
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Simple querying service for
OpenAPI descriptions with
Semantic Web extensions

by

Ioannis Apostolakis

A thesis submitted in ful�llment of
the requirements for the degree of

Diploma in Electrical and Computer Engineering

May 2022

THESIS COMMITTEE
Prof. Euripides G.M. Petrakis, Supervisor

Prof. Antonios Deligiannakis
Assoc. Prof. Georgios Chalkiadakis

Abstract

This work presents OpenAPI Query Language 2 (OAQL2), a language for query-
ing OpenAPI documents. OpenAPI is a standard format for the description of
RESTful services, based on JSON. OAQL2 is designed with syntax similar to
SQL and supports querying most of the �elds in an OpenAPI document, as
well as the semantic annotations proposed for OpenAPI in previous work. A
web service capable of executing OAQL2 queries was implemented. This ser-
vice stores metadata for each description and executes the queries on them. It
builds indexes to speed up queries, can handle composite schema objects and
uses reasoning to support searching in a semantic model. Compared to the sys-
tem implemented in previous work, it is shown to be much faster and complete
in terms of syntax and compatibility with OpenAPI.

1

Acknowledgements

I would like to thank my supervisor Prof. Euripides G. M. Petrakis for his
tireless support and guidance during every step of this work.

I would also like to express my gratitude to Nikos Mainas for his valuable
observations.

Finally, I want to thank my friends and family for their love, support and
being always by my side.

2

Contents

Abstract 1

Acknowledgements 2

Contents 3

1 Introduction 5

1.1 Problem de�nition . 5
1.2 Proposed solution . 5
1.3 Thesis outline . 5

2 Background 7

2.1 REST . 7
2.2 OpenAPI Speci�cation . 8
2.3 Semantic Web . 8
2.4 Semantic annotations in OpenAPI 9
2.5 Related work . 9

3 Tables in OAQL2 12

3.1 Service . 12
3.2 Request . 14
3.3 Callback . 15
3.4 Webhook . 16
3.5 Tag . 16
3.6 Response . 17
3.7 Parameter . 18
3.8 Header . 19
3.9 Schema . 20
3.10 Property . 22
3.11 Item . 24
3.12 Security . 25
3.13 SecurityScope . 27
3.14 Link . 27
3.15 LinkParameter . 28
3.16 Server . 29
3.17 ServerVariable . 29
3.18 Example . 30

3

4 OpenAPI Query Language 2 32

4.1 SELECT clause . 32
4.2 FROM clause . 33
4.3 WHERE clause . 37
4.4 ORDER BY clause . 38
4.5 Example queries . 38
4.6 Syntax . 39

5 Implementation 42

5.1 Choice of tools . 42
5.2 Description of service . 43

5.2.1 Server . 44
5.2.2 Database . 45

5.3 Metadata format . 45
5.4 Algorithm for inserting OpenAPI descriptions 48

5.4.1 Parsing Reference objects 49
5.4.2 Parsing Schema objects 49

5.5 Query translation algorithm . 54
5.5.1 Step 1: translating FROM clause 55
5.5.2 Step 2: translating WHERE clause 58
5.5.3 Step 3: creating another match stage 62
5.5.4 Step 4: translating SELECT and ORDER BY clauses . . 63

5.6 Equivalence of OAQL2 and translated queries 65
5.7 Indexing . 66

6 Results and comparisons 68

6.1 Performance analysis . 68
6.1.1 Existence of index . 69
6.1.2 Number of documents passing through the pipeline 69
6.1.3 Sorting . 70
6.1.4 Querying x-refersTo, x-kindOf, x-operationType 71
6.1.5 Special cases . 71

6.2 Performance comparisons . 72

7 Conclusions and future work 76

7.1 Conclusions . 76
7.2 Future work . 77

References 78

A Format of metadata object 79

B Results 87

C Translated OAQL2 queries 91

4

Chapter 1

Introduction

Web services are published on the Web by various software vendors. Each web
service is a functional unit that provides services to clients over HTTP. Examples
of web services are social media, search engines, online shops, cloud storage and
others. A web service is often a combination of other web services that interact
with each other to provide the desired functionality. For example, an online
shop might consist of a server to handle the requests from users and a database
service to store the information.

1.1 Problem de�nition

OpenAPI Speci�cation provides a standard way to describe RESTful web ser-
vices. There are thousands of web services in the World Wide Web which makes
it di�cult for a user to �nd the service he/she needs. Therefore, it is useful to
create a system that can search through OpenAPI documents for those match-
ing the user's criteria. This system should be fast, easy to use and should not
require in-depth knowledge of an OpenAPI document's structure.

1.2 Proposed solution

In this thesis, we introduce OAQL2 (OpenAPI Query Language 2) which is
a language for searching in OpenAPI documents with syntax similar to SQL.
Additionally, we describe a web service that can store OpenAPI documents
and execute OAQL2 queries. To optimize performance, we store metadata for
each document. OAQL2 queries are translated and executed on the database of
metadata. The web service also supports the semantic annotations for OpenAPI
proposed in previous work.

1.3 Thesis outline

In chapter 2 we present an introduction to concepts and technologies essential
to our work. In chapter 3 we de�ne the syntax rules of OAQL2. Chapter
4 describes the implementation of the service and the algorithms for parsing
OpenAPI documents and translating OAQL2. In chapter 5 we analyze the

5

factors a�ecting the performance of the service, show experimental results and
compare our service with other systems. Finally, chapter 6 contains conclusions
and ideas for future work.

6

Chapter 2

Background

The number of web services has been rapidly increasing over the last years. This
created the need for a standard description of web services' capabilities that can
be understood by both humans and machines. By reading that description, one
is able to �nd a service with the desired functionality and understand how to
use its API without needing to know implementation-speci�c details.

2.1 REST

Representational state transfer (REST) is a software architectural style pro-
posed by Roy Fielding in 2000 [1]. Its purpose is to guide the architecture of
large web systems and the interactions between web services in order to achieve
better performance, scalability, simplicity, modi�ability, visibility, portability
and reliability. REST de�nes the following constraints:

� Client-server architecture: An interaction between client and server can
be initiated only by the client with a request and the response is sent by
the server as a reaction to the request.

� Statelessness: The server does not keep any information about previous
interactions with clients. Each request must contain all the necessary
information to be understood by the server on its own.

� Cacheability: Responses must de�ne themselves as cacheable or non-
cacheable to reduce network tra�c.

� Layered system: The interaction between client and server should not be
a�ected by whether they are connected directly or through intermediary
servers.

� Uniform interface: Resource identi�cation in requests, resource manipu-
lation through representations, self-descriptive messages and HATEOAS
(hypermedia as the engine of application state).

� Code on demand (optional): The client can request executable code from
the server.

A web service that satis�es the above constraints is said to be RESTful.

7

2.2 OpenAPI Speci�cation

The OpenAPI Speci�cation is a standard, language-agnostic description of REST-
ful web services. The latest version is 3.1.0, published in February 2021 [2]. An
OpenAPI document is a JSON object and can be represented in either JSON
or YAML format.

OpenAPI Speci�cation de�nes many objects contained in an OpenAPI doc-
ument. The Paths, Path Item, Operation and Request Body objects provide
information about the requests supported by a service while the Responses and
Response object describe the possible responses to a request. The Parame-
ter object describes the parameters that may be passed in a request and the
Header object describes the headers that will be returned with the response.
The Schema object provides information about the type of the parameters or
headers and the format of the request or response payload. The Server object
describes the servers of the web service. There are also many other objects
providing additional information (eg external documentation).

Among other tools, OpenAPI community o�ers an online platform for de-
signing APIs, called SwaggerHub1. Users can create their own OpenAPI docu-
ments using a friendly user interface and make them publicly available.

2.3 Semantic Web

The Semantic Web, sometimes known as Web 3.0, is an extension of the World
Wide Web through standards set by the World Wide Web Consortium (W3C)
[3]. It aims to give machines the ability to understand the Internet by encod-
ing the data from web services with concepts from a semantic model. This is
achieved by using technologies such as RDF (Resource Description Framework)
and OWL (Web Ontology Language).

RDF is a W3C standard and can describe a directed graph with triple state-
ments [4]. A triple statement is represented by a node as the subject, an arc
going from the subject to an object as the predicate and a node as the object.
The subject and the predicate must be a URI (uniform resource identi�er) while
the object may also be a literal value.

RDF speci�cation de�nes a vocabulary with some URIs. For example, it
de�nes the resource rdfs:Class2 which is the class of all classes and the property
rdf:type3 which states that a resource is an instance of a class. Thus, the triple
A rdf:type rdfs:Class means that the resource A is a class.

Other de�ned properties are rdfs:subClassOf and rdfs:subPropertyOf. These
properties are:

� re�exive: a class or property is always a subclass or subproperty respec-
tively of itself

� transitive: if A is a subclass of B and B is a subclass of C then A is a
subclass of C as well

Usually, not all valid triples are explicitly stated but they can be obtained by
using a reasoner.

1https://app.swaggerhub.com
2The pre�x rdfs: is short for http://www.w3.org/2000/01/rdf-schema#
3The pre�x rdf: is short for http://www.w3.org/1999/02/22-rdf-syntax-ns#

8

https://app.swaggerhub.com

2.4 Semantic annotations in OpenAPI

A human reading an OpenAPI document will understand in most cases the
semantics of the various elements by their name, description or other provided
information. However a machine needs an explicit declaration of the elements'
semantics. The extension properties in the following table were introduced in
older work [5] to provide this information.

Property Applies to Meaning
x-refersTo Schema Object The concept in a semantic model that

describes an OAS element.
x-kindOf Schema Object A specialization between an OAS el-

ement and a concept in a semantic
model.

x-mapsTo Schema Object An OAS element which is semanti-
cally similar with another OAS ele-
ment.

x-collectionOn Schema Object A model describes a collection over a
speci�c property.

x-onResource Tag Object The speci�c Tag object refers to a re-
source described by a Schema object.

x-operationType Operation Object Clari�es the type of operation.

The value of x-refersTo, x-kindOf and x-operationType is the URI of a con-
cept in a semantic model. The value of x-mapsTo and x-onResource is a ref-
erence to a Schema object in the OpenAPI description. Finally, the value of
x-collectionOn is the name of the Schema object's property that is an array
holding a collection of items.

2.5 Related work

A similar system was designed and implemented in previous work [6]. However,
that work is only an initial approach to the subject and has some weaknesses:

� it is slow because it searches on the original OpenAPI documents instead
of metadata and does not use indexing

� it does not support searching in composite schema objects

� it supports searching on a very limited number of OpenAPI �elds ignoring
the rest

� it does not support the semantic annotations proposed for OpenAPI

OAQL2 is a redesign and extension of the OpenAPI QL language de�ned in
that previous work.

Besides this, there are many databases that support querying JSON data
and could be used for searching in OpenAPI documents. Some examples are
MongoDB, Couchbase, CouchDB, DocumentDB, RethinkDB. However these
are query languages for JSON and are not particularly designed for OpenAPI
documents (JSON is a very generic format). This is mainly due to the large size
and complexity of OpenAPI information. Queries searching for REST services

9

should particularly address speci�c information pertaining a REST service (i.e.
on operations, security, purpose). This requires that the user be familiar with
the peculiarity of REST architectural style. Query expressions using query
languages for JSON (rather than for OpenAPI) results in complicated and long
expressions involving properties of a REST service. To demonstrate this, we
present below a MongoDB query to �nd services accepting requests with JSON
in the request body:

aggregate([

{

"$project": {

"service": "$$ROOT",

"tmp": {

"$objectToArray": "$paths"

}

}

},

{

"$unwind": "$tmp"

},

{

"$project": {

"service": 1,

"tmp": {

"$objectToArray": "$tmp.v"

}

}

},

{

"$match": {

"tmp.v.requestBody.content.application/json": {

"$exists": true

}

}

},

{

"$replaceRoot": {

"newRoot": "$service"

}

}

])

Removing the complexity of queries on OpenAPI documents is exactly the prob-
lem this work is dealing with.

JSONPath [7] and JSONQuery [8] are other query languages designed to
�nd and extract information from JSON objects. Jaql [9] is a data processing
and querying language for JSON used on big data. JSONiq [10] is another query
language for JSON. However, all these and any other languages for JSON still
require the user to know the structure of OpenAPI documents in detail and
compose long complicated queries.

10

Another system working with OpenAPI descriptions is OpenAPI-to-GraphQL4.
This system aims to create a wrapper service for a web service, based on the
OpenAPI description of the web service. The wrapper service accepts GraphQL
queries from the clients and determines the HTTP requests that will provide the
required information. Then, it executes these requests on the web service and
returns the results in GraphQL format to the client. OpenAPI-to-GraphQL ex-
ecutes queries on a single web service's resources rather than searching through
multiple OpenAPI documents for web services matching speci�c criteria. Thus,
it does not ful�ll our requirements.

Finally, there is a tool5 named OpenAPI, made by Broadcom, which can
execute queries to extract data related to the company's products. This tool is
completely unrelated to OpenAPI Speci�cation and simply happened to share
the same name.

4https://github.com/IBM/openapi-to-graphql
5https://techdocs.broadcom.com/us/en/ca-enterprise-software/

it-operations-management/dx-netops/20-2/Performance-Monitoring-with-DX-Performance-Management/

apis/openapi.html

11

https://github.com/IBM/openapi-to-graphql
https://techdocs.broadcom.com/us/en/ca-enterprise-software/it-operations-management/dx-netops/20-2/Performance-Monitoring-with-DX-Performance-Management/apis/openapi.html
https://techdocs.broadcom.com/us/en/ca-enterprise-software/it-operations-management/dx-netops/20-2/Performance-Monitoring-with-DX-Performance-Management/apis/openapi.html
https://techdocs.broadcom.com/us/en/ca-enterprise-software/it-operations-management/dx-netops/20-2/Performance-Monitoring-with-DX-Performance-Management/apis/openapi.html

Chapter 3

Tables in OAQL2

In this work we introduce OAQL2 (OpenAPI Query Language 2) which is an
SQL-like query language for searching in OpenAPI descriptions. Similarly to
executing SQL queries on tables in a relational database, in our system a user
can execute OAQL2 queries on the tables de�ned in this chapter. The �elds
(columns) of these tables are mapped to �elds de�ned in OpenAPI Speci�cation
v3.1.0.

The �elds of the tables in our system can belong to one of string, number,
boolean and any data types. The data type any represents any kind of value,
including the three other types, JSON objects and arrays. We denote that a
table �eld is an array of items by appending square brackets [] to its data type.

Besides the de�ned �elds, OpenAPI Speci�cation allows in most objects the
de�nition of any additional �eld whose name begins with the pre�x "x-". Our
system supports querying on these extension properties and allows queries in
all tables on any �eld whose name begins with "x-".

Unlike tables in relational databases, we will not de�ne any primary or for-
eign keys in the tables in our system. The reason for this will be explained later,
in section 4.2.

It is worth noting that some table �elds contain information considered less
useful in a search. For example, there is probably no use case in which one would
need to search by the URL of external documentation. The purpose of these
table �elds is to be included in the results of the query to provide additional
information.

3.1 Service

The �elds of the Service table correspond to �elds in OpenAPI, Info, Contact,
License objects and External Documentation objects. These objects contain
general information about the web service, such as its title or description. An
example is below:

{

"title": "Example service",

"description": "This is a description of the service.",

"termsOfService": "https://example.com/terms/",

"contact": {

12

"name": "API Support",

"url": "https://www.example.com/support",

"email": "support@example.com"

},

"license": {

"name": "Apache 2.0",

"url": "https://www.apache.org/licenses/LICENSE-2.0.html"

},

"version": "1.0.1"

}

The �elds of Service table along with the corresponding OpenAPI �elds are
shown below:

Service Corresponding OpenAPI �eld

contactEmail : string email in Contact object
contactName : string name in Contact object
contactUrl : string url in Contact object
description : string description in Info object
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
id : string (described below)
jsonSchemaDialect : string jsonSchemaDialect in OpenAPI object
licenseName : string name in License object
licenseUrl : string url in License object
openapiVersion : string openapi in OpenAPI object
summary : string summary in Info object
termsOfService : string termsOfService in Info object
title : string title in Info object
version : string version in Info object

The id �eld is an automatically generated id, unique for each OpenAPI
description that was inserted in the system. This id can be used to retrieve the
original OpenAPI document as described in a later chapter.

