
Technical University of Crete

Diploma Thesis

Development of an Educational
Graphical Tool for Finite State Machine

Simulation

Author:

George Koykoympedakis

Supervisor:

Michail G. Lagoudakis

(Associate Professor)

Committee:

Antonios Deligiannakis

(Assistant Professor)

Katerina Mania

(Associate Professor)

A thesis submitted in partial fulfilment of the requirements

for the Diploma of Electronic and Computer Engineer

in the

School of Electronic and Computer Engineering

July 2013

http://www.intelligence.tuc.gr/~lagoudakis
http://www.softnet.tuc.gr/~adeli
http://www.music.tuc.gr/kmania
www.ece.tuc.gr

Πολυτεχνείο Κρήτης

Διπλωματική Εργασία

Ανάπτυξη Εκπαιδευτικού Γραφικού

Εργαλείου Προσομοίωσης

Πεπερασμένων Αυτομάτων

Συγγραφέας:

Γιώργος Κουκουμπεδάκης

Επιβλέπων:

Μιχαήλ Γ. Λαγουδάκης

(Αναπληρωτής Καθηγητής)

Επιτροπή:

Αντώνιος Δεληγιαννάκης

(Επίκουρος Καθηγητής)

Αικατερίνη Μανιά

(Αναπληρώτρια Καθηγήτρια)

Εκπόνηση διπλωματικής εργασίας προς μερική διεκπεραίωση των προαπαιτούμενων

για το Δίπλωμα του Ηλεκτρονικού Μηχανικού και Μηχανικού Υπολογιστών

στην

Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών

Ιούλιος 2013

http://www.intelligence.tuc.gr/~lagoudakis/
http://www.softnet.tuc.gr/~adeli
http://www.music.tuc.gr/kmania
www.ece.tuc.gr

Abstract

Automata (also known as state machines) are abstract mathematical models used widely

in theoretical computer science for the study of computability, but also in several prac-

tical applications. In the literature, they are oftentimes depicted as directed graphs.

Their graphical representation makes automata an ideal intuitive way of communicating

fundamental concepts of the Theory of Computation. Many academic institutions use

educational software tools that simulate automata in an interactive way to facilitate

the teaching process. This thesis describes our approach to creating such a software

tool, called FA-Sim, which is a graphical interactive simulator for the most basic type

of automata, called Finite Automata or Finite State Machines. Our tool is consistent

with and customized for the course of Theory of Computation taught at our institution.

The user (student or instructor) is able to graphically create, edit, and simulate any

deterministic or nondeterministic finite automaton on any given input and observe the

resulting computation step-by-step. Additionally, our tool features automatic conversion

from any nondeterministic finite automaton to an equivalent deterministic one. Finally,

our tool supports import of automata specified in the text-based JSON open standard

and export of any automaton’s graphical representation to several image file formats.

Our implementation is based entirely on the Java programming language, following the

principles of object-oriented programming. The graphical user interface was developed

using Swing, the native Java library for user interfaces, and JUNG, a third-party Java

framework for manipulating graphs. The internal representation of automata for the

purposes of storage and retrieval is based on GraphML, an XML-based file format for

graphs. The user evaluations we conducted with students from the Theory of Computa-

tion class revealed several user interface suggestions and preferences, which were taken

into account and incorporated into the latest version of FA-Sim. All student participants

agreed that FA-Sim would indeed be a useful tool in the better understanding of the

concept of finite automata.

Περίληψη

Τα αυτόματα (επίσης γνωστά και ως μηχανές καταστάσεων) είναι αφηρημένα μαθηματικά

μοντέλα που χρησιμοποιούνται ευρέως στη θεωρητική επιστήμη των υπολογιστών για τη

μελέτη της υπολογισιμότητας, αλλά και σε πολλές πρακτικές εφαρμογές. Στη βιβλιογραφία,

συνήθως απεικονίζονται ως κατευθυνόμενοι γράφοι. Η γραφική τους αναπαράσταση τα

καθιστά ένα ιδανικό διαισθητικό τρόπο μετάδοσης θεμελιωδών εννοιών της Θεωρίας Υπ-

ολογισμού. Πολλά ακαδημαϊκά ιδρύματα χρησιμοποιούν εκπαιδευτικά εργαλεία λογισμικού

που προσομοιώνουν αυτόματα με διαδραστικό τρόπο προς διευκόλυνση της εκπαιδευτικής

διαδικασίας. Η παρούσα διπλωματική εργασία περιγράφει την δική μας προσέγγιση για τη

δημιουργία ενός τέτοιου εργαλείου λογισμικού, που ονομάσαμε FA-Sim, και αποτελεί έναν

γραφικό διαδραστικό προσομοιωτή για το πιο βασικό είδος αυτομάτων, τα πεπερασμένα αυτό-

ματα ή μηχανές πεπερασμένων καταστάσεων. Το εργαλείο μας είναι συνεπές με το μάθημα

της Θεωρίας Υπολογισμού που διδάσκεται στο ίδρυμά μας και προσαρμοσμένο στις ανάγκες

του. Ο χρήστης (μαθητής ή διδάσκων) είναι σε θέση να δημιουργήσει, να επεξεργαστεί και

να προσομοιώσει γραφικά οποιοδήποτε ντετερμινιστικό ή μη ντετερμινιστικό πεπερασμένο

αυτόματο σε οποιαδήποτε δεδομένη είσοδο και να παρατηρήσει τον υπολογισμό βήμα προς

βήμα. Επιπλέον, το εργαλείο μας υποστηρίζει την αυτόματη μετατροπή από οποιοδήποτε

μη ντετερμινιστικό πεπερασμένο αυτόματο σε ισοδύναμο ντετερμινιστικό. Τέλος, το ερ-

γαλείο μας υποστηρίζει την εισαγωγή αυτομάτων που περιγράφονται με το ανοικτό πρότυπο

κειμένου JSON και την εξαγωγή της γραφικής αναπαράστασης οποιουδήποτε αυτομάτου σε

διάφορες μορφές αρχείων εικόνας. Η υλοποίησή μας βασίζεται εξ ολοκλήρου στην γλώσσα

προγραμματισμού Java και ακολουθεί τις αρχές του οντοκεντρικού προγραμματισμού. Το

γραφικό περιβάλλον χρήστη αναπτύχθηκε χρησιμοποιώντας την βιβλιοθήκη Swing της Java

για περιβάλλοντα χρήστη και το εργαλείο διαχείρισης γράφων JUNG. Η εσωτερική ανα-

παράσταση αυτομάτων για τις ανάγκες αποθήκευσης και ανάκτησης βασίζεται στο πρό-

τυπο αρχείων για γραφήματα GraphML. Οι αξιολογήσεις των χρηστών που διεξήχθησαν

με φοιτητές από την τάξη της Θεωρίας Υπολογισμού αποκάλυψαν αρκετές προτάσεις και

προτιμήσεις σε θέματα διεπαφής χρήστη, οι οποίες ελήφθησαν υπόψη και ενσωματώθηκαν

στην τελευταία έκδοση του FA-Sim. ΄Ολοι οι συμμετέχοντες συμφώνησαν ότι το εργαλείο

FA-Sim θα μπορούσε πράγματι να φανεί χρήσιμο για την βαθύτερη κατανόηση της έννοιας

των πεπερασμένων αυτομάτων.

Acknowledgements

I thank caffeine, stackoverflow, louis ck, and web crawlers for their support and contri-

bution. I also thank all my friends that helped me through rough times, even without

knowing so.

Special thanks go to:

• My advisor, Michail G. Lagoudakis, who entrusted this project to me, and kept

providing purposeful remarks and constructive ideas until the end.

• My friends John & Nick Agadakos (for the moral boost), Vaggelis Gavalakis (for

the mpalidia) and Nick Papoulias (for the fish).

• Argiro, Manolis and Kostas, my family.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vii

1 Introduction 1

1.1 A World of Finite States . 1

1.2 FA-Sim . 3

1.3 Overview . 3

2 Background 5

2.1 Automata (or acting by one’s self) . 5

2.1.1 Automata and Formal Languages 6

2.1.2 Definition . 7

2.1.3 Educational Value . 8

2.1.4 Deterministic/Nondeterministic Finite Automata 9

2.1.5 Equivalence of DFA and NFA . 13

2.1.6 Regular Languages, Regular Expressions 14

2.1.7 Equivalence with Finite Automata 16

2.2 Tools of the Trade . 17

2.2.1 Java . 18

2.2.2 Java SE . 19

2.2.3 Swing . 20

2.2.4 JUNG . 20

2.2.5 GraphML . 21

2.2.6 JSON . 22

2.2.7 FreeHEP . 23

2.2.8 NetBeans IDE . 24

3 Problem Statement 25

3.1 Motivation . 25

3.2 Yet Another Finite Automata Simulator 27

3.3 Problem Specifications . 27

4 Approach and Implementation 30

4.1 Two Degrees of Decomposition . 30

iv

Contents v

4.2 Machine . 32

4.2.1 Our Core . 32

4.2.2 Nondeterminism . 35

4.2.3 User Input Validation & NFA to DFA Conversion 41

4.2.4 Using JSON as a Finite Automata Description Language 46

4.3 Graphical User Interface (GUI) . 47

4.3.1 Design Patterns: Model-View-Controller 47

4.3.2 Our Design . 49

4.3.3 GUI Components & Layouting . 51

4.3.4 Graph Visualization . 53

4.3.5 Getting Interactive with our Graph 57

4.3.6 Running An Automaton . 59

4.3.7 Saving/Loading . 62

4.3.8 Exporting to Image . 63

4.3.9 Preferences . 64

5 User Evaluation 66

5.1 Method Description: Think-Aloud Evaluation 66

5.2 User Feedback . 67

5.3 Conclusion . 68

6 Related Work 70

6.1 FLAP & JFLAP . 71

6.2 Automaton Simulator . 72

6.3 Visual Automata Simulator (VAS) . 73

6.4 Java Finite Automata Simulation Tool (JFAST) 74

6.5 Additional Screenshots . 75

7 Conclusions 78

7.1 Discussion . 78

7.2 Future Work . 79

7.3 Lessons . 80

A User Manual 84

A.1 Installation . 84

A.2 License . 84

A.3 General . 84

A.3.1 GUI . 85

A.3.2 The FA-Sim Mouse . 87

A.4 Running a Simulation . 89

A.5 Converting an NFA to a DFA . 90

A.6 Importing from JSON . 90

A.7 Exporting to Image Files . 91

A.8 Preferences . 92

A.9 Contact Info . 93

Contents vi

Bibliography 94

List of Figures

2.1 List of automata and their languages . 8

2.2 A simple DFA . 9

2.3 DFA Definition . 11

2.4 An NFA example . 12

2.5 NFA Definition . 13

2.6 Regular Operations . 14

2.7 A simple GraphML example. 22

2.8 An example of using JSON to describe Finite Automata. 23

4.1 Machine Class Diagram (Core) . 32

4.2 Machine Class Diagram (NFA) . 36

4.3 BFS . 39

4.4 Machine Class Diagram (Features) . 41

4.5 Conversion Example (NFA) . 44

4.6 Conversion Example (DFA) . 44

4.7 Our Conversion (NFA) . 45

4.8 Our Conversion (DFA) . 46

4.9 NFA example . 47

4.10 Design . 50

4.11 The five main areas . 52

4.12 GUI Screenshot (empty) . 53

4.13 GUI Screenshot (FRLayout) . 55

4.14 GUI Screenshot (Mouse Modes) . 59

4.15 GUI Screenshot (errors) . 60

4.16 GUI Screenshot (running) . 61

4.17 GUI Screenshot (Save File) . 63

4.18 GUI Screenshot (Export) . 64

4.19 GUI Screenshot(Preferences) . 64

6.1 JFLAP 4 . 71

6.2 Automaton Simulator 2 . 72

6.3 VAS 1 . 73

6.4 JFAST 1 . 74

6.5 JFLAP 1 . 75

6.6 JFLAP 2 . 75

6.7 JFLAP 3 . 76

6.8 VAS 2 . 76

6.9 VAS 3 . 77

vii

List of Figures viii

6.10 JFAST 2 . 77

7.1 Agile Development (Week 2) . 82

7.2 Agile Development (Month 2) . 82

7.3 Agile Development (current) . 82

A.1 The five main areas . 86

A.2 Tape Display and Controls . 86

A.3 Toolbar . 87

A.4 Mouse Mode Buttons . 87

A.5 NFA example . 91

A.6 GUI Screenshot(Preferences) . 92

Chapter 1

Introduction

1.1 A World of Finite States

According to Michael Sipser, as stated in his book Introduction to the Theory of Com-

putation [1], there are three central areas in the theory of computation: automata,

computability, and complexity. Moreover,

“... (these three areas) are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began

to explore the meaning of computation.” [1, p. 1]

Needless to say, hadn’t humanity asked that question, our respected readers would be

staring now at a blank piece of paper authored by a student of a non-existent school. In

other words, computers as we know them would not have existed.

As for the three areas M. Sipser mentions, each relates to a wide scientific area. There is

no coincidence in the fact that every computer scientist is being taught the fundamentals

of these areas and that every curriculum in Computer Science contains at least one

related course.

Our institution (Technical University of Crete) could be no exception to that. In the

respective School of Electronic and Computer Engineering, the undergraduate course on

Theory of Computation covers the fundamentals of exactly these three areas.

Despite how beautifully interesting they might be, the second and third areas (com-

putability and complexity) will not concern us further in this text. Only the first one

1

www.tuc.gr
www.ece.tuc.gr

Chapter 1. Introduction 2

(automata) does related to our purpose, and even so, not in its entirety. So, let us take

a closer look at automata.

Usually, in computation-related courses, Automata Theory is used by instructors to con-

vey the basics of computation and provide a solid, logical link between theoretical and

practical aspects. Automata are truly appropriate for this task, as they were tradition-

ally used by mathematicians to study computation, but quite often are used to solve

practical problems as well. Their field of applications spans across many scientific areas,

such as programming languages, linguistics, natural language processing, artificial intel-

ligence, and even biology. For example, one of the student assignments in our course

involves creating the first stages of a programming language compiler, using automata

to perform the lexical analysis.

However, when it comes to showcasing the importance of automata and their applica-

tions, there is noone better than Stephen Wolfram. In his book “A New Kind of

Science” [2], he studies how sets of finite, simple rules enforced upon a computational

unit with finite states (such as an automaton) can lead to unbelievable levels of com-

plexity, impossibly large degrees of variation, and apparently random processes. This

way, he claims, we can study a multitude of branches of science such as fluid flows,

snowflake and crystal formation, chaos theory, cosmology and many more. It is impres-

sive that automata theory can contribute to a better scientific understanding of these

areas. Stephen Wolfram is considered to be a modern-day pioneer of a specific type

of automata called cellular, and he even goes to the extend to argue that the entire

universe might eventually be describable as a machine with finite sets of states and

rules and a single initial condition.

Unfortunately though, the entire universe cannot be contained in our thesis, so we

digress a bit. What is contained though, is the fact that Automata Theory plays an

important role in Computer Science, and all the students learn about it one way or

another. In order to facilitate this educational process, many universities around the

world employ dedicated software tools, called Automata Simulators. These are tools that

accept a description of an automaton as input and simulate its computation providing it

as output. Furthermore, many authors in recent and past scientific literature argue that

students actually prefer these tools to be accompanied by a Graphical User Interface

and a form of visualization to depict automata and their computations; and to that our

university was indeed an exception. As of July 2013, there was no such tool available

for our course, tailored after our specific needs and in accordance to the textbook we

use, called Elements of the Theory of Computation [3]. Thus, we decided to cover that

need, and the topic for this thesis was born.

Chapter 1. Introduction 3

The result we came up with, was not to be a complete solution to the problem, after all.

Due to time constraints, lack of experience and other factors, we were forced to create a

visual automata simulator that only covers the simplest of all automata: Deterministic

Finite Automata and Nondeterministic Finite Automata . However, despite their

simplicity, these two types are not to be taken lightly. They have numerous important

applications in all domains mentioned above and they adequate as a starting ground

for someone who wants to study Automata Theory. Finite Automata are able to bear

important, fundamental concepts related to the Computation Theory.

The way we see our software tool, the fruit of our work, is quite similar to that: A

starting ground to build upon, towards a complete visual automata simulator; but also,

a starting ground that encompasses more than enough functionality to fulfill it’s role as

a Finite Automata Simulator, used as a pedagogical tool .

1.2 FA-Sim

We called our tool Finite Automata Simulator (FA-Sim). It was implemented in the

Java programming language, while various third-party tools (also written in Java) were

used to facilitate our efforts. The current version comes with a simple, minimalistic,

intuitive Graphical User Interface (GUI), which was implemented using the Swing li-

brary. The GUI itself contains an area responsible for editing and displaying content,

i.e. an area that serves as our canvas. In this area, the user can specify a finite automa-

ton (DFA or NFA) in a graphical way, provide the appropriate input, and simulate its

computation. If this automaton is an NFA, the user has the option to convert it to a

DFA, as well. In any case, the result includes visual feedback on the acceptance or the

rejection of the input, as well as visual feedback on each of the automaton’s execution

steps separately.

Additionally, the user can save or load his design to/from the hard drive, export

the graph to various image file formats, and import an automaton described using the

JSON language. This last feature is quite interesting, because JSON proved to be a

very natural, human-readable means to describe an automaton, even though it had not

been used for that purpose before.

1.3 Overview

If reading the previous sections, made you wonder ”what is he talking about?”, do not

despair. In Chapter 2 we explicitly provide all the required background information,

Chapter 1. Introduction 4

including terminology and basic concepts of Automata Theory. We also list all the tools

we used to implement our automata simulator with appropriate descriptions.

In Chapter 3, we will be discussing our problem specifications and elaborating about the

important role that visual software tools play in education.

Chapter 4, title Approach and Implementation, is the most technical one. Here you will

find descriptions of the thought process behind our approach, the details of our solutions,

a description of the various obstacles that hindered us along the way, and the means we

used to overcome them.

A thesis document about the development of a graphical, educational tool, could not

be missing a chapter about User Evaluation. In Chapter 5 we explain how we used the

”think-aloud evaluation protocol” to conduct an informal evaluation, why we did that,

and how our implementation was affected by our first users’ feedback.

In Chapter 6, titled Related Work, we put our application to yet another test as we de-

scribe various related projects we got our hands on, providing corresponding screenshots.

It is up to you, our readers, to decide whether our application withstands competition

or not.

Our concluding Chapter 7, mainly summarizes our thoughts from the previous two

chapters, and displays the tasks we included into future work. The fellow beginner

programmer might find something useful in the last section about the lessons we learned

during the whole process of development.

Finally, one can find the complete User Manual of our tool in Appendix A. Students

and teachers might prefer to isolate and/or print these few pages, for convenience.

Chapter 2

Background

In order to delve deeper into the specifics of this application, we must first get accus-

tomed with some fundamental concepts which derive from the theory of computation,

graph theory, and linguistics. In short, this chapter will provide some brief explanations,

covering terms such as: finite state machines, formal languages, regular languages, de-

terministic and nondeterministic finite automata and a few others as well.

Secondly, our reader will be able to find a brief overview of the tools we used in our

implementation, the core being Java, a class-based, object-oriented programming lan-

guage. This second section not only will refresh the memory of those with related former

experience, but will also provide a starting ground for the uninitiated as well.

Those of you who already know what a Finite Automaton is, what “nondeterminism”

means, and what Java and Swing are, are encouraged to skip this chapter and return to

it in case you find a missing piece.

So, let us indulge!

