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Acceleration of the Adiantum Algorithm on Embedded GPUs

by Polykratis GEORGIS

In the age of information the need for security becomes more and more ob-
vious. Cryptography is a powerful tool providing the necessary confiden-
tiality on sensitive data. There are many cryptography algorithms, each with
its own strengths and weaknesses that constantly compete against numer-
ous threats and of course, time. Adiantum is a lightweight alternative pro-
viding, for the time being, both speed and security. This thesis focuses on
speeding up of this algorithm on large plaintexts using the parallelism of-
fered by a modern GPU. It consists of the detailed profiling and analysis
of the algorithm followed by the implementation of its slowest component,
XChacha Stream cipher, on Jetson Xavier NX developer kit. Results suggest
a x6 speedup on Adiantum_XChacha20, x4 on Adiantum_XChacha12 and
x3 Adiantum_XChacha8 with a x4.5, x3.5 and x2.5 energy reduction on the
three versions respectively. These results lead to the conclusion that, using
the GPU, it is possible to upgrade security by using Chacha20 without com-
promising neither, speed or energy consumption.
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Chapter 1

Introduction

Technology has become an integral part of scientific research and innovation,
as well as an inextricable part of our everyday lives. Computer science has
evolved above and beyond the scope imaginable two decades ago and con-
tinues to evolve exponentially even after the rejection of Moore’s law [1].

With every passing day, information becomes more and more valuable, to
the point that entire nations are spending enormous amounts of money for
the acquisition of confidential information. Even in a smaller scale, personal
information is consistently used as a product for advertising companies. The
constant information war has made the need for security indisputable.

One major aspect of computer security is cryptography. Cryptography has
become a necessity for both storing and transmitting information, but as with
every computing procedure, it takes time and "time is money" says the fa-
mous idiom written by Benjamin Franklin. As such, it becomes obvious that
making cryptographic algorithms both faster and more secure is a meaning-
ful research subject. For the time being, better security is achieved by combin-
ing disk and file encryption, whereas acceleration can be achieved by using
hardware benefits not yet present in software applications.

1.1 Motivation

The word cryptography comes from the Greek words "krypto" which means
"to hide" and "grapho" which means "to write". People have been using it to
hide information for thousands of years, mostly to keep military plans from
being compromised. Of course in contrast to these ages, modern cryptog-
raphy is impossible to be ciphered or deciphered by hand due to its huge
complexity. Actually it was during the second world war when the "father of
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computer science", Alan Turing, created the first premature version of a com-
puter [2]. Its purpose to decrypt the messages encrypted by the "Enigma",
the German cipher. So it can be stated that computers and cryptography are
deeply linked.

In computer science, cryptography is the procedure where a readable chunk
of data called plaintext in converted to an unreadable one called ciphertext
and vice versa. The two procedures are called encryption and decryption
respectively. Symmetric-key ciphers use the same secret key for encryption
and decryption, whereas asymetric-key ciphers use a public key for encryp-
tion and a secret one for decryption [3].

Cryptographic algorithms are hard to implement so as to be secure enough
and at the same time fast enough to be useful. As mentioned, the advantages
provided by different processing systems can be exploited for the acceler-
ation of such algorithms to offload the CPU. Those alternative processing
systems are presented below.

ASICs are processing units designed to run optimally the specific function
they were programmed for. Combining low power consumption and high
parallelism they are a great choice for running cryptographic algorithms in
the background. Unfortunately their lack of versatility and high production
cost make them a less feasible solution.

FPGAs combine the versatility of a CPU with the high parallelism of an
ASIC. With a reasonable power consumption they are a powerful process-
ing platform at the hands of an experienced developer because they have
huge capabilities for optimizations on both software and hardware aspects
of a program.

GPUs offer the greatest amount of parallelism in modern hardware design
choices. With a relatively high power consumption they are widely used for
display purposes. They are the fastest choice for applications with very high
parallelism capabilities.

1.2 Scientific Contributions

The goal of this thesis was to expand upon Kostantinos Ampatzidis work [4]
and further improve Adiantum performance on large plaintexts, using the
state of the art embedded GPU provided by NVIDIA in Jetson Xavier NX.
Adiantum was chosen because it is a relatively new encryption algorithm
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that combines many fundamental cryptography models, making it a com-
pelling research subject. Because of its age Adiantum has much room for
improvement both in speed and in security. Our approach, focusing on the
acceleration of the algorithm can be summed up with:

• Profiling of the algorithm to determine its most time consuming parts.

• The acceleration of those parts in the GPU using the multi thread bene-
fit.

Adiantum is the cryptography algorithm that this thesis is centered around.
It is a relatively fast cryptography algorithm developed by Google in De-
cember 2018, originally for disk encryption [5]. Because of its ability to han-
dle varied message lengths, making it versatile, it is an interesting choice fro
optimization through the parallelization capabilities provided by the Jetson
Xavier NX GPU.

Our results proved very encouraging achieving about x6 times speedup for
the Adiantum_XChacha20 variation on large messages which is the slow-
est and most secure version. On Adiantum_XChacha12, an approximate
x4 times speedup and on Adiantum_XChacha8 a x3 times speedup using
the largest amount of parallelization possible provided by the Jetson GPU.
A most interesting conclusion though is the fact that using a multi-thread
approach, the same speed is achieved regardless of the number of rounds
of Chacha, offering the ability to upgrade security without compromising
speed.

1.3 Thesis Outline

• Chapter 2 - Related Work: This chapter lists all related work and pre-
senting the tools used to complete this thesis.

• Chapter 3 - Robustness Analysis: This chapter presents of the profil-
ing results, along with detailed description of Adiantum cryptography
algorithm and its most time consuming part. In addition it introduces
a software optimization of the algorithm.

