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The paper introduces a new bidirectional microscopic inviscid Adaptive Cruise Control (ACC) model that
uses only spacing information from the preceding and following vehicles in order to select the proper
control action to avoid collisions and maintain a desired speed. KL estimates that guarantee uniform
convergence of the ACC model to the set of equilibria are provided. Moreover, the corresponding macro-
scopic model is derived, consisting of a conservation equation and a momentum equation that contains a
nonlinear relaxation term. It is shown that, if the density is sufficiently small, then the macroscopic model
has a solution that approaches exponentially the equilibrium speed (in the sup norm) while the density
converges exponentially to a traveling wave. Numerical simulations are also provided, illustrating the
properties of the microscopic and macroscopic inviscid ACC models.

Keywords: Bidirectional Adaptive Cruise Control, Autonomous Vehicles, Lyapunov functions.

1. Introduction

Microscopic traffic models describe the longitudinal (car-following) and lateral (lane-changing) move-
ment of each single vehicle in the traffic stream, see Treiber & Kesting (2013). Microscopic models
based on Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) systems
are widely regarded as the basis of future generations of automated vehicles since they have the poten-
tial of increasing safety, reduce traffic accidents, and improve traffic flow on highways Ioannou & Chien
(1993), Milanès et al. (2014). Both ACC and CACC systems have been extensively studied in the liter-
ature (see for instance Bekiaris-Liberis et al. (2018), Ioannou & Chien (1993), Karafyllis et al. (2021),
Milanès et al. (2014), Rajamani (2012), Zheng et al. (2016) and references therein). The simplest form
of interaction between vehicles, that gives more flexibility, than the typical Follow-the-Leader scheme
Rajamani (2012), Treiber & Kesting (2013), is the bidirectional scheme which monitors the behavior
of both the preceding and the following vehicles, see for instance Baldi et al. (2000), Ghasemi et al.
(2013), Herman et al. (2017), Kwon & Chwa (2014), Pirani et al. (2017), Zegers et al. (2018), Zhang
(1999). It has been shown that bidirectional ACC systems can improve the platoon cohesion, Zegers et
al. (2018), Zheng et al. (2016), and present strong attenuation of disturbances along a string of vehicles
Barooah & Hespanha (2000), Ghasemi et al. (2013), Hao & Barooah (2013), Zhang (1999).

Contrary to the microscopic models, macroscopic traffic models describe the traffic flow as a liquid
that is characterized by macroscopic quantities, such as flow, density, and mean speed of vehicles. The
first, simplest and most influential traffic flow model has been independently proposed by Lighthill
& Whitham (1955) and Richards (1956) (LWR model). The well-known LWR model is a first-order
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model governed by one scalar hyperbolic partial differential equation that expresses the conservation
of vehicles. First-order traffic models, while well-studied, present several limitations, as they do not
capture significant traffic flow dynamics of interest Papageorgiou (1998). To overcome the limitations
of first-order models, second-order traffic flow models were considered, that introduce an additional
differential equation for the mean speed, see for instance Aw & Rascle (2000), Bekiaris-Liberis & Delis
(2021), Di Francesco et al. (2017), Helbing (2009), Ngoduy & Jia (2017), Payne (1971), Yu et al.
(2020), Yu & Krstic (2019), Whitham (1974), Zhang (2002). Both first-order and second-order models
have been extended to adjust the vehicle speed based on a perception of downstream density, see for
instance Chiarello (2021), Chiarello et al. (2020), Goatin & Scialanga (2016), Sopasakis & Katsoulakis
(2006) and references therein. In the era of connected and automated vehicles, it is possible for vehicles
to use backward sensors or to communicate their presence to other vehicles; hence, vehicles may adjust
their speed based also on upstream density, in addition to downstream density. In Karafyllis et al. (2020),
Papageorgiou et al. (2021), the effect of the upstream density on the speed adjustment was termed as
‘nudging’, and it was shown that nudging can increase the flow in a ring-road and, if properly designed,
can have a strong stabilizing effect on traffic flow.

The stability analysis of microscopic traffic flow models of vehicles under the effect of cruise con-
trollers is challenging, because they are nonlinear models that evolve on sets which are not linear spaces.
More specifically, the state space of microscopic traffic flow models of vehicles under ACC is usually
neither an open set (see Teel & Praly (2000) and the recent paper Sontag (2022) for the extension of the
Input-to-State Stability property to systems evolving on open sets), nor a closed set. In addition, the set
of equilibrium points can be an unbounded set and does not present uniform attractivity properties. In
fact, the latter is a case for which very limited results exist in the literature (see Alongi & Nelson (1991),
Bhatia & Szegö (1970), Hahn (1967), Rouche (1977)). In this paper, we study a microscopic traffic
flow model of vehicles under the effect of ACC which presents all the above characteristics.

This paper presents a novel bidirectional, microscopic, inviscid ACC model and its corresponding
second-order macroscopic model. We call the model “inviscid” because it gives rise to a macroscopic
model that contains no viscosity term. The proposed bidirectional microscopic model is based on the
two-dimensional cruise controller for autonomous vehicles, recently proposed in Karafyllis et al. (2020),
and we prove in this work that it has the following main features:

1. Each vehicle uses only the distance from its preceding and following vehicles to select the proper
control action (vehicle acceleration);

2. the vehicles do not collide with each other;

3. the speeds of all vehicles are always non-negative and remain below an a priori given speed limit;

4. the ultimate distance between two consecutive vehicles is guaranteed to be greater than a pre-
specified constant;

5. all vehicle speeds converge to a given longitudinal speed set-point;

6. all the above features are valid globally, i.e., hold for all physically relevant initial conditions.

In addition to the above features, it is shown, by exploiting LaSalle’s Invariance Principle (see Khalil
(2002)) that, the solutions of the microscopic inviscid model converge asymptotically to a set of equi-
librium points from any (arbitrary) physically relevant initial condition (Theorem 2.1). However, since
LaSalle’s Invariance Principle does not guarantee a uniform attractivity property to the set of equilibria,
we construct a strict Lyapunov function for the closed-loop system (Theorem 2.2). Using the con-
structed Lyapunov function, we establish a KL estimate for the solutions of the microscopic model that
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guarantees uniformity of the convergence rate to the set of equilibrium points (Theorem 2.3). We also
show that, for specific initial conditions, the convergence is exponential (Proposition 3.1). The main
theoretical challenges stem from the fact that the control system studied in the paper evolves on a spe-
cific set (which is neither open nor closed), and, in addition, various objectives and constraints must
be satisfied simultaneously and globally (positive speeds within road speed limits that converge to a
specific speed set-point). In Karafyllis et al. (2020), it was not possible to show that vehicles operating
on the two-dimensional surface of a lane-free road ultimately reach a set of equilibrium configurations.
However, for the case of a string of vehicles moving only longitudinally, we prove that the vehicles
do reach a set of equilibrium configurations, where the distance between two consecutive vehicles is
guaranteed to be bounded and be greater than a pre-specified constant. Furthermore, we examine by
simulation the speed and spacing first-to-last amplification factor of the inviscid microscopic model
(Section 5). Such metrics have been widely used to study the robustness of bidirectional ACC models
to external disturbances (see for instance Barooah & Hespanha (2000), Hao & Barooah (2013), Herman
et al. (2017)). We observe that disturbances dissipate much faster along the string of vehicles for the
bidirectional inviscid model than the collision-free Follow-the-Leader model proposed in Karafyllis et
al. (2021). Therefore, our simulation experiments show that nonlinear controllers can exhibit string
stability properties, contrary to linear approaches that require non-identical controllers (see Khatir et al.
(2004)). Finally, we (formally) derive the macroscopic inviscid model that corresponds to the bidirec-
tional microscopic model, and show that, if the initial density is sufficiently small, then the macroscopic
model has a solution that approaches exponentially the equilibrium speed (in the sup norm) while the
density converges exponentially to a traveling wave (Theorem 3.2).

The structure of the paper is as follows. Section 2 is devoted to the presentation of the bidirectional
microscopic inviscid ACC model and its stability properties. Section 3 presents the corresponding
macroscopic inviscid model and its analogy to the microscopic model. Section 4 presents numerical
examples to demonstrate the properties of the microscopic and macroscopic inviscid models. In Section
5, we investigate by simulation the first-to-last amplification factor and the sensitivity to external dis-
turbances of the microscopic model. All proofs of the main results are provided in Section 6. Finally,
some concluding remarks are given in Section 7.

Notation. Throughout this paper, we adopt the following notation.
∗ R+ := [0,+∞)denotes the set of non-negative real numbers.
∗ By |x| we denote both the Euclidean norm of a vector x ∈ Rn and the absolute value of a scalar x ∈ R.
∗ By K we denote the class of increasing C0 functions a : R+→R+ with a(0) = 0. By K∞ we denote the
class of increasing C0 functions a : R+→R+ with a(0) = 0 and lim

s→+∞
a(s) =+∞. By KL we denote the

set of all continuous functions σ : R+×R+→ R+ with the properties: (i) for each t > 0 the mapping
σ(·, t) is of class K; (ii) for each s> 0, the mapping σ(s, ·) is non-increasing with lim

t→+∞
σ(s, t) = 0.

∗ By C0(A,Ω), we denote the class of continuous functions on A ⊆ Rn, which take values in Ω ⊆ Rm.
By Ck(A;Ω), where k > 1 is an integer, we denote the class of functions on A ⊆ Rn with continuous
derivatives of order k, which take values in Ω ⊆ Rm. When Ω = R the we write C0(A) or Ck(A).
∗ Let I ⊆ R be a given interval. L∞(I) denotes the set of equivalence classes of measurable functions
f : I→R for which ‖ f‖

∞
= esssup

x∈I
(| f (x)|)<+∞. By W k,∞(I), where k> 1 is an integer, we denote the

Sobolev spaces of functions f ∈ L∞(I) which have weak derivatives of order 6 k, all of which belong to
L∞(I).
∗ For a set S⊆ Rn, S̄ denotes the closure of S.
∗We denote by dist(x,A) the Euclidean distance of the point x∈Rn from the set A⊂Rn, i.e., dist(x,A)=
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inf{|x− y| : y ∈ A}.
∗ Let u : R+×R→ R, (t,x)→ u(t,x) be any function differentiable with respect to its arguments. We
use the notation ut(t,x) = ∂u

∂ t (t,x) and ux(t,x) = ∂u
∂x (t,x) for the partial derivatives of u with respect to t

and x, respectively. We use the notation u[t] to denote the profile at certain t > 0, (u[t])[x] := u(t,x), for
all x ∈ R.