2.1 Automata (or acting by one’s self)

Our typical polymath reader has already met the term automaton under several different

contexts, for sure. Some of them might have included: Mathematics, linguistics, com-

puter science, programming, hardware design, artificial intelligence, biology, cosmology,

maybe even sci-fi literature. Whether the occurrence of this term in such a broad field

of scientific endeavor intrigues us or not, one thing is certain: automata, and their study

called Automata Theory, have played a role (from insignificant to leading) in humanity’s

5

Chapter 2. Background 6

greatest technological feats for almost over one and a half century. Humanity still car-

ries —and will continue to carry— the automata theory in its luggage. After this brief

introduction, one should have asked by now: What is an automaton?

Harry Lewis and Christos Papadimitriou, in their book Elements of Theory of Compu-

tation [3], provide us with a disarmingly simple definition of an automaton, in a humble

footnote:

“An automaton (pronounced: o-to-ma-ton, plural: automata is a machine

designed to respond to encoded instructions; a robot.” [3, p. 55]

We will try to expand upon that a bit. Automata theory originates from mathematics,

where we find the notion of an abstract, mathematical object, called abstract machine1

which proved to be quite useful in studying and computing the solutions to specific

categories of problems. In other words, this abstract machine is a mathematical model

of computation. There are many different kinds of automata and we tend to organize

and classify them by the kind of problems they help us model, study, and solve.

2.1.1 Automata and Formal Languages

Automata theory is also closely related to formal language theory and it is very common

to describe an automaton as one that recognizes or accepts a formal language. In fact,

automata are often classified by the class of formal languages they are able to recognize.

So, before proceeding to more formal definitions of automata, we must first make a quick

pass through the basics of formal language theory.

In mathematics, computer science and linguistics, a formal language is a set of strings

of symbols that may be constrained by rules that are specific to it. Different, distinct

sets of rules define different and distinct types of formal languages, respectively. From

all the types of formal languages we can find, we are only interested in the —so called—

regular languages, the ones that can be described and defined by regular expressions, but

more on that later. The alphabet of a formal language is the set of symbols, letters or

tokens from which the strings of the language may be formed; frequently it is required

that the alphabet is finite. The strings formed from this alphabet are called words.

The field of formal language theory studies primarily the purely syntactical aspects of

such languages, or in other words, their internal structural patterns. Formal language

theory sprang out of linguistics, as a way of understanding the syntactic regularities of

1The terms Machine and Automaton are considered equivalent and interchangeable. However, com-
puter scientists tend to prefer using the term Automaton (with the exception of Turing Machines).

Chapter 2. Background 7

natural languages. In computer science, formal languages are used among others as the

basis for defining programming languages and formalized versions of subsets of natural

languages in which the words of the language represent concepts that are associated

with particular meanings or semantics [4].

According to the book Elements of theory of computation [3]: “A central issue in the

theory of computation is the representation of languages by finite specifications”. Later

we read that: “There are many ways of representing a language, each more powerful

than the last in the sense that each is capable of describing languages the previous one

cannot.” [3, p. 47]

In fact, it turns out that Automata are a great, powerful way to represent and depict

formal languages and study the words that formulate under that language’s restrictions.

This is the reason why Automata theory and formal language theory are so closely

related and the reason why automata have vast, enormous applications in computer text

editing, compiler design, natural language processing, programming language design and

artificial intelligence.

2.1.2 Definition

Having said all that, we can attempt another informal definition of an automaton:

An automaton is a mathematical object that is supposed to run on some given sequence

of inputs in discrete-time steps. An automaton reads one input at each time step that is

picked up from a set of symbols that belong to an alphabet. At any time, the symbols

so far fed to the automaton as input, form a word.

An automaton contains a finite set of states. At each step of some run, the automaton

is in one of its states, starting from the starting state. At each time step when the

automaton reads a symbol, it transits to a next state that is decided by a function that

takes current state and the symbol currently read as parameters. This function is called

the transition function. The automaton reads the symbols of the input word one after

another and transits from state to state according to the transition function, until the

word is read completely.

Once the input word has been read, the automaton is said to have been stopped and

the state at which automaton has stopped is called final state. Depending on the final

state, it is said that the automaton either accepts or rejects an input word. There is a

subset of states of the automaton, which is defined as the set of accepting states. If the

final state is an accepting state, the automaton accepts the word. Otherwise, the word

Chapter 2. Background 8

is rejected. The set of all the words accepted by an automaton is called the language

recognized by the automaton [5].

Finally, all computational problems that can be represented in a finite length of symbols

and are reducible into the accept/reject question on words can be studied and solved

using automata. Here lies the reason Automata Theory plays such a crucial role in

computational theory. Also, as we mentioned earlier as well, automata are categorized

by the classes of languages they recognize, because languages themselves model different

types of problems. An indicative, partial list of types of automata, and their respective

languages is given in Figure 2.1.

Figure 2.1: Partial list of automata types and the languages they recognize. [5]

Visual representation

There are certain conventions when it actually comes to depicting an automaton and

we should clearly state what the common consensus is regarding that matter. In the

Elements of the Theory of Computation [3], and almost everywhere else, states are

visually represented by a circle and an identification string. Starting states have a small

arrow (or an arrowhead) pointing to them from anywhere, while accepting states are

represented by a double circle. Transitions are represented by a directed arrow. A string

of symbols (usually a single character) is written nearby, to indicate the appropriate

input that must be given for the machine to perform that particular transition. Our

application, of course, fully complies to all of the above. Figure 2.2 shows a simple

automaton depicted under these notational conventions.

2.1.3 Educational Value

There is no coincidence in the fact that every computer scientist in the world has taken

a course on Automata theory at least once and probably used one directly or through

Chapter 2. Background 9

Figure 2.2: A simple example of an automaton. [5]

its vast array of applications. Automata theory, as a pedagogical tool, is exemplary in

teaching, learning, and researching computation theory. As Michael Sipser states:

“Automata theory is an excellent place to begin the study of the theory of

computation. The theories of computability and complexity require a pre-

cise definition of a computer. Automata theory allows practice with formal

definitions of computation as it introduces concepts relevant to other non-

theoretical areas of computer science.” [1, p. 3]

Automata simulators, accordingly, play their own important role in teaching, learning,

and researching automata theory and have been used in universities for decades. Citing

from the abstract of the review article titled Fifty years of automata simulation: a

review [6],

“The article concludes with an advocacy for continuing research on simula-

tion of automata and integration of automata simulators in teaching.”

Undoubtedly, the development of a similar tool for our needs, in full compliance with

the terminology and notation in the book Elements of theory of computation [3], will

truly enhance the way Theory of Computation is being taught at our institution. Our

own application, falls under the category of visualization-centric automata simulators,

in contrast to the language-based automata simulators1.

2.1.4 Deterministic/Nondeterministic Finite Automata

The subject of this thesis does not concern automata in general, but only two specific

types: 2

1A classification of the automata simulators broadly into these two categories on the basis of their
design paradigms has been developed by Chakraborty et al. [6].

2Strictly speaking there is only one distinct type, the Finite Automaton, with or without the feature
of nondeterminism.

Chapter 2. Background 10

• Deterministic Finite Automata (DFA)

• Nondeterministic Finite Automata (NFA)

DFAs and NFAs, also known as deterministic/nondeterministic finite state machines,

are the simplest of their kind. Quoting from the Elements of Theory of Computation:

“Here we take up a severely restricted model of an actual computer called

a finite automaton, or finite-state machine. The finite automaton shares

with a real computer the fact that it has a “central processing unit” of

fixed, finite capacity. It receives its input as a string, delivered to it on an

input tape. It delivers no output at all, except an indication of whether

or not the input is considered acceptable. It is, in other words, a language

recognition device ... What makes the finite automaton such a restricted

model of real computers is the complete absence of memory outside its fixed

central processor.” [3, p. 55]

Definitions

Our first informal definition derives from trying to describe the operation of a deter-

ministic finite automaton. Quoting from the Elements once again:

”Strings are fed into the device (finite automaton) by means of an input

tape, which is divided into squares, with one symbol inscribed in each tape

square. The main part of the machine itself is a “black box” with innards

that can be, at any specified moment, in one of a finite number of distinct

internal states. This black box —called the finite control— can sense

what symbol is written at any position on the input tape by means of a

movable reading head. Initially, the reading head is placed at the leftmost

square of the tape and the finite control is set in a designated initial state.

At regular intervals the automaton reads one symbol from the input tape

and then enters a new state that depends only on the current state and the

symbol just read ; this is why we shall call this device a deterministic finite

automaton, to be contrasted to the nondeterministic version introduced in

the next section. After reading an input symbol, the reading head moves

one square to the right on the input tape so that on the next move it will

read the symbol in the next tape square. This process is repeated again and

again; a symbol is read, the reading head moves to the right, and the state

of the finite control changes. Eventually the reading head reaches the end of

Chapter 2. Background 11

the input string. The automaton then indicates its approval or disapproval

of what it has read by the state it is in at the end: if it winds up in one of

a set of final states the input string is considered to be accepted. The

language accepted by the machine is the set of strings it accepts.” [3, p.

57]

Taken from the same source, the formal, mathematical definition of a DFA is shown in

Figure 2.3.

Figure 2.3: Formal definition of a Deterministic Finite Automaton [3, p. 57]

The Feature of Nondeterminism

By adding the feature of nondeterminism to a DFA, we get the Nondeterministic Finite

Automaton. This is a new, powerful upgrade in our armament, which vastly facilitates

our design and study of finite automata. However, we must clarify something first.

”NFAs are not meant as realistic models of computers. They are simply a

useful notational generalization of finite automata, as they can greatly sim-

plify the description of these automata.” [3, p. 64]

A first, simplistic way to describe them, would be by noting that although DFAs have

a unique computation for a given input every time, NFAs have multiple parallel com-

putation runs for the same input. But, let us listen to Lewis and Papadimitriou once

again:

”Nondeterminism is essentially the ability to change states in a way that is

only partially determined by the current state and input symbol. That is,

we shall now permit several possible “next states” for a given combination of

curent state and input symbol. The automaton, as it reads the input string,

may choose at each step to go into any one of these legal next states; the

Chapter 2. Background 12

choice is not determined by anything in our model, and is therefore said to

be nondeterministic. On the other hand, the choice is not wholly unlimited

either; only those next states that are legal from a given state with a given

input symbol can be chosen.“ [3, p. 63]

Michael Sipser brings even more light to the issue, by using an example. Figure 2.4

and the text that follow, are both taken from his book, Introduction to the Theory of

Computation:

Figure 2.4: The nondeterministic finite automaton N1.

“ ...First, every state of a DFA always has exactly one exiting transition arrow

for each symbol in the alphabet. The NFA shown in Figure 2.4 violates that

rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one

arrow for 0, but it has none for 1. In an NFA, a state may have zero, one,

or many exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the

alphabet. This NFA has an arrow with the label ε. In general, an NFA may

have arrows labeled with members of the alphabet or ε. Zero, one, or many

arrows may exit from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an

input string and come to a state with multiple ways to proceed. For example,

say that we are in state q1 in the NFA N1 (Figure 2.4) and that the next input

symbol is a 1. After reading that symbol, the machine splits into multiple

copies of itself and follows all the possibilities in parallel. Each copy of the

machine takes one of the possible ways to proceed and continues as before.

If there are subsequent choices, the machine splits again. If the next input

symbol doesn’t appear on any of the arrows exiting the state occupied by a

copy of the machine, that copy of the machine dies, along with the branch

of the computation associated with it. Finally, if any one of these copies of

the machine is in an accept state at the end of the input, the NFA accepts

the input string.

If a state with an ε symbol on an exiting arrow is encountered, something

similar happens. Without reading any input, the machine splits into multiple

Chapter 2. Background 13

copies, one following each of the exiting ε-labeled arrows and one staying

at the current state. Then the machine proceeds nondeterministically as

before.” [1, p. 48]

Viewing nondeterminism as a kind of parallel computation, is one way of thinking, but

in this application we adopted another view, mostly for implementation-related reasons,

by considering the operation of NFAs as a tree of possible computations. Michael Sipser

also mentions that, later on the same page:

“The root of the tree corresponds to the start of the computation. Every

branching point in the tree corresponds to a point in the computation at

which the machine has multiple choices. The machine accepts if at least one

of the computation branches ends in an accept state...” [1, p. 48]

Figure 2.5 shows the formal definition of an NFA, which is a modified version of the one

about DFAs (Figure 2.3), in order to accommodate the feature of nondeterminism:

Figure 2.5: Formal definition of an Nondeterministic Finite Automaton [3, p. 65]

2.1.5 Equivalence of DFA and NFA

In the Elements of Theory of Computation [3, ch. 2.6], it is proven that for each NFA,

there exists an equivalent DFA, such that both recognize the same regular language. In

fact, there is a conversion method that allows us to construct an equivalent DFA from

any given NFA. That method is called powerset construction, or subset construction, or

Rabin-Scott powerset construction [7].

Regarding the fact that DFAs and NFAs are equivalent, Michael Sipser states:

“ Such equivalence is both surprising and useful. It is surprising because

NFAs appear to have more power than DFAs, so we might expect that NFAs

Chapter 2. Background 14

recognize more languages. It is useful because describing an NFA for a

given language sometimes is much easier than describing a DFA for that

language.” [1, p. 54]

Our application features the algorithmic conversion of NFAs to DFAs, using the afore-

mentioned algorithm of powerset construction. More details about the algorithm and

our implementation may be found in the respective chapter.

2.1.6 Regular Languages, Regular Expressions

As mentioned earlier in Automata And Formal Languages (section 2.1.1), the only class

of formal languages that concerns us, is the one DFAs and NFAs recognize, called regular

languages (Figure 2.1).

In both the Elements of Theory of Computation [3] and the Introduction to the Theory

of Computation [1, p. 66] it is proven that: ”A language is regular if and only if some

regular expression describes it.“ So, let us talk about what a regular expression is and

what the regular operations that define it are.

Regular Operations

Quoting directly from the Introduction to the Theory Of Computation [1, p. 44]:

In arithmetic, the basic objects are numbers and the tools are operations

for manipulating them, such as + and ×. In the theory of computation, the

objects are languages and the tools include operations specifically designed

for manipulating them. We define three operations on languages, called the

regular operations, and use them to study properties of the regular languages.

Figure 2.6: The formal definition of regular operations. [1, p. 44]

You are already familiar with the union operation. It simply takes all the

strings in both A and B and lumps them together into one language.

Chapter 2. Background 15

The concatenation operation is a little trickier. It attaches a string from

A in front of a string from B in all possible ways to get the strings in the

new language.

The star operation is a bit different from the other two because it applies

to a single language rather than to two different languages. That is, the star

operation is a unary operation instead of a binary operation. It works

by attaching any number of strings in A together to get a string in the new

language. Because “any number” includes 0 as a possibility, the empty string

ε is always a member of A∗, no matter what A is.

For example, let the alphabet Σ be the standard 26 letters {a, b, ..., z}.
If A = {good, bad} and B = {boy, girl}, then

A ∪B = {good, bad, boy, girl},

A ◦B = {goodboy, goodgirl, badboy, badgirl}, and

A∗ = {ε, good, bad, goodgood, goodbad, badgood, badbad,

goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . .}.

Regular Expressions

Quoting from the same book [1, p. 63]:

”In arithmetic, we can use the operations + and × to build up expressions

such as

(5 + 3)× 4

Similarly, we can use the regular operations to build up expressions describing

languages, which are called regular expressions. An example is:

(0 ∪ 1)0∗.

The value of the arithmetic expression is the number 32. The value of a

regular expression is a language. In this case, the value is the language

consisting of all strings starting with a 0 or 1 followed by any number of 0s.“

Here is a second example of a regular expression from the same source [1, p. 64]:

“Another example of a regular expression is

(0 ∪ 1)∗.

Chapter 2. Background 16

It starts with the language (0 ∪ 1) and applies the ∗ operation. The value

of this expression is the language consisting of all possible strings of 0s and

1s.”

Later, Michael Sipser adds:

“Regular expressions have an important role in computer science appli-

cations. In applications involving text, users may want to search for strings

that satisfy certain patterns. Regular expressions provide a powerful method

for describing such patterns. Utilities such as awk and grep in UNIX, modern

programming languages such as Perl, and text editors all provide mechanisms

for the description of patterns by using regular expressions.”

2.1.7 Equivalence with Finite Automata

In both the Elements of the Theory of Computation and the Introduction to the Theory

of Computation it is proven that regular expressions are equivalent to DFAs and

—therefore— to NFAs as well [1, Sec. 1.3.2][3, Sec. 2.3].

Quoting Lewis and Papadimitriou:

“The class of languages accepted by finite automata, deterministic or non-

deterministic, is the same as the class of regular languages —those that can

be described by regular expressions, ...”

And Michael Sipser adds:

“Regular expressions and finite automata are equivalent in their descriptive

power. This fact is surprising because finite automata and regular expres-

sions superficially appear to be rather different. However, any regular expres-

sion can be converted into a finite automaton that recognizes the language

it describes, and vice versa.”

So to summarize, every problem that relates to, or can be modeled after a

regular language, can be described equivalently and interchangeably by :

• a regular expression,

• a deterministic finite automaton,

Chapter 2. Background 17

• a nondeterministic finite automaton.

Our own application does not support regular expressions at the moment, although it

does feature the algorithmic conversion of NFAs to DFAs and vice-versa2. Conversions

to/from regular expressions may be supported in the future.

2.2 Tools of the Trade

The task of choosing a programming language and its related tools, was not an easy

one. There are many libraries and frameworks regarding graphical user interface (GUI)

design in desktop applications, spanning a huge array of programming languages. Not

to mention, of course, the evolution in Web design technologies that provide quick and

elegant solutions in web application design.

What proved to be a significant factor for us though, was the learning curve and the

overhead from getting accustomed with new tools of choice. In that respect, considering

our former experience with object-oriented programming with Java and C++, the scales

were tipped towards that direction. Moreover, object-oriented languages have proved

their adequacy, efficiency and power in GUI design and programming, time and time

again. Even the concepts we now call Design Patterns (a popular and efficient program

designing doctrine which is very common in GUI programming) originate from the very

foundations of Object-Oriented Programming (OOP). As an added bonus to that, our

application would become platform independent, an attribute that most object-oriented

languages facilitate with their runtime environments.

Secondly, another factor was the available documentation, as well as community sup-

port and third-party frameworks and libraries. With no doubt, this is the field that Java

excels at. By being so popular in industry and academia for over a decade, Java has

been nurtured by many people and grew up to be a sure-fire solution to most common

problems. Of course, Java has its strong/weak points, but if the problem at hand is of

moderate difficulty, it is guaranteed that the programmer can get a lot of help. From

Oracle’s tutorials to community forums and to third-party libraries, the programmer is

provided with such support that it is unlikely he/she will hit a brick wall. However,

all these goodies do not come without side-effects. Java is a well-known trouble-maker

when it comes to strict demands in performance and resource management. The freedom

other languages (e.g. C, C++) provide regarding that matter is superior. Also, com-

bining many third-party, general solution packages and libraries into a single working

application, is not as simple as it sounds. Except the costs in performance that come

2The conversion of a DFA to NFA is trivial, since any DFA is also an NFA.

http://docs.oracle.com/javase/tutorial/
http://www.java-forums.org/content/

Chapter 2. Background 18

from using general and not specific-purpose code, one also runs the risk of dealing with

difficult-to-trace bugs, especially if the authors did a sloppy job at documenting and

debugging their code.

The third factor were the specifications of our problem, which are discussed in the

next chapter. The only thing that we are going to mention here, is that our demands

in performance were not really that high. Data visualization, data representation, the

study of graphs (Graph Theory) and other related fields, are vast and oftentimes highly

demanding in computational and memory costs when it comes to their applications. The

demands of our own application, on the other hand, would seem childish from a graph

theorist perspective. Our common user will probably never design a graph with more

that thirty or forty nodes (states), and our algorithms will never challenge his/hers CPU

and RAM with their computational complexity. Networking researchers, for example,

could easily be put to the task of finding the shortest or the cheapest paths, inside a

graph of as many as 200,000 nodes.

