describes the payload of the subscription is standard for all Things that support
subscriptions. This schema can be a reusable object which is defined under the
Components object. The object contains an indicative name, a description, the
subscription type (e.g. webhook), the callback URL, an object containing (i.e. as object
properties) the type and the name of the resource to which the subscription is made, the
expiration date of the subscription and, a throttling parameter which is used to specify a
minimum inter-notification arrival time for the subscription. A response header containing
the subscription identifier is returned as long as the operation is successful (i.e. a 200 OK
response is returned).

Listing 4.12: OpenAPI description of a subscription to a resource

/subscriptions:

post:

tags:

- Subscriptions

summary: Create a subscription

description: An Extended Web Thing should support subscriptions for its

resources.

operationId: createSubscription

79



x-operationType: 'https://schema.org/CreateAction'

requestBody:

description: Create a new subscription

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionRequestBody'

required: true

responses:

'200':

description: OK

'404':

description: Not found

The second operation retrieves a list of subscriptions made to a specific Thing or
Web Thing resource. The operation issues an HTTP GET request to the /subscriptions
endpoint of the root URL of the Thing. A JSON array containing the subscriptions made
to a specific Web Thing resource is returned. For example, to retrieve the subscriptions
made to the smart door, an HTTP GET request is issued (i.e. GET
http://34.122.93.207:5001/subscriptions). The operation is specified in the /subscriptions
path in the Paths object. The Schema object describing the payload for each
subscription included in the JSON array is defined in the Components object.

The next operation retrieves a subscription using its subscription identifier. The
operation requires sending an HTTP GET request on the /subscriptions endpoint of the
root URL of the Thing followed by the subscription identifier as a path parameter (e.g.
GET rootURL/subscriptions/5a82bg4d893bf1b95ae0f730). A JSON representation of the
subscription is returned in the response. This operation is described in Listing 4.13. The
particular endpoint (i.e. /subscriptions/{subscriptionID}) and operation are included in the
Paths object of the smart door. The subscription identifier (string) is defined as a Path
parameter under the Paths object. The Schema object that describes the subscription
(i.e. in the response body) is standard for all Things that support subscriptions, so it is
predefined in the template. It is also a reusable object which is defined in the
Components object. The subscription identifier (subscriptionID), which is defined using a
Parameter object, is mapped to the id property of the SubscriptionObject schema (i.e.
defined in the Components object) using an x-mapsTo extension property. Therefore, the
subscriptionID parameter defined in this operation is semantically equivalent with the
specific Schema property. As in the previous examples, a tag is used to define the
resource related to the operation (i.e. Subscriptions).

The last operation deletes a subscription (using its subscription identifier) by
issuing an HTTP DELETE request to the /subscriptions endpoint of the root URL of the
Thing followed by the subscription identifier as a path parameter. If successful, the
subscription is removed and a 200 OK response header is returned. The operation is
included in the relative path (i.e. /subscriptions/{subscriptionID}) in the Paths object of
the service description. The subscription identifier (string) is defined as a Path parameter
in the Paths object.

80

http://34.122.93.207:5001/subscriptions


Listing 4.13: Subscriptions Resource retrieval operation example

'/subscriptions/{subscriptionID}':

get:

tags:

- Subscriptions

summary: Retrieve information about a specific subscription

description: 'In response to an HTTP GET request on a Subscription URL,

an Extended Web Thing must return a JSON representation of the subscription.

The JSON representation should be the same as the one returned for that

subscription in ''Retrieve a list of subscriptions''.'

operationId: retrieveInfoAboutSubscription

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

x-mapsTo: '#/components/schemas/SubscriptionObject.id'

schema:

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

Figure 4.5 illustrates the general document structure of the OpenAPI Web Thing
template. The template is common to all devices. This means that OpenAPI Thing
descriptions of different devices can be formed based on this template and their
supported features (e.g. properties, actions, subscriptions). The template structure is
divided into boxes that represent the main sections (i.e. components) of an OpenAPI
description which are illustrated in Figure 2.5 and described in Section 2. For example,
the Info section describes non-functional information for the device API, the Paths
section describes all the operations of a Thing and the Components section holds
reusable objects (i.e. schemas, responses, callbacks, links, etc.). The template structure is
also grouped into five categories of information (i.e. using five different colors) based on

81



the conditions that determine whether and in which cases they will be included in a
Thing description (or not). In the following, the five categories of information are specified:

a) First category: This category includes mandatory information (i.e. it must be
included) that applies to all Thing descriptions. More specifically, the Web Thing
Resource (i.e. the Web Thing Resource tag and the operation for retrieving the Web
Thing description) applies to all Things - regardless of what features they support - and
cannot be changed. The same applies to the Properties resource; the Properties
Resource tag is the same for all Things, while the operations depend on the properties
supported by each Thing (e.g. pressure, humidity). That is, the Properties Resource
operation types are always the same, but they refer to different properties. This category
of information is illustrated using the dark red color in the template figure.

b) Second category: This category includes mandatory information that only
applies to descriptions of Things that provide actions or to descriptions of Things that
may provide subscriptions (or to Things that provide both of them). In particular, the
Actions Resource tag and the Subscription Resource tag are always the same (i.e. default
values predefined in the template), but they only apply to devices that provide actions
and subscriptions respectively. The same applies to the Subscriptions Resource
operations and the schemas related to subscription operations. There are standard
subscription operations and schemas which only apply to device APIs that support
subscriptions. This category of information is illustrated using the light red color in the
figure.

c) Third category: This category includes mandatory information that only applies
to descriptions of Things that provide actions and includes particular operation types that
apply to all actuators. The Actions Resource operations types (e.g. execute an action,
retrieve the status of an action) are standard and they are predefined in the OpenAPI
Web Thing template. However, the particular action operations depend on the physical
actions supported by each Thing (e.g. lock, unlock, move, turn on/off). This category of
information is illustrated using the green color in the figure.

d) Fourth category: This category includes mandatory information that can either
be defined by the owner of a device or be set to the default value predefined in the
template. For example, the Web Thing schema that generally describes a device and all
schemas related to properties and actions can be set by the device owner or be set to
the default schema of the template for Web Things. In other words, the payload
attributes of devices, properties and actions in OpenAPI Thing descriptions can be set by
device owners and be included in the Components objects of Thing descriptions. If not
set by them, all these schemas (or some of them) can be set to the default values of
schemas predefined in the OpenAPI Web Thing template and be included in the
Components section. The default schemas, however, might be different for every device,
as they depend on the names of properties and actions of each Thing. In addition, the
API servers defined in the Servers section (i.e. as an array of Server objects) are either
defined by a device owner or they are set to the default server value (i.e. “/”). According
to the OpenAPI Specification, “if the servers property is not provided, or is an empty array,
the default value would be a Server Object with a url value of /”. This category of
information is illustrated using the blue color in the figure.

e) Fifth category: This category includes mainly optional information that can only
be defined by a device owner (i.e. there are no default values in the template). In

82

https://swagger.io/specification/#server-object
https://swagger.io/specification/#server-url


particular, the Info section, the External Documentation section and the Security section
can only be defined by the device owners. However, only the Info Section is mandatory.
Furthermore, any responses, parameters, examples, request bodies, headers, security
schemes, links and callbacks used in the REST API of a device can only be defined by
the device owner and be included under the Components object of the OpenAPI
document or not be defined at all. This category of information is illustrated using the
white color in the figure.

The OpenAPI Web Thing template, therefore, is consistent with the two OpenAPI
Thing description examples described above. It benefits from OpenAPI and describes
several features of device APIs (e.g. operations, schemas, security, links, callbacks); not
all of them are included in the DHT22 sensor and smart door description examples
provided above.

Figure 4.5: OpenAPI Web Thing Template structure

4.4 A mechanism for generating OpenAPI
Thing Descriptions

The flow-chart of Figure 4.6 summarizes the mechanism that generates the OpenAPI
description of a Thing from user input. The input comprises: a) the standard OpenAPI
Thing Description template of Section 3.3.2 that applies to all Things and, b) a payload in
JSON with the user settings (e.g. security settings) and the Thing characteristics that will
be instantiated to the template. The user specifies the necessary information that
characterizes the device and the functionality it supports (e.g. the properties it provides,

83



the actions it performs, etc.). The output of this mechanism is the OpenAPI description of
the Thing (in YAML or JSON format). The mechanism is a RESTful service itself which is
implemented in Python Flask and is available on Github85 for download and testing. It
applies to any device as long as its functionality can be exposed using REST. As a use
case, the complete OpenAPI Thing descriptions for a smart door and a DHT22 sensor
device (along with their corresponding JSON files given as input to the mechanism), can
be found in the same Github address.

Figure 4.6: Generating an OpenAPI Thing Description

Initially, the process creates the OpenAPI objects for the Web Thing description:
Info, Security, Servers, Schema and (optionally) External document objects are created
and appended in the OpenAPI Thing template. As long as the user has set external
documentation information, the process creates an External Documentation object. Next,
the process appends the Thing’s description payload (as a Schema object) under the
Webthing model object (as in Listing 4.1). This payload describes the device and its
features. Basic payload attributes (e.g. identifier, name, description, etc.) are mandatory.
Available, Security Requirement objects are set next (e.g. HTTP Authentication, OAuth2.0,
OpenID Connect). The process reads a list of available servers as an array of Server
objects. The values of all OpenAPI objects are defined and instantiated to the respective
objects in the next stages.

Schemas, parameters, paths (i.e. endpoints), operations and security information
are defined. For example, apart from the /properties path which is standard for all Things,
a new path is appended to the service description for each particular property of the
device. If the device supports actions, the mechanism appends a standard Action Tag.
Input regarding the Actions resource and their security settings is provided. For example,
the /actions path (standard for all Things that perform actions) is appended to the Paths
object. All relative action execution operations and their response payload models

85 https://github.com/Emiltzav/wot_openapi_generator

84

https://github.com/Emiltzav/wot_openapi_generator


(Schemas) are also defined in the input. If the user wishes to set a request body for the
action execution operations (i.e. the commands to lock or unlock the smart door), this can
be specified in the input as well. If the device supports subscriptions, a Subscriptions Tag
is added to subscription objects (i.e. paths, operations, schemas, etc.) along with the
security settings related to the Subscription resource. Subscription paths, operations and
Schemas are predefined in the OpenAPI Thing Description template (i.e. they are the
same for all Things).

Listing 4.14 is a short but indicative example of the user input that can be provided
for the mechanism in JSON format for a typical smart door device description. This
example includes only some essential information specified by the user for the device.
For example, the device type (i.e. actuator), the properties and the actions it supports, the
information that subscriptions can be supported, the Webthing schema (i.e. abstract
description of the device) and also some non-functional information about the service
are included. For the sake of brevity, the rest of the schemas that could also be defined
by a user have been omitted. However, the user is allowed to specify many more
schemas for the description (e.g. the payload of an action execution request or an action
execution retrieval response payload), by properly including them in the input of the
mechanism. If the user does not define them (i.e. as in the example below), default
schemas, which are predefined by the OpenAPI Thing template, are appended to the
service description. The smart door OpenAPI description example provided in the
Appendix includes several default schemas of the template such as the schema used to
return a list of actions supported by the device (i.e. realized by sending an HTTP GET
request to the /actions endpoint). All default schemas are appended to the OpenAPI
Thing description, in case they have not been specified by the user.

Listing 4.14: User input for a smart door OpenAPI description

{

"info": {

"title": "A Smart Door device OpenAPI Thing description",

"description": "An OpenAPI Thing description for a smart door device

that exposes its current state and supports lock and unlock actions (client

commands).",

"contact": {

"email": "atzavaras@isc.tuc.gr"

},

"license": {

"name": "Example license",

"url": "http://www.example.com/licenses/LICENSE-2.0.html"

}

},

"externalDocs": {

"description": "Find out more about the smart door actuator",

"url": "https://www.example.com/actuators/smart-door"

},

"servers": [

85



{

"url": "http://localhost:5000/smart-door",

"description": "A testing server"

}

],

"type_of_thing": "actuator",

"supported_properties": [ "state" ],

"supported_actions": [ "lock", "unlock" ],

"sub_support": "yes",

"webthing_schema": {

"required": [

"id",

"name",

"type"

],

"type": "object",

"x-refersTo": "http://www.w3.org/ns/sosa/Actuator",

"properties": {

"id": {

"type": "string",

"default": "SmartDoor",

"x-kindOf": "http://schema.org/identifier"

},

"name": {

"type": "string",

"example": "IoTSmartDoor",

"x-kindOf": "http://schema.org/name"

},

"description": {

"type": "string",

"example": "A Smart Door is an electronic door which can be sent

commands to be locked or unlocked remotely. It can also report on its current

state (OPEN, CLOSED or LOCKED).",

"x-refersTo": "http://schema.org/description"

},

"createdAt": {

"type": "string",

"format": "date-time"

},

"updatedAt": {

"type": "string",

"format": "date-time"

},

"tags": {

"type": "array",

86



"items": {

"type": "string",

"example": "smart door"

}

}

},

"xml": {

"name": "Webthing"

}

}

}

4.5  Ontology translation process

Aiming to facilitate the search for Things on the Web, OpenAPI Thing Descriptions are
translated to an ontology ([17], [18]). As highlighted in [39], the instantiation of OpenAPI
descriptions and services is a rather complicated process. The reasons can be many. For
example, the same property may appear many times in the same document (with the
same or different meaning), with different scopes (i.e. local property declarations
overshadow global ones) or, it can be nested inside other properties. Furthermore, a
Schema object can be defined as an extension or a composition of existing models (e.g.
using the allOf property) which add extra complexity to the instantiation process. The
algorithm proposed by the authors of [39] handles all these issues and it is presented in
[39].

More specifically, Algorithm 1 in [39] scans the OpenAPI document of a service
and instantiates OpenAPI objects to classes of the ontology. In particular, after uploading
the ontology in the memory, the algorithm will scan the OpenAPI file to extract info,
servers, securitySchemes, securityRequirements, tags and paths objects. These objects will
become individuals of their corresponding classes.