2. The Microscopic Inviscid ACC Model

2.1 Description of the model

The movement of n identical vehicles on a straight road under the cruise controller that was proposed
in Karafyllis et al. (2020), when the vehicles are constrained to move on a line (longitudinal motion), is
described by the following set of ODEs:

ẋi = vi , i = 1,2, ...,n,
v̇1 =−k1(s2)(v1− v∗)−V ′(s2),
v̇i =−ki(si,si+1)(vi− v∗)+V ′(si)−V ′(si+1) , i = 2, ...,n−1,
v̇n =−kn(sn)(vn− v∗)+V ′(sn),

(2.1)

where
si = xi−1− xi , i = 2, ...,n,
k1(s2) = µ +g(−V ′(s2)),
ki(si,si+1) = µ +g(V ′(si)−V ′(si+1)) , i = 2, ...,n−1,
kn(sn) = µ +g(V ′(sn)),

(2.2)

µ,v∗ > 0 are constants, V ∈C2 ((L,+∞);R+) is a potential function that satisfies

lim
s→L+

(V (s)) = +∞,

V ′′(s)> 0,
V (s) = 0, for s> λ ,
V ′(s)< 0, for L < s < λ ,

(2.3)

where λ > L > 0 are constants, and

g(s) =
vmax f (s)

v∗(vmax− v∗)
− s

v∗
, (2.4)

vmax > v∗ is a constant (the road speed limit), and f ∈C1 (R) is a non-decreasing function that satisfies

max(x,0)6 f (x), for all x ∈ R. (2.5)

Using (2.2), the model can be written in the following form

ṡi = vi−1− vi , i = 2, ...,n,
v̇1 =−k1(s2)(v1− v∗)−V ′(s2),
v̇i =−ki(si,si+1)(vi− v∗)+V ′(si)−V ′(si+1) , i = 2, ...,n−1,
v̇n =−kn(sn)(vn− v∗)+V ′(sn),

(2.6)

where si, i = 1, . . . ,n, is the back-to-back distance of the i-th vehicle from the (i−1)-th vehicle, and vi,
i = 1 . . . ,n, is the speed of the i-th vehicle. The terms k1(s2), ki(si,si+1), and kn(sn) in (2.6), are state-
dependent gains which guarantee that the speed of each vehicle will remain positive and less than the
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speed limit vmax (see the proof of Theorem 2.6 below). The functions V (si) are potential functions that
repel vehicles based on their distance, with the force of repulsion being stronger as the distance between
two vehicles becomes smaller, while there is little or no repulsion when the vehicles are distant, see
(2.3). Since V in (2.3) is decreasing, then, the term −V ′(si+1) is positive and this term represents the
effect of nudging, since vehicles that are close and behind vehicle i will exert a “pushing” force towards
it that will increase its acceleration.

Due to various constraints, such as minimum inter-vehicle distance and speeds within certain speed
limits, the state space of model (2.6) is

Ω =

{
(s2, ...,sn,v1, ...,vn) ∈ R2n−1 : min

i=2,...,n
(si)> L , max

i=1,...,n
(vi)6 vmax, min

i=1,...,n
(vi)> 0

}
, (2.7)

where L is a given positive constant (the minimum distance between two vehicles for which the vehicles
do not collide with each other). In what follows, we refer to model (2.6) as the “microscopic, inviscid
ACC model”, since the macroscopic analogue of (2.6) does not contain a viscosity term (see Section 3).
Clearly, model (2.6) is nonlinear not only because of the nonlinearities appearing in the right-hand sides
of (2.6), but also due to the fact that the state space Ω is not a linear subspace of R2n−1. It should be
also noticed that the state space is not an open set (see the recent paper Sontag (2022) for the extension
of the Input-to-State Stability property to systems defined on open sets) and it is not a closed set.

2.2 Stability Analysis

Since v∗ ∈ (0,vmax), it follows by (2.3) and (2.6), that the set

S =

{
(s2, ...,sn,v1, ...,vn) ∈ R2n−1 : min

i=2,...,n
(si)> λ , vi = v∗, i = 1, ...,n

}
⊂Ω , (2.8)

is the set of equilibrium points for the model. In what follows, we use the notation

s = (s2, ...,sn) ∈ Rn−1,v = (v1, ...,vn) ∈ Rn. (2.9)

Moreover, in what follows, we omit the arguments of the functions ki, i = 1, ...,n, defined by (2.2) (for
simplicity).

In this section we show the stability properties of the invariant set S. However, before we proceed,
it is necessary to state clearly the characteristics of the problem that indicate the challenge (from a
mathematical point of view) of the performed stability analysis:

1. system (2.6) is nonlinear,

2. the state space of system (2.6) is neither a closed set, nor an open set, and

3. the invariant set, whose stability properties are to be investigated, is not a bounded set (and con-
sequently not a compact set).

We define the function H : Ω → R+ by the formula

H(s,v) =
1
2

n

∑
i=1

(vi− v∗)2 +
n

∑
i=2

V (si). (2.10)
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Notice that the function H is nothing else but the mechanical energy of the system of n vehicles relative
to an observer that moves with constant speed v∗. Using (2.6) and (2.10), we obtain the following
equation for all (s,v) ∈Ω for the time derivative of the function H along the solutions of (2.6):

Ḣ(s,v) =−
n

∑
i=1

ki (vi− v∗)2 . (2.11)

It should be noticed that the function H is not a strict Lyapunov function, because (2.11) shows that
the derivative of H can be zero for points out of the invariant set S. However, using (2.10) and (2.11),
we can prove the following theorem.

THEOREM 2.1 For every initial condition (s(0),v(0)) ∈ Ω , the solution (s(t),v(t)) ∈ Ω of (2.6) is
defined for all t > 0 and satisfies

si(t)6max(λ ,si(0))+µ
−1vmax for all t > 0 and i = 2, ...,n. (2.12)

Moreover, lim
t→+∞

(vi(t)) = v∗ for all i = 1, ...,n and lim
t→+∞

(V (si(t))) = 0 for all i = 2, ...,n.

It should be noted that Theorem 2.1 is not a specialization of Theorem 1 in Karafyllis et al. (2020)
for vehicles moving on a straight line. Indeed, an application of Theorem 1 in Karafyllis et al. (2020)
does not guarantee that the distance of two consecutive vehicles (i.e., si) is bounded from above. In other
words, an application of Theorem 1 in Karafyllis et al. (2020) does not give us estimates (2.12). Notice
also that, since lim

t→+∞
(V (si(t))) = 0 for all i = 2, ...,n, properties (2.3) guarantee that liminf

t→+∞
(si(t))> λ

for all i = 2, ...,n, and that lim
t→+∞

(dist ((s(t),v(t)),S)) = 0 (recall definition (2.8)). The proof of Theorem

2.1 relies on LaSalle’s principle. However, LaSalle’s principle does not guarantee uniform attraction to
the set S. In order to be able to show uniform global attractivity properties for the set S, we need to
provide a strict Lyapunov function for system (2.6). This is done by the following theorem.

THEOREM 2.2 For every β > 0, there exist non-decreasing functions R∈C1 (R+;(0,+∞)), κ ∈C0(R+;
(0,+∞)) such that the following inequalities hold for all (s,v) ∈Ω :

H(s,v)6W (s,v)6 κ (H(s,v))H(s,v), (2.13)

Ẇ (s,v)6−β µ

n

∑
i=1

(vi− v∗)2− 1
8

n

∑
i=2

4i (V ′(si)
)2
, (2.14)

where W : Ω → R+ is defined by the equation

W (s,v) := R(H(s,v))H(s,v)−
n

∑
i=2

4iV ′(si)(vi− v∗) , for all (s,v) ∈Ω , (2.15)

and Ẇ (s,v) denotes the time derivative of W along the solutions of (2.6).

REMARK 2.1 Notice that W (s,v)> 0, Ẇ (s,v)< 0 when (s,v) ∈Ω\S, and W (s,v) = Ẇ (s,v) = 0 when
(s,v) ∈ S. Thus, the function W defined by (2.15) is a strict Lyapunov function for the microscopic
inviscid ACC model (2.6).

Using Theorem 2.2 we are in a position to prove that a KL estimate holds for the solutions of (2.6).
This estimate is important, because it guarantees uniformity of the convergence rate to the set S, as well
as useful robustness properties (see the discussion in Teel & Praly (2000); uniform global asymptotic
stability with respect to two measures).
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THEOREM 2.3 There exist a function σ ∈KL and a function a∈K∞ such that for every initial condition
(s(0),v(0)) ∈Ω the solution (s(t),v(t)) ∈Ω of (2.6) is defined for all t > 0 and satisfies

a(dist ((s(t),v(t)),S))6W (s(t),v(t))6 σ (W (s(0),v(0)) , t ) , for all t > 0. (2.16)

REMARK 2.2 (i) While estimate (2.16) implies a uniform rate of convergence to the invariant set S, it
does not imply an exponential rate of convergence. This fact can also be seen in the simulation examples
of Section 5, see Example 1. A special case for exponential convergence to the set S and its relation
to the macroscopic inviscid model that corresponds to model (2.6) will be discussed in the following
section (Proposition 3.1).