Taking all the above considerations into account, we decided to use Java. After a long

search, we also settled on the additional tools that would supplement Java in the creation

of our application. Here is a list of everything we used, with short descriptions following

next:

• Java (http://www.java.com/en/)

• Java SE (http://www.oracle.com/technetwork/java/javase/overview/)

• Swing (http://en.wikipedia.org/wiki/Swing_(Java))

• JUNG (http://jung.sourceforge.net/)

• GraphML (http://graphml.graphdrawing.org/)

• JSON (JSON.simple) (http://code.google.com/p/json-simple/)

• FreeHEP (http://java.freehep.org/)

• NetBeans IDE (http://netbeans.org/)

2.2.1 Java

Java is a general-purpose, concurrent, class-based, object-oriented computer program-

ming language that is specifically designed to have as few implementation dependencies

as possible. It is intended to let application developers “write once, run anywhere”

http://www.java.com/en/
http://www.oracle.com/technetwork/java/javase/overview/
http://en.wikipedia.org/wiki/Swing_(Java)
http://jung.sourceforge.net/
http://graphml.graphdrawing.org/
http://code.google.com/p/json-simple/
http://java.freehep.org/
http://netbeans.org/

Chapter 2. Background 19

(WORA), meaning that code that runs on one platform does not need to be recom-

piled to run on another. Java applications are typically compiled to bytecode (class file)

that can run on any Java virtual machine (JVM) regardless of the underlying computer

architecture.

Java was originally developed by James Gosling at Sun Microsystems (which has since

merged into Oracle Corporation) and released in 1995 as a core component of Sun

Microsystems’ Java platform. The language derives much of its syntax from C and

C++, but it has fewer low-level facilities than either of them.

As of May 2007, in compliance with the specifications of the Java Community Process,

Sun relicensed most of its Java technologies under the GNU General Public License.

Others have also developed alternative implementations of these Sun technologies, such

as the GNU Compiler for Java and GNU Classpath.

There were five primary goals in the creation of the Java language:

1. It should be “simple, object-oriented and familiar”

2. It should be “robust and secure”

3. it should be “architecture-neutral and portable”

4. It should execute with “high-performance”

5. It should be “interpreted, threaded and dynamic”

One characteristic of Java is portability, which means that computer programs written in

the Java language must run similarly on any hardware/operating- system platform. This

is achieved by compiling the Java language code to an intermediate representation called

Java bytecode, instead of directly to platform-specific machine code. Java bytecode

instructions are analogous to machine code, but they are intended to be interpreted by

a virtual machine (VM) written specifically for the host hardware. End-users commonly

use a Java Runtime Environment (JRE) installed on their own machine for standalone

Java applications, or in a Web browser for Java applets. A major benefit of using

bytecode is porting. However, the overhead of interpretation means that interpreted

programs almost always run more slowly than programs compiled to native executables

would [8][9][10][11].

2.2.2 Java SE

Java Platform, Standard Edition or Java SE is a widely used platform for development

and deployment of portable applications for desktop and server environments. Strictly

Chapter 2. Background 20

speaking, Java SE is a platform specification. It defines a wide range of general pur-

pose APIs (Application Programming Interfaces) and also includes the Java Language

Specification and the Java Virtual Machine Specification. One of the most well known

implementations of Java SE is Oracle Corporation’s Java Development Kit (JDK). An-

other well-known implementation is OpenJDK, which is the official Java SE 7 reference

implementation [12][13][14].

The Java Runtime Environment (JRE) and Java Development Kit (JDK) are the actual

files downloaded and installed on a computer to run or develop Java programs, respec-

tively. For the development of our application, we used Sun/Oracle’s JDK Version

6 .

2.2.3 Swing

Swing [15] is the primary Java GUI widget toolkit. It is part of Oracle’s Java Founda-

tion Classes (JFC) — an API for providing a graphical user interface (GUI) for Java

programs. Swing was developed to provide a more sophisticated set of GUI components

than its predecessor, the Abstract Window Toolkit (AWT). Swing provides a native

look and feel that emulates the look and feel of several platforms, and also supports a

pluggable look and feel that allows applications to exhibit a look and feel independently

of the underlying platform. It has more powerful and flexible components than AWT. In

addition to familiar components such as buttons, check boxes, and labels, Swing provides

several advanced components such as tabbed panel, scroll panes, trees, tables, and lists.

Swing is architectured after the Model-View-Controller design pattern, which we will

cover in Chapter 4, and follows a single-threaded programming model. Additionally,

this framework provides a layer of abstraction between the code structure and graphic

presentation of a Swing-based GUI.

2.2.4 JUNG

JUNG (the Java Universal Network/Graph Framework) [16] [17] is an open source graph

modeling and visualization framework written in Java, under the BSD license. The

framework comes with a number of layout algorithms built in, as well as analysis algo-

rithms, such as graph clustering and metrics for node centrality.

JUNG’s architecture is designed to support a variety of representations of entities and

their relations, such as directed and undirected graphs, graphs with parallel edges, and

hypergraphs. In our case, we are interested in representing the states and transitions of

DFAs and NFAs, so we need to use a directed graph, one that also allows parallel edges.

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html

Chapter 2. Background 21

By directed we mean that the edges (representing transitions) are painted as arrows, to

denote direction. “Allowing parallel edges” means that linking a specific pair of nodes

with more than one edge is allowed, since multiple transitions are also allowed between

states in NFAs.

JUNG has enormous capabilities and provides the most important features to support

areas, such as graph theory, data mining and social network analysis. It includes imple-

mentations of a number of algorithms for clustering, decomposition, optimization, ran-

dom graph generation, statistical analysis, and calculation of network distances, flows,

and importance measures. For those of you likely to stumble upon such matters in the

future, we strongly recommend keeping JUNG in mind.

In our case, however, it is true that none of the above advanced features was of any

use. So, considering that our graphs will likely be very simple and would not be subject

to assiduous analysis, the use of JUNG may seem to be an “overkill”. Nevertheless,

in fact, JUNG provides a visualization framework that makes it easy to design graphs

and interact with them. We can use one of the layout algorithms provided or use the

framework to create our own custom layouts and, in addition, we can use it to easily

customize the appearance of all graph components (e.g. changing the size, shape, and

color of nodes and edges). All these features come in full compliance with Java’s Swing,

as intended by JUNG’s creators.

One last thing to note, is that we ended up using JUNG after trying several alternatives.

JUNG ended up being superior to all of them for various reasons. Our other attempts

included: JGraph, JGraphT, and Grappa.

2.2.5 GraphML

GraphML [18] [19] is an XML-based file format for graphs, which is already integrated

into JUNG and can be easily used with the appropriate customizations. The GraphML

file format results from the joint efforts of the graph drawing community to define a

common format for exchanging graph structure data. It uses an XML-based syntax and

supports the entire range of possible graph structure constellations including directed,

undirected, mixed graphs, hypergraphs, and application-specific attributes.

A GraphML file contains a graph element, within which there is an unordered sequence

of node and edge elements. Each node element should have a distinct id attribute and

each edge element has source and target attributes that identify the endpoints of an

edge by having the same value as the id attributes of those endpoints. Figure 2.7 shows

what a simple NFA with two nodes (q0 and q1) and one edge between them will look

http://www.jgraph.com/
http://jgrapht.org/
http://www2.research.att.com/~john/Grappa/

Chapter 2. Background 22

like in GraphML. GraphML was the file format of our choice, in order to support the

feature of saving/loading our graphs to/from the hard drive.

%, title =\emph{A simple graphml example.}, label=graphml_example]

<graph edgedefault="directed">

<data key="input"> </data>

<data key="alphabet"> </data>

<data key="type">dfa</data>

<node id="q0">

<data key="isStarting">false</data>

<data key="isAccepting">false</data>

<data key="y">258.0</data>

<data key="x">299.0</data>

</node>

<node id="q1">

<data key="isStarting">false</data>

<data key="isAccepting">false</data>

<data key="y">245.0</data>

<data key="x">446.0</data>

</node>

<edge source="q0" target="q1">

<data key="symbols">a</data>

</edge>

</graph>

</graphml >

Figure 2.7: A simple GraphML example.

2.2.6 JSON

Apart from storage and retrieval using GraphML for representation, our application

supports the extra feature of importing a graph from a JSON file. JSON or Javascript

Object Notation [20] [21] is a text-based open standard designed for human-readable

data interchange. It is derived from the JavaScript scripting languages for representing

simple data structures and associative arrays, called objects. Despite its relationship to

JavaScript, it is language-independent, with parsers available for many languages. As far

as Java is concerned, we opted for the JSON.simple toolkit [22], which makes encoding

and decoding JSON text in Java very easy. For example, to parse a .json file using

JSON.simple, we just included the library’s .jar file in the project’s classpath, imported

org.json.simple.* package in our respective Java class, and typed something like:

JSONParser myParser = new JSONParser ();

JSONObject obj = (JSONObject)myParser.parse(someFile.json);

The JSON format is often used for serializing and transmitting structured data over a

network connection. It is used primarily to transmit data between a server and web

application, serving as an alternative to XML.

JSON’s basic types are:

Number (double precision floating-point format in JavaScript, implementation-dependent)

http://code.google.com/p/json-simple/

Chapter 2. Background 23

String (double-quoted Unicode, with backslash escaping)

Boolean (true or false)

Array (an ordered sequence of comma-separated, any-typed values, enclosed in square

brackets; the values do not need to be of the same type)

Object (an unordered collection of comma-separated key:value pairs with the : char-

acter separating the key and the value, enclosed in curly braces; the keys must be

strings and should be distinct from each other)

null (empty)

Non-significant white space may be added freely around the “structural characters” (i.e.

brackets, colons, and commas).

The example in Figure 2.8 shows the JSON representation of a simple DFA with two

states, ’q0’ (starting and accepting state) and ’q1’. The alphabet that forms this au-

tomaton’s language contains only two characters, ’a’ and ’b’. As for the transitions, if

the automaton reads ’a’ it stays at the same state and if it reads ’b’ it transits to the

other state. For example, this automaton starts from ’q0’ and if it reads ’b’ it transits

to state ’q1’, while if it reads ’a’ it stays at ’q0’.

%,title=\emph{An example of using JSON to describe Finite Automata .}]

{

"type":"dfa",

"states":["q0","q1"],

"transitions": [["q0","a","q0"],

["q0","b","q1"],

["q1","a","q1"],

["q1","b","q0"]

],

"startState": "q0",

"acceptStates":["q0"],

"alphabet":"ab",

"input": "aababbaab"

}

Figure 2.8: An example of using JSON to describe Finite Automata.

Note how easy it is for a human to read JSON text. To our knowledge, JSON has never

been used as a Finite Automata Description Language before.

2.2.7 FreeHEP

We already covered what formats our application imports from, but what about export-

ing? Well, our users will be delighted to find out that our application supports exporting

to four different image formats (one vector and three bitmap formats), with more to be

added in the future. So far these are:

Chapter 2. Background 24

• SVG (Scalable Vector Graphics)

• BMP (Bitmap Image File)

• PNG (Portable Network Graphics)

• GIF (Graphics Interchange Format)

The library that allows us to realize this feature is called FreeHEP [23] [24]. It is an

open-source Java library initially designed to make programming high-energy physics

applications easier. Nonetheless, many self-contained APIs (Application Programming

Interfaces) in the library are generic and suitable for other applications. In particular,

we used a package called VectorGraphics which completely met our needs.

The way FreeHEP is used, is as simple as it gets: After including the library’s .jar file in

the project’s classpath, import the package org.freehep.util.export.ExportDialog

in your desired Java class, and then create and show a new ExportDialog instance, as

shown below:

ExportDialog export = new ExportDialog ();

export.showExportDialog(frame ,"Export graph as...",wvv ,"export");

Here, the class ExportDialog is a JOptionPane subclass, which in turn is a native Swing

component.

2.2.8 NetBeans IDE

Last, but not least, the glue that held our project together, was the IDE (Integrated

Development Environment) we used. Our choice, NetBeans [25] [26], along with Eclipse,

are the most popular IDEs for developing primarily with Java, but also with other

languages, in particular PHP, C/C++, and HTML5. It is also an application platform

framework for Java Desktop applications and others.

NetBeans also features its own GUI design tool (formerly known as Project Matisse),

which enables developers to prototype and design Swing GUIs by dragging and posi-

tioning GUI components on a canvas-like frame.

NetBeans is written in Java, therefore it can run on Windows, OS X, Linux, Solaris and

other platforms supporting a compatible Java Virtual Machine (JVM). The version we

used to develop our application is NetBeans IDE 7.3.

Chapter 3

Problem Statement

In this chapter we will be asking ourselves some important questions, and hopefully, in

an attempt to answer them, we will define the specifications of our problem as well.

Our intention is to develop a finite automata simulator, with a graphical user interface

(GUI), with special emphasis on its use as an educational tool for our institution’s course

on Theory of Computation. Therefore, we ought to ask ourselves:

• Why do we need a finite automata simulator?

• What are the benefits of having a GUI ?

• Why should it be used as a pedagogical tool?

• What are the necessary functions it has to support, in order to be considered such

a tool?

Our problem specifications derive from these questions and we should keep them in mind

throughout the whole process of development.

3.1 Motivation

In the previous chapter we mentioned how important Automata Theory is in the study of

the Theory of Computation and in Computer Science in general. In fact, every curricu-

lum on Computer Science has at least one course on Automata Theory. Consequently,

“...simulation of automata for pedagogical purposes is an important topic in

computer science education research.”

25

Chapter 3. Problem Statement 26

This quote is taken from an article titled Fifty Years of Automata Simulation [6]. In its

introduction we read:

“Educationists were early to understand that it is difficult to teach and learn

automata theory. They thought that perhaps the best way to teach and learn

automata theory is to take help of pedagogical tools. Since automata the-

ory revolves around abstract machines and processes, automata simulators

were conceived as the most common form of pedagogical tools on automata

theory.”

This article provides a historical overview on Automata Simulators throughout a period

of time spanning five decades, especially emphasizing on those used at universities for

pedagogical purposes. From Curtis’ Turing Machine Simulator [27] (used in Wesleyan

University in 1965), to the “Tool suite based on Finite Automaton Description Lan-

guage” [28] (used at Jawaharial Nehru University in 2011), this survey lists over thirty

different implementations and more than twenty universities that used them.

As of June 2013, the course that covers the fundamentals of Automata Theory at our

institution1 is called Theory of Computation and it is being taught by Associate Professor

Michail G. Lagoudakis. However, this is done without using a pedagogical tool to

model and simulate automata .

The instructor himself took the initiative to propose and supervise this thesis topic in

order to accommodate that particular need, since the benefits of using such tools are

thoroughly documented in scientific literature [6] [28] [29] [30] [31] [32] [33] [34] [35] [36]

[37] [38]. To put it simply, we hypothesized that many of the mistakes students make

while solving their exercises could easily be avoided, had there been a tool to provide

intuitive, visual feedback.

Sometimes it is as plain and simple as that. The teacher of this course had also noticed

that students commit “silly” mistakes quite oftenly, like ommitting to assign a starting

state, or ommitting to designate a transition for a particular symbol. In addition to

that, when the occassional exercise involved the special case of the nondeterministic

automaton, our professor noticed that even more pitfalls hindered the students, as it is

very tricky to trace an NFA’s computation on paper2.

Thus, the existence of an intuitive, interactive tool to provide the students with visual

feedback on the computational steps of a running automaton, would allow them to

experiment and get accustomed with the fundamentals of Automata Theory unhindered.

1Technical University of Crete (www.tuc.gr), School of Electronic and Computer Engineering (www.
ece.tuc.gr)

2See chapter 2.2.5, section The Feature of Nondeterminism (p. 11) as to why that might happens.

http://www.intelligence.tuc.gr/~lagoudakis/
www.tuc.gr
www.ece.tuc.gr
www.ece.tuc.gr

Chapter 3. Problem Statement 27

3.2 Yet Another Finite Automata Simulator

First of all, we decided that our simulator would only cover DFA and NFA and not the

rest of the automata that this course covers, which includes pushdown automata and

Turing Machines. This decision was taken mostly due to our time constraints. A future

version of this simulator would have to support the other two types as well, for it to be

considered completed.

Secondly, it would have to be intuitive, interactive, free and open - source, and support

a number of desired features that we will discuss about in detail, in the next section

called Problem Specifications.

Thirdly, the terminology, notations and the symbols we would use, should comply to

the book this course is based upon, Lewis’ & Papadimitrious’ Elements of Theory of

Computation [3].

Taking the above into account, and after trying out some of the simulators that already

existed, we decided that we should make a new finite automata simulator of our own.

In a later chapter called Related Work, we will provide a more detailed comparison of

our solution with the most popular alternatives.

3.3 Problem Specifications

In this section we will attempt an enumeration of the parameters that specify our prob-

lem. These mostly include features that our simulator should have, in order to fulfill its

role as a pedagogical tool to model and simulate finite automata.

So, our simulator:

• Should be free and open source .

• Should be intuitively easy to use and user-friendly in appearance and be-

haviour, in order not to distract from its main purpose: the study of automata.

• Should represent an automaton by means of a graph , in which the states are

represented by nodes having the shape of a circle , and the transitions by edges

having the shape of an arrow .3

3Since we are depicting automata using graphs, oftentimes we will be using the terms nodes and
edges to denote the automaton’s states and transitions respectively. This accords with the terminology
of Graph Theory.

Chapter 3. Problem Statement 28

• Should depict the starting state as a normal node with a small arrowhead

pointed towards it from anywhere, and the accepting states as a node with the

shape of a double circle . The user should also be able to change the contents

of the input tape and the alphabet , which in turn should be visualized in an

obvious location.

• Should be interactive , not only during the design of the automaton but during

its computation as well.

• Should support the graphical editing of automata, as well as the feature of im-

porting from a file, using some simple finite automata description language .

By graphical editing we mean that the user should be able to create , name and

edit nodes and edges, as well as arrange the graph’s topography by moving the

elements at will, via mouse clicks and gestures in a visible area inside the window

of our application that will act as a canvas.

Importing from a file , on the other hand, implies that we had to settle on a sim-

ple , easy to read description language for finite automata first. Afterwards, our

application should be able to parse files containing text written in that language

and describing a finite automaton, and then lastly, render the graph that repre-

sents it visible . For the procedure to be simple and efficient, the user shouldn’t

have to type the locations of all the nodes manually, so the layouting of the graph

should be done algorithmically .

Moving on,

• Our simulator should provide the user with visual feedback of the automaton’s

computational run , regarding the current state , the input symbol about to

be read and the respective transition that has been performed, and all of these

at the beginning , during the time , and at the end of the automaton’s execution

on the given input.

• It should support a step-by-step playback of the run, with the options of going

to start , next step, previous step and end , encompassing ideas from pro-

gramming tools for general programming, like backwards-in-time debugging and

tracing.

• It should support the feature of nondeterminism , not only by editing and run-

ning an NFA, but also by giving users the option to convert an NFA to a DFA,

using the algorithms that appear in Elements of Theory of Computation [3]. This

last feature is considered to be of paramount educative value when studying and

teaching NFAs.

Chapter 3. Problem Statement 29

There is also a number of secondary features that would be welcomed by teachers and

students alike. These include:

• The capability of saving to and loading from the hard drive.

• Exporting the visual representation of the automaton in a variety of common

image file formats.