The OpenAPI object is mapped to class Document. There may exist more than one
appearances of servers or securityRequirements in an OpenAPI document. Property
servers declare server information which applies across the description (global servers).
This will be overwritten by server information defined in Path or Operations objects.
Similarly, Security property declares security requirements. Security requirements
declared by an operation will also override global declaration of security requirements.
Property Tags contain the Tag objects for operations which are grouped. Through the
x-onResource property Tag objects can associate operations with Schema objects.

Algorithm 3 in [39] illustrates the instantiation of Tag objects in the ontology and
how x-onResource relations are handled. In Algorithm 4, Tag names and their associated
Shapes are kept in a Map structure (tagShapeMap) that will be used when instantiating
Operation objects. tagShapeMap defines a mapping (key, value) between a string and an
individual. An entry to the tagShapeMap will contain the tag name and the corresponding

87



Shape individual. This will take place if an x-onResource annotation has been defined on
a tag object (i.e. describing a Schema object). The Schema object will be converted to an
individual of the Shape class and will be added inside the corresponding mapping (e.g.
(tag.getName(), SchemaInd)).

Algorithm 2 shows how Path objects are converted to individuals of class Path.
This is where Operation individuals are created with their respective properties (i.e. tag,
security, parameter, server). This is done after creating individuals for Server and
Parameter objects that may be declared in a Path. Server objects declared in Path (as
stated in OpenAPI Specification) will override global declaration of Server Objects.

Algorithm 4 shows how the individuals of class Operation are created. When the
x-operationType annotation is used, the Operation individual is also considered as an
individual of the provided Semantic entity. The structural elements of the operation (e.g.
responseObject, requestBody, security and tag) become properties of the Operation
individual (e.g. operationInd property:tag tagInd is an example triple). Property method
defines the type of an operation (get, put, etc.) which are already defined in the OpenAPI
ontology. Parameter objects can be any of type Path, Query Header or Cookie and are
instantiated to the corresponding classes (i.e. PathParameter, Query, Header and Cookie).
Then, parameter individuals are associated to the Operation individual using the
respective properties. Finally, property onPath associates an Operation individual with a
Path individual.

The OpenAPI Specification allows the combination and extension of model
definitions using the allOf property. However, in order to support polymorphism, the
discriminator property is used to determine which Schema definition validates the
structure of the model. A model defined using the allOf property becomes a subclass of
the model it extends. In the example of Listing 1.1 in [39], classes Male and Female
become sub-classes of Person. An OpenAPI service description may have Schema
objects sharing common properties. Instead of describing these properties for each
Schema repeatedly, these Schema objects are described as a composition of common
properties and schema-specific properties. If these Schema objects are not related to a
semantic entity, we suggest annotating Schema objects with the property x-refersTo:
none, and the algorithm should not attempt to relate these models with any semantic
entity.

The ontology translation process has been incorporated into an application in the
Web86. The main functionality of the application supports uploading OpenAPI
descriptions of Things (in YAML or JSON) and their instantiation to the ontology. As a
result, the ontology can be downloaded in TTL (turtle) format, can be searched using
SPARQL or checked using Pellet. For example, the ontology resulting from the DHT22
sensor OpenAPI description is available (in TTL format)87 in the ontologies section of the
Web application described above.

87 https://www.intelligence.tuc.gr/semantic-open-api/file/DHT22_OpenAPI_14-03-2022_10-42-11.ttl
86 http://www.intelligence.tuc.gr/semantic-open-api/

88

https://www.intelligence.tuc.gr/semantic-open-api/file/DHT22_OpenAPI_14-03-2022_10-42-11.ttl
http://www.intelligence.tuc.gr/semantic-open-api/


4.6 Service discovery using the OpenAPI
ontology

Listing 4.8 is the OpenAPI description of an action (i.e. resulting from the client’s
command) that creates a subscription to a DHT22 or a smart door resource. The
x-operationType property states that the type of the HTTP POST operation is clarified by
https://schema.org/CreateAction.

The SPARQL query of Listing 4.15 on the ontology is used to search for operations
(i.e. included in Thing descriptions) that create a specific result. The query would respond
with the names of all operations (on any Thing) with the type defined by
https://schema.org/CreateAction. The particular action type is defined as “The act of
deliberately creating/producing/generating/building a result out of the agent” in
www.schema.org.

The response would include subscriptions (and other actions that create a result)
to the smart door or DHT22. In this example, the query responds with the name of an
operation (i.e. createSubscription) of the DHT22 sensor and its text description and
summary, as illustrated at the bottom of Listing 4.15.

Listing 4.15: SPARQL query to retrieve Things that support create Actions

1: PREFIX openapi: <http://www.intelligence.tuc.gr/ns/open-api#>

2: SELECT ?graph ?operName ?operDescription ?operSummary WHERE  {

3: GRAPH ?graph {?operation a <https://schema.org/CreateAction> .

4: ?operation openapi:name ?operName .

5: ?operation openapi:description ?operDescription .

6: ?operation openapi:summary ?operSummary .} }

Answer:

graph ==> http://example/DHT22_OpenAPI

operName ==> createSubscription

operDescription ==> An Extended Web Thing should support

subscriptions for the specific resource (DHT22).

operSummary ==> Create a subscription

Similarly, the SPARQL query of Listing 4.16 on the ontology is used to search for
operations (i.e. included in Thing descriptions) that delete an entity. The query would
respond with the names of all operations (on any Thing) with the type defined by
https://schema.org/DeleteAction. The particular action type is defined as “The act of
editing a recipient by removing one of its objects” in www.schema.org. The response would
include actions (i.e. related to Things) that delete an entity (e.g. a subscription). In this
example, the query responds with the name of an operation (i.e. deleteSubscription) of the
DHT22 sensor and its text description, as illustrated in the bottom of Listing 4.16.

89

https://schema.org/CreateAction
http://www.schema.org
http://www.schema.org


Listing 4.16: SPARQL query to retrieve Things that support delete Actions
1: PREFIX openapi: <http://www.intelligence.tuc.gr/ns/open-api#>

2: SELECT ?graph ?operName ?operDescription ?operSummary WHERE  {

3: GRAPH ?graph {?operation a <https://schema.org/DeleteAction> .

4: ?operation openapi:name ?operName .

5: ?operation openapi:description ?operDescription .

6: ?operation openapi:summary ?operSummary .} }

Answer:

graph ==> http://example/DHT22_OpenAPI

operName ==> deleteSubscription

operDescription ==> In response to an HTTP DELETE request on the destination

URL of a subscriptions an Extended Web Thing must either reject  the request

with an appropriate status code or remove (unsubscribe) the subscription and

return a 200 OK status code.

operSummary ==> Delete a subscription

The ontologies resulting from the translation of OpenAPI Thing descriptions allow
the discovery of operations related to Things. Furthermore, they could enable service
synthesis (i.e. composition) using Things and their functionality, thus allowing the design
and implementation of new WoT mashup applications.

90



5
Comparing W3C TDs with

OpenAPI Thing Descriptions

In the following sections, we discuss the W3C Thing Description approach and we
compare it to the OpenAPI Thing description approach: a) in terms of completeness of
the JSON descriptions, and b) in terms of completeness of the corresponding ontologies.
We analyze how each approach supports (or not) key aspects related to Things and their
functionality, such as operations and interactions (e.g. properties, actions, events),
protocol bindings, hypermedia controls and security requirements. We also present the
advantages and disadvantages of every approach. Regarding the ontology aspect, we
compare the ontologies and vocabularies proposed by W3C with the OpenAPI ontology
and we analyze to what extent they can express the functionality of Things. Furthermore,
we identify and compare the two approaches in relation to the hypermedia links support
they offer.

5.1 W3C Thing Descriptions

Thing Description (TD) is a primary component of the WoT Architecture of W3C. It
enables the discovery of services and resources related to a Thing. According to the WoT
Architecture, TDs can be hosted in a directory service that provides a Web interface for
registering and searching for Things. Thingweb node-wot88 is an implementation of TD
along with an implementation of Thing operations using a JavaScript API similar to the
Web browser APIs. It provides an API Interface that allows scripts to interact with Things
using Web protocols such as HTTP, HTTPS, CoAP, MQTT and Websockets. Thingweb
node-wot implementation will be further discussed in Section 5.1.

88 https://github.com/eclipse/thingweb.node-wot

91

https://github.com/eclipse/thingweb.node-wot


The document structure of a TD has already been presented (Figure 2.1) and
discussed in Section 2. It describes the Interactions, Data Schemes, Security
Configuration and Protocol Binding of a Web Thing. It includes important information
such as the Thing’s name and identifier, its security requirements and the interactions (i.e.
properties, actions, events) supported by the Thing. Similar to OpenAPI, TD uses a JSON
serialization format. In addition, TD may be enhanced with a context field (i.e @context) for
converting the JSON format to JSON-LD, which is practically equivalent to an ontology.
TD leverages the context mechanism of JSON-LD to semantically annotate the
information it provides. More specifically, it benefits from the independent vocabularies
provided for the TD Information Model; the core TD Vocabulary, the Data Schema
Vocabulary, the WoT Security Vocabulary and the Hypermedia Controls Vocabulary.
Therefore, a TD instance can be enriched with additional vocabulary terms, utilizing
these vocabularies and the TD Context Extension mechanism. An indicative TD example
for an actuator device has already been presented in Section 2.2.

TD documents support Protocol Bindings for HTTP and HTTPS, and they also
support the Webhook mechanism (i.e. HTTP callbacks). According to the Thing
Description specification89, a Thing can also implement extra Protocol Bindings (apart
from HTTP); their number is not restricted. More specifically, the Thing Description
specification highlights that “other Protocol Bindings (e.g., for CoAP, MQTT, or OPC UA) are
intended to be standardized in separate documents such as a protocol Vocabulary similar
to HTTP Vocabulary in RDF 1.0 90 or specifications including Default Value91 definitions”.

The TD approach also supports several common authentication schemes. More
specifically, TD documents support Basic Authentication, Bearer Token Authentication,
API key Authentication, OAuth 2.0 common flows, Digest Access Authentication and also
Pre-Shared key authentication (PSK)92. A combination of security schemes can also be
defined in the TD security definition (ComboSecurityScheme), as long as the security
schemes can be combined. Apparently, when no authentication or other mechanism is
required to access the resources of a Thing, this is also declared in the TD security
definition (NoSecurityScheme).

According to the WoT Architecture, W3C WoT utilizes two kinds of hypermedia
controls: Web links and Web forms (see Section 2.2). In this context, TD documents adopt
a HATEOAS approach to support the description of hypermedia controls for Things. They
describe Web links and Web forms related to Things and their interactions.

According to the TD specification, the links field in TDs “provides Web links to
arbitrary resources that relate to the specified Thing Description”, as highlighted in the TD
specification93. W3C suggests that link relations in a TD “can be used to describe relations
such as to other Things (e.g., a Switch Thing controls a Lamp Thing), to a specific kind of
Thing Models (e.g., a Thing Description is an instance of a specific Thing Model), or to further
documentations information (e.g., device manual of a Thing)”. Moreover, the TD
specification recommends the reuse of existing and established Link Relation definitions
from IANA94.

94 https://www.iana.org/assignments/link-relations/link-relations.xhtml
93 https://www.w3.org/TR/wot-thing-description/#thing
92 https://datatracker.ietf.org/doc/html/rfc4279
91 https://www.w3.org/TR/wot-thing-description11/#dfn-default-value
90 https://www.w3.org/TR/wot-thing-description11/#bib-http-in-rdf10
89 https://www.w3.org/TR/wot-thing-description11/#other-protocol-bindings

92

https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.w3.org/TR/wot-thing-description/#thing
https://datatracker.ietf.org/doc/html/rfc4279
https://www.w3.org/TR/wot-thing-description11/#dfn-default-value
https://www.w3.org/TR/wot-thing-description11/#bib-http-in-rdf10
https://www.w3.org/TR/wot-thing-description11/#other-protocol-bindings


Listing 5.2 (i.e. originates from the TD specification95) illustrates how links can be
used in a Thing Model definition of the W3D TD approach. In fact, the figure shows a
device class model for a Smart Lamp Control that can be used as a template for the
creation of specific TD instances. This Thing Model extends the definition of the Basic
On/Off TM (Thing Model) illustrated in Listing 5.1 (i.e. originates from the TD
specification96) with a dim property (i.e. for dimming). The links field in the definition is
used to declare that the Smart Lamp Control Thing Model definition extends the Basic
On/Off TM. For this purpose, the rel (i.e. relation) field is set with the value “tm:extends”.

Listing 5.1: Basic On/Off Thing Model Definition (TD approach)

{

"@context": ["http://www.w3.org/ns/td"],

"@type" : "tm:ThingModel",

"title": "Basic On/Off Thing Model",

"properties": {

"onOff": {

"type": "boolean"

}

}

}

Listing 5.2: Links usage in a Thing Model (TD approach)

{

"@context": ["http://www.w3.org/ns/td"],

"@type" : "tm:ThingModel",

"title": "Smart Lamp Control with Dimming",

"links" : [{

"rel": "tm:extends",

"href": "http://example.com/BasicOnOffTM",

"type": "application/td+json"

}],

"properties" : {

"dim" : {

"type": "integer",

"minimum": 0,

"maximum": 100

}

}

}

For example, the item link relation from IANA declares that the target IRI points to
a resource that is a member of the collection represented by the context IRI. In the

96 https://www.w3.org/TR/wot-thing-description11/#td-model-example-basic-on-off
95 https://www.w3.org/TR/wot-thing-description11/#td-model-example-smart-lamp-control

93

https://www.w3.org/TR/wot-thing-description11/#td-model-example-basic-on-off
https://www.w3.org/TR/wot-thing-description11/#td-model-example-smart-lamp-control


example of Listing 5.3, which describes an electric drive that includes two motors, the
item link relation declares that the target IRIs point to the resources (i.e. the two motors)
that are members of the electric drive collection.