(ii) Theorem 2.1, Theorem 2.2 and Theorem 2.3 show global convergence of the solutions of the
model (2.6) to the invariant set of equilibrium points S. However, this does not mean that every solution
of (2.6) converges to an equilibrium point. In fact, we cannot conclude that the limits lim

t→+∞
(si(t)) exist

for i= 2, ...,n. However, Theorem 2.1 shows that every solution of (2.6) satisfies the following estimates
for i = 2, ...,n:

λ 6 liminf
t→+∞

(si(t))6 limsup
t→+∞

(si(t))6max(λ ,si(0))+µ
−1vmax. (2.17)

(iii) It should be noted that the stability estimate (2.16) does not establish Uniform Global Asymp-
totic Stability of the invariant set S, i.e., we do not show an estimate of the form dist ((s(t),v(t)),S) 6
σ̄ (dist ((s(0),v(0)),S) , t ), for all t > 0 for a KL function σ̄ . Instead, the stability estimate (2.16) estab-
lishes Uniform Global Asymptotic Stability with respect to the measures ω1(s,v) = dist ((s,v),S) and
ω2(s,v) =W (s,v) (see Teel & Praly (2000)).

3. The Macroscopic Inviscid ACC Model

In this section we focus on the macroscopic traffic model that corresponds to the microscopic model
(2.1). Macroscopic traffic models describe the collective behavior of vehicles on a highway and allow
for more direct insights and mathematical analysis of traffic properties, such as capacity flow and mean
speed of a traffic stream, see for instance Aw & Rascle (2000), Goatin & Scialanga (2016), Lighthill
& Whitham (1955), Papageorgiou (1998), Yu et al. (2021). Various approaches have been suggested
to derive macroscopic models for conventional traffic from microscopic models, see for instance Aw &
Rascle (2000), Chiarello et al. (2020), Helbing (2009), Helbing (2001), Payne (1971), Zhang (2002),
and references therein.

3.1 The PDE model

Let ρmax,vmax > 0 and v∗ ∈ (0,vmax), ρ̄ ∈ (0,ρmax) be constants and let Φ : (0,ρmax) → R+ be a
C3 ((0,ρmax)) non-negative function that satisfies:

lim
ρ→ρ

−
max

(Φ(ρ)) =+∞, Φ(ρ) = 0 for all ρ ∈ (0, ρ̄] , (3.1)

Φ
′(ρ)>0, for all ρ ∈ (ρ̄,ρmax), (3.2)

Φ
′′(ρ)>0, for all ρ ∈ (0,ρmax.) (3.3)

The macroscopic model that corresponds to the microscopic model (2.1), as the number of vehicles
n tends to infinity and the potential function is given by V (s) = Φ

( m
ns

)
with m

n being the mass of every
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single vehicle, is formally derived in Section 6 and is the following nonlinear system of PDEs for
(t,x) ∈ (0,+∞)×R

ρt(t,x)+ v(t,x)ρx(t,x)+ρ(t,x)vx(t,x) = 0,
vt(t,x)+ v(t,x)vx(t,x)−Ξ(t,x) =−(µ +g(Ξ(t,x)))(v(t,x)− v∗),

(3.4)

where ρ(t,x) is the traffic density, v(t,x) is the mean speed, and

Ξ(t,x) :=− 1
ρ(t,x)

(
ρ

2(t,x)Φ ′(ρ(t,x))
)

x , (3.5)

with constrained values

0 < ρ(t,x)< ρmax, 06 v(t,x)6 vmax, for all (t,x) ∈ R+×R. (3.6)

Four things should be noted about the nonlinear model (3.4)-(3.5):

1. there are no non-local terms in the model, despite the fact that the cruise controller proposed in
Karafyllis et al. (2020) induces “nudging”;

2. there are infinite equilibrium points for the model, namely the points where v(x)≡ v∗ and ρ(x)6 ρ̄

for all x ∈ R;

3. it is a second-order model;

4. the model is highly nonlinear (it is not quasilinear as the ARZ model, see Aw & Rascle (2000),
Zhang (2002), or the PW model, see Payne (1971), Whitham (1974)), due to the presence of a
highly nonlinear relaxation term −(µ +g(Ξ(t,x)))(v(t,x)− v∗) in the speed PDE.

3.2 An analogy between the microscopic and the macroscopic model

For the microscopic model (2.6), the following statement holds: When the vehicles have large initial
distances between them, then they simply adjust their speeds without affecting each other. This is
shown by the following proposition, whose proof is very simple and follows directly from (2.2), (2.6)
and property (2.3), and can be verified by direct substitution of (3.7) in ((2.6).

PROPOSITION 3.1 Suppose that si(0)>max
(
λ −ω−1 (vi−1(0)− vi(0)) ,λ

)
for i = 2, ...,n, where ω =

µ +g(0). Then the solution of the model (2.6) is given by the equations:

vi(t) = v∗+ exp(−ω t)(vi(0)− v∗) , i = 1, ...,n,

si(t) = si(0)+ω
−1 (vi−1(0)− vi(0))(1− exp(−ω t)) , i = 2, ...,n.

(3.7)

In this case we have exponential convergence to the set S. This is also illustrated in the numerical
examples of Section 5.

Similarly with Proposition 3.1, if the initial density is sufficiently small, then the macroscopic model
(3.4)-(3.5) has a solution that approaches the equilibrium speed (in the sup norm), while the density
remains small. The following theorem guarantees this fact.

THEOREM 3.1 Consider the initial-value problem

ρt + vρx +ρvx = 0
vt + vvx =−ω (v− v∗)

, for t > 0, x ∈ R (3.8)
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ρ(0,x) = ρ0(x)
v(0,x) = v0(x)

, for x ∈ R (3.9)

where ω = µ+g(0), ρ0 ∈C1 (R)∩W 1,∞ (R) ,v0 ∈C2 (R)∩W 2,∞ (R) with inf
x∈R

(v′0(x))>−ω and ρ0(x)>

0 for all x ∈ R. Then, the initial-value problem (3.8), (3.9) has a unique solution that satisfies the
estimates:

sup
x∈R

(ρ (t,x))6
ω sup

x∈R
(ρ0 (x))

ω +(1− exp(−ωt)) inf
x∈R

(
v′0 (x)

) , for all t > 0, (3.10)

sup
x∈R

(|v(t,x)− v∗|)6exp(−ωt)sup
x∈R

(|v0 (x)− v∗|) , for all t > 0, (3.11)

ρ(t,x)>0, for all t > 0, x ∈ R. (3.12)

Moreover, there exists a function f : R→ (0,+∞) of class C1 (R)∩ L∞ (R) for which the following
estimate holds:

sup
x∈R,t>0

(|ρ(t,x)− f (x− v∗t)|exp(ωt))<+∞. (3.13)

By virtue of (3.1) and (3.5), it follows that Ξ(t,x) ≡ 0 when sup
x∈R

(ρ (t,x)) 6 ρ̄ for all t > 0. There-

fore, in this case the PDE model (3.4)-(3.5) becomes identical to the PDE model (3.8). Consequently,
Theorem 3.1 guarantees that, if the initial conditions satisfy the requirements

inf
x∈R

(
v′0(x)

)
>−ω, (3.14)

sup
x∈R

(ρ0 (x))6 ρ̄

(
1+ω

−1 min
(

0, inf
x∈R

(
v′0 (x)

)))
, (3.15)

then the macroscopic model (3.4)-(3.5) has a solution that satisfies the estimates

sup
x∈R

(ρ (t,x))6ρ̄ for all t > 0, (3.16)

sup
x∈R

(|v(t,x)− v∗|)6exp(−ωt)sup
x∈R

(|v0 (x)− v∗|) , for all t > 0, (3.17)

ρ(t,x)>0, for all t > 0, x ∈ R, , (3.18)

and there exists a function f : R→ (0, ρ̄] of class C1 (R)∩ L∞ (R) for which the following estimate
holds:

sup
x∈R,t>0

(|ρ(t,x)− f (x− v∗t)|exp(ωt))<+∞.

Notice that the solution converges exponentially (in the sup norm) to the set of equilibrium points of the
macroscopic model (but not necessarily to one equilibrium point). This is due to the fact that the whole
profile ultimately moves with speed v∗ and thus we have a traveling wave.

It should be noted that (3.15) does not imply that the density is small in general, since ρ̄ ∈ (0,ρmax)
and can be near ρmax, depending on the selection of the function Φ . Analogously, in the microscopic
case (2.6), the constant λ in (2.3) can be selected as small as desired in such a way that it satisfies λ > L,
thus decreasing the spacing between vehicles, which implies higher densities. Finally, it should be noted
that Theorem 3.1 is not a local result, but a regional result since the estimates (3.10), (3.11), (3.12), and
(3.13) are valid for all initial conditions in the region described by (3.14) and (3.14). This region is
large, since there is no restriction on the speed v(x) and no restriction on how small ρ0(x) can be.
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FIG. 1. Inter-vehicle distances (top) and vehicle speeds (bottom)
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FIG. 2. Convergence of the function H(s,v) (top) and the graph of ln(H(s,v)) (bottom) indicating asymptotic convergence but not
exponential convergence.

4. Illustrative Examples

In this section we illustrate by simulations the properties of the microscopic and macroscopic inviscid
models (2.6) and (3.8) respectively.

EXAMPLE 4.1 (Asymptotic stability of the set S). In this example, we illustrate the results of Theorem
2.1, and demonstrate the convergence of the Lyapunov function H(s,v) and the asymptotic convergence
of the spacing and speed to the set of equilibrium points S in (2.8). Consider the inviscid model (2.6)
and let V defined by

V (q) =

{
(λ−q)3

q−L , L < q6 λ

0 q > λ
(4.1)

Moreover, we define the function f in (2.4) by means of

f (x) =
1

2ε


0 if x6−ε

(x+ ε)2 if − ε < x < 0
ε2 +2εx if x> 0

(4.2)

which satisfies inequality (2.5) for any ε > 0. We consider n = 6 vehicles with initial spacing and speed
si(0)∈ (16,24), vi(0)∈ (27,34), respectively. We also let L= 5m,λ = 20m, v∗= 30m/s, vmax = 35m/s,
ε = 0.2, and µ = 0.5. The inter-vehicle distances and the speed of each vehicle are shown in the Fig. 1.
It is seen that the speeds of the vehicles converge to the set-point v∗, i.e., that lim

t→+∞
(vi(t)) = v∗; and that

the distances satisfy liminf
t→+∞

(si(t)) > λ . Finally, Fig. 2 shows the evolution of the Lyapunov function

H(s,v), defined by (2.10), and its logarithm, indicating asymptotic convergence, but not exponential
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FIG. 3. Exponential convergence to the set S.
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FIG. 4. Convergence of the function H(s,v) (top) and the graph of ln(H(s,v)) (bottom) indicating exponential convergence.

convergence (because the plot of ln(H(s,v)) with respect to t is not below a straight line of negative
slope).