We add one entry to Service table for each OpenAPI description inserted
into the system. The entry for the example above would be the following:

Table �elds Entry values

contactEmail "support@example.com"
contactName "API Support"
contactUrl "https://www.example.com/support"
description "This is a description of the service."
id "625186c88b441f42012f7dfd"
licenseName "Apache 2.0"
licenseUrl "https://www.apache.org/licenses/LICENSE-2.0.html"
termsOfService "https://example.com/terms/"
title "Example service"
version "1.0.1"
... NULL

13

3.2 Request

The �elds of Request table correspond to �elds in Paths, Path Item, Operation
and Request Body objects. These objects describe the requests that can be
accepted by the web service. Below is an example:

{

"/pets": {

"get": {

"description": "GET request"

},

"post":{

"description": "POST request",

"requestBody": {

"content": {

"application/x-www-form-urlencoded": {

...

},

"application/json": {

...

}

}

}

}

}

}

This example describes an endpoint on the relative path "/pets" which accepts
either GET or POST requests. In these POST requests, the media type of the
request body can be either "application/x-www-form-urlencoded" or "applica-
tion/json".

The �elds of Request table and their corresponding OpenAPI �elds are shown
below:

Request Corresponding OpenAPI �eld

bodyDescription : string description in Request Body object
bodyRequired : boolean required in Request Body object
contentType : string property name inside content in Request Body

object
deprecated : boolean deprecated in Operation object
description : string description in Operation object
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
method : string property name inside Path Item object
operationId : string operationId in Operation object
path : string property name inside Paths object
summary : string summary in Operation object
tags : string[] tags in Operation object
x-operationType : string proposed semantic annotation x-operationType

14

We add one entry in Request table for each given set of path, method and
media type of request body. These three values are stored in path, method and
contentType �elds respectively. The example above would produce the following
3 entries:

Table �elds Entry 1 values Entry 2 values Entry 3 values

contentType NULL "application/x-www-form-
urlencoded"

"application/json"

description "GET request" "POST request" "POST request"
method "get" "post" "post"
path "/pets" "/pets" "/pets"
... NULL NULL NULL

A query on x-operationType �eld will return the table entries in which the
value of the �eld is a subclass of the given value, including the given value.

Note that queries on the contentType �eld in this and all other tables also
return values that specify a media type range containing the queried value. For
example, a query for "application/json" will also return entries with a value of
"application/*" or "*/*".

3.3 Callback

The �elds of Callback table correspond to �elds in Callback, Path Item, Oper-
ation and Request Body objects. These objects describe callbacks, which are
requests initiated by the web service as a reaction to a request made to the
service.

Most of the �elds in Request table are identical to those of Callback table
and they correspond to the same OpenAPI �elds. The only di�erence is the
addition of name �eld which corresponds to the name of the callback.

The �elds of Callback table and their corresponding OpenAPI �elds are
shown below:

Callback Corresponding OpenAPI �eld

bodyDescription : string description in Request Body object
bodyRequired : boolean required in Request Body object
contentType : string property name inside content in Request Body

object
deprecated : boolean deprecated in Operation object
description : string description in Operation object
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
method : string property name inside Path Item object
name : string property name inside callbacks in Operation ob-

ject
operationId : string operationId in Operation object
path : string property name inside Callback object
summary : string summary in Operation object
tags : string[] tags in Operation object
x-operationType : string proposed semantic annotation x-operationType

15

3.4 Webhook

The �elds of Webhook table correspond to �elds in OpenAPI, Path Item, Oper-
ation and Request Body objects. These objects describe webhooks, which are
requests initiated by the web service. Their di�erence from callbacks is that
webhooks are independent from other API calls, while callbacks are triggered
by a request made to the web service.

Most of the �elds in Webhook table are identical to those of Request table
and they correspond to the same OpenAPI �elds. The only di�erence is the
replacing of path with name which corresponds to the name of the webhook.

The �elds of Webhook table and their corresponding OpenAPI �elds are
shown below:

Webhook Corresponding OpenAPI �eld

bodyDescription : string description in Request Body object
bodyRequired : boolean required in Request Body object
contentType : string property name inside content in Request Body

object
deprecated : boolean deprecated in Operation object
description : string description in Operation object
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
method : string property name inside Path Item object
name : string property name inside webhooks in OpenAPI ob-

ject
operationId : string operationId in Operation object
summary : string summary in Operation object
tags : string[] tags in Operation object
x-operationType : string proposed semantic annotation x-operationType

3.5 Tag

The �elds of Tag table correspond to �elds in Tag and External Documentation
objects. These objects describe tags that can be used to group operations.

A tag is represented mainly by its name and an optional description. The
example below de�nes a tag named "pet":

{

... ,

"tags": [

{

"name": "pet",

"description": "operations about pets"

}

]

}

The �elds of Tag table and their corresponding OpenAPI �elds are shown
below:

16

Tag Corresponding OpenAPI �eld

description : string description in Tag object
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
name : string name in Tag object

We add one entry to Tag table for each Tag object given. The entry for the
example above would be:

Table �elds Entry values

description "operations about pets"
name "pet"
... NULL

3.6 Response

The �elds of Response table correspond to �elds in Responses and Response
objects. These objects describe the possible responses to a request and the
expected responses to a callback or webhook. An example is shown below:

{

"200": {

"description": "OK",

"content": {

"application/json": {

...

},

"application/xml": {

}

}

},

"400": {

"description": "Bad request",

"content": {

"text/html": {

...

}

}

}

}

This example describes two possible responses, one with status code 200 and
one with status code 400. The media type of the former response's body is
either "application/json" or "application/xml" and the latter response's body
is "text/html".

The �elds of Response table and their corresponding OpenAPI �elds are
shown below:

17

Response Corresponding OpenAPI �eld

contentType : string property name inside content in Response ob-
ject

description : string description in Response object
statusCode : string/number property name inside Responses object

We add one entry to Response table for each given set of status code and
media type of body. These two values are stored at statusCode and contentType
�elds of Response table respectively. The example above would produce the
following 3 entries:

Table �elds Entry 1 values Entry 2 values Entry 3 values

contentType "application/json" "application/xml" "text/html"
description "OK" "OK" "Bad request"
statusCode 200 200 400

The statusCode �eld can be an integer in the interval [100, 599], the string
"default" or a string representing a range of HTTP response status codes (one
of "1XX", "2XX", "3XX", "4XX", "5XX"). A query about a numeric value of
statusCode will also return the entries with code ranges which contain at least
one code satisfying the query. Entries with "default" value will only be returned
if the user queries about that value explicitly.

3.7 Parameter

The �elds of Parameter table correspond to �elds in Parameter object. This
object describes parameters that can be passed as part of a request, callback or
webhook.

The name �eld speci�es the parameter's name and the in �eld speci�es
whether the parameter is a part of the path, a header, a cookie or appended to
the URL. There are also other �elds specifying serialization rules, whether the
parameter is required or deprecated and if it can be empty. An example is:

{

"name": "token",

"in": "query",

"description": "token to be given to server",

"required": true

}

This example describes a required parameter named "token" that is appended
to the URL of the request.

The �elds of Parameter table and their corresponding OpenAPI �elds are
shown below:

Parameter Corresponding OpenAPI �eld

allowEmptyValue : boolean allowEmptyValue in Parameter object
allowReserved : boolean allowReserved in Parameter object

18

contentType : string property name inside content in Parameter ob-
ject

deprecated : boolean deprecated in Parameter object
description : string description in Parameter object
explode : boolean explode in Parameter object
in : string in in Parameter object
name : string name in Parameter object
required : boolean required in Parameter object
style : string style in Parameter object

We add one entry to Parameter table for each Parameter object given. The
example above would produce the following entry:

Table �elds Entry values

description "token to be given to server"
in "query"
name "token"
required true
... NULL

3.8 Header

The �elds of Header table correspond to �elds in Header object. This object
describes headers that are returned with a response or headers that refer to
a schema property when the media type of the payload is a multipart1. Note
that request headers are considered parameters and are described by Parameter
objects instead of Header objects. An example is:

{

"headers": {

"X-Rate-Limit": {

"description": "The number of allowed requests",

"required": true

}

},

...

}

In this example a required header is de�ned with the name "X-Rate-Limit".
The �elds of Header table and their corresponding OpenAPI �elds are shown

below:

Header Corresponding OpenAPI �eld

allowEmptyValue : boolean allowEmptyValue in Header object
contentType : string property name inside content in Header object
deprecated : boolean deprecated in Header object

1A multipart payload represents a composite document, separated into sections, with each
section having its own internal headers

19

description : string description in Header object
explode : boolean explode in Header object
name : string name in Header object
style : string style in Header object

We add one entry to Header table for each Header object given. The example
above would produce the following entry:

Table �elds Entry values

description "The number of allowed requests"
name "X-Rate-Limit"
required true
... NULL

3.9 Schema

The �elds of Schema table correspond to �elds in Schema and External Docu-
mentation objects. As declared in OpenAPI Speci�cation, the �elds of Schema
object include all �elds de�ned in JSON Schema draft 2020-12.

Schema objects describe the data model (format and data type) of request
or response payloads, parameters and headers. These can be a single value,
an array or a JSON object. In the case of an array, the format of its items is
described by other objects, stored in Item table which is de�ned later. In the
case of a JSON object, the properties it contains (key-value pairs) are described
by other objects, stored in Property table which is also de�ned later. An example
is:

{

"content": {

"text/plain": {

"schema": {

"type": "string",

"minLength": 2

}

}

}

}

The Schema object in this example describes a string value with at least two
characters.

The �elds of Schema table and their corresponding OpenAPI �elds are shown
below:

Schema Corresponding OpenAPI �eld

const : any const in JSON Schema
contentEncoding : string contentEncoding in JSON Schema
contentMediaType : string contentMediaType in JSON Schema
default : any default in JSON Schema

20

deprecated : boolean deprecated in JSON Schema
description : string description in JSON Schema
enum : any[] enum in JSON Schema
examples : any examples in JSON Schema
exclusiveMaximum : number exclusiveMaximum in JSON Schema
exclusiveMinimum : number exclusiveMinimum in JSON Schema
extDocsDescription : string description in External Documentation object
extDocsUrl : string url in External Documentation object
format : string format in JSON Schema
maxItems : number maxItems in JSON Schema
maxLength : number maxLength in JSON Schema
maxProperties : number maxProperties in JSON Schema
maximum : number maximum in JSON Schema
minItems : number minItems in JSON Schema
minLength : number minLength in JSON Schema
minProperties : number minProperties in JSON Schema
minimum : number minimum in JSON Schema
multipleOf : number multipleOf in JSON Schema
pattern : string pattern in JSON Schema
readOnly : boolean readOnly in JSON Schema
required : string required in JSON Schema
title : string title in JSON Schema
type : string type in JSON Schema
uniqueItems : boolean uniqueItems in JSON Schema
writeOnly : boolean writeOnly in JSON Schema
x-collectionOn : string proposed semantic annotation x-collectionOn
x-kindOf : string proposed semantic annotation x-kindOf
x-refersTo : string proposed semantic annotation x-refersTo

The x-refersTo and x-kindOf �elds correspond to the semantic annotations
proposed for OpenAPI that apply to Schema objects. A query on x-refersTo
will return table entries in which x-refersTo or x-kindOf are a subclass of the
given value, including the given value. A query on x-kindOf will return the same
entries as a query on x-refersTo, excluding entries in which x-refersTo equals
the given value, because x-kindOf denotes a specialization of the concept and
not the concept itself.

According to OpenAPI Speci�cation, extension properties in Schema objects
may omit the "x-" pre�x from their name. To support this, our system allows
the user to query �elds with any name in Schema table.

We generally add one entry to Schema table for each Schema object de�ned.
However, for complex Schema objects that are a composition of other Schema
objects, we may add more than one entries to Schema table. The exact process
for this will be described in a later chapter.

The table entry produced by the example above is the following:

Table �elds Entry values

minLength 2
type "string"

21

... NULL

Another example of a Schema object is the following:

{

"content": {

"application/json": {

"schema": {

"type": "object",

"properties":{

"temperature": {

"type": "number"

}

}

}

}

}

}

This example describes a value which is a JSON object containing one property.
This property is named "temperature" and is a number. The entry that would
be produced by this example is the following:

Table �elds Entry values

type "number"
... NULL

The information inside "properties" keyword in this example would be stored
in an entry in Property table which will be described below.

3.10 Property

As mentioned previously, when a Schema object describes a JSON object, it also
describes the properties of that object. This is done with the keywords "proper-
ties", "patternProperties", "unevaluatedProperties" and "additionalProperties"
which are de�ned in JSON Schema. An example is below:

{

"type": "object",

"properties":{

"firstName": {

"type": "string"

},

"lastName":{

"type": "string"

},

"age":{

"type": "number"

}

22

}

}

This example describes a JSON object with 3 properties: "�rstName", "last-
Name" and "age". Each property is described by another Schema object. These
other Schema objects declare that the "�rstName" and "lastName" are strings
and the "age" is a number. Most �elds of Property table correspond to �elds in
these Schema objects that describe properties.

There are also some �elds in Property table that correspond to �elds in
Encoding and XML objects. These OpenAPI objects provide additional infor-
mation about the encoding and the XML representation of some properties.

The �elds of Property table and their corresponding OpenAPI �elds are
shown below:

Property Corresponding OpenAPI �eld

allowReserved : boolean allowReserved in Encoding object
const : any const in JSON Schema
contentEncoding : string contentEncoding in JSON Schema
contentMediaType : string contentMediaType in JSON Schema
contentType : string contentType in Encoding object
default : any default in JSON Schema
deprecated : boolean deprecated in JSON Schema
description : string description in JSON Schema
enum : any[] enum in JSON Schema
examples : any examples in JSON Schema
exclusiveMaximum : number exclusiveMaximum in JSON Schema
exclusiveMinimum : number exclusiveMinimum in JSON Schema
explode : boolean explode in Encoding object
format : string format in JSON Schema
maxItems : number maxItems in JSON Schema
maxLength : number maxLength in JSON Schema
maxProperties : number maxProperties in JSON Schema
maximum : number maximum in JSON Schema
minItems : number minItems in JSON Schema
minLength : number minLength in JSON Schema
minProperties : number minProperties in JSON Schema
minimum : number minimum in JSON Schema
multipleOf : number multipleOf in JSON Schema
name : string property names inside properties, patternProp-

erties and unevaluatedProperties
pattern : string pattern in JSON Schema
readOnly : boolean readOnly in JSON Schema
required : string required in JSON Schema
style : string style in Encoding object
title : string title in JSON Schema
type : string type in JSON Schema
uniqueItems : boolean uniqueItems in JSON Schema
writeOnly : boolean writeOnly in JSON Schema
x-collectionOn : string proposed semantic annotation x-collectionOn

23

x-kindOf : string proposed semantic annotation x-kindOf
x-refersTo : string proposed semantic annotation x-refersTo
xmlAttribute : boolean attribute in XML object
xmlName : string name in XML object
xmlNamespace : string namespace in XML object
xmlPre�x : string pre�x in XML object
xmlWrapped : boolean wrapped in XML object

The x-refersTo and x-kindOf �elds correspond to the semantic annotations
proposed for OpenAPI. Queries on them behave exactly like queries on the
respective �elds with the same name in Schema table.

Similarly with Schema table, our system allows the user to query �elds with
any name in Property table.

The example above would produce the following 3 entries in Property table:

Table �elds Entry 1 values Entry 2 values Entry 3 values

name "�rstName" "lastName" "age"
type "string" "string" "number"
... NULL NULL NULL

3.11 Item

When a Schema object describes an array, it also describes the format of the
array's items. This is done using the keywords "items", "pre�xItems", "uneval-
uatedItems" and "contains" which are de�ned in JSON Schema. An example
of a Schema object is below:

{

"type": "array",

"items":{

"type": "number",

"minimum": 0

}

}

This example describes an array and the items of the array are described by
another Schema object. In this case, each item is speci�ed to be a number
greater than or equal to 0. The �elds of Item table correspond to �elds in these
Schema objects that describe items.