Listing 5.3: An item link relation example (TD approach)

...

{

"links": [

{

"rel": "item",

"href": "coaps://motor1.example.com",

"type": "application/td+json"

},

{

"rel": "item",

"href": "coaps://motor2.example.com",

"type": "application/td+json"

}

]

}

...

Among other uses, Web linking can be used in TDs to point to the developer
documentation of a Thing. In that case, the value “service-doc” can be used in the rel
field, as demonstrated in Listing 5.4 (i.e. also originates from the TD specification97).

Listing 5.4: Link to developer documentation (TD approach)
...

"links": [{

"rel": "service-doc",

"href": "https://example.com/howTo",

"type": "application/pdf"

}]

...

Web forms are included in the Properties, Actions and Events objects of TDs to
inform clients how to interact with the corresponding properties, actions and events of
devices. They illustrate the protocols (e.g. HTTP, HTTPS, CoAP) and the endpoints used
to perform particular operations (e.g. to turn on a smart air-conditioner). Listing 5.5
describes an example of Web forms used in a specific TD. This example illustrates the
Properties object that can be used in the TD of a DHT22 sensor. This object includes
information for both properties supported by the sensor (i.e. temperature and humidity).
The forms fields included in the Properties object (i.e. one for each property) show the

97 https://www.w3.org/TR/wot-thing-description11/#example-26-link-to-developer-documentation

94

https://www.w3.org/TR/wot-thing-description11/#example-26-link-to-developer-documentation


protocol (i.e. HTTPS) and the endpoints that a client can use to retrieve the current
temperature value and the current humidity value of a DHT22 sensor. Another example of
Web forms is described in Listing 2.1 where a forms field is used in the Properties, the
Actions and the Events object of the smart door TD to illustrate how the client can
interact with the Thing’s provided affordances (e.g. door’s state).

Listing 5.5: Example of Web forms in a DHT22 sensor TD
...

"properties": {

"temperature": {

"type": "number",

"forms": [{"href": "https://dht22sensor.com/temperature"}]

},

"humidity": {

"type": "number",

"forms": [{"href": "https://dht22sensor.com/humidity"}]

}

}

...

Webhooks (or HTTP callbacks) are requests sent in response to specific events, so
they are used in asynchronous APIs. Listing 5.6 describes a Webhook Event example that
originates from the TD specification98. The example illustrates how callbacks can be
defined in a W3C TD. It assumes that there is a Thing (WebhookThing) that provides an
Event affordance named temperature. This affordance pushes the most recent
temperature value to the client using a Webhook mechanism; the Thing issues HTTP
POST requests to a callback URI provided by the client. The example demonstrates how
the callback URI can be specified using a write-only parameter (callbackURL) in the
subscription member (i.e. field) of the temperature event affordance. In addition, a
subscriptionID (read-only parameter), which is returned in the subscription response, is
defined in the TD. The specification assumes that the Thing will periodically send POST
requests to the defined callback URI including a payload defined by the data member of
the temperature event affordance. The client is also allowed to unsubscribe by
submitting the unsubscribeevent form (i.e. included in the forms field of the TD); an HTTP
DELETE request is utilized for this purpose.

The specification notes that this process can be further automated, by utilizing the
TD Context Extension mechanism and thus including proper semantic annotations. The
client could also unsubscribe using the cancellation member of the temperature event
and combine this with an unsubscribeevent form, which describes an HTTP POST request
used to unsubscribe. The uriVariables member of the temperature event affordance
informs the client to include the subscriptionID string in the URI (i.e. as a URI parameter) to
cancel a specific subscription.

Listing 5.6: Webhook Event example in a TD

98 https://www.w3.org/TR/wot-thing-description/#webhook-example-serialization

95

https://www.w3.org/TR/wot-thing-description/#webhook-example-serialization


{

"@context": "https://www.w3.org/2019/wot/td/v1",

"id": "urn:dev:ops:32473-Thing-1234",

"title": "WebhookThing",

"description": "Webhook-based Event with subscription and unsubscribe

form.",

"securityDefinitions": {"nosec_sc": {"scheme": "nosec"}},

"security": ["nosec_sc"],

"events": {

"temperature": {

"description": "Provides periodic temperature value updates.",

"subscription": {

"type": "object",

"properties": {

"callbackURL": {

"type": "string",

"format": "uri",

"description": "Callback URL provided by subscriber

for Webhook notifications.",

"writeOnly": true

},

"subscriptionID": {

"type": "string",

"description": "Unique subscription ID for

cancellation provided by WebhookThing.",

"readOnly": true

}

}

},

"data": {

"type": "number",

"description": "Latest temperature value that is sent to the

callback URL."

},

"cancellation": {

"type": "object",

"properties": {

"subscriptionID": {

"type": "integer",

"description": "Required subscription ID to cancel

subscription.",

"writeOnly": true

}

}

},

96



"uriVariables": {

"subscriptionID": { "type": "string" }

},

"forms": [

{

"op": "subscribeevent",

"href":"http://localhost:8080/events/temp/subscribe",

"contentType": "application/json",

"htv:methodName": "POST"

},

{

"op": "unsubscribeevent",

"href":"http://localhost:8080/events/temp/{subscriptionID}",

"htv:methodName": "DELETE"

}

]

}

}

}

5.2 Comparison of the TD and OpenAPI
approaches

In the following, the TD of the WoT Architecture of W3C and the OpenAPI approach are
compared based on their capacity to describe Web Things and their functionality (i.e.
services exposed by Things). In Section 5.2.1, the comparison is based on the JSON
representation format of the two approaches, while in Section 5.2.2. we discuss the
capabilities of the corresponding ontologies.

5.2.1  Comparison based on JSON descriptions

TD and OpenAPI present remarkable similarities in terms of the JSON representations
they provide. The particular properties and actions supported by Things are defined in
both approaches, while the operations, specific endpoints and protocols used to interact
with Things are provided by both TD and OpenAPI descriptions. The TD approach
supports events related to Things (e.g. overheating of a lamp Thing) and also operations
for subscribing and unsubscribing to particular events. The OpenAPI approach also
represents subscriptions to specific events. The comparison of the two approaches is
based on specific criteria such as the document specificity (Section 5.2.1.1), the protocol

97



support (Section 5.2.1.2), the security support (Section 5.2.1.3), the hypermedia controls
support (Section 5.2.1.4), the events and subscriptions support (Section 5.2.1.5), the data
schema support (Section 5.2.1.6), the support of semantic extensions (Section 5.2.1.7) and
finally the support of some general aspects (Section 5.2.1.8). The comparison results and
conclusions are summarized in Section 5.2.1.9.

5.2.1.1  Document specificity

Compared to the OpenAPI approach, TD is a more abstract description of a Thing. It is, in
fact, a much shorter document. An OpenAPI document describes every OpenAPI object
and property in detail, in contrast to a TD. Listing 2.1, for example, shows how the lock
operation that might be performed on a smart door Thing (i.e. to lock the door) can be
briefly described by a TD using the Actions object and the forms field. The HTTP method
of the operation (i.e. POST) is omitted in the TD approach, as it is a default assumption for
the Actions object (see Section 2.2). On the contrary, the same operation can be
described in more detail in OpenAPI, as illustrated in Listing 5.7. The type of HTTP
method is declared as in every OpenAPI operation. A tag is used to declare the Actions
resource in this approach, while in the TD approach the Actions object declares that. In
the OpenAPI example, there is also an operation summary, a description, an operationId
and the possible responses along with their descriptions.

Listing 5.7: The lock action execution of the smart door in OpenAPI

"/actions/lock": {

"post": {

"tags": [

"Actions"

],

"summary": "Execute a lock action",

"description": "In response to an HTTP POST request on an Action URL

with valid parameters as request body (or no request body), an Extended Web

Thing must either reject the request with the appropriate status code or

queue a task to run the action. The action may not run immediately.",

"operationId": "executeLockAction",

"responses": {

"204": {

"description": "NO RESPONSE"

},

"404": {

"description": "Not found"

}

}

}

}

98



Although both approaches adopt a JSON serialization format, only TD uses the
context mechanism of JSON-LD and converts the JSON format to JSON-LD. Therefore,
TD is practically equivalent to an ontology and utilizes the context mechanism to
semantically annotate the provided information. OpenAPI resorts to JSON or YAML and
does not support JSON-LD which is more powerful.

5.2.1.2  Protocol support

Both TD and OpenAPI support the HTTP(s) protocol and they also support the Webhooks
mechanism. TD documents may also refer to extra IoT protocols (e.g. CoAP, MQTT), while
OpenAPI only supports HTTP(S). As already highlighted in Section 5.1, such (extra)
protocols can be simply integrated into the TD by the usage of the TD Context Extension
mechanism99 provided by JSON-LD. For example, the TD of a sensor may specify an
MQTT Protocol Binding. This feature is not supported in OpenAPI.

An OpenAPI description cannot be extended using semantic annotations to
support extra protocols, in contrast to the W3C TD. OpenAPI intends to support the REST
architectural style and especially the HTTP(S) protocol, so it is not designed to support
additional protocols. Therefore, OpenAPI cannot be extended to support more transfer
protocols like TD does. This is also highlighted by the members of the OpenAPI
Initiative100. Even if we conventionally extended OpenAPI to support extra protocols such
as CoAP (i.e. by using semantic extensions), this would not be compatible with the large
set of tools provided for OpenAPI. The above comparison is summarized in Table 5.1.

Application Protocol W3C TD approach OpenAPI TD approach

HTTPS / HTTPS Supported Supported

Webhooks Supported Supported

CoAP Supported Not supported

MQTT Supported Not supported

Other protocols (e.g. Modbus,
OPC UA)

Supported Not supported

Table 5.1: Application protocols supported by the OpenAPI approach and the W3C TD
approach

100 https://github.com/OAI/OpenAPI-Specification/issues/777
99 https://www.w3.org/TR/wot-thing-description11/#sec-context-extensions

99

https://github.com/OAI/OpenAPI-Specification/issues/777
https://www.w3.org/TR/wot-thing-description11/#sec-context-extensions


5.2.1.3  Security support

Both TDs and OpenAPI describe the security requirements of services exposed by
Things. The HTTP security schemes, vocabulary, and syntax in the WoT Architecture of
W3C share many similarities with OpenAPI v3.0.1. More specifically, both TD and OpenAPI
support security configuration for different HTTP authentication schemes (i.e. Basic
Authentication, Digest Access Authentication, Bearer Token Authentication), for API key
authentication (i.e. in headers, query strings or cookies), and OAuth 2.0 common flows.
However, only the TD approach supports Pre-Shared key authentication (PSK)101, which
uses pre-shared keys such as TLS-PSK. PSK authentication is a method used for client
authentication on wireless networks; it is used for WPA and WPA2 encryption. On the
other hand, only the OpenAPI approach supports OpenID Connect authentication102,
which extends the OAuth2.0 protocol, by adding an identity layer on top of it. Similar to
the ComboSecurityScheme that can be used in the TD security definition, the combination
of security requirements is also possible in OpenAPI (using logical OR and AND
operators103) to describe REST APIs that support multiple authentication types. In
addition, when no authentication or other mechanism is required to access the resources
of a Thing, this can be declared both in the TD security definition (NoSecurityScheme) and
in the OpenAPI security requirements. In OpenAPI, an empty array is used in the security
field to declare that there is no security scheme for a particular API; in that case, the API
is not protected. This comparison is summarized in Table 5.2.

Security scheme W3C TD approach OpenAPI TD approach

Basic Authentication Supported Supported

Bearer Authentication Supported Supported

API Key Authentication Supported Supported

OAuth2.0 Supported Supported

OpenID Connect Not supported Supported

Digest Authentication Supported Supported

PSK Authentication Supported Not supported

Combo Supported Supported

NoSecurity Supported Supported

Table 5.2: Security schemes supported by the OpenAPI approach and the W3C TD
approach

103 https://swagger.io/docs/specification/authentication/
102 https://openid.net/connect/
101 https://datatracker.ietf.org/doc/html/rfc4279

100

https://swagger.io/docs/specification/authentication/
https://openid.net/connect/
https://datatracker.ietf.org/doc/html/rfc4279


5.2.1.4  Hypermedia controls support

OpenAPI is a promising technology towards understanding and constructing Web
services that meet the HATEOAS requirement of the REST architectural style. A new
feature is introduced in the latest OpenAPI v3.0 (along with Callbacks) referred to as
Links. This is an attempt to incorporate HATEOAS functionality in the specification. In fact,
the OpenAPI Specification notes that, although links in OpenAPI are “somewhat similar to
hypermedia104”, they do not require the presence of link information in the actual
responses. OpenAPI links are not directly related to HATEOAS. In fact, a truly RESTful
service sends itself to a client the information on how to send the next requests
according to the requested resources. OpenAPI links differ from HATEOAS, as they do
not come from the service; they can just be present in the service description. In addition,
anyone that describes a service can provide whatever links he/she wants for the service.
Therefore, OpenAPI links do not typically meet the HATEOAS requirement of REST.
However, if OpenAPI links are defined properly for a service and there is a suitable client
that can use them (i.e. it is not mandatory for a client to implement them), then we could
claim that OpenAPI links are a naive or initial HATEOAS approach.

In OpenAPI service descriptions, links are defined in the service response section
to allow values returned by a service call to be used as input for the next call. More
specifically, Links are defined as Link objects in responses (i.e. Response objects) of API
operations. Links can be reusable objects in an OpenAPI document so they can be
defined in the Components object of the description. Listing 5.8 provides a complete
example of a link in an OpenAPI Thing description, similar to the example in the OpenAPI
guide105. Although the OpenAPI link feature has not been included in the examples of
Chapter 4, Listing 5.8 describes how links could be easily supported in an OpenAPI Thing
description. Among others, the service document of the described device defines the
“Create a subscription” and “Retrieve information about a specific subscription”
operations which are proposed by the OpenAPI Web Thing template. The result of
“Create a subscription” is used as an input to “Retrieve information about a specific
subscription”. More specifically, the subscriptionID parameter that is returned in the
response of the “Create a subscription” operation is used as a path parameter in the
operation that retrieves the information of a subscription based on its subscriptionID. In
this example, the links section is defined under the Response Object of the first operation
and it describes a link named GetSubscriptionBySubscriptionID. However, the link could
also be defined under the Components object. The subscriptionID parameter and the
OpenAPI operationId property of the operation that retrieves the subscription are
highlighted with bold letters in the Listing.