EXAMPLE 4.2 (Exponential convergence to the set S) As indicated by Proposition 3.1, for the expo-
nential convergence to the set of equilibrium points S, the initial spacing needs to satisfy the condition
si(0)>max

(
λ −ω−1 (vi−1(0)− vi(0)) ,λ

)
for each i = 1, ...,n, where ω = µ +g(0) and g is given by

(2.4). Values of L = 5m,λ = 20m, v∗ = 30m/s, vmax = 35m/s , and µ = 0.5 were used. For initial
conditions satisfying this constraint, we have the speeds and inter-vehicle distances shown in Fig. 3.
The exponential convergence to the set S is demonstrated by Fig. 4, which shows the evolution of the
Lyapunov function H(s,v) and its logarithm ln(H(s,v)).

EXAMPLE 4.3 (Travelling waves of the macroscopic model (3.8)). To illustrate the results of Theorem
3.1, we consider a road with initial density and initial speed given by

ρ0(x) = 0.1+
{

5x2(x−1)2, x ∈ (0,1)
0 else

,

v0(x) = 1+
{

8x3(x−1)3, x ∈ (0,1)
0 else

These initial conditions indicate that there is a congestion belt on the interval x ∈ (0,1) where vehicles
are moving at lower speed and and accelerate again to a speed of v∗ = 1 as the density decreases to a
constant value. Values of v∗ = 1 and ω = 1.2 were used. In Fig. 5 displays the speed profiles v[t] (left)
and the density profiles ρ[t] (right) at different time instants t = 0,1, ...,5.
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FIG. 5. Exponential convergence of speed profiles v[t] (left) and convergence of density profiles ρ[t] to a traveling wave (right).

This example illustrates the results of Theorem 3.1 which show that the speed converges exponentially
to the speed set-point v∗; while the density converges to a traveling wave.

5. Numerical Investigation of Robustness

In this section we examine the sensitivity of system (2.6) to external disturbances. In particular, we
consider how speed disturbances from the first vehicle propagate along a string of n vehicles. We
consider system (2.6) with the deviation of the speed of the leading vehicle from the equilibrium speed
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FIG. 6. The effects of disturbance on speed γi,5 for a string of 5 vehicles and for several frequences ω̄ for the inviscid model (5.1)
(solid line) and the FtL model (5.6) (dashed line).

being the disturbance. The model becomes

ṡ2 = v∗− v2 +d,
ṡi = vi−1− vi, i = 3, ...,n,
v̇i =−ki(si,si+1)(vi− v∗)+V ′(si)−V ′(si+1), i = 2, ...,n−1,
v̇n =−kn(sn)(vn− v∗)+V ′(sn),

(5.1)

where d ∈ L∞(R+) is given by d = v1− v∗, v∗ ∈ [0,vmax] is the desired speed set-point and ki,V are
defined in (2.2), (2.3), respectively. We examine by simulations the attenuation of disturbances that
satisfy

d(t) ∈ [−v∗,vmax− v∗], t > 0. (5.2)

To quantify how the amplitudes of disturbances are attenuated by the bidirectional inviscid model
(5.1), we define the amplification factor for the speed

γi,n =
||vi− v∗||∞
||d||∞

, i = 2, ...,n, t > 0, (5.3)

and the amplification factor for the spacing

δi,n =
||V ′(si)||∞
||d||∞

, i = 2, ...,n, t > 0. (5.4)

We examine next the effects of sinusoidal disturbances

d(t) = α sin(ω̄t), (5.5)

acting on system (5.1) for various frequencies ω̄ > 0 and constant amplitude α ∈ [−v∗,vmax− v∗]. For
the following results, we have initialized the system at the equilibrium vi(0) = v∗ = 30m/s, si(0) = λ =
61m, i = 2, ...,n, and selected V as in (4.1) with vmax = 35m/s, µ = 2, L = 5.1m, and f as in (4.2) with
ε = 2. We also consider the attenuation of disturbances of the nonlinear adaptive cruise controller with
the Follow-the-Leader (FtL) model from Karafyllis et al. (2021):

ṡ2 = v∗− v2 +d
v̇2 = (k− ḡ(s2))G(s2)+ ḡ(s2)(v∗+d)− kv2
ṡi = vi−1− vi
v̇i = (k− ḡ(si))G(si)+ ḡ(si)vi−1− kvi

, i = 3, ...,n (5.6)
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FIG. 7. The effects of disturbance on speed δi,5 for a string of 5 vehicles and for several frequences ω̄ for the inviscid model (5.1)
(solid lines) and the FtL model (5.6) (dashed lines).
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FIG. 8. Amplification factors γi,16 , i = 2, ...,16 for the inviscid model (5.1) and for the FtL model (5.6) for ω̄ = 0.25.

where G(s) :=
∫ s

a ḡ(l)dl , a > 0, and ḡ(r) defined by

ḡ(r) =


0 r 6 b

(r−b) β < r 6 gmax +b
gmax gmax +b < r 6 ζ

gmax exp(ζ − r) r > ζ

with β > a > 0 and k > gmax > 0. It is known that model (5.6) presents strong disturbance attenuation
properties because it is string stable both in the L2 norm and the L∞ norm (see Karafyllis et al. (2021))
and therefore can be used as a basis for comparison. Values of a = 5.1, k = 1.2, β = 34.4, ζ = 64.43,
and gmax = 1.15 were used. In the following simulation examples, both models (5.1) and (5.6) are
initialized at the same equilibrium position.

EXAMPLE 5.1 In this simulation example, we study the attenuation of disturbances for various fre-
quencies ω̄ along a string of n = 5 vehicles, for the models (5.1) and the FtL model (5.6). We select
α =−2.5 and consider several frequencies ω̄ . Fig. 6 displays, with solid lines, the speed amplification
factors γi,5, i = 2, ...,5, for the inviscid model (5.1); and, with dashed lines, the values of γi,5, i = 2, ...,5,
for the model (5.6). It is seen that the disturbances dissipate faster for model (5.1), as the frequency of
the disturbance increases. Fig. 7 shows that the spacing factors δi,5, i = 2, ...,5, attain larger values for
the inviscid model (5.1) compared to the FtL model. On the other hand, disturbances attenuate faster
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FIG. 9. Amplification factors δi,16 , i = 2, ...,16 for the inviscid model (5.1) and for the FtL model (5.6) for ω̄ = 0.25.
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FIG. 10. The effects of disturbances on the last vehicle on a string of n vehicles for the inviscid model (5.1) and the FtL model
(5.6) for ω̄ = 0.1.

along the string of vehicles for the model (5.1). For clarity of presentation, only the factors δi,5, i = 3,4
are shown.

EXAMPLE 5.2 We examine now, how disturbances with frequency ω̄ = 0.25 and amplitude α =−2.5,
dissipate along a string of n = 16 vehicles. The speed amplification factors γi,16, i = 2, ...,16, are shown
in Fig. 8, which demonstrates that fluctuations on speed dissipate as they propagate backward along the
string of vehicles. Finally, Fig. 9 shows the spacing amplification factors δi,n which, while attaining
larger values for the first 6 vehicles, dissipate faster as the number of vehicles increases.

The dissipation of the disturbances along the string of vehicle is even more evident by observing the
amplification factors γn,n and δn,n of the last vehicle in a string n of vehicles for increasing values of
n. Fig. 10 and Fig. 11 demonstrate the attenuation along the string of vehicles, as the total number of
vehicles increases. It can be clearly seen that, for the inviscid model (5.1), disturbances dissipate much
faster than the FtL model (5.6). In particular, for the cases of n = 20 and n = 25, both γn,n = 0 and
δn,n = 0 for the bidirectional model (5.1).

From the previous simulations, we have seen that the factors γi,n, i = 2, ...,n, are much smaller for
the inviscid model (5.1) than for the FtL model (5.6), and decrease as the frequency ω̄ and the number
of vehicles n increase. Finally, we have observed that the factors δi,n, i = 2, ...,n, are larger for the
inviscid model, than the FtL model (5.6) for small ω̄ , but dissipate at a much higher rate as ω̄ and n are
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FIG. 11. The effects of disturbances on the last vehicle on a string of n vehicles for the inviscid model (5.1) and the FtL model
(5.6) for ω̄ = 0.1.

increased.

6. Proofs of Main Results

We first provide a technical result that is invoked many times for the proofs of the main results.

LEMMA 6.1 Let λ > L > 0 and define H : Ω → R+ by means of (2.10) where Ω is given by (2.7).
Then, there exists a non-increasing function ρ : R+→ (L,λ ] that the following inequalities hold for all
(s,v) ∈Ω :

si > ρ(H(s,v)), for all i = 2, ...,n. (6.1)

Proof of Lemma 6.1:. Notice first that, due to (2.3), V (r) is decreasing for r ∈ (L,λ ) with V (r) = 0
for r > λ . Thus, the inverse function V−1 : R+→ (L,λ ] of V (restricted on the interval (L,λ ]), exists,
and due to continuity of V , is continuous, decreasing and satisfies V−1(0) = λ and lim

l→+∞

(
V−1(l)

)
= L.