• Chapter 4 - GPU Implementation: This chapter analyzes of the imple-
mentation of Chacha in the GPU using CUDA, explaining the choices
made throughout development.
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• Chapter 5 - Results: This chapter offers the visualization of the results
and their detailed analysis for different implementations of Adiantum.

• Chapter 6 - Conclusions and Future Work: This chapter concludes ev-
erything that occurred through the results and presents future work
that may further optimize the algorithm.
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Chapter 2

Related Work

There has been a relevant research on the implementation and acceleration of
Adiantum from a hardware, specifically an FPGA, point of view by Kostanti-
nos Abatzidis [4] of Technical University of Crete. This thesis has been in-
spired by it so as to compare a GPU and a FPGA approach. Furthermore,
it is important to present some relevant work on different implementations
of Chacha, the part of Adiantum that was the center piece of this thesis.
([6],[7],[8])

2.1 Hardware Design of ChaCha20 and Poly1305

The concept of optimizing Chacha20 and Poly1305 through hardware while
maximizing throughput and minimizing area was explored by Guard Kanda
and Kwangki Ryoo in their paper "High-Throughput Low-Area Hardware
Design of Authenticated Encryption with Associated Data Cryptosystem that
Uses Cha Cha20 and Poly1305" [6]. Chacha20 and Poly1305 are both funda-
mental parts of the Adiantum algorithm. The paper includes the design of
hardware, specifically for these two algorithms, in HDL-Verilog.

The hardware designed for the optimization of Chacha20 consists of the fol-
lowing parts. A Little endian serializer that converts the 64 bytes of the ini-
tial state matrix little-endian format. The initial state matrix creator, called
Init_State_Matrix, converts the result into the Chacha initial state matrix. The
state matrix is put through the Chacha State Generator block. That block con-
sists of the appropriate hardware which is able to perform 4 quarter rounds
either in parallel or serially, and adds the result to the original state matrix.
The final product is then XORed with the plaintext. The entire procedure in
controlled via FSM.
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2.2 Hardware Acceleration of Adiantum Cryptog-

raphy Algorithm on PYNQ

Inspired by the work of G.Kanda and K.Ryoo [6] a thesis on the hardware
acceleration of Adiantum, by Kostantinos Abatzidis [4] of Technical Univer-
sity of Crete, has been the main influence for this thesis. In this work, K.
Abatzidis profiled the algorithm, finding that XChacha12 stream cipher is the
most time consuming part. The cipher was implemented on a Pynq FPGA
platform achieving a speedup of up to x10,731, thus achieving Amdahl’s law
theoretical speedup.

This work uses pipelining to avoid delays from consecutive runs of the 12
rounds of Chacha for every 64 bytes of a large plaintext. At the same time he
needed to minimize and improve the data transactions between the PL and
PS of the FPGA. This was achieved by taking advantage of the independent
parts of the algorithm, the 12 rounds and adding the result to the initial ma-
trix and putting those in the PL pipeline returning the results through the
AXI stream to the AXI DMA and finally back to the PS.

The approach used in this work is very similar to our approach with the main
differences being:

• The GPU offers complete parallelization instead of a pipeline.

• the Adiantum version used in this thesis is in C and is an optimized
version of the python one researched by this work.

• This thesis explores Adiantum_XChacha20 and Adiantum_XChacha8
along with Adiantum_XChacha12.

2.3 CryptoGraphics: Secret Key Cryptography Us-

ing Graphics Cards

In this paper Debra L. Cook, John Ioannidis, Angelos D. Keromytis and Jake
Luck [9] study the potential of using GPUs on symmetric key ciphers so as to
accelerate cryptographic processing and to offload system resources. They
research the potential use of graphics cards on both stream and block ci-
phers and realize the operations that render certain ciphers unsuitable for
optimization using GPUs. Several experiments on the potential parallelism
of stream ciphers take place, as well as proving that running AES on the GPU
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is ill-suited to offload the CPU given current APIs. In addition they study the
potential of encrypting images directly into the GPU without their conver-
sion to plaintext into the system memory first.

This work proves that the GPU APIs of the time were unsuitable for certain
byte level operations present in many stream and block ciphers. As for direct
GPU image encryption, it can be beneficial as long as some issues regarding
compression, dithering and safe storage of the secret key. In relation to this
thesis, this work uses the GPU in a similar way when experimenting with
XORing on stream ciphers. Specifically they determine that operations on
small data sizes cannot benefit from the GPUs high parallelism mainly be-
cause of data transfers.

2.4 Cryptographic algorithm acceleration using CUDA

enabled GPUs

In this thesis, Maksim Bobrov, of the Rochester Institute of Technology [7]
tested the acceleration of three different encryption algorithms, AES, SHA-
2, and Keccak, using CUDA. Testing was performed on the encryption and
hashing algorithms using a single-kernel approach very similar to ours, a
multi-kernel approach, and the potential speedup of offloading from the
CPU to the GPU.

The thesis proved that speedup through the GPU can be achieved only if
the algorithm exhibits enough parallelism. AES gets x2.6 times faster with
a single-kernel approach, while SHA-2 and Keccak that do not offer enough
parallelism show a performance decrease. The multi-kernel approach proves
to be x3.6-4.7 times faster for the AES. Another really important result is the
reduction Reduction in CPU time by offloading the encryption algorithms
from it, allowing the CPU to perform other tasks. A 40–60% reduction was
observed with the GPU implementation of AES, a 22–52% for SHA-2 and
approximately 39% for Keccak.
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2.5 A hybrid CPU/GPU Scheme for Optimizing ChaCha20

Stream Cipher

In their paprer Ziheng Wang, Heng Chen and Weiling Cai, of the School of
Computer Science and Technology, Xi’an Jiaotong University [8], tried dif-
ferent schemes to accelerate Chacha20 algorithm. They used a multi core
CPU achieving better performance than that of OpenSSL. Another imple-
mentation was using a GPU and accelerating the Chacha block function by
exploiting coalesced memory access and inline Parallel Thread Execution,
achieving an outstanding peak throughput of 211.41GB/s. Finally they tried
a hybrid CPU/GPU implementations achieving a 87.56% peak bidirectional
bandwidth of a PCIe channel.