Listing 5.8: Link example in an OpenAPI Thing description

paths:

105 https://swagger.io/docs/specification/links/
104 https://smartbear.com/learn/api-design/what-is-hypermedia/

101

https://swagger.io/docs/specification/links/
https://smartbear.com/learn/api-design/what-is-hypermedia/


/subscriptions:

post:

tags:

- Subscriptions

summary: Create a subscription

description: An Extended Web Thing should support subscriptions for the

specific resource (DHT22).

operationId: createSubscription

x-operationType: 'https://schema.org/CreateAction'

requestBody:

description: Create a new subscription

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionRequestBody'

required: true

responses:

'201':

description: Created

content:

application/json:

schema:

type: object

properties:

SubscriptionID:

type: string

description: ID of the created subscription

example: 5fd23faccde6be05da68bcfb

# -----------------------------------------------------

# Links

# -----------------------------------------------------

links:

GetSubscriptionBySubscriptionID: # <--- arbitrary link name

operationId: retrieveInfoAboutSubscription

parameters:

SubscriptionID: '$response.body#/SubscriptionID'

description: > The `SubscriptionID` value returned in the

response can be used as the `SubscriptionID` parameter in `GET

/subscriptions/{subscriptionID}`.

# -----------------------------------------------------

'404':

description: Not found

'/subscriptions/{subscriptionID}':

get:

tags:

102



- Subscriptions

summary: Retrieve information about a specific subscription

description: 'In response to an HTTP GET request on a Subscription URL,

an Extended Web Thing must return a JSON representation of the subscription.

The JSON representation should be the same as the one returned for that

subscription in ''Retrieve a list of subscriptions''.'

operationId: retrieveInfoAboutSubscription

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

schema:

x-mapsTo: '#/components/schemas/SubscriptionObject.id'

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

components:

schemas:

SubscriptionObject:

allOf:

- type: object

required:

- id

- type

- resource

- description

- callbackUrl

properties:

id:

type: string

example: 5fc978fc96cc26a4e202c3d6

- $ref: '#/components/schemas/SubscriptionRequestBody'

xml:

103



name: SubscriptionObject

Therefore, the OpenAPI Thing description approach can be used to represent
links contained in HTTP response messages and thus provides a useful mechanism that
allows traversing between the operations of Things (e.g. subscription or action
operations). The OpenAPI Thing description approach can also describe operations that
clients may perform on Things. According to W3C, OpenAPI operations are similar to
forms as defined in the WoT Architecture. Hence, the OpenAPI approach supports
hypermedia controls that refer to Things and their functionality; links and operations can
all be described in an OpenAPI document.

The TD approach proposes a HATEOAS approach for the support of hypermedia
controls, as described in Sections 2.3 and 5.1. According to the WoT Architecture,
hypermedia controls can be provided in a TD using links and forms. Although a TD
describes links, it does not refer to links in the same way as in OpenAPI. That is, links in a
TD represent a broader sense than in OpenAPI; it has been described in Section 5.1. Link
examples in TDs have already been presented in Section 5.1 (Listings 5.1, 5.2, 5.3 and 5.4).
TDs use forms to show clients how to perform specific operations offered by Things (e.g.
to retrieve information about a property, to invoke an action, to subscribe to an event,
etc). Therefore, forms are somehow similar to operations in OpenAPI, as indicated by
W3C. TD form examples have been illustrated in the Properties, Actions and Events
objects of the smart door TD in Listing 2.1, in the Properties object of a DHT22 sensor
presented in Listing 5.5 (i.e. shows how to retrieve the temperature property and the
humidity property of the sensor) and in the Events object of a TD presented in Listing 5.6
(i.e. shows how to subscribe and unsubscribe to the temperature event of a Thing).

Overall, both approaches support hypermedia controls such as links (i.e. in the
OpenAPI and the TD approach) and forms (i.e. in the TD approach) which are similar to
operations of the OpenAPI approach. Links are used in both approaches, but they
represent a different concept in every approach. Moreover, the WoT Architecture
proposes Web forms as a hypermedia control to describe the operations that clients may
perform on Things; TDs use forms to describe these operations. On the other hand, forms
do not exist in the OpenAPI approach; instead, there are service operations which are
described by the Paths object of OpenAPI.

5.2.1.5  Events and Subscriptions support

TDs can describe events related to Things (e.g. when the humidity value measured by a
sensor reaches a specific threshold). They can also describe operations of subscribing
and unsubscribing to such events. They do not support any operation for retrieving
information about existing subscriptions. Listing 2.1 illustrates how the TD of a smart door
actuator defines the event of the door opening using the Events object in the description.
This Event object includes a forms field that describes the protocol, the endpoint and the
sub-protocol (e.g. the exact mechanism used for asynchronous notifications) for
subscribing to the open event of the smart door, so that a client can be notified when the
door opens. Moreover, Listing 5.5. illustrates how callbacks can be defined in a TD and

104



uses forms to describe how a client can subscribe and unsubscribe to the temperature
event affordance of the Thing.

OpenAPI Thing description approach can also define certain events that trigger
callbacks. The approach takes advantage of the OpenAPI specification that supports
callbacks in response to certain events. In fact, callbacks are a new feature introduced in
the latest OpenAPI v3.0 for defining asynchronous APIs or Webhooks; they are used to
define the requests that the described service will send to another service in response to
certain events. The OpenAPI Thing description approach emphasizes on describing
subscription operations (e.g. the operation for creating a subscription) using Callbacks or
Webhooks properties added to a Paths object (at the same level as parameters,
responses, etc.). In fact, the OpenAPI Web Thing template defines particular operations
for creating a subscription (i.e. subscribing) to certain events, for retrieving subscriptions
(i.e. all existing subscriptions to a Thing or a specific subscription using its subscription
identifier) and also for deleting a specific subscription (i.e. unsubscribing) using its
subscription identifier. Therefore, OpenAPI callbacks have not actually been used in the
OpenAPI Thing description approach, but they could easily be supported.

More specifically, callbacks in OpenAPI are defined as Callback objects and they
are included in Operation objects. The OpenAPI guide provides an indicative example of
callbacks in OpenAPI106. Similar to links, callbacks can act as reusable objects of an
OpenAPI service definition, by being included in the Components object of the
document. Although the OpenAPI callback feature has not been included in the
examples of Chapter 4, Listing 5.9 describes how callbacks could be simply supported in
an OpenAPI Thing description. In this example, a callback is defined for the “Create a
subscription” operation of a DHT22 sensor. The request body schema defined under the
Components object includes the required callbackUrl property. In this example, the
callbacks section that describes the callback is defined under the Operation Object of
the particular operation. However, callbacks can also be defined under the Components
object (i.e. they can be reusable).

Listing 5.9: Callback example in an OpenAPI Thing description

paths:

/subscriptions:

post:

tags:

- Subscriptions

summary: Create a subscription to temperature

description: A DHT22 sensor should support subscriptions for events

related to temperature value.

operationId: createSubscription

x-operationType: 'https://schema.org/CreateAction'

requestBody:

description: Create a new subscription

content:

application/json:

106 https://swagger.io/docs/specification/callbacks/

105

https://swagger.io/docs/specification/callbacks/


schema:

$ref: '#/components/schemas/SubscriptionRequestBody'

required: true

responses:

…

callbacks: # Callback definition

highTemperatureValueEvent: # Event name

'{$request.body#/callbackUrl}': # The callback URL

post:

requestBody: # Contents of the callback message

required: true

content:

application/json:

schema:

type: object

properties:

message:

type: string

example: Very high temperature value!

required:

- message

responses: # Expected responses to the callback message

'200':

description: Your server returns this code if it accepts

the callback

components:

schemas:

SubscriptionRequestBody:

type: object

required:

- description

- type

- callbackUrl

- resource

properties:

name:

type: string

example: My subscription for DHT22 temperature

description:

type: string

example: A subscription to get info about DHT22 temperature

type:

type: string

example: webhook (callback)

106



callbackUrl: # Callback URL

type: string

format: uri

example: 'http://172.16.1.5:5000/accumulate'

resource:

type: object

properties:

type:

type: string

example: property

name:

type: string

example: temperature

expires:

type: string

format: date-time

throttling:

type: integer

format: int32

example: 5

xml:

name: SubscriptionRequestBody

Therefore, both approaches actually represent events and operations for
subscribing and unsubscribing to specific events (e.g. when receiving a new pressure
measurement). Both approaches can also describe callbacks that result from events
related to Things (e.g. a new temperature value measured from a sensor). However, only
the OpenAPI Thing description approach provides operations that retrieve information
about existing subscriptions.

5.2.1.6  Data schemas support

Both approaches describe the JSON data schemas used for the representation of Things
and their interactions. They can both define input and output data types (e.g. the input or
output data schemas for actions). The TD approach describes data schemas using the
“data” object in a JSON TD in conjunction with the Data Schema Vocabulary (Section
2.11.4). Therefore, the TD approach can describe the input data schema of an action, the
output data schema of an event, the input data schema of a subscription, etc. For
example, the “data” member in the TD of Listing 5.6 is used to describe the input data
schema of the request sent to the callback URL in response to a temperature event. The
data schema includes the temperature value of the Thing (i.e. a number). The value of
the type attribute in the data member is “number”. This data schema type is defined by
the NumberSchema class in the Data Schema Vocabulary of W3C. On the other hand, the

107



OpenAPI approach uses the Schema object to describe data schemas for Things and
their affordances. For example, it can define the output data schema of a Web Thing, the
input data schema of a subscription, the input data schema of an action, the output data
schema of all properties, etc. The Schema objects are defined under the Components
object of an OpenAPI Thing description. Indicative examples of schemas in OpenAPI
Thing descriptions have been illustrated in Listings 4.1, 4.4, 4.5 and 4.6.

5.2.1.7  Semantic extensions

Both TD and OpenAPI make services offered by Things machine-understandable and
discoverable by Semantic Web tools. In the OpenAPI approach, the respective
descriptions are translated to ontologies, while TDs are very close to ontologies because
of their representation format. In essence, TD adopts JSON-LD format which is more
powerful than JSON or YAML and it is equivalent to an ontology. So in contrast to the
OpenAPI TD approach, where Thing descriptions are translated to ontologies, W3C TDs
are directly represented in JSON-LD format. TDs are not converted to ontologies like in
the OpenAPI TD approach. In other words, the ontologies and vocabularies described in
W3C specifications (e.g. TD Ontology, WoT Security Ontology, etc), do not result from the
translation of JSON TDs. Instead, they have been proposed by W3C to support the TD
information model by further describing Things and their related concepts such as
Things interactions and API security schemes. So the ontologies described by W3C are
rather complementary in the process of describing Things and their functions. More
specifically, the context extension mechanism of JSON-LD is used to extend TD
documents with concepts from the semantic models of W3C. However, the proposed
vocabularies and ontologies may also act as alternatives to the JSON representation
format used for TDs, as highlighted in the TD Ontology specification.

In contrast to the W3C TD approach that benefits from JSON-LD format, the
OpenAPI TD approach is limited to plain JSON representation format. In fact, the
OpenAPI TD approach provides semantic extensions using the extension properties (i.e.
x-properties) of [17]. Therefore, both approaches utilize semantic annotations to map
specific properties (e.g. the concept of action or actuator) to semantic models. However,
the serialization format of TD documents (i.e. JSON-LD) is certainly more powerful than
plain JSON format, as it serializes Linked Data. JSON-LD allows the representation of
knowledge about Things in a machine-understandable way. OpenAPI Thing descriptions
may provide semantic annotations, but they have to be translated to an ontology so that
semantics can be leveraged by machines. Then, the representation of a Thing and its
functions can benefit from Semantic Web tools (e.g. reasoners, query languages)
enabling service discovery and service orchestration. Otherwise, the semantic
annotations of OpenAPI descriptions can only be useful to humans.

108



5.2.1.8  General aspects

As highlighted above, TD is a much shorter description than an OpenAPI document,
which might be helpful in some cases (e.g. in terms of memory). An OpenAPI service
description defines all service request and response bodies (schemas), operations, HTTP
status codes, headers, parameters (e.g. path parameters), security requirements,
non-functional information, etc. OpenAPI also defines services in a way that eliminates
ambiguities and provides Web Thing service descriptions that are uniquely defined and
discoverable, (i.e. using semantic annotations). Documentation generation tools can use
an OpenAPI description to display the API, code generation tools to generate servers and
clients in various programming languages, testing tools, etc. On the contrary, the TD
approach does not provide so many tools; to the best of our knowledge, there are no
documentation generation tools and code generation tools for the TD approach.

Both approaches include the names of the Thing interaction affordances (e.g.
properties, actions) and describe the functionality (service) of the Thing. They do not
provide the values of these interactions though. A user can only find out which properties
and actions the Thing supports since they are indirectly indicated in the descriptions (in
the form of paths, schemas, operations, etc). The values of these properties (e.g. a
humidity measurement value) and actions (e.g. the status of a lock action execution) are
provided by the corresponding service.

Overall, OpenAPI is an alternative to the TD of the W3C Architecture in terms of
describing an IoT device and especially its exposed Web API in the form of a JSON (or
YAML) description. Both approaches are capable of describing Things and their
affordances. However, we consider that TD is a more abstract description. OpenAPI is
detailed and complete; it fully describes the functionality of a device and provides all the
information a client needs to use the services it provides (e.g. paths, parameters,
response and request bodies, headers and even example values) and not just interact
with the device, as TD does. In addition, OpenAPI provides a wide variety of tools
compared to the TD approach, including documentation generation tools, code
generation tools and developer (or testing) tools. Finally, we should note that OpenAPI is
a widely adopted industry standard endorsed by Linux Foundation and supported by
large software vendors, whereas the TD is (still) a W3C recommendation.