Next, using (2.10), we get that V (si) 6 H(s,v) for all (s,v) ∈ Ω and i = 2, ...,n. It follows from the
previous inequality that si > V−1 (H(s,v)) > L. The previous inequality shows that (6.1) holds with
ρ(r) :=V−1(r) for r > 0. This concludes the proof. �
Proof of Theorem 2.1:. First, we show that the solution of the model is defined for all t > 0. Let
(s0,v0) = (s2,0, ...,sn,0,v1,0, ...,vn,0) ∈Ω be given. Let ε > 0 and consider the open set

Ωε :=
{
(s2, ...,sn,v1, ...,vn) ∈ R2n−1 : min

i=2,...,n
(si)> L , max

i=1,...,n
(vi)< vmax + ε, min

i=1,...,n
(vi)>−ε

}
,

(6.2)
and notice that Ω ⊂ Ωε . Due to the fact that ki (defined by (2.2)) and V ′ are locally Lipschitz, there
exists tmax ∈ (0,+∞] such that the unique solution (s(t),v(t)) = (s2(t), ...,sn(t),v1(t), ...,vn(t)) of the
initial value problem (2.6) with initial conditions (s(0),v(0)) = (s0,v0) ∈Ω ⊂Ωε is defined on [0, tmax)
and satisfies (s(t),v(t)) ∈ Ωε for all t ∈ [0, tmax). If tmax < +∞, then, we necessarily have that either
limsup
t→t−max

(|(s(t),v(t))|) = +∞ or lim
t→t−max

(dist((s(t),v(t)),∂Ωε) = 0.

Notice first that, since (s(t),v(t)) ∈ Ωε for all t ∈ [0, tmax), it follows from (2.6) and definitions (2.7),
(6.2) that ṡi 6 vmax +2ε for all t ∈ [0, tmax) and i = 2, ...,n which in turn implies that

si(t)6 si(0)+(vmax +2ε)t (6.3)
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for all t ∈ [0, tmax) and i = 2, ...,n. Moreover, for all (s,v) ∈Ωε , inequality (2.11) holds and implies that

H(s(t),v(t))6 H(s(0),v(0)) for all t ∈ [0, tmax). (6.4)

In addition, due to Lemma 6.1, there exists a non-increasing function ρ : R+→ (L,λ ] such that inequal-
ity (6.1) holds for all (s,v) ∈Ω . It follows then, by (6.1) and (6.4) that for all t ∈ [0, tmax) and i = 2, ...,n
the following holds

si(t)> ρ(H(s(t),v(t)))> ρ(H(s(0),v(0)))> L. (6.5)

Define
b1(s) := max

{
|V ′(d)| : s6 d 6 λ

}
for s ∈ (L,λ ].

Then, for all (s,v) ∈Ω , we obtain from inequality (6.1) and the above definition that

|V ′(si)−V ′(si+1)|6 |V ′(si)|+ |V ′(si+1)|6 2b1 (ρ (H(s,v)) .)

The above inequality and definition (2.2) imply that

µ 6 ki(si,si+1)6 ϕ(H(s,v)), (6.6)

where ϕ(r) := µ +max{g(z) : |z|6 2b1(ρ(s))}. Notice also that definitions (2.2), (2.4) and (2.5) imply
that:

ki(si,si+1)v∗ >V ′(si+1)−V ′(si)>−ki(si,si+1)(vmax− v∗), i = 2, ...,n−1,
k1(s2)v∗ >−V ′(s2)>−k1(s2)(vmax− v∗),
kn(sn)v∗ >V ′(sn)>−kn(sn)(vmax− v∗).

(6.7)

By using inequalities (6.7), (2.6) and the fact that vi ∈ [0,vmax], we get for all (s,v) ∈Ω

v̇i >−ki(si,si+1)(vi− v∗)− ki(si,si+1)v∗ =−ki(si,si+1)vi >−ki(si,si+1)vmax, i = 2, ...,n−1,
v̇1 >−k1(s2)v1 >−k1(s2)vmax, v̇n >−kn(sn)vmax,

v̇i 6−ki(si,si+1)(vi− v∗)+ ki(si,si+1)(vi− v∗) = ki(si,si+1)(vmax− vi)6 ki(si,si+1)vmax, i = 2, ...,n−1,
v̇1 6 k1(s2)vmax, v̇n 6 kn(sn)vmax.,

(6.8)
Then, due (2.6), (6.6), (6.7), (6.8), and (6.4) the following inequalities hold for all t ∈ [0, tmax):

ki(t)(vmax− vi(t))> v̇i(t)>−ki(t)vi(t), (6.9)
ki(t)6M := ϕ(H(s(0),v(0))). (6.10)

An immediate consequence of inequalities (6.9) and (6.10), the fact that (s0,v0)∈Ω , definition (2.7)
and the comparison principle in Khalil (2002) is the following estimate

vmax > vi(0)exp(−Mt)+(1− exp(−Mt))vmax > vi(t)> vi(0)exp(−Mt)> 0, (6.11)

for all t ∈ [0, tmax) and i = 1, ...,n.
Inequalities (6.5) and (6.11) imply that (s(t),v(t)) ∈ Ω for all t ∈ [0, tmax) and in addition tmax =

+∞. Indeed, we conclude that tmax = +∞, since inequalities (6.3), (6.5), and (6.11) imply that neither
limsup
t→t−max

(|(s(t),v(t))|) = +∞ nor lim
t→t−max

(dist((s(t),v(t)),∂Ωε) = 0 can hold when tmax <+∞.



18 of 30 I. KARAFYLLIS ET AL

In order to prove inequality (2.12), we proceed as follows. Suppose that there exists i ∈ {2, ...,n}
and T > 0 for which si(T )> max(λ ,si(0))+µ−1vmax. Clearly, T > 0. Define:

A = { t ∈ [0,T ] : si(t)6 λ } . (6.12)

Suppose that A 6= /0. Then we define t∗ = sup(A) and clearly t∗ ∈ [0,T ]. Moreover, continuity of the
mapping t → si(t) and the fact that si(T ) > max(λ ,si(0))+ µ−1vmax imply that t∗ < T . Furthermore,
by definition of the set A we have si(t) > λ for all t ∈ [t∗,T ] and si(t∗) = λ . If i ∈ {2, ...,n− 1} then
(recall (2.3) which implies that V ′(si(t)) = 0 for all t ∈ [t∗,T ])

v̇i(t) =−ki(t)(vi(t)− v∗)−V ′(si+1(t)), for all t ∈ [t∗,T ],

and consequently (due to (2.3)):

v̇i(t)>−ki(t)(vi(t)− v∗) , for all t ∈ [t∗,T ].

The above differential inequality holds even if i = n and implies that (using the comparison principle
in Khalil (2002)):

vi(t)> v∗+(vi(t∗)− v∗)exp
(
−
∫ t

t∗
ki(l)dl

)
for all t ∈ [t∗,T ]. (6.13)

Moreover, we get from (2.6), (2.3) and the fact that V ′(si(t)) = 0 for all t ∈ [t∗,T ]:

v̇i−1(t)6−ki−1(t)(vi−1(t)− v∗) , for all t ∈ [t∗,T ].

The above differential inequality implies that (using the comparison principle in Khalil (2002)):

vi−1(t)6 v∗+(vi−1(t∗)− v∗)exp
(
−
∫ t

t∗
ki−1(l)dl

)
for all t ∈ [t∗,T ]. (6.14)

Thus, from (2.6), (6.13), and (6.14) we obtain for all t ∈ [t∗,T ]

ṡi(t)6 (vi−1(t∗)− v∗)exp
(
−
∫ t

t∗
ki−1(l)dl

)
+(v∗− vi(t∗))exp

(
−
∫ t

t∗
ki(l)dl

)
, for all t ∈ [t∗,T ].

Therefore, since si(t∗) = λ we get for all t ∈ [t∗,T ]:

si(t)6λ +(vi−1(t∗)− v∗)
∫ t

t∗
exp
(
−
∫

τ

t∗
ki−1(l)dl

)
dτ +(v∗− vi(t∗))

∫ t

t∗
exp
(
−
∫

τ

t∗
ki(l)dl

)
dτ

6λ +max(0,vi−1(t∗)− v∗)
∫ t

t∗
exp
(
−
∫

τ

t∗
ki−1(l)dl

)
dτ

+max(0,v∗− vi(t∗))
∫ t

t∗
exp
(
−
∫

τ

t∗
ki(l)dl

)
dτ

Since ki(t)> µ , ki−1(t)> µ (a consequence of (2.2), (2.4), (2.5)) we also have for all t ∈ [t∗,T ]

si(t)6λ +(max(0,vi−1(t∗)− v∗)+max(0,v∗− vi(t∗)))
∫ t

t∗
exp(−µ(τ− t∗))dτ

6λ +µ
−1 (max(0,vi−1(t∗)− v∗)+max(0,v∗− vi(t∗)))

(6.15)
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Since max(0,vi−1(t∗)− v∗) +max(0,v∗− vi(t∗)) 6 vmax we obtain from (6.15) that si(T ) 6 λ +
µ−1vmax. This contradicts the assumption si(T )> max(λ ,si(0))+µ−1vmax.

If A = /0 then we perform exactly the above steps with t∗ replaced by 0 and we obtain the estimate
si(T )6 si(0)+µ−1vmax, which contradicts the assumption si(T )> max(λ ,si(0))+µ−1vmax.

