
Coastline Litter Detection using Deep
Convolutional Neural Networks

by
Ioanna A. Rodopoulou

Supervisor: Professor Partsinevelos Panagiotis

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

Technical University of Crete

Chania, June 2022

Abstract

One of the environmental problems of modern life is the ecological and
aesthetic degradation of coastal zones by litter disposal and accumula-
tion. Research conducted to monitor and evaluate pollution incidents
in the coastal environment usually consists of groups of volunteers or
civil servants who record, count and sort the litter. However, recent re-
search efforts show that litter detection can become an automated pro-
cess, thanks to the development of remote sensing and computer vision
methods. Recording of litter by simple devices like smartphones or more
sophisticated devices like drones, can be used as an input to investigate
the performance of state-of-the-art object detection algorithms. In the
current study, the Mask R-CNN algorithm was used to investigate its
performance in detecting coastline litter and classifying it based on its
material and type. Mask R-CNN is part of the R-CNN family of deep
learning object detection algorithms that are based on convolutional neu-
ral networks (CNNs), and it is able to tackle two tasks of computer vision:
object detection and instance segmentation. The performance of Mask
R-CNN was mainly evaluated on a domain-specific image dataset cre-
ated to facilitate this study. It was also tested on an open-sourced drone
dataset of litter images, since no study has investigated the use of this al-
gorithm on this specific image dataset. The experimental results in terms
of average precision showed that Mask R-CNN exhibited strong potential
in litter detection and segmentation of the new dataset, but performed
moderately on the drone dataset because of the small size of litter. The
algorithm showcased great predictions for well-represented classes, but
performed poorly on others that were either under-represented or con-
tained objects that varied significantly in shape, indicating challenges
that will need to be furthered addressed.

i

Περίληψη

´Ενα από τα περιβαλλοντικά προβλήματα της σύγχρονης ζωής αποτε-
λεί η οικολογική και η αισθητική υποβάθμιση των παράκτιων ζωνών
από την απόθεση και στη συσσώρευση απορριμάτων. ´Ερευνες που
διεξάγονται για την παρακολούθηση και αξιολόγηση των περιστατι-
κών ρύπανσης στο παράκτιο περιβάλλον συνήθως αποτελούνται α-
πό ομάδες εθελοντών ή κρατικών υπαλλήλων που καταμετρούν και
ταξινομούν τα απορρίματα. Πρόσφατα όμως γίνονται προσπάθειες
για την αυτοματοποίηση αυτών των διαδικασίων με μεθόδους τηλεπι-
σκόπησης και μηχανικής όρασης. Στόχος της παρούσας έρευνας είναι
η αυτοματοποίηση/διερεύνηση της ανίχνευσης των απορριμάτων μέσα
από εικόνες με τη χρήση βαθέων συνελικτικών νευρωνικών δικτύων
(deep convolutional neural networks ή deep CNNs). Για το σκοπό της
εργασίας, έγινε λήψη ενός συνόλου δεδομένων εικόνων από ακτο-
γραμμή της περιοχής των Χανίων. Εξετάστηκε επίσης η ανίχνευση
των απορριμάτων μέσα από εναέριες εικόνες. Χρησιμοποιήθηκε ένας
από τους πιο δημοφιλείς στην επιστημονική κοινότητα αλγορίθμους
ανίχνευσης αντικειμένων, ο Mask R-CNN, ο οποίος εκπαιδεύτηκε για
την ανίχνευση και οριοθέτηση κάθε διακριτού απόρριματος που εμ-
φανίζεται σε μια εικόνα. Η λειτουργία του αλγορίθμου βασίζεται σε
τεχνικές βαθιάς μάθησης που αποτελούνται από τη σύνθεση τεχνη-
τών νευρωνικών δικτύων τα οποία εκπαιδεύονται για να προβλέπουν
με όσο το δυνατόν περισσότερη ακρίβεια την τοποθεσία και την α-
ναγνώριση του αντικειμένου στην εικόνα. Συγκεκριμένα, ο αλγόριθ-
μος αξιοποιεί βαθιά συνελικτικά νευρωνικά δίκτυα τα οποία δέχονται
κατάλληλα επεξεργασμένες εικόνες με απορρίματα από το παράκτιο

ii

iii

περιβάλλον και τις αναλύουν με σκοπό την εύρεση των μοτίβων που
ϑα τα βοηθήσουν να κάνουν σωστές προβλέψεις αναγνώρισης και ο-
ριοθέτησης του αντικειμένου.

Ο Mask R-CNN αλγόριθμος αποτελείται από τρία κύρια τεχνητά
νευρωνικά δίκτυα. Το πρώτο δίκτυο υποδέχεται τις εικόνες και εί-
ναι υπεύθυνο για την εξαγωγή των χαρακτηριστικών τους. Αυτό το
νευρωνικό δίκτυο αποτελείται από ένα προ-εκπαιδευμένο νευρωνικό
δίκτυο (ResNet101) από το οποίο έχουν χρησιμοποιηθεί μόνο τα μέρη
του δικτύου που εξάγουν χαρακτηριστικά ενώ τα υπόλοιπα έχουν
αποκοπεί. Το νευρωνικό δίκτυο παράγει εικόνες-χάρτες αποτύπω-
σης χαρακτηριστικών της κάθε εικόνας που εισέρχεται σε αυτό σε
πολλαπλά επίπεδα κλίμακας δομής πυραμίδας. Το δεύτερο νευρω-
νικό δίκτυο σαρώνει τους χάρτες χαρακτηριστικών σε όλα τα επίπε-
δα κλίμακας και προβλέπει ποιες περιοχές περιέχουν απορρίματα.
Το τρίτο νευρωνικό δίκτυο χωρίζεται σε δύο παράλληλα μέρη. Το
ένα μέρος χρησιμοποιεί τις περιοχές που εντόπισε το προηγούμενο
νευρωνικό δίκτυο για να προβλέψει για κάθε απόρριμα το πλαίσιο
οριοθέτησής του και την τάξη στην οποία ανήκει. Το άλλο μέρος
του νευρωνικού δικτύου παράγει μια δυαδική μάσκα που οριοθετεί
το σχήμα του κάθε απορρίματος.

Η εκμάθηση του αλγορίθμου αντιμετωπίζεται ως πρόβλημα μαθη-
ματικής βελτιστοποίησης. Προσαρμόζει τις παραμέτρους του με σκο-
πό την ελαχιστοποίηση της συνάρτησης κόστους για το κάθε ζητού-
μενο που καλείται να προβλέψει, δηλαδή την εύρεση των περιοχών
της εικόνας που ενδέχεται να περιέχει απόρριμα, καθώς και την ταξι-
νόμηση, τις συντεταγμένες του πλαισίου οριοθέτησης και τη δυαδική
μάσκα επικάλυψης των απορριμάτων.

Για την παρούσα εργασία διεξήχθησαν τρία πειράματα. Το πρώτο
πείραμα αφορούσε την εκπαίδευση του αλγορίθμου για την ανίχνευση
απορριμάτων στις εικόνες που λήφθησαν από ακτογραμμή της περιο-
χής των Χανίων, και στις εναέριες εικόνες ενός συνόλου δεδομένων
ανοιχτής πηγής. Τα πειραματικά αποτελέσματα έδειξαν ότι ο Mask

iv

R-CNN επέδειξε ισχυρή δυναμική στην ανίχνευση απορριμμάτων στις
εικόνες των ακτογραμμών με μέση ακρίβεια που φτάνει μέχρι και 92%,
αλλά είχε μέτρια απόδοση στο σύνολο εναέριων εικόνων με μέση α-
κρίβεια που φτάνει το 53%. Καθοριστικό παράγοντα στη μειωμένη
απόδοση ανίχνευσης στις εναέριες εικόνες έπαιξε το μικρό μέγεθος
των απορριμμάτων.

Στο δεύτερο και στο τρίτο πείραμα χρησιμοποιήθηκαν μόνο οι ει-
κόνες που λήφθησαν από την ακτογραμμή των Χανίων. Το δεύτερο
πείραμα στόχευε στην εκπαίδευση του αλγορίθμου για την ανίχνευση
απορριμάτων και την ταξινόμησή τους σε πλαστικά και μη-πλαστικά.
Τα αποτελέσματα έδειξαν καλύτερες τιμές μέσης ακρίβειας για τα
μη-πλαστικά, γύρω στο 83%, ενώ για τα πλαστικά η μέση ακρίβεια
έφτασε το 72%.

Στο τρίτο πείραμα ο στόχος ήταν η εκμάθηση του αλγορίθμου να
ανιχνεύει απορρίματα και να τα ταξινομεί σε μπουκάλια, ποτήρια
μιας χρήσης, μεταλλικά δοχεία και άλλα. Ο Mask R-CNN ανίχνευσε
τα μπουκάλια και τα μεταλλικά δοχεία με πολύ καλή μέση ακρίβεια
με μέγιστες τιμές να φτάνουν 88%. Με τις υπόλοιπες κατηγορίες
απορριμάτων παρουσίασε πρόβλημα, καθώς έδειξε να μπερδεύει τα
ποτήρια μιας χρήσης με τα μεταλλικά δοχεία και τα υπόλοιπα απορ-
ρίματα με αντικείμενα του υποβάθρου των εικόνων. Το σχήμα των
απορριμάτων και ο αριθμός των δειγμάτων σε κάθε κατηγορία ταξι-
νόμησης αποτέλεσαν καθοριστικούς παράγοντες στην απόδοση του
αλγορίθμου, υποδεικνύοντας προκλήσεις που ϑα πρέπει να αντιμε-
τωπιστούν σε μελλοντικές εργασίες.

List of Figures

2.1 Example of a plastic debris detection experiment during a Sentinel-
2B overpass on 15 May 2018 over Whitsand Bay (United Kingdom).
(A) Overview of the bay area with the study area indicated by a red
square, shown in detail in (B) with the positions of the plastic targets
(10×10 m) visible within the red square (Martínez-Vicente et al., 2019). 9

2.2 Representation of photogrammetry technique demonstrating triangu-
lation to generate 3D spatial data (b) and comparison with a single
photo shoot (a) (Merlino et al., 2020). 14

3.1 Machine learning vs classical programming (Chollet, 2017, chapter 1). 22
3.2 (a) Human neuron (b) Artificial neuron (CS231n by Stanford Univer-

sity, nd). 27
3.3 Sigmoid activation function (Cooper, 2018). 28
3.4 ReLu activation function (Cooper, 2018). 29
3.5 Neural network with two hidden layers. 30
3.6 Schematic representation of the gradient descent operation (Chen et al.,

2020). 31
3.7 Neural network learning pipeline. 32
3.8 Deep learning model workflow. 34
3.9 Image processing convolution (Traore et al., 2018). 36
3.10 Illustration of a convolutional layer and its local receptive field. . . . 38
3.11 Max pooling process (Traore et al., 2018). 40
3.12 Illustration of a convolutional layer and a pooling layer. 41
3.13 R-CNN workflow overview (Girshick et al., 2014). 44
3.14 Fast R-CNN architecture summary (Girshick, 2015). 45
3.15 Faster R-CNN model architecture (Ren et al., 2017). 46
3.16 Mask R-CNN model’s instance segmentation branch (He et al., 2017). 48
3.17 The ground-truth and the predicted segmentation mask of a flower

used to compute the intersection over union metric (Goëau et al., 2020). 51

v

LIST OF FIGURES vi

3.18 The precision-recall curve. The red dot represents the point where
both precision and recall are high. 53

3.19 Difference between the actual precision-recall curve and the interpo-
lated curve (Padilla et al., 2020). 56

4.1 Feature Pyramid Network. The feature maps are indicated by blue
outlines and thicker outlines denote semantically stronger features
(Lin et al., 2017). 62

4.2 Full scheme of Feature Pyramid Network using ResNet101 (Zhang
et al., 2021). 63

4.3 Anchor boxes at the center cell of a sample image. Each color repre-
sents a different anchor scale and for each color there are anchor boxes
of 3 aspect ratios {1:1, 1:2, 2:1}. 65

4.4 Random anchor boxes generated for a sample image. The solid red
line represents the ground-truth bounding box, the dashed red line
represents a positive anchor box, and the dashed grey lines represent
negative anchor boxes. 66

4.5 RoIAlign operation example that extracts a 2×2 region of interest.
The dashed grid represents a feature map, the solid grid a region, and
the dots the 4 sampling points in each bin. RoIAlign computes the
value of each sampling point by bilinear interpolation from the nearby
grid points on the feature map (He et al., 2017). 69

4.6 Annotated instances of UAVVaste dataset. 74
4.7 Annotated sample. 74
4.8 Mask resizing of a sample image. 76

5.1 Anchors refinement. 81
5.2 Anchors after NMS. 81
5.3 Region proposals refinement. 82
5.4 Ground-truth masks vs predicted masks. 83
5.5 Final detection and segmentation result. 84
5.6 Activation maps of different layers of the feature extraction network. . 85
5.7 Precision-recall curves at (a) IoU=0.5 and (b) IoU=0.75 of the model

trained on UAVVaste dataset. 88
5.8 Precision-recall curve of the model trained on CoastLitter dataset. . . 89
5.9 Average precision estimated for a range of confidence thresholds for

plastic and non-plastic litter categories. 91
5.11 A sample image depicting a false (left item) and a correct detection

(right item). 92
5.10 Precision-recall curves for (a) the plastic class and (b) the non-plastic

class. 93

LIST OF FIGURES vii

5.12 Number of litter annotations per class. 94
5.13 Average precision estimated for a range of confidence thresholds for

four litter categories. 95
5.14 False predictions. 96
5.15 Number of litter annotations per class. 97
5.16 Precision-recall curves for (a) the bottle class and (b) the can class. . 98

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Current methods . 2
1.3 Object detection . 3
1.4 Objectives . 4

2 Literature Review 7
2.1 Introduction . 7
2.2 Tracking litter via remote sensing . 7

2.2.1 Satellite remote sensing . 8
2.2.2 Unmanned aerial remote sensing 10

2.3 Litter detection . 13
2.3.1 Data preprocessing . 13
2.3.2 Algorithm training and datasets for litter detection 15
2.3.3 Object detection algorithms for litter detection 17

2.4 Conclusions . 19

3 Theoretical Background 21
3.1 Introduction . 21
3.2 Machine learning . 22
3.3 Deep learning . 24

3.3.1 Artificial Neural Networks . 25
3.4 Convolutional Neural Networks . 34

3.4.1 Convolution . 35
3.4.2 Architecture . 36

3.5 Object detection algorithms . 42
3.5.1 Region-based Convolutional Neural Networks 43

3.6 Evaluation metrics . 48
3.6.1 Precision, recall, and F1 score 48
3.6.2 Intersection over union . 50

viii

CONTENTS ix

3.6.3 Confidence score . 51
3.6.4 Average precision . 53
3.6.5 Average recall . 57
3.6.6 Average precision and recall across scales 58
3.6.7 Average segmentation accuracy 58

4 Methodology 60
4.1 Introduction . 60
4.2 Algorithm architecture . 61

4.2.1 Feature Pyramid Network . 61
4.2.2 Region Proposal Network . 64
4.2.3 Region of interest pooling . 68
4.2.4 Classification and localization 69
4.2.5 Instance segmentation . 71

4.3 Datasets and annotations . 73
4.3.1 Aerial images . 73
4.3.2 Coastline litter images . 74

4.4 Training and configurations . 75
4.5 Experimental phases and evaluation 78

5 Results 80
5.1 Internal model inspection . 80
5.2 Evaluation metrics . 86

5.2.1 Model evaluation for UAVVaste and CoastLitter dataset . . . 86
5.2.2 Model evaluation for plastic and non-plastic litter categories . 90
5.2.3 Model evaluation for litter categorized by type 95

6 Conclusions 99

Bibliography 102

Chapter 1

Introduction

1.1 Motivation

Each year the marine and coastal environment is gradually impacted
due to accumulated waste. Coastal pollution is associated with several
ecological, social, and economic problems to the extent that is endan-
gering human health, wildlife, and reducing the availability of ecosystem
goods and services. Some of the various problems caused by this pollu-
tion include the adverse effects on the animals digesting the litter, the
movement of litter from coastal areas into the water, and the hazardous
effects on the marine ecosystem by non-biodegradable litter (Asensio-
Montesinos et al., 2019). The economy and human health are affected in
terms of sustainable and safe fisheries and aquaculture, recreation and
heritage values. Significant expenses associated with, current and future,
potential ecosystem degradation are expected. Beach areas, which are
critical components of the coastal systems from an environmental and
economic point of view, are affected by illegal litter dumping, resulting
in utility value reduction (Barboza et al., 2019). Littered environments
repel visitors and directly affect local businesses which spend time and
financial resources to clean.

Litter composition in the beach areas is a complex phenomenon and
the severity of the problem depends on both human actions and the
environment. Surveys of marine and coastal litter frequently identify

1

CHAPTER 1. INTRODUCTION 2

plastic as the major component, contributing from 60% to 80% of the
total with varying polymer chemical compositions (Barboza et al., 2019;
Erni-Cassola et al., 2019). Despite initiatives to monitor and reduce plas-
tic litter, such as from the United Nations Environmental Programme
(UNEP) and the European Marine Strategy Framework Directive, there
is still a long way to manage it effectively (Asensio-Montesinos et al.,
2019; Galgani et al., 2019).

In the coastal environment, the prominent sources of litter are human
recreational activities, smoking, waste dumping into the beach or the
sea (Pervez et al., 2020). The fact that more and more litter concentra-
tions are found contaminating natural environments made monitoring a
common undertaking for academic, government, and environmental or-
ganizations. Since most marine litter originates from land-based sources,
surveying the litter from beach areas can be used as a tool for monitoring
litter pollution (Asensio-Montesinos et al., 2019).

Shoreline surveys are generally considered to be the simplest, inex-
pensive, and the most direct way to monitor stranded litter compared
to surveys in other environmental compartments. The process of detec-
tion, counting and classification of litter is carried out manually usually
by volunteers or civil servants. But with the development of the object
detection technology, this process can be automated to support research
and citizen science.

1.2 Current methods

Litter items are collected by environmental-related entities for analy-
sis that includes counting, classification and categorization of materials.
There are sampling programs designed to monitor standardized macro-
litter (> 25mm), especially plastic, like the OSPAR and MARLIN mon-
itoring programs, commonly used in the North-East Atlantic coastlines
and the Baltic region (OSPAR, 2010; MARLIN, 2013). These programs
require training of groups of people to carry out the process of detection-

CHAPTER 1. INTRODUCTION 3

counting-classification of litter items. But with the abrupt development
of object detection technology, this process can be performed in a more
automated manner. The tedious work of people monitoring garbage in
the environment can be accomplished with remote sensing systems, and
object detection algorithms can take on the task of detecting, counting
and classifying trash items.