109



5.2.1.9  Comparison conclusions

The results of the above comparison are summarized in Table 5.3.

Comparison criteria W3C TD approach OpenAPI TD approach

Document specificity
Much shorter, abstract.

JSON-LD format, more
powerful.

Larger, detailed, complete for
service description.

JSON/YAML format.

Protocol Support
HTTP(S), CoAP(S), MQTT
and other protocols.

Not limited.

Only HTTP(S).
Limited.

Security Support

Basic Authentication, Bearer
Authentication,

API Key Authentication,
OAuth 2.0,

Digest Authentication,
PSK Authentication, Combo,

No Security.

Basic Authentication, Bearer
Authentication,

API Key Authentication,
OAuth 2.0,

Digest Authentication,
OpenID Connect,

Combo,
No Security.

Hypermedia Controls Support Links and Forms
(WoT Architecture)

OpenAPI Links, operations
instead of forms

Data Schemas Support Uses the Data Schema
Vocabulary.

Uses OpenAPI
Schema Objects.

Semantic Extensions Support
Uses the @context

mechanism of JSON-LD. Not
necessary to translate TDs to

ontologies.

Semantic annotations using
x-properties. Descriptions
have to be translated to

ontologies.

General Aspects

Short, abstract. No
documentation - code

generation tools. Still a W3C
recommendation.

Detailed, complete.
Documentation - code

generation tools provided.
Industry standard.

Table 5.3: Comparison results based on the JSON descriptions of the two approaches

110



5.2.2   Comparison based on ontologies

In general, there is no direct correlation between the OpenAPI ontology and the
ontologies used by the Thing Description approach. Although the ontologies may
describe similar concepts related to services, this is done in a completely different way
and there are not many direct similarities. In fact, the OpenAPI TD approach proposes the
OpenAPI ontology which is used to capture all information of an OpenAPI description.
Therefore, the ontology itself does not support concepts related to the Web of Things
such as Thing, properties, actions, WoT operation types, etc. In fact, the OpenAPI
ontology is based on the Hydra core vocabulary, as described in Section 2.11.8. However,
the OpenAPI Thing description approach benefits from semantic annotations proposed
by the Semantic OpenAPI to describe WoT concepts along with other concepts such as
id, name, description, etc. It maps these concepts to terms in the SSN ontology, in the
SOSA ontology and also in schema.org. The RDF triples in the translated OpenAPI
ontology (i.e. resulting from a Thing description) may include URIs from these semantic
models. Therefore, these concepts are also described in the resulting ontology. On the
contrary, the TD approach proposes: a) an ontology to describe WoT concepts (i.e. the TD
ontology described in Section 2.11.2), b) an ontology to describe API security for Things
(i.e. the WoT Security Ontology described in Section 2.11.3), c) an ontology to describe
data schemas used to represent Things (i.e. the Data Schema Vocabulary described in
Section 2.11.4), and d) an ontology to describe hypermedia controls such as links (i.e. the
Hypermedia Controls Ontology described in Section 2.11.5).

The comparison of the two approaches is based on specific criteria such as the
WoT concepts support (Section 5.2.2.1), the security support (Section 5.2.2.2), the
hypermedia controls support (Section 5.2.2.3), the events and subscriptions support
(Section 5.2.2.4), the protocol support (Section 5.2.2.5) and the data schema support
(Section 5.2.2.6). The comparison results and conclusions are summarized in Section
5.2.2.7.

5.2.2.1  WoT concepts support

The TD approach of W3C proposes the W3C TD Ontology (Section 2.11.2) for defining
WoT concepts which are proposed by the WoT Architecture such as Thing, interaction
affordance, property affordance, action affordance, operation type. Thus, the ontology
defines classes to represent a Thing, a property affordance, an event affordance, etc. It
also defines specific object properties, datatype properties and named individuals, as
described in Section 2.11.2. This ontology also presents some alignments with the SOSA
ontology and the schema.org vocabulary (see Section 2.11.2). On the other hand, the
OpenAPI ontology does not represent WoT concepts (e.g. Thing, properties, actions), as it
was meant to describe API terms, according to the OpenAPI specification. However, the
OpenAPI Thing description approach benefits from semantic annotations (i.e. in OpenAPI
Thing descriptions) to semantic models such as the SOSA ontology and the schema.org
vocabulary that describe this kind of concepts (e.g. see Listing 4.1).

111



The Thing class (W3C TD ontology) and the Document class (OpenAPI ontology)
are top-level concepts in each ontology. Below these classes, other concepts are
defined to describe a Web Thing in the TD ontology and an API in the OpenAPI ontology.
The Thing Description specification of W3C defines some properties (i.e. vocabulary
terms)107 of the Thing class such as @context, @type, id, title, properties, actions and events
which are also used in a TD to describe a Thing. The support property provides contact
information for the TD maintainer just like the openApi:contact class of the OpenAPI
ontology. The version property is the same with the openApi:version property (i.e. both
properties describe the version of the corresponding description, either W3C TD or
OpenAPI TD). The links property is similar to the openApi:ExternalDoc class that provides
links for external documentation. The securityDefinitions property is similar to the
openApi:security property, as it contains security definitions used in the W3C TD just like
the OpenAPI ontology for the security definitions of an API. However, there is also a
security property and there is no corresponding property in the OpenAPI ontology. We
should note that in the OpenAPI ontology security requirements only exist in an
Operation. In fact, when translating an OpenAPI description to an ontology, security
requirements are clarified.

InteractionAffordance is an abstract concept proposed by the WoT Architecture to
describe how a client can interact with Things. It is divided into PropertyAffordances,
ActionAffordances and EventAffordances. We cannot directly relate these concepts to any
concepts of the OpenAPI ontology, as they are not compliant with the logic of the
OpenAPI Specification in general. In OpenAPI, everything is described as an Operation
where the client retrieves information or performs some action or creates a subscription
to a resource. On the contrary, in TDs, these operations are classified according to their
types. More specifically, in case a client retrieves Thing property information, it is a
PropertyAffordance. In case a client performs an action (e.g. turns on a lamp or moves a
camera device), this is classified as ActionAffordance. Moreover, EventAffordance
describes events related to Things and the mechanisms used to transmit asynchronous
notifications from Things to consumers (i.e. clients). In OpenAPI 3.1, this is described using
callbacks or webhooks. However, the description of callbacks and webhooks has not
been yet implemented in the OpenAPI ontology.

5.2.2.2  Security support

Both approaches are able to describe the security mechanisms used for authentication
and authorization of clients that interact with Things. The TD approach of W3C proposes
the WoT Security Ontology for defining security schemes such as the API Key security
scheme and the Basic Authentication security scheme, as described in Section 2.11.3.
This ontology defines classes that represent security schemes and specific object
properties (e.g. allOf, authorization, OneOf) and datatype properties (e.g. flow, scopes).
Similarly, the OpenAPI Thing description approach benefits from the OpenAPI ontology
and the Security class, in particular, to describe the API security definitions used in

107 https://www.w3.org/TR/wot-thing-description11/#thing

112

https://www.w3.org/TR/wot-thing-description11/#thing


OpenAPI Thing descriptions. The Security class of the ontology, that includes security
schemes as subclasses, is already described in Section 2.11.8 and illustrated in Figure 2.8.
Similar to the JSON description of the two approaches, the ontologies describe the same
security schemes, except from the PSK security scheme that is only described in the
WoT Security Ontology and the OpenID Connect security scheme that is only described
in the OpenAPI ontology.

5.2.2.3  Hypermedia controls support

The TD approach of W3C proposes the Hypermedia Controls Ontology for defining
hypermedia controls, as defined by the WoT Architecture; Web links and Web forms. This
ontology defines classes to represent a link, a form, an expected response and an
additional expected response, and specific object properties (e.g. hasTarget) and
datatype properties (e.g. forSubProtocol), as described in Section 2.11.5. This ontology also
presents some alignments with the Hydra core vocabulary (see Section 2.11.5).

On the other hand, the OpenAPI ontology does not (yet) represent hypermedia
concepts as described in OpenAPI (i.e. links). In fact, there is no direct correlation of links
described in the Hypermedia Controls Ontology with links described in the OpenAPI
approach. Concerning forms, the OpenAPI ontology is based on Hydra and it represents
service operations, which, according to the Hypermedia Controls Ontology specification,
are “similar in spirit” to TD forms. Forms represent how the client can perform specific
requests to perform with Things. The class Form of the TD ontology could be related to
the openApi:Operation class of the OpenAPI ontology, but this would not be absolutely
correct (i.e. the two concepts are not equivalent). Finally, links (along with callbacks)
might be represented in the ontology in the near future; it is a work in progress by the
authors of the OpenAPI ontology.

5.2.2.4  Events and subscriptions support

The TD approach of W3C proposes the TD ontology (Section 2.11.2) for describing
EventAffordances and subscriptions to events. These are described using webhooks and
callbacks in OpenAPI. However, there is not (yet) support for webhooks and callbacks in
the OpenAPI ontology, as highlighted in Section 5.2.2.1. Although the concept of
subscriptions is not defined in the OpenAPI ontology, subscription operations (i.e. to
create, retrieve or delete subscriptions), are supported in OpenAPI Thing descriptions
using the Operation object and they can be supported in the OpenAPI ontology as well
using the Operation class.

113



5.2.2.5  Protocol support

Regarding protocols, we should note that the OpenAPI ontology can only describe APIs
implemented using the HTTP(S) protocol, while the TD approach is meant to support
additional protocols. W3C notes that the number of Protocol Bindings that can be
implemented by a Thing is not restricted. Other protocol bindings (e.g. for CoAP, MQTT or
OPC UA) are intended to be standardized in separate documents such as a protocol
vocabulary (see Section 5.1).

5.2.2.6  Data schemas support

Both approaches use ontologies to describe the data schemas used for the
representation of Things and their interactions (e.g. the input and output data schemas
for actions). The TD approach proposes an RDF vocabulary (i.e. the Data Schema
Vocabulary described in Section 2.11.4) for JSON data schema definitions. For the
OpenAPI ontology, the corresponding mechanism is SHACL (Shapes Constraint
Language) which is also a recommendation and is incorporated in the OpenAPI ontology.
However, these mechanisms are totally different from each other and there is no
correlation between them.

5.2.2.7  Comparison conclusions

The results of the above comparison are summarized in Table 5.4.

Comparison criteria W3C TD approach OpenAPI TD approach

WoT Concepts Support
Uses the TD Ontology

(different from the OpenAPI
ontology that describes

API concepts).

The OpenAPI ontology does
not define them. Semantic

annotations to SOSA,
SSN, schema.org are used.

Protocol Support
HTTP(S), CoAP(S), MQTT

and other protocols. Not
limited.

The OpenAPI ontology
describes only HTTP(S).

Limited.

Security Support

Uses the WoT Security
Ontology to define:

Basic Authentication, Bearer
Authentication,

API Key Authentication,
OAuth 2.0, Digest

Authentication, PSK

Uses the OpenAPI
Ontology to define:

Basic Authentication, Bearer
Authentication,

API Key Authentication,
OAuth 2.0, Digest

Authentication, OpenID

114



Authentication, Combo,
No Security.

Connect, Combo,
No Security.

Hypermedia Controls Support Links and Forms
(WoT Architecture).

Links are not yet described in
the OpenAPI Ontology.

Events - Subscriptions
Support

The TD Ontology describes
EventAffordances and

subscriptions to events.

The concepts of events,
subscriptions and OpenAPI
callbacks are not defined in

the OpenAPI Ontology.
Subscription operations to
events are described using

the Operation class.

Data Schemas Support Uses the Data Schema
Vocabulary.

The OpenAPI Ontology
uses SHACL.

Table 5.4:  Comparison results based on the ontologies of the two approaches

Overall, there is no direct correlation between the ontologies of the two
approaches. However, both approaches can describe the most important concepts
related to Things using the provided ontologies and semantic annotations to external
ontologies or vocabularies. Therefore, the OpenAPI Thing description approach, which
uses the OpenAPI ontology and external semantic models to describe Things and their
interactions, can be an alternative to the TD approach.

115



6
WoT Architecture
implementations

6.1  Comparing WoT implementations

In this section, we review the WoT implementations presented in Chapter 3
according to the requirements of the WoT Architecture of W3C. The three candidate WoT
implementations (namely, Thingweb.node-wot, Webofthings.js and WTMs) are compared
based on their capacity to support the requirements of the recommendation.

The WoT Architecture recommendation presents some common principles for WoT
architectures such as the interconnection of different eco-systems using Web standards,
the adoption of RESTful APIs for the interaction with Things, the interoperability of
architectures, the scalability, the compatibility, etc. Moreover, it states that the four
building blocks108 for W3C WoT are: a) the WoT Thing Description that is used to describe
Things and their interactions, b) the WoT Binding Templates for IoT protocols, c) the WoT
Scripting API (i.e. optional building block), and d) WoT Security and Privacy guidelines. In
fact, the recommendation notes that the WoT TD is the central building block of W3C
WoT. According to the WoT Architecture, “the description metadata MUST be a WoT Thing
Description (TD)” in W3C WoT. In addition, it is noted in the specification that at least one
TD representation must be available for a specific device to be a Thing. Therefore, WoT
implementations that follow the WoT Architecture have to use TDs for the interaction
with Things. The Interaction Model proposed in the specification (i.e. properties, actions
and events) is also an important aspect of the WoT Architecture. Last but not least, the
well-known operation types for WoT and the hypermedia controls (i.e. Web links and
Web forms) that show clients how to interact with Things are also basic features of the
W3C WoT.