• The option to have a textual representation of the automaton’s computational

run accompanying the visualization in a log-like manner, in full compliance with

the notation Lewis & Papadimitriou use in their book Elements to Theory of

Computation [3] (see page 67 for example).

• The option to set the designation or identification of the nodes to automatic,

which means that the user wouldn’t have to name each and every new node he/she

creates. The application would do that for him/her, using a given prefix and

incremental numbering as a suffix to construct the new id.

Conclusion

In our opinion, a tool that adheres to the above would be a significant teaching assis-

tant in our professor’s disposal and would help the students grasp the fundamentals

of Automata Theory, through obtaining a hands-on experience on deterministic and

nondeterministic finite automata. Moreover, it would deepen the students’ level of en-

gagement to this course by encouraging them to be active participants in the educational

process and not just passive receivers. The related references in section Motivation 3.1

strongly support this assumption.

Chapter 4

Approach and Implementation

Every programmer knows, that the process of developing useful software is a dynamic,

living one, full of missteps and breakthroughs, mental slumps and creative bursts, diss-

apointments and delights, ebbs and flows. Alas, this road is paved with knowledge and,

in the end, the reward is immense. Nothing can substitute hands-on experience, for in

this domain there is only one currency, Time - and you have to spend lots of it.

Nonetheless, there is still a lot to learn from someone that went through that process

and decided to tell the story. Tales of disastrous mistakes, enormous blunders and

unfortunate accidents, but also of paradigms of ingenuity, moments of brilliance and

triumphs of reasoning, are what enable us to stand on the shoulders of other people

(hopefully gigantic) and aim even higher.

In this chapter we share our humble experiences through the process of developing this

tool. May others learn from our oversights and appreciate what we achieved. This is:

Our Approach & Implementation.

4.1 Two Degrees of Decomposition

Our first approach involved decomposing the problem into different parts, a common

strategy in programming, which has proven its worth amongst fellow programmers.

This helped us clear the confusion that comes along when dealing with a problem as a

whole for the first time. It also allowed us to focus our attention on the smaller, more

managable world of our respective parts.

Since we wanted to develop a finite automata simulator with a GUI, at first we roughly

divided the problem into two parts:

30

Chapter 4. Approach and Implementation 31

Machine

As in finite state machine, this part is the one responsible for simulating the

behaviour of a finite automaton.

GUI

The part responsible not only for the visual representation of the automaton, but

for the user interaction as well.

This was the first degree of decomposition, and frankly, more than enough for a kick-start.

As for the place to start, we opted for the machine. This was intended to be our

“backend”, or the piece of software supposed to stay hidden behind the scenes of our

GUI, and the one that would provide us with all the functionality of a finite automaton.

The user would never have to know exactly how his automaton actually runs, but to

us it is an important raw material and building block. Having a working simulation

of a machine in our disposal would allow us to experiment freely in the coming steps.

We only had to make sure that our machine would feature a simple interface, such that

would allow us to provide the machine with an input (describing a finite automaton,

defining the alphabet and the content of the input tape) and receive the result of the

computation as output (listing the machine’s states per computation step for the given

input and whether that input was accepted or not).

In short, we wanted to implement a prototype version of our machine and then treat it

as a “black box“ for the rest of the development.

The opposite would be quite troublesome indeed. Having a GUI without a machine

would be of no help at all. The machine provides our core functionality and cannot -

and should not - comply with assumptions and conventions made whilst developing a

graphical user interface. In addition, our GUI would be incomplete because we wouldn’t

be able to visualize the actual execution of the machine but only its states and transitions

in a static way. In any case, a GUI cannot be treated like a ”black box”.

As we revisited these issues in a later iteration though, we ended up decomposing the

aforementioned parts even further, reaching a second degree of decomposition:

Machine was submitted to refactoring that led to a different decomposition to acco-

modate various changes and additions, such as the feature of nondeterminism or

the conversion of an NFA to a DFA,

GUI was decomposed to:

• parts responsible for the visualization and appearance of the graph,

Chapter 4. Approach and Implementation 32

• parts responsible for the visualization of the various GUI components (but-

tons, textfields, menus, etc),

• parts responsible for listening and responding to user generated events, such

as mouse and keyboard clicks, mouse gestures etc.

In later sections we examine these parts in detail.

These revisions to our initial decomposition were not only expected, but desired as well.

Each iteration that resulted in improvements in our GUI gave feedback regarding the

machine and vice versa. We strongly advocate following this strategy, in contrast to

other approaches that treat the initial design as something absolute and separated from

the implementation.

4.2 Machine

Let us begin then, by describing how the machine works. This will happen in three steps.

First, we expose our core, a machine that supports only deterministic finite automata.

In the second step we add to that, ending up with a machine that supports the feature

of nondeterminism as well, and lastly, in a third step we add two auxiliery functions, the

conversion of an NFA to a DFA and the validation of user input with the appropriate

error messages.

4.2.1 Our Core

Figure 4.1: Class diagram of the Machine’s core components.
(https://en.wikipedia.org/wiki/Class diagram)

https://en.wikipedia.org/wiki/Class_diagram

Chapter 4. Approach and Implementation 33

Our Machine’s core components consist of four basic classes. These classes are respon-

sible for the modelling of a DFA and the simulation of its computational run:

1. State,

2. Transition,

3. Tape,

4. Machine.

Let’s take a closer look:

State

Instances of this class model our automaton’s states. Every state should have an

id of type: String, which must be unique per automaton. Also, each state may

or may not be an accepting state and may or may not be a starting state .

However, for the automaton to be considered valid, there must be one and only

one starting state . There is no such restriction in the number of accepting states.

A state can be both accepting and starting at the same time. This information is

stored by means of two variables of type: boolean, which are defaulted to false

and remain such, until the user defines otherwise.

Transition

Instances of this class model our automaton’s transitions. Each transition stores

a reference to a single target state , and the respective symbol that must be read

in order for the automaton to perform this particular transition. The variable we

used for that, was also called symbol , and it was of type: char initially. In a

later iteration though, we refactored it to String to account for the fact that users

should be able to define multiple symbols that can lead the automaton to perform

the exact same transition. This should be done in the same manner as in our book

Elements of Theory of Computation1. Note that our transitions do not hold a

reference to their source state.

Tape

This is the class that allows us to handle our automaton’s input string , or in

other words, a word formed from a combination of letters from the user’s desired

alphabet which the automaton is supposed to compute on . It has a variable

called input of type: String, and a variable called cursor of type: int (or Integer).

1Such as: ‘a,b,c, . . . ’ etc, see [3, p. 61] for example.

Chapter 4. Approach and Implementation 34

The first variable holds the input word and the second variable keeps track of the

symbols already read, by pointing to the next symbol in line. A Tape instance

provides our automaton with the next symbol at every step, and can tell us if the

cursor has reached the end (automaton has finished). The methods2 responsible

for these are called next() and hasNext() respectively.

Machine

This is our main class regarding the modelling and simulation of an automaton.

To initialize an instance of this class, we have to provide it with the following

references:

1. the alphabet , stored in a variable of type: String,

2. the input , also stored in a variable of type: String,

3. the automaton’s states, stored as values in a Map3 called stateSet , where

state ids act as keys (in Java: Map<String, State>),

4. the automaton’s transitions, stored as values in a Map called transi-

tionTable , where all the keys are references to State objects (Map<State,

Transition>). These objects represent the source states for all the transi-

tions. The values of the transitionTable are Lists4 containing Transition

Object references. We used a List because we wanted to group the tran-

sitions by source state, for implementation reasons. Think of this Map as a

collection of triplets: {source state, symbol, target state}, grouped by source

state:

state A -> { 0, state B}

state A -> { 1, state C}

state B -> { 0, state C}

state B -> { 1, state D}

state C -> { 0, state A}

state C -> ...

.

.

.

(etc)

After initializing our Machine, we can produce our automaton’s result by calling

the run() method. The output consists of a Map<Integer, State> called state-

History and a second Map<Integer, Transition> called transitionHistory . The

integers that act as keys are an incremental numbering of the automaton’s steps.

2Also called functions, or operations in other contexts.
3In Java, a Map is a collection of {key:value} pairs. Keys and values can be Objects of any type. In

this case the keys are of type ’String’ and the values are of type ’State’.
4A List is a simple, general-purpose container. We used Java’s ArrayList in our case.

Chapter 4. Approach and Implementation 35

Combining them with their respective values, we get all the information we need

about the automaton’s step history .

From an algorithmic perspective, our core functions are quite simple. For example our

run() method looks something like:

1 public boolean run(startingState)

2 {

3 currentState = startingState;

4 int stepIndex = 1;

5

6 while (tape.hasNext ())

7 {

8 char symbol = tape.next ();

9 newState = nextState(currentState , symbol);

10 currentState = newState;

11 stepIndex ++;

12 }

13

14 if (currentState.isAccepting ())

15 return true;

16 else

17 return false;

18 }

Pseudocode for Machine’s run() method.

Method nextState() in line 9, takes as arguments the automaton’s current state, the

symbol that was just read from the Tape, and an integer to denote the number of steps so

far. Then, inside that method we retrieve the value stored in our Map: transitionTable

using currentState as a key. Java uses its own hash function when it comes to the

retrieval of data from a Map5 by using the appropriate key. As we mentioned earlier,

this value is a collection of references to Transition Objects (ArrayList<Transition>).

So, we iterate this collection until we find the Transition that has the same symbol as

the one we just read from the Tape. Finally, that Transition’s target State becomes our

nextState.

4.2.2 Nondeterminism

We talked about nondeterminism in Chapter 2: The Feature of Nondeterminism. There

we quoted Michael Sipser, as he described thinking of nondeterminism as “ parallel

computing“, or as a “ tree of possibilities“ at the automaton’s disposal per every step.

In brief, here are the main differences between a DFA and an NFA:

5As a matter of fact, Map in Java is abstract, it cannot be instantiated. Instead we used one of Java’s
available implementations of a Map, called HashMap.

Chapter 4. Approach and Implementation 36

• In NFAs, for a given source state and a given input symbol it is allowed to have

multiple target states, or none . In DFAs there must be one and only one .

• In NFAs, it is allowed for the automaton to transit to another state without read-

ing any input . In that case we say that the automaton has ”empty” transitions,

or ’ε’ transitions, or ’e’ transitions6. Think of these as transitions available “for

free”, that our automaton can perform without spending a computational cycle.

An NFA that has ’e’ transitions as well as normal ones, is able to perform both

upon reading an input symbol.

Let us see now in detail, what are the modifications that we had to make to our core,

in order to account for these differences:

Figure 4.2: Class diagram of our modified core, to accomodate Nondeterminism.

MultiState

To initialize our new Machine, we provide the input exactly like before, but our

Machine now handles it differently. A new class which extends 7 Java’s ArrayList

is created, called MultiState . This is our own customized version of an ArrayList,

created to contain only references to State Objects and nothing else. The names

derives from the idea that when our NFA has more than one possible states to

6As a convention, from now on we will be using the letter ’e’ to denote empty transitions.
7This refers to an important concept in OOP, called inheritance. See: https://en.wikipedia.

org/wiki/Inheritance for more.

https://en.wikipedia.org/wiki/Inheritance
https://en.wikipedia.org/wiki/Inheritance

Chapter 4. Approach and Implementation 37

choose from, we construct a powerset8 containing all these possible states and

consider it to be our automaton’s Transition target . In simple words, while a

DFA transits to a single state per step, an NFA transits to a set of states. From

now on, we will refer to that as a MultiState .

When calculating what the automaton’s next step should be, we first read the

next symbol from the input tape, exactly like before. We then iterate through

its current MultiState, and for every State that it contains we find the respective

transition from the transitionTable and store a reference. If any of these States

has a registration for an ’e’ transition in the transitionTable, we store it as well.

In the end, we construct the automaton’s new MultiState by adding together

all the target states from the stored transitions, after removing the duplicates.

One thing to note about the duplicates, is that it is conceptually wrong to have

duplicate entries in our MultiState, while, on the other hand, it is programmatically

inefficient. In concept we only need one reference to a State, so that we can include

it in our next step’s computation. Therefore, despite the fact that our algorithm

would work with duplicate entries, it would be inefficient to compute for the same

State - symbol combination more than once.

Finally, the automaton accepts the input if its last MultiState contains at least

one accepting State and rejects it otherwise.

State

It was necessary to add something to our State class as well. We included another

boolean variable, called emptyTransitions. This variable is defaulted to false

and acts as a flag, set to true only when a State has ’e’ transitions defined in the

transitionTable. An accessor method accompanies this variable, called hasEmp-

tyTransitions(). The reason we need such a flag, is that there is a different piece

of code handling the case of empty transitions, and it would be inefficient to exe-

cute it each time we searched for available transitions. Moreover, as we mentioned

earlier, because of the fact that we view empy transitions as “free” transitions,

we handle them after the normal steps have finished. This means that the algo-

rithm performing the next step computation, finishes only when ’e’ transitions are

handled, or when normal transitions are handled and ’e’ transitions don’t exist.

Transition

The only change related to our Transition class, is that we reserved ’e’ as a special

symbol. This means that we cannot use it as a normal input symbol, or as part of

an alphabet, because from now on, it denotes empty transitions.

8See: https://en.wikipedia.org/wiki/Powerset

https://en.wikipedia.org/wiki/Powerset

Chapter 4. Approach and Implementation 38

Machine

Our Machine class couldn’t stay unaffected, either. Modifications were made so

that it could handle Objects of type: MultiState instead of State, where a single

State would now be represented by a MultiState containing only one entry. This

allowed us to have backwards compatibility with the code that simulates DFAs.

Moreover, since our automaton can now perform more than one transition per step,

our TransitionHistory was refactored from Map<Integer, Transition>, to

Map<Integer ArrayList<Transition>>.

Finally, we created two additional methods, availableTransitions() and emp-

tyTransitions(). Method availableTransitions() is responsible for searching

through the transitionTable for a given source State and a given symbol, returning

a State Object as a result. This method doesn’t deal with MultiState Objects,

so we could say in a way that it encompasses the simple DFA functionality we

described in our previous section: Our Core. Now that we are dealing with Mul-

tiState Objects, the idea is to break down our “nondeterministic” search to a lot

ot “deterministic” searches and call the availableTransitions() to handle them.

These calls are being made from within the method nextState() (figure 4.1) we

saw in the previous section. The second method, emptyTransitions(), is respon-

sible for the production of all the target states that derive from empty transitions

and it uses availableTransitions() to do that. By treating the symbol ’e’ (that

denotes an empty transition in our transitionTable) as if it were a normal symbol,

we break down our “nondeterministic” search for empty transitions to a series of

“deterministic” searches for normal transitions.

The final result is the union of all the states that resulted from the modified

nextState() and those resulted from emptyTransitions(), and is stored in a

new MultiState Object.

Let us take another look on our new Machine, this time from an algorithmic perspective.

In order to do that though, first we have to explain what Breadth-First Search (BFS) is:

In graph theory, breadth-first search is a strategy for searching in a graph or a tree.

The BFS begins at a root node and inspects all the neighboring nodes. Then for each

of those neighbor nodes in turn, it inspects their neighbor nodes which were unvisited,

and so on. [39]

In our application we employed a simple implementation of a BFS algorithm, to search

for transitions in every step of the automaton’s computational run. There are other

equivalent strategies, such as the Depth-First Search9, but the BFS solution came more

9See: en.wikipedia.org/wiki/Depth-first_search

en.wikipedia.org/wiki/Depth-first_search

Chapter 4. Approach and Implementation 39

Figure 4.3: Breadth-first search

naturally. As we mentioned in section Multistate (page 36), our MultiState extends

Java’s ArrayList structure, thus inheriting a method called add(). This method is re-

sponsible for adding new elements in the collection, and it does so by adding the new

element at the end of the List. This functionality provides a seamless implementation

of a BFS algorithm, which normally uses a queue data structure to store intermediate

results as it traverses a graph.

Besides having the functionality of a queue, we also wanted to avoid having duplicate

states in our MultiState collection. The term duplicate state in our case, is not referring

to duplicate references to the exact same State Object, but to two different State Objects

sharing a common id String. Thus, we created another add() method which overrides

ArrayList’s native one, and checks for duplicates every time a new State is being added

in a MultiState collection.

Lastly, let’s see how our handling of normal transitions differs from that of empty ones,

codewise:

1 public MultiState nextState(MultiState currentMultiState , char symbol)

2 {

3 ...

4

5 MultiState result_normal = new MultiState ();

6 for (every State in currentMultiState)

7 {

8 result_normal.add(availableTransitions(State , symbol));

9 }

10

11 ...

12

13 return result_normal;

14 }

Excerpt from nextState()

Note how MultiState result normal is a new, empty MultiState which is created lo-

cally (line 3). Also, note how the argument currentMultiState stays unmodified

Chapter 4. Approach and Implementation 40

throughout this method. Finally, this method returns all the target states that derive

from normal transitions, in result normal.

1 private MultiState emptyTransitions(MultiState statesWithEmptyTransitions)

2 {

3 MultiState result_empty = statesWithEmptyTransitions;

4

5 for (every State in statesWithEmptyTransitions)

6 {

7 result_empty.add(availableTransitions(State , ’e’));

8 }

9 }

10

11 return result_empty;

12 }

Pseudocode for emptyTransitions

Note how MultiState result empty is not a new MultiState this time, but gets initiated

by referencing all the states with outgoing empty transitions (line 3). Also, this set of

states gets modified inside the for loop (line 5), after adding the respective target states.

This causes the statesWithEmptyTransitions size to grow in runtime, thus extending

the duration of the for loop. The added states constitute the first child nodes and

they will be accessed immediately after the root nodes. This for loop exploits some of

Java’s innate characteristics in order to obtain the queue functionality we mentioned

earlier, thus implementing a BFS search.

One last thing to underline is that the depth of search per computational step is only

one regarding normal transitions, while that’s not the case regarding the empty ones.

The automaton can perform empty transitions “for free” and the depth can be more

than that. How much more? Since there is a restriction on the occurrence of duplicate

states, the depth is limited by the total number of states our automaton can be in. More

than that would mean that at least one node (State) was visited for a second time.

Lastly, the pseudocode for the availableTransitions():

1 private MultiState availableTransitions (State currentState , char symbol)

2 {

3 MultiState result = new MultiState ();

4 ArrayList transitionList = transitionTable.getValueFor(currentState);

5

6 for (every Transition in transitionList)

7 {

8 if (Transition.symbol == symbol)

9 result.add(Transition.targetState)

10 }

11

12 return result;

13 }

Chapter 4. Approach and Implementation 41

Pseudocode for availableTransitions()

This method takes a reference to a State Object as an argument (currentState) and

then proceeds to locate all of its outgoing transitions in our transitionTable (line 4).

The result is an ArrayList called transitionList, which contains references to Transition

Objects. Afterwards, transitionList is iterated looking for the transitions that match the

symbol we just read from the tape. The resulting target states are returned in a new

MultiState. As you can see in emptyTransitions() (line 7), we are handling the empty

transitions as if they were normal transitions for the symbol ’e’ .

4.2.3 User Input Validation & NFA to DFA Conversion

During our third revision of the Machine’s development we added two more necessary

functions:

• Checking user’s input for errors (with appropriate error message system),

• Converting an NFA to a DFA (using the powerset construction algorithm).

Figure 4.4: Class diagram of the Machine’s additional features.

User Input Validation

In order for the defined automaton to be considered a Finite Automaton (deterministic

or nondeterministic), it must fulfill some requirements. In case it doesn’t, the user must

be informed via error messages, before executing the computation. Here follows a list

Chapter 4. Approach and Implementation 42

of all the error messages and the errors they represent. There are eight errors regarding

Finite Automata in general and only one specifically for DFAs:

“Empty Alphabet”: User has to define an alphabet.