The �elds of Item table and their corresponding OpenAPI �elds are shown
below:

Item Corresponding OpenAPI �eld

const : any const in JSON Schema
contentEncoding : string contentEncoding in JSON Schema
contentMediaType : string contentMediaType in JSON Schema
default : any default in JSON Schema
deprecated : boolean deprecated in JSON Schema

24

description : string description in JSON Schema
enum : any[] enum in JSON Schema
examples : any examples in JSON Schema
exclusiveMaximum : number exclusiveMaximum in JSON Schema
exclusiveMinimum : number exclusiveMinimum in JSON Schema
format : string format in JSON Schema
maxItems : number maxItems in JSON Schema
maxLength : number maxLength in JSON Schema
maxProperties : number maxProperties in JSON Schema
maximum : number maximum in JSON Schema
minItems : number minItems in JSON Schema
minLength : number minLength in JSON Schema
minProperties : number minProperties in JSON Schema
minimum : number minimum in JSON Schema
multipleOf : number multipleOf in JSON Schema
pattern : string pattern in JSON Schema
readOnly : boolean readOnly in JSON Schema
required : string required in JSON Schema
title : string title in JSON Schema
type : string type in JSON Schema
uniqueItems : boolean uniqueItems in JSON Schema
writeOnly : boolean writeOnly in JSON Schema
x-collectionOn : string proposed semantic annotation x-collectionOn
x-kindOf : string proposed semantic annotation x-kindOf
x-refersTo : string proposed semantic annotation x-refersTo

Same as with Schema and Property tables, the x-refersTo and x-kindOf �elds
correspond to the semantic annotations proposed for OpenAPI and queries on
them behave as described previously.

Our system allows the user to query �elds with any name in Item table,
same as for Schema and Property.

The example above would produce the following entry in Item table:

Table �elds Entry values

minimum 0
type "number"
... NULL

3.12 Security

The �elds of Security table correspond to �elds in Security Requirement, Security
Scheme, Oauth Flows and Oauth Flow objects. These objects contain general
information about the security mechanisms de�ned for a web service. Each
request, callback and webhook can require its own security mechanisms.

An example of a Security Scheme object is below:

{

"exampleScheme":{

25

"type": "oauth2",

"flows": {

"implicit": {

"authorizationUrl": "https://example.com/api/oauth/dialog",

"scopes": {

"write:pets": "modify pets in your account",

"read:pets": "read your pets"

}

}

}

}

}

This de�nes a security mechanism named "exampleScheme" which uses an
Oauth Implicit �ow with "write:pets" and "read:pets" scopes. An operation
can then use a Security Requirement object to require the security mechanism
with speci�c scopes as shown in the example below:

{

"security": [

{

"exampleScheme": [

"read:pets"

]

}

]

}

In the table below are the �elds of Security table with the corresponding
�elds in OpenAPI:

Security Corresponding OpenAPI �eld

apiKeyIn : string in in Security Scheme object
apiKeyName : string name in Security Scheme object
description : string description in Security Scheme object
httpBearerFormat : string bearerFormat in Security Scheme object
httpScheme : string scheme in Security Scheme object
name : string property name inside Security Requirement ob-

ject
oauth2ClientCredRefreshUrl : string �ows.clientCredentials.refreshUrl in Security

Scheme object
oauth2ClientCredTokenUrl : string �ows.clientCredentials.tokenUrl in Security

Scheme object
oauth2CodeAuthUrl : string �ows.authorizationCode.authorizationUrl in Se-

curity Scheme object
oauth2CodeRefreshUrl : string �ows.authorizationCode.refreshUrl in Security

Scheme object
oauth2CodeTokenUrl : string �ows.authorizationCode.tokenUrl in Security

Scheme object
oauth2ImplAuthUrl : string �ows.implicit.authorizationUrl in Security

Scheme object

26

oauth2ImplRefreshUrl : string �ows.implicit.refreshUrl in Security Scheme ob-
ject

oauth2PassRefreshUrl : string �ows.password.refreshUrl in Security Scheme
object

oauth2PassTokenUrl : string �ows.password.tokenUrl in Security Scheme ob-
ject

openIdConnectUrl : string openIdConnectUrl in Security Scheme object
type : string type in Security Scheme object

We add one entry to Security table for each security mechanism required by
an operation. The example above would produce the following entry:

Table �elds Entry values

name "exampleScheme"
oauth2ImplAuthUrl "https://example.com/api/oauth/dialog"
type "oauth2"
... NULL

3.13 SecurityScope

When a request, callback or webhook requires a security mechanism, it can
also require speci�c scopes of the mechanism. The �elds of SecurityScope table
correspond to the names and descriptions of the de�ned scopes that are located
in Oauth Flow objects.

In the table below are the �elds of SecurityScope with the corresponding
�elds in OpenAPI:

SecurityScope Corresponding OpenAPI �eld

description : string property value inside scopes in Oauth Flow ob-
ject

name : string property name inside scopes in Oauth Flow ob-
ject

We add one entry to SecurityScope for each scope required by an operation.
The example shown in section 3.12 would produce the following entry:

Table �elds Entry values

description "read your pets"
name "read:pets"

3.14 Link

The �elds of Link table correspond to �elds in Link, Response and Server ob-
jects. These objects describe links contained in a response. These links show
a relationship between the response and another operation but they are not
mandatory for the client to follow. An example is:

27

{

"links": {

"address": {

"operationId": "getUserAddressByUUID",

"parameters": {

"userUuid": "$response.body#/uuid"

}

}

}

}

This example de�nes a link named "address", referencing the operation with id
"getUserAddressByUUID", with a parameter named "userUuid".

In the table below are the �elds of Link with the corresponding �elds in
OpenAPI:

Link Corresponding OpenAPI �eld

description : string description in Link object
name : string property names inside links in Response object
operationId : string operationId in Link object
operationRef : string operationRef in Link object
requestBody : string requestBody in Link object
serverDescription : string description in Server object
url : string url in Server object

We add one entry to Link table for each link de�ned in a response. The
example above would produce the following entry:

Table �elds Entry values

name "address"
operationId "getUserAddressByUUID"
... NULL

3.15 LinkParameter

A link contained in a response can specify parameters to be passed when it is
followed. The �elds of LinkParameter table correspond to the name and value
of these parameters located in Link object.

In the table below are the �elds of LinkParameter with the corresponding
�elds in OpenAPI:

LinkParameter Corresponding OpenAPI �eld

name : string property names inside parameter in Link object
value : any property values inside value in Link object

We add one entry to LinkParameter for each parameter de�ned in a link.
The example in section 3.14 would produce the following entry:

28

Table �elds Entry values

name "userUuid"
value "$response.body#/uuid"

3.16 Server

The �elds of Server table correspond to �elds in Server object. Each request,
webhook or callback can de�ne its own servers which are described by Server
objects. An example is:

{

"url": "https://development.gigantic-server.com/v1",

"description": "Development server"

}

In the table below are the �elds of Server with the corresponding �elds in
OpenAPI:

Server Corresponding OpenAPI �eld

description : string description in Server object
url : string url in Server object

We add one entry to Server table for each server in an operation. The
example above would produce the following entry:

Table �elds Entry values

description "Development server"
url "https://development.gigantic-server.com/v1"

3.17 ServerVariable

The �elds of ServerVariable table correspond to �elds in Server Variable and
Server objects. These objects describe variables in the server's URL that can
have di�erent values. An example is:

{

"url": "https://gigantic-server.com:{port}/",

"description": "The production API server",

"variables": {

"port": {

"enum": [

"8443",

"443"

],

"default": "8443"

}

}

}

29

This example de�nes a server with a variable named "port" in its URL which
can be either 8443 or 443.

In the table below are the �elds of ServerVariable with the corresponding
�elds in OpenAPI:

ServerVariable Corresponding OpenAPI �eld

default : any default in Server Variable object
description : string description in Server Variable object
enum : any[] enum in Server Variable object
name : string property names inside variables in Server object

We add one entry to ServerVariable table for each variable de�ned in a
server. The example above would produce the following entry:

Table �elds Entry values

default "8443"
description NULL
enum ["8443", "443"]
name "port"

3.18 Example

The �elds of Example table correspond to �elds in Example, Media Type, Pa-
rameter and Header objects. These objects provide examples of an operation's
payload, a response's payload, a parameter or a header. An example is:

{

"examples": {

"foo": {

"summary": "A foo example",

"value": 35

}

}

}

This de�nes an example named "foo" with a value of 35.
In the table below are the �elds of Example with the corresponding �elds in

OpenAPI:

Example Corresponding OpenAPI �eld

description : string description in Example object
externalValue : any externalValue in Example object
name : string property names inside examples in Media Type,

Parameter or Header objects
summary : string summary in Example object
value : any value in Example object

We add one entry to Example table for each example provided. The example
above would produce the following entry:

30

Table �elds Entry values

name "foo"
summary "A foo example"
value 35
... NULL

The Media Type, Parameter and Header objects in OpenAPI also provide
the �eld example whose value is a single example instead of an Example object.
To support this �eld, we add an entry in Example table with value set to the
�eld's value and all other table �elds NULL.

31

Chapter 4

OpenAPI Query Language 2

OAQL2 is a language for searching in OpenAPI descriptions. Its syntax is
designed to be very similar to SQL so that a user who already knows SQL can
easily use OAQL2.

OAQL2 queries are executed on the tables de�ned previously and function
like SQL queries. Each query consists of the following parts:

1. SELECT clause: determines which table �elds should be returned to the
user

2. FROM clause: speci�es the tables to be joined

3. WHERE clause (optional): speci�es conditions that the entries of the
resulting table need to satisfy

4. ORDER BY clause (optional): speci�es the table �elds to sort the results
by

4.1 SELECT clause

In SELECT clause, the user speci�es the table �elds that will be returned in
the result. Each �eld is denoted by the name or alias of the table it belongs to,
followed by a dot and then by the �eld name. The user can optionally give an
alias to some table �elds.

Instead of a table �eld, the user can write the name or alias of a table followed
by the su�x ".*". In this case, all �elds of the speci�ed table will be returned,
including any �elds corresponding to extension properties.

Instead of specifying table �elds in SELECT clause, the user can write "SE-
LECT *". This will return all �elds from all tables in FROM clause, just like
in SQL.

Additionally, the user can include the keyword DISTINCT immediately after
the SELECT keyword. This will ensure that the result will not contain two table
entries with identical values in all of their �elds.

Some examples are:

Example query Description

32

SELECT s.id AS service_id, s.title
FROM Service s

Returns Service.id �eld renamed to
"service_id" and Service.title �eld re-
named to "s.title"

SELECT s.*
FROM Service s

Returns all �elds from Service table

SELECT *
FROM Service s

Returns all �elds from all tables in
FROM clause (in this case only Service)

SELECT DISTINCT Request.method
FROM Request

Returns each di�erent value in Re-
quest.method �eld once

4.2 FROM clause

In FROM clause, the user speci�es tables that will be joined to form a single
large table, similarly with SQL queries. Everything else speci�ed in an OAQL2
query (�ltering table entries, sorting table entries and selecting table �elds) will
happen on that table.

In OAQL2, the relationships between two tables are one-to-many, meaning
that each entry of one table can be joined with 0 or more entries of the other
table. This happens because the tables correspond to OpenAPI objects and
an object can contain 0 or more other objects. For example, each request can
contain 0 or more responses and each response can contain 0 or more head-
ers. Each join corresponds to a parent-child relationship between the OpenAPI
objects that the tables correspond to.

Below is a list with all possible joins between two tables:

Callback - Example Property - Header Schema - Property
Callback - Parameter Property - Property Security - SecurityScope
Callback - Response Request - Callback Server - ServerVariable
Callback - Schema Request - Example Service - Request
Callback - Security Request - Parameter Service - Tag
Callback - Server Request - Response Service - Webhook
Header - Example Request - Schema Tag - Schema
Header - Schema Request - Security Webhook - Example
Item - Item Request - Server Webhook - Parameter
Item - Property Response - Example Webhook - Response
Link - LinkParameter Response - Header Webhook - Schema
Link - ServerVariable Response - Link Webhook - Security
Parameter - Example Response - Schema Webhook - Server
Parameter - Schema Schema - Item

In the pairs of tables above, each entry of the �rst table can be joined with
0 or more entries of the second table. The only exception is the pair of Item
and Property tables, for which the reverse is also valid.

Note that the join between Tag and Schema tables is allowed because of the
x-onResource semantic annotation which links a tag to a schema object.

In a relational database, all tables have a primary key which is a table �eld
(or set of �elds) uniquely identifying each entry in the table. To join two tables,
one of them must have a foreign key, which is a �eld referencing the primary

33

key of the other table. The primary and the foreign key used are speci�ed in
the join condition for each join in the FROM clause of the SQL query. This
is required because SQL needs to support querying in any relational database
schema.

In OAQL2, the join condition for each possible join between two tables is
prede�ned. The system can determine each join condition from the names of
the tables that are being joined. Therefore, the user does not need to write join
conditions in OAQL2. This eliminates the need to de�ne primary and foreign
keys in OAQL2 tables because they would never be used. This is the reason
why we did not de�ne any primary or foreign keys in the tables presented in the
previous chapter.

A FROM clause in OAQL2 has the following form:

FROM <table1>

JOIN <table2> ON <table1>

JOIN ...

For example, the following query returns the path of each request along with
the title of the web service it is de�ned in:

SELECT Service.title, Request.path

FROM Service

JOIN Request ON Service

As we can see, the join condition, which would normally be following the
"ON" keyword, is omitted. This happens for simplicity because, as mentioned,
the join condition between Service and Request tables is prede�ned and there
is no need to be written by the user. The only information the "ON" keyword
needs to provide is that the join will happen with Service table. This is needed
for queries with many joins, as shown later.

The user can optionally specify aliases for some tables and then refer to them
by their alias. The query above will have the same results as the following:

SELECT s.title, r.path

FROM Service s

JOIN Request r ON s

The only di�erence will be the name of the table �elds in the results.
The following query joins the Request table with Response and Schema and

returns all �elds of the result:

SELECT *

FROM Request r

JOIN Response res ON r

JOIN Schema s ON r

The �rst "ON" keyword speci�es that the Response table will be joined with
Request and the second "ON" keyword speci�es that the Schema table will
be joined with Request. Note that, without the "ON" keyword, it would be
ambiguous whether the Schema table will be joined with Request or Response.

Below is an example in which it is necessary to specify aliases for the Schema
tables:

34

SELECT s1.type, s2.type

FROM Request r

JOIN Response res

JOIN Schema s1 ON r

JOIN Schema s2 ON res

This query returns the type of the request and response payload for each pair
of request and response de�ned. The aliases are needed to specify which of the
two instances of Schema table we refer to.

Note that the order in which the tables are written in FROM clause does
not matter. For example, the following two queries will both return the request
path and response code for each pair of request and response de�ned:

SELECT r.path, res.statusCode

FROM Request r

JOIN Response res ON r

SELECT r.path, res.statusCode

FROM Response res

JOIN Request r ON res

As mentioned before, each join corresponds to a parent-child relationship be-
tween OpenAPI objects. OAQL2 �nds which table corresponds to the parent
object (Request) and which to the child (Response) and joins them. If an entry
of the "parent" table cannot be joined with any entry of the "child" table (in
this example this happens when a request de�nes no responses), it is included
in the results with NULL values in the �elds of the "child" table. This is the
equivalent of a LEFT JOIN in SQL between the "parent" and the "child" table.

There is one case that it is not clear which table corresponds to the parent
OpenAPI object and which to the child object. This case is when we join a
Property or Item table with another Property or Item because each property or
item might be a JSON object containing other properties or an array containing
other items. To make the distinction between parent and child, we use a di�erent
join condition. This is demonstrated in the examples below, where we show all
4 possible combinations of joining a Property or Item with another Property or
Item.

The Schema object in the following example de�nes a JSON object contain-
ing a property named "details". This property is also a JSON object containing
another property "address".