108 https://www.w3.org/TR/wot-architecture/#sec-building-blocks

116

https://www.w3.org/TR/wot-architecture/#sec-building-blocks


Taking into account all these aspects, we can determine which of the candidate
implementations are fully or more compliant with the recommendation of W3C.
Although all implementations follow some requirements of the WoT Architecture, not all
of them are fully compatible with the specification. In fact, only Thingweb node-wot is
fully compliant with the specification, as it is the only implementation that adopts W3C
Thing Descriptions to allow interaction with Things. In addition, only Thingweb supports
all WoT operation types defined in the WoT Architecture (see Table 2.1). It also
implements several protocol bindings and it can apply WoT security mechanisms for the
authentication of clients (e.g. Basic authentication, Bearer Tokens). Furthermore,
Thingweb implements the WoT Scripting API (i.e. an optional building block of W3C WoT),
it may support hypermedia controls such as links and forms and it naturally follows the
interaction model of the WoT Architecture. Thingweb also implements additional
protocols such as CoAP, CoAPS and MQTT (see Section 3.1).

WTMs and Webofthings.js were originally based on the Web Thing Model
submission of W3C, as highlighted in Chapter 3. Therefore, they do not use the WoT
Thing Description (TD) format proposed by W3C, which is, according to the WoT
Architecture, “the central building block of W3C WoT”. However, these implementations
also allow clients to interact with Things using RESTful APIs, they support the interaction
affordance model of the recommendation (e.g. properties, actions, events) and hence
they follow basic requirements of the recommendation. In addition, they may apply WoT
security mechanisms (e.g. Basic Authentication) and they may support hypermedia
controls such as Web links. They only implement some operation types of the WoT
Architecture, but they could be extended to support more operation types. Finally, in
relation to protocol support, WTMs only supports HTTP and the Webhooks mechanism,
while Webofthings.js only supports HTTP(S) and the Websocket mechanism. The results
of the comparison are summarized in Table 6.1.

WoT Architecture
feature

Thingweb node-wot Web Thing Model
service (WTMs)

Webofthings.js

W3C Thing
Description (TD)

Supported Not supported Not supported

Binding templates
HTTP, HTTPS, CoAP,
MQTT and other are

supported

Only HTTP and
Webhooks supported

Only HTTP, HTTPS
and Websockets

supported

WoT Scripting API
(optional)

Supported Not supported Not supported

WoT Security
mechanisms

Supported Supported Supported

Interaction Model Supported Supported Supported

Hypermedia controls Supported Supported Supported

Operations types Supported Some of them
supported

Some of them
supported

117



Table 6.1: Comparison of reference implementations based on W3C Architecture
requirements

Table 6.2 summarizes the results of the comparison of the implementations based
on the operation types they support. In contrast to WTMs and Webofthings.js that only
implement some of the WoT operation types, Thingweb node-wot supports all
operations proposed in the WoT Architecture.

WoT operation type
Thingweb
node-wot

Web Thing Model
service (WTMs)

Webofthings.js

readproperty Supported Supported Supported

writeproperty Supported Supported Supported

observeproperty Supported Not supported Not supported

unobserveproperty Supported Not supported Not supported

invokeaction Supported Supported Supported

subscribeevent Supported Supported Supported

unsubscribeevent Supported Supported Not supported

readallproperties Supported Supported Supported

writeallproperties Supported Not supported Not supported

readmultipleproperties Supported Not supported Not supported

writemultipleproperties Supported Supported Not supported

Table 6.2: Comparison of reference implementations based on the W3C Architecture
operation types

Therefore, we conclude that only Thingweb node-wot could be considered a
reference implementation of the WoT Architecture, while WTMs and Webofthings.js are
not fully compliant with the recommendation, mainly because they do not use W3C
Thing Descriptions.

118



7
Conclusions and Future Work

The Web of Things concept is gradually becoming popular, as it aims to unify the
world of interconnected devices, by utilizing existing and common Web technologies. In
the context of WoT Architecture (i.e. W3C recommendation) that defines an abstract
architecture for the Web of Things, we aimed to discover and review existing approaches
that intend to describe Web Things (e.g. humidity or precipitation sensors, smart door or
window actuators, smart TVs, cameras, etc) and their functionality as Web services. The
devices and the operations they may support can be exposed on the Web using REST
and thus be considered as RESTful Web services. However, as the number of devices
and Cloud services is constantly increasing, the need for efficient and accurate service
discovery (i.e. especially for Things and their operations) has become a significant
challenge. This is mainly due to the lack of formal service descriptions, as most Cloud
providers describe their offerings in plain text. Therefore, the purpose of our work was to
propose a description language for devices exposed as Cloud services, that both
humans and machines could understand. This description language would allow the
implementation of various tools, such as service discovery and service orchestration
mechanisms. Devices and their functionality can then be human and machine
understandable and also discoverable on the Web. Alongside, Thing Descriptions (TDs),
which adopt the JSON format, are proposed by the WoT Architecture to describe Things
and allow the interaction of clients with them.

7.1 Conclusions

During our research, we initially reviewed approaches that would efficiently describe any
aspect of a service, both syntactically and semantically. However, we were mainly
focused on approaches for describing RESTful services, as the majority of Cloud services
are provided as Web services based on the REST architectural style. Unlike SOAP-based
services that use the standard WSDL, there are many approaches for the description of

119



RESTful services (e.g. OpenAPI, RAML). In relation to existing approaches for the
description of Things as RESTful services, we focused on analyzing the Thing Description
(TD) of W3C Architecture, as it provides a JSON representation for Things and supports
the interaction with Things in the Web using REST.

We also proposed and used the OpenAPI Specification, which is an industry
standard, for the description of devices as Web services. The selection of OpenAPI was
motivated by the popularity of the specification, its powerful tool support, and the active
community. In addition, there was a series of events that also affected our decision. At the
end of 2015, the OpenAPI Initiative was announced, founded by large organizations such
as Google, Microsoft and IBM, in order to extend the OpenAPI Specification (formerly
known as Swagger) and standardize a description mechanism for RESTful services.
Openstack, in mid-2016, announced the adoption of the OpenAPI specification for the
description of its offered services. Oracle, was the first organization that released an API
catalogue of its offering Cloud services described in OpenAPI, while Microsoft preserves
a Github repository109 that includes the OpenAPI descriptions of Azure’s Cloud services.

As demonstrated in this work, the OpenAPI Specification offers a human-friendly
environment for discovering and using RESTful services. However, despite being
machine-readable, the specification is not machine-understandable, thus limiting the
availability of tools that facilitate machine tasks such as service discovery. The Semantic
OpenAPI Specification [17] attempted to fill this gap, allowing the description of RESTful
services both semantically and syntactically. Using the extension mechanism that
OpenAPI offers, Semantic OpenAPI defines some additional properties that semantically
enrich various parts of an OpenAPI service description, resolving any ambiguities that
may exist in service descriptions and allowing machines to better understand the
described services. In addition, the authors of Semantic OpenAPI developed an ontology
allowing any OpenAPI service description to be transformed in, enabling the use of
Semantic Web tools such as reasoners and query languages. Our proposed solution
adopts the Semantic OpenAPI approach for the description of devices and their functions
as RESTFul Web services. Therefore, Things can be described without ambiguities and
be discoverable on the Web by leveraging Semantic Web query languages and
reasoners.

The adoption of the whole OpenAPI Specification ecosystem in conjunction with
our proposal can be substantially beneficial for both Cloud providers and individual users
involved with IoT devices. In this work, we demonstrated several advantages of OpenAPI
descriptions (enriched with semantic annotations) that facilitate the unambiguous
description of Things. We also introduced a particular template (OpenAPI Web Thing
template), which is a specialization of OpenAPI and can be applied to any real-world
device. Web Things can be fully described using OpenAPI similar to the way RESTful
services are described. Apart from the OpenAPI template, a mechanism for generating
OpenAPI Thing descriptions from input given by a user or a service is proposed and it is
available on Github for testing.

Our approach does not adopt the TDs of W3C to allow the interaction with Things.
However, it is compliant with the common principles of the WoT Architecture such as the
interaction of clients with Things on the Web using RESTful APIs and the support of the
interaction affordance model of W3C (i.e properties, actions, events and also

109 https://github.com/Azure/azure-rest-api-specs

120

https://github.com/Azure/azure-rest-api-specs


subscriptions to events and navigation links). We compared our solution to the Thing
Description (TD) of W3C Architecture in terms of completeness of JSON descriptions (i.e.
TD and OpenAPI descriptions) as well as completeness of provided ontologies (i.e.
OpenAPI ontology and the ontologies proposed by W3C). We showed that the
approaches are similar and that the OpenAPI Thing Description approach can be an
alternative to the W3C TD approach. It provides all the information that a client (i.e. user
or service) needs in order to use the service that exposes the Thing’s functionality and
not just interact with it (as TD does).

We also discussed the Web Thing Model specification of W3C, which was
introduced by W3C before the WoT Architecture. It attempted to set the requirements for
the Web of Things and suggested a particular REST API for simply interacting with
Things. This model laid the foundations for our implementation of a Thing description
approach for the WoT. In fact, it led to the formation of the OpenAPI Web Thing template
and, more specifically, of the REST API we used to describe the operations of Things.

In addition, Web Thing Model service (WTMs) was our proposed implementation
of the Web Thing Model. We designed and realized a Web proxy - an actual WoT
architecture - that implements a directory (e.g. a database) with all Things. Therefore,
Things become part of the Web and can be accessed via their Web Proxy; they are
discoverable. This Web Proxy follows the basic requirements of the WoT Architecture
recommendation such as interoperability, flexibility and scalability. Compared to existing
WoT implementations, WTMs is complete (i.e. implements all Web Thing Model model
operations) while being more flexible in certain cases.

The Web Thing Model, however, is earlier than the WoT Architecture and it is not a
recommendation. Therefore, we needed to review and compare the WoT
implementations again, based on the requirements of the WoT Architecture. The
comparison results showed that WTMs is not fully compatible with the WoT Architecture,
as it does not adopt the TDs of W3C to represent Things. Instead, the Thingweb
node-wot implementation (i.e. a reference implementation of the WoT Scripting API),
which is based on TDs, is fully compliant with the WoT Architecture specification
according to our review.

7.2 Future Work

In relation to future work, there are many issues worth considering further, but it
will focus on Things discovery and composition. The work will resort to semantic
descriptions of Things (i.e. ontologies) which can be derived from OpenAPI. A query
language in the spirit of SOWL-QL [43] will be designed so that the user need not be
familiar with the specifics of the Things representation. Regarding WTMs, HTTPS
protocol will eventually replace HTTP as a secure solution for the transmission of
confidential information. Moreover, incorporating trust evaluation mechanisms for dealing
with IoT risks due to malicious behaviour of IoT [44] would be an important add-on to the
WTMs implementation. Furthermore, the AsyncAPI framework could be used to solve
the gap of OpenAPI in IoT protocols and asynchronous communication use cases of
devices. AsyncAPI seems a powerful solution for message-centric API interaction which

121



is usually found in IoT and other similar platforms. In fact, AsyncAPI is able to describe IoT
data protocols (e.g. MQTT, CoAP) used for IoT devices; such protocols are not supported
in OpenAPI. Finally, the OpenAPI ontology could be extended in order to support
OpenAPI links and callbacks. As long as links are described, the ontology will be capable
of describing hypermedia concepts included in Thing descriptions. Hydra is a detailed
vocabulary that can contribute to the achievement of this goal. Response messages from
servers should contain the essential information that a client (i.e. user or service) may use
in order to discover all the available resources and actions of a Thing, so as to construct
new HTTP requests to achieve a specific goal related to the Thing. Therefore, by
providing hypermedia Web APIs for devices and by leveraging Hydra, smarter clients will
be created for the interaction with Things.

122



Appendix

1. OpenAPI Thing description for a DHT22
sensor device in YAML format

openapi: 3.0.3

info:

title: DHT22 sensor OpenAPI Thing description

description: An OpenAPI Thing description for a DHT22 sensor device that

exposes its current temperature and humidity.

The OpenAPI Web Thing template and thus the REST API of the device is

inspired by the Web Thing Model submission of W3C.

Find out more about Web Thing Model (W3C) at

[https://www.w3.org/Submission/wot-model/](https://www.w3.org/Submission/wot-

model/).

contact:

email: atzavaras@isc.tuc.gr

license:

name: An example license

url: 'http://www.example.com/licenses/LICENSE-2.0.html'

version: 1.0.0

externalDocs:

description: Find out more about the OpenAPI Thing Description approach

here.

url:

'https://www.intelligence.tuc.gr/~petrakis/publications/OpenAPIWoT.pdf'

servers:

- url: 'http://localhost:5000/DHT22'

description: An example server for the Web service exposed for the

device.

tags:

- name: Web Thing

123



x-onResource: '''#/components/schemas/Webthing'''

description: Operations on a Web Thing

externalDocs:

description: Find out more

url: 'https://www.w3.org/Submission/wot-model/#web-thing-resource'

- name: Properties

description: Operations on Thing Properties

externalDocs:

description: Find out more about Thing properties

url: 'https://www.w3.org/Submission/wot-model/#properties-resource'

- name: Subscriptions

x-onResource: '''#/components/schemas/SubscriptionObject'''

description: Operations on subscriptions

externalDocs:

description: Find out more about Thing subscriptions

url: 'https://www.w3.org/Submission/wot-model/#subscriptions-resource'

paths:

/:

get:

tags:

- Web Thing

summary: Retrieve Web Thing

description: 'In response to an HTTP GET request on the root URL of a

Thing, an Extended Web Thing must return an object that holds its

representation.'

operationId: retrieveWebThing

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/Webthing'

'404':

description: Not found

/properties:

get:

tags:

- Properties

summary: Retrieve a list of properties

description: 'In response to an HTTP GET request on the destination URL

of a properties link, an Extended Web Thing must return an array of Property

that the initial resource contains.'

operationId: retrieveWebThingProperties

responses:

124



'200':

description: OK

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/PropertiesResponse'

'404':

description: Not found

/properties/temperature:

get:

tags:

- Properties

summary: Retrieve the value of a property (temperature)

description: 'In response to an HTTP GET request on a Property URL, an

Extended Web Thing must return an array that lists recent values of that

Property.'

operationId: retrieveTempProperty

parameters:

- $ref: '#/components/parameters/pageParam'

- name: perPage

description: Pagination second (per page) parameter

in: query

required: false

schema:

type: integer

responses:

'200':

description: successful operation

headers:

Result-Count:

schema:

type: integer

example: 562

description: The Result-Count header contains the total number

of results.