In the last couple of years, researchers are working towards developing
an efficient and scalable environmental monitoring system. Depending
on the target environment, they are tracking litter items by installing
networks of cameras (Olivelli and Rosebrock, 2020), using mobile cam-
eras (Ping et al., 2020), aerial (Kraft et al., 2021) or underwater visual
systems (Fulton et al., 2019). They train object detection models to
find and classify trash in the imagery or video acquired by the surveil-
lance system in the field. There are several object detection models that
are trained and evaluated using benchmark image datasets like the fa-
mous ImageNet Challenge (Russakovsky et al., 2015), PASCAL VOC
Challenge (Everingham et al., 2015), Microsoft’s COCO Challenge (Lin
et al., 2015), and Open Images Challenge (Google Research, 2019). Re-
search is ongoing towards optimizing object detection algorithms aiming
at better detection speed and accuracy. Current top performing object
detectors employ detection proposals to guide the search for objects (Gir-
shick et al., 2014; Girshick, 2015; Ren et al., 2017; He et al., 2017). This
kind of algorithms will be discussed extensively in the third chapter.

1.3 Object detection

Object detection technology is selected as the key discipline in this study
because it has made remarkable progress in many directions due to the
rapid advances of deep learning algorithms and the computing power
of GPUs in the last decade (Chollet, 2017). Object detection is known
as the computing capability in computer vision which aims to locate,
recognize and differentiate targeted image objects. It involves training

CHAPTER 1. INTRODUCTION 4

computers to understand and interpret imagery. It is underpinned by a
subset of AI called deep learning that seeks to imitate how the human
brain processes data based on artificial neural networks.

Today, object detection in images is widely adopted and enhanced
using algorithms with many specialized layers for automating the feature
extraction process. These learning algorithms, characterized as "deep"
because of their depth in layers, are able to learn to extract features
from the images by using convolutional neural networks (CNNs) in their
architecture. CNNs act as a specialized filtering process in an image,
where repeated filtering on an input image results in a map of activations,
called a feature map, indicating the locations and strength of a detected
feature in the image. The neural network has the ability to adjust itself
to reduce the error in detection, and thus, improve or learn on each own
how to extract the information for the task at hand (Chollet, 2017).

The current thesis aims to provide further insights when it comes to
trash detection with CNN-based algorithms. Approaches like the object
detection algorithms from the Region-CNN (R-CNN) algorithm family,
discussed extensively in the third chapter, are in favor for this project
because they have evolved to integrate the object detection process into
a single neural network, simplifying training and inference, but also in-
creasing the processing speed significantly (Ren et al., 2017; He et al.,
2017).

1.4 Objectives

The present research examines alternative methods of litter detection in
coastal areas and intends to provide valuable technological insights for
litter pollution monitoring studies and cleanup operations. The present
research examines alternative methods of litter detection in coastal areas
and intends to provide valuable technological insights for litter pollution
research studies and cleanup operations. Automated litter detection in
images collected from the region of interest can help assess litter occur-

CHAPTER 1. INTRODUCTION 5

rences in the environment. Image acquisition can be done either through
in situ ground assessments or through remote sensing methods. Prior
studies have extensively used unmanned aerial vehicles for shoreline lit-
ter assessments (Fallati et al., 2019; Gonçalves et al., 2020; Lo et al., 2020;
Merlino et al., 2020). The reasons are centered around the advantages
provided by aerial remote sensing, such as the high spatial resolution and
the high area coverage, that facilitates the monitoring of litter. There-
fore, part of this research focuses on processing aerial images containing
litter distributed in urban areas. But the biggest part of this work focuses
on processing litter imagery obtained via mobile device during ground
assessment of coastal areas. The reason was to compare the performance
of a deep learning algorithm for locating and classifying litter in images
collected from the shoreline assessment with the performance of the same
algorithm applied on aerial images.

In the context of litter detection, this study aims to provide the sci-
entific community with an evaluation of the effectiveness of a state-of-
the-art deep learning object detection algorithm for litter detection on
coastal regions. Based on these, this research breaks down to achieve the
following objectives:

1. Evaluation of the performance of one of the most prominent algo-
rithms for object detection and instance segmentation in images,
namely Mask R-CNN (He et al., 2017).

2. Comparison of the efficiency of the algorithm in litter detection in
different datasets.

3. Comparison of the efficiency of the algorithm in locating and cate-
gorizing litter by material and type.

The next chapter states the advances and limitations in recent tech-
nologies and monitoring strategies for litter detection. Chapter 3 presents
the theoretical background of this study emphasizing the understanding
of the basic concepts related to the operation of the algorithm used.

CHAPTER 1. INTRODUCTION 6

Chapter 4 outlines the experimental work carried out and Chapter 5 dis-
cusses in detail the results. The final chapter states the conclusions of
this study while summing up the main results.

Chapter 2

Literature Review

2.1 Introduction

In recent years, a variety of research efforts have been made to track
waste in the environment using the computer vision task of object detec-
tion in images due to remarkable advances in machine learning methods.
These recent efforts are usually accompanied by remote sensing methods
to collect the necessary data for object detection. In the first part of
this chapter, a brief reference is made to satellite remote sensing, and a
broader reference is made to aerial remote sensing which is commonly
used because of the advantages that exhibits. The second part of this
chapter is focused on data processing methods, applied by several re-
searchers, for the object detection task of finding trash within images.

2.2 Tracking litter via remote sensing

Coastal environments can be very polluted because of the human factor.
No matter the effort exerted by municipalities, waste is always present
in the environment people has access to. Also, there are several cases
of waste accumulating in remote areas because of physical transferring
through wind, storm or wave currents. Simple solutions involve sending
individuals or groups of volunteers to conduct on-ground visual counts.
Unfortunately, littered locations are not always known. For example, in

7

CHAPTER 2. LITERATURE REVIEW 8

coastal environments, individuals can clean areas like beaches with high
human traffic, while trash piles are generated in other coastal compart-
ments. Some remote coastal areas might have accessibility and safety
issues by nature like slippery rocks, precipitous slopes, etc. In these
cases, remote sensing should take the lead on monitoring garbage. Re-
mote sensing systems can make a substantial contribution to planning
preparedness and mitigating potential issues of an on-ground assessment.
They can provide first-hand information on changes in garbage abun-
dance, and on abnormal amounts or "hot spots" associated with marine
debris spills on the shores. Remote sensing via satellites and unmanned
aerial vehicles for tracking litter items are discussed in the following sec-
tions.

2.2.1 Satellite remote sensing

At present, there are several remote sensing satellites providing imagery
for research and operational applications. They are able to provide large
area coverage, frequent and repetitive coverage of an area of interest,
quantitative measurement of ground features using radio-metrically cal-
ibrated sensors, semi automated computerized processing and analysis,
and relatively lower cost per unit area of coverage (Chuvieco, 2016).
Hence, they potentially being ideal tools for global garbage tracking.
However, there are some observational requirements needed to take into
consideration when planning to use satellite remote sensing, such as iden-
tification of physico-chemical properties and their relation to a detectable
signal from space. Especially for plastic litter, according to Hartmann
et al. (2019), in order to classify it, it has to contain synthetic or heav-
ily modified natural polymers as essential ingredients. The size, shape,
structure, color, and origin of the object are considered secondary char-
acteristics and not essential qualifying properties. Therefore, plastics’
polymeric nature can be defined as the main observable property for a
remote sensing system, The observable property should be based on the
modification of the electromagnetic radiation spectrum signature due to

CHAPTER 2. LITERATURE REVIEW 9

the chemical signature of polymers (Martínez-Vicente et al., 2019). By
targeting a particular polymeric compound, implies the expectation of
separating the signature of plastics from all other kind of litter, either
man-made or natural.

During the design of a satellite remote sensing system, the tempo-
ral and spatial resolution also needs to be determined. These sampling
requirements are usually expressed as the minimum values or the thresh-
old required for the success of the system, as well as the goal require-
ments which would be useful to advance the state of current knowledge.
Successive iterations are expected before the selection of these values
to ultimately become the engineering specifications of a satellite remote
sensing system. Once these values are defined, they need to be compared
with current capabilities, to signal potential suitability and knowledge
gaps (Martínez-Vicente et al., 2019). Copernicus Sentinel fleet and VI-
IRS and Landsat series are already mature observing systems, covering
various spatial scales and application domains, and it is essential to inves-
tigate its monitoring potential for trash and especially plastic pollution
before looking into new solutions.

Figure 2.1: Example of a plastic debris detection experiment during a Sentinel-2B
overpass on 15 May 2018 over Whitsand Bay (United Kingdom). (A) Overview of
the bay area with the study area indicated by a red square, shown in detail in (B)
with the positions of the plastic targets (10 × 10 m) visible within the red square
(Martínez-Vicente et al., 2019).

CHAPTER 2. LITERATURE REVIEW 10

2.2.2 Unmanned aerial remote sensing

Unmanned Aerial Vehicles (UAVs) are powerful tools to acquire low al-
titude remote sensing data in order to obtain a synoptic overview of
extended areas. The use of an automated flight path as a monitoring
technique provides an easy, adaptable and relatively cheap method to
monitor litter items either on beaches or at locations without existing
infrastructure.

Several kinds of sensors can be embedded to an unmanned vehicle to
operate in different environments and conditions with different levels of
autonomy. Inertial sensors like accelerometers and gyroscopes combined
with a magnetometer are used to determine the flight position and orien-
tation of an unmanned vehicle. Barometric pressure sensors are used to
determine the height. The information of these sensors is provided to the
flight controller, which monitors and controls everything the UAV does.
For trash detection, Kraft et al. (2021) used a commercial flight con-
troller, which encompasses a combination of accelerometers, gyroscopes,
and barometers to provide relative position data, and it is connected to
a Global Positioning System (GPS)/Global Navigation Satellite System
(GNNS) module to provide absolute positioning information. The opti-
cal sensor mounted on a UAV for applications like tracking litter items
is an RGB camera to acquire high resolution images that can be used
along with the other sensors to produce high quality aerial imagery and
digital surface models.

Compared to the use of piloted aircraft or satellite imagery, an un-
manned aerial vehicle operates at low altitude, thus allowing the acqui-
sition of high spatial resolution imagery. Generally, UAVs are low-cost
platforms offering a good solution to be used more frequently. Flight
planning is easy since several software solutions are developed to control
autonomous flights. The spatial resolution achieved in the collected im-
agery allows integration with object detection algorithms, which could
drastically reduce observational errors, and therefore, lead to more ac-
curate estimations of trash recognition. Nevertheless, UAVs should not

CHAPTER 2. LITERATURE REVIEW 11

be used when the wind velocity exceeds 10 m/s and during rain, snow,
or thunderstorms, because the altitude accuracy will decrease radically
(Geraeds et al., 2019), the battery life will be drained faster, and the
electronic gear can wear down.

There is similar research focused on the development of a UAV-based
protocol or a combination of protocols to automatically detect and quan-
tify beach litter (Fallati et al., 2019; Gonçalves et al., 2020) and floating
riverine plastic debris (Geraeds et al., 2019). For study area surveying,
the researchers used commercial quad-rotor UAVs, equipped with RGB
high-resolution cameras, that can smoothly fly at low altitude to obtain
good ground-resolution images compared to fixed-wing UAVs. Fallati
et al. (2019), selected the UAV altitude of 10m, to obtain a spatial resolu-
tion expressed in ground sample distance (GSD) of about 4.4 mm/pixels,
given by the equation below:

GSD =
SW · FH

FL · IW
(2.1)

where SW is the sensor width, FH is the flight high, FL is the focal
length of the camera, and IW is the image width (Ventura et al., 2018).
Regarding autonomy, coverage and image resolution, Gonçalves et al.
(2020) found best to fly the UAV at an altitude of 20m, correspond-
ing to a GSD of about 5.5mm/pixels, suitable for detecting meso-litter
items (size between 2.5 cm and 50 cm). Furthermore, Lo et al. (2020)
conducted UAV flights at different operating heights and light condi-
tions, concluding that the UAV is best to be flown at 5m-10m operating
heights on a sunny day for litter items not smaller than 10 cm.

To study the spatial and temporal accumulation dynamics of beach
litter, Merlino et al. (2020) involve unmanned aerial remote sensing as
it provides good repeatability in surveying by setting pre-defined flight
parameters (flight altitude, flight starting-ending point, flight time, etc).
Their results indicated that the accumulation dynamics of beach litter
depends not only on the season, but also on the size of litter and on
extreme weather events. Moreover, they compared standard monitoring

CHAPTER 2. LITERATURE REVIEW 12

campaign results with the results obtained from aerial images, regarding
the size and classification of beach litter. The comparison showed good
agreement for medium and large size objects (∼67%-95%), but not for
small ones (∼15%).

Regarding the hardware involved in unmanned aerial remote sensing,
Kraft et al. (2021) developed a custom-made sensor system based on deep
learning object detection able to operate onboard the UAV and analyze
litter imagery in real-time. As stated previously, for flight control and po-
sitioning, they used a commercial autopilot (Pixhawk), which integrates
the necessary, and some redundant, inertial measurement sensors, and
is externally connected with a GPS/GNSS module. Multiple embedded
computational platforms were tested in a wide range of configurations for
visual information processing, since deep neural networks are computa-
tionally expensive in terms of processing power, time and memory. The
researchers report, based on their results, that the most reliable platform
is the NVIDIA Jetson Xavier NX module (NVIDIA Developer, 2020) be-
cause of the range of solutions it can run. When running 16-bit floating
point version of YOLOv4 object detection algorithm (Bochkovskiy et al.,
2020), it exhibited near real-time performance having the capability to
process more images per second with good detection accuracy compared
to other configurations.

Although unmanned aerial systems are extremely versatile and useful
tools for the investigation and analysis of a number of environmental
issues, they have their limitations. These systems can be deployed when
atmospheric (i.e., cloud-free), environmental, and solar conditions are ac-
ceptable to study specific phenomenon. They are not ideal for covering
large areas (not enough battery life, high cost per unit area of ground
coverage). Additionally, aerial missions are often carried out as one-time
operations, whereas earth observation satellites offer the possibility of
continuous monitoring of the earth. Therefore, if the goal is to map
areas with large extents in different resolutions, satellite imagery is the
appropriate choice. If the research aims to detect small marine features,

CHAPTER 2. LITERATURE REVIEW 13

high resolution data provided by aerial systems are required. In some
cases, including the tracking of marine debris, satellite and airborne sen-
sors are needed to be utilized.

2.3 Litter detection

Object detection technology aims to identify target objects in collected
images/videos and determine the category each one of the target objects
belong. But before the detection, data has to be collected and prepro-
cessed with methods that will serve the end-purpose of the problem.
Afterwards, to be able to infer from the collected data, object detection
models have to be trained and evaluated. This section discusses about
data collection-preprocessing methods applied for litter monitoring, the
current training model methods as well as algorithms that have been
used in the latest research for litter detection.

2.3.1 Data preprocessing

When collecting imagery either on ground level or in aerial mode, re-
searchers tend to follow a SfM (Structure from Motion) photogrammet-
ric pipeline to obtain a 3D reconstruction of the target objects (Fallati
et al., 2019; Gonçalves et al., 2020; Merlino et al., 2020; Lo et al., 2020).
To conduct this kind of workflow, photos of the target objects should be
taken such that there is an overlap between the adjacent frames with a
coverage of about 70% to 80%. The tool used by the researchers to per-
form photogrammetric processing is the Agisoft Metashape, or formerly
known as Agisoft Photoscan. In aerial mode, the SfM processing can be
used to define the position, shape and size of the objects on the ground.
The acquired images are loaded to the software to create an orthomosaic
for the entire study area. Figure 2.2 depicts the photogrammetric tech-
nique that allows the generation of 3D spatial data. Specifically, Merlino
et al. (2020) state "By precisely knowing the position of the homologous
points A’ and A” on the two photographs, and the spatial position of the

CHAPTER 2. LITERATURE REVIEW 14

two sectors and the two perspective centers O1 and O2, the point A re-
mains geometrically defined, since it is the intersection point of the two
projecting rays r1 and r2 connecting the two homologous points with the
perspective centers. This does not happen with a single photo shoot".

Figure 2.2: Representation of photogrammetry technique demonstrating triangula-
tion to generate 3D spatial data (b) and comparison with a single photo shoot (a)
(Merlino et al., 2020).

For monitoring and detecting litter on the streets, Ping et al. (2020),
located a mobile device on a trash truck to capture images of streets.
Three cameras were placed to look in different direction to take high-
resolution pictures. The acquired pictures were passed into an edge pro-
cessing component for preprocessing using a limited computing power.
The preprocessing involves checking the clearness of the captured images,
and applying an optimized pre-trained deep learning model to determine
any regions of interest in images which will be used for object detection in
the subsequent processing. Candidate images for further processing, are
compressed and encrypted before being transmitted to the cloud server
for object detection.

CHAPTER 2. LITERATURE REVIEW 15

2.3.2 Algorithm training and datasets for litter detection

Before referring to the algorithms used for litter detection in the liter-
ature, it is necessary to discuss about the deep learning model training
used for object detection. Deep learning models learn by providing them
with data and letting them find progressively the relationships that repre-
sent the data best. The data given to the model is labeled. For example,
the images provided to a deep learning model for object detection are
annotated with a bounding box for each item they contain and a corre-
sponding label. For image segmentation purposes, they can also contain
a segmentation mask for each detected object. Thus, the learning al-
gorithm trains itself by trying to develop understanding of the patterns
in order to be able to detect and map an object to its label. The data
provided to a learning algorithm is called training data and the better
the quality and quantity of this data is, the better the model performs.

The amount of data provided to a deep learning algorithm plays a sig-
nificant role on its performance. Generally, this kind of algorithm needs
a large amount of training data to perform successfully. The number
of training data required depends on the complexity and seriousness of
the case. For more complex problems, the deep learning model needs
more training data as a rule of thumb. More serious problems require a
model that is more confident on its results, hence, require as many data
as possible. The number of object classes the model has to identify is
also an indicator of the number of training examples to be used.

The nature of each problem raises the need for field-specific training
datasets. There is a number of open-sourced datasets used for algo-
rithm training and evaluation. For trash detection and segmentation,
there is the TACO (Trash Annotations in Context) dataset by Proença
and Simões (2020), that contains litter imagery taken under diverse en-
vironments. For underwater object detection and segmentation, there
is the TrashCan dataset by Hong et al. (2020b) which contains obser-
vations of trash, a variety of undersea flora and fauna, and unknown
objects. For the classification task of litter items, there is the Trashnet

CHAPTER 2. LITERATURE REVIEW 16

dataset (Thung, 2016) which includes garbage photographed in a clear
background, and the WaDaBa dataset (Bobulski and Piątkowski, 2018)
which consists of plastic waste also photographed in a clear background.
Recently, a dataset consisted of drone imagery used for litter detection,
called UAVVaste, was developed by Kraft et al. (2021). The reason of
its development is that the object detection algorithm has to be trained
to detect a relatively small size of objects in the image, which is more
difficult to achieve with a regular trash dataset.