{

"type": "object",

"properties":{

"details":{

"type": "object",

"properties":{

"address":{

"type": "string"

}

}

}

}

}

35

To make a query about this example, we would need to join two Property tables
like in the query below:

SELECT *

FROM Property parentProp

JOIN Property childProp ON parentProp.property = childProp

The table with the alias "parentProp" refers to the parent property ("details")
that is a JSON object, while the table with the alias "childProp" refers to
the child property ("address") contained inside the JSON object of the parent
property.

The Schema object in the following example de�nes a JSON object contain-
ing a property named "list". This property is an array of numbers.

{

"type": "object",

"properties":{

"list":{

"type": "array",

"items":{

"type": "number"

}

}

}

}

To make a query about this example, we would need to join a Property with an
Item table like in the query below:

SELECT *

FROM Property parentProp

JOIN Item childItem ON parentProp.item = childItem

The table with the alias "parentProp" refers to the parent property ("list")
that is an array, while the table with the alias "childItem" refers to the items
(numbers) inside the array.

The Schema object in the following example de�nes an array of JSON ob-
jects. Each JSON object contains a property named "age".

{

"type": "array",

"items":{

"type": "object",

"properties":{

"age":{

"type": "number"

}

}

}

}

To make a query about this example, we would need to join an Item with a
Property table like in the query below:

36

SELECT *

FROM Item parentItem

JOIN Property childProp ON parentItem.property = childProp

The table with the alias "parentItem" refers to the items of the array (the JSON
objects), while the table with the alias "childProp" refers to the properties of
these JSON objects ("age").

The Schema object in the following example de�nes an array containing
other arrays which contain numbers.

{

"type": "array",

"items":{

"type": "array",

"items":{

"type": "number"

}

}

}

To make a query about this example, we would need to join an Item with
another Item table like in the query below:

SELECT *

FROM Item parentItem

JOIN Item childItem ON parentItem.item = childItem

The table with the alias "parentItem" refers to the items of the array (the child
arrays), while the table with the alias "childItem" refers to the items of the
child arrays (the numbers).

The condition following the ON keyword determines which table corresponds
to the parent object and which to the child. More generally, its form is either

"ON <parent_table>.property = <child_table>"

or

"ON <parent_table>.item = <child_table>"

depending on whether the child table is Property or Item respectively.

4.3 WHERE clause

In WHERE clause, the user can specify various conditions and any entry that
does not satisfy these conditions is discarded. OAQL2 supports some of the
standard SQL operators:

� =, <>, >, <, >=, <= : note that, when these operators are used with
an array, the condition is true if at least one element of the array satis�es
it.

� IS NULL and IS NOT NULL: a table �eld is null when the corresponding
�eld in the OpenAPI description has no value

� BETWEEN: checks if a table �eld's value belongs in a range of values

37

� LIKE: searches for a pattern in a table �eld containing a string value

Parentheses can be used to prioritize evaluation of a condition and two or more
conditions can be combined by the logical operators AND, OR, XOR.

OAQL2 also supports checking for equality of two table �elds in an entry
with the "=" operator. The main purpose of this is to facilitate querying
the x-collectionOn �eld in Schema, Item or Property tables. By checking if
x-collectionOn is equal to Property.name the user can �nd the property of an
object that holds a collection of items.

Additionally, in OAQL2 we de�ne the operator IN but it functions di�erently
from the SQL operator IN. Its syntax is "fieldA IN fieldB" where �eldB is
an array. This operator returns true if the value of �eldA equals an element of
the array in �eldB. The main purpose of this operator is to allow the user to
check if the value of Tag.name is in the array in Request.tags.

4.4 ORDER BY clause

The ORDER BY clause sorts the table entries in the result by a �eld and is
identical to ORDER BY in SQL. It sorts in either ascending or descending order,
depending on whether the ASC or DESC keyword was speci�ed respectively and
defaults to ascending order if no keyword was speci�ed.

If more than one table �elds are speci�ed, the sorting is initially done using
the �rst �eld. For entries with the same value in that �eld, the next �eld is used
and so on.

4.5 Example queries

In this section, we present some examples of OAQL2 queries involving the se-
mantic annotations proposed for OpenAPI.

The query below �nds services with a request whose payload is annotated
to the "Person" concept:

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Schema sc ON r

WHERE sc.x-refersTo = "https://schema.org/Person"

The query below �nds services with a response whose payload is annotated
to a specialization of the "Store" concept:

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Response res ON r

JOIN Schema sc ON res

WHERE sc.x-kindOf = "https://schema.org/Store"

The query below �nds services with a request that is annotated to the
"SearchAction" concept:

38

SELECT s.id

FROM Service s

JOIN Request r ON s

WHERE r.x-operationType = "https://schema.org/SearchAction"

The query below �nds services whose request payload is a collection of items.
This collection is provided in a separate property and this property refers to the
"ProductCollection" concept:

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Schema sc ON r

JOIN Property p ON sc

WHERE sc.x-collectionOn = p.name

AND p.x-refersTo = "https://schema.org/ProductCollection"

The query below �nds the path and method of requests grouped by a tag.
This tag must be linked to a Schema object annotated to the "Movie" concept:

SELECT r.path, r.method

FROM Service s

JOIN Request r ON s

JOIN Tag t ON s

JOIN Schema sc ON t

WHERE t.name IN r.tags

AND sc.x-refersTo = "https://schema.org/Movie"

4.6 Syntax

Below we present the BNF (Backus-Naur form) of OAQL2:

〈query〉 ::= 〈fromClause〉 〈selectClauseFinal〉 〈whereClause〉 〈orderByClause〉
| 〈fromClause〉 〈selectClauseFinal〉 〈orderByClause〉
| 〈fromClause〉 〈selectClauseFinal〉 〈whereClause〉
| 〈fromClause〉 〈selectClauseFinal〉

〈selectClauseFinal〉 ::= 〈selectClause〉
| 〈selectKeyword〉 *

〈selectClause〉 ::= 〈selectClause〉 , 〈�eld〉 〈alias〉
| 〈selectClause〉 , 〈�eld〉
| 〈selectClause〉 , 〈identi�er〉 .*
| 〈selectKeyword〉 〈�eld〉 〈alias〉
| 〈selectKeyword〉 〈�eld〉
| 〈selectKeyword〉 〈identi�er〉 .*

〈selectKeyword〉 ::= SELECT DISTINCT

| SELECT

〈alias〉 ::= AS 〈identi�er〉
| 〈identi�er〉

39

〈orderByClause〉 ::= 〈orderByClause〉 , 〈�eld〉 ASC
| 〈orderByClause〉 , 〈�eld〉 DESC
| 〈orderByClause〉 , 〈�eld〉
| ORDER BY 〈�eld〉 ASC
| ORDER BY 〈�eld〉 DESC
| ORDER BY 〈�eld〉

〈whereClause〉 ::= WHERE 〈condition〉

〈condition〉 ::= 〈�eld〉 〈operator〉 〈value〉
| 〈�eld〉 〈operator〉 〈�eld〉
| 〈�eld〉 IN 〈�eld〉
| 〈�eld〉 BETWEEN 〈value〉 AND 〈value〉
| 〈�eld〉 NOT BETWEEN 〈value〉 AND 〈value〉
| 〈�eld〉 IS NULL

| 〈�eld〉 IS NOT NULL

| 〈�eld〉 LIKE 〈value〉
| (〈condition〉)
| 〈condition〉 AND 〈condition〉
| 〈condition〉 OR 〈condition〉
| 〈condition〉 XOR 〈condition〉

〈�eld〉 ::= 〈identi�er〉 . 〈identi�er〉

〈fromClause〉 ::= 〈fromClause〉 JOIN 〈identi�er〉 〈alias〉 ON 〈�eld〉 = 〈identi�er〉
| 〈fromClause〉 JOIN 〈identi�er〉 〈alias〉 ON 〈identi�er〉 = 〈�eld〉
| 〈fromClause〉 JOIN 〈identi�er〉 ON 〈�eld〉 = 〈identi�er〉
| 〈fromClause〉 JOIN 〈identi�er〉 ON 〈identi�er〉 = 〈�eld〉
| 〈fromClause〉 JOIN 〈identi�er〉 〈alias〉 ON 〈identi�er〉
| 〈fromClause〉 JOIN 〈identi�er〉 ON 〈identi�er〉
| FROM 〈identi�er〉 〈alias〉
| FROM 〈identi�er〉

〈operator〉 ::= = | <> | < | > | <= | >= | LIKE

〈value〉 ::= � � | � 〈literal〉 � | 〈literal〉 | true | false

〈identi�er〉 ::= 〈identi�er〉 〈letter〉
| 〈identi�er〉 〈digit〉
| 〈identi�er〉 -
| 〈identi�er〉 _
| 〈letter〉

〈literal〉 ::= 〈character〉 | 〈literal〉 〈character〉

〈character〉 ::= 〈letter〉 | 〈digit〉 | 〈symbol〉

〈letter〉 ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U
| V | W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q |
r | s | t | u | v | w | x | y | z

40

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈symbol〉 ::= | | | ! | # | $ | % | & | (|) | * | + | , | - | . | / | : | ; | > | = | <
| ? | @ | [|] | ^ | _ | ` | { | } | ~ | ' | \ | \�

41

Chapter 5

Implementation

Our service is composed of two other services: a Java server that handles the
requests from the clients and a MongoDB database for storing and querying
OpenAPI descriptions.

5.1 Choice of tools

Despite OAQL2 being very similar to SQL, we use a NoSQL database to store
the data. The reasons for that are:

� to avoid the performance cost of joins: The information in OAQL2 tables
has the same hierarchical structure as an OpenAPI description since the
tables correspond to OpenAPI objects. By storing it as a JSON document
in a NoSQL database we keep this structure intact. Otherwise, we would
separate the data and group them into tables which then would have to
be joined for each query.

� to support not strictly de�ned data types and sizes: A relational database
requires that table �elds declare their data type and their size. However,
some �elds in an OpenAPI document can have values of di�erent types
and there is no limit to their size. A workaround would be to use the
JSON data type (in relational databases that support it) but that would
lead to slower queries.

In a 2016 publication[11], the performance of �ve NoSQL databases is com-
pared (Redis, MongoDB, Couchbase, Cassandra, HBase). Redis is shown to be
the fastest, with MongoDB in the second place. Redis, however, is a key-value
database and it is not meant to be used with JSON objects. Another consid-
eration is the graph database Neo4j, which is a relatively new system, but a
2020 publication[12], which compares it to MongoDB and PostgreSQL, shows
that Neo4j is slower than MongoDB. For these reasons we chose MongoDB to
be used in our service.

In order to parse OAQL2 queries, we use a lexical analyzer and a parser that
were generated using JFlex and Java CUP respectively. These two tools are
the Java equivalent of the traditional lex and yacc tools.

As mentioned in the previous chapter, when querying one of x-refersTo, x-
kindOf or x-operationType �elds, we also want to return table entries whose

42

value is a subclass of the given value. We need a reasoner to �nd these sub-
classes because, for briefness, a semantic model usually omits relationships be-
tween concepts that can be inferred from other relationships. Apache Jena1 is
a Java framework for building Semantic Web applications and it provides var-
ious reasoners. We use the TransitiveReasoner which is a lightweight reasoner
supporting only the transitive and re�exive properties of rdfs:subClassOf and
rdfs:subPropertyOf. In this thesis we use the semantic model from Schema.org2,
which the service loads during startup.

5.2 Description of service

An OpenAPI document contains some of its information as property names in
its objects instead of values. For example, the following de�nes an endpoint on
path "/pets" which accepts POST requests:

{

"/pets": {

"post": {

"description": "...",

"requestBody": {

...

}

}

}

}

Both the path and the method are property names with their values being other
OpenAPI objects. This makes querying di�cult since the path to other �elds
depends on these names. It also makes indexing impossible because indexes are
built on �elds located on a prede�ned path.

In addition, some of the information may be located in one of a few di�erent
places in an OpenAPI description. Thus, querying would require searching in
all of these places and deciding which values are overwriting the rest in each
case. For example, the servers for a request can be declared in the OpenAPI
object, the Path Item object or the Operation object.

To solve these problems, we create and store one metadata object for each
OpenAPI description in the service. Each metadata object is a JSON object
containing all necessary information in a form that can be queried and indexed
easily. All OAQL2 queries are executed on these objects.

The following �gure shows the architecture of the service:

1https://jena.apache.org/
2https://schema.org/version/latest/schemaorg-current-https.nt

43

https://jena.apache.org/
https://schema.org/version/latest/schemaorg-current-https.nt

5.2.1 Server

The server handles each HTTP request on a separate thread and accepts them
at the following paths:

Path Accepts Returns

/ GET Request. HTML document provid-
ing a user interface for in-
serting or retrieving Ope-
nAPI descriptions and ex-
ecuting OAQL2 queries

/insertDescription POST request.
Request body must be
a valid OpenAPI descrip-
tion

204 code with no response
body

/query POST request.
Request body must be a
valid OAQL2 query

200 code with the results
of the query in the re-
sponse body

/description/<id> GET request.
<id> must be an id, 24
characters long, found in
the Service.id �eld and
it corresponds to a single
OpenAPI description

200 code with the
requested OpenAPI de-
scription in the response
body or 404 code if
there is no OpenAPI
description with that id

If the server encounters an error, it will respond with a status code of 400
and an error message in the response body.

The results of a query are returned in JSON format. The response body is
an array of JSON objects. Each object represents a table entry of the results
and each key-value pair in these objects corresponds to a table �eld with its
value. For example, the following query returns the path and summary of each
request de�ned:

SELECT r.method, r.summary

FROM Request r

44

The results will have the following form:

[

{

"r.method": "...",

"r.summary": "...",

},

{

"r.method": "...",

"r.summary": "...",

},

...

]

If a table �eld is NULL in an entry, the key-value pair for the �eld in that
object is omitted. For example, one of the JSON objects in the array above
might look like the following:

{

"r.method": "..."

}

This means that the value of Request.summary �eld in that table entry is NULL.
If all �elds in a table entry are NULL, the JSON object corresponding to that

entry is omitted from the response body. Otherwise, the result would include
some empty JSON objects (without any key-value pairs) which would provide
no information.

5.2.2 Database

The MongoDB service contains one database, named openapiDB, with two col-
lections:

� metadataCollection: contains the metadata created from the OpenAPI
descriptions in the service. We search in this collection when executing an
OAQL2 query.

� originalDescriptions: contains the original OpenAPI descriptions. We
search in this collection when a request to the server's /description/<id>
path is made.

5.3 Metadata format

As mentioned previously, for each OpenAPI description inserted into the service
we also store a JSON object with the description's information in a di�erent
form for faster querying. The structure of these metadata objects is shown in
�gure 5.1. Nodes with the same name have identical subtrees in �gure 5.1.

Each node in �gure 5.1 represents an array of JSON objects in the metadata
object, as described below. The top level of a metadata object has the following
form:

45

Figure 5.1: Structure of a metadata object

{

"Service":[

{

"contactEmail": <value>,

"contactName": <value>,

"contactUrl": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"id": <value>,

"jsonSchemaDialect": <value>,

"licenseName": <value>,

"licenseUrl": <value>,

"openapiVersion": <value>,

"termsOfService": <value>,

"title": <value>,

"version": <value>,

"Request": [...],

46

"Tag": [...],

"Webhook": [...]

}

]

}

A metadata object contains an array named "Service" which is represented in
�gure 5.1 by the top node. The JSON object inside "Service" array contains 3
arrays with the names "Request", "Tag" and "Webhook", which are represented
in �gure 5.1 by the children of the root node. The JSON object inside "Service"
array also contains a key-value pair for each �eld of Service table in OAQL2.

The array named "Request" has the following form:

[

{

"bodyDescription": <value>,

"bodyRequired": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"method": <value>,

"operationId": <value>,

"path": <value>,

"summary": <value>,

"tags": <value>,

"x-operationType": <value>,

"Callback": [...],

"Example": [...],

"Parameter": [...],

"Response": [...],

"Schema": [...],

"Security": [...],

"Server": [...]

},

...