“Alphabet does not contain the symbol x“: Both the symbols used in transi-

tions and the symbols used in the input tape must belong to the alphabet to be

considered valid.

”Untitled State“ : A State id has been omitted.

”Duplicate State“ : User has used the same id to name more than one states.

”No Starting State“ : User has omitted to determine what is the automaton’s start-

ing state.

”Can’t have more than one Starting State“ : Only one starting state should be

determined per automaton.

”Undefined Transition Symbol“ : User has omitted defining a sumbol for a transi-

tion.

”Duplicate Transition“ : There are at least two transitions that start from the

same state, use the same symbol and lead to the same target state as well. These

transitions are considered to be equal, therefore rendundant.

And the DFA-specific error:

”There is a Transition missing from State X“ : In DFAs every State must have

an outgoing transition for every symbol in the alphabet.

The way our input validation works is very simple. An InputValidator instance gets

initialized with the same input as Machine. Then, in a method called findErrors() it

iterates through the input data, while performing all the necessary checks. In the end it

returns a List (Java’s LinkedList in particular) containing all the error messages in the

form of Strings.

Conversion of an NFA to a DFA

As we mentioned in Chapter 2: Background (section 2.1.5), we can construct a DFA

from any given NFA using an algorithm called powerset construction10. This is a

10See the same ref. from Chapter 2 as to what a powerset is.

Chapter 4. Approach and Implementation 43

standard method in the Theory of Computation and in Automata Theory, for convert-

ing a nondeterministic finite automaton into a deterministic finite automaton which

recognizes the same formal language. This fact establishes that NFAs, despite their

additional flexibility, are unable to recognize any language that cannot be recognized by

some DFA. It is also important in practice for converting easier-to-construct NFAs into

more efficiently executable DFAs. However, if the NFA has n states, the resulting DFA

may have up to 2n states, an exponentially larger number, which sometimes makes the

construction impractical for large NFAs. This particular method was first published by

M.O. Rabin and Dana Scott in 1959[40][41].

Intuitive Description

To simulate the operation of a DFA on a given input string, one needs to keep track of a

single state at any time: the state that the automaton will reach after seeing a prefix of

the input. However, to simulate an NFA, one needs to keep track of a set of states: all

of the states that the automaton could reach after seeing the same prefix of the input,

according to the nondeterministic choices made by the automaton. If, after a certain

prefix of the input, a set S of states can be reached, then after the next input symbol x

the set of reachable states is a deterministic function of S and x. Therefore, the sets of

reachable NFA states play the same role in the NFA simulation as single DFA states play

in the DFA simulation, and in fact the sets of NFA states appearing in this simulation

may be re-interpreted as being states of a DFA. [41]

A (more) Formal Description

The powerset construction applies most directly to an NFA that does not allow state

transformations without consuming input symbols (”e-transitions“). Such an automaton

may be defined as a 5-tuple (Q,Σ, T, q0, F), in which Q is the set of states, σ is the set of

input symbols, T is the transition function (mapping a state and an input symbol to a set

of states), q0 is the initial state, and F is the set of accepting states. The corresponding

DFA has states corresponding to subsets of Q. The initial state of the DFA is q0, the

(one-element) set of initial states. The transition function of the DFA maps a state S

(representing a subset of Q) and an input symbol x to the set T (S, x) = ∪T (q, x|q ∈ S,

the set of all states that can be reached by an x-transition from a state in S. A state S

of the DFA is an accepting state if and only if at least one member of S is an accepting

state of the NFA.

In the simplest version of the powerset construction, the set of all states of the DFA

is the powerset of Q, the set of all possible subsets of Q. However, many states of the

Chapter 4. Approach and Implementation 44

resulting DFA may be useless as they may be unreachable from the initial state. In our

implementantion we used a version of the algorithm that creates only the states that

are actually reachable. For an NFA with e-moves, the construction must be modified

somewhat. In this case, the initial state consists of all NFA states reachable by e-moves

from q0, and the value T(S,x) of the transition function is the set of all states reachable

by e-moves from ∪T (q, x)|q ∈ S. [41]

Example

The NFA below has four states; state 1 is initial, and states 3 and 4 are accepting. Its

alphabet consists of the two symbols 0 and 1, and it has e-moves.

Figure 4.5

The initial state of DFA constructed from this NFA is the set of all NFA states that

are reachable from state 1 by e-moves; that is the set {1,2,3}. A transition from {1,2,3}
by input symbol 0 must follow either the arrow from state 1 to state 2, or the arrow

from state 3 to state 4. Additionally, neither state 2 nor state 4 have outgoing e-moves.

Therefore T ({1, 2, 3}, 0) = {2, 4}, and by the same reasoning the full DFA constructed

from the NFA is as shown below.

Figure 4.6

As can be seen in this example, there are five states reachable from the start state of the

DFA; the reamining 11 sets in the powerset of the set of NFA states are not reachable.[41]

Chapter 4. Approach and Implementation 45

Complexity

Because the DFA states consist of sets of NFA states, an n-state NFA may be converted

to a DFA with at most 2n states. For every n, there exist n-state NFAs such that every

subset of states is reachable from the initial subset, so that the converted DFA has

exactly 2n states. A simple example requiring nearly this many states is the language

of strings over the alphabet 0,1 in which there are at least n characters, the nth from

last of which is 1. It can be represented by an (n+1)-state NFA, but it requires 2n DFA

states, one for each n-character suffix of the input. [41],[3, p. 103],[1, p. 55]

Our Implementation

Our class NFA2DFAConverter (see figure 4.4), has an instance of Machine as an at-

tribute. It also has all the necessary input that defines an automaton; states, transitions,

input and alphabet. In order to find and construct all the necessary powersets, it pro-

vides the machine with the respective prefix of the actual input and sets it to a different

starting state each time. In that way , by executing multiple 1-step computational runs

in the machine, we get all the subsets of the automaton’s states that we need. This

class doesn’t need to handle e-moves in a special way, as our Machine has the innate

capability to handle them by itself.

Finally our NFA2DFAConverter takes the result and formats it in a way that it describes

a DFA. As a proof of concept, we converted the same NFA from the previous example

so that we could test and compare our results:

Figure 4.7: The NFA to be converted, as rendered by our application

Chapter 4. Approach and Implementation 46

Figure 4.8: The resulting DFA

4.2.4 Using JSON as a Finite Automata Description Language

There was a last piece missing from our Machine-backend, before we could start testing

and experimenting with it. This was a simple, intuitive description language for au-

tomata. This is where JSON came into play, as it could fulfill that role with impressive

efficiency. You can find more information about JSON and why it suits our purpose so

well, in Chapter 2 (ref JSON here). Suffice to say, that it is a language intended to be

very simple and easy for a human to read. Here follows a description of an NFA that

accepts strings containing either the sequence ’bb’ or ’bab’ :

{

"type":"nfa",

"states":["q0","q1","q2","q3","q4"],

"transitions": [

["q0","a","q0"],

["q0","b","q0"],

["q0","b","q1"],

["q1","a","q3"],

["q1","b","q2"],

["q2","e","q4"],

["q3","b","q4"],

["q4","a","q4"],

["q4","b","q4"]

],

"startState":"q0",

"acceptStates":["q4"],

"alphabet":"ab",

"input":"bb"

}

Using JSON to describe an NFA

Chapter 4. Approach and Implementation 47

In our opinion, any further explanations would be redundant. This is how the described

NFA looks like (as rendered by our application):

Figure 4.9: Visualization of the described NFA

The fact that JSON is a natural, efficient, out-of-the-box solution to describe Finite

Automata, is utterly interesting. To our knowledge it has never been used in such a

way before.

4.3 Graphical User Interface (GUI)

In the previous section we talked about our backend, or the parts of our application that

stay hidden behind the curtains, performing their duties silently. Now it is time to talk

about our frontend, or all these things that are visible to the user, and available for him

to interact with. This section discusses our Graphical User Interface.

4.3.1 Design Patterns: Model-View-Controller

In software engineering, a design pattern is a general reusable solution to a commonly

occurring problem within a given context in software design. A design pattern is not

a finished design that can be transformed directly into source or machine code. It is a

description or template for how to solve a problem that can be used in many different

situations. Design patterns can speed up the development process by providing tested,

proven development paradigms.

Chapter 4. Approach and Implementation 48

Some of the tools we used were already architectured after a design pattern. This was

not a problem for us, or anyone that intends to use third-party source code. In fact,

this is an important benefit that comes with the use of a design pattern. The process of

assimilation of someone else’s code can be accelerated if one is already accustomed with

the design pattern used by the developer.

Although we didn’t use a specific design pattern in the development of our application,

our design was loosely based on the famous Model-View-Controller pattern.

Model-View-Controller

Model-view-controller (MVC) is a software architecture pattern which separates

the representation of information from the user’s interaction with it. The model consists

of application data, business rules, logic, and functions. A view can be any output

representation of data, such as a chart or a diagram. Multiple views of the same data

are possible, such as a bar chart for management and a tabular view for accountants.

The controller mediates input, converting it to commands for the model or view. The

central ideas behind MVC are code reusability and separation of concerns.

In addition to dividing the application into three kinds of components, the MVC design

defines the interactions between them:

• A controller can send commands to its associated view to change the view’s

presentation of the model (e.g., by scrolling through a document). It can also send

commands to the model to update the model’s state (e.g., editing a document).

• A model notifies its associated views and controllers when there has been a change

in its state. This notification allows the views to produce updated output, and the

controllers to change the available set of commands.

• A view requests from the model the information that it needs to generate an

output representation to the user.

MVC was one the seminal insights of the early field of graphical user interfaces in the

70s and it still hasn’t lost its power. Although many popular variations exist nowadays,

the initial concept still echoes today. The terms model , view and controller alone,

represent a condensation of meanings easily communicated among programmers as part

of our collective consciousness. So, even though we were only inspired by the MVC

design pattern, we are still going to borrow its terminology to make our implementation

more explicit. [42]

Chapter 4. Approach and Implementation 49

4.3.2 Our Design

In this section we will be exposing the details of our design and the central ideas that

governed our approach. Figure 4.10 shows a class diagram that will act as our point of

reference.

The elements that we called MenuBar, ToolBar and TapeDisplay can be considered

to belong in our view . They are clearly separated from the rest of the code and one

could easily modify/substitute them to change our application’s window appearance. We

find their names quite self-explanatory as to what parts of our window they visualize.

MenuBar is the visualization of our file-menu, ToolBar stands for our mainframe’s toolbar

and TapeDisplay is responsible for the area which an automaton’s input tape is displayed

in.

There three components can be accessed through their respective controllers, MenuBar-

Controller, TapeDisplayController and ToolBarController. These three , along with

MainController, form a chain of access by the use of set/get methods. Besides pro-

viding a sequence of accessors, they also contain the code that handles user-generated

events on these components. For example, if the user presses the ”run“ button in our

ToolBar, a piece of code in ToolBarController gets executed, handling that event. Addi-

tionally, we also want this event to force an update upon our TapeDisplay component, in

order to display the contents of the (now running) automaton’s input tape. So, through

the chain of access, TapeDisplayController addresses our MainController which in turn

informs our TapeDisplayController that an update is needed. Finally, the TapeDisplay-

Controller calls our TapeDisplay to complete the task.

Therefore, in MVC terms, the four ”controller“ components (MainController, MenuBar-

Controller, TapeDisplayController, ToolBarController) constitute our architecture’s con-

troller . This separation is not clear, however. The component that perplexes the situ-

ation is GraphVisualization. This component encompasses the third-party tool that we

used to facilitate us in graph creation, editing and visualization. In Chapter 2 (section

2.2.4), we saw that this third-party tool is called JUNG and comes with its own archi-

tectural design. Since its primary task is everything graph-related, JUNG has already

its own model-view-controller decomposition. It has a model, responsible for knowing

what to display, and a hybrid view/controller responsible for knowing how to display it.

The view/controller is implemented by a Graph class (node id’s, node connections, edge

labels etc) and a Layout class (relative and/or absolute location of nodes and edges in

a visualization). The second is implemented by a very important class, called Visual-

izationViewer , which performs all the painting, as well as numerous other tasks. The

Chapter 4. Approach and Implementation 50

Figure 4.10: Our design

Chapter 4. Approach and Implementation 51

VisualizationViewer class also handles the events that derive from the interaction be-

tween the user and the graph. Nonetheless, we still had to associate our MainController

with the VisualizationViewer, mostly to assimilate it into our chain of access structure.

Last but not least, our model (in MVC terms), should be viewed as two different models,

actually. The first is our computational model, or our simulation logic, which resides

within our Machine. User-generated events can cause the simulation code to be executed

and the results cause the GUI to be updated to display them. The second model is the

one we mentioned already, JUNG’s model, which is responsible for all the information

regarding the graph visualization. This model must be informed and updated every

time the user creates new states/transitions, edits them, changes their location, selects

and deletes them etc. The communication between the two models and all of our visual

components (view) is facilitated by the synergetic usage of our controllers.

4.3.3 GUI Components & Layouting

Before moving on, we have to discuss a little bit more about the part that we called view

in the previous section. We talked about four decomposed elements that constitute

it, called MenuBar, ToolBar, GraphVisualization (JUNG’s VisualizationViewer) and

TapeDisplay.

In our actual implementation however, we ended up having five such elements. For the

sake of simplicity we have been omitting to mention the fifth element, a class called

LogDisplay. This class follows the exact same logic as the others, i.e. has it’s own

LogDisplayController and is responsible for a separate area in our GUI’s main frame

that we called Step History. This is an area containing a simple textual representation

of the automaton’s steps, and the user can enable/disable it at will.

Now that we settled that, let us see the five main areas that constitute our main frame

(figure 4.11):

1. MenuBar,

2. ToolBar,

3. Canvas,

4. Step History,

5. Tape Display & Controls.

Chapter 4. Approach and Implementation 52

Figure 4.11: The five main areas

In our implementation each one of the above is represented by Java/Swing components,

mainly JPanel.

MenuBar: A simple JMenuBar containing JMenu and JMenuItem objects.

ToolBar: A JPanel containing objects of type: JButton, JRadioButton, JLabel,

JTextField and JSeparator.

Canvas: JUNG’s VisualizationViewer which actually extends JPanel. We will see

more about it in a following section.

Tape Display & Controls: A JPanel containing objects of type JTextfield and four

JButton objects for the controls.

Step History: A JPanel containing a JTextArea object, with an additional JScroll-

Pane to account for the scroll functionality.

These four panels and the menubar are laid out inside our main frame using one of

Swing’s simplest layout managers, called BorderLayout. This manager divides the frame

into five areas (north, south, west, east and center) and appoints each component ac-

cordingly.

As for the basic components that our respective panels contain (such as textfields, but-

tons, e.t.c.), they were laid out using NetBeans GUI Builder (formely known as project

Matisse). This tool enables the developer to customize and layout components graphi-

cally, with the capability of displaying a preview of the result.

Chapter 4. Approach and Implementation 53

To develop our protorype we used a free design layout, which means that we placed

our components manually inside the panels. There is a disadvantage to that, however.

When there isn’t any layout manager involved the application doesn’t have dynamic

behaviour. This means that the various components cannot adapt to changes in the main

window’s size, like when the user resizes it. Thus we disabled that option, although half-

heartedly. In future versions of this application we will replace our free design with Java’s

GridBagLayout, the most complex and flexible layout manager that Java possesses. This

would allow us to program a dynamic resizing behaviour, but would demand a complete

remake of some of our panels first.

4.3.4 Graph Visualization

Now we will be discussing about the component that visualizes everything that is graph

related; a white, rectangular panel in the center of our application which acts as our

canvas. This component is JUNG’s VisualizationViewer , a class that extends Java’s

JPanel.

Figure 4.12: A screenshot of an empty canvas.

The VisualizationViewer is very important as it has a number of different tasks. It

tracks the Renderer (class responsible for drawing) and the graph model, it handles the

mouse when it acts inside its jurisdiction, and it applies the developer’s customizations

to either the view or the layout, allowing us to modify numerous variables that affect

the appearance of the graph.

Chapter 4. Approach and Implementation 54

There is an excellent tutorial on JUNG, written by Greg Bernstein, and we will cite

from it in order to get a better grasp on how we used it to serve our purpose. You can

find it in http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf.

To start off, there is an interface Graph<V,E>. V stands for Vertex (or node) and E

stands for Edge. In JUNG we can assign both of these roles to any Objects we want.

In our application for example, the automaton’s states are the graph’s vertices and its

transitions are the graph’s edges. The Graph<V,E> inteface defines the basic operations

that you can perform on a graph. These include:

1. Adding and removing edges and vertices from the graph and getting collections of

all edges and vertices in a graph.

2. Getting information concerning the endpoints of an edge in the graph.

3. Getting information concerning vertices in a graph including predesessor and suc-

cessor vertices.

The specific Graph implementation that we used is the DirectedOrderedSparseMulti-

graph. In Chapter 2 (section 2.2.4) we explained what are the special characteristics of

this implementation. An example of adding vertices and edges in a Graph instance:

Graph <State ,Transition > g

= new DirectedOrderedSparseMultigraph <State ,Transition >();

g.addVertex ((MyVertex) 1);

g.addVertex ((MyVertex) 2);

g.addVertex ((MyVertex) 3);

...

g.addEdge("Edge -A", 1, 2);

g.addEdge("Edge -B", 2, 3);

...

After initializing our Graph, we need to use it to instantiate an implementation of the

Layout<V,E> interface. This interface is responsible for the location of all the graph’s

vertices and edges. It can be done either manually or algorithmically. When we wanted

a manual layouting for our application we used an implementation called StaticLayout ,

and when we needed an algorithmic one we used FRLayout11. The way to instantiate

a Layout is very simple:

Graph <State ,Transition > g;

StaticLayout <State ,Transition > layout = new StaticLayout <State ,Transition >(g);

or
11An implementation of the Fruchterman-Reingold force directed algorithm for node layout.

http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf

Chapter 4. Approach and Implementation 55

FRLayout <State ,Transition > layout = new FRLayout <State ,Transition >(g);

Figure 4.13: An example of a graph laid out by FRLayout()

Next comes the Transformer interface. This is an interface from the apache commons

collections12 that JUNG uses. It usually comes with the use of generics, for example

Transformer<E,String>. The only method in this interface is String transform(E e),

hence given an edge class of our creation, we will need to come up with an appropriate

(and usually very simple) Transformer class to extract a String (denoting -let’s say- a

label for that edge). JUNG’s VisualizationViewer and its Renderer make extended usage

of the Transformer interface as a means for the developer to customize many variables,

like the shapes of vertices/edges, their color, the labels’ fonts etc.

After initializing a Graph and a Layout we simply instantiate our VisualizationViewer,

customize its variables appropriately and add it in a JFrame. All these happen in our

Main class.

VisualizationViewer <State ,Transition > vv

= new VisualizationViewer <State ,Transition >(layout);

/**

*

* Set up and customizations here.

*

**/

JFrame frame = new JFrame ();

frame.add(vv);

Most variables can be found and modified through methods that reside in:

12See http://commons.apache.org/proper/commons-collections/.

http://commons.apache.org/proper/commons-collections/

Chapter 4. Approach and Implementation 56

• VisualizationViewer (vv),

• Renderer (accessed through method vv.getRenderer()),

• RenderContext (accessed through method vv.getRenderContext()).

The JUNG renderers are used to actually draw four different items: (a) edges, (b) edge

labels, (c) vertices, and (d) vertex labels. JUNG supports the notion of pluggable ren-

derers so that one can substitute different renderers for the default. However, many of

the changes we wanted to make did not demand us to make a new Renderer, since they

can accept a number of ”parameters“. How can someone supply all these parameters to

the graph renderers? Where the default values kept? This is the job of RenderContext.