Apart from ready-to-use training datasets, researchers can apply tech-
niques like data augmentation to generate an effective training dataset
for object detection models. Data augmentation is applied to enlarge
an image dataset, by making minor alterations to the existing images,
such as changing the orientation, scale, brightness, etc. Advanced tech-
niques of producing a training dataset involve deep generative models,
which are deep neural network architectures with an incredible ability
to generate highly realistic data of various kinds such as images, texts
or sounds to expand the original dataset (Ruthotto and Haber, 2021).
Hong et al. (2020a) produced a synthetic dataset of realistic images of
underwater thrash using a major family of deep generative models, called
Variational Autoencoders (VAEs). VAEs encode input data as distribu-
tions constrained to be close to a standard Gaussian. In this way, when
sampling data from these distributions, interpretability will be ensured
and closely mapped data will return similar content. Another example of
expanding a training dataset comes from Olivelli and Rosebrock (2020).
They used a synthetic dataset of trash images created by Microsoft’s
synthetics team based in Seattle. Various objects were superimposed
over backgrounds obtained from their field photos, managing to produce
thousands of synthetic images over a relatively small time interval.

When training a deep learning object detection model, there is a pro-
cedure that is very popular and often followed by research community.
This procedure involves the use of a model pre-trained on related data,
because it can help train, more quickly and efficiently, deep learning

CHAPTER 2. LITERATURE REVIEW 17

models with comparatively little data. This idea focuses on using the
knowledge gained from solving a related task and applying it to improve
a model’s generalization in another task. In particular, the parameters of
the pre-trained neural network, where the knowledge of solving a relevant
problem is stored, are transferred to the new network. This is the reason
why this procedure is called transfer learning. Typically, most problems
do not have a large dataset of labeled data points to train such complex
models as deep learning models. For this reason, transfer learning gains
in popularity. Regarding trash detection, researchers often use mod-
els pre-trained on the Microsoft’s COCO (Microsoft Common Objects in
Context) dataset (Lin et al., 2015), to take advantage of transfer learning
(Fulton et al., 2019; Ping et al., 2020; Kraft et al., 2021). COCO dataset
contains images with over 1.5 million objects instances people encounter
on a daily basis and image annotations for 80 object categories, and is
available for public use. It is suitable for litter items detection because
it includes small objects in various backgrounds. Therefore, it improves
generalization and reduces the chances of overfitting.

2.3.3 Object detection algorithms for litter detection

In literature, the algorithms used for detecting trash vary in their type
and complexity. Gonçalves et al. (2020) conducted object-based image
analysis through a commercial software. They applied three popular
machine learning classifiers, Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Random Forest, to create litter abundance maps.
Their study case includes monitoring litter items in sandy beaches with
a consumer-grade UAV. They measured the precision and sensitivity of
each algorithm and concluded that for a multi-class detection, the Ran-
dom Forest algorithm, which is the most complex of the three regarding
optimization, had the highest performance.

More research on tracking litter items focuses on deep learning-based
object detectors. Fallati et al. (2019) applied a commercial deep learning
software, called PlasticFinder, to detect and quantify marine debris on

CHAPTER 2. LITERATURE REVIEW 18

shorelines from aerial images. Prior to using the software, they performed
a comparison between the number and the type of the marine litter
counted during a ground assessment on the study area and the number
and the type of the marine litter counted via image screening on the PC.
The images that were considered suitable to train and test PlasticFinder
had a matching score over 80%. When compared to a previous similar
research by Martin et al. (2018), which used multi-class Random Forest
classifiers, the PlasticFinder scored much higher precision.

Due to the introduction of convolutional neural networks (CNNs),
object detection in images has seen enormous progress in terms of accu-
racy and speed. CNN-based object detection algorithms, such as Faster
R-CNN (Ren et al., 2017), Mask R-CNN (He et al., 2017), YOLOv3
(Redmon and Farhadi, 2018), EfficientDet (Tan et al., 2019), are used
extensively by the research community. Ping et al. (2020) trained a
Faster R-CNN model to detect and classify litter on images collected by
various public image sources. First, the training occurred for a small
dataset with 6 litter classes, and for the performance evaluation of the
model they used the PASCAL VOC metric (mean average precision for
an IoU threshold equal to 0.5) that is discussed in section 3.6.4. Second,
the training took place for a large dataset with 11 classes of litter. The
model was evaluated with the COCO dataset metrics, also discussed in
section 3.6.4. In the training procedure of the Faster R-CNN model,
instead of using random weight values, they applied the weight values
of another Faster R-CNN model trained on the COCO dataset for the
purpose of transfer learning. On a similar theme, Kraft et al. (2021)
compared the performance of real-time object detection algorithms, like
YOLO and EfficientDet variants, pre-trained on the COCO dataset and
trained on the UAVVaste dataset for trash detection on aerial images.

CHAPTER 2. LITERATURE REVIEW 19

2.4 Conclusions

Currently, the most common method for monitoring trash relies on ground
assessments. This process has the advantage of an easier and more re-
liable classification compared to remote sensing methods because of the
direct encounter with trash. Nevertheless, this process in nature is labor-
intensive because of the difficulty of surveying many locations, sometimes
of great extent, and over extended periods.

Remote sensing surveys are the simplest sampling technique, in which
all analytical methods can be applied in order to deduce garbage proper-
ties, including composition and possibly even origin. A satellite remote
sensing system can provide global scope observations, and continuous
temporal coverage, quantitative measurement of ground features, and
semi automated computerized processing and analysis. However, remote
surveying by satellites has its limits regarding the acquisition of detailed
spatial information. Unmanned aerial systems can be used instead of
satellite systems or as supplementary tools depending on the study case.
They provide high spatial resolution images, thus making easier the de-
tection and classification of waste. The pixel densities they provide,
allow for integration with object detection algorithms, which can limit
observational errors significantly. But UAVs should not be used in severe
weather conditions as their efficiency will decrease substantially, because
of the possibility their gear will get damaged.

The customization of object detection algorithms for the identification
of trash items on influenced areas has been proven to be a beneficial
tool in current and future research. But first one has to pay attention
to the way data is collected and preprocessed, because the quality and
quantity of the data affects the performance of object detection models.
In general, the training of a deep learning model on images requires good
spatial resolution and a lot of image data in order for the model to infer
better. To have enough data to train a deep learning object detection
model for a certain study case, researchers often use a large dataset
which is related to their problem. There are several datasets available

CHAPTER 2. LITERATURE REVIEW 20

for training-testing object detection algorithms. These datasets are also
used for pre-training a model, before applying custom relevant data to it.
In this way, the knowledge from the pre-trained data will be transferred
to the deep learning model, and when the model is exposed to the smaller
dataset will be able to generalize more and not overfitting to the data.

Current research on litter detection shows a tendency towards the
use of deep learning-based object detection algorithms. Most of it, fo-
cuses on applying a detection algorithm on images acquired from a UAV,
usually aiming either to automate completely the procedure of detec-
tion/classification of litter items on coastal environments, or to compare
the algorithms results with the results of on ground assessments. De-
pending on their level of expertise in object detection algorithms, re-
searchers have used from simple machine learning classifiers and com-
mercial deep learning-based software to complex architectures that in-
corporate convolutional neural networks. Whatever the type of object
detection algorithm applied, the common goal is to obtain as accurate
results as possible.

Chapter 3

Theoretical Background

3.1 Introduction

Image classification and object detection are part of the computer vision
area, which aims to reproduce the capability of human vision. Image
classification is the task of assigning a label to an input image from a
fixed set of categories. Object detection is the task of locating one or
more objects in an image and classifying it/them by assigning a label
from a fixed set of categories. It is evident from the definitions that
image classification is a simpler task to perform, and that object detec-
tion encompasses the image classification task. These computer vision
tasks share a common goal, which is to understand the content of images
by extracting information from them. They take images as input and
give output in the form of information. Due to the advances of deep
learning techniques, convolutional neural networks, and the increase of
the parallel processing power offered by the graphics processing units
(GPUs), these computer vision tasks have been rapidly developed in the
last years (Chollet, 2017). There are plenty of practical applications in-
volving image classification or object detection such as computer-aided
medical diagnosis and treatment planning (Robertson et al., 2018; Traore
et al., 2018; Ulhaq et al., 2020), plant diseases diagnosis (Dhingra et al.,
2019), mineral grains recognition (Maitre et al., 2019), nuclear and par-
ticle physics applications to the analysis of Large Hadron Collider events

21

CHAPTER 3. THEORETICAL BACKGROUND 22

(Schwartzman et al., 2016), fraud events detection for financial security
matters (Sahni et al., 2020).

With the application of computer vision technology, calculations and
testing have become more accurate and today’s systems have evolved
to react to visual inputs quicker than humans. This chapter intends to
present an extensive study background to provide the reader with the
basic theory of concepts closely relevant to this study, like deep learning,
convolutional neural networks, object detection algorithms and popular
evaluation metrics.

3.2 Machine learning

In programming, problems are often approached with logical and me-
thodical thinking. Depending on the desired output, the appropriate
rules are set in a way that will convert the input into the output. In ma-
chine learning, the program itself learns the rules that best describe the
data, gradually uncovering patterns in the data with each iteration. As
more patterns are revealed, its performance becomes better and better.

Rules
Answers

Rules

Data

Answers

Data

Classical
programming

Machine
learning

Figure 3.1: Machine learning vs classical programming (Chollet, 2017, chapter 1).

Although machine learning was initially avoided due to its high com-
putational requirements and the limited computing power at the time,

CHAPTER 3. THEORETICAL BACKGROUND 23

it began to flourish in the last several years due to the preponderance
of data arising from the rapid increase of information as well as the
development of graphics processing units (GPUs).

Machine learning is closely linked to statistics, as it involves learning
algorithms, the properties of which are studied using a statistical frame-
work. It is based on statistical learning theory through the process of
inductive inference, that is:

1. making observations,

2. discerning a pattern,

3. making a generalization, and

4. infer an explanation or a theory (Bousquet et al., 2004).

It aims to automate this process by searching for hidden trends that de-
scribe the input data within a predefined space of possibilities for a given
task. Then, it creates a model that explains some real-world data and
makes predictions on what may happen next with different inputs. But
unlike statistics, machine learning (especially deep learning) is engineer-
ing oriented as ideas are proven more often empirically than theoretically
(Chollet, 2017).

The machine learning algorithms make mathematical models based on
the given data to make predictions. The data that goes into a machine
learning model consists of measurable properties, called the features,
which have to be carefully selected or "engineered" for the model to be
functional. The process of selecting the features in machine learning
model implementations to make them functional is called feature engi-
neering. The functionality of a machine learning model is determined by
four properties:

• Performance - how well it performed on the given data,

• Runtime - how fast it runs,

CHAPTER 3. THEORETICAL BACKGROUND 24

• Interpretability - how comprehendible its predicting operation is,

• Generalizability - how well it generalizes to unseen data.

Researchers have to dedicate time to prepare and optimize their machine
learning models according to the aforementioned properties to make sure
of their functionality. On the other hand, this is not the case with deep
learning, where feature engineering is essentially automatic. Deep learn-
ing algorithms need only little human intervention. They are strongly
characterized by their self-learning capabilities and their ability to trans-
form the given data into an abstract representation.

3.3 Deep learning

The term learning in machine learning refers to the process by which
models find the rules that describe the data. A machine learning algo-
rithm uses these rules to find the best representation of the data involved.
Then, the algorithm uses this data representation to make predictions
about new data that it has never encountered before (Goodfellow et al.,
2016).

Deep learning is a subfield of machine learning and has a very similar
process of learning:

• build a model

• add relevant data,

• train model on the relevant data,

• test the predictive power of the model on data it has never encoun-
tered.

The term deep in deep learning concerns the numerous data trans-
formation layers. At each successive layer, the deep learning algorithm
processes the input data to learn progressively complex patterns. This
is an architecture that mimics the structure of the brain.

CHAPTER 3. THEORETICAL BACKGROUND 25

3.3.1 Artificial Neural Networks

Deep learning models are biologically inspired. They are an attempt to
simulate the way the human brain works and finds patterns for deci-
sion making. Deep learning integrates artificial neural networks into its
architecture. An artificial neural network consists of:

• Neurons or nodes - An artificial neuron is a mathematical function
designed to imitate the functioning of a biological neuron. It can
take an input, process it based on some rules and output a result.
Then, it trains itself on its own result and gives better results in the
future. In other words, it learns by trial and error just like a biolog-
ical neuron. With mathematical terms, it computes the weighted
average of the data input and passes the information through a non-
linear function, called the activation function (CS231n by Stanford
University, nd).

• Connections between the neurons/nodes - Each connection has a
positive or negative value on it, called weight, that controls the
strength of influence of one neuron on another.

• Layers - A neural network can have multiple layers of neurons. The
first layer is the input layer, where inputs enter the neural network.
The final layer is the output layer and produces the final result.
There are also layers in between the input and output, called hidden
layers (Goodfellow et al., 2016, chapter 6). These layers introduce
complexity into a neural network and generally aid in the learning
process. Depending on the number of hidden layers (which can be
zero), a neural network can be characterized as shallow or deep.

Figure 3.2 shows an illustration of a human neuron (a) versus its
mathematical model (b). A human neuron consists of dendrites, nucleus,
cell body and axon. Impulses are received by dendrites, processed to be
information in the cell body and the output is sent along its axon and via
the synapses to the dendrites of the next neuron. In an artificial neuron,

CHAPTER 3. THEORETICAL BACKGROUND 26

the impulse is an input signal, x0, that travels along the axon of the
previous neuron and interacts with the dendrites of the neuron based on
the synaptic strength of a particular synapse, w0 (CS231n by Stanford
University, nd). The synaptic strength is not a static quantity and can be
modified. Likewise, in an artificial neuron the synaptic strength, referred
to as weights, is a learnable parameter that strengthens or weakens the
input signal and can be modified to output a better result. The weighted
input signals (wi ·xi) are carried to the cell body where they get summed.
A bias is also added to the weighted sum in order to increase accuracy
of the output, acting like the constant of a linear function. A biological
neuron produces a signal along its axon when it is stimulated or activated
by other neurons to which it is connected. For an artificial neuron, the
activation is done with the use of an activation function. The value
of the final weighted sum can be anything ranging from −∞ to +∞.
The activation function sets a certain threshold to the value of the final
sum. If the final weighted sum is above the threshold, then the neuron
is activated and outputs a signal.

CHAPTER 3. THEORETICAL BACKGROUND 27

Dendrites

Synapse

Branches

AxonNucleus

Cell body

of axon

(a)

(b)

Impulses in

Impulses out

Axon from a neuron

Output axon

Activation functionSynapse

Dendrite Cell body

Figure 3.2: (a) Human neuron (b) Artificial neuron (CS231n by Stanford University,
nd).

The biological neurons are complex nonlinear dynamical systems.
Thus, the activation function is nonlinear. Non linearity creates more
complexity during the learning process and gives the model the power
to learn non-linear patterns in the data. If a neural network had many
layers performing only linear transformations, it would simply be a se-
ries of successive layers that would not be more efficient or accurate than
simple linear regression.

There are various types of activation functions that can be applied at
each layer of the network. The sigmoid activation function is commonly
used in the final layer of the network and for binary classification prob-

CHAPTER 3. THEORETICAL BACKGROUND 28

lems as it produces values in the range [0,1]. The sigmoid function is
defined as:

A =
1

1+e−x (3.1)

y

x

Figure 3.3: Sigmoid activation function (Cooper, 2018).

A general problem of this activation function is that towards either
end of the curve, the y values tend to respond very less to changes with
x. The gradient is very small near the horizontal parts and hence the
neural network becomes drastically slow in learning.

The most popular activation function for hidden layers is the Rectified
Linear Unit (ReLU) (Goodfellow et al., 2016, chapter 6). The ReLU
function, shown in Figure 3.4, gives an output x if x is positive and 0
otherwise. It can be defined as:

A(x) = max(0, x) (3.2)

The benefits of this function are the following:

• It is easier computationally - There is no calculation of exponent in
this function.

CHAPTER 3. THEORETICAL BACKGROUND 29

y

x

Figure 3.4: ReLu activation function (Cooper, 2018).

• It makes the network lighter - Because negative and zero inputs
produce zero output, there are less activated neurons in the network
creating a sparse representation, which is a property that makes the
neural network more efficient.

• The linear part of the function solves the problem of the vanishing
gradients(a problem encountered when using other functions like
the sigmoid) - The y values change proportionally with the x values
not hindering the learning process.

However, the range of ReLU is [0, inf], meaning the activation of the
neurons is not bound to a certain limit. Also, for negative values there
will be no activation of the neurons, thus the network will be partially
passive in learning. This issue can be resolved by using variations of
the ReLU by simply making the horizontal line into a non-horizontal
component.

In each of the layers of a neural network, neurons accept an input,
process it linearly by calculating the weighted sum and based on this
sum, they "decide" whether to pass the information further or not (they
get activated or not). If they get activated, the information is passed to
the activation function and the result value is fed as input to the neurons

CHAPTER 3. THEORETICAL BACKGROUND 30

of the next layer. This process happens in the forward direction meaning
the input data are fed to the input layer, passing through each successive
layer until they reach the final layer of the neural network. This process
is called forward propagation.

Figure 3.5: Neural network with two hidden layers.

After inputs have gone through a neural network one time, the out-
put is unlikely to be accurate. The output is used to estimate the net-
work’s prediction error with a loss function. The loss function is used to
calculate the error between the predicted values and the actual values
(Goodfellow et al., 2016, chapter 6). For classification learning models,
where the aim is to map the input variables to a class label, the model
predicts the probability of an example belonging to each class. The loss
function measures how much the predicted probability diverges from the
actual label. This type of loss function is called cross-entropy loss.

In order to produce an accurate output, the model has to operate in
a backward way, from the output layer to the hidden layers, to adjust
its learning parameters, i.e. the weights (w) and bias (b), in a way
that the error will be decreased. The model uses an algorithm, called
backpropagation, to calculate the gradient of each learning parameter,
working backward, propagating the error in the predicted output. Then,
an optimization algorithm, called gradient descent, uses the gradient of

CHAPTER 3. THEORETICAL BACKGROUND 31

each parameter to update w and b in a way that the loss function L(w, b)
will be minimized (Goodfellow et al., 2016, chapter 6). This process of
updating the weights/bias between the neurons is done iteratively until
the desired output is achieved. The direction and magnitude by which
the learning parameters are updated is called the error gradient and
it is estimated with the loss function. Figure 3.6 depicts the gradient
descent’s work of finding the local minimum of the loss function L(w, b)
in order to increase the accuracy of the model. The variable θ is the
model parameter and ξ is the optimal value of the model parameter
(Chen et al., 2020).

Figure 3.6: Schematic representation of the gradient descent operation (Chen et al.,
2020).

The step size the algorithm takes into the direction of the local mini-
mum is controlled by the learning rate of the model. The learning rate is
a hyperparameter that refers to how much the parameters are changed
on each iteration. Equation 3.3 describes what the gradient descent does:
the gradient ∇f(θ) is multiplied by the learning rate, α, and the product
is subtracted from the current parameter in order to find the next θ.

θnew = θ − α · ∇f(θ) (3.3)

CHAPTER 3. THEORETICAL BACKGROUND 32

For gradient descent to reach the local minimum the learning rate must
be set to an appropriate value. If the value is too big the algorithm will
never reach the optimum and if it is too small it will take too much time
to achieve the desired value.