The approach on accelerating Chacha in this paper, although seems similar to
ours, it is much different. In the paper, the developers chose ti internally par-
allelize the Chacha20 block function, making use of various smart schemes
to optimize throughput and memory usage. Our approach focuses on exe-
cuting in parallel as many instances of Chacha20 block function as possible.
This approach is called external parallelism. Also our approach on maximiz-
ing memory throughput depended on utilizing registers as much as possible
minimizing the memory reads and writes.

2.6 Thesis Approach

This thesis aims to explain how the Adiantum algorithm works and how ac-
celeration can be achieved using the high parallelism provided by a modern
GPU. The accomplished acceleration is a result of the following processes:

1. Profiling of Adiantum, dictating its slowest parts and determining their
ability for parallelism.

• Section 3.3 Profiling

2. Implementation of Chacha in the GPU using CUDA, taking advantage
of the parallelism offered.

• Section 4.4 CUDA implementation of Chacha.
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Chapter 3

Architecture Analysis

3.1 Fundamentals of cryptography

Symmetric cryptography is divided in Stream[10] and Block ciphers[11], whose
features will be briefly analyzed below because of their importance in the
Adiantum algorithm. Of equal importance are hash functions and MAC both
utilized by Adiantum.

Stream ciphers, synchronous or asynchronous, encrypt each bit individu-
ally by combining (usually XOR) plaintext bits with key stream bits. In syn-
chronous stream ciphers the key stream is independent from the ciphertext,
whereas in asynchronous stream ciphers the key stream utilizes the cipher-
text.

Block ciphers, in contrast to stream ciphers, encrypt an entire block of n
plaintext bits using the same key of a specific size, to n bit ciphertext [11]. In
block ciphers each block is encrypted/decrypted independently from other
blocks, a feature really useful for parallelism as will be shown below. AES
256 block cipher of 16 bytes is used in Adiantum with a 256 bit key.

Hash functions, widely popular for data storage applications, are used to
map arbitrary sized messages into fixed length bit strings. The return values
are called hash values and are used as an index to the fix-sized table created.

MACs are tags used to authenticate messages, checking if they have been
altered through transmission, or even if they were sent from the right source.
In order to do that, they use a specific key. MACs are symmetric key schemes,
and they depend on hash functions or block ciphers. As a result they are
much faster than digital signatures.
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3.2 Adiantum

Adiantum can be divided into four procedures. A hash function consisting of
NH [12] combined with Poly1305 [13] followed by a single AES-256 invoca-
tion block cipher. An implementation of XChacha stream cipher and finally,
there is the same hash function consisting of NH combined with Poly1305

Adiantum [5] is a variable-input-length [14], tweakable block cipher [15] de-
veloped to as a fast and secure encryption algorithm. Each of the previ-
ously mentioned procedures needs a different sized key, specifically 16-byte
Poly1305 for tweak 16-byte Poly1305 for message 1072-byte NH 32-byte AES
and as a result, XChacha is used in the beginning to generate the aforemen-
tioned keys within a 1136 byte stream. Further key generation within the
algorithm uses those keys for initialization. As for the tweak key, in order to
keep it simple it is similar to an initialization vector for a CBC mode (Cipher
Block Chaining) or a nonce for OCB mode (Offset Codebook) [16].
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FIGURE 3.1: Adiantum algorithm, courtesy of Kostantinos Am-
patzidis in [4]

As shown in figure 3.1 the plaintext is divided in right, consisting of the last
16 bytes of the message, and left consisting of the rest. The left part is put in
the hash fuction, the result, along with the right part are encrypted using the
AES-256 block cipher followed by XChacha. The created text is then XORed
with the original left text and hashed again, resulting in the ciphertext. De-
cryption algorithm follows the exact same steps with AES-256 and XChacha
decryption algorithms.
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3.3 Profiling

Adiantum was mainly designed by Google for disc encryption, thus the test
vectors provided in the algorithm for testing are up to 4096 bytes of plain-
text. Adiantum, though, can be used for messages up to 273 bits with one
key. As a result, profiling of the algorithm was essential for this thesis. In
order not to misinterpret it as benchmarking, profiling is used to determine
the slowest part of the algorithm where optimization, and specifically par-
allelization is possible. The whole procedure started with deeply under-
standing the C version of the algorithm provided by Google. The repos-
itory contains a python version of the algorithm and an optimized C ver-
sion, which has benchmarks for a number of different encryption algorithms
such as HpolyC and noekeon, used mainly for comparison. The benchmarks
were set to test messages greater of equal to 1MB. To make profiling accu-
rate, the algorithm test procedure was removed, along with all other encryp-
tion algorithms except from Adiantum-XChacha8, Adiantum-XChacha12 ,
Adiantum-XChacha20. Very important was the removal of the 1MB mini-
mum plaintext limit so as to test various small messages as well a large ones.
It is also important to mention that Google provides most of the aforemen-
tioned algorithms with a generic and an SIMD version, specific to different
cores such as ARM and x86_64.

Profiling was done on the Jetson CPU 4.2, on a Linux operating system using
Gprof, GNU project’s profiler ideal for profiling C applications. The proce-
dure starts by running the Adiantum executable, having previously profil-
ing enabled. We tried various message lengths, starting at 128 KB and up
to 256 MB. Then the profiler provides files that gave detailed analysis on
call count of each function, times it was called, time percentage consumed
in each function and what percentage of the whole algorithm execution time
was consumed in each function and its subroutines. It also provides the time
consumed in each function but its unreliable because the profiling of an al-
gorithm is exponentially slower than a single run.