Finally, we conclude the proof of Theorem 2.1 by showing that lim
t→+∞

(vi(t)) = v∗ for all i = 1, ...,n

and lim
t→+∞

(V (si(t))) = 0 for all i = 2, ...,n. To that end, let (s0,v0) ∈Ω , and define the set

Ωc :=
⋃
t>0

{(s(t),v(t))}, (6.16)

and notice that since for all i = 2, ...,n, si(t) satisfies (2.12), (6.5) for all t > 0 and since vi(t) ∈ [0,vmax]
for all t > 0, i = 1, ...,n, the set Ωc is compact, positively invariant and satisfies Ωc ⊂ Ω . Define also
the set

Q :=
{
(s,v) ∈Ωc : Ḣ(s,v) = 0

}
= {(s,v) ∈Ωc : vi = v∗, i = 1, ...,n} . (6.17)

Then, due to LaSalle’s Invariance Principle, see Khalil (2002), the state (s(t),v(t)) approaches the
largest invariant set in Q as t→+∞. It follows from properties (2.3), the model (2.6) and (6.17) that the
largest invariant set contained in Q is M = Ωc∩S. Hence, lim

t→+∞
(vi(t)) = v∗ for all i = 1, ...,n and (due

to (2.3)) lim
t→+∞

(V (si(t))) = 0 for all i = 2, ...,n. The proof is complete. �

Proof of Theorem 2.2:. Let β > 0 be given (arbitrary). The first part of the proof is devoted to the
construction of the function R ∈C1 (R+;(0,+∞)). We proceed by proving some useful claims.

Claim 1: The following inequalities hold for all (s,v) ∈Ω :

k1(s2)6 ϕ(H(s,v)), ki(si,si+1)6 ϕ(H(s,v)) for i = 2, ...,n−1, kn(sn)6 ϕ(H(s,v)) (6.18)

where ϕ : R+→ R+ is the non-decreasing function defined by

ϕ(r) := µ +max{g(z) : |z|6 2b1 (ρ (r))} , (6.19)

with
b1(r) := max

{∣∣V ′(d)∣∣ : r 6 d 6 λ
}

for r ∈ (L,λ ] . (6.20)

Claim 1 is a direct consequence of inequality (6.1), the definitions (2.2), (2.4) of ki (i = 1, ...,n) and
the fact that V ′(d) = 0 for d > λ .

Claim 2: The following inequalities hold for all (s,v) ∈Ω :

V ′′(si)6 ϕ̃(H(s,v)), for i = 2, ...,n, (6.21)

where ϕ̃ : R+→ R+ is the non-decreasing function defined by

ϕ̃(r) := b2 (ρ (r)) , (6.22)

with
b2(r) := max

{
V ′′(d) : r 6 d 6 λ

}
, for r ∈ (L,λ ] . (6.23)

Claim 2 is a direct consequence of inequality (6.1) and the fact that V ′′(d) = 0 for d > λ .
Claim 3: There exists a non-decreasing function γ : R+ → R+ such that the following inequality

holds for all (s,v) ∈Ω : (
V ′(si)

)2
6 γ (H(s,v))V (si) for i = 2, ...,n. (6.24)
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Proof of Claim 3:. Since lim
d→λ−

(
(V ′(d))

2

V (d)

)
= 2 lim

d→λ−
(V ′′(d)) = 0, it follows that the function h :

(L,+∞)→ R+ defined by

h(r) := sup
r6d<λ

(
(V ′(d))2

V (d)

)
for r ∈ (L,λ ) and h(r) := 0 for r > λ , (6.25)

is a well-defined, non-increasing function which satisfies the following inequality for all d ∈ (L,λ ):(
V ′(d)

)2
6 h(d)V (d). (6.26)

Since V (d) =V ′(d) =V ′′(d) = 0 for d > λ , it follows that (6.26) holds for all d > L. Inequality (6.24)
with γ(r) := h(ρ (r)) is a direct consequence of (6.26) and (6.1). �

Define

R̃(r) := 2+
42n

2
γ (r)+4n

(
ϕ(r)+

7
2µ

ϕ̃(r)
)
+

β

µ
for r > 0 (6.27)

Clearly, the function R̃ : R+→ R+ defined by (6.27) is a non-decreasing function. Consequently, there
exists a non-decreasing function R ∈C1 (R+;(0,+∞)) that satisfies

R(r)> R̃(r) for r > 0. (6.28)

Having constructed R∈C1 (R+;(0,+∞)), we proceed by showing the validity of inequalities (2.13),
(2.14). Using (6.27), (6.28), (6.18), (6.21), (6.24), it follows that the following inequalities hold for all
(s,v) ∈Ω :

R(H(s,v))> 4i
(

ki(si,si+1)+
3

2µ
V ′′(si)+

2
µ

V ′′(si+1)

)
+

β

µ
, i = 2, ...,n−1,

R(H(s,v))>
8
µ

V ′′(s2)+
β

µ
,

R(H(s,v))> 4n
(

kn(sn)+
3

2µ
V ′′(sn)

)
+

β

µ

, (6.29)

R(H(s,v))> 2+
42n

2
γ (H(s,v)) . (6.30)

In what follows we omit the arguments of the functions ki, i = 1, ...,n (for simplicity). Definition (2.15)
and the equations of the model give for all (s,v) ∈Ω :

Ẇ=−
(
R′ (H(s,v))H(s,v)+R(H(s,v))

) n

∑
i=1

ki (vi− v∗)2−
n

∑
i=2

4i (V ′(si)
)2

+
n−1

∑
i=2

4iki(vi− v∗)V ′(si)+
n−1

∑
i=2

4iV ′(si)V ′(si+1)−
n

∑
i=2

4iV ′′(si)(vi−1− v∗)(vi− v∗)

+
n

∑
i=2

4iV ′′(si)(vi− v∗)2 +4nkn(vn− v∗)V ′(sn)

(6.31)
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Since R′ (r)> 0 for all r > 0 (recall that R is non-decreasing) and using the inequalities

ki (vi− v∗)V ′(si)6 1
4 (V

′(si))
2 + k2

i (vi− v∗)2,

|vi−1− v∗| |vi− v∗|6 1
2 (vi−1− v∗)2 + 1

2 (vi− v∗)2,

V ′(si)V ′(si+1)6 1
2 (V

′(si))
2 + 1

2 (V
′(si+1))

2,

we get from (6.31) the following inequality for all (s,v) ∈Ω :

Ẇ 6−
(

R(H(s,v))− 8V ′′(s2)

k1

)
k1 (v1− v∗)2

−
n−1

∑
i=2

ki

(
R(H(s,v))−4iki−

3
2ki

4iV ′′(si)−
1

2ki
4i+1V ′′(si)

)
(vi− v∗)2

−kn

(
R(H(s,v))−4nkn−

3
2kn

4nV ′′(sn)

)
(vn− v∗)2−4(V ′(s2))

2− 1
8

n−1

∑
i=3

4i(V ′(si))
2−5

4n

8
(V ′(sn))

2

(6.32)
Inequality (6.32) in conjunction with inequalities (6.29) and the fact that ki > µ for i = 1, ...,n, give
inequality (2.14). We also obtain from definition (2.15) by completing the squares and using (6.24):

W (s,v)>R(H(s,v))H(s,v)− 1
2

n

∑
i=2

(vi− v∗)2− 1
2

n

∑
i=2

42i (V ′(si)
)2

>R(H(s,v))H(s,v)− 1
2

n

∑
i=2

(vi− v∗)2− 42n

2

n

∑
i=2

(V ′(si))
2

>R(H(s,v))H(s,v)− 1
2

n

∑
i=2

(vi− v∗)2− 42n

2
γ(H(s,v))

n

∑
i=2

V (si)

>R(H(s,v))H(s,v)−
(

1+
42n

2
γ(H(s,v))

)(
1
2

n

∑
i=2

(vi− v∗)2 +
n

∑
i=2

V ′(si)

)

=

(
R(H(s,v))−1− 42n

2
γ(H(s,v))

)
H(s,v)

The above inequality in conjunction with (6.30) gives the left inequality (2.13).
Finally, we obtain from definition (2.15) by completing the squares and using (6.24):

W (s,v)6R(H(s,v))H(s,v)+
1
2

n

∑
i=2

(vi− v∗)2 +
1
2

n

∑
i=2

42i (V ′(si)
)2

6R(H(s,v))H(s,v)+
1
2

n

∑
i=2

(vi− v∗)2 +
42n

2

n

∑
i=2

(V ′(si))
2

6R(H(s,v))H(s,v)+
1
2

n

∑
i=2

(vi− v∗)2 +
42n

2
γ(H(s,v))

n

∑
i=2

V (si)

6R(H(s,v))H(s,v)+
(

1+
42n

2
γ(H(s,v))

)(
1
2

n

∑
i=2

(vi− v∗)2 +
n

∑
i=2

V ′(si)

)

=

(
1+R(H(s,v))+

42n

2
γ(H(s,v))

)
H(s,v)



22 of 30 I. KARAFYLLIS ET AL

The above inequality gives the right inequality (2.13) for any non-decreasing function κ ∈C0 (R+;(0,+∞))

that satisfies κ(r)> 1+R(r)+ 42n

2 γ (r) for all r> 0 (e.g. the function κ(r)= 1+R(r)+ 42n

2
∫ r+1

r γ (l)dl).
The proof is complete. �
Proof of Theorem 2.3:. Define the operator P : Rn−1→ Rn−1 defined by

Rn−1 3 (s2, ...,sn)→ y = (y2, ...,yn) = P(s) with yi =

{
si i f si 6 λ

λ i f si > λ
(6.33)

Due to the fact that (2.3) holds, we obtain from (2.6) and definitions (2.10), (2.15), (6.33) for all (s,v) ∈
Ω :

Ẇ (s,v) = Ẇ (P(s),v),
W (s,v) =W (P(s),v). (6.34)

Define the parameterized family of sets with parameter a ∈ (L,λ ]:

Θ(a) ={
(s2, ...,sn,v1, ...,vn) ∈ R2n−1 : min

i=2,...,n
(si)> a , max

i=1,...,n
(vi)6 vmax, min

i=1,...,n
(vi)> 0 , max

i=2,...,n
(si)6 λ

}
(6.35)

Notice that Θ(a) ⊆ Ω for all a ∈ (L,λ ] and definition (6.35) in conjunction with inequalities (6.1) and
(2.13) imply that

(P(s),v) ∈Θ (ρ (W (s,v))) for all (s,v) ∈Ω . (6.36)

Moreover, notice that Θ(a)⊆Ω is a compact set for all a ∈ (L,λ ].
Define the function ϕ̃ : R+→ R+ by