The main components of a neural network learning pipeline is depicted
in the following scheme. For classification tasks, the input data that is
used to train the network are features and true labels for each feature.
The model predicts for each data example what its label should be.
The output is used to estimate the error based on the true labels of
the training data. The optimizer based on the information of the loss
function adjusts the parameters of the network in the right direction.

Figure 3.7: Neural network learning pipeline.

Neural networks are parametric models meaning they are described
by configuration variables representing the model’s knowledge. These
parameters can be adjusted using the training data. Then, the perfor-
mance of the model will be evaluated using hold-out test data the model
has not seen during training. While the model parameters are the ones
that the model uses to make predictions, there are also parameters called
hyperparameters that determine the learning process. Hyperparameters
are not estimated from the data and they are set and modified man-

CHAPTER 3. THEORETICAL BACKGROUND 33

ually in order to help estimate the model’s parameters. Some of the
hyperparameters a deep learning model has are the:

• Learning rate: refers to how much the parameters are changed on
each iteration.

• Batch size: determines how many training samples are used before
updating the network’s parameters.

• Number of epochs : the number of times the whole training data is
used by the network while training.

• Number of hidden layers : the number of the network’s intermediate
layers.

• Optimizer : the algorithm that based on the training data adjusts
the parameters of the network.

Hyperparameters are set before training and they are tuned after
training using a held-out dataset called validation test. Using the train-
ing dataset to determine the hyperparameters might lead to overfitting
to the training data. Overfitting means that the model learns patterns
specific to the training data that would not apply to new data.

Almost any deep learning project will have the pipeline shown in the
figure below. Data is split into a:

• training set to train the model by updating the parameters (weights
and bias) of the neural network,

• validation set to evaluate the model’s training. It is a biased eval-
uation because the model is modified based on its performance on
this set,

• test set for an unbiased evaluation of the model.

CHAPTER 3. THEORETICAL BACKGROUND 34

Figure 3.8: Deep learning model workflow.

3.4 Convolutional Neural Networks

Just like any machine learning method, a neural network learns how
to perform tasks by processing data and adjusting its model to best
predict the desired outcome. Neural networks are very effective for high-
dimensionality problems and they are able to model complex relation-
ships between variables. They are often used for image classification and
object detection because they seek to find the complex patterns neces-
sary to map an image or object to its label. To implement a classification
task, deep neural networks involve layers designed to process image data
by focusing on local relationships between features. These layers, called
convolutional layers, scale down the input images into meaningful fea-
tures while using only a fraction of the parameters required in a linear
layer. The neural networks that use these types of layers are very simi-
lar to ordinary neural networks and they are called convolutional neural
networks.

CHAPTER 3. THEORETICAL BACKGROUND 35

3.4.1 Convolution

In deep learning models, convolutional neural networks, or CNNs, are
specifically designed for processing data that has a known grid-like topol-
ogy, like image data (Goodfellow et al., 2016, chapter 9). The role of the
CNN is to transform the images into a shape that facilitates processing
without losing information, which is important for an accurate predic-
tion. This is critical to designing a model that is not only good at
learning, but can also scale to huge datasets.

CNNs use a mathematical linear operation called convolution in at
least one of their layers, instead of traditional matrix multiplication
(Goodfellow et al., 2016, chapter 9). A 2-D convolution is mathemati-
cally represented as:

g(i, j) =
∞∑

m=−∞

∞∑
n=−∞

h[m,n] · f [i−m, j − n] (3.4)

Since convolution is typically denoted with an asterisk, the formula can
be simply written as:

g(x, y) = h(m,n) ∗ f(x, y) (3.5)

where h(m,n) is the input image matrix, f(x, y) it the kernel, or filter,
which is a tensor containing parameters/weights that are adapted by the
learning algorithm, and g(x, y) is the output, which is often referred to
as the feature map.

Convolution is equivalent to flipping the kernel in both dimensions,
horizontally and vertically, and applying cross-correlation, also known as
sliding inner-product. Conceptually, this means that the flipped kernel
"slides" onto the image matrix and the new pixel values are estimated by
the inner product of the overlapping pixel values with their corresponding
filter weights.

There are plenty of machine learning libraries that implement cross-
correlation, without kernel inversion and call it convolution. For symmet-
ric kernels, convolution and cross-correlation result in the same output.

CHAPTER 3. THEORETICAL BACKGROUND 36

Figure 3.9: Image processing convolution (Traore et al., 2018).

The mathematical formulation of 2-D cross-correlation is given by:

g(i, j) =
∞∑

m=−∞

∞∑
n=−∞

h[m,n] · f [i+m, j + n] (3.6)

more simply represented as,

g(x, y) = h(m,n)⊗ f(x, y) (3.7)

In convolutional networks, the kernel matrix is typically smaller than
the input in order to be able to detect small, meaningful features such
as edges. On one hand, a set of smaller weight tensors (kernels) means
less parameters to store, which reduces the memory requirements of the
model and improves its statistical efficiency (Goodfellow et al., 2016,
chapter 9). On the other hand, a small tensor results in fewer operations
when computing the output.

The systematic application of the same kernel across an image is the
innovation of convolutional neural networks. The kernel can detect spe-
cific features in the input image, depending on its design. Therefore, its
systematic application across the entire input can enable the detection
of those features anywhere in the image.

3.4.2 Architecture

There are various architectures of convolutional neural networks avail-
able which follow similar design principles. These architectures are key in

CHAPTER 3. THEORETICAL BACKGROUND 37

building algorithms which machine learning practitioners will then adapt
to solve various computer vision tasks. Some classic network architec-
tures are, namely, the AlexNet (Krizhevsky et al., 2012), VGGNet (Si-
monyan and Zisserman, 2015), Inception or GoogLeNet (Szegedy et al.,
2015), ResNet (He et al., 2016). These deep learning networks are often
used as feature extractors for the object detection task.

Convolutional layer

Convolution takes place in the convolutional layers of the CNN. The con-
volutional layer is always the first hidden layer of a CNN and contains a
set of units/neurons. Also, these layers contain a predefined number of
filters/kernels with a predefined size. The weight values within the ker-
nels are the learnable parameters during the training phase of a CNN.
They are randomly initialized and then they are learned via backpropa-
gation.

Each neuron of the convolutional layer is exposed to a defined region
of the input data, called the local receptive field, rather than the whole
input (Chen et al., 2014). This receptive field has the size of the defined
kernel within the layer. Therefore, the size of the kernel indicates the ex-
tent of input data each neuron is exposed to. Each neuron is responsible
for extracting features of the input that are in the receptive field which
may contain patterns such as lines and edges or small details that make
up the image. The exposure of a neuron to a defined region of the input
instead of the whole input makes the convolutional neural network more
computationally efficient since it processes fewer parameters and hence
computes the output with fewer operations.

The hyperparameters for a convolutional layer are the:

• Number and size of the kernels applied in the input data.

• Stride: determines how much the kernel is moved each time it is
applied.

CHAPTER 3. THEORETICAL BACKGROUND 38

• Padding : defines what is done once the kernel gets to the end of
a row/column of the input matrix. The default option is to stop
when the kernel moves off the image. That is referred to as valid
padding. Another option is to pad the input by surrounding it with
zeros. This option is called same padding.

Figure 3.10 depicts on the left side a 227×227 input image and the
convolutional layer’s receptive field of 5×5. Each neuron of the convo-
lutional layer is connected to 5×5, which is 25, weights. The output
dimension of the convolutional layer has a depth component which cor-
responds to the number of feature maps that are created. The number
of feature maps are determined by the number of kernels used in the
convolutional layer, which is 56 in the example below.

Input image

Convolutional layer

Figure 3.10: Illustration of a convolutional layer and its local receptive field.

The convolutional layer’s width dimension is estimated by Equation
3.8:

layer_width =
W − w + 2 · padding

stride
+ 1 (3.8)

where W is the image width, w is the kernel width, and 1 unit represent-
ing the bias. The convolutional layer height dimension can be calculated
by substituting the width in equation 3.8 with the height dimension of
the input image and the kernel.

CHAPTER 3. THEORETICAL BACKGROUND 39

A feature map is the output of a kernel convolving the input matrix
(with a stride of 2 and valid padding in the example). So the neurons
of the feature map are connected with the same weights. That means
that the network learns one set of parameters per feature map. Thus,
the number of trainable weights of the convolutional layer is defined
by the number of feature maps or kernels multiplied by the number of
weights each kernel has (plus the bias). In the example above it will
be 56×(5×5+1) or 1,456 trainable parameters. Learning only one set of
parameters per feature map is a powerful characteristic of CNN. It is re-
ferred to as parameter or weight sharing because the neurons of a feature
map are sharing the same weights. One advantage of this is that the neu-
rons of a feature map are trained to detect the same features on the input
image. If the features detected are vertical lines, then the feature map
will contain only the vertical lines of the input image. Another advan-
tage of parameter sharing is the drastic reduction of the layers’ trainable
parameters. If the neurons of a feature map did not share weights then
the number of the trainable parameters of the convolutional layer would
be the number of layer’s neurons multiplied by the size of the kernel. In
the example above it would be (217×217×56)×(5×5+1) or 68,561,584
parameters.

In addition to convolution, the values of a feature map are passed
through a nonlinear function, such as a ReLU, to increase the non-
linearity of the output and hence its accuracy.

Pooling layer

CNNs often have pooling layers in order to reduce the dimensionality
of the output of a convolutional layer (Goodfellow et al., 2016, chapter
9). The most popular type of pooling layer is called max pooling. It
operates like a convolutional layer, meaning kernels of specified size are
moved across the height and the width of an input image to generate
new images (feature maps). However, max pooling returns the maximum
value from the portion of the image covered by the kernel.

CHAPTER 3. THEORETICAL BACKGROUND 40

Y

X

single depth slice

Figure 3.11: Max pooling process (Traore et al., 2018).

Since a pooling layer decreases the spatial dimensions of the preceding
convolutional output, and thus the number of pixels in the feature maps,
it speeds up the computational operations of the network. This charac-
teristic of the network down-sampling the feature maps of the previous
convolutional layer is referred to as spatial sub-sampling.

Another reason for the application of a pooling layer is the sensitivity
the convolutional outputs have to the position of a feature in the input.
This means that minor changes in the location of a feature in the input
image will result in a different feature map. Small changes of a feature’s
position can occur through rotation or by cropping the input image.
By down-sampling the feature maps, the objects detected in the input
image will have the same location in the output even if they are slightly
moved. This results from the pooling layer’s capability of summarizing
the presence of features in patches of the feature map. This characteristic
of the pooling layer adds the model an amount of invariance to local
translation and makes the extraction of features more robust.

CHAPTER 3. THEORETICAL BACKGROUND 41

Input image

Convolutional layer

Pooling layer

Figure 3.12: Illustration of a convolutional layer and a pooling layer.

Figure 3.12 is an extension of the previous one that includes a pooling
layer. The kernel of this layer has a size 2×2 and moves with a stride of
2 across the height and the width dimension of the convolutional output.
That results in a pooled output with half dimensions.

Compared to the convolutional layer, the pooling layer has no learn-
able parameters. There are no activations occurring in this layer, only
spatial sub-sampling. Essentially, the pooling method is a fixed function
meant to highlight the features in the previous output.

Stacking a pooling layer over a convolutional layer can be repeated
one or more times when designing a CNN. This allows a hierarchical
decomposition of the input. The first convolutional outputs will extract
low-level features such as lines and edges of the input image. The next
convolutional outputs will extract more complex features and the very
deep layers will extract whole shapes, like faces or houses. The reason
relies on the fact that the receptive field of the neurons of a deeper
layer will encompass more information compared to the neurons of the
previous layer because of the spatial down-sampling of the feature maps
resulting in summarized versions of the input.

CHAPTER 3. THEORETICAL BACKGROUND 42

Fully-connected layer

After passing the input image through the convolutional layers, the
model is enabled to understand the image features. For classification
purposes, the final product of the convolutional layers has to be passed
through a regular neural network to output predictions. In order for the
output matrix to be passed as input to a regular hidden layer, it has
to be flattened. That means, it is converted into a 1-dimensional array
or vector. This vector is given as input to a fully-connected layer. The
neurons of this layer are fully-connected to all the values of this vector.

The output can be computed by multiplying the vector values with
the weights of each neuron adding the corresponding bias. Then, the
weighted sum is passed through an activation function to increase the
output accuracy. Usually, at the last fully-connected layer, the activation
function that is applied is the softmax. Softmax function is similar to
the sigmoid function, but it is used for multi-classification, whereas the
sigmoid is used for binary classification (Nwankpa et al., 2018). The
output of the model is a vector containing as many probabilities as the
total number of class labels. The class label with the highest probability
is the final class label.

3.5 Object detection algorithms

Apart from image classification, convolutional neural networks are widely
used for object detection tasks. A CNN will take an image as input and
divide it into various regions. Each region will be considered as a separate
image and it will be passed to the CNN to be classified. Then, all the
regions will be combined to form the original image that will now contain
the classified objects. However, since the objects in an image can have
different size and shapes, the CNN may need to divide the image into
a massive number of regions, spending a huge amount of computational
time. Research scientists optimized the object detection process and
reduced the number of regions by creating a region-based CNN whose

CHAPTER 3. THEORETICAL BACKGROUND 43

operation is summarized below.

3.5.1 Region-based Convolutional Neural Networks

The region-based algorithm, called R-CNN, involves three phases. In the
first phase, it selects the regions of an image using a proposal method.
It suggests a number of regions in the image based on a selective search
algorithm and checks if any of these regions contain an object (Girshick
et al., 2014).

The selective search algorithm divides an image into multiple regions
and combines similar regions, based on size, color, and texture similarity,
as well as shape compatibility, to form bigger regions (Uijlings et al.,
2013). These regions are the region proposals, or as they called Regions
of Interest (RoI), that the model will use for object detection, and are
hand-labeled with a class and a ground-truth bounding box. A ground-
truth bounding box is the (x,y) coordinates of an object in the image.

The second phase of the R-CNN involves the use of a deep convolu-
tional neural network, often called backbone, as a feature extractor. The
backbone network is pre-trained on a large auxiliary dataset. The last
layer of the network is retrained based on the number of classes that need
to be detected. Before entering the backbone network, the Regions of
Interest are reshaped to match the required size of the network’s input.
Then, each of them is passed through the CNN for feature extraction.

The last phase of the R-CNN is classification. The extracted features
and labeled class of each RoI are used to train SVMs (Support Vector
Machines). A SVM is a machine learning algorithm that implements
binary classification. For each class, one SVM is trained. Each SVM
determines whether a RoI contains a specific class. Furthermore, a linear
regression model, called bounding box regressor, is trained, by using
the extracted features and the ground-truth bounding box of each RoI,
to predict the bounding box for each identified object in the RoI. The
architecture of the R-CNN model is summarized in Figure 3.13.

Unfortunately, the R-CNN model is slow in processing because it

CHAPTER 3. THEORETICAL BACKGROUND 44

Figure 3.13: R-CNN workflow overview (Girshick et al., 2014).

divides an image into a large number of region proposals, hence it will
need a lot of CNN forward propagations to perform object detection.
Therefore, its architecture needed optimization.

Girshick Ross (2015) proposed an updated version of the R-CNN
model and called it the Fast R-CNN. The main improvement in this
model is that the pre-trained CNN feature extractor will be used in the
entire input image. Then, the selective search algorithm will use the out-
put feature maps to extract the region proposals. Each of these regions
are inserted to a custom layer called region of interest pooling layer. This
layer down-samples each region into a specified fixed-size feature map,
regardless of the region’s shape. Thus, it can extract features of the same
shape even when region proposals have different shapes.

Since the output feature maps have the same shape, they can pass
through fully-connected layers (FCs) which transform them into feature
vectors. Each feature vector output bifurcates into two outputs. One
output, produced by a softmax layer, is the class prediction. The other
output, produced by a bounding box regressor, is the bounding box
prediction. The workflow of the Fast R-CNN is depicted Figure 3.14.

CHAPTER 3. THEORETICAL BACKGROUND 45

Figure 3.14: Fast R-CNN architecture summary (Girshick, 2015).

To increase accuracy in object detection, the Fast R-CNN model has
to generate a lot of region proposals with the selective search algorithm.
To maintain a good accuracy without generating too many regions, the
model architecture had to be further improved.

The optimization of the model came with the replacement of the se-
lective search algorithm by a Region Proposal Network (RPN). The RPN
takes the output of the pre-trained convolutional neural network (back-
bone) and outputs a set of rectangular objects proposals. More specif-
ically, the RPN slides a n×n spatial window over each output feature
map and, at each sliding-window location, it generates k number of re-
gion proposals of different predefined shapes and sizes, called anchors.
For each anchor, the RPN computes the probability that an anchor is
an object, referred to as the objectness score, and predicts its bounding
box (Ren et al., 2017).

The rest of the model remains the same. The anchors are passed
through a RoI pooling layer to be transformed into the same size. Then,
they enter a fully-connected network with a softmax layer and a bounding
box regression layer to extract the class label and the bounding box of
each object. Figure 3.15 depicts the model’s workflow.

CHAPTER 3. THEORETICAL BACKGROUND 46

Figure 3.15: Faster R-CNN model architecture (Ren et al., 2017).

Faster R-CNN model architecture has the advantage that the RPN
can be jointly trained with the rest of the model. Therefore, the param-
eters in the feature extractor CNN can be fine-tuned to:

• generate high-quality region proposals from the RPN, and

• maintain a good accuracy in the prediction of class and bounding
box coordinates from the FCs,

at the same time.
The model’s ability to recognize objects in an image was further ex-

tended to locate the exact pixels of an object instead of just its bounding
box coordinates. Thus, the extended model would return three things
for each object in an image:

1. its class label,

2. its bounding box coordinates, and

CHAPTER 3. THEORETICAL BACKGROUND 47

3. its segmentation mask.

The segmentation mask is a pixel-wise mask of an object that reveals the
object’s exact location in an image. Because of the additional feature
of creating pixel-wise masks for the objects in an image, the model was
called Mask R-CNN (He et al., 2017).

Compared to the structure of the Faster R-CNN model, in the struc-
ture of the Mask R-CNN the RoI pooling layer was replaced with a layer,
called RoI alignment layer (RoIAlign). The reason behind this replace-
ment is that the regions of a feature map selected by the RoI pooling
layer were slightly misaligned from the regions of the original image.
Although this small misalignment does not pose a problem when pre-
dicting bounding boxes, pixel-level segmentation requires pixel-to-pixel
alignment between network inputs and outputs. The RoIAlign preserves
the spatial information on the feature maps and achieves the desired
alignment by using bilinear interpolation. Similar to the RoI pooling
layer, the RoIAlign produces feature maps of the same shape for all re-
gion proposals.

The Mask R-CNN model architecture includes the integration of a
fully convolutional neural network (Long et al., 2014) in the Faster R-
CNN structure. This network takes as input a RoI feature map and
outputs a binary mask of the feature map’s object. The binary mask
shows whether or not a given pixel of a region proposal is part of the
object that it contains.