From [4] it has been proven that encryption and decryption cost about the
same in time since they are the exact same procedure in reverse. Table 3.1
shows the time percentage consumed in the slowest function in all three ver-
sions of the algorithm. More specifically it is shown that chacha_generic
takes about 73.5%of the total time for Adiantum-XChacha8, about 81% of
the total time for Adiantum-XChacha12 and about 90% of the total time for
Adiantum-XChacha20, percentages that don’t drastically change with the
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TABLE 3.1: XChacha time percentage from Adiantum profiling

Message(bytes) XChacha8 XChacha12 XChacha20

128k 40.0% 74.8% 79.3%
256k 70.0% 78.5% 95.1%
512k 64.3% 73.7% 89.3%
1m 75.0% 78.6% 91.9%
2m 72.1% 80.40% 88.3%
4m 78.4% 85.9% 88.1%
8m 74.4% 82.5% 87.4%
16m 71.5% 80.0% 91.1%
32m 75.3% 81.6% 88.9%
64m 81.6% 82.3% 93.1%
128m 83.2% 81.8% 93.5%
256m 75.5% 89.0% 92.5%

message size, although execution time linearly rises with the plaintext length.
The deviations observed are most likely due to the different cache miss rate
in each run of the algorithm. Even though Adiantum uses two hash functions
combined, twice, Chacha stream cipher is by far the most time consuming,
even in its fast form, Chacha8. By using Amdahl’s law formula 3.1 on the
results of the table,

MaxTheoreticalSpeedup =
1

1 − p
(3.1)

we can deduce that the maximum speedup that can be achieved by infinitely
speeding up Chacha is about 3.8 times for Chacha8, about 5.25 times for
Chacha12 and about 10 times for Chacha20.

3.4 Software Analysis and Optimization

From the profiling of the algorithm, it is evident, that XChacha stream ci-
pher takes up most of the execution time. As a result it is important for the
purposes of this thesis, to analyze in depth XChacha stream cipher, which
will be the main focus of the optimization process. Each version of Adi-
antum uses respectively XChacha8, XChacha12 and XChacha20. XChacha
[17] comes from Chacha [18] which is a variation of Salsa Stream Cipher [19].
Chacha is an optimized version of the Salsa algorithm, all three Chacha ver-
sions (8/12/20) work very similarly and the number refers to the number
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of rounds performed by the cipher. The only difference is that more rounds
equal better security and more execution time.

3.4.1 XChacha

XChacha has two steps:

• A single HChacha iteration.

• Followed by the original Chacha algorithm.

It is important to note here that both Chacha and HChacha have a generic
and an SIMD version and this thesis will be focusing on the generic version.

Chacha initial state as shown in figure 3.2:

• 16-byte constant “expand 32-byte k”

• 32-byte key

• 16-byte initialization vector, whose first 4 bytes are also used as a counter.

FIGURE 3.2: Chacha initial state matrix
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FIGURE 3.3: Columns and Diagonals of the Chacha state ma-
trix’s copy: x

The procedure can be analyzed in the following steps. During the first step,
a copy of the Chacha initial state, undergoes a Chacha number of rounds
divided by two ([8/12/20]/2) loop, called chacha_perm_generic consisting
of two column half-rounds followed by two diagonal half-rounds. As a re-
sult, each loop iteration represents a Double-Round. During each Double-
Round each column undergoes twice the procedure shown demonstrated in
figure 3.4. Then the exact same action is taken twice for each diagonal. More
specifically each operation between elements in each diagonal half-round is
done between consecutive elements in the same diagonal (figure 3.3). For
example, adding line 1 (elements 0,1,2,3) to line 2 (elements 4,5,6,7) in the di-
agonal half-round corresponds to adding elements 0 and 5, 1 and 6, 2 and 7,
3 and 4.
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FIGURE 3.4: Standard Chacha halfround procedure for either
column or diagonal
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After all Double-Rounds have finished, the result matrix is added to the orig-
inal state matrix forming the stream, whereas the counter is increased. Fi-
nally the XOR operation is used between the stream and the message. The
aforementioned procedure encrypts one 64-byte Chacha block and has to be
repeated for the entirety of the plaintext.

HChacha and XChacha: HChacha uses the same initial table as Chacha and
goes through the standard chacha_perm_generic, saving the first and last 16
bytes of the result matrix, both in little endian format and are combined to
form the XChacha subkey. XChacha constructed by the HChacha intermedi-
ate state followed by the classic Chacha algorithm. HChacha is used to create
the subkey used in Chacha.

3.4.2 Endianness

In computing, the method of storing data is called endianness and is dis-
tinguished in two major categories "Little Endian" and "Big Endian" [20]. To
simplify, big endian means that the computer reads memory from left to right
whereas little endian means the opposite. When a machine stores data in big
endian order, the most significant bytes are stored in the first memory loca-
tion and all the other bytes follow. When a machine stores data in little en-
dian order instead, the least significant bytes are stored in the first memory
location, and the other bytes follow accordingly, up to the most significant
bytes that are stored in the last one. It is important to mention that, despite
the endianness of bytes in a computer, bits are always stored in big endian
order.

FIGURE 3.5: Endianness toy example
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Little endian order has a major speed advantage over big endian order and
that is that least significant bytes stay intact as more digits are added to
higher addresses, whereas they would have to change positions if they were
in big endian order. Assuming that each integer is stored as 4 bytes, then a
toy example of a variable 0x1234565432109876 is in figure 3.5 where the first
memory position is the first block on the left.