ϕ̃(r) := inf
{
−Ẇ (s,v) : (s,v) ∈Ω , r 6W (s,v)6 1

}
for r ∈ [0,1], (6.37)

ϕ̃(r) := inf
{
−Ẇ (s,v) : (s,v) ∈Ω , 16W (s,v)6 r

}
for r > 1. (6.38)

Clearly, inequality (2.14) implies that ϕ̃(r)> 0 for all r> 0 and ϕ̃(0) = 0. Furthermore, we obtain from
(6.34) and (6.36) by virtue of continuity of W (s,v) and Ẇ (s,v) and compactness of Θ (ρ(r)) ⊆ Ω for
all r > 0:

ϕ̃(r) = inf
{
−Ẇ (s,v) : (s,v) ∈Ω , r 6W (s,v)6 1

}
= inf

{
−Ẇ (P(s),v) : (s,v) ∈Ω , r 6W (P(s),v)6 1

}
> inf

{
−Ẇ (y,v) : (y,v) ∈Θ (ρ (1)) , r 6W (y,v)6 1

}
= min

{
−Ẇ (y,v) : (y,v) ∈Θ (ρ (1)) , r 6W (y,v)6 1

}
,

for r ∈ [0,1] and

ϕ̃(r) = inf
{
−Ẇ (s,v) : (s,v) ∈Ω , 16W (s,v)6 r

}
= inf

{
−Ẇ (P(s),v) : (s,v) ∈Ω , 16W (P(s),v)6 r

}
> inf

{
−Ẇ (y,v) : (s,v) ∈Θ (ρ(r)) , 16W (y,v)6 r

}
= min

{
−Ẇ (y,v) : (s,v) ∈Θ (ρ(r)) , 16W (y,v)6 r

}
,

for r > 1.
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The above inequalities in conjunction with (2.14), continuity of W (s,v) and Ẇ (s,v) and compactness
of Θ (ρ(r))⊆Ω for all r > 0 imply that

ϕ̃(r)> 0 for all r > 0. (6.39)

Therefore, the function ϕ̃ : R+→ R+ defined by (6.37), (6.38) is positive definite. Notice that defini-
tions (6.37), (6.38) also guarantee that ϕ̃ : R+→ R+ is non-decreasing on [0,1] and non-increasing on
(1,+∞). The following inequality is also a direct consequence of definitions (6.37), (6.38):

Ẇ (s,v)6−ϕ̃ (W (s,v)) , for all (s,v) ∈Ω . (6.40)

Following exactly the same methodology as in the proof of Proposition 2.2 on page 107 in Karafyllis &
Jiang (2011), we can construct a locally Lipschitz, positive definite function ϕ : R+→ R+ that satisfies
ϕ̃ (r) > ϕ (r) for all r > 0. Lemma 2.13 on page 80 in Karafyllis & Jiang (2011) in conjunction with
inequalities (2.14), (6.39), (6.40) and the fact that ϕ̃ (r) > ϕ (r) for all r > 0 implies the existence of
σ ∈ KL that satisfies the right inequality (2.16) for all t > 0.

In order to finish the proof, we need to establish the existence of a function a ∈ K∞ so that
a(dist((s,v),S)) 6 H(s,v) for all (s,v) ∈ Ω . Indeed, in this case the use of (2.13) and the previous
inequality establishes the validity of the left inequality (2.16). Define the operator P̃ : Rn−1 → Rn−1

defined by
Rn−1 3 (s2, ...,sn)→ y = (y2, ...,yn) = P̃(s) with yi = max(λ ,si) , (6.41)

and notice that for every (s,v) ∈ Ω it holds that (P̃(s),v∗1n) ∈ S, where 1n = (1,1, ...,1) ∈ Rn. Using
(2.10), we obtain for all (s,v) ∈Ω :

dist ((s,v),S)6
(∣∣P̃(s)− s

∣∣2 + |v− v∗1n|2
)1/2
6

(
2H(s,v)+

n

∑
i=2

(max(λ − si,0))
2

)1/2

(6.42)

Since V restricted on the interval (L,λ ] is a decreasing, continuous function (recall (2.3)), the inverse
function of V denoted by V−1 : R+→ (L,λ ] is a decreasing continuous function with V−1(0) = λ and
lim

l→+∞

(
V−1(l)

)
= L. It follows that the function ā(l) := λ −V−1(l) defined on R+ is a increasing

continuous function with ā(0) = 0 and lim
l→+∞

(ā(l)) = λ − L. Moreover, we have max(λ − si,0) 6

λ −V−1 (V (si)) = ā(V (si)) 6 ā(H(s,v)) for all (s,v) ∈ Ω and i = 2, ...,n. Therefore, we obtain from
(6.42) for all (s,v) ∈Ω :

dist ((s,v),S)6
(

2H(s,v)+(n−1)(ā(H(s,v)))2
)1/2

. (6.43)

The existence of a function a∈K∞ so that a(dist ((s,v),S))6H(s,v) for all (s,v)∈Ω is directly implied

by (6.43) (with a = b−1 and b(l) =
(

2l +(n−1)(ā(l))2
)1/2

for l > 0). The proof is complete. �

Proof of Theorem 3.1:. Uniqueness of solutions for the initial-value problem (3.8), (3.9) is straightfor-
ward and is left to the reader. We prove estimates (3.10), (3.11), and (3.13).

For each t > 0 we define the function:

Pt(r) = ω r+(1− exp(−ω t))v0(r), for all r ∈ R. (6.44)

Due to the facts that v0 ∈ L∞ (R), inf
x∈R

(v′0(x))>−ω and ω > 0, it follows that for each t > 0 the function

Pt : R→ R is increasing with Pt (R) = R. Therefore, for each t > 0 the inverse function P−1
t : R→ R is
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well-defined (of class C1 (R) and increasing). Moreover, by virtue of the implicit function theorem the
function R+×R 3 (t,r)→ P−1

t (r) is C1 and satisfies for all (t,r) ∈ R+×R

∂ P−1
t

∂ r
(r) =

1
ω +(1− exp(−ω t))v′0

(
P−1

t (r)
) ,

∂ P−1
t

∂ t
(r) =−

ω exp(−ω t)v0
(
P−1

t (r)
)

ω +(1− exp(−ω t))v′0
(
P−1

t (r)
) . (6.45)

It is straightforward to verify that the solution of the initial-value problem (3.8), (3.9) is given by the
following formulas:

ρ(t,x) =
ωρ0 (ξ (t,x))

ω +(1− exp(−ω t))v′0 (ξ (t,x))
, (6.46)

v(t,x) = v∗+ exp(−ω t)(v0 (ξ (t,x))− v∗) , (6.47)

where
ξ (t,x) = P−1

t (ω(x− v∗t)+ v∗ (1− exp(−ω t))) . (6.48)

Estimates (3.10), (3.11), and (3.12) are direct consequences of the above formulas and the facts that
inf
x∈R

(v′0(x))>−ω , ρ0(x)> 0 for all x ∈ R. We next define:

γ := ω + inf
x∈R

(
v′0 (x)

)
,

K := sup
x∈R

(ρ0 (x))+ sup
x∈R

(|v0 (x)|),

c := sup
x∈R

(∣∣ρ ′0 (x)∣∣)+ sup
x∈R

(∣∣v′′0 (x)∣∣),
L := sup

x∈R

(∣∣v′0 (x)∣∣),
(6.49)

and we notice that equation (6.45) implies the following estimate for all (t,r) ∈ R+×R:

0 <
∂ P−1

t

∂ r
(r)6

1
min(γ,ω)

. (6.50)

Define the function
P∞(r) = ω r+ v0(r), for all r ∈ R. (6.51)

and notice that due to the facts that v0 ∈ L∞ (R), inf
x∈R

(v′0(x)) > −ω and ω > 0, it follows that for each

t > 0 the function P∞ : R→ R is increasing with P∞ (R) = R. Therefore, for each t > 0 the inverse
function P−1

∞ : R→ R is well-defined (of class C1 (R) and increasing). Moreover, definitions (6.44),
(6.51) imply the equation:

Pt(r) = P∞(r)− exp(−ω t)v0(r), for all t > 0, r ∈ R. (6.52)

The above equation in conjunction with (6.49), (6.50) implies the following estimate for all t > 0, r ∈R:∣∣P−1
t (r)−P−1

∞ (r)
∣∣= ∣∣P−1

t (r)−P−1
t
(
Pt
(
P−1

∞ (r)
))∣∣

=
∣∣P−1

t (r)−P−1
t
(
r− exp(−ω t)v0

(
P−1

∞ (r)
))∣∣6 K exp(−ω t)

min(γ,ω)

(6.53)
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We will show next that estimate (3.13) holds with

f (x) :=
ωρ0 (ζ (x))

ω + v′0 (ζ (x))
, for all x ∈ R, (6.54)

where
ζ (x) = P−1

∞ (ωx+ v∗) , for all x ∈ R. (6.55)

Using the triangle inequality, formulas (6.46), (6.47), definitions (6.49), (6.54) and the facts that inf
x∈R

(v′0(x))>

−ω , ρ0(x)> 0 for all x ∈ R, we obtain for all t > 0, x ∈ R:

|ρ(t,x)− f (x− v∗t)|6ω
|ρ0 (ξ (t,x))−ρ0 (ζ (x− v∗t))|

ω + v′0 (ζ (x− v∗t))

+ωρ0 (ξ (t,x))

∣∣v′0 (ζ (x− v∗t))− (1− exp(−ω t))v′0 (ξ (t,x))
∣∣(

ω +(1− exp(−ω t))v′0 (ξ (t,x))
)(

ω + v′0 (ζ (x− v∗t))
)

6γ
−1

ω |ρ0 (ξ (t,x))−ρ0 (ζ (x− v∗t))|

+
ωK

γ min(γ,ω)

∣∣v′0 (ζ (x− v∗t))− (1− exp(−ω t))v′0 (ξ (t,x))
∣∣

6γ
−1

ω |ρ0 (ξ (t,x))−ρ0 (ζ (x− v∗t))|+ ωK
γ min(γ,ω)