Figure 3.16 depicts the workflow of the Mask R-CNN model. Each
anchor, produced by the RPN, is passed through the RoIAlign to be
converted into a fixed-size feature map. It is then transferred to the FC
layer branch for class and bounding box prediction and, in parallel, it
gets into a fully convolutional network for binary mask prediction.

CHAPTER 3. THEORETICAL BACKGROUND 48

Figure 3.16: Mask R-CNN model’s instance segmentation branch (He et al., 2017).

The Mask R-CNN model is developed to implement simultaneous de-
tection and segmentation. This task is commonly referred to as instance
segmentation - the recognition of the pixel-level regions of each object
instance in an image. In the present study, instance segmentation is
one of the tasks that have to be put into effect in order to achieve the
objectives stated in the next section.

3.6 Evaluation metrics

After creating an algorithm capable of making predictions, one has to
evaluate its predictive power. Whether the task is object detection or
instance segmentation, there are commonly used statistics that indicate
the effectiveness of an algorithm.

3.6.1 Precision, recall, and F1 score

Precision, also known as positive predictive value, measures the per-
centage of the predictions that are correct, i.e. the proportion of true
positives:

Precision =
TP

TP + FP
(3.9)

CHAPTER 3. THEORETICAL BACKGROUND 49

where TP is the number of true positive predictions, and FP is the
number of false positive predictions (Ting, 2011).

Recall, also known as sensitivity, measures how well the model finds
correct predictions, or in other words, finds the proportion of true posi-
tives out of all predictions that are and should be positive:

Recall =
TP

TP + FN
(3.10)

where FN is the number of false negative predictions (Ting, 2011).
Precision and recall values are between 0 and 1. When precision is

high, the model is more confident when it classifies a sample as positive.
When recall is high, the model is more confident that it classifies samples
correctly as positive.

However, precision and recall cannot be both high because they are
on opposite ends of a scale. When precision is high and recall is low, the
model correctly gives a label to an object, but it fails to find many objects
with the same label resulting in having many false negatives. When
precision is low and recall is high, the model finds every true positive
sample, but it also classifies many samples incorrectly as positive.

For every algorithm, it has to be decided whether it is more important
to avoid false positives or false negatives. If it is more important to avoid
false positives, the model is set to focus on having higher precision than
recall. If it is more important for the model to predict correctly the true
positives, it should achieve a higher recall. Deciding the best values for
precision and recall can be a complex process. Researchers calculate a
metric, called the F1 score, to find a balance between precision and recall
where both of them will be as high as possible.

F1 score is defined as the harmonic mean of precision and recall and
is estimated according to Equation 3.11:

F1 = 2 · Precision ·Recall

Precision+Recall
(3.11)

A high F1 score indicates that both precision and recall are high, whereas
a low F1 score signifies imbalance between the two metrics.

CHAPTER 3. THEORETICAL BACKGROUND 50

3.6.2 Intersection over union

Precision and recall is calculated to evaluate how often the algorithm
predicted the bounding boxes and class labels correctly and if it pre-
dicted them correctly every time. To measure precision and recall for a
bounding box prediction in terms of its class label is easy. To determine
precision and recall based on whether the predicted bounding box sur-
rounds sufficiently an object as the annotated one (ground truth) does,
an additional metric is needed. This metric is the intersection over union
(IoU) (Rezatofighi et al., 2019).

The intersection over union is a metric commonly used to evaluate any
algorithm that outputs predicted bounding boxes. The IoU, also known
as the Jaccard index, is a statistic used for comparing the similarity
between two arbitrary shapes and is given by Equation 3.12:

IoU =
|A ∩B|
|A ∪B| (3.12)

The IoU values are in the range of [0,1], the numerator denotes the
area of overlap between shape A and shape B, and the denominator
signifies the area of union between shape A and shape B. The IoU is very
popular among object detection models because it is a scale invariant
statistic. It encodes the shape properties of the predicted bounding boxes
and the ground truth bounding boxes into the region property and then
calculates a normalized measure focused on their areas (Rezatofighi et al.,
2019).

If the IoU is above a certain threshold for a detection of a certain
class, the detection is classified as true positive, otherwise it is classified
as false positive. Each threshold may give different predictions from
other thresholds. Usually, the predefined threshold is set to 0.5, but
depending on the problem and dataset, a researcher might set a higher
threshold that seems to be more reasonable.

For segmentation evaluation, the intersection over union, often called
mask-to-mask IoU, measures the number of pixels common between the

CHAPTER 3. THEORETICAL BACKGROUND 51

annotated masks (ground-truth) and the prediction masks divided by
the total number of pixels present across both masks. The intersection
over union for a segmentation task is illustrated in Figure 3.17.

IoU =
Intersection

Union

Figure 3.17: The ground-truth and the predicted segmentation mask of a flower used
to compute the intersection over union metric (Goëau et al., 2020).

As with object detection IoU, a mask-to-mask IoU value is compared
to an IoU threshold to determine whether a segmentation mask predic-
tion is considered a true positive.

3.6.3 Confidence score

Object detection models make predictions in terms of bounding boxes
and class labels. The output of these models include:

• class probabilities - conditional class probabilities of a detected ob-
ject belonging to a particular class:

conditional class probability = P (classi|object) (3.13)

• bounding box coordinates - each bounding box include the (x,y) co-
ordinates of its top left corner, its width and height dimensions, and

CHAPTER 3. THEORETICAL BACKGROUND 52

a confidence score representing the probability of the box containing
an object given by:

box confidence score = P (object)× IoU (3.14)

If there is not an object in the bounding box, the confidence score
should be equal to zero. Otherwise, it should be equal to the inter-
section over union between the predicted box and the ground-truth.

At test time, the conditional class probabilities are multiplied with the
box confidence score to acquire a class-specific confidence score (Redmon
et al., 2015). This score measures the confidence on both classification
and localization of the object in the image for each predicted bounding
box. Thus, it is given by:

class confidence score = P (classi|object)× P (object)× IoU

= P (classi)× IoU
(3.15)

A prediction is considered a true positive (TP) if it satisfies two condi-
tions:

• the predicted class matches the actual class (ground-truth label),
and

• the IoU between the predicted bounding box and the ground-truth
is greater than the IoU threshold.

When one of the two conditions is not met, the prediction is con-
sidered a false positive (FP). The PASCAL VOC detection challenge
includes an additional condition to define true and false positives. For
multiple detections of the same object, only the detection with the high-
est confidence score is counted as a true positive, while the rest of them
are counted as false positives.

If the object detector fails to find an existing object in an image, it
means that it made a false negative (FN) prediction. When computing
the recall, there is no need to count the false negatives because the sum

CHAPTER 3. THEORETICAL BACKGROUND 53

of true positives and false negatives equals the total ground-truths (the
number of objects supposed to be detected). If the detector correctly
predicts that an object does not exist in an image, it means that it
made a true negative (TN) prediction. Nevertheless, in object detection
tasks, evaluation metrics that include true negative detections are not
considered since there is no point to count all possible bounding boxes
that should not be detected in an image.

3.6.4 Average precision

An object detection algorithm can be evaluated using multiple IoU thresh-
olds, instead of considering only one. For each threshold value, the de-
tections are characterized as true positives and false positives and they
are ordered based on their class confidence score in a descending order.
Then, the precision-recall values are calculated based on the accumulated
true positives and false positives values. These precision-recall values are
used to create a curve known as the precision-recall curve.

Recall

P
re

ci
si

on

Figure 3.18: The precision-recall curve. The red dot represents the point where both
precision and recall are high.

As shown in Figure 3.18, precision decreases when recall increases.

CHAPTER 3. THEORETICAL BACKGROUND 54

This happens because when the model predicts multiple positive samples,
the probability of accumulating false positives increases leading to lower
precision. The red dot represents the optimal precision-recall pair. This
finding can be confirmed by calculating the F1 score for each precision-
recall pair. The highest F1 score corresponds to the optimal precision-
recall datapoint, where both precision and recall are high.

To summarize the precision-recall curve, researchers used a single met-
ric that represents the average of all precisions. This metric is called the
average precision (AP) and it is equal to the area under the precision-
recall curve:

AP =

∫ 1

0

P (R) dR (3.16)

The average precision values fall in the range of [0,1] because precision
and recall values fall within this range. This metric is computed by draw-
ing a precision-recall curve for one or multiple values of IoU threshold.
The integral is approximated by the weighted sum of precisions, at each
IoU threshold, where the increase in recall is used as the weight. It is
given by Equation 3.17:

APIoU =
∑
n

(Rn+1 −Rn) P (Rn+1) (3.17)

For each object class, the average precision, computed with Equation
3.17, is averaged over all IoU thresholds (if there are more than one):

mAPclass =
1

N
·

N∑
i=0

APi (3.18)

with N being the total number of IoU thresholds. This is referred to as
the mean average precision (mAP) of a specific class. To measure the
accuracy of an object detection algorithm over all classes, researchers
take the mean of the average precisions, as estimated by:

mAP =
1

N
·

N∑
i=0

mAPi (3.19)

CHAPTER 3. THEORETICAL BACKGROUND 55

where N is the total number of class labels.
The exact calculation of average precision varies between different

detection challenges. For the 2007 PASCAL VOC object detection chal-
lenge, AP was computed through an 11-point interpolation, using one
IoU threshold which was 0.5 (Padilla et al., 2020). The recall value for
this IoU threshold was divided to 11 equally spaced recall levels (R) in
the range of [0,1], and the average precision was the average of maximum
precision value for these 11 points, as given by:

AP11 =
1

11
·

∑
R∈{0.0,0.1,..1.0}

Pinterp(R) (3.20)

where,
Pinterp(R) = max

R̃≥R
P (R̃) (3.21)

The PASCAL VOC challenge has 20 different classes, and for each
class the average precision was calculated using Equation 3.20. Then,
the mean of these average precisions (mAP) was computed over the 20
classes. The reason behind this interpolation method was to reduce
the impact of the "wiggles" in the precision-recall curve because the
curve has often a zigzag-like pattern posing challenges to an accurate
measurement of the AP. Therefore, researchers used this method in order
for the precision to decrease monotonically. However, the method of 11-
point interpolation using was not very precise and it could not measure
differences with models having low average precision.

Later visual recognition competitions, such as PASCAL VOC 2010-
2012 and Open Images challenge (Google Research, 2019), measure the
average precision as the area under the precision-recall curve for an IoU
threshold of 0.5. The method of estimating the average precision is
referred to as the all-point interpolation and is given by:

APall =
∑
n

(Rn+1 −Rn) Pinterp(Rn+1) (3.22)

where,
Pinterp(Rn+1) = max

R̃≥Rn+1

P (R̃) (3.23)

CHAPTER 3. THEORETICAL BACKGROUND 56

This method samples precision at every recall level, taking the maximum
precision whose recall is greater or equal than Rn+1.

Recall

P
re

ci
si

on

Precision
Interpolated precision

Figure 3.19: Difference between the actual precision-recall curve and the interpolated
curve (Padilla et al., 2020).

As depicted in Figure 3.19, all-point interpolation method approxi-
mates the area under curve and computes the average precision as the
sum of the rectangular blocks.

In PASCAL VOC competition, if there are five detections of a single
object, only one with the highest IoU is counted as correct detection and
the rest four are false detections. In Google’s Open Images competition,
the object classes are organized in a semantic hierarchy, meaning an ob-
ject can belong to a general category and a subcategory. Thus, both the
category and the subcategory of a given detection should be reported. If
only the subcategory label is correctly produced for an object detection,
the detection is counted as true positive but the undetected category
label will be counted as a false negative.

In Google’s Open Images challenge, the mean average precision is
estimated, not only for the object detection task, but also, for instance
segmentation using a mask-to-mask IoU threshold of 0.5 across the 300

CHAPTER 3. THEORETICAL BACKGROUND 57

classes of its dataset. As in the object detection case, the mean average
precision needs to handle the semantic hierarchy of the object classes.

The Microsoft’s COCO challenge (Lin et al., 2015) uses an 101-point
interpolated precision to estimate average precision for object detection
and instance segmentation. The precision is interpolated at 101 recall
levels (i.e., 0.0, 0.01, 0.02,1.0) and the average precision is computed
for:

• a single IoU threshold of 0.5,

• a single IoU threshold of 0.75, and

• multiple thresholds starting with a minimum of 0.5 and reaching
the maximum of 0.95 with a step size of 0.05. This method of
computing average precision is denoted as AP@[.50:.05:.95].

Average precision for 10 IoU thresholds is calculated because it rewards
detectors with better localization. The final average precision is calcu-
lated over 80 categories, but it is still referred to as average precision
(AP) instead of mean average precision (mAP).

3.6.5 Average recall

For the COCO challenge, except for the average precision, there are other
evaluation metrics for the object detection or segmentation task. One
of them is the average recall (AR), which summarizes the distribution
of recall across a range of IoU thresholds. According to Hosang et al.
(2016) this metric is equal to twice the area under the recall-IoU curve
between 0.5 and 1, given by:

AR = 2 ·
∫ 1

0.5

R(IoU) dIoU (3.24)

The average recall estimated for the COCO dataset, corresponds to the
maximum recall given a fixed number of detections per image (1, 10,
or 100) averaged over all IoUs and over all classes similarly to average

CHAPTER 3. THEORETICAL BACKGROUND 58

precision (Padilla et al., 2020). The average recall for 1 detection per
image is denoted as ARmax=1, for 10 detections per image as ARmax=10,
and for 100 detections per image as ARmax=100.

3.6.6 Average precision and recall across scales

Additional metrics have been defined for the COCO challenge, like the
average precision across scales and the average recall across scales. These
metrics are used for evaluating detections based on the object size. More
specifically, they are determined for:

• small objects with an area less than 322 pixels,

• medium objects with an area between 322 and 962 pixels, and

• large objects with an area greater than 962 pixels.

The calculation of these statistics will give an idea of the model’s ability
to detect well either small or large object or objects of varying sizes.

3.6.7 Average segmentation accuracy

The PASCAL VOC 2012 challenge judges segmentation tasks by aver-
age segmentation accuracy computed across the twenty classes and the
background class. Segmentation accuracy is the per-pixel accuracy cal-
culated for a certain mask-to-mask IoU threshold. It is defined as the
percentage of correctly predicted pixels out of all predictions, and it is
calculated for each class as follows:

segmentation accuracy =
TP

TP + FP + FN
(3.25)

Then, this metric is averaged across the classes (including the background
class) to obtain the overall segmentation accuracy.

When calculating an accuracy metric to evaluate a segmentation or
object detection task, it should be noted that the class distribution has
to be uniform in a dataset. The number of instances for each class has

CHAPTER 3. THEORETICAL BACKGROUND 59

to be the same in all the other classes. Otherwise, this statistic can be
very misleading because it will not represent equally the performance of
the model across all classes.

Chapter 4

Methodology

4.1 Introduction

The experimental work involved data collection and pre-processing, data
inspection, object detection algorithm training and inference, and evalu-
ation of the results. The study goal was to experiment on litter detection
using a deep learning object detection algorithm trained on aerial image
data, and on regular image data collected in the field. Processing of
aerial imagery was selected because it provides smaller spatial resolution
than regular images. Thus, the task of the algorithm was to detect rela-
tively small sized litter objects in the images compared to regular litter
image data. Another reason of using aerial imagery is that there is a lot
of recent research, mentioned on the preceding chapter, that processes
images obtained from a UAV for litter detection. The regular image
dataset was used for training an object detection algorithm to localize
and classify litter by type and by material - something that is difficult
to happen on aerial imagery due to the small size of objects. Before dis-
cussing data collection and data processing configurations, this chapter
begins with a detailed analysis of the algorithm architecture applied to
the data.

60

CHAPTER 4. METHODOLOGY 61

4.2 Algorithm architecture

In addition to locating and classifying litter in image data, this research
also aimed to perform instance segmentation. In other words, it aimed
to differentiate objects in image data by providing masks in pixel level
of each litter item in an image along with an object bounding box and
a class label. For that reason, the algorithm selected to solve this task
was the Mask R-CNN (He et al., 2017). This algorithm structure and
internal workings were briefly explained in chapter 3, but here follows an
even more detailed explanation.

4.2.1 Feature Pyramid Network

The Mask R-CNN algorithm is characterized as a two-stage object detec-
tor and both stages are connected to the backbone structure depicted in
Figure 4.1. The backbone structure, called the Feature Pyramid Network
(FPN), is proposed by Lin et al. (2017) as a high efficient architecture for
the object detection task. It involves a bottom-up pathway, a top-down
pathway and lateral connections.

The bottom-up pathway is the backbone convolutional neural net-
work that extracts the features from the input image. The backbone
neural network used in this project is a Residual Network with 101 lay-
ers (ResNet101), introduced by He et al. (2016). It outputs feature
maps at several scales with a scaling step of 2. This results in hav-
ing levels of feature maps in a pyramidal shape as shown in Figure 4.1.
Each pyramid level is represented by the last feature map of each of the
network’s stages. ResNet101 architecture has 4 stages of convolutional
layers, therefore the output of the last layer of each stage is used as
the reference set of feature maps. The reference set of feature maps is
called {C2, C3, C4, C5}, named from the convolutional layers in ResNet
architecture, and it is used for the creation of the feature maps, in the
top-down pathway, of the same spatial size at each pyramid level. In the
top-down pathway, proportionally sized feature maps are generated from

CHAPTER 4. METHODOLOGY 62

Figure 4.1: Feature Pyramid Network. The feature maps are indicated by blue
outlines and thicker outlines denote semantically stronger features (Lin et al., 2017).

the higher pyramid levels, by up-sampling the spatial resolution with a
factor of 2 using nearest neighbor up-sampling. These feature maps are
enriched with the features from the bottom-up pathway via the lateral
connections. Lateral connections represent a simple 1×1 convolution op-
eration that reduces the dimensionality of the feature maps (the channel
or depth dimension) without applying any spatial transformation, and
thus retaining important feature-related information. This is because
each layer in the bottom-up pathway has different number of channels
and in order to use shared classifiers and bounding box regressors, the
channel dimension needs to be fixed. As in the paper, the channel di-
mension is fixed with a value of 256. Because of the up-sampling, the
dimensions of the feature maps at each pyramid level with their corre-
sponding feature maps from the bottom-up pathway are the same and
they can be merged by element-wise addition. Finally, a 3×3 convolu-
tion is applied to all merged feature maps to reduce the aliasing effect of
up-sampling without affecting the spatial size of the feature maps. This
final set of feature maps corresponding to {C2, C3, C4, C5} is called
{P2, P3, P4, P5}. The full FPN architecture is shown in Figure 4.2.

CHAPTER 4. METHODOLOGY 63

Figure 4.2: Full scheme of Feature Pyramid Network using ResNet101 (Zhang et al.,
2021).

CHAPTER 4. METHODOLOGY 64

The importance of the FPN as a feature extractor structure comes
from the enrichment of {P2, P3, P4, P5} set of feature maps from {C2,
C3, C4, C6} set. This enrichment occurs because the features of the
bottom-up pathway are more accurately localized as they have undergone
sub-sampling fewer times. The features of the bottom-up are weaker se-
mantically, but if they are combined with the features of the top-bottom
pathway, which are of higher-level semantics, the network will provide
strong semantically features at various resolution scales. This combina-
tion enhances the detection performance, especially for small objects.