3.4.3 Software optimization of Chacha

While the acceleration of Chacha algorithm from the GPU perspective will
be analyzed in the next sections, it is important to present some software op-
timizations that proved to greatly improve the performance of the generic
version of Adiantum. Profiling of Chacha has proved that the most time con-
suming part of the algorithm is the chacha_perm_generic function described
in 3.4.1 mainly because of the 32 bit left rotation. Unfortunately this function
cannot be accelerated using the advantages of the GPU because of the sev-
eral data transfers needed. Another reason for the slow speeds of this specific
function are the numerous consecutive memory reads and writes of the state
matrix copy, called the x matrix.

FIGURE 3.6: Simplified computer memory hierarchy, courtesy
of Ryan J. Leng [21]
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In computing accessing data from the L1 cache is always slower than read-
ing/writing data to registers (figure 3.6) which, have 0 to 1 cycle latency. Tak-
ing memory access time into account, the 16 position x matrix was replaced
with 16 different variables, form x0,x1...x14,x15. This results in removing the
L1 cache cycle latency and accelerating chacha_perm_generic greatly.
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Chapter 4

GPU Implementation

4.1 Tools Used

The main tool used for the acceleration of Adiantum in GPU platform was
CUDA toolkit and specifically v11.6.2.[22]. The CUDA toolkit provides an
environment for the development and acceleration of applications on nvidia
GPU-accelerated embedded systems. Developed by Nvidia, the Cuda toolkit
includes, GPU-accelerated libraries, debugging and optimization tools, nvcc
compiler for C/C++, and a runtime library for building applications on major
architectures including x86, Arm and POWER.

4.1.1 CUDA-GDB

The cuda toolkit provides the CUDA-GDB [23], the tool for debugging CUDA
applications on Linux and QNX. The tool allows debugging in real time on
hardware applications, thus facilitating development on GPUs without the
potential mistakes of simulation environments. CUDA-GDB is an extension
of GNU project’s GDB and thus contains all its features, adding new ones for
debugging GPU code. Its most important aspect is allowing simultaneous
debugging in both CPU and GPU within the same runtime of an application.
It also provides single stepping and user set breakpoint on CUDA applica-
tions as well as the ability to inspect memory and thread specific data.

4.2 GPU Platform

The acceleration of Adiantum was implemented and tested in the JETSON
XAVIER NX developer kit
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4.2.1 JETSON XAVIER NX specifications

NVIDIA Jetson Xavier NX [24] delivers up to 21 TOPS of accelerating com-
puting, achieving the performance of a SoC in a really small and compact
module. It includes 384 NVIDIA CUDA® Cores, 48 Tensor Cores, 6 Carmel
ARM CPUs, and two NVIDIA Deep Learning Accelerators (NVDLA) en-
gines. Combined with over 59.7GB/s of memory bandwidth, video encoded,
and decode, a large set of IOs from high-speed CSI and PCIe to low-speed
I2Cs and GPIOs, and finally, low-power modes for battery-operated systems,
delivering up to 14 TOPs for AI applications in as little as 10 W. For further
information on the specifications of the kit 4.2.

FIGURE 4.1: Jetson Xavier NX chip
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FIGURE 4.2: Jetson Xavier NX Specifications
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4.3 GPU distinctive features

GPUs have become an invaluable technological component for accelerating
applications because of their high capacity for performing simultaneous tasks.
NVIDIA, being a leading innovator for this technology has advanced their
tools during the last few years, with CUDA 11 having advanced memory
management and improved libraries developers. In this section some of
these features will be mentioned because of their importance accelerating
Adiantum.

4.3.1 The GPU Perspective

GPUs are specialized circuits designed for highly parallel processing of data,
mainly intended for display purposes. Their particular ability for parallelism
has made them invaluable in modern computing and thus, they are heavily
used, for accelerating algorithms and AI models, even though their power
consumption is really high [25]. Essentially GPUs use hundreds of different
simple cores per chip working in parallel, in contrast with CPUs that have a
few highly advanced and optimized computing cores. Modern CPUs are de-
signed to handle efficiently data dependencies and branches whereas GPUs
perform vastly better when a program can be highly parallelized.

It is important to mention the difference between CPUs’ SIMD execution
model and GPUs’ SIMT. SIMD allows for a single instruction to process mul-
tiple data sets in the same clock cycle using different execution units. SIMT
is similar nature but instead of using execution units, each GPU core uses
several threads to perform the same instruction on different data sets, but
because of GPU’s contain a small per core memory, SIMT parallelism can be
performed on completely different data sets simultaneously [26].

4.3.2 SIMT Approach

As mentioned in 4.3.1 GPUs have a huge capacity for parallelization. Each
thread acts as if it has its own ALU, register file and memory. As a result, an
embarrassingly parallel procedure can be done completely simultaneously
by as many threads as the hardware provides. Specifically, the NVIDIA Volta
GPU has the capacity of 1024 blocks, each containing 1024 threads [27], mean-
ing it can perform over a million simultaneous instances of an instruction. It
is important to note that GPUs are modeled to maximize data throughput,
whereas CPUs are designed to perform a wider range of tasks sequentially
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as fast as possible. That means that each CUDA thread is much slower than
a CPU thread and the speedup is achieved by multiple threads working to-
gether. The code run by the GPU is written inside a kernel and runs asyn-
chronously in relation to the CPU.

4.3.3 GPU memory

GPU and the CPU do not have access to the same memory by default. This
problem can be solved in 2 ways:

• Use unified memory, accessible by both the CPU and the GPU.

• Transfer data form the CPU accessible memory to the GPU accessible
memory.

Using unified memory, both the CPU and the GPU share a single coherent
virtual memory image with a common address space [28]. At the same time
they do not share the same physical memory space. This means that even if
there are no explicit memory copy routines the performance in not increased.
Jetson Xavier kits using CUDA 9 and above solve this problem by doing
cache coherence through the the CPU cache, resulting in latency decrease
and overall improved performance.