]

Each JSON object inside "Request" array contains 7 arrays with the names
"Callback", "Example", "Parameter", "Response", "Schema", "Security" and
"Server", which are represented in �gure 5.1 by the children of "Request" node.
Each JSON object inside "Request" array also contains a key-value pair for each
�eld of Request table in OAQL2.

The rest of the arrays represented by nodes in �gure 5.1 are similarly formed.
They contain JSON objects and each JSON object contains other arrays as
shown in �gure 5.1. Each JSON object also contains one key-value pair for each
�eld of the OAQL2 table with the same name as the array, like shown above.
The full format of a metadata object is presented in Appendix A.

Each of the arrays described above corresponds to the OAQL2 table with
the same name as the array. Each JSON object inside one of these arrays cor-
responds to one entry of that table. For example, the JSON object in "Service"

47

array corresponds to one entry in Service table and each JSON object in "Re-
quest" array corresponds to an entry in Request table. The values of the table
�elds are stored in the properties inside the JSON object that have the same
name with the table �elds. Below we show an example OpenAPI description
and the metadata object that would be produced:

OpenAPI description Metadata object created

{

"openapi": "3.1.0",

"info": {

"title": "Example",

"version": "v1"

},

"paths": {

"/req1": {

"get": {}

}

}

}

{

"Service" : [

{

"id" : "624defc8152952076c7b3af6",

"title" : "Example",

"openapiVersion" : "3.1.0",

"version" : "v1",

"Request" : [

{

"path" : "/req1",

"method" : "get",

"deprecated" : false

}

]

}

]

}

This OpenAPI description de�nes only a GET request. The metadata object
was created by simply copying the information from the OpenAPI description
to the corresponding �elds in the metadata object. It also contains the auto-
matically generated "id" �eld and the "deprecated" �eld.

If a �eld is not provided in an OpenAPI description, we store its default
value in the metadata object (the "deprecated" �eld in the example above). If
there is no default value, we do not insert the �eld in the metadata object. We
also omit empty arrays from the metadata object.

5.4 Algorithm for inserting OpenAPI descriptions

This algorithm is executed each time a user wants to insert an OpenAPI de-
scription into the service. It consists of the following steps:

1. create metadata object from new OpenAPI description

2. store new OpenAPI description into originalDescriptions collection in
MongoDB

3. store metadata object into metadataCollection collection in MongoDB

To create the metadata object we mostly copy the information from the �elds
of the OpenAPI description. However, some additional processing is needed for
Reference and Schema objects.

48

5.4.1 Parsing Reference objects

Reference objects are used to reference reusable objects de�ned somewhere else
in an OpenAPI description. For example, the following part of an OpenAPI
description de�nes a response with status code 200 and references a Response
object:

{

"responses":{

"200":{

"$ref":"#/components/responses/okResponse"

}

}

}

In this example, the referenced Response object provides only a description and
is shown below:

{

... ,

"components":{

"responses":{

"okResponse":{

"description": "OK"

}

}

}

}

When encountering a Reference object we replace it with the referenced
object and we continue parsing normally. The example above would be turned
into the following:

{

"responses":{

"200":{

"description": "OK"

}

}

}

5.4.2 Parsing Schema objects

The Schema object in OpenAPI Speci�cation uses the vocabulary de�ned in
JSON Schema draft 2020-123. The JSON Schema is used to validate a JSON
object (called instance) against a schema object. The schema speci�es rules
about the contents and structure of the instance.

A schema that describes an instance which is an object uses other schema
objects to describe the properties of the object. These schema objects may
be located under the keywords "properties", "patternProperties", "additional-
Properties" or "unevaluatedProperties". For simpli�cation, we parse all of the

3https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00#section-8

49

https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00#section-8

objects under these keys and store them into the "Property" array in the meta-
data object, which corresponds to the Property table. An example is below:

{

"type": "object",

"properties":{

"weight": {

"type": "number"

}

},

"additionalProperties":{

"type": "string"

}

}

The above example describes a JSON object containing a property named
"weight" which is a number. This JSON object may also contain other proper-
ties that must be strings.

Similarly, a schema that describes an array uses other schema objects to
describe the items of the array. These objects may be located under "items",
"pre�xItems", "unevaluatedItems" or "contains". We parse and store these
objects into the "Item" array in the metadata object, which corresponds to
Item table. The example below describes an array of strings:

{

"type": "array",

"items":{

"type": "string"

}

}

A schema object may be a composition of other schema objects which makes
searching di�cult and slow. To solve this problem, we convert each schema into
an array of simple objects which are stored in the metadata object. Each of
these simple objects is one of the possible schemas that an instance can be
validated against.

The "allOf" keyword provides an array of schema objects that must be all
valid. To simplify it, we merge all key-value pairs of all the subschemas into the
parent schema. An example is shown below:

50

Original Simpli�ed

{

"allOf": [

{

"multipleOf": 4,

"type": "number",

"default": 20

},

{

"multipleOf": 5,

"type": "number"

}

],

"description": "an example"

}

{

"multipleOf": [

4,

5

],

"type": "number",

"default": 20,

"description": "an example"

}

The "oneOf" keyword provides an array of schema objects, exactly one of
which must be valid. To simplify it, we create one object for each schema inside
the array under "oneOf". An example is shown below:

Original Simpli�ed

{

"type": "number",

"oneOf": [

{

"multipleOf": 5

},

{

"multipleOf": 3

}

]

}

[

{

"multipleOf": 5,

"type": "number"

},

{

"multipleOf": 3,

"type": "number"

}

]

The "anyOf" keyword provides an array of schema objects and at least one
of them must be valid. Creating all possible simpli�ed objects would mean
creating one object for each possible combination of schemas inside "anyOf"
array. We show below an example of an object using the "anyOf" keyword and
all possible simpli�ed objects, which are being a multiple of 3, 5 or both:

51

Original schema All possible simpli�ed objects

{

"anyOf": [

{

"multipleOf": 5

},

{

"multipleOf": 3

}

]

}

[

{

"multipleOf": 3,

},

{

"multipleOf": 5,

},

{

"multipleOf": [

3,

5

]

}

]

This can lead to creating a very large number of objects from a small number
of schemas given in an "anyOf" array. For example, 10 schemas would produce
1023 objects. To avoid this, we treat "anyOf" exactly like "allOf". Queries
generally check the existence of speci�c values in an object without caring if the
object contains other additional values, so this simpli�cation will not alter the
results in most cases.

The "not" keyword provides a schema against which the instance must not
validate. The example below is valid for values that are not a multiple of 4:

{

"not":{

"multipleOf": 4

}

}

When querying schema objects, our service simply checks if the speci�ed key-
value pairs are inside the objects. A query about multiples of 4 will return only
schema objects containing the keyword "multipleOf" with a value of 4. For that
reason we simplify the schema object by omitting the "not" keyword.

The "if", "then", "else" keywords validate the instance against their schemas
conditionally. To simplify them, we convert them into their equivalent that is
shown below and we treat it as described previously.

52

if, then, else Equivalent

{

"if": {<schemaA>},

"then": {<schemaB>},

"else": {<schemaC>}

}

{

"oneOf":[

{

"allOf":[

{<schemaA>},

{<schemaB>}

]

},

{

"allOf":[

{"not": {<schemaA>}},

{<schemaC>}

]

}

]

}

The "dependentSchemas" keyword de�nes a schema that the instance must
validate against if a property is present in the instance. For simpli�cation, we
merge the key-value pairs of the given schema into the parent schema, just like
we would simplify "allOf" containing a single schema.

The "x-mapsTo" semantic annotation that applies to Schema objects refer-
ences an object with similar semantics. For example, below we show a schema
that references another schema with "x-mapsTo":

{

"x-mapsTo": "#/components/schemas/personSchema",

"type": "object"

}

And below is the referenced object:

{

... ,

"components":{

"schemas":{

"personSchema":{

"x-refersTo": "http://schema.org/Person",

"description": "a person"

}

}

}

}

To simplify this relationship between objects, we copy the "x-refersTo" and
"x-kindOf" �elds from the referenced object to the object containing the "x-
mapsTo" �eld. The simpli�ed schema from the example above would be the
following:

53

{

"x-refersTo": "http://schema.org/Person",

"type": "object"

}

The OpenAPI Speci�cation de�nes the keyword "externalDocs" which holds
an External Documentation object. We add its �elds to the parent object re-
named as "extDocsDescription" and "extDocsUrl".

The OpenAPI Speci�cation also de�nes the Encoding and XML objects
which provide additional information about some properties de�ned in a schema.
We add this information to the item inside the "Property" array that corre-
sponds to the respective property.

We ignore the Discriminator object because it provides information useful
only to validation tools.

All other �elds of a Schema object that were not mentioned above, including
the x-collectionOn proposed semantic annotation, are copied to the metadata
object as they are.

5.5 Query translation algorithm

This algorithm accepts an OAQL2 query and produces a MongoDB query. First
we will present the general form of a MongoDB query and then we will explain
the algorithm to produce it.

We use the "aggregation pipeline" querying functionality of MongoDB. A
pipeline consists of various stages. Each stage accepts documents (JSON ob-
jects) as input, performs an operation on them and passes the output to the
next stage. A stage is represented by a JSON object and, thus, a pipeline is
represented by an array of JSON objects.

The pipeline stages that will be used are:

� match: outputs only documents that satisfy the speci�ed conditions, dis-
cards the rest

� group: groups input documents by speci�ed �elds and outputs one docu-
ment for each distinct set of values in these �elds

� unwind: deconstructs an array �eld from the input documents and out-
puts one document for each element. Each output document is the input
document with the value of the array �eld replaced by the element. For
example, below is the input and output of an unwind stage that operates
on the �eld "myArray":

54

Input of unwind Output of unwind

{

"myArray": [2, 4, 6]

}

{

"myArray": 2

},

{

"myArray": 4

},

{

"myArray": 6

}

� project: hides/renames/copies �elds in the document

� sort: sorts documents by speci�ed �elds

� addFields: adds new �elds to document

� replaceRoot: replace document with speci�ed document

The algorithm to produce a pipeline from an OAQL2 query is the following:

1. translate FROM clause into a series of project, unwind and addFields
stages and put them in the pipeline

2. translate WHERE clause into a match stage and append it to the pipeline

3. create another match stage and put it in the beginning of the pipeline

4. translate SELECT and ORDER BY clauses into a set of group, project
and sort stages and append them to the pipeline

Below we describe in detail each of these steps and we show the stages
produced from the following OAQL2 query:

SELECT s.id AS serviceID, r1.path, r2.path

FROM Service s

JOIN Request r1 ON s

JOIN Request r2 ON s

WHERE r1.method="post"

AND r2.method="put"

ORDER BY s.title ASC, s.description DESC

This query �nds each service with a POST and a PUT request and returns the
id of the service, as well as the paths of these two requests. It also sorts the
results by the title and description of the service.

5.5.1 Step 1: translating FROM clause

In this step, we translate the FROM clause of an OAQL2 query into a series
of project, unwind and addFields stages. The purpose of these stages is to
convert the metadata objects into objects corresponding to the entries of the
table described by the FROM clause. Each object in the output of these stages
corresponds to one entry and has the following form:

55

{

"<table1>": {

"<field1>": <value> ,

"<field2>": <value> ,

...

},

"<table2>": {

...

},

...

}

First, we create a tree with one node for each instance of table speci�ed in
FROM clause and one edge for each join between two tables. Root of the tree
is the table with the least nesting level in the metadata object and the structure
of the tree follows the hierarchy of a metadata object. In the example query,
root of the tree is the Service table and has two children, one for each instance
of Request.

Note that a node in the tree cannot have more than one parent because the
query would have no result. For example consider the following query which
joins the same instance of Schema table with both Request and Response:

SELECT *

FROM Request r

JOIN Schema s ON r

JOIN Response res ON s

There is no schema that belongs to both a request and response. Even if a
request and a response reference the same schema in an OpenAPI description,
we will store separate copies of the schema in the metadata object. Our service
will return an error if given a query with a FROM clause such as this.

Once we create the tree, we add to the pipeline the stages shown below:

{

"$project": {

"<tableAlias>":{

"$concatArrays":[

"$<path1>",

...

]

}

}

},

{

"$unwind":{

"path": "$<tableAlias>"

}

}

The function of these stages is to concatenate all arrays corresponding to the
root table in each metadata object, store the result under the alias of the root
table and unwind it.

56

Note that we need to repeat the unwind stage a number of times equal to
the maximum nesting level of the arrays we concatenated.

In the example query, the root table is Service and the pipeline stages are:

{

"$project": {

"s":{

"$concatArrays":[

"$Service"

]

}

}

},

{

"$unwind": "$s"

}

We used one unwind stage because the "Service" array is at the top level of the
document and therefore has a nesting level of 1. If the root table was Request,
we would add a second unwind stage identical to the �rst because the "Request"
array is inside the "Service" array and therefore has a nesting level of 2.

There is a special case when the root table is Property or Item because these
tables can be joined with themselves and therefore the arrays corresponding to
them might be located at any depth inside the arrays corresponding to Schema
tables. To solve this, we need to execute a Javascript function that concatenates
these arrays from each document. First, we add the project and unwind stages
that concatenate the arrays corresponding to Schema table as described above.
Then we add the following stages:

{

"$project": {

"<tableAlias>": {

"$function": {

"body": "<JS function>",

"args": [

"$<tableAlias>"

],

"lang": "js"

}

}

}

},

{

"$unwind": "$<tableAlias>"

}

The JS function is a function that �nds all arrays named "Property" or "Item"
inside the document depending on which of the two is the root table, concate-
nates them and returns the result.

The output of these stages is one document for each entry of the root table.
After this, we follow a recursive process for each node of the tree, beginning

57

with the root. For each child of the current node, we add the following pipeline
stages:

{

"$addFields":{

"<child1Alias>": "$<currentTableAlias>.<child1>",

...

}

},

{

"$unwind":{

"path": "$<child1Alias>",

"preserveNullAndEmptyArrays": true

}

},

...

Then, we repeat this process for each child node. The �rst of the above stages
adds for each child node a �eld with a copy of the array corresponding to the
child table. The next stages unwind all newly added �elds.

The stages for this process in the example query are:

{

"$addFields": {

"r2": "$s.Request",

"r1": "$s.Request"

}

},

{

"$unwind": {

"path": "$r1",

"preserveNullAndEmptyArrays": true

}

},

{

"$unwind": {

"path": "$r2",

"preserveNullAndEmptyArrays": true

}

}

The output of all the pipeline stages described until now will be one document
for each entry of the table formed in FROM clause.

5.5.2 Step 2: translating WHERE clause

In this step, we translate the WHERE clause of an OAQL2 query into a match
stage. This stage discards documents (table entries) that do not satisfy the
conditions speci�ed in WHERE clause. If there is no WHERE clause in a
query, this stage is omitted.

The translation rules to produce the match stage are given at the table
below:

58

OAQL2 MongoDB

WHERE <condition> {"$match": <condition> }

<condition1> AND <condition2> {"$and": [<condition1>, <condition2>] }

<condition1> OR <condition2> {"$or": [<condition1>, <condition2>] }

<field> <operator> <value> {"<field>": {"<operator>": <value>} }

<field> IS NULL {"<field>": {"$exists": false} }

<field> IS NOT NULL {"<field>": {"$exists": true} }

<field> LIKE <value> {

"<field>": {

"$regex": <value>,

"$options": "s"

}

}

<field1> <operator> <field2> {

"$expr": {

"<operator>": [

"<field1>",

"<field2>"

]

}

}

59

<field1> IN <field2> {

"$expr":{

"$in":[

"<field1>",

{

"$cond":[

{

"$isArray":"<field2>"

},

"<field2>",

[]

]

}

]

}

}

We translate the operators as shown below:

OAQL2 operator MongoDB operator

= $eq
<> $ne
> $gt
>= $gte
< $lt
<= $lte

When applying the rule for the translation of <field> LIKE <value>, we
make some changes to the value in order to �t MongoDB's regular expression
rules. We add the characters "^" and "$" in the beginning and the end of the
value respectively. We also replace "%" with ".*" and "_" with ".".