4.2.2 Region Proposal Network

As it was mentioned in chapter 3, Mask R-CNN generates proposals
about the regions where there might be an object based on the input
image. It does so by using a light weight neural network called RPN
(Region Proposal Network) which slides a 3×3 convolution kernel on each
feature map of the top-down FPN pathway. At each scanning position,
the RPN generates a set of boxes with predefined aspect ratios and scales
relative to images, called anchors, to figure out an object’s location in a
feature map and its bounding box size. Anchors of a single scale and of
multiple aspect ratios are assigned to each top-down pathway level, but
the scale is different on each level. Specifically, the anchor scales are 5 of
size {32², 64², 128², 256², 512²} for {P2, P3, P4, P5, P6} respectively.
P6 is created so that the 5th anchor can be used. It is generated by sub-
sampling P5 with a stride of 2. The aspect ratios of the anchor boxes
are {1:1, 1:2, 2:1}, meaning that for each pixel in the feature maps, 3
anchor boxes are generated in one of the scales specified above. If the
anchor boxes with the specified aspect ratios and 5 different scales were
drawn on the center pixel of a 1024×1024 sample image, the result could
be visualized in Figure 4.3.

CHAPTER 4. METHODOLOGY 65

Figure 4.3: Anchor boxes at the center cell of a sample image. Each color represents
a different anchor scale and for each color there are anchor boxes of 3 aspect ratios
{1:1, 1:2, 2:1}.

The 3×3 convolution kernel that RPN uses to generate anchor boxes
on {P2, P3, P4, P5, P6} is followed by two parallel 1×1 convolutional
layers. RPN uses one of the two layers for binary classification, and it
outputs the probability that an anchor is an object, referred to as the
"objectness score". The other layer is used for bounding box regres-
sion, and it outputs 4 predictions, commonly called the deltas, ∆x, ∆y,
∆width , ∆height, which are the offsets of an anchor box with respect
to an object’s ground-truth box. These deltas are applied to the anchors
to generate the region proposals.

RPN’s learning process results from the comparison of anchors boxes
with the ground truth boxes using intersection over union (IoU) metric
(section 3.6.2). If an anchor box overlaps a ground truth box with an

CHAPTER 4. METHODOLOGY 66

IoU over 0.7, it is classified as positive - it contains an object. If the
IoU is below 0.3, it is classified as negative - it is background. If there
is no anchor box with an IoU overlap higher than 0.7 but is over 0.5,
then a positive label is assigned to the anchor(s) with the highest IoU
overlap with a ground-truth box. The anchor boxes that do not match
the conditions above, they do not contribute to the training (Ren et al.,
2017). Figure 4.4 shows ten random anchor boxes generated for a sample
image, from which one is positive and the other nine negative.

Figure 4.4: Random anchor boxes generated for a sample image. The solid red line
represents the ground-truth bounding box, the dashed red line represents a positive
anchor box, and the dashed grey lines represent negative anchor boxes.

Anchors are randomly sampled to form a mini batch of size 256, with
a balanced ratio between positive and negative anchors (1:3) (Ren et al.,
2017). RPN uses this mini batch to calculate the classification loss using
the binary cross-entropy loss function given by:

Lcls(pi, p
∗
i) =

{
− log(pi), p∗i = 1

− log(1− pi), otherwise
(4.1)

where pi is the predicted probability of a sample being an object (cor-
responds to the ground-truth label p∗i = 1), and 1 − pi is the predicted

CHAPTER 4. METHODOLOGY 67

probability of a sample not being an object. Then, it uses only the pos-
itive anchors of the mini batch to estimate the regression loss. For each
of these positive anchors, the closest ground truth bounding box is used
to calculate the coordinate offsets needed to transform the anchor into
the object. The parameterization of the 4 offsets are:

tx =
(x− xa)

wa
, ty =

(y − ya)

wa

tw = log(w/wa), th = log(h/ha)

t∗x =
(x∗ − xa)

wa
, t∗y =

(y∗ − ya)

wa

t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(4.2)

where, x, y, w, and h denote the predicted box’s top left corner coor-
dinates and its width and height (Ren et al., 2017). Variables xa, ya,
wa, ha, denote the anchor box’s coordinates, and x∗, y∗, w∗, h∗ denote
the coordinates of the ground-truth box respectively. These offsets are
given as input vectors to estimate the regression error using the smooth
L1 function given by:

Lreg(ti, t
∗
i) =

∑
i∈{x,y,w,h}

smoothL1
(ti − t∗i) (4.3)

in which,

smoothL1
(ti − t∗i) =

{
0.5 · (ti − t∗i)

2, |ti − t∗i | = 1

|ti − t∗i | − 0.5, otherwise
(4.4)

It is likely that some anchors highly overlap with each other over the
same object. To solve this issue and get the final region proposals, a
simple algorithmic approach is adopted, called Non-Maximum Suppres-
sion (NMS). NMS takes as input the proposals sorted by their objectness
score and discards those that have an IoU larger than some predefined
IoU threshold, here 0.7, with a proposal that has a higher score (Ren
et al., 2017).

The hyperparameters used in the RPN configuration are summarized
in Table 4.1.

CHAPTER 4. METHODOLOGY 68

Hyperparameters Values
RPN anchor ratios [0.5, 1, 2]
RPN anchor scales (32, 64, 128, 256, 512)
RPN anchor stride 1

RPN train anchors per image 256
RoIs positive ratio 0.33

RPN NMS threshold 0.7

Table 4.1: Hyperparameters applied to the Region Proposal Network.

4.2.3 Region of interest pooling

Region proposals, or region of interests (RoIs), are proposed bounding
boxes where their coordinates are presented based on the original image
size. In order to propagate them forward through the second stage of
the Mask R-CNN network (multi-class classification, bounding box re-
finement, and mask generation branches), they should be mapped first
to the feature maps of the pyramid levels, based on their size, and then,
extracted from the different levels for predictions. A region proposal of
width w and height h is assigned to the level Pk of the feature pyramid
estimated using the formula below:

k = k0 + log2(
√
w · h/224) (4.5)

The number 224 corresponds to the ImageNet competition pre-training
size, and k0 is the target level on which a region proposal with w × h =
2242 should be mapped into. Here, k0 is equal to 4. After that, the pro-
posals are rescaled to their corresponding feature map size, by dividing
the coordinates with the scaling factor of the feature maps (Lin et al.,
2017). For instance, if a feature map was decreased n times from the
original image, each coordinate of the proposal is divided by n. How-
ever, some coordinates divided by n are float values, meaning the region
proposal is not aligned with the grid of the feature map, as shown in
Figure 4.5. This means, that the region proposal cannot be extracted
from the feature map without losing some information. Furthermore, at
the second stage of the Mask R-CNN network, the fully-connected layers

CHAPTER 4. METHODOLOGY 69

used for object detection require fixed shape inputs to classify them into
a fixed number of classes.

Figure 4.5: RoIAlign operation example that extracts a 2×2 region of interest. The
dashed grid represents a feature map, the solid grid a region, and the dots the 4
sampling points in each bin. RoIAlign computes the value of each sampling point
by bilinear interpolation from the nearby grid points on the feature map (He et al.,
2017).

To compute the exact values of the region proposals in their respective
feature maps and convert them into a fixed size to be used by the rest
of the network, the proposals are passed through a special layer, called
RoIAlign, which corrects the misalignment and extracts them as fixed
size 7×7×256 feature maps. The region proposals are divided into 7×7
bins. Formally, in each bin 4 points are sampled using bilinear interpo-
lation, and from these 4 points the maximum or average value is taken
(He et al., 2017). Here, the interpolation comes from one sampling point
from the center of each bin, which is nearly as effective.

4.2.4 Classification and localization

The fixed size region proposals are passed through two hidden fully-
connected layers of size 1024 with ReLU activation. Then, for the final

CHAPTER 4. METHODOLOGY 70

multi-classification they are passed through a fully-connected layer with
N + 1 neurons, where N represents the number of classes plus one for
the background class. The activation function applied for the multi-
classification is the softmax. In parallel, with the classification layer,
there is another fully-connected layer that refines the proposals and gen-
erates the final bounding boxes. This layer has 4N neurons, because of
the 4 offset predictions per class.

These fully-connected layers are trained in a similar way as RPN,
by matching region proposals bounding boxes with ground-truth boxes
using the intersection over union metric, but taking into account the
different possible classes. The proposals with an IoU of at least 0.5 with
a ground truth box are classified as positive, and are assigned to the class
of the ground truth box. The ones with an IoU under 0.5 but over 0.1
with a ground-truth box are classified as negative/background. However,
the proposals that do not intersect with a ground-truth box are ignored,
because at this stage it is assumed that the proposals are good enough.

For detection, the region proposals are randomly sampled to form
a mini batch of size 200 with a balanced ratio between positive and
negative proposals of 1:3. The selected proposals are used to calculate
the classification error by computing the binary cross-entropy for each
class and then sum them:

Lcls_total =
∑
i

Lcls(pi, p
∗
i) (4.6)

The proposals labeled with the correct class, and matched to a ground-
truth box are used as input to the smooth L1 loss function defined by
Equation 4.3 to estimate the regression loss.

The class predictions are in the form of a vector of class probabilities.
Each proposal is labeled with the class having the highest probability.
The proposals that have the background class as the highest probability
are ignored. Then, the offset predictions are applied to the proposal to
adjust the bounding box. But in order to get the final results, the pro-
posals are grouped by class and sorted by probability values. The ones

CHAPTER 4. METHODOLOGY 71

having probability value less than a probability threshold are filtered out.
The probability threshold is a hyperparameter and represents the min-
imum detection confidence value, here 0.9. Then, the filtered proposals
are passed through Non-Maximum Suppression algorithm (NMS). For
each class group, NMS discards the proposals that have an IoU larger
than 0.3 with a proposal that has a higher probability. Also, the max-
imum instances output for each class is set to 100. Subsequently, the
groups are joined again to form the final list of detected proposals.

4.2.5 Instance segmentation

In parallel to the fully-connected layers used for object detection, there
is another small neural network responsible for instance segmentation,
the task of generating masks for each object in the feature maps. In-
stance segmentation is a pixel-to-pixel task and it requires much more
fine-grained alignment of the region proposals than bounding boxes.
RoIAlign operation is used mostly to properly align the regions of in-
terest to the feature maps of the FPN to benefit mask generation rather
than object detection. For instance segmentation, RoIAlign layer ex-
tracts feature maps of shape 14×14×256. These maps are passed through
a fully convolutional network (FCN), instead of fully-connected layers
(Long et al., 2014). Fully-connected layers require fixed-size input vec-
tors which means the spatial coordinates are discarded to produce non-
spatial outputs like vectors of class labels and box offsets. However,
instance segmentation is a dense prediction task because a label for each
pixel is predicted, hence the spatial layout of the objects has to be pre-
served. The trick is to use fully-connected layers as convolutional layers
with kernels that cover the entire input regions. For instance, a convo-
lutional layer with a kernel of size 3×3 can slide through the width and
height of the input with a stride of 1 and same padding, and according to
Equation 3.8, the spatial dimensions of the input will not change. FCN
consist of a stack of 4 convolutional layers with ReLU activation that
preserve the spatial coordinates of the input, a transposed convolutional

CHAPTER 4. METHODOLOGY 72

layer that up-samples the feature maps by a factor of 2, and a convolu-
tional layer with a 1×1 kernel followed by a sigmoid activation function
that produces a classification map for each region proposal.

The transposed convolutional layer uses a kernel of learnable param-
eters, here of size 2×2, and multiplies all the kernel values with the first
value of the input matrix, and place this 2×2 block of pixel values in
place of the initial pixel value. Then it does the multiplication with the
second pixel and places the result in the corresponding position. It re-
peats the process with the next pixel value until the output matrix is
filled. The specified stride by which the kernel moves across the input
is 2. Long et al. (2014) state in their research they applied this method
of up-sampling in FCN because it is fast and effective for learning dense
prediction.

The last convolutional layer reduces the dimensionality of the input
maps to the number of the classes the dataset has. If the number of
classes is K, and the resolution of the region proposals is 28×28, the
output of the last convolutional layer is 28×28×K for each proposal.
Since for each proposal, one mask is generated for each of the K classes,
there is not competition among classes when the network is learning. The
activation function applied to each mask is a per-pixel sigmoid, because
the output is binary and the network has to predict for each pixel value
whether it is 0 or 1.

To determine the mask loss, only the positive region proposals are
taken into account. As stated in the previous section, the positive region
proposals are the ones having an IoU of at least 0.5 and labeled with
the ground-truth class k. Also, only the mask output of the proposal
associated with the k class contribute to the mask loss. The mask loss
is computed using the average binary cross-entropy function given by:

Lmask = −
1

m2

∑
1≤i,j≤j

[yij log ŷ
k
ij + (1− yij) log(1− ŷkij)] (4.7)

where yij is the class label of a pixel (i, j) in the true mask of the proposal
of size m×m, ŷkij is the predicted label of the pixel (i, j) in the predicted

CHAPTER 4. METHODOLOGY 73

mask for the ground-truth class k.
The hyperparameters applied to the RoIAlign, detection and segmen-

tation layers in Mask R-CNN are summarized in Table 4.2.

Hyperparameters Values
RoIAlign pool size 7

Training RoIs per image 200
Detection min confidence 0.9
Detection max instances 100
Detection NMS threshold 0.3
RoIAlign mask pool size 14

Mask shape 28x28

Table 4.2: Hyperparameter configuration of RoIAlign, detection and segmentation
operations.

4.3 Datasets and annotations

4.3.1 Aerial images

To implement the deep learning task of litter detection in aerial imagery,
a field-specific training dataset was needed. For this purpose, a publicly
available dataset consisted of low altitude drone imagery, namely the
UAVVaste dataset (Kraft et al., 2021), was selected. The UAVVaste
dataset consists to date of 772 images and 3716 annotations. Kraft
et al. (2021) tested real-time algorithms on different kinds of processing
hardware to propose the most efficient combinations for real-time litter
detection. Here, it was attempted to use an object detection algorithm
that has not be used before in the UAVVaste dataset.

The annotations in UAVVaste are instance segmentation annotations
in the COCO format (Lin et al., 2015). That means they involve bitmaps
containing a mask marking which pixels in the image contain each object.
All objects in this dataset belong to one category - they are recognized
as rubbish. The dataset was split into training, validation, and test set.
Around 10% of the images were used for fine-tuning the object detection

CHAPTER 4. METHODOLOGY 74

model after each epoch, and 1% were used for testing the model on
unseen data for an unbiased evaluation.

Figure 4.6: Annotated instances of UAVVaste dataset.

4.3.2 Coastline litter images

Apart from the UAVVaste dataset, Mask R-CNN algorithm was trained
and tested on another dataset. Ground assessments were carried out in
the coastal areas, around the city of Chania (Crete, Greece), to identify
areas affected with litter pollution suitable for data collection. West of
the city of Chania, the coastal area that starts from the Nea Chora beach
and ends at the Golden beach, was selected because of its considerable
transport of litter items from touristic activities.

Figure 4.7: Annotated
sample.

The collected dataset, named CoastLitter, is
comprised of 1635 annotated images and 2451 an-
notations. The annotations take the format of
JSON files. This file format provides an easy way
to store and share information in a pair attribute-
value format. Images were uploaded to VGG Im-
age Annotator tool (Dutta and Zisserman, 2019),
an online image annotation tool which is a typical
JSON file format used by Mask R-CNN. For each
object a segmentation mask was drawn over it and

CHAPTER 4. METHODOLOGY 75

labeled as one of the 4 classes: bottle, cup, can, and other. Initially,
each litter item was tagged by type and material (e.g., plastic cup, paper
cup). However, because the dataset is small and there were not enough
instances for each class, some classes were merged so the objects were
classified by type, and separately, by material. The material selected to
classify litter was plastic, hence the data were also classified as either
plastic or non-plastic. In addition, for comparison purposes only with
the UAVVaste dataset, another annotated dataset was formed, where
all classes were merged into one class: the litter class. Around 15% of
the annotated images were used for tuning the object detection model’s
parameters, and 8% for assessing its performance.

4.4 Training and configurations

The training of the Mask R-CNN algorithm was implemented on a
Google Colaboratory notebook rather than on local machine, because
Google Colaboratory (free service) runs in Google server and gives ac-
cess to free GPU (Nvidia Tesla K80 GPU) and 12GB RAM for faster
processing.

Since Mask R-CNN is a sophisticated algorithm to implement, instead
of developing it from scratch, the reliable and wildly-used third-party
implementation by Matterport Inc. was used. The source code, authored
by Abdulla (2017) is open-sourced and available in a Github repository.
The Matterport implementation of Mask R-CNN was written in Python
and built with the TensorFlow-Keras deep learning framework.

To mitigate the problem of overfitting, transfer learning was applied
by using as starting parameters the pre-trained weights of Microsoft’s
COCO dataset. All images were resized to a constant square size of
1024×1024. To save memory space, and thus improve training speed,
instance binary masks were optimized by storing the mask pixels that
are inside an object’s bounding box, instead of the mask pixels of the full
image. Also, the masks were resized to a smaller resolution of size 56×56,

CHAPTER 4. METHODOLOGY 76

instead of 1024×1024. The effect of mask resizing can be visualized in
Figure 4.8.

Figure 4.8: Mask resizing of a sample image.

An image augmentation sequence was created to be applied in the
training phase of the algorithm. It applied affine transformations to
images like changes to scale, translations and rotations, horizontal flips,
and also it added a bit of Gaussian noise and blur as well as changes to
brightness.

Mask R-CNN was trained in two stages. The first stage involved the
training of only the randomly initialized layers, which are those layers in
which no pre-trained weights have been used, and all the backbone lay-
ers were frozen. The second stage involved the fine-tuning of all layers.
The learning rate applied in the Mask R-CNN paper implementation (He
et al., 2017) was 0.01, but for this project it was too high, and therefore,
it was reduced to 0.007. The batch size used in this implementation of
Mask R-CNN algorithm was set to 1 as it worked well with the small
learning rate, accelerating the learning process. On the other hand, a
large batch size provided better gradient estimates, but this came at a
cost of computational efficiency and good generalization performance.
The optimization algorithm used to minimize the loss function was the
stochastic gradient descent (SGD) (Ruder, 2017). It was stated in sec-
tion 3.3.1. that gradient descent updates the weights and bias until it
reaches the local minimum of the loss function using Equation 3.3. To
accelerate the convergence speed, an extension to the gradient descent

CHAPTER 4. METHODOLOGY 77

algorithm was used, referred to as momentum (Ruder, 2017). The mo-
mentum acts as an additional hyperparameter to Equation 3.3 where a
fraction of history (gradient of the previous timestep) is added to the
current gradient. With this additional hyperparameter, the update of
parameters is influenced by the previous change. As shown in Equation
3.3, the change in training parameters is calculated as the gradient of the
parameter θ in the current iteration scaled by the step size or learning
rate α :

∆θ = α · ∇f(θ) (4.8)

Gradient descent with momentum adds the Equation 3.3 the change used
at the previous iteration or time (t − 1) weighted by the momentum
hyperparameter, as Equation 4.8 shows:

∆θ(t) = α · ∇f(θ(t− 1)) +momentum ·∆θ(t− 1) (4.9)

In this project, a large momentum was used, which means the update of
weights were strongly influenced by the previous update.