26 Chapter 4. GPU Implementation

FIGURE 4.3: Cache coherence of Jetson Xavier source [29]

To use unified memory though, all variables used by the GPU need to be
allocated in the unified memory first, which proved to be much slower than
doing the data transfer routines once. As a result the simple memory copy
routines were chosen for the sake of faster encryption.

4.4 CUDA implementation of Chacha

The approach taken by this thesis is to take the most time consuming part of
the algorithm, namely XChacha stream cipher, find its most beneficial par-
allelization and utilize the capabilities of the Jetson GPU to do it simultane-
ously.
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4.4.1 Chacha paralellization

FIGURE 4.4: Flowchart of the Chacha_generic algorithm

In figure 4.4 we can see the work flow of the Chacha_generic algorithm as de-
scribed in 3.4.1. Because the slowest part of the algorithm is the chacha_perm_generic
loop, at first, we tried internal parallelization of the double round. The at-
tempt proved futile because of the recursive data transfers and the fact that
only four threads could work in parallel because of dependencies every four
instructions within each halfround.

As a result, the parallelization was performed externally on the entire chacha_generic
algorithm. This meant that each thread will encrypt one chacha block by run-
ning the chacha_block_generic algorithm and the XORing the stream with
the plaintext. The procedure is embarrassingly parallel, meaning it can be
executed in parallel without any race conditions.
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FIGURE 4.5: Flowchart of the GPU implementation of Chacha

the flowchart of the GPU optimized version of Chacha shown in figure 4.5
will be analyzed in the following subsections along with the code.



4.4. CUDA implementation of Chacha 29

4.4.2 CUDA kernel

FIGURE 4.6: CUDA kernel, chacha_generic using hardware im-
plementation

Code in figure 4.6 shows the part of the Chacha algorithm that runs in the
GPU. It is the encyrcled part of figure 4.5. The main differences between
the optimized version of the original algorithm mentioned in 3.4.3 are the
following.

The counter, state[12], see figure 3.2 has to increase accordingly with the
block of the plaintext being encrypted, thus, the thread ID, or tid, is used
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to increment the counter. Another difference is that because the XOR func-
tion of the adiantum is somewhat complicated and involves an if statement
slowing the CUDA kernel down. In a kernel, every branch works as a break-
point, making all threads wait until all previous calculations have finished,
thus decreasing performance. To solve this problem, the XOR function was
simplified as much as possible as shown inn the final loop. This created an
issue, because streamC variable is __le32, 32 bit little endian, and both the
plaintext and the ciphertext are u8, 8 bit unsigned integers. The issue was
solved by creating a new variable, called stream, which is used to typecast
streamC into a smaller sized variable without the loss of data. Finally all
loops were unrolled via #pragma inside the kernel to avoid the previously
mentioned branching issue and increase performance.
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4.4.3 Kernel wrapper

FIGURE 4.7: Kernel wrapper, the function calling the CUDA
kernel

Code shown in figure 4.7 corresponds to the non-encircled part of figure 4.5.
As was described in 4.3.3, standard CUDA routines were used for data trans-
fers between the CPU and the GPU. Worth mentioning is the cudaDeviceSyn-
chronize() function which forces the GPU to finish all calculations before pro-
ceeding. This line of code is necessary, even though it decreases performance,
because CUDA kernels are asynchronous and race conditions are inevitable
when calling consecutive kernels. Also only one instance of cudaMalloc()
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and cudaMemcpy() is used for both the ciphertext and the plaintext, regard-
less of size because it is faster than having consecutive calls.

Perhaps even more worth noting is the upper limit of the threads of the GPU.
Jetson Xavier NX has a maximum block size of 1024 blocks, each containing
1024 threads. Each thread encrypts one Chacha block of 64 bytes. That means
that if all threads work simultaneously, they will encrypt a 67MB message.
The MAX_MESSAGE constant in 4.7 refers to that 67MB. For plaintexts big-
ger than 67MB, the kernel need run again after the previous one has finished.
Thus, j variable was introduced as a counter to how many kernels have been
called so as to increment the state[12] counter within the kernel. During the
final kernel call, the number of blocks and threads used are exactly the one
needed.

4.4.4 Linking issues

Kernel code for GPUs as well as CUDA libraries are written in C++ and need
to be compiled with the nvcc compiler. At the same time Adiantum is writ-
ten in C. Linking C and C++ is not a major issue for programming but the
developers of Adiantum use a ninja [30] for building the algorithm. Ninja
is a build system constructed to optimize speed. The problem is that ninja
does not support the nvcc compiler. To solve this problem we needed to first
compile the .cu files via nvcc, move those files to the build directory, and
then link them manually though the ninja build file, while adding the right
libraries for CUDA to run properly.
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Chapter 5

Results

This chapter shows our experimental results when running Adiantum on the
Jetson GPU, both from software and hardware perspectives. Also important
is the demonstration power and energy consumption of each iteration of the
algorithm.

5.1 Specification of Compared Platforms

This thesis was carried out on the Jetson Xavier NX, whose specifications
have been presented in 4.2.1. It is important to note that even though all
the results that came from the Jetson CPU, NVIDIA Carmel ARM v6.2, the
Adiantum algorithm has two separate versions.

• The generic version that was optimized on the GPU.

• the SIMD version, called NEON, which is significantly faster.

All the results presented in this chapter will be compared with both versions.

5.1.1 Initialization issue

The CUDA toolkit has a really slow initialization process. The first CUDA
routine called would always take about 0.2 seconds which is an unacceptable
amount of time for the speedup of an application as fast as Adiantum 5.1. To
solve this problem, at the start of the algorithm one instance of CudaFree(0)
was put so as to initialize the CUDA libraries and not have the 0.2 second
delay tamper with the results.
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5.2 Throughput and Latency Speedup

In computing speedup is a term used to compare the timings of two or more
systems performing the same action. It was first defined by Amdahl [31].
Although Amdahl’s law was first introduced as a theoretical benchmark for
the speedup of multiple processor computing, it is a fundamental formula
for deducing the maximum speedup for any resource enhancement in any
application.