When we translate a condition that compares the Response.statusCode �eld
with a numeric value, we also combine with OR the conditions comparing the
�eld with the code ranges that contain codes satisfying the initial condition.
For example, the condition:

Response.statusCode < 201

will be translated into the equivalent of the following:

Response.statusCode < 201

OR Response.statusCode = "2XX"

OR Response.statusCode = "1XX"

When we translate a condition that compares the contentType �eld with a
value, we also combine with OR the conditions comparing the �eld with the
media type ranges the value belongs in. For example, the condition:

Request.contentType ="application/json"

60

will be translated into the equivalent of the following:

Request.contentType = "application/json"

OR Request.contentType = "application/*"

OR Request.contentType = "*/*"

When we translate a condition that checks if the x-refersTo �eld of Schema,
Property or Item table is equal to a value, we also want to return results about
a subclass of that value. First, we execute the following SPARQL query on the
reasoner:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?c

WHERE { ?c rdfs:subClassOf|rdfs:subPropertyOf <value> }

The above query will return all subclasses (or subproperties) of the value, in-
cluding itself since rdfs:subClassOf and rdfs:subPropertyOf are re�exive. Then,
the condition is translated to the following:

{

"$or": [

{

"<tableAlias>.x-refersTo": {

"$in": [

"<subclass1>",

...

]

}

},

{

"<tableAlias>.x-kindOf": {

"$in": [

"<subClass1>",

...

]

}

}

]

}

The above condition checks if the x-refersTo or x-kindOf �eld in the document
is equal to one of the subclasses returned by the reasoner.

When we translate a condition that checks if the x-kindOf �eld of Schema,
Property or Item table is equal to a value, we follow a process similar to when
translating a query on x-refersTo. We execute the same SPARQL query and we
produce almost the same condition. The only di�erence is that we exclude the
given value from the array of subclasses that we query x-refersTo for. This is
because we want only table entries that refer to a specialization of the concept
and not the concept itself.

When translating a condition that checks if the x-operationType �eld of
Request, Callback orWebhook table is equal to a value, we execute the SPARQL
query mentioned previously and the translated condition has the following form:

61

{

"<tableAlias>.x-operationType": {

"$in": [

"<subClass1>",

...

]

}

}

The above condition checks if the x-operationType �eld is equal to one of the
subclasses returned by the reasoner.

The match stage for the example query is:

{

"$match": {

"$and": [

{

"r1.method": {

"$eq": "post"

}

},

{

"r2.method": {

"$eq": "put"

}

}

]

}

}

5.5.3 Step 3: creating another match stage

In this step we create another match stage, di�erent from the one created in the
previous step, which will be placed in the beginning of the pipeline.

This stage is produced by following the same rules de�ned in the previous
step with one exception. This stage cannot check conditions with table �elds
as both operands. To avoid losing documents, it assumes that these conditions
are always true for all documents.

We also need to specify the full path in the metadata object of any �eld
we want to query. For example, we translate the Request.method �eld to "Ser-
vice.Request.method". This becomes more challenging when the array corre-
sponding to the root table is located in more than one places in a metadata
object. In this case, we create a separate condition for each possible path and
we combine them with the OR operator.

The match stage for the example query is:

{

"$match": {

"$and": [

{

"Service.Request.method": {

62

"$eq": "post"

}

},

{

"Service.Request.method": {

"$eq": "put"

}

}

]

}

}

The purpose of this match stage is to reduce the number of documents that
pass through the following stages of the pipeline. It discards metadata objects
that are certain to not contain information satisfying the conditions in WHERE
clause. If the query has no WHERE clause, this stage is omitted.

By being the �rst stage in the pipeline, it searches directly on the collection
of metadata objects and, therefore, can use any existing indexes to speed up the
process.

5.5.4 Step 4: translating SELECT and ORDER BY clauses

In this step, we translate the SELECT and ORDER BY clauses of an OAQL2
query into a set of project, group and sort stages.

The main purpose of these stages is to bring each document to the following
form, showing only the table �elds speci�ed in SELECT clause:

{

"<field1>": <value>,

...

}

This is achieved by using a project stage like the following:

{

"$project":{

"_id": 0,

"<field1Alias>": "$<field1>",

...

}

}

If the keyword "DISTINCT" is given in the query, we use a group and a
replaceRoot stage instead of the project stage described. These two stages group
the documents by the values in the speci�ed �elds and return one document for
each distinct set of values. They have the following form:

{

"$group":{

"_id":{

"<field1Alias>": "$<field1>",

...

63

}

}

},

{

"$replaceRoot":{

"newRoot": "$_id"

}

}

If the query has an ORDER BY clause, we also add a sort stage in the
pipeline. The sort stage has the following form:

{

"$sort": {

"<field1Name>": 1/-1,

...

}

}

Value of 1 means ascending order and -1 means descending. If the "DISTINCT"
keyword is not given in the query, the sort stage is placed before the project
stage described previously so that it is able to sort the documents by �elds that
might not be included in SELECT clause. Otherwise, the sort stage is placed
after the replaceRoot stage.

Note that MongoDB does not allow dots in a key. For this reason we replace
any dots with the character '@' in the table �eld aliases and the server �xes it
before forwarding the result from the database to the client.

Apart from the stages described for this part of the pipeline, we need to add
another project stage in the beginning of this part if the query uses the wildcard
"*". The wildcard means that all table �elds should be returned, including any
extension properties. However, we do not know the names of the extension
properties and thus we cannot write them explicitly to be included like the rest
of the table �elds.

To solve this, we note that each object corresponding to a table entry con-
tains only the �elds corresponding to the table �elds as well as some arrays
corresponding to entries from other tables. The keys of these arrays are known
and we can specify them to be excluded. This is done with the extra project
stage that has the following form:

{

"$project":{

"<table1Alias>":{

"<array1Key>":0,

...

},

...

}

}

Then, the following project or group stage keeps these objects with no change.
They need only to be �attened so that they match the format of the other �elds,
which is done by the server before forwarding the result to the client.

The pipeline stages of this part for the example query are:

64

{

"$sort": {

"s.title": 1,

"s.description": -1

}

},

{

"$project": {

"_id": 0,

"r2@path": "$r2.path",

"r1@path": "$r1.path",

"serviceID": "$s.id"

}

}

5.6 Equivalence of OAQL2 and translated queries

In this section we will show that each MongoDB pipeline produced by the process
described previously can be translated into an OAQL2 query that will always
return the same results with the original OAQL2 query, despite some small
di�erences that they may have in the way they are written. We will show this
by describing the process to translate a pipeline into an OAQL2 query.

To produce the FROM clause of the OAQL2 query from a pipeline, we need
�rst to construct the tree described previously. We �nd the root table from the
�rst project stage (or stages if root table is Property or Item) in the pipeline.
Then, we �nd its children from the addFields stage that follows, each child's
children from the next addFields stages and so on. Once we create the tree, we
can easily write a FROM clause that produces this tree. The only di�erence
it may have from the original query's FROM clause is the order in which the
tables are written but their functionality will be the same.

To produce theWHERE clause of the OAQL2 query from a pipeline, we sim-
ply apply the reverse of the translation rules described for the production of the
match stages. For conditions querying x-refersTo, x-kindOf or x-operationType
we will need to execute SPARQL queries on the reasoner to �nd which value
is the superclass of all the others. The resulting WHERE clause will have the
same functionality with the one from the original query and they will be almost
identical. The only di�erence is the

<field> BETWEEN <value1> AND <value2>

condition which might be translated as

<field> >= <value1> AND <field> <= <value2>

or vice versa.
We produce the SELECT clause from the project or group stage at the end

of the pipeline. We determine if the "DISTINCT" keyword is used by whether
there is a group stage or not and we �nd the table �elds with their aliases
inside the project or group stage. The produced SELECT clause will have
identical functionality to the original one. Their only di�erence might be that
a "SELECT *" clause may be translated as

65

SELECT <table1>.*, <table2>.*, ...

or vice versa.
The ORDER BY clause can be produced from the sort stage towards the

end of the pipeline. In this stage are speci�ed the table �elds to sort by and the
sorting order. The resulting clause will be identical to the original one.

5.7 Indexing

As mentioned previously, the indexes are used by the match stage in the begin-
ning of the pipeline. The role of that stage is to reduce the number of metadata
objects that will pass through the next stages of the pipeline.

Using an index will only save time if it can be used to discard a large number
of documents without searching them. For example, most OpenAPI descriptions
contain at least one GET request, so the existence of an index will not help
when querying about GET requests. However, it will help when searching for a
PATCH request since it is used in less descriptions.

MongoDB sets a limit of up to 64 indexes in a collection. Considering that
the information of some table �elds is contained in many di�erent locations in a
metadata object, we build indexes for the following �elds only on the speci�ed
paths of the metadata object:

Table �eld Indexed paths

Request.method Service.Request.method

Request.path Service.Request.path

Request.contentType Service.Request.contentType

Request.x-operationType Service.Request.x-operationType

Parameter.name Service.Request.Parameter.name

Response.statusCode Service.Request.Response.statusCode

Response.contentType Service.Request.Response.contentType

Header.name Service.Request.Response.Header.name

Security.type Service.Request.Security.type

Schema.x-refersTo

Service.Request.Schema.x-refersTo
Service.Request.Parameter.Schema.x-refersTo
Service.Request.Response.Schema.x-refersTo
Service.Request.Response.Header.Schema.x-refersTo

Schema.x-kindOf

Service.Request.Schema.x-kindOf
Service.Request.Parameter.Schema.x-kindOf
Service.Request.Response.Schema.x-kindOf
Service.Request.Response.Header.Schema.x-kindOf

Schema.type

Service.Request.Schema.type
Service.Request.Parameter.Schema.type
Service.Request.Response.Schema.type
Service.Request.Response.Header.Schema.type

Property.name

Service.Request.Schema.Property.name
Service.Request.Parameter.Schema.Property.name
Service.Request.Response.Schema.Property.name
Service.Request.Response.Header.Schema.Property.name

66

Property.x-refersTo

Service.Request.Schema.Property.x-refersTo
Service.Request.Parameter.Schema.Property.x-refersTo
Service.Request.Response.Schema.Property.x-refersTo
Service.Request.Response.Header.Schema.Property.x-refersTo

Property.x-kindOf

Service.Request.Schema.Property.x-kindOf
Service.Request.Parameter.Schema.Property.x-kindOf
Service.Request.Response.Schema.Property.x-kindOf
Service.Request.Response.Header.Schema.Property.x-kindOf

Property.type

Service.Request.Schema.Property.type
Service.Request.Parameter.Schema.Property.type
Service.Request.Response.Schema.Property.type
Service.Request.Response.Header.Schema.Property.type

Item.x-refersTo

Service.Request.Schema.Item.x-refersTo
Service.Request.Parameter.Schema.Item.x-refersTo
Service.Request.Response.Schema.Item.x-refersTo
Service.Request.Response.Header.Schema.Item.x-refersTo

Item.x-kindOf

Service.Request.Schema.Item.x-kindOf
Service.Request.Parameter.Schema.Item.x-kindOf
Service.Request.Response.Schema.Item.x-kindOf
Service.Request.Response.Header.Schema.Item.x-kindOf

Item.type

Service.Request.Schema.Item.type
Service.Request.Parameter.Schema.Item.type
Service.Request.Response.Schema.Item.type
Service.Request.Response.Header.Schema.Item.type

67

Chapter 6

Results and comparisons

We describe the elements of a query that in�uence the time needed for its execu-
tion in our system, providing also example queries to show these di�erences. In
addition, we compare the execution time of some queries on di�erent systems.

6.1 Performance analysis

In this section, we describe the factors that a�ect the execution time of a query
in our system and we execute some queries to show the di�erence between their
execution times.

The queries are executed on 1000 OpenAPI descriptions taken from Swag-
gerhub, with a total size of 25.9MB. MongoDB needs 7.6MB of memory to store
them, using compression. It also uses another 13.4MB to store the metadata
objects and an additional 2.9MB to store the indexes.

The execution time is counted from the moment our system receives an
HTTP request with an OAQL2 query until the moment it �nishes sending to the
client the results of the query. This means that it includes both the translation
time from OAQL2 to MongoDB query and the time for searching in MongoDB.
The translation time is insigni�cant (less than 2 ms) except for cases in which
we use the reasoner and which will be explained later.

In Appendix C we show the translation to MongoDB queries of some of the
OAQL2 queries below in order to demonstrate the di�erence in simplicity of
syntax.

The following factors a�ect the speed of a query:

� Existence of index on queried table �elds

� Number of documents passing through the pipeline

� Sorting of results

� Querying the �elds x-refersTo, x-kindOf or x-operationType

There are also two special cases:

� FROM clause contains only Property and Item tables

� Conditions in WHERE clause with �elds as both operands

68

6.1.1 Existence of index

Queries on indexed �elds are faster than queries on �elds without index since the
index can help reduce quickly the number of documents that will be examined.

The �rst of the queries below �nds services containing a property named
"�rstName" or "lastName" in the request payload and the second query �nds
services that contain a response with status code 404. We execute these queries
before and after we build an index on �elds Property.name and Response.statusCode:

Query Without index With index
SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Schema sc ON r
JOIN Property p ON sc
WHERE p.name = "�rstName"
OR p.name = "lastName"

95ms 74ms

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
WHERE res.statusCode = 404

208ms 189ms

We can see that the queries are faster when an index exists on the queried �elds.

6.1.2 Number of documents passing through the pipeline

The more documents that pass through the pipeline, the slower a query will be
since MongoDB executes operations on each document. The number of doc-
uments depends on the number of metadata objects that contain information
satisfying the conditions in WHERE clause of the query. These metadata ob-
jects will be split to create the documents corresponding to table entries while
the rest will be discarded at the �rst stage of the pipeline.

The �rst of the queries below �nds services that contain a PATCH method
and the second �nds services containing a GET method. The PATCH method
is used in less OpenAPI descriptions than the GET method, so we expect the
�rst query to be faster.

Query Execution time Number of entries in result
SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "patch"

90ms 511

SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "get"

179ms 6936

We also execute the queries shown in tables B.1 and B.3 in Apppendix B.
The queries in these two tables are similar, with their only di�erence being the
conditions in WHERE clause. The queries in table B.1 request less common
values while the queries in table B.3 request values contained in most OpenAPI
descriptions. Therefore, the queries in table B.1 will be faster.

Below we present the average execution time needed per query and the
average number of table entries in the result per query for each of the tables
B.1 and B.3:

69

Average execution time Average number of entries in result

Table B.1 96ms 566
Table B.3 273ms 14803

As expected, the average time for table B.1 is less than for table B.3.
Another factor a�ecting the number of documents passing through the pipeline

is the number of tables joined in FROM clause. This number determines the
size of the �nal table that will be created and whose number of entries equals
the number of documents that will pass through the pipeline.

Both requests below �nd services containing a response with status code
201. However, the second query includes two instances of Response table in
its FROM clause. This will lead to forming a bigger table, which means more
documents in the pipeline and, thus, a slower query.

Query Execution time Number of entries in result
SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
WHERE res.statusCode = 201

128ms 1225

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
JOIN Response res2 ON r
JOIN Response res3 ON r
WHERE res.statusCode = 201

186ms 15372

We also execute the queries shown in table B.5 in Apppendix B. The queries
in this table have the same functionality with those in table B.1. However,
the queries in table B.5 include more joins in FROM clause which makes them
slower.

Below we present the average execution time needed per query and the
average number of entries in the result per query for each of the tables B.1
and B.5:

Average execution time Average number of entries in result

Table B.1 96ms 566
Table B.5 127ms 7607

We can see that the average execution time for table B.1 is less than for table
B.5.

6.1.3 Sorting

When an OAQL2 query uses the ORDER BY clause, it requests sorting of
the entries in the result. This sorting causes an additional delay during the
execution of the query. The execution of the queries below shows this di�erence
in performance:

70

Query Execution time Number of results
SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "patch"

90ms 511

SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "patch"
ORDER BY r.path DESC

4.3sec 511

Both of the above queries return the titles of services containing a PATCH
request. We can see that the second query is much slower because it also sorts
the request paths before returning them.