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/TempMeasurement'

'404':

description: Not found

125



/properties/humidity:

get:

tags:

- Properties

summary: Retrieve the value of a property (humidity)

description: 'In response to an HTTP GET request on a Property URL, an

Extended Web Thing must return an array that lists recent values of that

Property.'

operationId: retrieveHumidProperty

parameters:

- $ref: '#/components/parameters/pageParam'

- name: perPage

description: Pagination second (per page) parameter

in: query

required: false

schema:

type: integer

responses:

'200':

description: successful operation

headers:

Result-Count:

schema:

type: integer

example: 562

description: The Result-Count header contains the total number

of results.

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/HMeasurement'

'404':

description: Not found

/subscriptions:

get:

tags:

- Subscriptions

summary: Retrieve a list of subscriptions

description: 'In response to an HTTP GET request on the destination URL

of a subscriptions link, an Extended Web Thing must return the array of

subscriptions to the underlying resource.'

operationId: retrieveListOfSubscriptions

parameters:

126



- $ref: '#/components/parameters/pageParam'

- name: perPage

description: Pagination second (per page) parameter

in: query

required: false

schema:

type: integer

responses:

'200':

description: OK

headers:

Result-Count:

schema:

type: integer

example: 562

description: The Result-Count header contains the total number

of results.

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

post:

tags:

- Subscriptions

summary: Create a subscription

description: An Extended Web Thing should support subscriptions.

operationId: createSubscription

x-operationType: 'https://schema.org/CreateAction'

requestBody:

description: Create a new subscription

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionRequestBody'

required: true

responses:

'200':

description: OK

'404':

description: Not found

'/subscriptions/{subscriptionID}':

127



get:

tags:

- Subscriptions

summary: Retrieve information about a specific subscription

description: 'In response to an HTTP GET request on a Subscription URL,

an Extended Web Thing must return a JSON representation of the subscription.

The JSON representation should be the same as the one returned for that

subscription in ''Retrieve a list of subscriptions''.'

operationId: retreiveInfoAboutSubscription

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

schema:

x-mapsTo: '#/components/schemas/SubscriptionObject.id'

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

delete:

tags:

- Subscriptions

summary: Delete a subscription

description: In response to an HTTP DELETE request on the destination

URL of a subscriptions an Extended Web Thing must either reject  the request

with an appropriate status code or remove (unsubscribe) the subscription and

return a 200 OK status code.

operationId: deleteSubscription

x-operationType: 'https://schema.org/DeleteAction'

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

128



explode: true

schema:

x-mapsTo: '#/components/schemas/SubscriptionObject.id'

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

'404':

description: Not found

components:

schemas:

Webthing:

required:

- id

- name

type: object

x-refersTo: 'http://www.w3.org/ns/sosa/Sensor'

properties:

id:

type: string

default: DHT22

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: DHT22/AM2302

x-kindOf: 'http://schema.org/name'

description:

type: string

example: 'The DHT-22, also named as AM2302, is a digital-output

relative humidity and temperature sensor. It uses a capacitive humidity

sensor and a thermistor to measure the surrounding air, and spits out a

digital signal on the data pin.'

x-refersTo: 'http://schema.org/description'

createdAt:

type: string

format: date-time

updatedAt:

type: string

format: date-time

tags:

type: array

items:

type: string

example: temperature sensor

129



xml:

name: Webthing

PropertiesResponse:

anyOf:

- $ref: '#/components/schemas/TempProperty'

- $ref: '#/components/schemas/HumProperty'

xml:

name: PropertiesResponse

TempMeasurement:

type: object

x-kindOf: 'http://www.w3.org/ns/sosa/Observation'

properties:

temp:

type: integer

example: 25

x-kindOf: 'http://www.w3.org/ns/sosa/hasSimpleResult'

timestamp:

type: string

format: date-time

x-kindOf: 'http://www.w3.org/ns/sosa/resultTime'

HMeasurement:

type: object

x-kindOf: 'http://www.w3.org/ns/sosa/Observation'

properties:

h:

type: integer

example: 21

x-kindOf: 'http://www.w3.org/ns/sosa/hasSimpleResult'

timestamp:

type: string

format: date-time

x-kindOf: 'http://www.w3.org/ns/sosa/resultTime'

TempProperty:

type: object

required:

- id

- values

x-kindOf: 'http://www.w3.org/ns/ssn/systems/SystemCapability'

properties:

id:

type: string

default: DHT22_temperature

x-kindOf: 'http://schema.org/identifier'

name:

type: string

130



example: Temperature

x-kindOf: 'http://schema.org/name'

values:

$ref: '#/components/schemas/TempMeasurement'

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: -40

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 80

x-refersTo: 'https://schema.org/value'

sensorAccuracy:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Accuracy'

properties:

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: -0.5

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 0.5

x-refersTo: 'https://schema.org/value'

sensorSensitivity:

131



type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Sensitivity'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

value:

type: number

format: float

default: 0.1

x-refersTo: 'https://schema.org/value'

sensorPrecision:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Precision'

properties:

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: DegreeCelsius

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: 0.2

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 0.2

x-refersTo: 'https://schema.org/value'

sensorFrequency:

type: object

x-refersTo: 'http://www.w3.org/ns/ssn/systems/Frequency'

properties:

unit:

type: string

default: sec

x-refersTo: 'https://schema.org/unitText'

period:

type: integer

format: int32

132



default: 2

x-refersTo: 'https://schema.org/value'

xml:

name: TempProperty

HumProperty:

type: object

required:

- id

- values

x-kindOf: 'http://www.w3.org/ns/ssn/systems/SystemCapability'

properties:

id:

type: string

default: DHT22_humidity

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: Humidity

x-kindOf: 'http://schema.org/name'

values:

$ref: '#/components/schemas/HMeasurement'

range:

type: object

x-kindOf: 'http://www.w3.org/ns/ssn/systems/Condition'

properties:

unit:

type: string

default: Percent

x-refersTo: 'https://schema.org/unitText'

minValue:

type: number

format: float

default: 5

x-refersTo: 'https://schema.org/value'

maxValue:

type: number

format: float

default: 85

x-refersTo: 'https://schema.org/value'

xml:

name: ΗumProperty

SubscriptionRequestBody:

type: object

required:

- description

133



- type

- callbackUrl

- resource

properties:

name:

type: string

example: My subscription for DHT22 temperature

description:

type: string

example: A subscription to get info about DHT22 temperature

type:

type: string

example: webhook (callback)

callbackUrl:

type: string

example: 'http://172.16.1.5:5000/accumulate'

resource:

type: object

properties:

type:

type: string

example: property

name:

type: string

example: temperature

expires:

type: string

format: date-time

throttling:

type: integer

format: int32

example: 5

xml:

name: SubscriptionRequestBody

SubscriptionObject:

allOf:

- type: object

required:

- id

- type

- resource

- description

- callbackUrl

properties:

id:

134



type: string

example: 5fc978fc96cc26a4e202c3d6

- $ref: '#/components/schemas/SubscriptionRequestBody'

xml:

name: SubscriptionObject

parameters:

pageParam:

name: page

description: Pagination first (page) parameter

in: query

required: false

schema:

type: integer

2. OpenAPI Thing description for a smart door
device in YAML format
openapi: 3.0.3

info:

title: Smart Door device OpenAPI Thing description

description: An OpenAPI Thing description for a smart door device that

exposes its current state and supports lock and unlock actions (client

commands).

The OpenAPI Web Thing template and thus the REST API of the device is

inspired by the Web Thing Model submission of W3C. Find out more about Web

Thing Model (W3C) at

[https://www.w3.org/Submission/wot-model/](https://www.w3.org/Submission/wot-

model/).

contact:

email: atzavaras@isc.tuc.gr

license:

name: An example license

url: 'http://www.example.com/licenses/LICENSE-2.0.html'

version: 1.0.0

externalDocs:

description: Find out more about the OpenAPI Thing Description approach

here.

url:

'https://www.intelligence.tuc.gr/~petrakis/publications/OpenAPIWoT.pdf'

servers:

- url: 'http://localhost:5000/SmartDoor'

135



description: An example server for the Web service exposed for the

device.

tags:

- name: Web Thing

x-onResource: '''#/components/schemas/Webthing'''

description: Operations on a Web Thing

externalDocs:

description: Find out more

url: 'https://www.w3.org/Submission/wot-model/#web-thing-resource'

- name: Properties

description: Operations on Thing properties

externalDocs:

description: Find out more about Thing properties

url: 'https://www.w3.org/Submission/wot-model/#properties-resource'

- name: Actions

description: Operations on Thing Actions

externalDocs:

description: Find out more about Thing Actions

url: 'https://www.w3.org/Submission/wot-model/#actions-resource'

- name: Subscriptions

x-onResource: '''#/components/schemas/SubscriptionObject'''

description: Operations on subscriptions

externalDocs:

description: Find out more about subscriptions

url: 'https://www.w3.org/Submission/wot-model/#things-resource'

paths:

/:

get:

tags:

- Web Thing

summary: Retrieve Web Thing

description: 'In response to an HTTP GET request on the root URL of a

Thing, an Extended Web Thing must return an object that holds its

representation.'

operationId: retrieveWebThing

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/Webthing'

'404':

description: Not found

/properties:

136



get:

tags:

- Properties

summary: Retrieve a list of properties

description: 'In response to an HTTP GET request on the destination URL

of a properties link, an Extended Web Thing must return an array of Property

that the initial resource contains.'

operationId: retrieveWebThingProperties

responses:

'200':

description: OK

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/PropertiesResponse'

'400':

description: Invalid ID supplied

'404':

description: Not found

/properties/state:

get:

tags:

- Properties

summary: Retrieve the value of a property (door's current state)

description: 'In response to an HTTP GET request on a Property URL, an

Extended Web Thing must return an array that lists recent values of that

Property.'

operationId: retrieveProperty

parameters:

- $ref: '#/components/parameters/pageParam'

- name: perPage

description: Pagination second (per page) parameter

in: query

required: false

schema:

type: integer

responses:

'200':

description: successful operation

content:

application/json:

schema:

type: array

137



items:

$ref: '#/components/schemas/State'

'404':

description: Not found

/actions:

get:

tags:

- Actions

summary: Retrieve a list of actions

operationId: retrieveWebThingActions

responses:

'200':

description: OK

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/Action'

'404':

description: Not found

/actions/lock:

get:

tags:

- Actions

summary: Retrieve recent executions of the lock action

description: 'In response to an HTTP GET request on an Action URL, an

Extended Web Thing must return an array that lists the recent executions of a

specific Action.'

operationId: retrieveRecentExecutionsOfLockAction

responses:

'200':

description: successful operation

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/ActionExecution'

'404':

description: Not found

post:

tags:

- Actions

summary: Execute a lock action

138



description: 'In response to an HTTP POST request on an Action URL with

valid parameters as request body, an Extended Web Thing must either reject

the request with the appropriate status code or queue a task to run the

action and return the status of that action in a 201 Created response. The

action may not run immediately. The Location HTTP header identifies the URL

to use to retrieve the most recent update on the action''s status.'

operationId: executeLockAction

responses:

'204':

description: NO RESPONSE

'404':

description: Not found

'/actions/lock/{executionId}':

get:

tags:

- Actions

summary: Retrieve the status of a lock action

description: 'In response to an HTTP GET request on the URL targeted by

the Location HTTP header returned in response to the request to execute an

action, an Extended Web Thing must return the status of this action or a 404

Not Found status code if the action''s status is no longer available.'

parameters:

- name: executionId

in: path

description: action execution of Webthing to return

required: true

style: simple

explode: true

schema:

type: array

items:

type: integer

format: int64

default: 1

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/ActionExecution'

'404':

description: Not found

/actions/unlock:

get:

139



tags:

- Actions

summary: Retrieve recent executions of the unlock action

description: 'In response to an HTTP GET request on an Action URL, an

Extended Web Thing must return an array that lists the recent executions of a

specific Action.'

operationId: retrieveRecentExecutionsOfUnlockAction

responses:

'200':

description: successful operation

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/ActionExecution'

'404':

description: Not found

post:

tags:

- Actions

summary: Execute an unlock action

description: 'In response to an HTTP POST request on an Action URL with

valid parameters as request body, an Extended Web Thing must either reject

the request with the appropriate status code or queue a task to run the

action and return the status of that action in a 201 Created response. The

action may not run immediately. The Location HTTP header identifies the URL

to use to retrieve the most recent update on the action''s status.'

operationId: executeUnlockAction

responses:

'204':

description: NO RESPONSE

'404':

description: Not found

'/actions/unlock/{executionId}':

get:

tags:

- Actions

summary: Retrieve the status of an unlock action

description: 'In response to an HTTP GET request on the URL targeted by

the Location HTTP header returned in response to the request to execute an

action, an Extended Web Thing must return the status of this action or a 404

Not Found status code if the action''s status is no longer available.'

parameters:

- name: executionId

140



in: path

description: action execution of Webthing to return

required: true

style: simple

explode: true

schema:

type: array

items:

type: integer

format: int64

default: 1

responses:

'200':

description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/ActionExecution'

'404':

description: Not found

/subscriptions:

get:

tags:

- Subscriptions

summary: Retrieve a list of subscriptions

description: 'In response to an HTTP GET request on the destination URL

of a subscriptions link, an Extended Web Thing must return the array of

subscriptions to the underlying resource.'

operationId: retrieveListOfSubscriptions

parameters:

- $ref: '#/components/parameters/pageParam'

- name: perPage

description: Pagination second (per page) parameter

in: query

required: false

schema:

type: integer

responses:

'200':

description: OK

content:

application/json:

schema:

type: array

items:

141



$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

post:

tags:

- Subscriptions

summary: Create a subscription

description: An Extended Web Thing should support subscriptions.

operationId: createSubscription

x-operationType: 'https://schema.org/CreateAction'

requestBody:

description: Create a new subscription

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionRequestBody'

required: true

responses:

'200':

description: OK

'404':

description: Not found

'/subscriptions/{subscriptionID}':

get:

tags:

- Subscriptions

summary: Retrieve information about a specific subscription

description: 'In response to an HTTP GET request on a Subscription URL,

an Extended Web Thing must return a JSON representation of the subscription.