Each VisualizationViewer contains a RenderContext object that we can access to set

these various rendering ”parameter“ values, most of the times by using an implementa-

tion of the Tranformer interface that we talked about earlier.

As a simple example, let us see how can someone:

1. Change the vertex color from the default to green.

2. Make the line used in the edges a dashed line.

3. Display a label for both the edges and vertices.

4. Center the vertex label within its corresponding vertex.

For the first three we will use the following calls to the RenderContext: setVertexFill-

PaintTransformer(), setEdgeStrokeTransformer(), setVertexLabelTransformer(), and set-

EdgeLabelTransformer(). Each takes a Transformer class argument that converts an

edge or a vertex to the type of information needed by the renderer. This means that it

is easy for a developer to change the viual aspects of the graph based on attributes of

custom edge and vertex classes.

We will go through the main customizations that we had to do.

• We increased the size of vertices. The shape was defaulted to a circle, but we

wanted it to be a little bit bigger.

• We set their fill color to white and their stroke color to black.

• We created two custom icons and combined them with JUNG’s default circle to

represent starting states and accepting states.

Chapter 4. Approach and Implementation 57

• For vertices that are selected (or picked) by the user, we set their fill color to become

orange. We also use this to animate a running automaton, as we programmatically

pick states and transitions as the computational steps progress.

• We also changed the picked edge color to orange and their label color to blue to

be more visible. Programmatically picked edges also participate in the animation

of a running automaton.

• We set the edge label position to an appopriate distance from the edge’s arrow,

both in a parallel axis and a perpendicular one.

• We changed VisualizationViewer’s background color to white.

• We set the vertex label position (state id) to be inside its circle. We also gave the

option to change this position to the user, via menu ”File -> Preferences“.

You can find all the code that performs the above customizations inside our Main class.

4.3.5 Getting Interactive with our Graph

Again we have to underline the importance of Greg Bernstein’s tutorial on JUNG as

it was of tremendous help to us regarding interactivity in JUNG. From his tutorial we

learn that JUNG provides GUI features to let users interact with graphs in various

ways. Most interactions with a graph will take place via a mouse. Since there are quite

a number of conceivable ways that users may want to interact with a graph, JUNG has

the concept of a modal mouse, i.e., a mouse that will behave in certain ways based on its

assigned mode. Typical mouse modes include: picking, scaling (zooming), transforming

(rotation, shearing), translating(panning), editing (adding/deleting nodes and edges),

annotating, and more.

To deal with a multitude of mouse modes JUNG uses the concept of a ”pluggable

mouse“, i.e., a mouse that accepts various plugins to implement the currently sup-

ported modes. For example, EditingGraphMousePlugin, LabelEditingPlugin, Editing-

PopupGraphMousePlugin, and so on. For that reason, it wasn’t necessary to create a

new Graph Mouse of our own. We modified an existing implementation, and created

our own mouse plugin instead. Before we describe it though, we must first define what

kind of actions should our mouse support. These include:

• Creation of new nodes (states) at desired location via mouse left-clicks.

http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf

Chapter 4. Approach and Implementation 58

• Creation of new edges (transitions) between two nodes, by pressing and holding

the left-click on the source state and moving the mouse pointer to the target state

before releasing.

• Editing of a state’s or transition’s attributes (such as id, transition symbol, start-

ing/accepting status), via right-clicking on the corresponding graph element and

selecting the desired option in a popup menu.

• The option of deleting a state or transition, by using the same popup menu we

mentioned in the previous case.

• Translating (panning), scaling (zoom) and rotating the graph, by holding down

the left-click in combination with some keyboard button, and performing a mouse

gesture afterwards.

• Both single selection and box selection, for nodes and edges. After they have been

selected, the user should be able to change their location by holding down the

left-click, moving the mouse pointer to the desired destination and then releasing.

As a second option, a popup menu appearing in response to a right-click, would

allow the user to delete the selections if he/she desires so.

One of JUNG’s implementations of the Graph Mouse was very close to our goals. It is

called EditingModalGraphMouse and we built upon it to cover all our needs. Since

this mouse will be used to create new vertices and edges in respose to user actions,

its constructors require that we furnish factory classes (derived from the Factory<V>

and Factory<E> interfaces13). Also, the user will be deciding via the mouse where

vertices should be placed, so we utilized a StaticLayout, to hold the locations. Most of

the remaining actions in our user’s disposal could also be covered by using the Editing-

modalGraphMouse. In order to do that, we enabled three of its available modes. The

user can change modes at will, by using three radio buttons in the mainframe’s toolbar.

(figure 4.14)

1. Editing Mode : This mode allows to create new states by left-clicking on empty

space. New transitions are created when left-clicking on a source state, holding it,

and releasing after moving the pointer to the target state. It is represented by the

crosshair icon.

2. Picking Mode : This mode allows to pick (select) a single, or multiple nodes and

change their location. Single left-click on a node selects it. Relocate it by holding

down left-click, moving to the desired destination and releasing. The user can

13See: http://en.wikipedia.org/wiki/Factory_method_pattern

http://en.wikipedia.org/wiki/Factory_method_pattern

Chapter 4. Approach and Implementation 59

move multiple nodes in the same way. In order to select them, either hold left-

click on empty space to perform a box selection, or select all the nodes individually

by holding the shift button. This mode is represented by the pointing hand icon.

3. Transforming Mode : While in this mode, the user can pan the screen. To do

that, press and hold the left-click and move the mouse to the desired position

before releasing. If the user does so, while holding the shift button at the same

time, the graph rotates. By doing the same while holding the ctrl button, the

action called shearing is performed. Finally, the user can scale the graph (zoom

in/out) by using the mouse’s scroll wheel. This mode is represented by the grabbing

hand icon.

Figure 4.14: The three mouse mode buttons: Editing, Picking and Transforming

The actions related to the mouse’s right-click on the other hand, are independent to

mouse modes. This means that right-clicking causes the same pop-up windows to ap-

pear every time, only defined by the component that was right-clicked on. In order to

implement that, we created our own plugin called PopupVertexEdgeMenuMouse-

Plugin and we added it to our EditingModalGraphMouse. Three different custom menus

were created and associated with that plugin, one for each component that our user can

right-click on. The first menu appears when right-clicking on empty space. This menu

has only one item, representing the option to delete all the elements that we might have

selected. The second menu appears when right-clicking on a transition. This menu

contains the option to delete the particular transition, and the option to edit its symbol.

The third and final custom menu appears when right-clicking on a state. It provides

the user with four options, (a) delete the respective state, (b) set it to be a starting

state, (c) set it to be an accepting state, and (d) edit the state’s id.

4.3.6 Running An Automaton

Now that we learnt how to design a new automaton, how can we run it? First we must

make sure that we have defined an Alphabet and an Input for our automaton, in the

respecting textfields at the top of the screen. Second, make sure we have selected the

correct automaton’s type (dfa or nfa), using the appropriate buttons that reside next

to the ”mouse modes“ buttons in our ToolBar. This will only affect our error checking

code, and not the way our Machine actually runs, as it is the same piece of code that

Chapter 4. Approach and Implementation 60

handles dfa’s and nfa’s alike. Third and last, we press the run button that can also be

found in ToolBar (second from the end), thus starting the simulation of our automaton’s

computation.

In case the user omitted important information, or committed mistakes during the design

and definition of the automaton, the Machine never starts simulating. Instead, the user

gets an error dialog (JDialog in Java) that contains all the appropriate error messages.

Here follows an example of a dfa where we made mistakes on purpose:

Figure 4.15: An example of design errors and their messages

When the errors have been resolved and the user’s presses the run button once again,

our simulation commenses. Our window then changes, as a new panel appears at the

bottom of the screen to represent the automaton’s tape and provide navigational con-

trols to iterate it. Controlling the tape’s progression is a way to navigate through the

automaton’s running steps.

In addition, we have included another panel called LogDisplay(labelled Step History on

screen), which contains a log of the automaton’s steps in textual format. In contrast

to the TapeDisplay, which becomes visible only when the user presses the run button,

LogDisplay’s visibility can be toggled on/off via menu View -> Step History in MenuBar.

There are four available contols (implemented as JButtons) in our user’s disposal, in

order to control the tape’s progression. From left to right: (a) go to start, (b) previous

step, (c) next step, and (d) go to end. If you examine figure 4.16 carefully, you might

notice that as the user navigates throughout the steps, a number of things are happening.

We will describe them in respect with the GUI component they relate to.

Chapter 4. Approach and Implementation 61

Figure 4.16: A screenshot of a running automaton

TapeDisplay

The first row is our visualization of the automaton’s tape. There are thirteen

cells (implemented by JTextFields), containing one symbol each. The middle cell

has an orange border, and symbolizes the automaton’s reading head, or the symbol

that the automaton is going to read in its next step. As the tape progresses, we re-

arrange and re-load the letters of the input in the corresponding cells to simulate

the sensation of movement. If the input’s length is more than our textfield group

can display, the redundant symbols get omitted. After trial and error we found

out that thirteen cells will suffice in the vast majority of cases.

The second row consists of a single cell (JTextField) that displays the id of the

automaton’s current state. In case the current state consists of multiple single

states (in other words, a MultiState), then a composite id is created. This consists

of all the single states’ ids separated by commas and enclosed in brackets ({a,b}
etc). This is called powerset notation (see page 13).

Graph

The automaton’s current state gets highlighted with an orange color. If the

current state is constituted by multiple states, all of those get highlighted as well.

The final states (automaton’s states in its last step) are an exception, as we change

the highlighting color to indicate that the computation has reached its end. All

accepting final states turn green and all non-accepting turn red. This means

that if there is at least one green state among the final states, the automaton has

accepted the input . This further enhances the visual feedback on the result.

Chapter 4. Approach and Implementation 62

In any case, the set of highlighted states correspond to the contents of our cur-

rentState textfield, at the second row of our TapeDisplay. The states’ ids get

highlighted with a blue color to be easier recognized.

Futhermore, the transitions (one or more) that led to the current state from the

previous step gets highlighted as well. The transitions labels (transition symbols)

get highlighted with a blue color, as they are an indicator of the symbols that

caused these particular transitions accordingly.

This appearance of animation is implemented by programmatically picking or

selecting the appropriate elements, after defining the appropriate colors for picked

states and picked transitions.

LogDisplay

All the above are accompanied by the corresponding text-highlighting inside our

LogDisplay (Step History Panel). This can easily be done in Swing’s JTextArea

components, as the one representing our Step History display area.

The last form of visual feedback that we want to underline, is the change of the input

String’s color, inside the Input textfield. When an automaton has been run successfully,

the input String is colored green if the automaton accepted it and red if the automaton

rejected it. Notice its color in figure 4.16.

4.3.7 Saving/Loading

In Chapter 2.2.5 we saw GraphML, an XML-based language that we used to implement

the saving/loading features. We also mentioned that this was done easily, since JUNG

provides intergrated GraphML support. JUNG developers have created two classes

called GraphMLWriter and GraphMLReader2, which encode/decode graphs to/from

GraphML respectively. An example taken from our application:

GraphMLWriter <State ,Transition > graphWriter

= new GraphMLWriter <State ,Transition >();

...

graphWriter.save(graph ,filename);

and

GraphMLReader2 <Graph <State ,Transition >,State ,Transition > graphReader

= new GraphMLReader2 <Graph <State ,Transition >,State ,Transition >(filename);

...

graphReader.readGraph ();

Chapter 4. Approach and Implementation 63

The information that we ended up encoding in GraphML includes:

• The automaton’s type (dfa or nfa),

• State id’s,

• State status (accepting/rejecting),

• State positions (in the form of xy-coordinates of type Double),

• Transition id’s (symbols),

• Input,

• Alphabet.

The dialog window that visualizes this function was a simple implementation of Java’s

JFileChooser class. This is a GUI Component made to serve this specific purpose and

comes with all the necessary features.

Figure 4.17: Java’s FileChooser (GTK)

One last thing to note is that if the described automaton contains duplicate states,

not only it cannot be run, but it cannot be saved as well. For that reason, we resolve

duplicate states programmatically before saving the graph, by adding an incremental

numbering suffix next to conflicted state ids (2,3,... etc).

4.3.8 Exporting to Image

Again in Chapter 2.2.7 we mentioned that we used FreeHep to export our graph to an

image file format. So far the four supported types are svg, png, bmp and gif .

FreeHep is fully compatible with Swing and can export every object that extends JCom-

ponent class. That is the case with our VisualizationViewer which extends JPanel, a

subclass of JComponent. Since FreeHep already comes with a dialog window of its own,

called ExportDialog, the code to use it in your program is very simple:

Chapter 4. Approach and Implementation 64

Figure 4.18: FreeHep’s ExportDialog

ExportDialog export = new ExportDialog ();

export.showExportDialog(VisualizationViewer);

This feature is a ”last-minute“ solution and we consider it to be in beta. In future

versions of this application we will fix some minor bugs, we will add support for other

image file formats (like *.eps or *.ps) and we will provide a way for the user to crop his

graph before exporting it.

4.3.9 Preferences

In page 57 we mentioned our File -> Preferences menu. This is a simple menu that gives

access to two secondary features.

Figure 4.19: Our Preferences dialog

• Automatic Node Designation: An incremental integer gets initialized at zero.

If the respective checkbox (shown in figure 4.19) is set to ’Enabled’, then state ids

become auto-generated upon creating a new node. The id derives from the combi-

nation of the desired prefix that has been defined in the correspondent textfield and

the integer’s current value as a suffix. If the reset button is clicked, the increment

restarts from zero.

• Node Id Position: This is a simple JComboBox, i.e. a drop-down list of options,

which contains the abbreviations of all the posible relative positions that a state id

Chapter 4. Approach and Implementation 65

can be drawn at. These are abbreviations of directions, such as ’N’ for North, ’E’

for East, etc. There is also an option to set it in ’AUTO’. This is implemented by a

simple call to JUNG’s vv.getRenderer().getVertexLabelRenderer().setPosition()

method. This feature is useful in case of very long state ids that don’t fit inside

node circles. This is quite common when converting an NFA to a DFA, as the

DFA’s state ids are powersets of NFA states.

Chapter 5

User Evaluation

By the time this document is being written, it is mid-summer and the university has

entered it’s summer break. Classrooms and dorm rooms are empty and students are

mostly away on vacation. This is bad news for us though, as an educational application

such as ours should be judged inside a classroom, with teachers and students giving the

final verdict. A proper, in-depth user evaluation is not a matter to be taken lightly,

especially since our application carries pedagogical value.

With that being said, we decided to perform a simple, informal user evaluation, only

to try and apply some last-minute improvements before making this tool public. We

tried to find as relative subjects as possible, i.e. people that had been taught Theory of

Automata at least once in the past. They tested a previous version of our application

and their remarks and suggestions were incorporated in the current one.

5.1 Method Description: Think-Aloud Evaluation

For our evaluation we employed the ”Think aloud” user evaluation protocol, which we

found suiting our needs and will be described in the next section. Citing from the

corresponding article in Wikipedia1,

“Think-aloud protocol (or think-aloud protocols, or TAP) is a method

used to gather data in usability testing in product design and development, in

psychology and a range of social sciences (e.g., reading, writing, translation

research, decision making, and process tracing).

Think-aloud protocols involve participants thinking aloud as they are

performing a set of specified tasks. Users are asked to say whatever they are

1See:http://en.wikipedia.org/wiki/Think_aloud_protocol.

66

See: http://en.wikipedia.org/wiki/Think_aloud_protocol

Chapter 5. User Implementation 67

looking at, thinking, doing, and feeling as they go about their task. This

enables observers to see first-hand the process of task completion (rather

than only its final product). Observers at such a test are asked to objectively

take notes of everything that users say, without attempting to interpret their

actions and words. The purpose of this method is to make explicit what is

implicitly present in subjects who are able to perform a specific task.”

The task our users were asked to perform was to re-create a given NFA using our

application, and run it on various inputs. We used the NFA from Chapter 4, page

47, figure 4.9 as an example.

5.2 User Feedback

The feedback we received was overall positive and very encouraging. Most of our users

liked the appearance and the simple, minimalistic interface. Those who had a better

understanding of finite automata appreciated our Step History panel (which represents

the automaton’s steps in textual form), the backwards iteration on graphs and the error

messaging system.

Of course, negative remarks were not absent. We will focus on these more, describing

what measures we had to take to balance out some of them.

The first -and most important- negative response was usually related to our modal

mouse. While most editing applications (including the majority of automata simulators)

approach mouse modality through the notion of having different ”tools” (i.e. state-

creation tool, transition-creation tool, panning tool e.t.c.), our application uses only

three modes, each specialized on a different set of tasks. In fact to design a new graph,

one only needs the mode called “Editing Mode”, which our applications defaults at.

Our users, however, couldn’t have known that. Usually when they failed to perform

a task they had in mind (for example, draw a new transition), they couldn’t derive if

they failed due to their own missclick, or due to having an inappropriate mouse mode

selected. Obviously, the names of our modes (which appear only in the tooltips of their

corresponding buttons) didn’t help.

Most of our users got around that problem somewhere in the first five minutes, although

they found the process frustrating. To account for that, we included a Help menu on

the menubar, displaying a summary of the application’s User Manual. There one can

find an explicit description of the three mouse modes and how to use them. This fits

with our natural response to seek for a Help menu, when stuck in a application.

Chapter 5. User Implementation 68

We didn’t want to change our approach altogether. We strongly believe that after a few

minutes, when the user finally gets accustomed, this approach is quite comfortable. The

important difference from other automata simulators, is that you don’t have to change

many mouse modes, or tools, when designing a new automaton in our application. In

fact, most important tasks are performed using only our ”Editing Mode” and it is the

mode which the user will be using most the time.

By adding the user manual into the application, we also hope to have covered the second

common negative remark that we received. The fact that nowhere in the application

was explicitely stated that the symbol ’e’ is reserved as a special character, only to be

used to denote an empty transition. Most of our users just guessed it and were not sure

if it would work before running the simulation.

Third, most users felt that the visual feedback at the automaton’s last step, the step

that represents the computation’s result, didn’t have enough impact. That happened

because in the previous version of our application, the states’ highlight color didn’t vary

at all. Instead it remained orange throughout all the steps. To account for that, we

changed it only for the last step. So in the current version, when the computation reaches

its end, the automaton’s final states turn green in case they are accepting, and red if

not. This means that if there is at least one green state among them, the automaton

has accepted the input. This information is now clearly represented in color.

A fourth category of negative responses came up, when some users tried to display the

transition popup menu (which allows to edit the transition symbols). It appears that

our mouse is too location-sensitive, with little to none intolerance in missclicks when

trying to display that menu. The user has to click either exactly on the line, or on the

arrowhead of the arrow that represents the corresponding transition. It is true that this

fact can be very frustrating. However only a minority of our test users mentioned it, so

taking measures against it was not of high priority. We may revisit this issue in a future

update.

5.3 Conclusion

As we mentioned earlier, the overall responses were positive and encouraging. The first

impression we shared with our test users, inclines us to believe that this application has

what it takes to fulfill the role of a finite automata simulator used as a pedagogical tool.

Nonetheless, such a tool was meant to be evaluated by teachers and students. Thus,

we believe that the most important feedback will be arriving at the start of the next

Chapter 5. User Implementation 69

semester. We hope it will encourage us even further, to extend, evolve and enhance our

application’s educative value.

Chapter 6

Related Work

According to the article “Fifty years of automata simulation: a review”[6], automata

simulators can be classified based on their design paradigms into language based au-

tomata simulators and visualization centric automata simulators. The first category

encompasses simulators where the definition of an automaton is written in a predefined

symbolic language and processed using tools like compilers and interpreters. This is not

the case with our application though. Our simulator belongs to the second category. It is

a visualization centric automata simulator, which means that it accepts the specification

of an automaton and simulates its working graphically .