Throughput is maximum amount of tasks that can be processed by a single
system for specific amount of time. Latency represents the amount of time
needed for the completion of a specific process. Both these concepts are fun-
damental in measuring improvements of computing systems. Speedup can
be calculated in accordance to Amdahl’s law:

Speedup =
OriginalLatency
ImprovedLatency

=
1

(1 − p) + p
s

(5.1)

• p: percentage of the task that was enhanced.

• s: the speedup given to that portion by the enhancement.

5.3 Adiantum Performance

Before analyzing the final results it is crucial to present all version of the algo-
rithm that will be compared. Chacha8, Chacha12 and Chacha20 are exactly
the same having only the number of rounds performed to differentiate them.
As their name suggests 8,12,20 are their round numbers receptively. It can be
deduced that the more rounds performed equals more security at the cost of
execution time.

The generic C version of Adiantum that we improved, is an optimized ver-
sion of the python version used in [4] and as a result comparing our GPU
acceleration and their FPGA acceleration is not that useful. The software op-
timization, refers to the simple optimization described in 3.4.3. The GPU
optimization is the main focus of this thesis and thoroughly described in the
previous chapter.

Finally the NEON version inserts assembly intrinsics [32], taking full advan-
tage of the SIMD benefits, achieving faster execution of the Chacha and nh-
poly1305 hash functions, that represent more than 95% of the total Adiantum
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processing time.
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FIGURE 5.1: Performance comparison of the 4 different varia-
tions of the 3 versions of Adiantum encryption algorithm
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From figure 5.1 it is clear that the execution time of the algorithm increases
linearly with the plaintext size. It can also be observed that the maximum
speedup is achieved in Adiantum_XChacha20 which is the slowest version.
This was expected because all 20 rounds are performed simultaneously in the
GPU, whereas in the CPU they are performed linearly resulting in a much
greater slowdown. A more interesting note is that all three GPU implemen-
tations take about the same time, proving that in the parallel execution, the
number of rounds is unimportant. That happens because the cost of 12 more
rounds done once by one GPU core without any memory accesses is insignif-
icant.

A very important remark that emerges from figure 5.1 is that, even if the GPU
implementation of Adiantum_XChacha20 comes really close, the SIMT ap-
proach never reaches the speed of the SIMD approach. That happens mainly
due to the fact that the NEON version has optimized both the nh-poly1305
hash functions, thus being able to reach even greater speeds than Amdahl’s
maximum theoretical speed described in 4.3.3. Another reason for it is the
time it takes to copy large plaintexts in the GPU memory.
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FIGURE 5.2: Point where acceleration is observed from the GPU
in all versions of Adiantum_XChacha
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Figure 5.2 also make it clear that speedup is observed after a certain message
size, mostly because of the data transfers from and to the GPU and secondar-
ily because single CUDA cores are weaker than the CPU core. These data
transfers take between 0.6 to 0.9 ms for small data sizes.

For Adiantum_XChacha20, speedup between the GPU and the generic ver-
sion is first observed for plaintext greater of equal to 64kb and for plaintext
greater of equal to 128kb the GPU becomes faster than our software optimiza-
tion. For Adiantum_XChacha12 and Adiantum_XChacha8 speedup between
the GPU and both the generic and the optimized version is first observed for
plaintext greater of equal to 128kb.

The fact that speedup is smaller or is observed in larger plaintext sizes is
more than expected, since it has been stated that the GPU implementation
has the same speed regardless of the number of Chacha rounds, whereas the
generic/NEON/software optimized version get much faster with the reduc-
tion of Chacha rounds.

Figure 5.3 shows that NEON version of the algorithm has a much higher
throughput than all other versions, which scales really fast and peaks be-
tween 64-128kb of plaintext. After that it decreases at a very slow rate. An-
other important observation is that the GPU implementation’s throughput
peaks at 32Mb where half the power of the GPU is used. That happens be-
cause very large block sizes, 1024 threads per block, may limit performance,
because of resource limits (e.g. registers per thread usage, or shared mem-
ory usage) which prevent 2 threadblocks from being resident on a SM. Our
software optimization always has a bigger throughput than that of the orig-
inal version. The GPU implementation bests both the generic and the opti-
mized versions at 256kb message length for Adiantum_XChacha20 and Adi-
antum_XChacha12, and at 4Mb for Adiantum_XChacha8. At its peak, our
version has:

• 7 times the generic version’s throughput for Adiantum_XChacha20.

• 4.5 times the generic version’s throughput for Adiantum_XChacha12.

• 3.5 times the generic version’s throughput for Adiantum_XChacha8.
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FIGURE 5.3: Throughput comparison of the 4 different varia-
tions of the 3 versions of Adiantum encryption algorithm
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TABLE 5.1: XChacha20 encryption energy consumption for all
4 variations

Plaintext
(kb)

Chacha
generic

encrypt(mJ)

Chacha
NEON

encrypt(mJ)

Software
optimization
encrypt(mJ)

GPU
encrypt(mJ)

4 0.421 0.046 0.182 4.891
1000 80.032 8.670 47.056 33.267
64000 4692.863 614.582 3091.725 1086.757

TABLE 5.2: XChacha12 encryption energy consumption for all
4 variations

Plaintext
(kb)

Chacha
generic

encrypt(mJ)

Chacha
NEON

encrypt(mJ)

Software
optimization
encrypt(mJ)

GPU
encrypt(mJ)

4 0.378 0.054 0.132 4.891
1000 52.300 7.105 33.742 33.267
64000 3762.294 370.501 2208.117 1055.029

As far as energy consumption is concerned, jtop package [33] was used. It
is a simple, yet very useful package, monitoring NVIDIA Jetson Developer
kits. With jtop we were able to monitor the power consumed by the Jetson
while running the algorithm. Energy consumption was calculated using the
power consumed each second while running many iterations of the algo-
rithm, equation 5.2 and using basic mathematical analysis integral calculus
[34]. The method used has room for accuracy but unfortunately jtop does not
offer more precise metrics.