The JSON representation should be the same as the one returned for that

subscription in ''Retrieve a list of subscriptions''.'

operationId: retreiveInfoAboutSubscription

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

x-mapsTo: '#/components/schemas/SubscriptionObject.id'

schema:

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

142



description: OK

content:

application/json:

schema:

$ref: '#/components/schemas/SubscriptionObject'

'404':

description: Not found

delete:

tags:

- Subscriptions

summary: Delete a subscription

description: In response to an HTTP DELETE request on the destination

URL of a subscriptions an Extended Web Thing must either reject  the request

with an appropriate status code or remove (unsubscribe) the subscription and

return a 200 OK status code.

operationId: deleteSubscription

x-operationType: 'https://schema.org/DeleteAction'

parameters:

- name: subscriptionID

in: path

description: The id of the specific subscription

required: true

style: simple

explode: true

schema:

type: string

example: 5fd23faccde6be05da68bcfb

responses:

'200':

description: OK

'404':

description: Not found

components:

schemas:

Webthing:

required:

- id

- name

- type

type: object

x-refersTo: 'http://www.w3.org/ns/sosa/Actuator'

properties:

id:

type: string

default: SmartDoor

143



x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: IoTSmartDoor

x-kindOf: 'http://schema.org/name'

description:

type: string

example: 'A Smart Door is an electronic door which can be sent

commands to be locked or unlocked remotely. It can also report on its current

state (OPEN, CLOSED or LOCKED).'

x-refersTo: 'http://schema.org/description'

createdAt:

type: string

format: date-time

updatedAt:

type: string

format: date-time

tags:

type: array

items:

type: string

example: smart door

xml:

name: Webthing

PropertiesResponse:

anyOf:

- $ref: '#/components/schemas/StateProperty'

xml:

name: PropertiesResponse

State:

type: object

x-kindOf: 'http://www.w3.org/ns/sosa/Observation'

properties:

state:

type: string

x-kindOf: 'http://www.w3.org/ns/sosa/hasSimpleResult'

enum:

- OPEN

- CLOSED

- LOCKED

timestamp:

type: string

format: date-time

x-kindOf: 'http://www.w3.org/ns/sosa/resultTime'

xml:

144



name: State

StateProperty:

required:

- id

- values

x-kindOf: 'http://www.w3.org/ns/ssn/systems/SystemCapability'

properties:

id:

type: string

default: state

x-kindOf: 'http://schema.org/identifier'

name:

type: string

example: Smart door's current state

x-kindOf: 'http://schema.org/name'

values:

$ref: '#/components/schemas/State'

xml:

name: StateProperty

Action:

required:

- id

- name

type: object

properties:

id:

type: string

example: lock

name:

type: string

example: Lock the Smart Door

xml:

name: Action

ActionExecution:

required:

- id

- status

- timestamp

x-kindOf: 'http://www.w3.org/ns/sosa/Actuation'

type: object

properties:

id:

type: string

example: '223'

status:

145



type: string

example: completed

timestamp:

type: string

format: date-time

xml:

name: ActionExecution

SubscriptionRequestBody:

required:

- description

- type

- callbackUrl

- resource

type: object

properties:

name:

type: string

example: My subscription for SmartDoor's current state

description:

type: string

example: A subscription to get info about SmartDoor's current state

type:

type: string

example: webhook (callback)

callbackUrl:

type: string

example: 'http://172.16.1.5:5000/accumulate'

resource:

type: object

properties:

type:

type: string

example: property

name:

type: string

example: state

expires:

type: string

format: date-time

throttling:

type: integer

format: int32

example: 5

xml:

name: SubscriptionRequestBody

146



SubscriptionObject:

allOf:

- required:

- id

- type

- resource

- description

- callbackUrl

type: object

properties:

id:

type: string

example: 5fc978fc96cc26a4e202c3d6

- $ref: '#/components/schemas/SubscriptionRequestBody'

xml:

name: SubscriptionObject

parameters:

pageParam:

name: page

description: Pagination first (page) parameter

in: query

required: false

schema:

type: integer

147



Bibliography

[1] D. Guinard and V. Trifa, Building the Web of Things. Greenwich, CT, USA: Manning
Publications Co., 2016. [Online]. Available: https://webofthings.org/book/

[2] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

[3] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Kajimoto,
“Web of Things (WoT) Architecture,” Apr. 2020, W3C Recommendation. [Online]. Available:
https://www.w3.org/TR/wot-architecture/

[4] Roy Fielding. Fielding dissertation: Chapter 5: Representational state transfer (rest).
Recuperado el, 8, 2000.

[5] “JSON-LD 1.1: A JSON-based Serialization for Linked Data,” Jul. 2020, W3C Working
Draft. [Online]. Available: https://www.w3.org/TR/json-ld11/

[6] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query language.
W3C Recommendation, Mar. 21, 2013. Available: https://www.w3.org/TR/sparql11-query/

[7] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A Practical OWL-DL
Reasoner,” Journal of Web Semantics, vol. 5, no. 2, pp. 51–53, 2007, 9th Intern. Conference
on Ambient Systems, Networks and Technologies (ANT 2018). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570826807000169

[8] Hai Dong, Farookh Khadeer Hussain, and Elizabeth Chang. Semantic web service
matchmakers: state of the art and challenges. Concurrency and Computation: Practice
and Experience, 25(7):961–988, 2013.

[9] Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers, et al. Uddi version 3.0. 2,
uddi spec technical committee draft. OASIS UDDI Spec TC, 2004.

[10] Roberto Chinnici, J Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web services
description language (wsdl) version 2.0 part 1: Core Language, w3c recommendation,
june 2007, 2007.

[11] Joel Farrell and Holger Lausen. Semantic annotations for wsdl and xml schema. w3c
recommendation, 28 august 2007. World Wide Web Consortium (W3C), Tech. Rep, 2007.

148

https://webofthings.org/book/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/sparql11-query/
http://www.sciencedirect.com/science/article/pii/S1570826807000169


[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, P.
Paolucci, B. Parsia, T. Payne, et al. OWL-S: Semantic markup for web services. w3c
submission (2004), 2004.

[13] Marc J. Hadley. Web application description language (WADL). W3C member
submission. World Wide Web Consortium, W3C (November 2006), 2009.

[14] Lanthaler, M., G¨utl, C.: A vocabulary for hypermedia-driven web apis. In: Workshop on
Linked Data on the Web (LDOW 2013). Rio de Janeiro, Brazil (2013). URL
http://www.markus-lanthaler.com/hydra/

[15] Open API Initiative (OAI). Open api specification. Technical report, Technical report,
https://github.com/OAI/OpenAPI-Specification.

[16] Markus Lanthaler. Creating 3rd generation web apis with hydra. In Proceedings of the
22nd International Conference on World Wide Web , pages 35–38. ACM, 2013.

[17] Mainas, N., Petrakis, E.: Soas 3.0: Semantically enriched openapi 3.0 descriptions and
ontology for rest services. In: IEEE Intern. Conf. on Semantic Computing (ICSC 2020), pp.
207–210. San Diego, California (2020).

[18] A. Karavisileiou, N. Mainas, and E. G. Petrakis, “Ontology for openapi rest services
descriptions,” in IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2020), 2020, pp. 25–40. [Online]. Available:
https://ieeexplore.ieee.org/document/9288198

[19] H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL),” Jul. 2017.
[Online]. Available: https://www.w3.org/TR/shacl/

[20] Jagni Dasa Horta Bezerra and Cidcley Teixeira de Souza. 2019. A model-based
approach to generate reactive and customizable user interfaces for the web of things. In
Proceedings of the 25th Brazillian Symposium on Multimedia and the Web (WebMedia '19).
Association for Computing Machinery, New York, NY, USA, 57–60. DOI:
https://doi.org/10.1145/3323503.3360631

[21] A. Rhayem, M. B. A. Mhiri, and F. Gargouri, “Semantic Web Technologies for the
Internet of Things: Systematic Literature Review,” Internet of Things, vol. 11, pp. 1–22, 9
2020. [Online]. Available: https://doi.org/10.1016/j.iot.2020.100206

[22] Sebastian Kaebisch, Takuki Kamiya, Michael McCool, Victor Charpenay, and Matthias
Kovatsch. 2020. Web of Things (WoT) Thing Description, W3C Recommendation 9 April
2020. W3C Recommendation. World Wide Web Consortium (W3C).
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

149

http://www.markus-lanthaler.com/hydra/
https://github.com/OAI/OpenAPI-Specification
https://ieeexplore.ieee.org/document/9288198
https://www.w3.org/TR/shacl/
https://doi.org/10.1145/3323503.3360631
https://doi.org/10.1145/3323503.3360631
https://doi.org/10.1016/j.iot.2020.100206
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/


[23] “Web Thing Model,” Aug. 2015, w3C member submission. [Online]. Available:
http://www.w3.org/Submission/wot-model/

[24] Thomas Erl. Soa: principles of service design, volume 1. Prentice Hall Upper Saddle
River, 2008.

[25] Tim Bray, Jean Paoli, CM Sperberg-McQueen, Eve Maler, Franois Yergeau, and John
Cowan. Extensible markup language (xml) 1.1- w3c recommendation. World Wide Web
Consortium. https://www.w3.org/TR/2006/REC-xml11-20060816/.

[26] World Wide Web Consortium et al. W3c: Simple object access protocol, soap,
version 1.2 part 0: Primer,(2003). Web site: http://www.w3.org/TR/soap12-part0.

[27] Mike Amundsen. Building Hypermedia APIs with HTML5 and Node. ” O’Reilly Media,
Inc.”, 2011.

[28] Tim Berners-Lee. Linked data-design issues (2006). URL http://www. w3.
org/DesignIssues/LinkedData. html, 2006.

[29] Richard Cyganiak, David Wood, and Markus Lanthaler. Rdf 1.1 concepts and abstract
syntax. W3C Recommendation, 25:1–8, 2014.

[30] Dan Brickley and R.V. Guha. Rdf schema 1.1. w3c recommendation (25 february 2014).
World Wide Web Consortium, 2014.

[31] OWL Working Group et al. W.: Owl 2 web ontology language: Document overview.
w3c recommendation (27 october 2009), 2012.

[32] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
Semantic Services, Interoperability and Web Applications: Emerging Concepts, pages
205–227, 2009.

[33] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
services description language (wsdl) 1.1, w3c note, 2001, 2001.

[34] Matthias Klusch. Semantic web service description. In CASCOM: intelligent service
coordination in the semantic web, pages 31–57. Springer, 2008.

[35] RAML Workgroup. Restful api modeling language (raml). Technical report, Technical
report, https://github.com/raml-org/raml-spec.

[36] Apiary. Api blueprint. Technical report, https://github.com/apiaryio/api-blueprint.

[37] John Gruber. Daring fireball: Markdown syntax documentation, 2004.

150

http://www.w3.org/Submission/wot-model/
https://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/soap12-part0
https://github.com/raml-org/raml-spec
https://github.com/apiaryio/api-blueprint


[38] K. Janowicz, A. Haller, S. J.D. Cox, D. Le Phuoc, and M. Lefrançois. SOSA: A
Lightweight Ontology for Sensors, Observations, Samples, and Actuators. Journal of Web
Semantics, 56:1–10, May 2019.

[39] Aikaterini Karavisileiou, Nikolaos Mainas, Fotios Bouraimis, and Euripides G.M.
Petrakis. Automated Ontology Instantiation of OpenAPI REST Service Descriptions. Future
Information and Communication Conference (FICC 2021), Vancuver, Canada, April 29-30,
2021.

[40] G. Myrizakis and E. G. Petrakis, "iHome: Secure Smart Home Management in the
Cloud and the Fog. IOS Press, Advanced in Parallel Computing, 2020, pp. 237–263.
[Online]. Available: https://ebooks.iospress.nl/volumearticle/53830

[41] S. Botonakis, A. Tzavaras, and E. G. Petrakis, “iSWoT: Service Oriented Architecture in
the Cloud for the Semantic Web of Things,” in Advanced Information Networking and
Applications (AINA 2020), Cham, Mar. 2020, pp. 1201–1214. [Online]. Available:
https://doi.org/10.1007/978-3-030-44041-1_103

[42] M. O’Riordan, “Everything You Need To Know About Publish/Subscribe,” online, 2021,
the ABLY platform. [Online]. Available: https://ably.com/topic/pub-sub

[43] K. Stravoskoufos, E. Petrakis, N. Mainas, S. Batsakis, and V. Samoladas, “Sowl ql:
Querying spatio-temporal ontologies in owl,” Journal on Data Semantics, vol. 5, no. 4, pp.
249–269, Dec. 2016. [Online]. Available: https://doi.org/10.1007/s13740-016-0064-5

[44] T. Wang, S. Zhang, A. Liu, Z. A. Bhuiyan, and Q. Jin, “A Secure IoT Service Architecture
with an Efficient Balance Dynamics Based on Cloud and Edge Computing,” IEEE Internet
of Things Journal, vol. 6, no. 4, pp. 4831–4843, 6 2019.

[45] World Wide Web Consortium et al. W3c: Simple object access protocol, soap,
version 1.2 part 0: Primer,(2003). Web site: http://www.w3.org/TR/soap12-part0.

151

https://ebooks.iospress.nl/volumearticle/53830
https://doi.org/10.1007/978-3-030-44041-1_103
https://ably.com/topic/pub-sub
https://doi.org/10.1007/s13740-016-0064-5
http://www.w3.org/TR/soap12-part0