The same article further classifies the visualization centric automata simulators

into two categories:

1. Those accepting structured input: Simulators that accept specifications of

automata in predefined structured formats. Such a format often comprises of

a table to store the transition function. The user fills in a form providing the

necessary details of an automaton and promptly starts the simulation process.

2. Those accepting diagrammatic input: Simulators that need the user to draw

the transition diagrams of the automata. These tools typically provide a canvas

where states and transitions are added and positioned by clicking and dragging the

mouse. This gives the user a feel of drawing an automaton on paper. Oftentimes

animation is employed during simulation to enhance pedagogy.

Our application belongs to the second sub-category which, in fact, is favored by the

students (acm Inroads, 2011 December, Vol.2, No.4, pg. 64).

70

Chapter 6. Related Work 71

So to sum up, our application is a Visualization Centric Finite Automata Sim-

ulator, Accepting Diagrammatic Input. Therefore search for related projects was

focused on simulators that belong to the same category as well.

Before moving on, we have one important thing to note: Many researchers publish in

journals and conferences describing their solutions; in “Fifty years of automata simula-

tion” alone, one can find more than ten projects that relate to ours. However, not all

of these are accessible by simple internet searches using the application’s title, or the

author’s name, or the corresponding paper’s title, or by searcing their university’s page.

This goes to show that the accessibility of an educational tool is an important factor in

its deployment.

In the following sections we will see other simulators that belong in the same category

as ours and are easily accessible with a simple internet search using their keywords.

6.1 FLAP & JFLAP

Figure 6.1: A running NFA in JFLAP

In 1993, Professor Susan H. Rodger of Duke University and co-researchers developed

a Formal Language and Automata Package (FLAP) to design and simulate finite au-

tomata, pushdown automata and Turing machines. This tool had been successfully used

for teaching at the Duke University. Few years afterwards, Rodger and co-researchers

developed a Java Formal Languages and Automata Package (JFLAP1), as an evolu-

tion from its predecessor. In the last two decades, the tool has been under continuous

1You can find it at: www.jflap.org

www.jflap.org

Chapter 6. Related Work 72

enhancement and new features have been added regularly. This tool supports several de-

terministic and nondeterministic variants of finite automata, pushdown automata, and

Turing machines as well as Mealy machines and Moore machines.

This tool is undoubtedly the most widely used tool for simulation of automata developed

to date. Thousands of students have used it at numerous universities in more than a

hundred countries2. It is licenced under its own licence (JFLAP 7) and one has to fill

a form created to track JFLAP usage, in order to get the application for free. You can

find it in www.jflap.org.

For additional screenshots see figures 6.5,6.6 and 6.7.

6.2 Automaton Simulator

In 2001, Burch, C. developed an Automaton Simulator to visually design and simulate

finite automata, pushdown automata and Turing machines. In this tool, an automaton

can be simulated either stepwise or instantaneously. An option for rewinding the sim-

ulation process is also available. It is distributed under GPLv2 Licence and you can

find both the application and the source code at: http://ozark.hendrix.edu/~burch/

proj/autosim/.

Figure 6.2: Screenshot of Automaton Simulator 1.2

In our opinion it has some flaws. First of all, you can’t name the states and you can

only use six different transition symbols: ’a’, ’b’, ’c’, ’d’, ’none’ and ’else’. Second, the

simulation animation happens real-time, as the user types the input tape which can be

2See http://www.jflap.org/stats2008/

www.jflap.org
http://ozark.hendrix.edu/~burch/proj/autosim/
http://ozark.hendrix.edu/~burch/proj/autosim/
http://www.jflap.org/stats2008/

Chapter 6. Related Work 73

a bit confusing. Finally, the author has abandoned the development of this project a

long time ago.

6.3 Visual Automata Simulator (VAS)

In 2004, Jean Bovet developed the Visual Automata Simulator (http://www.cs.usfca.

edu/~jbovet/vas.html). This application supports visual designing and simulation

of finite automata and Turing machines. It features multiple tapes, batch testing for

multiple files, opening of multiple documents at the same time, exports in EPS file format

and more. It is used in D.Galles course on the Automata Theory at the University of

San Francisco, Department of Computer Science. It is written exclusively in Java and

Swing, and is licenced under BSD.

Figure 6.3: Designing a DFA using VAS

In general, VAS is a very intuitive application. The only thing that is counter-intuitive

is the step-by-step animation. When an automaton runs the result is printed on screen

immediately. For the user to iterate through the steps, he/she must first enter “debug”

mode using the menu and then move back and forth using keyboard shortcuts. Also

VAS doesn’t support importing files written in some kind of description language, like

we did with JSON. Like the previous case, this project seems to be unmaintained as

well.

For additional screeshots see figures 6.8 and 6.9.

http://www.cs.usfca.edu/~jbovet/vas.html
http://www.cs.usfca.edu/~jbovet/vas.html

Chapter 6. Related Work 74

6.4 Java Finite Automata Simulation Tool (JFAST)

White, T. and Way, T. in 2006, developed a Java Finite Automata Simulation Tool to

design and simulate visually finite automata, pushdown automata, Turing machines, and

other types of automata. The tool supports both deterministic and nondeterministic

machines. The tool allows designing complex automata by integrating simpler sub-

machines. This tool is also written in Java, and is licenced under a slightly modified

GPL. You can find it at: http://jfast-fsm-sim.sourceforge.net/

Figure 6.4: JFAST Editing Interface

Like most of the previous projects, this one seems to be unmaintained since 2006. The

authors are aware of some weaknesses of this application, and mention them under

section “User suggested improvements” in their homepage. These include the optional

ability to enter an input as a string (i.e. using the keyboard) instead of selecting from

a list, and redesigning the simulation interface to be more intuitive.

To see how JFAST looks like when simulating, go to figure 6.10.

http://jfast-fsm-sim.sourceforge.net/

Chapter 6. Related Work 75

6.5 Additional Screenshots

Figure 6.5: JFLAP editor window

Figure 6.6: Designing a DFA in JFLAP

Chapter 6. Related Work 76

Figure 6.7: An NFA in JFLAP (nondeterministic states highlighted)

Figure 6.8: Designing an NFA using VAS

Chapter 6. Related Work 77

Figure 6.9: NFA to DFA Conversion

Figure 6.10: JFAST Simulation Interface

Chapter 7

Conclusions

7.1 Discussion

In Chapters 2 and 3 we made an attempt to justify our reasons behind making yet

another finite automata simulator. We also attempted to justify its use it as a pedagogical

tool in our University’s course Computation Theory. With the appopriate literature

backing us, we think we succeeded in that. The final confirmation will be delivered as

soon as the summer break ends, and the students return to the classrooms to perform

the decisive test. We are eager to know, in what way will students and teachers find our

application to be useful, and whether it will enhance their understanding of fundamental

concepts of the Automata Theory at all.

In Chapter 4 we saw how we used Sun/Oracle’s Java language to implement our tool, and

various third party libraries (like JUNG, a graph visualization framework). Overall, we

do not regret that decision. It might not have been the optimal choice aesthetically, nor

performance-wise, but it was a sure-fire solution that guaranteed we wouldn’t get stuck

behind some kind of obscure bug, undocumented code, depricated libraries and such.

In addition to providing cross-platform execution, the benefits of using Java became

apparent each time we rushed to a community forum full of questions, to find out that

they had already been answered.

Then, in Chapters 5 and 6, we put our application to the test. First with users that

provided an informal - and yet important - initial evaluation, and second by comparing

it to other related projects that we could get our hands on. From these two chapters our

reader can derive that our application is on par with the other simulators (at least as fas

as DFAs and NFAs are concerned), and that it can fulfill its role as a pedagogical tool.

We believe that it offers some minor advantages as well, such as compliance to the book

78

Chapter 7. Conclusions 79

taught in our university’s Computation Theory course, comfortable mouse functionality,

and obvious visual and textual feedback on the automaton’s computation and tape.

Additionally, it can import automata described in the JSON language, and it is free

software (licenced under GPLv3).

7.2 Future Work

We consider this project to be far from complete. Improvements, additions and modifi-

cations are in due, in order for it to become what we have envisioned. As we mentioned

before, we expect that when it is finally tested in the classroom, feedback from teachers

and students will bring up even more tasks for us to accomplish.

In an attempt to prioritize though, we will describe these tasks that would vastly con-

tribute towards our purpose, which is to provide a visual automata simulator used as a

pedagogical tool.

• A festidious, full-fledged User Evaluation should be done, to study and verify the

benefits of using such tools in the classroom. We hope that it can prove to be more

than a homework assistant to the students, that it will help them comprehend the

fundamental concepts of the Theory of Automata and Computation Theory, while

additionally serving as a teaching assistant to the professors.

• Exploit the relationship of finite automata with regular languages by implementing

various conversion algorithms from DFA and NFA to the corresponding regular

expressions. This would further underline the important role that finite automata

have in Natural Language Processing (NLP), among others.

• The study of finite automata is the recommended place to start, but in order to

delve deeper, one must study more complex structures. Our application therefore

should be extended to simulate other types of automata, such as Turing Machines

and pushdown automata. It should also support multiple, bi-directional tapes.

From a technical aspect, there is work to be done to improve our application’s GUI as

well.

• Refactoring it to become more responsive. More detailed profiling should be per-

formed, to track down resource-demanding actions and employ multiple threads to

divide the workload.

Chapter 7. Conclusions 80

• A better “exporting to image“ module is needed. One that would export to the

popular EPS file format, and would include a print preview feature where the user

could crop the image to the desired frame.

• Moreover, the third-party library that we currently use to export our graphs to

image files doesn’t work for versions of Java higher than 6, and in fact, doesn’t

work for any other Java platform other than Sun/Oracle’s JRE. Our application

doesn’t have such kind of dependencies in general, and it can be run on various

platforms and versions (without the export feature of course). We find this to be

restrictive, so we should find out a way to resolve these dependencies as future

work.

• Employ Java/Swing’s GridBagLayout manager instead of our current manual lay-

outing of the components. This would add a dynamic behaviour to our GUI, since

the components would be able to adapt to window resizing.

• Our whole application is written in Java, so it can be run on any platform that

bears the appropriate virtual machine. However, it’s appearance is optimal under

the GTK Look and Feel, which can be found in Linux systems. Tests and mod-

ifications should be made, so that it could appear on any other platform in an

optimal way as well.

• Although Swing is a decent, reliable GUI-library, it no more belongs to the library’s

that provide state of the art graphics. It may suffice when it comes to simple,

educational applications, but it isn’t on par with other modern GUI building tools.

Nonetheless, there are many Swing-compatible, third-party libraries (e.g. SwingX,

JGoodies), which could be used to upgrade our GUI’s appearance in the future.

• Lastly, to take full advantage of using Java as our development language, our

future intentions include the deployment of this application as a JApplet as well.

To sum up, there is a lot of work to be done and we realise that. We already consider

this application to be in beta status. We ask our users to bear with us, expect future

releases, and provide any suggestions or other forms of feedback they can think of. The

source code will be free and available to those who feel like contributing.

7.3 Lessons

The development of this project was an invaluably educative experience, as an under-

graduate thesis project should have been. We will attempt only a rough outline of the

most important lessons one can extract from this process.

Chapter 7. Conclusions 81

Agile Development

If we were forced to chose the single most important lesson, was learning about the

notion of Agile Development1. Quoting from wikipedia,

”Agile software development is a group of software development meth-

ods based on iterative and incremental development ... It promotes adap-

tive planning, evolutionary development and delivery, a time-boxed iterative

approach, and encourages rapid and flexible response to change. It is a

conceptual framework that promotes foreseen interactions throughout the

development cycle.“

This introduced an important concept to us. When developing a medium-sized (or

larger) project like this, it is difficult to design everything from the start, blindly im-

plementing whatever lies on paper afterwards. Even more so, if the developers lack

experience like in our case. Agile development enabled us to engage in a development

cycle which kept us in motion, even when stuck: Create a simple prototype, experiment,

use feedback to work on design, refactor and remodel the prototype, and so forth. The

time period of the iterations was usually a week.

Indicatively, we will only mention what our iterations involved in the first few weeks of

development.

Week 1: Created a single class called ”Machine“, that could only simulate DFAs,

using a textual input and output at the console.

Week 2: Find an appropriate library to draw graphs, and create a second class called

”GUI“ to show the results of our Machine. Add a single button to perform forward

steps.

Week 3: Add the feature of non-determinism to our Machine.

Week 4: Decompose, design, refactor source.

Week 5: Create a new prototype GUI to accomodate the changes.

... and so on.

In figures 7.1, 7.2 and 7.3 you can see our ”Agile Development“ story in pictures.

1See http://en.wikipedia.org/wiki/Agile_software_development.

http://en.wikipedia.org/wiki/Agile_software_development

Chapter 7. Conclusions 82

Figure 7.1: After two weeks

Figure 7.2: ... in the second month.

Figure 7.3: ... and the current version.

Chapter 7. Conclusions 83

Testing/Debugging

Our second lesson was one taught in the hard way: Using JUnit when developing

in Java . JUnit2 is a unit testing framework for the Java language. This tool enables

the developers to create small tests, execute them, and check how different parts of the

project work, independently.

The combination of JUnit with a high-level debugger (like one included in most IDEs)

is very powerful, and we highly recommend using it. In simple words, if you are a

beginner programmer who is just making his/hers first steps in larger-scale projects,

getting accustomed with those tools is time worth spending.

Extensive know-how

Finally, this project gave us extensive know-how in many levels. We learnt how to use

new IDE’s and plugins (NetBeans, JUnit, GUI Builder, e.t.c.), how to program a GUI

in Swing (user-generated events and how to handle them, customizing GUI components,

e.t.c.), design patterns in software engineering (like MVC) and more. We even learnt

how to compose a thesis document in Latex. Additionally, having know-how on JUNG

itself (the graph-drawing library that we used) may prove to be a valuable asset in the

future in case we need any kind of graph visualization or data representation of some

sort, since it is a high-level library with numerous features and scientific applications.

We hope that maintaining and extending this project will help us learn many more

things in the future. Our main job - delivering an undergraduate thesis project - is

done, but our most important job is not . This is none other, than delivering a truly

educational tool.

2See http://en.wikipedia.org/wiki/JUnit.

http://en.wikipedia.org/wiki/JUnit.

Appendix A

User Manual

A.1 Installation

You need Sun’s/Oracle’s Java SE Runtime Environment 6 to run this applica-

tion. You can find it following this link: http://www.oracle.com/technetwork/java/

javase/downloads/jre6-downloads-1637595.html.

Running this application in higher Java versions will work, although the “Export to

image” feature will be broken due to third-party dependencies.

If you are using Linux and you don’t desire to install this specific platform in your

system, simply download and extract it into a folder and then execute the script java

(in sub-folder /bin) with FASim.jar as an argument (e.g. /myFolder/bin/java -jar

FASim.jar).

A.2 License

This application is free software, licensed under the GNU General Public License,

version 3 (GLPv3). To get the source code, contact:

George Koykoympedakis,

gkoykoy@gmail.com

A.3 General

FA-Sim (Finite Automata Simulator) is a tool created for pedagogical purposes, in-

tended to be used by students and teachers alike. Students can use it as a homework

84

http://www.oracle.com/technetwork/java/javase/downloads/jre6-downloads-1637595.html
http://www.oracle.com/technetwork/java/javase/downloads/jre6-downloads-1637595.html
gkoykoy@gmail.com

Appendix A. User Manual 85

assistant while studying difficult examples or solving exercises. Teachers, on the other

hand, can use it to simplify and visualize complex concepts, such as nondeterminism

and the conversion of NFA to DFA, or as a simple graph editor to create and print

examples for their notes and their slides.

If you don’t know what finite automata are, you can start here: http://en.wikipedia.

org/wiki/Deterministic_finite_automaton and http://en.wikipedia.org/wiki/

Nondeterministic_finite_automaton.

Here follows a summary of all the features that FA-Sim supports so far:

• Creation of graphs representing DFA and NFA,

• Defining an alphabet and an one direction input tape ,

• Simulating the automaton’s computation,

• Iterating through the computational run step-by-step and with backwards

iteration ,

• Visual and textual representation of the automaton’s step history ,

• Saving and loading graphs from the hard drive,

• Importing a graph described in the JSON 1 language,

• Exporting the graph in SVG, PNG, GIF and BMP file formats.

A.3.1 GUI

The GUI is divided into five main areas (figure A.1):

1. Menubar,

2. Toolbar,

3. Canvas (graph display & edit),

4. Step History (log display),

5. Tape Display & Controls.

1See en.wikipedia.org/wiki/JSON for more.

http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
en.wikipedia.org/wiki/JSON

Appendix A. User Manual 86

The Tape Display area doesn’t become visible, unless an automaton has been simulated

successfully. Step History on the other hand, can be turned on/off at will, by using the

View -> Step History menu in the Menubar. The Tape Display panel consists of three

different elements (fig.A.2),

1. the automaton’s input tape contents,

2. the current state textfield,

3. the tape controls.

Figure A.1: The five main areas

Figure A.2: Tape Display and Controls

The last area we need to cover before continuing is the Toolbar . This area along with our

Canvas complement eachother, in terms of describing and simulating an automaton.

Its elements are (fig.A.3):

Appendix A. User Manual 87

1. Mouse Mode Selection (buttons),

2. Automaton Type Selection (buttons),

3. Convert NFA to DFA (button),

4. Alphabet & Input (textfields),

5. Run/Stop simulation (buttons).

Figure A.3: Toolbar

A.3.2 The FA-Sim Mouse

FA-Sim uses a modal mouse, which means that mouse functionality changes according

to the mode it’s in. However, only the left-click functionality changes, while the right-

click behaves the same throughout all the different modes. These include:

1. Editing (crosshair icon),

2. Picking (pointing hand icon),

3. Transforming (grabbing hand icon).

Figure A.4: Mouse Mode Buttons

Here follows a description of the mouse’s functionality, sorted by it’s different modes:

Editing mode(’e’):

• Left-click on empty space to create a new state.

Appendix A. User Manual 88

• Left-click and hold on a state, drag mouse to another state and release to

create a new transition.

• Left-click on a single state to create a looped transition. This means a

transition where the source state is the same as the target state.

Picking mode(’p’):

• Left-click on a state to pick, or select it.

• Left-click on a state and hold, drag mouse to a new location and release to

move a state.

• Left-click on different states while holding down the shift button, to select

multiple states.

• Alternatively, left-click on empty space, hold and drag the mouse to form a

box selection of multiple states.

• Having selected multiple states at once, you can move them in the same

way as you would move a single state.

• Left-click on a transition to pick it. There is no practical reason to do this,

only visual.

• Left-click on a state while holding the ctrl button to bring that state to

the center of the display.

Transforming mode(’t’):

• Left-click and hold anywhere, drag mouse and release to pan (translate) the

graph.

• Left-click and hold anywhere while holding the shift button, drag mouse and

release to rotate the graph.

• Left-click and hold anywhere while holding the ctrl button, drag mouse and

release to shear the graph.

Functions that apply to all the modes:

• Use the mouse scroll wheel to zoom in and out.

• Right-click on empty space to delete selected states (the corresponding

transitions are deleted automatically).

• Right-click on a state to access the state popup menu. In this menu you

can:

1. Delete the state,

2. Make it a starting state,

Appendix A. User Manual 89

3. Make it an accepting state,

4. Edit it’s name.

• Right-click on a transition to access the transition popup menu. In this

menu you can:

1. Delete the transition,

2. Edit the transition’s symbol. To assign multiple transition symbols,

separate them by commas (e.g. “a,b,c,...” etc). Type in the character

’e’ to denote an empty transition.