Another method used in the training configuration is gradient clipping
(Pascanu et al., 2013). While calculating gradients of the parameters in
order to converge the loss function, some of them may increase expo-
nentially or "explode". This results in large updates to the network’s
learning parameters, making the network unstable. Gradient clipping
method limits or clips gradients if their norm exceeds a certain thresh-
old. This translates in the following equation, that states if a gradient
g is bigger than a threshold u then g value is set equal to the threshold
value:

if ∥g∥ > u then g ← u · g

∥g∥ (4.10)

Apart from gradient clipping, another widely-used method for ensur-
ing a stable network was applied. This method is called L2 regulariza-
tion that tunes the loss function by adding a penalty term to ensure that
the trainable weights of the network do not excessively fluctuate. As
Equation 4.11 shows, the penalty term is the norm of the weight vector

CHAPTER 4. METHODOLOGY 78

multiplied by a lambda factor divided by 2, called weight decay, that
determines the strength of the penalty.

L(w, b)new = L(w, b) +
λ

2
∥w∥2 (4.11)

The general and training hyperparameter set for this project are dis-
played in Table 4.3.

Hyperparameters Values
Backbone network resnet101
Backbone strides [4, 8, 16, 32]

Image shape 1024×1024×3
Mini mask shape 56×56

Learning rate 0.0007
Batch size 1

Learning momentum 0.9
Gradient clipping norm 5.0

Weight decay 0.0001

Table 4.3: General configuration values of the Mask R-CNN algorithm.

4.5 Experimental phases and evaluation

The Mask R-CNN algorithm was used to create several models during
the experimental process. In the first experimental phase, two models
for litter detection are trained, one on the UAVVaste dataset and one
on the CoastLitter dataset. In the second experimental phase, a Mask
R-CNN model was trained on the CoastLitter dataset to detect litter and
classifying it by material (plastic). In the third and last experimental
phase, using the same dataset for training as with the second experi-
mental phase, another Mask R-CNN model was created to categorize
the detected litter by type (bottle, cup, can, other).

The models were evaluated in terms of average precision and recall
metrics, famously used to evaluate object detectors in research and in

CHAPTER 4. METHODOLOGY 79

competitions like the COCO and PASCAL VOC challenges. Mask R-
CNN training and validation losses were monitored with TensorBoard
(2019), which is TensorFlow’s visualization toolkit. Predictions for each
stage of the algorithm were evaluated with several visualizations like the
precision-recall curve (section 3.6.4), predicted bounding boxes-ground-
truth bounding boxes overlaps and more. The results are shown in the
next chapter.

Chapter 5

Results

5.1 Internal model inspection

In this section, the prediction results at each stage of the Mask R-CNN
for one of the trained models were visualized to get an idea of the model’s
internal workings. At the first stage of Mask R-CNN, the Region Pro-
posal Network (RPN) generates anchors over the output images of the
Feature Pyramid Network (FPN). Then, it returns a classification score
for each of the anchors to categorize them into being an object or back-
ground. In other words, it classifies them as positive or negative. In
order to make this classification, the RPN uses the ground-truth bound-
ing boxes. The network assigns an anchor a positive label when the
intersection over union (IoU) between the anchor and its ground-truth
box exceeds 0.7. If the IoU is below 0.3, the network assigns the an-
chor a negative label (background). If the IoU is between 0.7 and 0.3,
the anchor does not contribute to training. Figure 5.1a displays the top
predicted positive anchors, sorted by their objectness score, for a sample
image. The boundaries of the positive anchors may not cover entirely
the objects. That is why RPN predicts 4 offset coordinates to be applied
to the anchors to shift them to the correct boundaries of the objects.
Figure 5.1b and 5.1c show the anchors refinement process.

RPN generates from all FPN levels 261888 anchors per image in total.
After refinement the anchors are reduced to 6000. The non-maximum

80

CHAPTER 5. RESULTS 81

(a) (b) (c)

Figure 5.1: Anchors refinement.

suppression (NMS) algorithm filters the refined anchors searching for
those that highly overlap and keeping the ones with the highest object-
ness score. In inference, the algorithm reduces effectively the number of
anchors per image to 1000. These anchors are the final proposals and are
passed to the stage two of the Mask R-CNN algorithm to be classified. A
sample of these proposals after non-maximum suppression are displayed
in Figure 5.2.

Figure 5.2: Anchors af-
ter NMS.

At the second stage of the Mask R-CNN, the
model predicts the class probabilities and the
bounding box offsets for each of the proposals. For
the sample image, the model predicted 28 positive
regions of interest out of 1000. It specifically clas-
sified 972 proposals as background, 9 as bottle, 18
as can and 1 as other. A random sample of the
proposals is depicted in Figure 5.3a, where the
dotted proposals are the ones classified as back-
ground and the rest have a label and a confidence
score. Figure 5.3b shows the positive regions of interest after the re-
finement of the bounding boxes. Low-confidence region proposals were
filtered out. The minimum detection confidence threshold for this model
was set to 0.5. After this filtering process, 21 out of 28 proposals were
kept. Specifically, they were kept 7 out of 9 instances classified as bot-

CHAPTER 5. RESULTS 82

tle and 14 out of 18 instances classified as can. In the sample image
the proposal classified as other that has a confidence value of 0.482 was
removed. Per-class non-maximum suppression was applied to the 21 re-
gions of interest of the sample image. The NMS algorithm kept 1 out of
the 7 instances labeled as bottle, and 3 out of the 14 instances labeled
as can. Figure 5.3c displays the result of NMS. Figure 5.3d shows the
refined final detections.

(a) (b)

(c) (d)

Figure 5.3: Region proposals refinement.

The refined detections are passed through the mask branch of the

CHAPTER 5. RESULTS 83

Mask R-CNN, which generates segmentation masks for every detection.
Figure 5.4a depicts the ground-truth masks and 5.4b shows the predicted
masks of each detected instance. Finally, the predicted masks which have
a size of 28 x 28, are scaled to the original image size of 1024 x 1024 and
placed in the correct position, resulting in Figure 5.5.

(a)

(b)

Figure 5.4: Ground-truth masks vs predicted masks.

In the feature extraction stage of the Mask R-CNN algorithm, it is
worth inspecting the output activation maps from different convolutional
layers of the feature extractor network, here ResNet101, and see what
features of the input are detected or preserved and look of odd signs and
patterns. In Figure 5.6, each row of images is a sample of feature maps
of a convolutional layer of the ResNet101 network. Feature maps are
different versions of the original image with different features highlighted
focusing either on the background or the foreground. Activations closer
to the input are more fine-grained than the ones closer to the output of
the extraction network. This is evident in Figure 5.6a, where it depicts
a sample of activations of a convolutional layer near the beginning of the

CHAPTER 5. RESULTS 84

Figure 5.5: Final detection and segmentation result.

network, while Figure 5.6d depicts a sample of activations of one of the
last layers of the network, hence the activations are more abstract.

CHAPTER 5. RESULTS 85

(a)

(b)

(c)

(d)

Figure 5.6: Activation maps of different layers of the feature extraction network.

CHAPTER 5. RESULTS 86

5.2 Evaluation metrics

5.2.1 Model evaluation for UAVVaste and CoastLitter dataset

At the first experimental phase, two Mask R-CNN models were trained,
one on the open-sourced UAVVaste dataset and one on the CoastLitter
dataset. These models were trained to detect litter in the environment.
This translates in having the models to localize and classify an object
as litter or background, as well as generate a binary mask for each lit-
ter. The models were evaluated with the popular average precision (AP)
metric that is the area under the precision-recall curve at a certain inter-
section over union (IoU) threshold. The model detections were ordered
by their class confidence scores in a descending order. IoU values were
calculated for each detection. The detections were classified as true posi-
tives if their IoU value was greater than the specified IoU threshold, oth-
erwise they were classified as false positive. In case of multiple classes
(not in this case), the detections were considered to be true positives
whether their IoU value exceed the threshold and whether their class
label matches the ground truth. The precision and recall values were
estimated using Equation 3.9 and 3.10 for the accumulated true positive
and false positive values of each detection. Then, the precision-recall
curve was plotted to calculate AP as the area under the precision-recall
curve. Here, AP was estimated over 10 IoU thresholds of .50:.05:.95
(COCO’s primary challenge metric), at IoU=0.5 (PASCAL VOC’s pri-
mary challenge metric), and at IoU=0.75 (strict metric). For each IoU
threshold, AP was calculated using all-point interpolated precision val-
ues (Equation 3.22). Figures 5.7a and 5.7b show the precision and recall
curves estimated using the actual precision values and the every-point
interpolated precision values at IoU=0.5 and at IoU=0.75, respectively,
for a batch of test images of the UAVVaste dataset.

The dependency of the AP metric on the IoU threshold is evident for
the model trained on the UAVVaste dataset. The reduced performance
of the model due to the use of a more restrictive IoU threshold value

CHAPTER 5. RESULTS 87

was expected because of the small size of the objects in aerial images.
In contrast, the IoU threshold did not affect the model trained on the
CoastLitter dataset because the detections had IoU values above the
strict threshold of 0.75. Hence, the model had the same performance at
IoU=0.5 and at IoU=0.75, as shown in Table 5.1. Figure 5.8 depicts the
precision-recall curve estimated at IoU=0.5 for a batch of test images of
the CoastLitter dataset.

The model trained on the CoastLitter dataset exhibited very high
performance with average precision, estimated at the IoU thresholds of
0.5 and 0.75, exceeding 90%. Looking at Table 5.1, for the model trained
on the UAVVaste dataset, AP value at IoU=0.75 is approximately half
the one calculated at IoU=0.5. The small scale of litter in aerial images
reduces the accuracy of the model in locating litter, leading to IoU val-
ues less than the thresholds of 0.5 and 0.75, and thus resulting in the
accumulation of false positive detections that reduce precision.

UAVVaste CoastLitter
AP@.5 : .05 : .95 41.36 79.15

AP@.50 53.37 92.43
AP@.75 26.91 92.43

Table 5.1: Average precision of the models trained on UAVVaste and CoastLitter
datasets.

CHAPTER 5. RESULTS 88

(a)

(b)

Figure 5.7: Precision-recall curves at (a) IoU=0.5 and (b) IoU=0.75 of the model
trained on UAVVaste dataset.

CHAPTER 5. RESULTS 89

Figure 5.8: Precision-recall curve of the model trained on CoastLitter dataset.

CHAPTER 5. RESULTS 90

5.2.2 Model evaluation for plastic and non-plastic litter cat-
egories

At this experimental phase, a Mask R-CNN model was trained to per-
form localization, classification by material, and instance segmentation
on litter from the collected litter imagery. Since plastic litter is consid-
ered as a long-lasting threat to the environment, it was decided to train
the model to detect and classify litter as either plastic or non-plastic.
Contrary to the previous two models, this model had to classify a region
proposal into one of 3 classes: plastic, non-plastic, or background. Since
it was a little more complicated that the previous model, it was expected
to have lower detection confidence in its predictions.

In the process of refining detections, after the proposals are classified,
they are grouped by class and sorted according to their confidence scores
before entering the NMS algorithm. The low confidence proposals are
filtered out based on a threshold value. If the threshold value is set too
high, more objects will be missed, resulting in more false negatives; on
the contrary, if the setting is too low, more false positive detections will
be made. The previous models exhibited very high confidence scores
in their detections, thus the minimum confidence threshold was set to
0.9. Here, setting the threshold lower than 0.9 had a tremendous differ-
ence in average precision for both classes. Calculating average precision
at IoU=0.5 at varying confidence thresholds for both classes results in
Figure 5.9 that displays this difference.

AP was not estimated for a confidence threshold lower than 0.5 be-
cause of the accumulation of more false positive detections. Generally, a
good value for the confidence threshold is one where both false positives
and false negatives are low for all classes while maintaining a high AP.
As shown in Figure 5.9, for both categories AP is the highest when the
confidence threshold is set at 0.5. Furthermore, for this threshold value
the number of false positive and false negative detections was low for
both litter categories. Therefore, this value was retained for use in the
estimation of the different AP metrics for each class. Again, AP was

CHAPTER 5. RESULTS 91

Figure 5.9: Average precision estimated for a range of confidence thresholds for
plastic and non-plastic litter categories.

computed at 10 different IoU thresholds ranging from 50% to 95% at
5% step-size, at the commonly used IoU threshold of 0.5 and, at the re-
strictive IoU threshold of 0.75. Subsequently, the mean average precision
(mAP), which is AP over all classes, was computed. Table 5.2 reports
the results.

plastic non-plastic mAP
AP@.5 : .05 : .95 55.54 57.37 56.46

AP@.50 72.03 83.30 77.67
AP@.75 72.03 83.30 77.67

Table 5.2: Average precision for plastic and non-plastic litter categories.

As shown in Table 5.2, AP calculated at IoU=0.75 is the same with AP
calculated at IoU=0.5, as the IoU values of the detections were greater
than the thresholds. This is why Figures 5.10a and 5.10b show the
precision-recall curves for each class estimated only at IoU=0.5. Again,
AP was calculated as the area under the precision-recall curve using all-

CHAPTER 5. RESULTS 92

point interpolated precision values. The results of Table 5.2 show that
in terms of average precision the model performed about 10% better at
detecting non-plastic litter than detecting plastic litter. In the case of
plastic class, there were more false positives because the model some-
times confused background materials with plastic objects. An example
of this case is shown in Figure 5.11. AP calculated at IoU=[0.5:0.05:0.95]
is quite similar for both classes and lower than the other AP metrics be-
cause higher IoU thresholds are taken into account, and therefore the
precision decreases regardless of the litter category.

Figure 5.11: A sample
image depicting a false
(left item) and a correct
detection (right item).

Inspecting the class balance shown in Figure
5.12, the plastic class is represented more than
the non-plastic class. More instances of one class
can affect the overall classification loss function
in its favor. Depending on how big the difference
is between the number of samples in each class,
the one with the most samples will have a greater
impact on the optimizer of the algorithm. In this
case, the sample difference between the two classes
does not seem to affect the accuracy in favor of the
plastic class, as the AP is about 10% higher for
the non-plastic class.

CHAPTER 5. RESULTS 93

(a)

(b)

Figure 5.10: Precision-recall curves for (a) the plastic class and (b) the non-plastic
class.

CHAPTER 5. RESULTS 94

Figure 5.12: Number of litter annotations per class.

CHAPTER 5. RESULTS 95

5.2.3 Model evaluation for litter categorized by type

At the last experimental phase, a Mask R-CNN model was trained to
detect litter that belong to one of the 4 classes: bottle, cup, can, and
other. When using the model for inference, several confidence thresholds
were tested as with the previous model in order to determine the opti-
mal value for fairly good detections. Figure 5.13 was created to exhibit
the change in AP for each of the classes with respect to the different
confidence threshold values.

Figure 5.13: Average precision estimated for a range of confidence thresholds for four
litter categories.

By lowering the threshold value from 0.9, AP increases for the bottle
and can categories, but it stays flat for the other two. This means, that
except for bottles and cans, the model failed to detect cups or other
types of litter. In addition, for the cup category and the other category,
it was observed that the model made several false predictions as the ones
shown in Figure 5.14. Figure 5.14 shows a cup incorrectly labeled as a
can and background material incorrectly labeled as other. Judging by
the other two categories, the confidence threshold value chosen for the
calculation of the different AP metrics was 0.5, due to the high value
of AP, but also because of the low number of false positive and false

CHAPTER 5. RESULTS 96

Figure 5.14: False predictions.

negative predictions. Referring to Figure 5.14, if the threshold value of
0.6 or higher was selected, the detections in Figure 5.14 would be false
negatives (objects would not be detected) as the confidences are lower
than 0.6.

In addition to the example in Figure 5.14, there were other cases where
the model confused cups with cans, probably because they have similar
shapes. The imbalance of annotated instances per class can be also a
factor that can contribute to the model’s false predictions especially if
there are not many samples from each category. CoastLitter dataset is
considered tiny for object detection and, as shown in Figure 5.15, there
is an imbalance between the object classes. It can be seen that the cup
category has the fewest litter samples, one reason that the model seemed
more confident in labeling cups as cans. The number of samples in the
category named as other is the highest but since it includes miscellaneous
objects they were not enough for the model to learn to differentiate them
from the other types of litter and the background. Also, the shape of
litter in this category varies significantly, and it is considered to be the

CHAPTER 5. RESULTS 97

Figure 5.15: Number of litter annotations per class.

bottle cup can other mAP
AP@.5 : .05 : .95 77.99 0.00 66.41 1.25 36.41

AP@.50 88.00 0.00 88.24 2.17 44.60
AP@.75 88.00 0.00 88.24 0.53 44.19

Table 5.3: Average precision for four litter categories.

reason why the model predicts incorrectly background objects (which
also vary in shape) as litter. As for the bottle and can categories the
model made good predictions. This is reflected in Table 5.3 where the
calculations of the different AP metrics for each class are reported.

For the bottle and can categories, AP calculated at IoU=0.5 and at
IoU = 0.75 is the same because the detections had IoU values higher
than the IoU threshold of 0.75. AP averaged over the IoU threshold
range of [0.5:0.05:0.95] is about 80% for the bottle class and 66% for
the can class. Although, the other AP metrics showed that the model
predicts cans slightly more accurately than bottles, it performs better on
bottles when higher IoU thresholds are taken into account. This result
may lie in the fact that the bottle class contains the highest number of
samples as shown in Figure 5.15. AP values for the cup class and the
other class show that the model fails to detect litter from these categories.
Therefore, the precision-recall curves reported in this thesis are only for
the bottle and can class shown in Figures 5.16a and 5.16b.

CHAPTER 5. RESULTS 98

(a)

(b)

Figure 5.16: Precision-recall curves for (a) the bottle class and (b) the can class.

Chapter 6

Conclusions

In order to realize a deep learning based system of surveying litter from
coastal areas, it is necessary to improve the accuracy of object detection
on litter objects. This project explored the ability of Mask R-CNN algo-
rithm to perform object detection and instance segmentation on coastline
litter from images of a newly synthesized dataset, and also on litter from
aerial images. Coastline litter was classified by material and by type to
investigate the performance of the algorithm in differentiating in both
cases.

Mask R-CNN demonstrated good accuracy and showed great poten-
tial in object detection and instance segmentation of litter in images
from the CoastLitter dataset with average precision reaching a little
over 90%. Comparing the accuracy of the algorithm on the images from
the CoastLitter dataset to the one on aerial images from the UAVVaste
dataset,the size factor was shown to affect the performance of the algo-
rithm leading to lower accuracy in the case of aerial images. For the
UAVVaste aerial images, AP calculated at the IoU threshold of 0.5 was
about 53%, but when it was computed at the more restrictive threshold
of 0.75, it dropped by half. This difference in values was also due to the
small size of litter in UAVVaste images. This was not the case with the
CoastLitter images where AP stayed the same for both IoU thresholds.