∣∣v′0 (ζ (x− v∗t))− v′0 (ξ (t,x))
∣∣

+
ωK exp(−ω t)

γ min(γ,ω)

∣∣v′0 (ξ (t,x))∣∣
6

ωc
γ

(
1+

K
min(γ,ω)

)
|ξ (t,x)−ζ (x− v∗t)|+L

ωK exp(−ω t)
γ min(γ,ω)

(6.56)
Moreover, using the triangle inequality, (6.48) and definitions (6.49), we get for all t > 0, x ∈ R:

|ξ (t,x)−ζ (x− v∗t)|=
∣∣P−1

t (ω(x− v∗t)+ v∗ (1− exp(−ωt)))−P−1
∞ (ω(x− v∗t)+ v∗)

∣∣
6
∣∣P−1

t (ω(x− v∗t)+ v∗ (1− exp(−ωt)))−P−1
t (ω(x− v∗t)+ v∗)

∣∣
+
∣∣P−1

t (ω(x− v∗t)+ v∗)−P−1
∞ (ω(x− v∗t)+ v∗)

∣∣
6

v∗ exp(−ω t)
min(γ,ω)

+
∣∣P−1

t (ω(x− v∗t)+ v∗)−P−1
∞ (ω(x− v∗t)+ v∗)

∣∣
6

(K + v∗)exp(−ω t)
min(γ,ω)

(6.57)

Combining (6.56) and (6.57) we obtain for all t > 0, x ∈ R:

|ρ(t,x)− f (x− v∗t)|exp(ω t)6
ω

γ min(γ,ω)

(
c(K + v∗)

(
1+

K
min(γ,ω)

)
+LK

)
.

Estimate (3.13) is a direct consequence of the above inequality. The proof is complete. �

Formal Derivation of the Macroscopic Model (3.4)-(3.5): Assume that each vehicle has mass m
n and

length σ

n . Moreover, define λ = m
nρ̄

, L = m
nρmax

for n = 2,3, ... and notice that properties (3.1) guarantee
properties (2.3) for the function

V (s) := Φ

(m
ns

)
. (6.58)
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Consider a solution (x(t),v(t)) ∈ Rn×Rn of the microscopic model (2.1) with V defined by (6.58),
x(t) = (x1(t), ...,xn(t)) ∈Rn and v(t) = (v1(t), ...,vn(t)) ∈Rn. Moreover, consider C1 density and speed
functions that satisfy the equations

ρ(t,xi(t)) =
m

n(xi−1(t)− xi(t))
, for t > 0, i = 2, ...,n, (6.59)

v(t,xi(t)) =vi(t) for t > 0, i = 2, ...,n., (6.60)

Using the definition (6.59) above and (2.1), we obtain

d
dt

ρ(t,xi(t)) =−ρ(t,xi(t))
vi−1(t)− vi(t)
xi−1(t)− xi(t)

for t > 0, i = 2, ...,n (6.61)

Using the chain rule, we also have from (6.59), (6.60) and (2.1) that

d
dt

ρ(t,xi(t)) = ρt(t,xi(t))+ρx(t,xi(t))v(t,xi(t)), for t > 0, i = 2, ...,n. (6.62)

Thus, we get from (6.60), (6.61) and (6.62) for all t > 0, i = 2, ...,n:

ρt(t,xi(t))+ρx(t,xi(t))v(t,xi(t))+ρ(t,xi(t))
v(t,xi−1(t))− v(t,xi(t))

xi−1(t)− xi(t)
= 0. (6.63)

Assuming that xi−1(t)− xi(t)→ 0 as n→ +∞, we have v(t,xi−1(t))−v(t,xi(t))
xi−1(t)−xi(t)

→ vx(t,xi(t)) for i = 2, ...,n.
Consequently, we obtain from (6.63) the continuity equation

ρt(t,x)+ρx(t,x)v(t,x)+ρ(t,x)vx(t,x) = 0, for t > 0, x ∈ R. (6.64)

Next, using the definition of speed (6.60) and (2.1), (2.3), we obtain

d
dt

v(t,xi(t)) =−
(
µ +g

(
V ′(si(t))−V ′(si+1(t))

))
(v(t,xi(t))− v∗)+V ′(si(t))−V ′(si+1(t)),

for t > 0, i = 2, ...,n−1

We also obtain from the chain rule

d
dt

v(t,xi(t)) = vt(t,xi(t))+ vx(t,xi(t))v(t,xi(t)), for t > 0, i = 2, ...,n−1.

The equations above imply that

vt(t,xi(t))+ v(t,xi(t))vx(t,xi(t)) =−(µ +g(Ξi(t)))(v(t,xi(t))− v∗)+Ξi(t)

t > 0, i = 2, ...,n−1, ,
(6.65)

where

Ξi(t) :=V ′(si(t))−V ′(si+1(t)) for t > 0, i = 2, ...,n−1. (6.66)
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From definitions (6.58), (6.59), (6.66) and Taylor’s Theorem we have that

Ξi(t)=V ′(si(t))−V ′(si+1(t))

=V ′
(

m
nρ(t,xi(t))

)
−V ′

(
m

nρ(t,xi+1(t))

)
=− n

m

(
(ρ(t,xi(t)))

2
Φ
′(ρ(t,xi(t)))− (ρ(t,xi+1(t)))

2
Φ
′(ρ(t,xi+1(t)))

)
≈− n

m
(ρ(t,xi(t))−ρ(t,xi+1(t)))

×
(
2ρ(t,xi(t))Φ ′(ρ(t,xi(t)))+(ρ(t,xi(t)))2

Φ
′′(ρ(t,xi(t)))

)
=− n

m
(xi(t)− xi+1(t))

ρ(t,xi(t))−ρ(t,xi+1(t))
xi− xi+1

×
(
2ρ(t,xi(t))Φ ′(ρ(t,xi(t)))+(ρ(t,xi(t)))2

Φ
′′(ρ(t,xi(t)))

)

(6.67)

Assuming that xi−1(t)− xi(t)→ 0 as n→+∞, we have ρ(t,xi(t))−ρ(t,xi+1(t))
xi(t)−xi+1(t)

→ ρx(t,xi(t)) for i = 2, ...,n.
Consequently, by defining the function Ξ(t,x) that satisfies Ξ(t,xi(t)) = Ξi(t) for all t > 0 and i =
2, ...,n−1, we conclude from (6.65), (6.67), and definition (6.59) that equations (3.4), (3.5) hold.

7. Conclusions

The paper introduces a new bidirectional microscopic inviscid Adaptive Cruise Control (ACC) model
that uses only spacing information from the preceding and following vehicles. KL estimates that guar-
antee uniform convergence properties of the ACC model to the set of equilibria are provided. Moreover,
the corresponding macroscopic model is derived, consisting of the continuity equation and a momentum
equation that contains a highly nonlinear relaxation term. It is shown that, if the density is sufficiently
small, then the solution of the macroscopic model approaches the equilibrium speed (in the sup norm);
while the density converges exponentially to a traveling wave. Numerical simulations are also provided
to illustrate the properties of the microscopic and macroscopic inviscid models.

Future work will involve the study of the movement of vehicles under different cruise controllers.
The cruise controller that was applied in the present work does not give rise to a viscous term (and
that is why is termed “inviscid”) and is based on the classical mechanics of particles (vehicles) with
a particularly strong “friction-like” term (the relaxation term) that guarantees that the speed remains
within specific bounds (between 0 and vmax). Other cruise controllers are envisaged as follows:

1. Cruise controllers may be based on “pseudo-relativistic mechanics” of particles (vehicles). In
relativistic mechanics, the speeds of the particles are, in absolute value, always less than the
speed of light and this is guaranteed by accelerations of the form v̇ ≈ −g

(
|v|2
)

V ′(x) (when the
motion is on a straight line), where g is a specific function that tends to zero when the absolute
value of the speed of the body tends to the speed of light. Similarly, for vehicles one can consider
cruise controllers that are of the form v̇i = g(vi)(V ′(si)−V ′(si+1)−µ (vi− v∗)), where µ > 0
is the relaxation constant and g is a specific function that tends to zero when the speed of the
body tends to 0 or vmax. The produced model can be termed as a “bidirectional, microscopic,
pseudo-relativistic ACC model” and will feature important differences from the bidirectional,
microscopic, inviscid ACC model, since the controller gains of the pseudo-relativistic ACC will
be much lower than the gains of the non-relativistic (classical) model that was studied in the
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present paper. The much lower gains will allow for higher sampling periods in the case of the
sampled-data implementation of the ACC, but will also induce much slower convergence to the
set of equilibrium points.

2. Cruise controllers may include a viscous term, i.e. a term of the form κ(si)(vi−1− vi)+κ(si+1)
(vi+1−vi) in the acceleration equation, where κ is a specific non-negative function. This term con-
siders the relative speed of subsequent vehicles and gives rise to a viscous term in the macroscopic
model; this can be considered in either a “pseudo-relativistic” setting or a “classical (Newtonian)”
setting. The produced model can be termed as a “bidirectional microscopic viscous ACC model”
and will again feature important differences from the bidirectional, microscopic, inviscid ACC
model, since the viscous term enhances energy dissipation.

The corresponding macroscopic models of the above cruise controllers will also be studied. The
macroscopic models will give rise to systems of PDEs, which are similar to the equations describing the
flow of a compressible (viscous or inviscid, relativistic or not) fluid. It is interesting to highlight that by
selecting an appropriate cruise controller, we can design a corresponding “artificial fluid” Papageorgiou
et al. (2021), in the sense that we have the possibility to impose certain desired properties to the traffic
fluid. This is important in the era of connected and automated vehicles, because, while safety and
passenger convenience issues are taken care of at the microscopic level, it is the macroscopic level that
reflects important emerging traffic flow features, such as flow level, capacity and stability. Thus, the
present work gives only a glimpse of the future of cruise controller design.
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