A.4 Running a Simulation

To run a simulation, first make sure you have selected the appropriate type in the toolbar.

This will only affect the error messages you’ll get, as DFA have additional restrictions

to NFA and the application must perform different checks.

Afterwards provide the desired alphabet and input in the corresponding textfields, with-

out separating characters (e.g. commas) between the symbols. Note that the input can

be empty, while the alphabet cannot. Finally, press the “run” button , at the upper

right of the window. If the automaton has errors, you will get a dialog window displaying

the appropriate error messages. Resolve them and repeat.

When succeeding in running the automaton the Tape Display panel appears. You can

now iterate through the automaton’s computational steps using the control buttons

(fig.A.2). Optionally, you can enable the Step History panel (or Log Display), through

the View -> Step History menu in the menubar (keyboard shortcut ctrl+H).

Note that the color of the input string changes to indicate the computational result, as

it becomes green if the input was accepted and red if the input was rejected. To further

enhance the visual feedback on the computation’s result, the final states change color as

well. All non-accepting states turn red, and all accepting ones turn green. This means

that if there is at least one green state among them, the automaton has accepted the

input.

Many options become disabled while an automaton is running. Press the “stop” button

to enable them and prepare for your next simulation.

Appendix A. User Manual 90

A.5 Converting an NFA to a DFA

The button that corresponds to this action is in the toolbar, at the top of the screen

(fig.A.3). This button is enabled only if the type of an automaton has been set to NFA.

When it is clicked, the application checks for errors once again, and informs the user.

You cannot convert to a DFA, unless you have resolved all the errors.

A.6 Importing from JSON

JSON is a human-readable XML-like language, widely common in web applications, but

we used it as a Finite Automata Description Language. You can import a *.json file in

FA-Sim using the File -> Import menu.

JSON has support for limited types of variables, but we will only list the ones we used:

• String (double-quoted Unicode)

• Array (an ordered sequence of values, comma-separated and enclosed in square

brackets; the values don’t need to be of the same type)

• Object (an ordered collection of key:value pairs with the ’:’ character separating

the key and the value, comma-separated and enclosed in curly braces; the keys

myst be string and should be distinct from each other)

Here follows a simple example of how we used JSON to describe an NFA:

{ "type":"nfa",

"states":["q0","q1","q2","q3","q4"],

"transitions": [

["q0","a","q0"],

["q0","b","q0"],

["q0","b","q1"],

["q1","a","q3"],

["q1","b","q2"],

["q2","e","q4"],

["q3","b","q4"],

["q4","a","q4"],

["q4","b","q4"]

],

"startState":"q0",

"acceptStates":["q4"],

"alphabet":"ab",

"input":"bb" }

Using JSON to describe an NFA

Appendix A. User Manual 91

As you can derive from this example, defining more than one transition symbol in the

same line is not allowed . Instead, the user should create multiple entries in the

“transitions” array. Also note that we have reserved the character ’e’ as a special

character , denoting empty transitions. Lastly, non-significant white space may be

added freely around the ”structural characters” (i.e. brackets ” []”, colons ”:” and

commas ”,”).

In our opinion, any further explanations would be redundant. This is how the described

NFA looks like:

Figure A.5: Visualization of the described NFA

The layouting of the graph is being done algorithmically, but the user can reposition all

the nodes at will, using the mouse’s picking mode.

The fact that JSON is a natural, efficient, out-of-the-box solution to describe Finite

Automata, is utterly interesting. To our knowledge it has never been used in such a

way before.

A.7 Exporting to Image Files

As a last-minute addition, FA-Sim can export to the following image file formats:

• SVG (Scalable Vector Graphics)

• BMP (Bitmap Image File)

Appendix A. User Manual 92

• PNG (Portable Network Graphics)

• GIF (Graphics Interchange Format)

The exported image has the exact same appearance as our canvas; and by that we

mean that everything matters: the location of the graph inside the canvas, any picked

states/transitions, even the size of the window . Actually you can use the last one

to “crop“ the image. This is a “dirty” solution that we intend to make up for, in the

future.

A known bug is that when we export to svg, Java’s renderer breaks and the quality of

our graph plummets. The only way to fix it is by restarting the application. Fortunately,

this doesn’t affect the the svg2 export feature itself, i.e. even though Java’s rendering

breaks and the graph appears to be ugly, the exported images look as they were supposed

to. This comes in handy when we want to export multiple svg’s in succession.

Please bear in mind that we consider this application to be in beta and will get improved

in the future.

A.8 Preferences

This is a simple menu under “File“ in menubar, that gives access to two secondary

features.

Figure A.6: Our Preferences dialog

• Automatic Node Designation: An incremental integer gets initialized at zero.

If the respective checkbox (shown in figure A.6) is set to ’Enabled’, then state ids

become auto-generated upon creating a new node. The id derives from the combi-

nation of the desired prefix that has been defined in the correspondent textfield and

2And only the SVG. Exporting to the other formats (bitmaps) breaks too.

Appendix A. User Manual 93

the integer’s current value as a suffix. If the reset button is clicked, the increment

restarts from zero. This feature is enabled by default.

• Node Id Position: This is a simple JComboBox, i.e. a drop-down list of options,

which contains the abbreviations of all the posible relative positions that a state id

can be drawn at. These are abbreviations of directions, such as ’N’ for North, ’E’

for East, etc, with an additional option to set it in ’AUTO’. This feature is useful

in case of very long state ids that don’t fit inside node circles (quite common when

converting an NFA to a DFA).

A.9 Contact Info

To report bugs, offer suggestions, or help us develop this project in any way, contact:

George Koykoympedakis,

gkoykoy@gmail.com

gkoykoy@gmail.com

Bibliography

[1] Michael Sipser. Introduction to the Theory of Computation. CENGAGE Learning

Custom Publishing, June 2012. ISBN 9781133187790.

[2] Stephen Wolfram. A new kind of science. Wolfram Media, 2002.

[3] Harry R. Lewis and Christos H. Papadimitriou. Elements of the theory of compu-

tation. Prentice-Hall, 1998. ISBN 9780132624787.

[4] Formal language - wikipedia, the free encyclopedia. URL http://en.wikipedia.

org/wiki/Formal_language.

[5] Automata theory, June 2013. URL http://en.wikipedia.org/w/index.php?

title=Automata_theory&oldid=559091717. Page Version ID: 559091717.

[6] Pinaki Chakraborty, P. C. Saxena, and C. P. Katti. Fifty years of automata simula-

tion: a review. ACM Inroads, 2(4):59–70, December 2011. ISSN 2153-2184. doi: 10.

1145/2038876.2038893. URL http://doi.acm.org/10.1145/2038876.2038893.

[7] Nondeterministic finite automaton, June 2013. URL http://en.wikipedia.org/

w/index.php?title=Nondeterministic_finite_automaton&oldid=558772432.

Page Version ID: 558772432.

[8] Java (programming language), June 2013. URL https://en.wikipedia.org/w/

index.php?title=Java_(programming_language)&oldid=558718923. Page Ver-

sion ID: 558718923.

[9] Bruce Eckel. Thinking in Java. Prentice Hall Professional, 2003. ISBN

9780131002876.

[10] History of java technology. URL http://www.oracle.com/technetwork/java/

javase/overview/javahistory-index-198355.html.

[11] Oracle technology network for java developers. URL http://www.oracle.com/

technetwork/java/index.html#943.

94

http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/w/index.php?title=Automata_theory&oldid=559091717
http://en.wikipedia.org/w/index.php?title=Automata_theory&oldid=559091717
http://doi.acm.org/10.1145/2038876.2038893
http://en.wikipedia.org/w/index.php?title=Nondeterministic_finite_automaton&oldid=558772432
http://en.wikipedia.org/w/index.php?title=Nondeterministic_finite_automaton&oldid=558772432
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=558718923
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=558718923
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://www.oracle.com/technetwork/java/index.html#943
http://www.oracle.com/technetwork/java/index.html#943

Bibliography 95

[12] Java platform, standard edition, June 2013. URL http://en.wikipedia.org/w/

index.php?title=Java_Platform,_Standard_Edition&oldid=555073430. Page

Version ID: 555073430.

[13] OpenJDK, June 2013. URL http://en.wikipedia.org/w/index.php?title=

OpenJDK&oldid=555523114. Page Version ID: 555523114.

[14] OpenJDK. URL http://openjdk.java.net/.

[15] Swing (java), June 2013. URL http://en.wikipedia.org/w/index.php?title=

Swing_(Java)&oldid=557675877. Page Version ID: 557675877.

[16] JUNG - java universal Network/Graph framework. URL http://jung.

sourceforge.net/.

[17] JUNG, May 2013. URL http://en.wikipedia.org/w/index.php?title=

JUNG&oldid=549582111. Page Version ID: 549582111.

[18] GraphML, May 2013. URL http://en.wikipedia.org/w/index.php?title=

GraphML&oldid=556038456. Page Version ID: 556038456.

[19] The GraphML file format. URL http://graphml.graphdrawing.org/.

[20] JSON, . URL http://www.json.org/.

[21] JSON, June 2013. URL http://en.wikipedia.org/w/index.php?title=

JSON&oldid=559219644. Page Version ID: 559219644.

[22] json-simple - JSON.simple - a simple java toolkit for JSON - google project hosting,

. URL http://code.google.com/p/json-simple/.

[23] FreeHEP, June 2013. URL http://en.wikipedia.org/w/index.php?title=

FreeHEP&oldid=552195737. Page Version ID: 552195737.

[24] FreeHEP web site - FreeHEP java libraries. URL http://java.freehep.org/.

[25] Welcome to NetBeans. URL https://netbeans.org/.

[26] NetBeans, June 2013. URL https://en.wikipedia.org/w/index.php?title=

NetBeans&oldid=559092227. Page Version ID: 559092227.

[27] M. W. Curtis. A turing machine simulator. J. ACM, 12(1):1–13, 1965. URL

http://dblp.uni-trier.de/rec/bibtex/journals/jacm/Curtis65.

[28] Pinaki Chakraborty, P. C. Saxena, and C. P. Katti. A compiler-based toolkit to

teach and learn finite automata. Computer Applications in Engineering Education,

page n/a–n/a, 2010. ISSN 1099-0542. doi: 10.1002/cae.20492. URL http://

onlinelibrary.wiley.com/doi/10.1002/cae.20492/abstract.

http://en.wikipedia.org/w/index.php?title=Java_Platform,_Standard_Edition&oldid=555073430
http://en.wikipedia.org/w/index.php?title=Java_Platform,_Standard_Edition&oldid=555073430
http://en.wikipedia.org/w/index.php?title=OpenJDK&oldid=555523114
http://en.wikipedia.org/w/index.php?title=OpenJDK&oldid=555523114
http://openjdk.java.net/
http://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=557675877
http://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=557675877
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=JUNG&oldid=549582111
http://en.wikipedia.org/w/index.php?title=JUNG&oldid=549582111
http://en.wikipedia.org/w/index.php?title=GraphML&oldid=556038456
http://en.wikipedia.org/w/index.php?title=GraphML&oldid=556038456
http://graphml.graphdrawing.org/
http://www.json.org/
http://en.wikipedia.org/w/index.php?title=JSON&oldid=559219644
http://en.wikipedia.org/w/index.php?title=JSON&oldid=559219644
http://code.google.com/p/json-simple/
http://en.wikipedia.org/w/index.php?title=FreeHEP&oldid=552195737
http://en.wikipedia.org/w/index.php?title=FreeHEP&oldid=552195737
http://java.freehep.org/
https://netbeans.org/
https://en.wikipedia.org/w/index.php?title=NetBeans&oldid=559092227
https://en.wikipedia.org/w/index.php?title=NetBeans&oldid=559092227
http://dblp.uni-trier.de/rec/bibtex/journals/jacm/Curtis65
http://onlinelibrary.wiley.com/doi/10.1002/cae.20492/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cae.20492/abstract

Bibliography 96

[29] Robert W. Coffin, Harry E. Goheen, and Walter R. Stahl. Simulation of a turing

machine on a digital computer. In Proceedings of the November 12-14, 1963, fall

joint computer conference, AFIPS ’63 (Fall), page 35–43, New York, NY, USA,

1963. ACM. doi: 10.1145/1463822.1463827. URL http://doi.acm.org/10.1145/

1463822.1463827.

[30] Lawrence L. Rose, Neil D. Jones, and Bruce H. Barnes. Automata: a teaching aid

for mathematical machines. SIGCSE Bull., 3(1):12–20, March 1971. ISSN 0097-

8418. doi: 10.1145/873674.873676. URL http://doi.acm.org/10.1145/873674.

873676.

[31] Romauld Jagielski. Visual simulation of finite state machines. SIGCSE Bull.,

20(4):38–40, December 1988. ISSN 0097-8418. doi: 10.1145/54138.54145. URL

http://doi.acm.org/10.1145/54138.54145.

[32] Susan H. Rodger and Eric Gramond. JFLAP (poster): an aid to studying theorems

in automata theory. In Proceedings of the 6th annual conference on the teaching of

computing and the 3rd annual conference on Integrating technology into computer

science education: Changing the delivery of computer science education, ITiCSE

’98, page 302–, New York, NY, USA, 1998. ACM. ISBN 1-58113-000-7. doi: 10.

1145/282991.283635. URL http://doi.acm.org/10.1145/282991.283635.

[33] Susan H. Rodger, Bart Bressler, Thomas Finley, and Stephen Reading. Turning

automata theory into a hands-on course. SIGCSE Bull., 38(1):379–383, March 2006.

ISSN 0097-8418. doi: 10.1145/1124706.1121459. URL http://doi.acm.org/10.

1145/1124706.1121459.

[34] Laura A. Sanchis. Computer laboratories for the theory of computing course. In

Proceedings of the sixth annual CCSC northeastern conference on The journal of

computing in small colleges, CCSC ’01, page 262–269, USA, 2001. Consortium

for Computing Sciences in Colleges. URL http://dl.acm.org/citation.cfm?

id=378593.378728.

[35] Michael T. Grinder. A preliminary empirical evaluation of the effectiveness of

a finite state automaton animator. SIGCSE Bull., 35(1):157–161, January 2003.

ISSN 0097-8418. doi: 10.1145/792548.611958. URL http://doi.acm.org/10.

1145/792548.611958.

[36] Joshua J. Cogliati, Frances W. Goosey, Michael T. Grinder, Bradley A. Pascoe,

Rockford J. ROSS, and Cheston J. Williams. Realizing the promise of visualization

in the theory of computing. J. Educ. Resour. Comput., 5(2), June 2005. ISSN

1531-4278. doi: 10.1145/1141904.1141909. URL http://doi.acm.org/10.1145/

1141904.1141909.

http://doi.acm.org/10.1145/1463822.1463827
http://doi.acm.org/10.1145/1463822.1463827
http://doi.acm.org/10.1145/873674.873676
http://doi.acm.org/10.1145/873674.873676
http://doi.acm.org/10.1145/54138.54145
http://doi.acm.org/10.1145/282991.283635
http://doi.acm.org/10.1145/1124706.1121459
http://doi.acm.org/10.1145/1124706.1121459
http://dl.acm.org/citation.cfm?id=378593.378728
http://dl.acm.org/citation.cfm?id=378593.378728
http://doi.acm.org/10.1145/792548.611958
http://doi.acm.org/10.1145/792548.611958
http://doi.acm.org/10.1145/1141904.1141909
http://doi.acm.org/10.1145/1141904.1141909

Bibliography 97

[37] Mohamed Hamada and Kazuhiko Shiina. A classroom experiment for teaching

automata. SIGCSE Bull., 36(3):261–261, June 2004. ISSN 0097-8418. doi: 10.

1145/1026487.1008094. URL http://doi.acm.org/10.1145/1026487.1008094.

[38] Carlos I. Chesnevar, Maria L. Cobo, and William Yurcik. Using theoretical

computer simulators for formal languages and automata theory. SIGCSE Bull.,

35(2):33–37, June 2003. ISSN 0097-8418. doi: 10.1145/782941.782975. URL

http://doi.acm.org/10.1145/782941.782975.

[39] Breadth-first search, June 2013. URL https://en.wikipedia.org/w/index.php?

title=Breadth-first_search&oldid=559361449. Page Version ID: 559361449.

[40] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125, 1959. ISSN 0018-8646. doi:

10.1147/rd.32.0114.

[41] Powerset construction, May 2013. URL http://en.wikipedia.org/w/index.php?

title=Powerset_construction&oldid=547783241. Page Version ID: 547783241.

[42] Model–view–controller, June 2013. URL http://en.wikipedia.org/w/index.

php?title=Model%E2%80%93view%E2%80%93controller&oldid=560711945. Page

Version ID: 560711945.

http://doi.acm.org/10.1145/1026487.1008094
http://doi.acm.org/10.1145/782941.782975
https://en.wikipedia.org/w/index.php?title=Breadth-first_search&oldid=559361449
https://en.wikipedia.org/w/index.php?title=Breadth-first_search&oldid=559361449
http://en.wikipedia.org/w/index.php?title=Powerset_construction&oldid=547783241
http://en.wikipedia.org/w/index.php?title=Powerset_construction&oldid=547783241
http://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=560711945
http://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=560711945

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 A World of Finite States
	1.2 FA-Sim
	1.3 Overview

	2 Background
	2.1 Automata (or acting by one's self)
	2.1.1 Automata and Formal Languages
	2.1.2 Definition
	2.1.3 Educational Value
	2.1.4 Deterministic/Nondeterministic Finite Automata
	2.1.5 Equivalence of DFA and NFA
	2.1.6 Regular Languages, Regular Expressions
	2.1.7 Equivalence with Finite Automata

	2.2 Tools of the Trade
	2.2.1 Java
	2.2.2 Java SE
	2.2.3 Swing
	2.2.4 JUNG
	2.2.5 GraphML
	2.2.6 JSON
	2.2.7 FreeHEP
	2.2.8 NetBeans IDE

	3 Problem Statement
	3.1 Motivation
	3.2 Yet Another Finite Automata Simulator
	3.3 Problem Specifications

	4 Approach and Implementation
	4.1 Two Degrees of Decomposition
	4.2 Machine
	4.2.1 Our Core
	4.2.2 Nondeterminism
	4.2.3 User Input Validation & NFA to DFA Conversion
	4.2.4 Using JSON as a Finite Automata Description Language

	4.3 Graphical User Interface (GUI)
	4.3.1 Design Patterns: Model-View-Controller
	4.3.2 Our Design
	4.3.3 GUI Components & Layouting
	4.3.4 Graph Visualization
	4.3.5 Getting Interactive with our Graph
	4.3.6 Running An Automaton
	4.3.7 Saving/Loading
	4.3.8 Exporting to Image
	4.3.9 Preferences

	5 User Evaluation
	5.1 Method Description: Think-Aloud Evaluation
	5.2 User Feedback
	5.3 Conclusion

	6 Related Work
	6.1 FLAP & JFLAP
	6.2 Automaton Simulator
	6.3 Visual Automata Simulator (VAS)
	6.4 Java Finite Automata Simulation Tool (JFAST)
	6.5 Additional Screenshots

	7 Conclusions
	7.1 Discussion
	7.2 Future Work
	7.3 Lessons

	A User Manual
	A.1 Installation
	A.2 License
	A.3 General
	A.3.1 GUI
	A.3.2 The FA-Sim Mouse

	A.4 Running a Simulation
	A.5 Converting an NFA to a DFA
	A.6 Importing from JSON
	A.7 Exporting to Image Files
	A.8 Preferences
	A.9 Contact Info

	Bibliography