Energy = Power ∗ time (5.2)

TABLE 5.3: XChacha8 encryption energy consumption for all 4
variations

Plaintext
(kb)

Chacha
generic

encrypt(mJ)

Chacha
NEON

encrypt(mJ)

Software
optimization
encrypt(mJ)

GPU
encrypt(mJ)

4 0.139 0.049 0.140 4.061
1000 36.616 5.457 26.758 34.536
64000 2621.581 370.999 1512.912 1107.569
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Tables 5.1/5.2/5.3 lead us to the following results. The NEON version is by
far less consuming than all other versions for all message sizes. For small
plaintexts, GPU implementation is more than 10 times more energy consum-
ing than all other iterations. For 1Mb sized messages, the generic version
is about 2.5 times more energy consuming than the GPU version of Adi-
antum_XChacha20, about 1.5 times more energy consuming than the GPU
version for Adiantum_XChacha12 and about as consuming as the GPU ver-
sion for Adiantum_XChacha8. The software optimization is generally more
energy efficient than the generic version and less energy efficient than the
GPU implementation for large files. For large plainexts in Adiantum_XChacha20,
the GPU implementation is 4.5 times less energy consuming than the generic
version, 3 times less than the optimized one and 1.5 times more than the
NEON version. For large plainexts in Adiantum_XChacha12, the GPU im-
plementation is 3.5 times less energy consuming than the generic version, 2
times less than the optimized one and 2.5 times more than the NEON ver-
sion. For large plainexts in Adiantum_XChacha8 the GPU implementation is
2.5 times less energy consuming than the generic version 1.5 times less than
the optimized one and 2.5 times more than the NEON version.
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Chapter 6

Conclusions and Future Work

This final chapter of this thesis concludes and summarizes the research done.
In addition it presents possible future work on the acceleration of Adiantum
cryptography algorithm in order to institute more research on the subject.

6.1 Conclusions

This thesis revolves around acceleration an the, relatively new, Adianntum
cryptography algorithm using a state of the art GPU, Jetson Xavier NX. The
profiling of the algorithm proved that the most time consuming part of the al-
gorithm is the XChacha stream cipher, even when XChacha8, which is faster
that its counterparts, is used. Taking advantage of Chacha algorithm’s vast
capacity for parallelism and GPU’s multi thread capabilities we achieved the
following results.

1. The GPU implementation of Adiantum_XChacha20 for large files was

• 6 times faster and 4.5 times less energy consuming than the origi-
nal algorithm for large files.

• 4 times faster and 3 times less energy consuming than our opti-
mized version of the original algorithm.

• 1.15 times slower and 1.5 times more energy consuming than the
SIMD NEON version of the algorithm.

2. The GPU implementation of Adiantum_XChacha20 for large files was

• 4 times faster and 3.5 times less energy consuming than the origi-
nal algorithm for large files.

• 2.5 times faster and 2 times less energy consuming than our opti-
mized version of the original algorithm.
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• 2 times slower and 2.5 times more energy consuming than the
SIMD NEON version of the algorithm.

3. The GPU implementation of Adiantum_XChacha8 for large files was

• 3 times faster and 2.5 times less energy consuming than the origi-
nal algorithm for large files.

• 2 times faster and 1.5 times less energy consuming than our opti-
mized version of the original algorithm.

• 2.3 times slower and 2.5 times more energy consuming than the
SIMD NEON version of the algorithm.

It is really important to note that in the GPU approach, the same speed is
achieved regardless of the number of rounds of Chacha, offering the ability
to upgrade security without compromising speed. That happens because of
the simultaneous encryption of all Chacha blocks, making the Chacha extra
rounds to be executed in parallel taking an insignificant amount of time. Un-
fortunately we weren’t able to match the NEON version of the algorithm,
neither in speed or energy consumption. We hope research on the areas pre-
sented in the next section will improve Adiantum’s performance using GPU
even further.

6.2 Future Work

Being relatively new, Adiantum algorithm has only K. Ampatzidis’s thesis
[4] as a relevant research. Adiantum’s portability makes it ideal for encryp-
tion on low end devices and by combining so many cryptography models, it
is very sturdy in terms of security. As a result further exploration on acceler-
ation the algorithm will probably be considered useful in the near future.

It is clear that Adiantum is already a really fast cryptography algorithm, so
it is interesting to test and analyze how much it can be optimized for very
large plaintexts. Using the capabilities provided by the CUDA toolkit, the
next step in acceleration Adiantum is by using streams [35]. All CUDA op-
erations except for the kernels are synchronous, meaning the next operation
is executed right after the previous has finished. Using streams it is possible
to overlap, in a pipelined way the cudaMemcpy routine, which in very large
messages is time consuming, with the kernel. The method is tricky though
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because of the difficulty in regulating asynchronously so many threads with-
out race conditions. By using streams we would expect an average of 20ms
(20%) speedup to our GPU implementation for files of 64Mb.

Another interesting optimization would be the use of hardware to accelerate
the hash function of the optimized versions of Adiantum since their time
percentage in Adinatum’s execution is not irrelevant anymore. Ultimately
though, the importance of Adiantum is directly correlated to the time it stays
secure without being compromised. That is a risk taken by all cryptography
algorithms and it is the most important metric defining their relevance. Only
the future will show which course Adiantum will take.
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