We execute the queries shown in table B.7 and compare the average execution
time per query with that of the queries in table B.1. The queries in table B.7
are almost identical to those of table B.1. The only di�erence is the addition of
an ORDER BY clause which makes them slower.

Average execution time Average number of entries in result

Table B.1 96ms 566
Table B.7 3.5sec 566

6.1.4 Querying x-refersTo, x-kindOf, x-operationType

Querying x-refersTo, x-kindOf or x-operationType will cause the additional delay
of using the reasoner to �nd the subclasses or subproperties of the given value.

We demonstrate this with the queries below. The �rst query �nds services
containing a PATCH request. The second query speci�es an additional condition
on x-refersTo �eld.

Query Execution time Number of results
SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Schema sc ON r
WHERE r.method = "patch"

71ms 538

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Schema sc ON r
WHERE r.method = "patch"
OR sc.x-refersTo = "https://schema.org/Store"

106ms 538

The second query is slower than the �rst because it searches for Schema
objects annotated to the "Store" concept. Therefore, the system will request
the subclasses of "Store" from the reasoner, which causes the additional delay.
Then, the query will return all table entries in which x-refersTo or x-kindOf is
equal to one of those subclasses.

6.1.5 Special cases

When the FROM clause contains only Property and Item tables, the query is
slower because we need to execute a Javascript function for each document as
described previously. However, such queries will be rare because the user will
usually want information from other tables as well. This delay is shown by the
queries below:

71

Query Execution time Number of results
SELECT p.type
FROM Property p
JOIN Schema s ON p
WHERE p.name = "products"

512ms 16

SELECT p.type
FROM Property p
WHERE p.name = "products"

12.5sec 38

The �rst query of the above �nds all schemas containing a property named
"products" and returns the type of that property. The second query returns the
type of all properties named "products" which can be a property in a schema,
a property of another property and so on. This makes the second query slower.

As mentioned, conditions with �elds as both operands are assumed to be
satis�ed by all documents at the match stage in the �rst part of the pipeline.
This leads to a larger table in 'FROM' clause and therefore to slower execution
as shown by the queries below:

Query Execution time Number of results
SELECT DISTINCT s.id
FROM Tag t
JOIN Service s ON t
JOIN Request r ON s
WHERE t.name IN r.tags
AND r.method = "put"

733ms 234

SELECT DISTINCT s.id
FROM Tag t
JOIN Service s ON t
JOIN Request r ON s
WHERE t.name IN r.tags
OR r.method = "put"

954ms 721

The �rst query �nds services containing a PUT request with a tag, while the
second query �nds services that either de�ne tags for their requests or de�ne
a PUT request. In the �rst query, the �rst stage of the pipeline can discard
all descriptions not containing a PUT method. However, in the second query,
assuming that the �rst condition is true makes the whole condition true so
the �rst stage of the pipeline cannot discard any descriptions and the query is
slower.

6.2 Performance comparisons

In this chapter, we compare the performance of the following three systems:

� the system we implemented

� a system which stores OpenAPI descriptions in a MongoDB and searches
directly on them instead of creating and querying metadata objects

� the previous system [6]

We will show that our system has better performance than the other two.
First, we compare our system with the previous one. We loaded into each

system 100 OpenAPI descriptions taken from Swaggerhub with a total size of
2.1MB. We did not use all of the 1000 OpenAPI descriptions that we used in
the previous section because the queries in the previous system timed out after
75 seconds and were cancelled before returning a result. Below we show some

72

OAQL2 queries with the equivalent queries in OpenAPI QL (the language of
the previous system) and the execution time in each system:

Query Execution time

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
WHERE req.method = "get"

51ms

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req
WHERE s.request = req
AND req.method = "get"

464ms

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
WHERE req.contentType = "application/json"

54ms

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req
WHERE s.request = req
AND req.media_type = "application/json"

6.7sec

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Parameter p ON req
WHERE p.name = "limit"
AND p.in = "query"

36ms

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req,
QueryParam qp
WHERE s.request = req
AND req.queryparam = qp
AND qp.name = "limit"

9.6sec

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Security sec ON req
WHERE sec.apiKeyName = "api_key"
AND sec.apiKeyIn = "header"

30ms

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req,
ApiKeyAuth ap
WHERE s.request = req
AND req.apikeyauth = ap
AND ap.name = "api_key"
AND ap.in = "header"

13.9sec

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Response resp ON req
JOIN Schema sc ON req
JOIN Property p ON sc
WHERE req.contentType = "application/json"
AND p.name = "id"
AND resp.statusCode BETWEEN 199 AND 209

37ms

73

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req,
Response resp,
Schema sc
WHERE s.request = req
AND req.media_type = "application/json"
AND req.schema = sc
AND sc.property = "id"
AND req.response = resp
AND resp.status_code BETWEEN 199 AND 209

9.7sec

OAQL2

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Response resp ON req
JOIN Schema sc1 ON req
JOIN Property p1 ON sc1
JOIN Schema sc2 ON resp
JOIN Property p2 ON sc2
WHERE (req.method = "post"
AND req.contentType = "application/json"
AND p1.name = "payload")
OR p2.name = "payload"

31ms

OpenAPI QL

SELECT s.id AS service_id
FROM Service s,
Request req,
Response resp,
Schema sc
WHERE s.request = req
AND req.method = "post"
AND req.media_type = "application/json"
AND req.schema = sc
AND sc.property = "payload"
OR req.response = resp
AND resp.schema = sc
AND sc.property = "payload"

3.4sec

We can see that our system has much better performance than the previous
one. The main reason for this is that the previous system uses a Couchbase as
its database. Queries on OpenAPI descriptions are very complex and Couchbase
does not handle them as e�ciently as MongoDB. Another reason is the lack of
indexes in the previous system.

In the following table we compare our system with a system that searches
directly on the OpenAPI descriptions in a MongoDB without creating metadata
objects. We use the 1000 OpenAPI descriptions with a total size of 25.9MB that
we used for the queries in the previous section. We execute the same queries as
above:

Query Our system System without metadata
SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
WHERE req.method = "get"

179ms 280ms

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
WHERE req.contentType = "application/json"

168ms 375ms

74

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Parameter p ON req
WHERE p.name = "limit"
AND p.in = "query"

67ms 291ms

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Security sec ON req
WHERE sec.apiKeyName = "api_key"
AND sec.apiKeyIn = "header"

49ms 357ms

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Response resp ON req
JOIN Schema sc ON req
JOIN Property p ON sc
WHERE req.contentType = "application/json"
AND resp.statusCode BETWEEN 199 AND 209
AND p.name = "id"

135ms 498ms

SELECT s.id AS service_id
FROM Service s
JOIN Request req ON s
JOIN Response resp ON req
JOIN Schema sc1 ON req
JOIN Property p1 ON sc1
JOIN Schema sc2 ON resp
JOIN Property p2 ON sc2
WHERE (req.method = "post"
AND req.contentType = "application/json"
AND p1.name = "payload")
OR p2.name = "payload"

405ms 845ms

We can see that our system is faster. This happens mainly because our
system uses indexes to speed up the search.

75

Chapter 7

Conclusions and future work

In this thesis, we de�ned OAQL2 (OpenAPI Query Language 2) which is a lan-
guage for �nding web services by querying their OpenAPI descriptions. This
language is very similar to SQL and allows the user to query or view information
from almost all objects and �elds in an OpenAPI description. We also imple-
mented a web service that is able to execute OAQL2 queries and consists of a
Java server and a MongoDB database.

7.1 Conclusions

As mentioned, the syntax of OAQL2 is by design similar to the syntax of SQL.
A user who knows SQL and is familiar with the concepts of REST architecture
should be able to understand and use OAQL2 without any knowledge of the
OpenAPI Speci�cation. However, a user who is not familiar with the OpenAPI
Speci�cation may not understand the purpose and meaning of many �elds and
tables.

OAQL2 is designed as an improved version of OpenAPI QL. Speci�cally:

� it supports more operators, such as LIKE, IS NULL, IN

� it allows the user to query most �elds of an OpenAPI document as well
as the proposed semantic annotations

� it allows the user to retrieve any de�ned table �elds instead of only Ser-
vice.id

Besides fully supporting OAQL2, the implementation described in this the-
sis also has the following advantages compared to the system implemented in
previous work:

� it is much faster

� it supports searching in composite schema objects

� it uses reasoning when querying x-refersTo, x-kindOf and x-operationType
�elds

76

Our system needs more than double the memory of the previous system
since, besides the OpenAPI descriptions, it also stores a metadata object for
each description and keeps indexes. However, we are more interested in the
performance of the system than the space requirements.

7.2 Future work

An idea for future work is that, along with the results returned by our system,
queries about a schema object should also return schema objects that are an-
notated to the same semantic concepts with the results. This would require to
execute the query normally and get the results, use reasoning to �nd all sub-
classes of all concepts the schema objects in the results are annotated to and,
lastly, execute another query to �nd schema objects that are annotated to the
concepts returned by the reasoner.

Another idea is to try to create a semantic model for schema objects that
are not annotated to a semantic concept. These objects will be automatically
annotated to a concept by the system based on the values of their �elds and
similarities with other objects.

77

References

[1] Representational state transfer. https : / / en . wikipedia . org / wiki /
Representational_state_transfer.

[2] OpenAPI Speci�cation v3.1.0. https://spec.openapis.org/oas/v3.1.
0.

[3] Semantic Web. https://en.wikipedia.org/wiki/Semantic_Web.

[4] Resource Description Framework. https://en.wikipedia.org/wiki/
Resource_Description_Framework.

[5] N. Mainas and E. Petrakis. �Soas 3.0: Semantically enriched openapi 3.0
descriptions and ontology for rest services�. In: IEEE Intern. Conf. on Se-
mantic Computing (ICSC 2020). San Diego, California, 2020, pp. 207�210.
url: http://www.intelligence.tuc.gr/~petrakis/publications/
ICSC2020.pdf.

[6] I.M. Stergiou. �Searching in REST service catalogues with OpenAPI de-
scriptions�. Diploma Thesis. School of Electrical and Computer Engineer-
ing, Technical University of Crete, Oct. 2021.

[7] JSONPath - XPath for JSON. https : / / goessner . net / articles /

JsonPath/.

[8] JSONQuery: Data Querying Beyond JSONPath. https://www.sitepen.
com/blog/jsonquery-data-querying-beyond-jsonpath.

[9] Jaql. https://en.wikipedia.org/wiki/Jaql.

[10] JSONiq. https://www.jsoniq.org/.

[11] Enqing Tang and Yushun Fan. �Performance Comparison between Five
NoSQL Databases�. In: 2016 7th International Conference on Cloud Com-
puting and Big Data (CCBD). 2016, pp. 105�109. doi: 10.1109/CCBD.
2016.030.

[12] Linggis Galih Wiseso, Mahmud Imrona, and Andry Alamsyah. �Perfor-
mance Analysis of Neo4j, MongoDB, and PostgreSQL on 2019 National
Election Big Data Management Database�. In: 2020 6th International
Conference on Science in Information Technology (ICSITech). 2020, pp. 91�
96. doi: 10.1109/ICSITech49800.2020.9392041.

78

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.intelligence.tuc.gr/~petrakis/publications/ICSC2020.pdf
http://www.intelligence.tuc.gr/~petrakis/publications/ICSC2020.pdf
https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://www.sitepen.com/blog/jsonquery-data-querying-beyond-jsonpath
https://www.sitepen.com/blog/jsonquery-data-querying-beyond-jsonpath
https://en.wikipedia.org/wiki/Jaql
https://www.jsoniq.org/
https://doi.org/10.1109/CCBD.2016.030
https://doi.org/10.1109/CCBD.2016.030
https://doi.org/10.1109/ICSITech49800.2020.9392041

Appendix A

Format of metadata object

Below we show the format of a metadata object with all of its �elds. We
abbreviate the contents of �elds that are repeated in di�erent locations to three
dots.

{

"Service": [

{

"contactEmail": <value>,

"contactName": <value>,

"contactUrl": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"id": <value>,

"jsonSchemaDialect": <value>,

"licenseName": <value>,

"licenseUrl": <value>,

"openapiVersion": <value>,

"termsOfService": <value>,

"title": <value>,

"version": <value>,

"Request": [

{

"bodyDescription": <value>,

"bodyRequired": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"method": <value>,

"operationId": <value>,

"path": <value>,

"summary": <value>,

"tags": <value>,

79

"x-operationType": <value>,

"Callback": [

{

"bodyDescription": <value>,

"bodyRequired": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"method": <value>,

"name": <value>,

"operationId": <value>,

"path": <value>,

"summary": <value>,

"tags": <value>,

"x-operationType": <value>,

"Example": [

{

"description": <value>,

"externalValue": <value>,

"name": <value>,

"summary": <value>,

"value": <value>

},

...

],

"Parameter": [

{

"allowEmptyValue": <value>,

"allowReserved": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"explode": <value>,

"in": <value>,

"name": <value>,

"required": <value>,

"style": <value>,

"Example": [...],

"Schema": [

{

"const": <value>,

"contentEncoding": <value>,

"contentMediaType": <value>,

"default": <value>,

"deprecated": <value>,

"description": <value>,

"enum": <value>,

80

"examples": <value>,

"exclusiveMaximum": <value>,

"exclusiveMinimum": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"format": <value>,

"maxItems": <value>,

"maxLength": <value>,

"maxProperties": <value>,

"maximum": <value>,

"minItems": <value>,

"minLength": <value>,

"minProperties": <value>,

"minimum": <value>,

"multipleOf": <value>,

"pattern": <value>,

"readOnly": <value>,

"required": <value>,

"title": <value>,

"type": <value>,

"uniqueItems": <value>,

"writeOnly": <value>,

"x-collectionOn": <value>,

"x-kindOf": <value>,

"x-refersTo": <value>,

"Item": [

{

"const": <value>,

"contentEncoding": <value>,

"contentMediaType": <value>,

"default": <value>,

"deprecated": <value>,

"description": <value>,

"enum": <value>,

"examples": <value>,

"exclusiveMaximum": <value>,

"exclusiveMinimum": <value>,

"format": <value>,

"maxItems": <value>,

"maxLength": <value>,

"maxProperties": <value>,

"maximum": <value>,

"minItems": <value>,

"minLength": <value>,

"minProperties": <value>,

"minimum": <value>,

"multipleOf": <value>,

"pattern": <value>,

"readOnly": <value>,

81

"required": <value>,

"title": <value>,

"type": <value>,

"uniqueItems": <value>,

"writeOnly": <value>,

"x-collectionOn": <value>,

"x-kindOf": <value>,

"x-refersTo": <value>,

"Item": [...],

"Property": [

{

"allowReserved": <value>,

"const": <value>,

"contentEncoding": <value>,

"contentMediaType": <value>,

"contentType": <value>,

"default": <value>,

"deprecated": <value>,

"description": <value>,

"enum": <value>,

"examples": <value>,

"exclusiveMaximum": <value>,

"exclusiveMinimum": <value>,

"explode": <value>,

"format": <value>,

"maxItems": <value>,

"maxLength": <value>,

"maxProperties": <value>,

"maximum": <value>,

"minItems": <value>,

"minLength": <value>,

"minProperties": <value>,

"minimum": <value>,

"multipleOf": <value>,

"name": <value>,

"pattern": <value>,

"readOnly": <value>,

"required": <value>,

"style": <value>,

"title": <value>,

"type": <value>,

"uniqueItems": <value>,

"writeOnly": <value>,

"x-collectionOn": <value>,

"x-kindOf": <value>,

"x-refersTo": <value>,

"xmlAttribute": <value>,

"xmlName": <value>,

"xmlNamespace": <value>,

82

"xmlPrefix": <value>,

"xmlWrapped": <value>,

"Header": [

{

"allowEmptyValue": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"explode": <value>,

"name": <value>,

"required": <value>,

"style": <value>,

"Example": [...],

"Schema": [...]

},

...

],

"Item": [...],

"Property": [...]

},

...

]

},

...

],

"Property": [...]

},

...

]

},

...