In the experimental case of predicting plastic over non-plastic lit-
ter, Mask R-CNN performed quite well having a mean average precision

99

CHAPTER 6. CONCLUSIONS 100

around 56-78% depending on which IoU threshold value was applied.
The algorithm predicted non-plastic litter with slightly greater ease than
plastic litter, even though the non-plastic class included less samples.
Dependency on the minimum detection confidence threshold value was
significant in this experimental phase. It is important to search for the
appropriate threshold value which will lead to high detection accuracy,
while retaining both false positive and false negative detections low.

Challenges were found when the algorithm had to classify litter into
more categories. The difference in the performance of Mask R-CNN for
each category was noticeable in the last experimental phase where it
had to classify litter by type. The algorithm was effective in predict-
ing bottles and cans with a maximum AP of around 88% for both litter
categories. However, the algorithm failed to detect cups and other lit-
ter types. However, the algorithm failed to detect cups and other litter
types. The difference in the number of litter samples for each of the four
classes played a crucial role in the algorithm’s predictions. The cup class
was the least represented class among the others which led to the model’s
inability to predict cup samples. The model made several false positive
detections on the category named as other. This category involves sev-
eral types of litter that do not belong to the rest of the categories. To
improve the performance of the model on under-represented classes or
classes like the other category which involves miscellaneous types of ob-
jects, these classes have to be re-sampled. The cup class needs to be
enriched with more instances to reinforce the model’s performance on
this class. Objects from the other category must be thoroughly exam-
ined, as they differ greatly in shape and size, to decide which types are
under-represented and need adjustment in quantity. Another way to
combat misclassification and low detection accuracy is to apply different
weighted versions of cross-entropy classification loss to each object class
(Phan and Yamamoto, 2020). Over-represented classes tend to be easy
to predict because they have a greater impact on the overall classifica-
tion loss than under-represented classes. Therefore, the gradient descent

CHAPTER 6. CONCLUSIONS 101

optimizes the detection for those majority classes. The performance of
minority classes can be improved if a weight vector is applied to Equation
4.1 whose value is adjusted for each class. For a minority class, a larger
value of w will increase the importance of the class during training. For
an over-represented class that is relatively easily classified, a lower value
of w will prevent its dominance in total loss.

Overall, the experiments demonstrated that the detection effective-
ness relies heavily on the size of the objects, the selection of parameters
such as the confidence threshold and the IoU threshold, as well as the
number of samples for the different classes. Future work will focus on
addressing the misclassifications occurred in the last experimental case
by re-sampling the under-represented classes and adjusting the classifi-
cation loss function to treat mistakes on these classes as more important
than mistakes on well-represented classes. Other future work plans in-
volve the extension of the coastline litter dataset and investigating the
performance of other state-of-the-art object detection algorithms on it.

Bibliography

Abdulla, W. (2017). Mask R-CNN for object detection and in-
stance segmentation on Keras and TensorFlow. Github repository.
https://github.com/matterport/Mask_RCNN.

Asensio-Montesinos, F., Anfuso, G., Randerson, P., and Williams, A.
(2019). Seasonal comparison of beach litter on mediterranean coastal
sites (Alicante, SE Spain). Ocean and Coastal Management, 181:104914.
https://doi.org/10.1016/j.ocecoaman.2019.104914.

Barboza, L., Cózar, A., Gimenez, B., Barros, T., Kershaw, P., and Guilhermino, L.
(2019). Macroplastics Pollution in the Marine Environment. World Seas: an Envi-
ronmental Evaluation, pages 305–328. https://doi.org/10.1016/B978-0-12-805052-
1.00019-X.

Bobulski, J. and Piątkowski, J. (2018). PET waste classification method and
Plastic Waste DataBase WaDaBa. In Conference Proceedings IP&C 2018,
Advances in Intelligent Systems and Computing, volume 681, pages 57–64.
https://doi.org/10.1109/ICRA.2019.8793975.

Bochkovskiy, A., Wang, C., and Liao, H. M. (2020). YOLOv4: Optimal Speed and
Accuracy of Object Detection. arXiv. https://arxiv.org/abs/2004.10934.

Bousquet, O., Boucheron, S., and Lugosi, G. (2004). Introduction to statis-
tical learning theory. In Bousquet, O., von Luxburg, U., and Rätsch, G.,
editors, Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in
Computer Science, volume 3176, pages 169–207. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-28650-9_8.

Chen, J., Li, Q., Wang, H., and Deng, M. (2020). A Machine Learning Ensemble
Approach Based on Random Forest and Radial Basis Function Neural Network for
Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River
Delta, China. International Journal of Environmental Research and Public Health,
17(1). 49. https://doi.org/10.3390/ijerph17010049.

102

BIBLIOGRAPHY 103

Chen, L., Wu, C., Fan, W., Sun, J., and Naoi, S. (2014). Adaptive Local Re-
ceptive Field Convolutional Neural Networks for Handwritten Chinese Character
Recognition. Pattern Recognition, pages 455–463. https://doi.org/10.1007/978-3-
662-45643-9_48.

Chollet, F. (2017). Deep Learning with Python, chapter 1. Manning Publications.

Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental
Approach, Second Edition. CRC Press.

Cooper, M. J. (2018). A Deep Learning Prediction Model for Mort-
gage Default. Master’s thesis, University of Bristol, England.
http://dx.doi.org/10.13140/RG.2.2.21506.12487.

Dhingra, G., Kumar, V., and Joshi, H. D. (2019). A novel computer vision based neu-
trosophic approach for leaf disease identification and classification. Measurement,
135:782–794. https://doi.org/10.1016/j.measurement.2018.12.027.

Dutta, A. and Zisserman, A. (2019). The VIA Annotation Software for Images,
Audio and Video. arXiv. https://arxiv.org/abs/1904.10699.

Erni-Cassola, G., Zadjelovic, V., Gibson, M. I., and Christie-Oleza, J. A.
(2019). Distribution of plastic polymer types in the marine environ-
ment; A meta-analysis. Journal of Hazardous Materials, 369:691–698.
https://doi.org/10.1016/j.jhazmat.2019.02.067.

Everingham, M., Eslami, S., Gool, L. V., Williams, C., Winn, J., and Zisserman, A.
(2015). The PASCAL Visual Object Classes Challenge: A Retrospective. Interna-
tional Journal of Computer Vision, 111:98–136. https://doi.org/10.1007/s11263-
014-0733-5.

Fallati, L., Polidori, A., Salvatore, C., Saponari, L., Savini, A., and Galli,
P. (2019). Anthropogenic Marine Debris assessment with Unmanned Aerial
Vehicle imagery and deep learning: A case study along the beaches of
the Republic of Maldives. Science of The Total Environment, 693:133581.
https://doi.org/10.1016/j.scitotenv.2019.133581.

Fulton, M., Hong, J., Islam, M. J., and Sattar, J. (2019). Robotic detec-
tion of marine litter using deep visual detection models. In 2019 Inter-
national Conference on Robotics and Automation (ICRA), pages 5752–5758.
https://doi.org/10.1109/ICRA.2019.8793975.

Galgani, L., Beiras, R., Galgani, F., Panti, C., and Borja, A. (2019). Editorial: Im-
pacts of Marine Litter. Frontiers in Marine Science, 6. 10.3389/fmars.2019.00208.

BIBLIOGRAPHY 104

Geraeds, M., van Emmerik, T., de Vries, R., and bin Ab Razak, M. S. (2019). River-
ine Plastic Litter Monitoring Using Unmanned Aerial Vehicles (UAVs). Remote
Sensing, 11(17):2045. https://doi.org/10.3390/rs11172045.

Girshick, R. (2015). Fast R-CNN. In 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 1440–1448. https://doi.org/10.1109/ICCV.2015.169.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587.
https://doi.org/10.1109/CVPR.2014.81.

Gonçalves, G., Andriolo, U., Gonçalves, L., Sobral, P., and Bessa, F. (2020). Quan-
tifying Marine Macro Litter Abundance on a Sandy Beach using Unmanned
Aerial Systems and Object-Oriented Machine Learning Methods. Remote Sensing,
12(16):2599. https://doi.org/10.3390/rs12162599.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Google Research (2019). Open images 2019 - object detection: Detect objects in
varied and complex images. https://www.kaggle.com/c/open-images-2019-object-
detection.

Goëau, H., Mora-Fallas, A., Champ, J., Rossington-Love, N. L., Mazer,
S. J., Mata-Montero, E., Joly, A., and Bonnet, P. (2020). A new fine-
grained method for automated visual analysis of herbarium specimens: A case
study for phenological data extraction. Applications in Plant Sciences, 8(6).
https://doi.org/10.1002/aps3.11368.

Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Dau-
gaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess,
M. C., Ivleva, N. P., Lusher, A. L., and Wagner, M. (2019). Are We Speaking the
Same Language? Recommendations for a Definition and Categorization Frame-
work for Plastic Debris. Environmental Science & Technology, 53(3):1039–1047.
https://doi.org/10.1021/acs.est.8b05297.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2980–2988.
https://doi.org/10.1109/ICCV.2017.322.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778. https://doi.org/10.1109/CVPR.2016.90.

BIBLIOGRAPHY 105

Hong, J., Fulton, M., and Sattar, J. (2020a). A Generative Approach To-
wards Improved Robotic Detection of Marine Litter. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 10525–10531.
https://doi.org/10.1109/ICRA40945.2020.9197575.

Hong, J., Fulton, M., and Sattar, J. (2020b). TrashCan: A Semantically-
Segmented Dataset towards Visual Detection of Marine Debris. arXiv.
https://arxiv.org/abs/2007.08097.

Hosang, J., Benenson, R., Dollár, P., and Schiele, B. (2016). What makes for effec-
tive detection proposals? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(4):814–830. https://doi.org/10.1109/TPAMI.2015.2465908.

Kraft, M., Piechocki, M., Ptak, B., and Walas, K. (2021). Autonomous, On-
board Vision-Based Trash and Litter Detection in Low Altitude Aerial Im-
ages Collected by an Unmanned Aerial Vehicle. Remote Sensing, 13(5):965.
https://doi.org/10.3390/rs13050965.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc. https://doi.org/10.1145/3065386.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie,
S. (2017). Feature Pyramid Networks for Object Detection. arXiv.
https://arxiv.org/abs/1612.03144v2.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C. L., and Dollár, P. (2015). Microsoft COCO: Common
Objects in Context. arXiv. https://arxiv.org/abs/1405.0312.

Lo, H.-S., Wong, L.-C., Kwok, S.-H., Lee, Y.-K., Po, B. H.-K., Wong, C.-
Y., Tam, N. F.-Y., and Cheung, S.-G. (2020). Field test of beach litter as-
sessment by commercial aerial drone. Marine Pollution Bulletin, 151:110823.
https://doi.org/10.1016/j.marpolbul.2019.110823.

Long, J., Shelhamer, E., and Darrell, T. (2014). Fully Convolutional Networks for
Semantic Segmentation. arXiv. http://arxiv.org/abs/1411.4038.

Maitre, J., Bouchard, K., and Bédard, L. P. (2019). Mineral grains recognition using
computer vision and machine learning. Computers and Geosciences, 130:84–93.
https://doi.org/10.1016/j.cageo.2019.05.009.

BIBLIOGRAPHY 106

MARLIN (2013). Final report of Baltic marine litter project
MARLIN - Litter Monitoring and Raising Awareness 2011–2013.
http://pidasaaristosiistina.fi/files/1994/Marlin_Final_Report_2014.pdf.

Martin, C., Parkes, S., Zhang, Q., Zhang, X., McCabe, M. F., and
Duarte, C. M. (2018). Use of unmanned aerial vehicles for effi-
cient beach litter monitoring. Marine Pollution Bulletin, 131:662–673.
https://doi.org/10.1016/j.marpolbul.2018.04.045.

Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M., Bochow,
M., Bonnery, G., Cole, M., Cózar, A., Donnelly, R., Echevarría, F., Galgani,
F., Garaba, S. P., Goddijn-Murphy, L., Lebreton, L., Leslie, H. A., Lindeque,
P. K., Maximenko, N., Martin-Lauzer, F.-R., Moller, D., Murphy, P., Palombi,
L., Raimondi, V., Reisser, J., Romero, L., Simis, S. G., Sterckx, S., Thompson,
R. C., Topouzelis, K. N., van Sebille, E., Veiga, J. M., and Vethaak, A. D. (2019).
Measuring Marine Plastic Debris from Space: Initial Assessment of Observation
Requirements. Remote Sensing, 11(20):2443. https://doi.org/10.3390/rs11202443.

Merlino, S., Paterni, M., Berton, A., and Massetti, L. (2020). Unmanned Aerial
Vehicles for Debris Survey in Coastal Areas: Long-Term Monitoring Programme
to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine
Litter. Remote Sensing, 12(8):1260. https://doi.org/10.3390/rs12081260.

NVIDIA Developer (2020). Jetson Xavier NX Developer Kit.
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit.

Nwankpa, C. E., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation
Functions: Comparison of Trends in Practice and Research for Deep Learning.
arXiv. https://arxiv.org/pdf/1811.03378.pdf.

Olivelli, A. and Rosebrock, U. (2020). From Hobart, to London, to
Dhaka: using cameras and AI to build an automatic litter detec-
tion system. https://theconversation.com/from-hobart-to-london-to-dhaka-using-
cameras-and-ai-to-build-an-automatic-litter-detection-system-150950.

OSPAR (2010). Guideline for Monitoring Marine Litter on the Beaches
in the Ospar Maritime Area. https://www.ospar.org/ospar-data/10-
02e_beachlitter%20guideline_english%20only.pdf.

Padilla, R., Netto, S. L., and da Silva, E. A. B. (2020). A survey on per-
formance metrics for object-detection algorithms. In 2020 International Con-
ference on Systems, Signals and Image Processing (IWSSIP), pages 237–242.
http://doi.org/10.1109/IWSSIP48289.2020.9145130.

BIBLIOGRAPHY 107

Pascanu, S., Mikolov, T., and Bengio, Y. (2013). On the difficulty of
training recurrent neural networks. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28(3), pages 1310–1318.
http://proceedings.mlr.press/v28/pascanu13.pdf.

Pervez, R., Wang, Y., Mahmood, Q., Zahir, M., and Jattak, Z. (2020). Abundance,
type, and origin of litter on No. 1 Bathing Beach of Qingdao, China. Journal of
Coastal Conservation, 24:34. https://doi.org/10.1007/s11852-020-00751-x.

Phan, T. H. and Yamamoto, K. (2020). Resolving Class Imbalance
in Object Detection with Weighted Cross Entropy Losses. arXiv.
https://arxiv.org/abs/2006.01413.

Ping, P., Kumala, E., Gao, J., and Xu, G. (2020). Smart street litter
detection and classification based on Faster R-CNN and edge computing.
Journal of Software Engineering and Knowledge Engineering, 30(4):537–553.
https://doi.org/10.1142/S0218194020400045.

Proença, P. F. and Simões, P. (2020). TACO: Trash Annotations in Context for
Litter Detection. arXiv, abs/2003.06975. https://arxiv.org/abs/2003.06975.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015). You Only Look Once:
Unified, Real-Time Object Detection. arXiv. https://arxiv.org/abs/1506.02640.

Redmon, J. and Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv.
http://arxiv.org/abs/1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149.
https://doi.org/10.1109/TPAMI.2016.2577031.

Rezatofighi, S. H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. D., and Savarese, S.
(2019). Generalized intersection over union: A metric and A loss for bounding box
regression. arXiv. http://arxiv.org/abs/1902.09630.

Robertson, S., Azizpour, H., and Hartman, K. S. J. (2018). Digital image analy-
sis in breast pathology-from image processing techniques to artificial intelligence.
Translational Research: The Journal of Laboratory and Clinical Medicine, 194:19–
35. https://doi.org/10.1016/j.trsl.2017.10.010.

Ruder, S. (2017). An overview of gradient descent optimization algorithms. arXiv.
https://arxiv.org/abs/1609.04747.

BIBLIOGRAPHY 108

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A., and Fei-Fei, L. (2015). Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of Com-
puter Vision, 115:211–252. https://doi.org/10.1007/s11263-015-0816-y.

Ruthotto, L. and Haber, E. (2021). An Introduction to Deep Generative Modeling.
arXiv. https://arxiv.org/abs/2103.05180.

Sahni, S., Mittal, A., Kidwai, F., Tiwari, A., and Khandelwal, K. (2020). Insurance
Fraud Identification using Computer Vision and IoT: A Study of Field Fires. Pro-
cedia Computer Science, 173:56–63. https://doi.org/10.1016/j.procs.2020.06.008.

Schwartzman, A., Kagan, M., Mackey, L., Nachman, B., and Oliveira, L. D. (2016).
Image Processing, Computer Vision, and Deep Learning: new approaches to the
analysis and physics interpretation of LHC events. Journal of Physics: Conference
Series, 762:012035. https://doi.org/10.1088/1742-6596/762/1/012035.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv. http://arxiv.org/abs/1409.1556.

Stanford University (n.d.). Neural networks part 1, setting up the ar-
chitecture. CS231n Convolutional Neural Networks for Visual Recognition.
https://cs231n.github.io/neural-networks-1/.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

Tan, M., Pang, R., and Le, Q. V. (2019). EfficientDet: Scalable and Efficient Object
Detection. arXiv, abs/1911.09070. http://arxiv.org/abs/1911.09070.

TensorBoard (2019). TensorBoard: TensorFlow’s visualization toolkit. Google.
https://www.tensorflow.org/tensorboard.

Thung, G. (2016). GitHub - garythung/trashnet: Dataset of im-
ages of trash; Torch-based CNN for garbage image classification.
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit.

Ting, K. M. (2011). Precision and Recall. In Sammut, C. and Webb, G.,
editors, Encyclopedia of Machine Learning., page 781. Springer, Boston, MA.
https://doi.org/10.1007/978-0-387-30164-8_652.

BIBLIOGRAPHY 109

Traore, B. B., Kamsu-Foguem, B., and Tangara, F. (2018). Deep convolu-
tion neural network for image recognition. Ecological Informatics, 48:257–268.
https://doi.org/10.1016/j.ecoinf.2018.10.002.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W. (2013).
Selective search for object recognition. International Journal of Computer Vision,
104(2):154–171. https://doi.org/10.1007/s11263-013-0620-5.

Ulhaq, A., Khan, A., Gomes, D., and Paul, M. (2020). Computer vision for COVID-
19 control: A survey. arXiv, pages 1–24. https://doi.org/10.31224/osf.io/yt9sx.

Ventura, D., Bonifazi, A., Gravina, M. F., Belluscio, A., and Ardizzone, G. (2018).
Mapping and Classification of Ecologically Sensitive Marine Habitats Using Un-
manned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA).
Remote Sensing, 10(9):1331. https://doi.org/10.3390/rs10091331.

Zhang, J., Song, X., Feng, J., and Fei, J. (2021). X-Ray Image Recognition Based on
Improved Mask R-CNN Algorithm. Mathematical Problems in Engineering, 2021.
https://doi.org/10.1155/2021/6544325.