],

"Response": [

{

"contentType": <value>,

"description": <value>,

"statusCode": <value>,

"Example": [...],

"Header": [...],

"Link": [

{

"description": <value>,

"name": <value>,

"operationId": <value>,

"operationRef": <value>,

"requestBody": <value>,

"serverDescription": <value>,

"url": <value>,

"LinkParameter": [

83

{

"name": <value>,

"value": <value>

},

...

],

"ServerVariable": [

{

"default": <value>,

"description": <value>,

"enum": <value>,

"name": <value>

},

...

]

},

...

],

"Schema": [...]

},

...

],

"Schema": [...],

"Security": [

{

"apiKeyIn": <value>,

"apiKeyName": <value>,

"description": <value>,

"httpBearerFormat": <value>,

"httpScheme": <value>,

"name": <value>,

"oauth2ClientCredRefreshUrl": <value>,

"oauth2ClientCredTokenUrl": <value>,

"oauth2CodeAuthUrl": <value>,

"oauth2CodeRefreshUrl": <value>,

"oauth2CodeTokenUrl": <value>,

"oauth2ImplAuthUrl": <value>,

"oauth2ImplRefreshUrl": <value>,

"oauth2PassRefreshUrl": <value>,

"oauth2PassTokenUrl": <value>,

"openIdConnectUrl": <value>,

"type": <value>,

"SecurityScope": [

{

"description": <value>,

"name": <value>

},

...

]

84

},

...

],

"Server": [

{

"description": <value>,

"url": <value>,

"ServerVariable": [...]

},

...

]

},

...

],

"Example": [...],

"Parameter": [...],

"Response": [...],

"Schema": [...],

"Security": [...],

"Server": [...]

},

...

],

"Tag": [

{

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"name": <value>,

"Schema": [...]

},

...

],

"Webhook": [

{

"bodyDescription": <value>,

"bodyRequired": <value>,

"contentType": <value>,

"deprecated": <value>,

"description": <value>,

"extDocsDescription": <value>,

"extDocsUrl": <value>,

"method": <value>,

"name": <value>,

"operationId": <value>,

"summary": <value>,

"tags": <value>,

"x-operationType": <value>,

"Example": [...],

85

"Parameter": [...],

"Response": [...],

"Schema": [...],

"Security": [...],

"Server": [...]

},

...

]

},

...

]

}

86

Appendix B

Results

Table B.1: Queries on less common values

Query Time Number of rows in result
SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "patch"

90ms 511

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
WHERE res.statusCode = 201

128ms 1225

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
WHERE res.contentType = "application/octet-stream"

52ms 300

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Schema sc ON req
WHERE sc.type = "string"

42ms 149

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Schema sc2 ON res
WHERE sc.type = "string"
OR sc2.type = "string"

224ms 1131

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Property p ON sc
WHERE p.name = "latitude"
OR res.statusCode = 210

38ms 78

87

Table B.3: Queries on very common values

Query Time Number of rows in result
SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "get"

179ms 6936

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
WHERE res.statusCode = 200

278ms 13599

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
WHERE res.contentType = "application/json"

301ms 22358

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Schema sc ON req
WHERE sc.type = "object"

167ms 6209

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Schema sc2 ON res
WHERE sc.type = "object"
OR sc2.type = "object"

493ms 37976

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Property p ON sc
WHERE p.name = "data"
OR res.statusCode = 204

217ms 1742

88

Table B.5: Queries with many joins

Query Time Number of rows in result
SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
JOIN Response res2 ON r
WHERE r.method = "patch"

96ms 5753

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
JOIN Response res2 ON r
JOIN Response res3 ON r
WHERE res.statusCode = 201

186ms 15372

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Request req2 ON s
WHERE res.contentType = "application/octet-stream"

115ms 19201

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Schema sc ON req
JOIN Tag ON s
JOIN Response res ON req
JOIN Header ON res
JOIN Parameter ON req
WHERE sc.type = "string"

64ms 1898

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Schema sc2 ON res
JOIN Parameter p ON req
JOIN Schema sch ON p
JOIN Header ON res
WHERE sc.type = "string"
OR sc2.type = "string"

262ms 3162

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Property p ON sc
JOIN Response res2 ON req
JOIN Schema sc2 ON req
WHERE p.name = "latitude"
OR res.statusCode = 210

37ms 256

89

Table B.7: Queries with ORDER BY clause

Query Time Number of rows in result
SELECT s.id
FROM Service s
JOIN Request r ON s
WHERE r.method = "patch"
ORDER BY r.path DESC

4.3sec 511

SELECT s.id
FROM Service s
JOIN Request r ON s
JOIN Response res ON r
WHERE res.statusCode = 201
ORDER BY s.title, r.path

8.4sec 1225

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
WHERE res.contentType = "application/octet-stream"
ORDER BY req.contentType

1.7sec 300

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Schema sc ON req
WHERE sc.type = "string"
ORDER BY s.description DESC

51ms 149

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Schema sc2 ON res
WHERE sc.type = "string"
OR sc2.type = "string"
ORDER BY req.method

6.3sec 1131

SELECT s.id
FROM Service s
JOIN Request req ON s
JOIN Response res ON req
JOIN Schema sc ON req
JOIN Property p ON sc
WHERE p.name = "latitude"
OR res.statusCode = 210
ORDER BY req.method, s.title

41ms 78

90

Appendix C

Translated OAQL2 queries

Below we show some of the OAQL2 queries from section 6.1 and their translation
as MongoDB queries.

C.1

OAQL2:

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Schema sc ON r

JOIN Property p ON sc

WHERE p.name = "message"

OR p.name = "secret"

Translation in MongoDB:

aggregate([

{

"$match": {

"$or": [

{

"Service.Request.Schema.Property.name": {

"$eq": "message"

}

},

{

"Service.Request.Schema.Property.name": {

"$eq": "secret"

}

}

]

}

},

{

"$project": {

"s": "$Service"

}

},

{

91

"$unwind": "$s"

},

{

"$addFields": {

"r": "$s.Request"

}

},

{

"$unwind": {

"path": "$r",

"preserveNullAndEmptyArrays": true

}

},

{

"$addFields": {

"sc": "$r.Schema"

}

},

{

"$unwind": {

"path": "$sc",

"preserveNullAndEmptyArrays": true

}

},

{

"$addFields": {

"p": "$sc.Property"

}

},

{

"$unwind": {

"path": "$p",

"preserveNullAndEmptyArrays": true

}

},

{

"$match": {

"$or": [

{

"p.name": {

"$eq": "message"

}

},

{

"p.name": {

"$eq": "secret"

}

}

]

}

},

{

"$project": {

"_id": 0,

"s@id": "$s.id"

}

}

])

92

C.2

OAQL2:

SELECT s.id

FROM Service s

JOIN Request r ON s

WHERE r.method = "patch"

Translation in MongoDB:

aggregate([

{

"$match": {

"Service.Request.method": {

"$eq": "patch"

}

}

},

{

"$project": {

"s": "$Service"

}

},

{

"$unwind": "$s"

},

{

"$addFields": {

"r": "$s.Request"

}

},

{

"$unwind": {

"path": "$r",

"preserveNullAndEmptyArrays": true

}

},

{

"$match": {

"r.method": {

"$eq": "patch"

}

}

},

{

"$project": {

"_id": 0,

"s@id": "$s.id"

}

}

])

C.3

OAQL2:

93

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Response res ON r

JOIN Response res2 ON r

WHERE r.method = "patch"

Translation in MongoDB:

aggregate([

{

"$match": {

"Service.Request.method": {

"$eq": "patch"

}

}

},

{

"$project": {

"s": "$Service"

}

},

{

"$unwind": "$s"

},

{

"$addFields": {

"r": "$s.Request"

}

},

{

"$unwind": {

"path": "$r",

"preserveNullAndEmptyArrays": true

}

},

{

"$addFields": {

"res": "$r.Response",

"res2": "$r.Response"

}

},

{

"$unwind": {

"path": "$res",

"preserveNullAndEmptyArrays": true

}

},

{

"$unwind": {

"path": "$res2",

"preserveNullAndEmptyArrays": true

}

},

{

"$match": {

"r.method": {

"$eq": "patch"

}

}

},

94

{

"$project": {

"_id": 0,

"s@id": "$s.id"

}

}

])

C.4

OAQL2:

SELECT s.title

FROM Service s

ORDER BY s.title

Translation in MongoDB:

aggregate([

{

"$project": {

"s": "$Service"

}

},

{

"$unwind": "$s"

},

{

"$sort": {

"s.title": 1

}

},

{

"$project": {

"_id": 0,

"s@title": "$s.title"

}

}

])

C.5

OAQL2:

SELECT s.id

FROM Service s

JOIN Request r ON s

JOIN Schema sc ON r

WHERE r.method = "patch"

OR sc.x-refersTo = "https://schema.org/Store"

Translation in MongoDB:

95

aggregate([

{

"$match": {

"$or": [

{

"Service.Request.method": {

"$eq": "patch"

}

},

{

"$or": [

{

"Service.Request.Schema.x-refersTo": {

"$in": [

"https://schema.org/Store",

"https://schema.org/HobbyShop",

"https://schema.org/GroceryStore",

"https://schema.org/HardwareStore",

"https://schema.org/JewelryStore",

"https://schema.org/Florist",

"https://schema.org/HomeGoodsStore",

"https://schema.org/GardenStore",

"https://schema.org/ToyStore",

"https://schema.org/PetStore",

"https://schema.org/SportingGoodsStore",

"https://schema.org/ClothingStore",

"https://schema.org/TireShop",

"https://schema.org/FurnitureStore",

"https://schema.org/BikeStore",

"https://schema.org/ElectronicsStore",

"https://schema.org/LiquorStore",

"https://schema.org/ConvenienceStore",

"https://schema.org/DepartmentStore",

"https://schema.org/PawnShop",

"https://schema.org/AutoPartsStore",

"https://schema.org/MovieRentalStore",

"https://schema.org/MobilePhoneStore",

"https://schema.org/ShoeStore",

"https://schema.org/WholesaleStore",

"https://schema.org/MensClothingStore",

"https://schema.org/OutletStore",

"https://schema.org/ComputerStore",

"https://schema.org/OfficeEquipmentStore",

"https://schema.org/BookStore",

"https://schema.org/MusicStore"

]

}

},

{

"Service.Request.Schema.x-kindOf": {

"$in": [

"https://schema.org/Store",

"https://schema.org/HobbyShop",

"https://schema.org/GroceryStore",

"https://schema.org/HardwareStore",

"https://schema.org/JewelryStore",

"https://schema.org/Florist",

"https://schema.org/HomeGoodsStore",

"https://schema.org/GardenStore",

"https://schema.org/ToyStore",

"https://schema.org/PetStore",

"https://schema.org/SportingGoodsStore",

96

"https://schema.org/ClothingStore",

"https://schema.org/TireShop",

"https://schema.org/FurnitureStore",

"https://schema.org/BikeStore",

"https://schema.org/ElectronicsStore",

"https://schema.org/LiquorStore",

"https://schema.org/ConvenienceStore",

"https://schema.org/DepartmentStore",

"https://schema.org/PawnShop",

"https://schema.org/AutoPartsStore",

"https://schema.org/MovieRentalStore",

"https://schema.org/MobilePhoneStore",

"https://schema.org/ShoeStore",

"https://schema.org/WholesaleStore",

"https://schema.org/MensClothingStore",

"https://schema.org/OutletStore",

"https://schema.org/ComputerStore",

"https://schema.org/OfficeEquipmentStore",

"https://schema.org/BookStore",

"https://schema.org/MusicStore"

]

}

}

]

}

]

}

},

{

"$project": {

"s": "$Service"

}

},

{

"$unwind": "$s"

},

{

"$addFields": {

"r": "$s.Request"

}

},

{

"$unwind": {

"path": "$r",

"preserveNullAndEmptyArrays": true

}

},

{

"$addFields": {

"sc": "$r.Schema"

}

},

{

"$unwind": {

"path": "$sc",

"preserveNullAndEmptyArrays": true

}

},

{

"$match": {

"$or": [

{

97

"r.method": {

"$eq": "patch"

}

},

{

"$or": [

{

"sc.x-refersTo": {

"$in": [

"https://schema.org/Store",

"https://schema.org/HobbyShop",

"https://schema.org/GroceryStore",

"https://schema.org/HardwareStore",

"https://schema.org/JewelryStore",

"https://schema.org/Florist",

"https://schema.org/HomeGoodsStore",

"https://schema.org/GardenStore",

"https://schema.org/ToyStore",

"https://schema.org/PetStore",

"https://schema.org/SportingGoodsStore",

"https://schema.org/ClothingStore",

"https://schema.org/TireShop",

"https://schema.org/FurnitureStore",

"https://schema.org/BikeStore",

"https://schema.org/ElectronicsStore",

"https://schema.org/LiquorStore",

"https://schema.org/ConvenienceStore",

"https://schema.org/DepartmentStore",

"https://schema.org/PawnShop",

"https://schema.org/AutoPartsStore",

"https://schema.org/MovieRentalStore",

"https://schema.org/MobilePhoneStore",

"https://schema.org/ShoeStore",

"https://schema.org/WholesaleStore",

"https://schema.org/MensClothingStore",

"https://schema.org/OutletStore",

"https://schema.org/ComputerStore",

"https://schema.org/OfficeEquipmentStore",

"https://schema.org/BookStore",

"https://schema.org/MusicStore"

]

}

},

{

"sc.x-kindOf": {

"$in": [

"https://schema.org/Store",

"https://schema.org/HobbyShop",

"https://schema.org/GroceryStore",

"https://schema.org/HardwareStore",

"https://schema.org/JewelryStore",

"https://schema.org/Florist",

"https://schema.org/HomeGoodsStore",

"https://schema.org/GardenStore",

"https://schema.org/ToyStore",

"https://schema.org/PetStore",

"https://schema.org/SportingGoodsStore",

"https://schema.org/ClothingStore",

"https://schema.org/TireShop",

"https://schema.org/FurnitureStore",

"https://schema.org/BikeStore",

"https://schema.org/ElectronicsStore",

98

"https://schema.org/LiquorStore",

"https://schema.org/ConvenienceStore",

"https://schema.org/DepartmentStore",

"https://schema.org/PawnShop",

"https://schema.org/AutoPartsStore",

"https://schema.org/MovieRentalStore",

"https://schema.org/MobilePhoneStore",

"https://schema.org/ShoeStore",

"https://schema.org/WholesaleStore",

"https://schema.org/MensClothingStore",

"https://schema.org/OutletStore",

"https://schema.org/ComputerStore",

"https://schema.org/OfficeEquipmentStore",

"https://schema.org/BookStore",

"https://schema.org/MusicStore"

]

}

}

]

}

]

}

},

{

"$project": {

"_id": 0,

"s@id": "$s.id"

}

}

])

99

	Abstract
	Acknowledgements
	Contents
	Introduction
	Problem definition
	Proposed solution
	Thesis outline

	Background
	REST
	OpenAPI Specification
	Semantic Web
	Semantic annotations in OpenAPI
	Related work

	Tables in OAQL2
	Service
	Request
	Callback
	Webhook
	Tag
	Response
	Parameter
	Header
	Schema
	Property
	Item
	Security
	SecurityScope
	Link
	LinkParameter
	Server
	ServerVariable
	Example

	OpenAPI Query Language 2
	SELECT clause
	FROM clause
	WHERE clause
	ORDER BY clause
	Example queries
	Syntax

	Implementation
	Choice of tools
	Description of service
	Server
	Database

	Metadata format
	Algorithm for inserting OpenAPI descriptions
	Parsing Reference objects
	Parsing Schema objects

	Query translation algorithm
	Step 1: translating FROM clause
	Step 2: translating WHERE clause
	Step 3: creating another match stage
	Step 4: translating SELECT and ORDER BY clauses

	Equivalence of OAQL2 and translated queries
	Indexing

	Results and comparisons
	Performance analysis
	Existence of index
	Number of documents passing through the pipeline
	Sorting
	Querying x-refersTo, x-kindOf, x-operationType
	Special cases

	Performance comparisons

	Conclusions and future work
	Conclusions
	Future work

	References
	Format of metadata object
	Results
	Translated OAQL2 queries
	
	
	
	
	

